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ABREVIATIONS & NOMENCLATURE 
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PSF:  point spread function 

FFT: Fast Fourier Transform 

SVD: Singular Value Decomposition 

TSVD: Truncated Singular Value Decomposition 

TV: Total Variation 

PDE : Partial Differential Equation 

PSO: Particle Swarm Optimization 

BFO: Bacterial Foraging Optimization 

DCT: Discret Cosine Transform 

GCV: Generalized cross validation 

CG: Conjugate Gradient 

ROF: Rudin, Osher, Fatemi 

BID: Blind Image Deconvolution 

ARMA: Autoregressive moving average 

NN: Neural Network 

RMSE: Root mean squares error 

PSNR: peak signal to noise ratio 

NCC: Normalized Cross-Correlation 

AD: Average Difference 

SC: Structural Content 

MD: Maximum Difference 
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2. Nomenclature 

 

 

 

 

g : degraded image  

H : blurring operator 

f  : original image 

η  : additive noise 

TVU , : two column-orthogonal matrices 

∑ : diagonal matrix with entries  σ1 ≥ σ2 ≥ … ≥ σN ≥ 0 

α : Tikhonov regularization parameter 

λ:    Total Variation regularizationparameter 
ω : inertia weight 

1C , 2C :  acceleration constants 

P:    dimension of search space  

S:     population of the E. coli bacteria 

φ ( j): random direction of the bacteria 

J(i, j,k, l):   cost at the location of ith bacterium 

θ
i(j,k, l):  location of the ith bacterium at jth chemotactic step, kth reproduction step 

and lth elimination–dispersal step 

Nc :  maximum number of chemotactic steps 

Ns:  maximum number of swims 

Nre:    maximum number of reproduction steps 

Ned:   number of elimination–dispersal events 

Ped:   the probability that each bacteria will be eliminated/dispersed 

Sr = S/2:      the number of bacteria reproductions (splits) per generation  

C(i):   step length of the bacterium 
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Abstract 
 
 
 

In this thesis, we introduced a new optimal approach to the nonlinear 

degraded images restoration problem which is useful for the enhancement of 

neutron radiography gray-level images. We attempt to reconstruct or recover 

images that have been degraded, using some a priori knowledge of the 

degradation phenomenon. Our approach is based on using Swarm intelligence 

optimization methods, Particle Swarm (PSO) and Bacterial Foraging (BFO) 

algorithms, in addition to their synergy, to solve such ill-posed inverse problem. 

Many works have been done using a room of techniques, ranging from linear and 

nonlinear filters, matrix algebra and discrete mathematics methods and 

regularized deconvolution, to optimization methods such as neural networks, fuzzy 

logic and genetic evolutionary algorithms. We selected the Total variation (TV) 

regularization as an approach which requires linearization of a highly nonlinear 

penalty term and take advantage of swarm intelligence in order to facilitate 

computation. To get smoothed images in presence of noise, a Laplacian constraint 

is introduced in the optimization process for regularization task.  Another approach 

is presented in this thesis based on modelling the nonlinear degradation process 

as an ARMA (autoregressive moving average) process, this model is identified 

using an optimized neural network which is fast trained using a hybrid swarm 

implementation based on the synergy of PSO and BFO algorithms. Both original 

image and blur function are identified through this model.  A computational 

comparison based on some recent image quality metrics is performed between 

these approaches. 
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Résumé  

 

 

 

Dans cette thèse, nous avons introduit une nouvelle approche optimale au 

problème de la restauration des images dégradées non linéaire qui est utile pour 

l'amélioration des images obtenues par radiographie neutronique. Ces images 

sont en niveaux de Gris. Nous essayons de reconstruire ou restaurer une image 

qui a été dégradé pendant l’acquisition, en utilisant des connaissances à priori du 

phénomène de dégradation. Notre approche est basée sur les méthodes 

d’optimisation en utilisant l’intelligence en essaims, comme les essaims des 

particules (PSO) et les bactéries en recherche de nourriture (BFO), en plus de leur 

synergie, pour résoudre un tel problème inverse mal posé. De nombreux travaux 

ont été fait en utilisant plusieurs techniques, allant des filtres linéaires et non 

linéaires, l’algèbre des matrices et mathématique discrète et la dé-convolution 

régularisée, à des méthodes d'optimisation tels que les réseaux de neurones, la 

logique floue et les algorithmes évolutionnaires génétiques. Nous avons choisi la 

méthode de régularisation des variations totales (TV) qui exige la linéarisation d'un 

terme de pénalité hautement non linéaire, et on a profité des avantages de 

l'intelligence en essaims, afin de faciliter les calculs. Pour obtenir des images 

lissées en présence de bruit, une contrainte Laplacienne est introduite dans le 

processus d'optimisation pour la régularisation. Une autre aproache est présentée 

dans cette thèse basée sur la modélisation du porocesus nonlinéaire de 

dégradation par un model ARMA (autoregressive moving average). Ce model est 

identifé en utilisant un réseau de neurons optimisé. L’apprentissage de ce réseau 

est réalisé à l’aide d’une implémentation hybride de deux algorithmes : PSO et 

BFO. L’image originale et la fonction de dégradation sont déterminés en même 

temps à travers ce model. Une étude comparative basée sur des mesures de 

qualité d'image est effectuée entre ces approches.  
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CHAPTER 1 

GENERAL INTRODUCTION 

 
 

 
By image restoration, we seek to recover the original sharp image by using 

a mathematical model of the blurring process. The key issue is that some 

information on the lost details is indeed present in the blurred image, but this 

information is “hidden” and can only be recovered if we know the details of the 

blurring process. Due to various unavoidable errors in the recorded image, we can 

recover the original image exactly. The most important errors are fluctuations in 

the recording process and approximation errors when representing the image with 

a limited number of digits [1]. 

The image restoration techniques are widely used in various applications 

such as medical imaging (Rathee et al., 1992, satellite imaging (Jalobeanu et al., 

2000; Bretschneider, 2002; Bratsolis and Sigelle, 2003); Lee et al., 2004), 

astronomical imaging (Molina, 1994; Molina et al., 2001), forensic science (Wen 

and Lee, 2002) and many other poor-quality imaging. In this work, we especially 

focus on the problem of image restoration in neutron radiography.   

We can broadly classify restoration techniques into two classes: the filtering 

reconstruction techniques and the algebraic techniques. The filtering techniques 

are rather classical and they make use of the fact that noise signals usually have 

higher frequencies than image signals. This means that image signals die out 

faster than noise signals in high frequencies. By selecting the proper filter, one can 

get a good estimate of the original image signal, by reducing the effect of noise. 

Examples of the restoration filters are the deconvolution filter, in which the transfer 

function of the degraded system is inverted to produce a restored image, and the 

Wiener filter that the mean-squared error (MSE) criterion to minimize the error 

signal between the original and degraded image signals. The Wiener filter acts as 

a band-pass filter. At low spatial frequencies, it acts as an inverse filter, whereas at 

higher frequencies, it acts as a smooth rolloff low-pass filter. This filter is not very 

suitable for use in cases in which images are investigated by the human eye. The 

MSE technique treats all errors equally, regardless of their spatial location in the 
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image. The human eye, on the other hand, has high degree of tolerance to errors 

in darker areas on the image than elsewhere. Another limitation in this filter is that 

it cannot handle dynamically changing image and noise signals. (A. Khireddine et 

al.,2007) used this filter in 2D case for digital image restoration [2]. The Lucy-

Richardson algorithm can be used effectively when the point-spread function PSF 

(blurring operator) is known, but little or no information is available for the noise. 

The blurred and noisy image is restored by the iterative, accelerated, damped 

Lucy-Richardson algorithm. The Blind deconvolution algorithm maximizes the 

likelihood that the resulting image, when convolved with the resulting PSF, is an 

instance of the blurred image, assuming Poisson noise statistics. This Algorithm 

can be used effectively when no information about the distortion (blurring and 

noise) is known. The algorithm restores the image and the point-spread function 

(PSF) simultaneously. The accelerated, damped Richardson-Lucy algorithm is 

used in each iteration. The linear Algebraic techniques utilize matrix algebra and 

discrete mathematics for solving the problem of image restoration. Some of the 

algebraic restoration techniques are: the unconstrained reconstruction technique 

and the constrained reconstruction technique. Regularized deconvolution can be 

used effectively when constraints are applied on the recovered image (e.g., 

smoothness) and limited information is known about the additive noise. The 

blurred and noisy image is restored by a constrained least square restoration 

algorithm that uses a regularized filter. 

Optimization methods can be used to solve a large-scale constrained linear 

least-squares optimization problem to recover blurred images, and many works 

have been done using, for example, simulated annealing. In [3] (Lamotte et al., 

1994) did a comparative study of four � essian� tion algorithms based on 

simulated annealing: the Gibbs Sampler, the Metropolis algorithm, the Iterated 

Conditional Modes, and an original method of random descent. In (Z. Réiti,1995) 

in [4] made use of some formulas from the theory of basic hypergeometric series 

to to deblur images blurred by a modified Gaussian blur. Another solution for this 

type of image blur has been proposed by (Hummel et al.,1987) in [5]. They gave 

constructive formulas for the deblurring kernels in terms of Hermite polynomials, 

and observe that their use yields optimal approximate deblurring solutions among 

the space of bounded degree polynomials. A simple and fast deblurring algorithm 

for Gaussian has recently presented by (Firsov et al., 2006) [6] in which they 
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solved the ill-posed problem of backward heat equation by truncation of a 

Neumann’s expansion of the backward heat operator followed by a forward heat 

operator to stabilize the procedure. (J.Kamm et al.,1998) in [7] proposed an 

approximate Singular value decomposition (SVD) as a direct method, the 

computed restorations are comparable to iterative methods but are 

computationally less expensive and may be used with the generalized Cross 

Validation method to choose regularization parameters. (Chen et al.,1999) in [8] 

modeled the restoration problem as an optimization problem and used the genetic 

algorithm for gray images restoration. (Barcelos et al.,2000) in [9] new anisotropic 

diffusion model is proposed for image restoration and segmentation, which is 

closely related to the minimization problems for the unconstrained total variation.  

Because filters include adjustable parameters such as the regularization 

parameter or threshold, (Sugiyama et al.,2002) in [10] optimized the filter type and 

parameters based on subspace information criterion (SIC), which is an unbiased 

estimator of the expected squared error between the restored and original images. 

The same approach has been used by (Lin et al., 2004) in [11] by proposing a 

novel adaptive median-based filter, called the partition fuzzy median (PFM) filter to 

preserve image details while effectively suppressing impulsive noises, through a 

summation of the weighted output of the median filter and the related weighted 

input signal and The weights are set in accordance with the fuzzy rules. Stack 

filters that are non-linear spatial operators used for noise suppression have been 

formulated by (Undrill et al.,1997) as an optimization problem solved by genetic 

algorithm for restoring magnetic resonance images corrupted with uncorrelated 

additive noise [12]. (Chan et al.,2005) in [13] proposed a regularized constrained 

iterative algorithm for restoring color-quantized images that makes good use of the 

available color palette to derive useful a priori information for restoration. In [14] 

they introduced a new algorithm based on simulated annealing to solve the 

problem of image color quantization with halftoning. In [15] (Chao et al.,2006) 

proposed a modified anisotropic diffusion scheme to tackle the problem of image 

restoration in astronomy, that incorporates both gradient and gray-level variance 

information. (Belaid et al.,2008) in [16] used the topological gradient method for 

modeling and solving image restoration problems considered in the frame of 

variational diffusive approaches for the minimization of potential energy with 

respect to conductivity. Statistical models introduced by (Rajesh et al., 2007) for 
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satellite images restoration in [17]. They proposed a non-causal eight 

neighbourhood image restoration model based on autocorrelation and triple 

correlation function of the noise corrupted satellite image. General variational 

model for image restoration based on the minimization of a convex functional of 

gradient under minimal growth conditions has been discussed in the paper of 

(Barbu et al., 2007). The nonlinear diffusion techniques and PDE-based variational 

models are used for image restoration [18]. 

A new method for the restoration of images degraded by noise and spatially 

invariant blur has been proposed by (G. Landi, 2007), in which image restoration 

problem is replaced by an equality constrained minimization problem. A quasi-

Newton method is applied to the first-order optimality conditions. In each quasi-

Newton iteration, the hessian of the Lagrangian is approximated by a circulant 

matrix and the Fast Fourier Transform is used to compute the quasi-Newton step. 

The quasi-Newton iteration is terminated according to the discrepancy principle 

[19]. A novel method called edge-preserving regularization is presented in the 

paper of  (Xiaojuan Gu et al., 2008). This method is used to solve an optimization 

problem whose objective function has a data fidelity term and a regularization 

term, the two terms are balanced by a parameter λ [20]. Most of the optimal 

techniques that have been proposed in literature over the past few decades to 

solve such problem by iterative optimization procedures are computationally 

demanding and time consuming.   

Total variation (TV) is a regularization approach that performs edge 

preserving image restoration, but at a high computational cost. TV regularization 

requires linearization of a highly nonlinear penalty term, which increases the 

restoration time considerably for large scale images. In TV method, we will 

consider an iterative regularization approach in the spatial domain, which was first 

addressed in optimization as the Barzilai-Borwein minimization (BB) method [21]. 

Iterative techniques have a common problem: the error starts increasing after it 

reaches a minimum. The first few iterations restore the low frequency components 

of the signal and, as the number of iterations increases, the algorithm attempts to 

restore the high frequency components, which are dominated by noise. Solution to 

such problem can be attained by adding a median filter to maintain a low error by 

preserving the edge information while reducing the high frequency error [22].  
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The novel approach introduced in this thesis is to take advantage of swarm 

intelligence in order to facilitate optimization process in total variation regularized 

methods.  An ARMA (autoregressive moving average) model used for the non 

linearly degraded image deconvolution, is identified using a neural network which 

is fast trained by a hybrid implementation of the two swarm algorithms: PSO and 

BFO. Both estimated image and blur function are identified through this 

representation. Some applications on radiological images are presented in 

simulation results. This optimized model will be implemented on reconfigurable 

hardware.   

Chapter two introduces the theoretical aspects of image restoration problem 

with the classical methods used previously, and highlights other new strong 

methods that proved their potential in image deblurring, such as non linear filters, 

direct iterative methods: Tikonove regularization and Truncated SVD, and Rudin-

Osher-Fatemi Total variation approaches.   

In chapter three, we surf through new swarm intelligence methods as 

proposed by their inventors with applications to some benchmark functions, in 

addition to synergy of two powerful algorithms to boost up optimization towards 

better solutions.    

Chapter four is devoted for computer simulation of on hand methods, and 

then we present the state of art results for solving such ill-posed inverse problem 

through total variation minimization approach and introduce swarm intelligence 

approach using Particle Swarm Optimization (PSO), Bacterial Foraging 

Optimization (BFO) and synergy of both algorithms. A computational comparison 

based on image quality reached is made between these approaches and other 

recent approaches. 

We conclude this work by highlighting results obtained using these 

techniques especially for their real time implementation on adaptively 

reconfigurable systems, with suggestions of future works. 

Going through references, we can notice the new enormous works made to 

solve such ill-posed problem by means of various methods.  
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CHAPTER 2 

IMAGE RESTORATION: AN OVERVIEW 

 
 
 

2.1 Introduction 

When we use a camera, we want the recorded image to be a faithful 

representation of the scene that we see, but every image is more or less blurry. 

Thus, image deblurring is fundamental in making pictures sharp and useful. A 

digital image is composed of picture elements called pixels. Each pixel is assigned 

an intensity, meant to characterize the color of a small rectangular segment of the 

scene. A small image typically has around 256x256 = 65536 pixels while a high-

resolution image often has 5 to 10 million pixels. Some blurring always arises in 

the recording of a digital image, because it is unavoidable that scene information 

"spills over" to neighboring pixels. For example, the optical system in a camera 

lens may be out of focus, so that the incoming light is smeared out. The same 

problem arises, for example, in astronomical imaging where the incoming light in 

the telescope has been slightly bent by turbulence in the atmosphere. In neutron 

radiography, neutron flux behavior used for imaging encounters random radiations 

especially gamma perturbation. In these and similar situations, the inevitable result 

is that we record a blurred image. 

In image deblurring, we seek to recover the original, sharp image by using a 

mathematical model of the blurring process. The key issue is that some 

information on the lost details is indeed present in the blurred image, but this 

information is "hidden" and can only be recovered if we know the details of the 

blurring process. Unfortunately there is no hope that we can recover the original 

image exactly! This is due to various unavoidable errors in the recorded image. 

The most important errors are fluctuations in the recording process and 

approximation errors when representing the image with a limited number of digits.  
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2.2 Image Degradation 

The degradation process is modeled as a degradation function H(x,y) that, 

together with an additive noise term η(x,y), operates on an input image f(x,y) to 

produce a degraded image g(x,y), Fig.1:  

),(),(),(),( yxyxfyxHyxg η+=             1.1 

Where, H represents a convolution matrix that models the blurring that many 

imaging systems introduce. For example, camera defocus, motion blur, 

imperfections of the lenses, all can be modeled by H. The vectors g, f, and η 

represent the observed, the original and the noise images. More specifically, η is a 

random vector that models the random errors in the observed data. These errors 

can be due to the electronics used (thermal and shot noise) the recording medium 

(film grain) or the imaging process (photon noise).     

 

Figure.2.1:  Simplified model for image degradation/restoration process. The 
image signal f(x, y) is subjected to a linear degrading function H(x, y) and an 

arbitrary noise η(x, y) is added to produce the degraded signal g(x, y) 
 

Given g(x,y), some knowledge about the degradation function H(x,y), and some 

knowledge about the additive noise η(x,y), the objective of restoration is to obtain 

an estimate of the original image f(x, y). We want the estimate to be close as 

possible to the original input image. In general, the more we know about noise, the 

closer the estimate will be to f(x, y).  

2.2.1 Blurring 

Blurring in images can arise from many sources. The blurring matrix H is 

determined from two ingredients: the point spread function PSF, which defines 

how each pixel is blurred, and the boundary conditions, which specify our 

assumptions on the scene just outside our image [1]. In some cases the PSF can 

be described analytically, and thus it can be constructed from a function, Fig.1.2, 

rather than through experimentation.  
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1. Motion blurs : which occurs when there is a relative motion between the object 

and the camera during exposure and can be modeled using the following 1D 

degradation function: 






 ≤≤−
=

otherwise

L
x

L
if

Lxh
,0

22
,

1
)(

                          2.2 

L is the length of degradation vector    

2. Atmospheric turbulence blur: is due to long term exposure through the 

atmosphere and can be modeled by the below Gaussian function: 
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Where K is a normalizing constant and σ2 is the variance that determines the 

severity of the blur. 

3. Uniform out-of-focus blur: is described by 2D degradation function below: 
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          2.4 
Boundary conditions specify our assumptions on the behavior of the image outside 

its boundaries.  
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Figure.2.2 :  Some Blurring Functions: Disk, Motion, Gaussian and Unsharp 
 

2.2.2 Noise 

In addition to blurring, observed images are usually contaminated with noise. 

Noise can arise from several sources and can be linear, nonlinear, multiplicative, 
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and additive. In our application we consider a common additive noise model that 

comes essentially from the following three sources: 

*   Photoelectric noise of background photons, from both natural and artificial 

sources. This kind of noise is typically modeled by a Poisson process. 

*   Noise from electronics used to capture images, modeled usually by a white 

Gaussian noise, with zero mean and a fixed standard deviation proportional to the 

amplitude of the noise with probability density function : 

*    Film grain noise, from the randomness of silver halid grains in the film used for 

recording, modeled by impluse random noise. 

*    Quantization noise which occurs during image digitization. 

2.3 Restoration Using a General Linear Model 

We model the blurring of images as a linear process characterized by a 

blurring matrix H of dimensions NxN, with N=mxn and an observed image g which, 

in vector form, are related by the equation:   

gHf =                           2.5 

The reason H-1g can not be used to deblur images is the amplification of 

high-frequency components of the noise in the data, caused by the inversion of 

very small singular values of H. Practical methods for image deblurring need to 

avoid this pitfall [1]. Obtaining f from Equation (5) is not a straight forward task 

since, in most cases of interest, the matrix H is ill-posed. Mathematically this 

means that certain eigenvalues of this matrix are close to zero, which makes the 

inversion process very unstable. For practical purposes, this implies that the 

inverse or the pseudo-inverse solutions: 

f1=H-1g and   f2= (HT Η)-1 ΗT g         2.6 

Amplify the noise and provide incorrect results. This means that image 

signals die out faster than noise signals in high frequencies.  

In frequency domain, we use the two dimensions FFT to form an estimate 

of the form: 
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And then obtain the corresponding estimate of the image by taking the 

inverse Fourier transform of ),( vuF
∧

 ( ),( vuG
∧

is the Fourier transform of the 
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degraded image). This approach is appropriately called inverse filtering. From the 

model (1), we can express our estimate as: 
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                 2.8 

This deceptively simple expression tells us that, if we knew ),( vuH
∧

exactly, 

we could not recover ),( vuF and hence the original image f(x,y) because the noise 

component is a random function whose Fourier transform, ),( vuN , is not known. 

The typical approach when attempting inverse filtering is to form the ratio 
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∧
 and then limit the frequency range for obtaining the inverse, to 

frequencies “near” the origin. The idea is that zeros in ),( vuH are less likely to 

occur near the origin because the magnitude of the transform typically is at its 

highest value in that region. This type of approach some times is called pseudo 

inverse filtering and is seldom practical.  

2.3.1 Wiener filter Restoration 

Wiener filtering (after N.Wiener, who first proposed the method in 1942 [23] 

is one of the earliest and best known approaches to linear image restoration. A 

Wiener filter seeks an estimate 
∧
f that minimizes the statistical error function: 
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Where E is the expected value operator and f is the undegraded image. 

The solution to this expression in the frequency domain is: 
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Where: 

 ),( vuH = the degradation function 

2
),( vuH =  ),(* vuH ),( vuH  

),(* vuH = the complex conjugate of ),( vuH  

),( vuSη =
2

),( vuN = the power spectrum of the noise 
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),( vuS f =
2

),( vuF = the power spectrum of the undegraded image 

The ratio ),( vuSη / ),( vuS f is called the noise-to-signal power ratio. We see 

that if the noise power spectrum is zero and the Wiener filter reduces to the 

inverse filter discussed in the previous section. Replacing this ratio by a constant 

array in the preceeding filter equation results in the so-called parametric Wiener 

filter which yields significant improvements over direct inverse filtering.   

2.3.2 Restoration using regularized filter 

Another well-established approach to linear restoration is constrained least 

squares filtering, called regularized filtering in image processing documentation 

[27]. The definition of 2-D discret convolution is: 
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Using this equation, we can express the linear degradation model (1), 

),(),(),(),( yxyxfyxHyxg η+= , in vector-matrix form, as: g = H f + η, suppose 

that g(x,y) is of size MxN, then we can form the first N elements of the vector g by 

using the image elements in the first row of g(x,y), the next N elements from the 

second row, and so on. The resulting vector will have dimensions MNx1. These 

also are the dimensions of f and η, as these vectors are formed in the same 

manner. The matrix H then has dimensions MNxMN. Its elements are given by the 

elements of the preceding convolution equation. 

It would be reasonable to arrive at the conclusion that the restoration 

problem can now be reduced to simple matrix manipulations. Unfortunately, this is 

not the case. For instance, suppose that we are working with images of medium 

size; say M=N=512. Then the vectors in the preceding matrix equation would be of 

dimension 262144 x1, and matrix H would be of dimensions 262144 x 262144 x 1. 

Manipulating vectors and matrices of these sizes is not a trivial task. The problem 

is complicated further by the fact that the inverse of H does not always exist due to 

zeros in the transfer function. However, formulating the restoration problem in 

matrix form does facilitate derivation of restoration techniques. We base optimality 

of restoration on a measure of smoothness, such as the second derivative of an 

image (e.g. the Laplacian). To be meaningful, the restoration must be constrained 

by the parameters of the problem at hand. Thus, what is desired is to find the 

minimum of a criterion function, C, defined as: 



26 
 

[ ]∑∑
−

=

−

=

∇=
1

0

1

0

22 ),(
M

x

N

y

yxfC             2.12 

Subject to the constraint: 
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Where www T
∆
=2

 is the Euclidean vector norm, 
∧
f is the estimate of the 

undegraded image, and 2∇  is the Laplacian. The frequency domain solution to this 

optimization problem is given by the expression:  
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Where γ is a parameter that must be adjusted so that the constraint is 

satisfied (if γ is zero we have an inverse filter solution), and P(u,v) is the Fourier 

transform of the function: 

010

141
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),( −=yxP  

We recognize this function as the Laplacian operator. The only unknowns in 

the preceding formulation are γ and 2η . However, it can be shown that γ can be 

found iteratively if 2η , which is proportional to the noise power (a scalar), is 

known. 

2.4. Nonlinear image restoration 

Nonlinear filters are often designed to remedy deficiencies of linear filtering 

approaches. Nonlinear filters cannot be implemented by convolution and do not 

provide a predictable modification of image frequencies. However, for this very 

reason, powerful nonlinear filters can provide performance attributes not attainable 

by linear filters, since frequency separation (between image and noise) is often not 

possible. Nonlinear filters are usually defined by local operations on windows of 

pixels. So, the nonlinear filtering operation may be expressed as a function of the 

image a defined moving window. The size of the window determines the scale of 

the filtering operation [23]. Larger windows will tend to produce more coarse scale 

representations, eliminating fine detail.  
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2.4.1 Order Statistic Filters 

Within the class of nonlinear filters, order statistic (OS) filters encompass a 

large group of effective image enhancers. The OS filters are based on an 

arithmetic ordering (from smallest to largest) of the pixels in each window (local 

neighborhood). The most popular nonlinear filter is the median filter. It is an OS 

filter. The median filter smoothes additive white noise while maintaining edge 

information - a property that differentiates it from all linear filters. Particularly 

effective at eliminating impulse noise, it has strong optimality properties when the 

noise is Laplacian-distributed.  

2.4.2 Adaptative Median Filter 

When the only degradation present is noise, the method of choice for 

reduction of noise in this case is spatial filtering. These filters can adapt their 

behavior depending on the characteristics of the image in the area being filtered. 

Therefore, the adaptive median filtering has been applied widely as an advanced 

method compared with standard median filtering. It performs spatial processing to 

determine which pixels in an image have been affected by impulse noise, and 

classifies pixels as noise by comparing each pixel in the image to its surrounding 

neighbor pixels. The size of the neighborhood is adjustable, as well as the 

threshold for the comparison. A pixel that is different from a majority of its 

neighbors, as well as being not structurally aligned with those pixels to which it is 

similar, is labeled as impulse noise. These noise pixels are then replaced by the 

median pixel value of the pixels in the neighborhood that have passed the noise 

labeling test. Some advantages of this filter are: 

a. The standard median filter does not perform well when impulse noise is 

greater than 0.2, while the adaptive median filter can better handle these 

noises. 

b. The adaptive median filter preserves detail and smooth non-impulsive 

noise.  

Adaptive Median Filter Algorithm: 
Sxy denotes a subimage (window) centered at location (x,y) in the image being 
processed. The algorithm is as follows: 

Let: 
Zmin = minimum gray level value in  Sxy 

Zmax = maximum gray level value in  Sxy 

Zmed = median gray level values in  Sxy 

Zxy = gray level value ar coordinates  Sxy  
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The adaptive median filtering algorithm works in two levels, denoted level A 

and level B: 
Level A:  if Zmin < Zmed < Zmax , go to level B 
    Else increase the window size 
    If window size ≤ Smax , repeat level A 

   Else output Zmed  
Level B:  if Zmin < Zxy < Zmax , output Zxy 

     Else output Zmed  
 

Where Smax denotes the maximum allowed size of the adaptive filter window. 

Another option in the last step in Level A is to output Zxy instead of the median. 

This produces a slightly less blurred result but can fail to detect salt & pepper 

noise.    

2.4.3 Restoration using Lucy-Ridchardson Algorithm 

The simplicity of implementation, coupled with modest computational 

requirements and a well-established theoretical base, have made linear 

techniques a fundamental tool in image restoration for many years. During the last 

decades, nonlinear iterative techniques have been gaining acceptance tools that 

often yield results superior to those obtained with linear methods. The principal 

objections to nonlinear methods are that their behavior is not always predictable 

and that they generally require significant computational resources. This nonlinear 

technique developed by Richardson (1972) and by Lucy (1974), working 

independently and called L-R algorithm. The L-R algorithm arises from a 

maximum-likelihood formulation in which the image is modeled with Poisson 

statistics Maximizing the likelihood function of the model yields an equation that is 

satisfied when the following iteration converges: 
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As before, “*” indicates convolution, 
∧
f is the estimate of the undegraded 

image, and both g and h are as defined before. The iterative nature of the 

algorithm is evident. Its nonlinear nature arises from the division by 
∧
f on the right 

side of this equation. As with most nonlinear methods, the question of when to 

stop the L-R algorithm is difficult to answer in general. The approach often 
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followed is to observe the output and stop the algorithm when a result acceptable 

is a given application has been obtained.   

2.4.4 Blind Restoration 

One of the most difficult problems in image restoration is obtaining a suitable 

estimate of the PSF to use in restoration algorithms such as those discussed 

previously [28]. Image restoration methods that are not based on specific 

knowledge of the PSF are called blind deconvolution algorithms. 

Blind Deconvolution Algorithms can be used effectively when no information 

about the distortion (blurring and noise) is known. These algorithms restore the 

image and the point-spread function (PSF) simultaneously. The accelerated, 

damped Richardson-Lucy algorithm is used in each iteration. Additional optical 

system (e.g. camera) characteristics can be used as input parameters that could 

help to improve the quality of the image restoration. PSF constraints can be 

passed in through a user-specified function. 

2.4.5 Restoration using Topological derivatives 

The main idea behind this algorithm is to compute the topological derivative for 

an appropriate functional (the energy norm and the gradient norm in the case of 

continuum) and a perturbation given by the introduction of cracks between pixels 

(straight crack in the domain in the case of discret). This derivative is used as an 

indicator function to find the best pixels (places) to introduce the cracks that, in the 

presence of diffusion, will most remove noise preserving relevant image 

characteristics [25].  

Topological derivative Algorithm: 
Require: a 2-D image f and the parameter α 

Ensure: the enhanced image 
∧
f  has same dimensions as f  

Set MNsjk s
j *..1,4..1,1 ===  

For every pixel ωs do 
For every neighborhood case kσ∈C  do 

Compute )( τσ ωTD  
 End for   
 If min{ } ασω τσ

pcT ND ,...,1),( =  then 

 KT = kσ 

 End if 
      End for 
While Ψσ > Є do 
 Apply diffusion equation over the image f and calculate k. 
End while 
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2.5 Direct methods 

2.5.1 Singular Value Decomposition 

    Singular value decomposition (SVD) is one of the most successful tools in the 

theory of inverse problems. It can be used to understand the ill-posed inverse 

problem and for describing the effect of the regularization method. It has been 

widely applied in image processing. In numerical analysis, the SVD provides a 

measure of the effective rank of a given matrix. In statistics and time series 

analysis, the SVD is particularly a useful tool for finding least-squares solutions 

and approximations.  

    Singular value decomposition has been successfully applied to many image 

restoration problems. Usual applications include linear space invariant and linear 

space variant pseudoinverse filtering, image enhancement, separation of 2-D 

filtering operations into 1-D filtering operations, generation of small convolution 

kernels, etc... Among all unitary transformations, SVD is optimal for a given image 

in the sense that the energy packed in a given number of transformation 

coefficients is maximized. Although applicable in many image restoration 

applications, SVD is severely limited because of a large number of computations 

required for calculating singular values and singular vectors of large image 

matrices [26]. 

The SVD of an mxn matrix A is given by:   

TVUA ∑=                  2.16 

    Where U=( u1, u2,..,un)∈Rmxm  and  V=(v1, v2,.. vn)∈Rnxn are two column-

orthogonal matrices. Σ is a diagonal matrix with entries  σ1 ≥ σ2 ≥ … ≥ σN ≥ 0.  For 

a blurring matrix, all the singular values decay gradually to zero and the condition 

number cond(A) = σ1/σN  is very large. One approach to damp the effects caused 

by division of small singular values is to simply discard all SVD components that 

are dominated by noise, typically the ones above a certain truncation parameter k. 

The resulting method is, for obvious reasons, referred to as the truncated SVD, or 

TSVD method [26]. 

In the TSVD method, we define the filter factors to be one for large singular 

values, and zero for the rest. The number of large singular values is k that 

determines the number of SVD components maintained in the regularized solution. 
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2.5.2 Tikhonov Regularization  

The main objective of regularization is to incorporate more information 

about the desired solution in order to stabilize the problem and find a useful and 

stable solution. The most common and well-known form of regularization is that of 

Tikhonov [27]. In the Tikhonov method, we define the filter factors to be:  
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Where α>0 is called the regularization parameter. This choise of filter 

factors yields the solution vector xα for the minimization problem : 

{ }2

2

22

2
min fHfg

x
α+−                 2.18 

We want 
2

Hfg − to be small, but if we make it zero by choosing f=H-1g, 

then the Laplacian of the solution will be very large when the magnitude of noise 

exceeds the magnitude of singular values σi. 

 Thus, we also want to keep
2

f reasonably small, our minimization ensures 

that both 
2

Hfg − and 
2

f  are small by choosing the appropriate TSVD truncation 

parameter k or the appropriate Tikhonov regularization parameter α. 

Regularization by means of spectral filtering requires finding a suitable balance 

between the regularization error and the perturbation error by choosing the filter 

factors appropriately. 

For a low pass filter, the filter parameters fo low frequency components are 

close to one, while filter parameters for high frequency components are close to 

zero. The TSVD and Tikhonov methods are analogous to this. As a consequence, 

the noise affects the high frequency components which are associated with the 

smaller singular values. Results are illustrated in chapter three.    

2.6 Total Variation Regularization 

Total variation (TV) is often used for image filtering and restoration. Total 

variation based filtering was introduced by Rudin, Osher, and Fatemi [28]. TV 

denoising is an effective filtering method for recovering piecewise-constant 

signals. Many algorithms have been proposed to implement total variation filtering. 

The most famous one is by Chambolle  [29]. The derivation in this algorithm is 

based on the min-max property and the majorization-minimization procedure. 

Rudin, Osher and Fatemi introduced in 1992 the following idea: 
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Instead of minimizing:        
2

2

2

2
LfgHf λ+−           2.19 

Let us minimize:          1

2

2
LfgHf λ+−                     2.20 

Recall that:        
22

1

2

2
... NZZZ ++=                        2.21 

And:                  NZZZ ++= ...11                       2.22 

The idea is that (1.20) should allow occasional larger jumps in the 

reconstruction leading to piecewise smoothness instead of overall smoothness. It 

turns out that minimizing (8) is really a powerful method, but numerical 

minimization is more difficult. 

Since their introduction in a classic paper by Rudin, Osher and Fatemi [28], 

total variation minimizing models have become one of the most popular and 

successful methodology for image restoration. Variational models have been 

extremely successful in a wide variety of restoration problems, and remain one of 

the most active areas of research in mathematical image processing and computer 

vision. The minimization technique of choice for such models routinely involves the 

solution of nonlinear partial diferential equations (PDEs) derived as necessary 

optimality conditions. Perhaps the most basic (fundamental) image restoration 

problem is denoising. It forms a significant preliminary step in many machine 

vision tasks, such as object detection and recognition. It is also one of the 

mathematically most interesting  problems in vision. A major concern in designing 

image denoising models is to preserve important image features, such as those 

most easily detected by the human visual system, while removing noise. All 

successful denoising models take advantage of the fact that there is an inherent 

regularity found in natural images; this is how they attempt to tell apart noise and 

actual image information. Variational and PDE based models make it particularly 

easy to impose geometric regularity on the solutions obtained as denoised 

images, such as smoothness of boundaries. This is one of the main reasons 

behind their success. 

2.6.1 TV Implementation using Chambole algorithm 

Antonin Chambolle describes in [29] an iterative algorithm for the resolution 

of the TV regularized restoration problem (the so called "Rudin-Osher-Fatemi" 

method). This algorithm exploits a dual formulation of the minimization problem, 

and uses a fixed point iteration to find a solution of the dual formulation. 

Chambolle proves that these iterations are contractant, and thus converge to a 
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solution with linear speed. Chambolle also exposes some important extensions of 

this algorithm such as the regularization parameter lambda that can be updated 

during the iterations in order to solve the L1 constrained problem (instead of 

Lagrangian regularization). This is very useful if one knows the level of noise that 

perturbs the measurements. 

2.6.2 TV implementation using First-Order Algorithms 

The first-order numerical schemes for image restoration rely on a duality-

based algorithm proposed in 1979 by Bermùdez and Moreno [30]. This is an old 

and forgotten algorithm that is revealed wider than recent schemes (such as the 

Chambolle projection algorithm) and able to improve contemporary schemes. 

2.7 Wavelet Shrinkage 

Recently, wavelet shrinkage has been recognized as a powerful tool for 

signal estimation and noise reduction or simply de-noising [31]. The wavelet 

transform utilizes scaled and translated versions of a fixed function, which is called 

a wavelet,  and is localized in both the spatial and frequency domains. Such a 

joint spatial-frequency representation can be naturally adapted to both the global 

and local features in images. The wavelet shrinkage estimate is computed via 

thresholding wavelet transform coefficients. 

The key idea of wavelet shrinkage derives from the approximation property 

of wavelet bases. The wavelet transform compresses the image into a small 

number of coefficients of large magnitude, and it packs most of the image energy 

into these coefficients. On the other hand, the coefficients of the noise have small 

magnitudes; that is, the noise energy is spread over a large number of coefficients. 

Therefore, among the coefficients of the degraded image g, those having large 

magnitudes correspond to the original image f and those having small magnitudes 

correspond to the noise η. Apparently, thresholding coefficients with an 

appropriate threshold removes a large amount of noise and maintains most image 

energy.  

2.8 Homomorphic Filtering 

To this point, we have described methods that only deal with additive noise. 

In several imaging scenarios, such as radar and laser-based imaging, signal-

dependent noise is encountered. The signal-dependent noise can be modeled as 

a multiplicative process.  
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Applying the traditional low-pass filters or nonlinear filters is fruitless, since 

the noise is signal dependent. But we can decouple the noise from the signal 

using a homomorphic approach [32]. The first step of the homomorphic approach 

is the application of a logarithmic point operation on the degraded image to 

transform it to an addition, image with noise. Then we can apply one of the filters 

discussed above and then transform the image back to its original range with an 

exponential point operation.  



35 
 

   
 
 

CHAPTER 3 

SWARM INTELLIGENCE 

 
 
 

3.1 Introduction to Optimization: 

The task of optimization is seeking to achieve the best result possible for a 

given system. However, dependent upon the context or environment, the optimal 

result could be represented by either a maximum or a minimum result. In most 

contexts, optimization to find a maximum output is often referred to as maximizing 

a system’s fitness, whereas optimization to find a minimum output is often referred 

to as minimizing a system’s cost. Thus, fitness is the negative of cost (Haupt et 

al.,2004) in [33].  

A common challenge is finding the global minima/maxima with any number 

of local minima/maxima. This is more easily visualized using the concept of a cost 

surface for which there may exist any number of smaller peaks and troughs. 

Multiple variable systems are more complex than single variable systems 

and are more difficult to model and solve mathematically. The number of variables 

can be used to express the number of dimensions within the system. Dynamic 

systems are systems for which the output is a function of time and static systems 

are time invariant (Haupt et al.,2004) in [33].  

System variables can be classified as either discrete or continuous. 

Continuous variables can take an infinite number of values; whereas discrete 

variables can only be assigned a finite number of possible values. A common 

approach to optimizing continuous systems is to first discretise the system and 

then attempt to optimize using digital processes. Constrained systems are 

systems for which variables can only take values within set limits. Variables in 

unconstrained systems have no such limits applied. Mathematical optimization 

works best on unconstrained systems.  

Minimum seeking optimization methods use a single set of inputs in order 

to, normally, numerically find the optimal outputs. Such methods are challenged by 

the problem of local minima/maxima. Unlike minimum seeking optimization 

methods, random methods use probabilistic calculations to find the variable sets 
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on which to perform optimization, thus finding local minima/maxima is not as 

problematic. This is why minimum seeking methods are computationally faster 

than random methods. Most classical optimization methods can be described as 

minimum-seeking algorithms searching the cost surface for minimum cost and 

hence suffer from the challenge of local minima. Such classical methods are often 

calculus based and solved numerically [34].  

More recently, natural optimization methods have been developed in order 

to address the inherent limitations of calculus-based optimization. Some natural 

optimization methods we will use are:  

a) Particle Swarm Optimization (PSO),  

b) Bacterial Foraging Optimization (BFO),  

These methods provide an intelligent search of the solution space using 

statistical methods and hence do not require finding the cost function’s derivatives; 

thus natural methods can handle systems with multiple, non-continuous and 

discrete variables. 

3.2 Particle Swarm Optimization (PSO)   

The PSO algorithm was first described in 1995 by James Kennedy and 

Russell C. Eberhart [35]. The techniques have evolved greatly since then, and the 

original version of the algorithm is barely recognizable in the current ones. It is a 

stochastic, population-based evolutionary computer algorithm for problem solving. 

It is a kind of swarm intelligence that is based on social-psychological principles 

and provides insights into social behavior, as well as contributing to engineering 

applications.  

In a PSO system, a swarm of individuals (called particles) fly through the 

search space. Each particle represents a candidate solution to the optimization 

problem. The position of a particle is influenced by the best position visited by itself 

(i.e. its own experience) and the position of the best particle in its neighborhood 

(i.e. the experience of neighboring particles). When the neighborhood of a particle 

is the entire swarm, the best position in the neighborhood is referred to as the 

global best particle, and the resulting algorithm is referred to as a gbest PSO. 

When smaller neighborhoods are used, the algorithm is generally referred to a 

lbest PSO. The performance of each particle (i.e. how close the particle is from the 

global optimum) is measured using a fitness function that varies depending on the 

optimization problem. 
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Each particle in the swarm is represented by the following characteristics: 

ix : The current position of the particle; 

iv : The current velocity of the particle; 

iy : The personal best position of the particle. 

ŷ  : The neighborhood best position of the particle. 

The personal best position of particle i  is the best position (i.e. the one 

resulting in the best fitness value) visited by particle i  so far. Let F  denote the 

objective function. Then the personal best of a particle at time step t  is updated 

as: 

( )
( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
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 For the gbest  model, the best particle is determined from the entire swarm 

by selecting the best personal best position. If the position of the global best 

particle is denoted by the vector ŷ , then: 

{ }ss yyyyyy ,,....,,ˆ 1210 −=∈                              3.2 

Where:  

( )( ) ( )( ){ }tyFtyFy ...,minˆ 0=                            3.3 

Where:  s  denotes the size of the swarm. 

The velocity update step is specified for each dimension j : { }dNj ,......1∈  

Hence, jiv ,  represents the 
thj element of the velocity vector of the 

thi particle. Thus 

the velocity of particle i  is updated using the following equation: 

( ) 2211,, ∆⋅+∆⋅+⋅= CCtvv jiji ω
                    3.4 

Where: 

( ) ( )( )txtyr jijij ,,,11 −⋅=∆
                           3.5 

( ) ( )( )txtyr jij
n

j ,,22 −⋅=∆
                             3.6 

ω  is the inertia weight, 1C  and 2C  are the acceleration constants, and jr ,1 , jr ,2  are 

random coefficients  distributed as:         

[ ]1,0,2,1 ∈jj randr
                                     3.7 
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 The position of particle i , ix  is then updated using the following equation:  

( ) ( ) ( )11 ++=+ tvtxtx iii                      3.8 

This process is repeated until a specified number of iterations is exceeded, or 

velocity updates are close to zero. The quality of particles is measured using a 

fitness function which reflects the optimality of a particular solution. The following 

steps summarize the basic PSO algorithm [36]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSO Algorithm: 

 

For each particle i =1,...,s do 

Randomly initialize xi 

Randomly initialize vi (or just set vi to zero) 

Set yi = xi 

endfor 

Repeat 

For each particle i = 1,...,s do 

Evaluate the fitness of particle i, f(xi) 

Update yi using equation (31) 

Update ŷ  using equation (3.3) 

For each dimension j = 1,...,Nd do 

Apply velocity update using equation (3.4) 

end loop 

Apply position update using equation (3.8) 

end loop 

Until some convergence criteria is satisfied  
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Figure.3.1: Swarm of particles searching for maximum fitness and converging to 

the global solution 

 

 

It is important to clarify that good choice of the initial population can make 

the PSO faster to the global minimum, for this reason some works used the normal 

cloud method to find the best initial populations [37-38]. In this paper for the 

presented case, the choice of the initial population is made by a simple instruction:  

( )randj
k

x ji +−⋅= 1
2

)0(,

π
                 3.9 

Where k is the dimension of the objective function.  
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3.3 Bacterial Foraging Optimization Algorithm (BFO) 

Foraging means locating, handling, and ingesting food. Animals that have 

successful foraging strategies are favored since they obtain enough food to enable 

them to reproduce, so they are more likely to enjoy reproductive success [39]. 

This has led scientists to model the activity of foraging as an optimization process. 

(Kevin et al.2002) in [40] explain the biology and physics underlying the 

chemotactic (foraging) behavior of E.coli bacteria (the ones that are living in your 

intestines), and gives a computer program that emulates the distributed 

optimization process represented by the activity of social bacterial foraging and 

apply that in adaptive controllers.    

The foraging strategy of E. coli bacteria present in human intestine can be 

explained by four processes namely: Chemotaxis, Swarming, Reproduction, 

Elimination and Dispersal [40]. 

a) Chemotaxis: The characteristics of movement of bacteria in search of 

food can be defined in two ways, i.e. swimming and tumbling together known as 

chemotaxis. A bacterium is said to be ‘swimming’ if it moves in a predefined 

direction; and ‘tumbling’ if it moves randomly in different directions.  

Mathematically, tumble of any bacterium can be represented by a unit length of 

random direction φ ( j) multiplied by step length of that bacterium C(i). In case of 

Swimming this random length is predefined. 

b) Swarming: For the bacteria to reach at the richest food location (i.e. for 

the algorithm to converge at the solution point), it is desired that the optimum 

bacterium till a point of time in the search period should try to attract other bacteria 

so that together they converge at the desired location (solution point) more rapidly. 

To achieve this, a penalty function based upon the relative distances of each 

bacterium from the fittest bacterium till that search duration, is added to the 

original cost function. Finally, when all the bacteria have merged into the solution 

point this penalty function becomes zero. The effect of Swarming is to make the 

bacteria congregate into groups and move as concentric patterns with high 

bacterial density. 

c) Reproduction: The original set of bacteria, after getting evolved through 

several chemotactic stages reach the reproduction stage. Here best set of bacteria 

(chosen out of all the chemotactic stages), get divided into two groups. The 
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healthier half replaces with the other half of bacteria, which gets eliminated, owing 

to their poorer foraging abilities. This makes the population of bacteria constant in 

the evolution process. 

d) Elimination and Dispersal: In the evolution process a sudden unforeseen 

event can occur, which may drastically alter the smooth process of evolution and 

cause the elimination of the set of bacteria and/or disperse them to a new 

environment. Most ironically, instead of disturbing the usual chemotactic growth of 

the set of bacteria, this unknown event may place a newer set of bacteria nearer to 

the food location. In its application to optimization it helps in reducing the behavior 

of stagnation, (i.e. being trapped in a premature solution point or local optima) 

[40].  

We want to find the minimum of f(x), x∈ pℜ , where we do not have 

measurements or an analytical description of the gradient )(xf∇ . Here we use 

ideas from bacterial foraging to solve this non gradient optimization problem. First, 

suppose that x is the position of a bacterium and f(x) represents the combined 

effects of attractants and repellents from the environment, with, for example, 

f(x)<0,  f(x)=0, and f(x)>0 representing that the bacterium at location x  is in 

nutrient-rich, neutral, and noxious environments, respectively. Bacteria try to climb 

up the nutrient concentration (find lower and lower values of f(x), avoid noxious 

substances, and search for ways out of neutral media). Chemotactic is a tumble 

followed by a tumble or a tumble followed by a run. Let j be the index for the 

chemotactic step. Let k be the index for reproduction step. Let l be the index of the 

elimination-dispersal event.  

Let: }{ Silkjlkjp j ,...,2,1),,(),,( == θ                3.9 

represents the position of each member in the population of the S bacteria at the 

jth chemotactic step.  kth reproduction step, and lth elimination-dispersal event. 

Here f(i,j,k,l) denotes the cost at the location of the ith bacterium ),,( lkjiθ pℜ∈ . 

For actual bacterial populations, S can be very large (S=109), but p is the 

dimension of the cost function. Let Nc be the length of the lifetime of the bacteria 

as measured by the number of chemotactic steps they take during their life. Let 

C(i)>0, i=1,2…,S, denote a basic chemotactic step size that we will use to define 

the lengths of steps during runs. To represent a tumble, a unit length random 
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direction, say )( jφ , is generated; this will be used to define the direction of 

movement after a tumble. In particular, we let: 

)()(),,(),,1( jiClkjlkj ii φθθ +=+           3.10 
So that C(i) is the size of the step taken in the random direction specified by the 

tumble. If at ),,1( lkjj +θ the cost  ),,1,( lkjif + is better (lower) than at ),,( lkjjθ , 

then another step of size C(i) in the same direction will be taken, and again, if that 

step resulted in a position with a better cost value than at the previous step 

another step is taken. This swim is continued as long as it continues to reduce the 

cost function, but only up to a maximum number of steps Ns [39]. We can 

represent swarming as follows: 
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The function fcc represents the combined cell-to-cell attraction and repelling 

effects, where θ =[θ 1,…,θ p]
T is a point on the optimization domain and θ i

m is the 

mth component of the ith bacterium position θ i .  This  function is time varying in 

that if many cells come close together there will be a high amount of attractant and 

hence an increasing likelihood that other cells will move toward the group. This 

produces the swarming effect. 

 

Figure.3.2: Swim and tumble of a bacterium 
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BFO Algorithm: 

 

1. Initialization: We choose p, S, Nc , Nre , Ned , Ped and the C(i), i=1,2,…,S. for swarming, we choose 

also parameters of the cell-to-cell attractant functions. Initial values for iθ ,i=1,2,…S are also chosen.  

2. Elimination-dispersal loop: l=l+1 

3. Reproduction loop: k=k+1 

4. Chemotaxis loop: j=j+1 

a) For i=1 to S   take a chemotaxis step for bacterium I as follows. 

b)Compute f(i,j,k,l) and let: 

)),,(),,,((),,,(),,,( lkjPlkjflkjiflkjif i
cc θ+=

, 

we add on the cell-to-cell attractant effect to the nutrient concentration. 

c) Let  flast = f(i,j,k,l) to save this value since we may find a better cost via a run. 

d) Tumble: generate a random vector ∆(i) ∈ pℜ with each element ∆m(i), m=1,2,…P, a random 

number on    [-1,1]. 

e) Move  let:

( ) ( )
)()(

)(
)(,,,,1

ii

i
iClkjlkj

T

ii

∆∆

∆+=+ θθ
    

 this results in a step of size C(i) in the direction of the tumble for bacterium i. 

f) Compute f(i,j+1,k,l), and then let: 

)),,1(),,,1((),,1,(),,1,( lkjPlkjflkjiflkjif i
cc ++++=+ θ

 

g) Swim:  let  m=0    and    While m<Ns     put  m=m+1,if   f(i,j+1,k,l) < flast     let   flast =f(i,j+1,k,l)   

and  let:  

( ) ( )
)()(

)(
)(,,1,,1

ii

i
iClkjlkj

T

ii

∆∆

∆++=+ θθ
 

and use this position to calculate the new cost value. 

          Else, let m=Ns     

end while.  

h) Go to the next bacterium. 

5.   if  j<Nc  then  go to step 4. 

6.  Reproduction: For i=1,2,…,S. ( )∑
+

=
=

1

1

,,,
cN

j

i
health lkjiff   (health of bacterium 

i) . Sort bacteria and chemotactic parameters C(i) in order of ascending cost fhealth (higher cost 

means lower health). The S/2 bacteria of the highest cost will die and the healthiest are placed at the 

same location as their parent. 

7.   if k<Nre  go to step 4. 

8.  Elimination-dispersal: for i=1,2,…,S, with probability Ped , eliminate and disperse each bacterium. 

9.  if  l<Ned  then  go to step 1, otherwise end algorithm.  
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3.4 Synergy of PSO and BFO Algorithms:  

In the proposed hybrid approach, after undergoing a chemo-tactic step, 

each bacterium also gets mutated by a PSO operator. In this phase, the bacterium 

is stochastically attracted towards the globally best position found so far in the 

entire population at current time and also towards its previous heading direction. 

The PSO operator uses only the ‘social’ component and eliminates the ‘cognitive’ 

component as the local search in different regions of the search space. BFO has 

been changed by directing positions of bacteria and updating their velocities from 

the first chemotactic step using the power of PSO reaching the global solution in 

addition to its rapid convergence compared to BFO.   

This hybridization improved the convergence speed and accuracy of 

solutions got by classical BFO, however, what is requested in image restoration is 

attaining a best approach to the original image by finding the best solution, which 

is accomplished by a hybrid implementation of BFO-PSO.   

In the previous BFO Algorithm, inside the Chemotaxis loop (step 4, point g), 

we introduce the PSO operator to update the global position of each bacterium, 

then calculating the cost function and subsequently we update both global position 

and velocity of each bacterium before letting bacteria swimming with the new 

speed on the way of the new updated direction:    

  

g) We introduce PSO operator (for each chemotactic step S): 

• Update the θ g_best  and ),,,( lkjifbest   

• Update position and velocity of the d-th coordinate of the i-th bacterium to the following 

rule : 
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3.5 Testing Swarm Optimization Algorithms 

By comparison with the unconstrained nonlinear optimization method that 

uses the Nelder-Mead simplex algorithm which is a direct search method that does 

not use numerical or analytic gradients (implemented in MATLAB with the function 

fminsearch) [41], performance metrics proved the robustness and solution quality 

of the employed methods (PSO and BFO). Their performance has been evaluated 

on a bed of eight known benchmark functions with different dimensions as shown 

below:    

  Problem 1: xxxxf 706014 234 −+−=   with  1010 <<− x  

fminsearch:  -24.3696)0.7809(min =f  

PSO:    -24.3696)0.7809(min =f  

BFO :   -24.3696)0.7961(min =f  

Hybrid PSO-BFO : -24.3696)0.7809(min =f  

 

 

Figure.3.3: Progress towards the optima for One-variable benchmark function 
using three optimization methods 
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Figure.3.4: Improving Classical BFO with a synergy between PSO and BFO to 
reach the best global optimum  

 

Problem 2:  )2sin(.1.1)4sin(. yyxxf +=  with 10,0 << yx   

fminsearch: 5547.18)6682.8,0390.9(min −=f   

PSO:    5547.18)6682.8,0390.9(min −=−f  

BFO :  5547.18)6834.8,0380.9(min −=−f    

Hybrid PSO-BFO : 55474.18)6682.8,0390.9(min −=f  

  

Problem 3:  ( )[ ] }{ yxyxyxf ++++×+=
1.02225.022 5.030sin)(  

fminsearch:  -0.2474)0000.0,2022.0(min =−−f  

PSO:  -0.2474)0000.0,2021.0(min =−f  

BFO : -0.2474)0030.0,2065.0(min =−−f  

Hybrid PSO-BFO : -0.2475)0000.0,2022.0(min =−f  

 

Problem 4:  222 )1()(100 xxyf −+−=   with  10,10 <<− yx   

fminsearch:  101777.8)00.0000,1.001(min −= ef  

PSO:  0000.0)0000.1,0000.1(min =f  

BFO : 007-1.6625e)1.0014 1.0002,(min =f  

Hybrid PSO-BFO :  0000.0)0.0000,10001(min =f  
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Figure.3.5: Progress towards the optima for Two-variables benchmark function 
using three optimization methods 

 

Figure.3.6: Improving Classical BFO with a synergy between PSO and BFO to 
reach the best global optimum  

 

Problem 5: zxyzxzzyxf −−++++= 325.125.1 222     with   10,,10 <<− zyx  

fminsearch: 5000.1)0.0000 0.0000, 1.000,(min −=f  

PSO:  5000.1)0000.0,0000.0,0000.1(min −=−−f  

BFO :  4998.1)310004,-0.000.9983,-0.(min −=f  

Hybrid PSO-BFO :   5000.1)0.0000 0.0000, 1.0000,(min −=f  

 

Problem 6: 4422 )(10)2()(5)10( txzytzyxf −+−+−++=  with 10,,,10 <<− tzyx   

fminsearch: 14-.2563e8)3-0.2160e 3,-0.2160e 3,-0.0316e- 3,-0.0316e(min =f  

PSO: 0000.0)0004.0,0004.0,0001.0,0007.0(min =−−−f  
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BFO :  006-9.7615e)0.0063- 0.0052,- 0.0009,- -0.0273,(min =f  

Hybrid PSO-BFO :  0.0000)0.0003- 0.0005, 0.0001,- 0.0005,(min =f  

 
Figure.3.7: Progress towards the optima for Four-variables benchmark function 

using three optimization methods 
 

 
Figure.3.8: Improving Classical BFO with a synergy between PSO and BFO to 

reach the best global optimum 
 
 
 

Problem 7: Function with thirty variables (Rosenbrock function):  

( ) ( )( )∑
=

+ −+−=
29

1

222
1 1100

i
iii xxxf  with [ ]3030,30−∈x  

fminsearch:   
fmin(0.0510,0.2059, -0.1223,0.1282,-0.0131,0.0326,-0.0939, 0.1484,-
0.1841,0.1148,0.0689,-0.0309,0.0876,-0.0581,0.1476,-0.0962, 0.0191, 
0.0263,-0.1047,0.2639,0.1275, 0.0257, 0.1943, 0.2798, 0.2334, 0.0511, 
0.0245, 0.0626, 0.1364, -0.8415)= 2.7323e+003 
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PSO: 
fmin(1.0190,0.9273,0.6190,0.3472,1.0766,1.2413,1.3793,1.1774,0.7893,0.3
740,0.5186,0.5232,0.4959,0.0327,0.8614,0.6759,0.4262,-0.6393,1.2450, 
1.1690, 0.8909,0.9471,0.8114,0.6508,0.8163,0.5916,-0.7221,1.2718, 
2.1530, 4.7439) = 2783.0220 
 
BFO: 
fmin(1.2794,1.1286,1.0850,1.0079,0.9666,0.8974,0.8290,0.7957,0.9513,0.9
744,0.9622,0.9742,1.0451,1.0594,1.0514,0.9926,1.0042,1.0107,1.0402,1.0
121,0.9616,0.9919,1.0478,1.0000,0.9276,1.0405,1.1357,1.1136,1.2560,1.5
350) = 2188.4161 
 
Problem 8: Function with thirty variables (Rastrigin function):  

( )∑
=

+−=
30

1

2 102cos10
i

iixf π  with  [ ]3012.5,12.5−∈x  

fminsearch: 
 fmin( -0.9950, -0.9950,-0.9950,-0.9950,-0.9950,-0.9950   -0.9950 -0.9950   

            -0.9950   -0.9950   -0.9950   -0.9950   -0.9950   -0.9950   -0.9950   -0.9950    
-0.9950   -0.9950   -0.9950   -0.9950   -0.9950   -0.9950   -0.9950   -0.9950    
-0.9950   -0.9950   -0.9950   -0.9950   -0.9950   -1.0748 
fval =   28.8538 
 
PSO:   
X=(0.9944 1.9895 -0.0009 -0.9940  1.9910  -0.0004  0.9958  -0.0004  
0.9937  -1.9888  -0.9945  0.9954  0.0001  -0.0002  0.0015  0.9943  -0.0002   
0.9952  0.0000  -0.9960  -0.9955  -0.9942  0.9938  -0.9960   -0.0005   -
0.9948   0.9933   0.0003   0.9949   -0.5370 
F= 27.8624  
 
BFO:   
x =(0.0813    0.0325    0.9329    0.9880    0.9970    0.9958    0.0505    
0.1222    0.8607    0.8781    0.2289    0.0403    1.0477    0.0628    0.1612    
0.1162    0.9426    0.9592    0.9713    0.0462    1.0429    0.0012    0.9537    
0.0422    0.0800    1.1073    1.0968    1.0533    0.0652    0.3782 
fval =   33.7028 
 
 

 

One of the key benefits that Swarm Algorithms have over conventional 

optimization based algorithms is the ability to find the global maxima/minima. This 

is achieved even if the problem space contains numerous local maxima/minima. 
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CHAPTER 4 

SIMULATION RESULTS 

 
 
 

4.1 Introduction 

In this chapter, we present some numerical examples with the schemes 

introduced in this thesis. Notice that all the experiments presented in this thesis 

were run with Matlab, on a desktop with a processor at 1.80 GHz and 2Gb of 

RAM. In all the presented algorithms, the cost of one iteration of the algorithm is 

proportional to the size of the image. This cost is some seconds for a 256×256 

image with either the fixed point algorithms or the gradient algorithms or algebraic 

direct methods. Swarm algorithms have a computation cost which is twice higher. 

This cost is between 8 and 10 times higher with the different variants of images. 

A digital image is a two or three dimensional array of numbers representing 

intensities on a grayscale or color scale. Denote a two-dimensional digital image of 

gray-level intensities by I. The image I is ordinarily represented in software 

accessible form as an M × N matrix containing indexed elements I(i, j), where 0 

i M-1, 0 j N-1. The elements I(i, j) represent samples of the image intensities, 

usually called pixels (picture elements). For simplicity, we assume that these come 

from a finite integer-valued range. This is not unreasonable, since a finite 

wordlength must be used to represent the intensities. Typically, the pixels 

represent optical intensity, but they may also represent other attributes of sensed 

radiation, such as radar, electron micrographs, x-rays, or thermal imagery. 

This thesis is concerned with grayscale images. However, at the end of our 

simulations, we extend our implementation to some color images. 

When comparing, in a given situation, the suitability of the various 

approaches discused in this thesis, it is useful to use the same image or test 

pattern so that comparisons are meaningful. The test pattern generated by 

function checkerboard is particularly useful for this purpose because its size can 

be scaled without affecting its principal features. The images generated by this 

function are of class double with values in the range [0,1]. Because some 

restoration algorithms are slow for large images, a good approach is to experiment 
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with small images to reduce computation time and thus improve interactivity, then 

we can extend our experiment to real gray level images taken by neutron 

radiography imaging system. 

Image restoration may be defined as the process of undoing imaging 

degradations based on a mathematical model of these degradations. The aim of 

image restoration is to remove blur and the noise incurred in recording the image.  

Before we can deblur an image, we must have a mathematical model that 

relates the given blurred image to the unknown true image. Consider the example 

shown in Figure 4.1. The left is an original test image, and right ones are a blurred 

and blured/noisy versions of the same image. The last images are what would be 

recorded during acquisition in bad conditions. 

 

a)    b)  c)  
 

a)  b)  c)  
Figure.4.1: a) original b) motion blurred c) motion blurred with gaussian noise 

 
4.2 Restoration using naïve and regularized filter 

If we neglect the presence of noise in the degradation model (1), we can 

derive a simple restoration technique, in which the frequency response of the 

deconvolution filter, is found to be the inverse of the frequency response of the 

PSF, the degradation function. 

Inverse filtering can efficiently be implemented in the frequency domain with 

the FFT. However, image restoration by direct inversion is often ill-posed owing to 

the presence of observation noise. This follows because the direct inverse of the 

blur transfer function usually has a very large magnitude at high frequencies and is 
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in finite at those frequencies where the blur transfer function has zeros. This result 

in excessive amplification at these frequencies of any sensor noise.    

Regularization techniques using information about the image generation 

process attempt to roll-off the transfer function of the inverse filter at these 

frequencies in an attempt to limit the noise amplification during the signal 

restoration process. Inevitably, the regularized filter deviates from the exact 

inverse at these frequencies. It is this deviation of the regularized filter from the 

exact inverse that causes the ringing artifacts. We define such ringing artifacts as 

periodic overshoots and under-shoots about an edge that decay in spatial 

coordinates as we move further from the edge. Ringing artifacts are encountered 

in the regions of an image at those frequencies where the regularized inverse 

transfer function differs from the exact inverse because sharp edges contain 

almost all frequencies.      

Regularization of the inversion can either be achieved via deterministic 

iterative procedures or via stochastic filtering techniques. The first usually do not 

utilize an image model and are implemented by iterative procedures to alleviate 

the computational problems. Stochastic techniques, on the other hand incorporate 

and image model and the noise statistics for optimal filtering. Almost universally, 

the minimum mean squared error (MSE) criterion has been chosen because of the 

simplicity it provides.   

In the following, we gathered some results using these methods for both 

blurred and blurred with additive noise image restoration:  

 

a)    b)   c)  
 

 
Figure.4.2: Restoring blurred/noisy image: a) Direct inverse filtering b) Zero 

padding FFT filter and c) Regularized filter  
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4.3 Restoration using some classical methods 

a)   b)   c)  
 

a)  b)  c)  
Figure.4.3: Restoring blurred/Noisy image: a) Lucy-Ridchardson algorithm  

b) Blind restoration and c) Wiener filtering  
  
 

4.4 Adaptive Spatial filtering for image restoration 

When the only degradation present is noise, the method of choice for 

reduction of noise in this case is spatial filtering. These filters can adapt their 

behavior depending on the characteristics of the image in the area being filtered.  

 
4.4.1 Adaptive Median Filter 

a)   b)   c)  

a)  b)  c)  

Figure.4.4: Restoration of Hardly noised image using random Impulse 
Noise : a)Original, b)Degraded, and c)Restored with Adaptive median Filter 
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4.4.2 Decision-Based Algorithm for Removal of High-Density Impulse Noises 

  

Figure.4.5: Restoration Using Decision Based Agorithm for high density 
impluse noise  

 
4.4.3 Some other new filters for Multiplicative noise reduction 

a)  b)  c)  d)  e)  
 

Figure.4.6:  a) Noisy image, b) Filtered image using: Kuan, c) Lee, d) Frost 
and e) SRAD filters 

4.5 Image Restoration Using Direct methods 

There are two important direct methods: TSVD and Tikhonov. To implement 

them, we use the following six spectral filtering methods: 

1. Tikhonov image deblurring using the DCT algorithm. 

2. Tikhonov image deblurring using the FFT algorithm. 

3. Tikhonov image deblurring using the Kronecker decomposition. 

4. Truncated SVD image deblurring using the DCT algorithm. 

5. Truncated SVD image deblurring using the FFT algorithm. 

6. Truncated SVD image deblurring using Kronecker decomposition. 
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These methods give us control, via the filter parameters, over the spectral 

contents of the deblurring images. Spectral filtering methods work by choosing the 

filter parameters in the computed solution in order to obtain a solution with 

desirable properties. We use the generalized cross validation (GCV) method for 

choosing parameters for both direct methods.  

a)  b)   c)                

Figure.4.7: Restored with a)Tikhonov regularization and b) Truncated 
Singular Value Decomposition (TSVD), the condition number 

cond(A)=σ1/σN is found to be 7.337638 x 104,  c) Iterative Weighted GCV 
Method 

 

4.6 Regularized Total Variation 

An implementation of the Total Variation based filtering was made using the 

conjugate gradient (CG) method and the Newton Algorithm for minimizing Total 

Variations with Laplacian regularization. Figure.4.8 shows restorations with ROF 

(Rudin, Osher, Fatemi),Figure.4.8.a, and shows TV energy evolution with 

iterations, Figure.4.8.b:   

a)       b)   

Figure.4.8: a) Restoration with ROF method, b) TV Energy evolution with 
iterations 

 
 

Figure.4.9 illustrates a restoration result of the previous blurred/noisy 

image, using Chambole Algorithm, with automatic estimation of regularization 

parameter and TV energy evolution with iterations.   
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a)    b)  

Figure.4.9: a) Image Restored using Chambolle Algorithm, b) 
Regularization parameter estimation and TV energy evolution   

 
 

4.7 Image restoration using Swarm Intelligence 

 

We will establish a new approach that can be used to solve a constrained 

optimization ill-posed problem in order to improve a blurred and noisy image. We 

will corrupt images of different sizes using many types of degradation functions 

and noises, and then try to restore the original.  Our starting image is a gray-level 

image contained in the mxn matrix. Each element in the matrix represents a pixel's 

gray intensity between black and white (0 and 255). The simplest approach is to 

solve the least squares problem:    

)min(
2

GXH −∗                 (12) 

In practice the results obtained with this simple approach tend to be noisy, 

because this term expresses only the fidelity to the available data g. To 

compensate for this, the below regularization term is added to improve 

smoothness of the estimate:   

2
004.0 XL ∗∗                                      (13) 

L is the discrete Laplacian, which relates each pixel to those surrounding it. 

L=del2(X) is a discrete approximation of: 
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Where X is the estimated matrix. The matrix L has the same size as X with 

each element equal to the difference between an element of X and the average of 

its four neighbors. Since we know we are looking for a gray intensity, we also 

impose the constraint that the elements of X must fall between 0 and 255. To 

obtain the deblurred image, we want to solve for X:  

22
**004.0)min( XLGXH +−∗               (15) 

We can implement our objective function using this expression; the number 

of variables in this function to be minimized will be nm×  which is the size of the 

matrix representing the original image.   

4.7.1 Simulation experiment Using PSO algorithm [42,44,47] 

    We carried out computer simulations to validate the applicability of this 

algorithm in image restoration. We run the algorithm using Intel Pentium4 Desktop 

computer with 1.80GHZ CPU and memory size of 2Go. The average processing 

time is dependent upon computation machine, image size and choice of PSO 

algorithm parameters (varies from few seconds to few minutes). Some simple 

images of sizes: 8x8, 16x16, 32x32, 64x64, 256x256 and 512x512 are used. 

Different PSO parameters are choosen: C1=1.5; C2=4-C1; minInertia=0.3; 

maxInertia=0.95; Swarm Size=10,20,50,120; Maximum Iterations=20,50,100,200. 

We took the value 0.004 as a regularization parameter. In Fig.5(a, b, c and d), we 

increase gradually the swarm size and iterations to reach improved restoration 

results. The cost function evolution is traced in Figure 4.10 without regularization 

and in Figure 4.11with regularization.  

a)   b)   

c)   d)   e)   f)  

 
Figure.4.10: Restoration of Blurred and Noisy Images without 

Regularization Constraint: a)Original, b)Noisy and c),d),e),f) Restored with 
swarm size and iterations: (10,20), (20,50), (50,100), and (120,200)    
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a)   b)     

c)   d)   e)   f)  

 
Figure.4.11: Restoration of Blurred and Noisy Images with Regularization 
Constraint:  a) Original,  b) Noisy,  c),d),e),f)Restored with swarm size and 

iterations: (10,20), (20,50), (50,100), and (120,200) 
 

a)   b)  

Figure.4.12: Evolution of Cost function: a) Without regularization, b) With 
regularization 

          

To evaluate the restoration performance of our approach quantitatively, we 

record the evolution of the root mean squared error (RMSE) and the peak signal to 

noise ration (PSNR) in Table 4.1 and Fig.7.a, b: 
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and    MSERMSE =  
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Table 4.1: Evolution of the (RMSE) and the peak signal to noise ratio (PSNR) with 
swarm size and number of iterations 

 With  Regularization Without  Regularization 

 RMSE PSNR RMSE PSNR 

Blured/Noisy 0.92 48.81 0.92 48.81dB 

(10,20) 0.16 64.21 0.16 64.18dB 

(20,50) 0.04 75.49 0.04 75.50dB 

(50,100) 0.014 87.06dB  0.02 83.82dB 

(120,200) 0.001 102.17dB 0.001 101.17 

 

 

Figure.4.13. a: RMSE Evolution with Swarm Size & Number of Iterations 
 

 

Figure.4.13.b: PSNR Evolution with Swarm Size & Number of Iterations 
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Table 4.2:Values of the RMSE and the PSNR for five selected different 

methods[44] 
 RMSE PSNR 

Blured/Noisy 0.921 48.81 

FFT 0.1680 64.01 

TSVD 0.0795 70.47 

Tikhonov 0.0682 71.47 

TV (CG) 0.2124 61.53 

TV (Chambolle) 0.1401 65.26 

 

Using the checkerboard test image (a) blurred and noisy (b) and restored 

using different swarm sizes and process iterations (c, d, e, f), with and without 

Laplacian regularization constraint in figures 10 and 11. We can observe evolution 

of the mean squared error (RMSE) and the peak signal to noise ratio (PSNR) in 

table 4.1 and remark the effect of regularization both on image quality and cost 

function evolution, figures 12.a and b. In table 4.2, we computed values of the 

RMSE and the PSNR for five selected different methods.   

4.7.2 Simulation experiment Using BFO algorithm [43,45,46,49] 

We have carried out computer simulation to validate the applicability of our 

implementation for image restoration. We run the algorithm using the same PC as 

before. The average processing time is dependent on image size and choice of 

BFO algorithm parameters (varies from few seconds to few minutes). Same test 

and real images are used for assessment with different BFO parameters as 

follows:   

The number of bacteria: s=6,10,20,30,50,80;                            

Number of chemotactic steps: Nc=10,20,30,50,70,80,100;  

Limits the length of a swim: Ns=10,20,30,40,50,70,80,100;  

The number of reproduction steps: Nre=10,20,30,40,50,70,80,100;   

The number of elimination-dispersal events: Ned=1,2;  

The number of bacteria reproductions (splits) per generation: Sr=s/2;  

The probability that each bacteria will be eliminated/dispersed: Ped=0.25;  

The run length: c(i)=0.05;  
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There are many varying parameters on which the quality of restorations 

depends. Although it is very difficult and almost impossible to determine the best 

set of these parameters, it is very important that a reasonably effective set of these 

parameters is chosen, so that the deblurred image quality is accepted enough for 

use. In tables 4.3 and 4.4 we recorded the sensitivity of the BFO algorithm with 

variation parameters in terms of MSE, PSNR and objective function minimum. In 

Figure.15, we show the health (a) of each bacterium in ascending order and the 

cost function minimum (b) of each bacterium among the 20 bacteria at the 50th 

chemotactic step and 80th reproduction step. Restoration of a checkerboard test 

gray level image blurred and noised together with and without regularization 

constraint is presented in Figure 4.15 and Figure 4.16  

 
 

Table 4.3: Sensitivity analysis for Bacterial Foraging Algorithm with varying 
parameters: Restoring Blurred Image with Regularization 

 MSE PSNR Cost Function  
Degraded Image 0.15 64.61  

S=6 0.13 66.02 1.5610 
S=10 0.14 65.14 1.6088 
S=20 0.15 64.86 1.6214 
S=30 0.15 64.01 1.6641 

Nc=10 0.24 60.36 6.4967 
Nc=20 0.17 63.41 3.2768 
Nc=30 0.15 64.65 1.9659 
Nc=50 0.13 65.60 1.5910 
Nc=70 0.13 66.02 1.5175 
Ns=10 0.14 65.04 1.7133 
Ns=20 0.14 65.40 1.6566 
Ns=30 0.13 66.02 1.5910 
Ns=50 0.13 66.02 1.5910 
Ns=80 0.13 66.02 1.5910  
Nre=10 0.31 58.31 9.3992 
Nre=20 0.19 62.46 3.9219 
Nre=30 0.17 63.68 2.6595 
Nre=40 0.16 64.08 2.1448 
Nre=50 0.14 65.52 1.7570 
Nre=70 0.13 66.02 1.5910 
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Table 4.4: Sensitivity analysis for Bacterial Foraging Algorithm with varying 
parameters: Restoring Blurred/Noisy Image with Regularization 
 MSE PSNR Cost Function 

Degraded Image 0.57 52.99  
S=6 0.12 68.37 2.2035 

S=10 0.12 68.44 2.2909 
S=20 0.10 68.75 2.2270 
S=30 0.11 68.43 2.2090 

Nc=10 0.18 66.84 8.0116 
Nc=20 0.12 67.67 3.2706 
Nc=30 0.11 68.52 2.2263 
Nc=50 0.10 68.02 2.1670 
Nc=70 0.10 68.02 2.1670 
Ns=10 0.11 67.53 2.6089 
Ns=20 0.10 68.22 2.3635 
Ns=30 0.10 67.94 2.4871 
Ns=50 0.10 68.52 2.2263 
Ns=80 0.10 68.52 2.2263 
Nre=10 0.30 58.53 20.8247 
Nre=20 0.19 62.41 9.0574 
Nre=30 0.14 65.06 4.5166 
Nre=50 0.10 68.28 3.0948 
Nre=80 0.09 68.75 2.2270 
Nre=100 0.11 67.94 2.3504 

 

To quantitatively judge the quality of several BFO parameters combinations, we 

recorded in Table 4.3 and Table 4.4 both for blurred and blurred/noisy image the 

sensitivity of the BFO algorithm with variation parameters in terms of MSE, PSNR 

and objective function minimum. A full statistical analysis of these results for tuning 

parameters is accomplished by applying ANOVA test (analysis of variance) [32]. 

We use a 4-Way ANOVA with a Large Data Set (8x8, 16x16, and 64x64) and with 

random effects as a statistical test of whether or not the means of several groups 

are all equal to illustrate the statistical significance of the tuned parameters. The 

expected value of each mean square depends not only on the variance of the error 

term, but also on the variances supplied by the random effects.    

ANOVA allow us to test the difference between two or more means. ANOVA 

does this by examining the ratio of variability between two conditions and 

variability within each condition. Thus, when the variability that we predict between 

the two groups of parameters is much greater than the variability we don't predict 

within each group, then we will conclude that our treatments produce different 

results. We consider the four groups of the four parameters. With the null 
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hypothesis: µ1 = µ2 = µ3= µ4, and the alternative: at least two of the means are 

not equal.  At the significance level equal to 0.05(5%), the critical value from the F-

table is: F 0.05,3, 12 = 3.49; and demonstrate that: SST=SSB+SSW. 

SST: sum of squares total  

SSB: sum of squares between the groups  

SSW: sum of squares within the groups 

1. With the grand mean = 0.13 (0.10 for blurred and Noisy image), first, start 

with taking the difference between each observation and the grand mean, 

and then square it for each data point, using the following formula: 

∑∑
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1 1
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j
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i

XX                      (18) 

Xij : is the jth data in the ith experimental group 

X : is the arithmetic mean all members of the four groups 

ni: is number of members of the ith group 

2.  Second, let all the data in each group have the same value as the mean in 

that group. This removes any variation WITHIN. Compute SS differences 

from the grand mean, using the following formula:  
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                        (19) 

iX : is the arithmetic mean of the ith group elements 

X : is the arithmetic mean all members of the four groups 

ni : is number of members of the ith group   

3. Third, compute the SS difference within each group using their own group 

means. This provides SS deviation WITHIN all groups, using the following 

formula:  

∑∑
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XX                       (20) 

Xij : is the jth data in the ith experimental group  

iX : is the arithmetic mean of the ith group elements   

ni : is number of members of the ith group   

4. Now, we construct the ANOVA Tables,4.5 and 4.6 by plugging the results of 

computation. Note that, the Mean Squares are the Sum of squares divided 

by their Degrees of Freedom. F-statistics is the ratio of the two Mean 

Squares.  
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5. Conclusion: the T-statistics is less than the critical value, so there is not 

enough evidence to reject the null hypothesis.  

 
 

Table 4.5:  The ANOVA TABLE for Restoring Blurred Image with Regularization 

The ANOVA Table 

Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Squares 

F-
Statistic 

Between Groups 0.123 3 0.041 2.226 

 Within Groups 0.221 12 0.0184   

Total 0.344 15     

 
 
Table 4.6: The ANOVA TABLE for Restoring Blurred/Noisy Image with 

Regularization  
The ANOVA Table 

Sources of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Squares 

F-
Statistic 

Between Groups 0.141 3 0.0470 3.065 

Within Groups 0.184 12 0.0153   

Total 0.325 15     

 

We can select the best bacterial foraging parameters both for blurred images in 

Table 4.7, and blurred/noisy images in Table 4.8.  This selection is based on a 

compromise between restored image quality and expense in terms of both time 

and computational resources. For example, in blurred/noisy images, if we choose 

the bacteria size S=30, we get better cost function and minimum MSE, but this had 

to be achieved at the expense of more computational complexity. After fixing 

S=20, we change Nc to reach the cost function minimum found before, i.e. with the 
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same computational resources. After fixing S=20 and Nc=50, we increase Ns until 

stable values of MSE, PSNR and cost function minimum; Ns is found to be 50. 

The rest parameters are also selected following similar logic. 

Table 4.7: Best BFO parameters for restoring blurred images with regularization 
(Best Regularization parameter is 0.01) 

 
BFO Parameters Values 

S 6 

Nc 70 

Ns 30 

Nre 70 

Ned 1 

Sr S/2 =3 

 
Table 4.8: Best BFO parameters for restoring blurred/Noisy images with 

regularization (Best Regularization parameter is 0.01) 
 

BFO Parameters Values 

S 20 

Nc 50 

Ns 50 

Nre 80 

Ned 1 

Sr S/2 =10 
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Figure.4.14:  a) Health of each Bacterium in Ascending Order,  b) Minimum 
Cost function for each Bacterium 

 
 

a)  b)   c)  d)   

Figure.4.15: Restoration of Blurred with Noise Images without 
Regularization Constraint: a) Original, b) Blurred, c) Restored with p=8x8 d) 

Restored with p=16x16 
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a)  b)   c)  d)  

Figure.4.16: Restoration of Blurred with Noise Images with Regularization 
Constraint:  a) Original, b) Blurred, c) Restored with p=8x8 d) Restored with 

p=16x16  
 
 

4.7.3 Simulation experiment Using  hybrid implementation (BFO-PSO) [48,50] 

This hybridization improved the convergence speed and accuracy of 

solutions got by classical BFO, however, what is requested in image restoration is 

attaining a best approach to the original image by finding the best solution, which 

is accomplished by a hybrid implementation of BFO-PSO.  

Fig.4.18 and Table 4.9 compare the three algorithms, PSO, BFO, Hybrid 

BFO-PSO, on quality of the optimum restoration results using the same image and 

the same degradation function. The PSNR progress, chosen as an image quality 

metric, throughout chemotactic steps increase reveals the good choice of such 

scheme, Fig.4.19 and Table 4.10.  

 a)  b)  c)  d)  e)  

Figure.4.17: Restoration of Blurred/Noisy images: a)Original, b)Blurred,  
c)With PSO, d)With BFO, e)With hybrid BFO-PSO 

 

Table 4.9: RMSE and PSNR values of the three Algorithms reached with the 
identical computation time and population size 

 Blurred Restored with 
PSO 

Restored with 
BFO 

Restored with 
Hybrid 

RMSE 0.57 0.05 0.09 0.04 

PSNR 52.99dB 75.01dB 68.68dB. 75.50dB 
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Table 4.10:PSNR progress with increasing number of bacteria, chemotactic and 
reproduction steps  

 
PSNR 

Classical BFO Synergy of BFO and PSO 

54.21 54.18 

54.55 54.78 

54.62 54.83 

54.75 55.26 

55.25 55.75 

 56.06 56.89 

65.53 68.30 

68.68 75.50 

 

 

Figure.4.18: PSNR progress with increasing number of bacteria, 
chemotactic and reproduction steps 
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4.7.4. Blind Restoration Using Hybrid Swarm Optimized ARMA-Neural Network 
Model: 

 
4.7.4.1. Image Degradation Representation by ARMA Model 

    An image can be considered to be a sample function of random variables array. 

This characterization of an ensemble of images is useful in developing image 

processing techniques that are valid for an entire class and not just for an 

individual image. Two dimensional linear stochastic systems led to the modeling of 

blurred image as an (ARMA) process, where (AR) part determines the image 

model coefficients and (MA) part determines the blur function of the system [21]. 

Therefore, blind image deconvolution is transformed into an ARMA parameter 

estimation problem. Identifying the ARMA parameters allows us to identify the true 

image and the degradation function. This task can be achieved using neural 

networks [22] trained with classical optimization Algorithms that have the 

drawbacks of ill-convergence to local minima and sensitivity to initial conditions.   

The true image is modeled as a two-dimensional (AR) process represented by:  

∑
∈
∈

+−−=
)0,0(),(

),(

),(),(),(),(

ml
Rml a

yxmylxfmlayxf ν               (21) 

f(x,y) is the true image, and v(x,y) is the modelling error which is a zero-mean 

homogeneous noise process which is statistically independent of f(x,y). Using 

matrix-vector notation, (21) can be written as: 

ν+= Aff                                  (22) 

For smooth and homogeneous true images (as in photography), only three AR 

coefficients {a(0, l), a(1,0), a(1,l)} are sufficient to reasonably model the image. In 

most practical situations, the blurring function is of finite extent and its effect on the 

true image can be modeled as that of a two-dimensional FIR filter. The linear 

degradation model can be written:  

),(),(),(),( yxyxhyxfyxg η+⊗=                           (23) 

Where the degradation function is ),( yxh , and ),( yxη is the additive noise of the 

imaging system assumed to be zero-mean Gaussian. The degraded image 

),( yxg can be expressed as: 

∑
∈

+−−=
hRml

yxmylxfmlhyxg
),(

),(),(),(),( η               (24) 
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Using matrix-vector notation, equation (4) becomes: 

η+= Hfg                                                        (25) 

Rearranging equation (2), substituting into equation (25) and rearranging yields: 

ην +−= −1)( AIHg                                              (26) 
Where I is the identity matrix 

    A complete model for the blurred image using equation (26) is given in Fig.4.19, 

where capital letters denote the Z-transforms of their lowercase counterparts. 

Therefore, the problem of blind deconvolution consists of estimating the AR 

parameters: aRmlformla ∈),(),( , and the MA parameters: hRmlformlh ∈),(),(  

   Once the blurring function h(1,m) is determined, one of the classical linear image 

restoration methods can be used to estimate the true image. 

 

Figure.4.19:  ARMA Model of the degraded image 
 

    The practical difficulties with estimating { }),(),,( mlhmla using equation (26) include 

high computational complexity with large support, instability of the estimation 

algorithms, and non-unique solutions. To overcome these problems, the following 

additional assumptions are commonly made on the blurring function by existing 

second-order statistics methods. 

1. The blurring function is positive, and the mean value of the true image is 

preserved in the degradation process. That is: 1),(
),(

=∑
∈ hRml

mlh . The use of 

these assumptions limits the number of possible ambiguous solutions to the 

problem. 

2. The blurring function is symmetric and zero-phase. These assumptions are 

made for the stability and the uniqueness of solution of the estimation 

algorithms.  

3. The blurring function has a known parametric form consisting of only a few 

parameters. Use of such models significantly lowers the computational 

complexity. 
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4.7.4.2. ARMA Neural Network modelling  

A neural network (NN) is a parallel and distributed network of simple 

nonlinear processing units interconnected in a layered arrangement. Parallelism, 

modularity and dynamic adaptation are three computational characteristics 

typically associated with NN’s. The multi-layer perceptron (MLP) consists of 

various layers: an input and output ones between which lay one or several hidden 

ones whose outputs are not observable, Fig.4.20:  

 
Figure.4.20: Schematic diagram of a multi-layer feed-forword NN 

 

These layers are based upon some processing units (neurons) 

interconnected by means of feed-forward pondered links. Fig.4.21:  

 

Figure.4.21: Information processing in a NN unit 

   All these processing units carry out the same operation: the sum of their 

weighted inputs, equation (27). Then they apply the result to a non-linear function 

named activation function and generally based upon the sigmoid function, 

equation (28): 









−







= ∑ j
i

ijijj bxwy .                                       (27) 

( )xe
xf −+

=
1

1
)(                                                 (28) 

Where jy is the output of the processing unit, ijw are the synaptic weight 

coefficients and jb is the bias 
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Back-propagation (BP) has been widely adopted as a successful learning 

rule to find the appropriate values of NN weights. Using the hybrid implementation 

(PSO-BFO), each bacterium (or particle) position vector is defined by all 

connecting weights matrix ijw . The fitness value of each bacterium is the value of 

the error function evaluated at this position. To achieve the same error goal both 

with back-propagation (BP) and Hybrid swarm algorithms, we find that the Hybrid 

PSO-BFO implementation requires less number of computations; which is an 

observed performance.  

For our application, a multi-layer NN structure trained using a hybrid swarm 

implementation, to minimize the mean squares of errors function in the NN, is 

used to represent the ARMA model for identifying the blur function and restore the 

degraded image, simultaneously. The main difficulty in our approach is to learn 

correctly the perceptron because the learning sets are very large (about 100 

examples), Fig.4.22. We developed a (MLP) with 3x3 input/output dimensions and 

two hidden layers, Fig.4.23. Also the swarm optimization algorithm parameters 

must be chosen carefully. The input of the NN model is a white Gaussian noise 

and the output of the last layer is the observed degraded image. The output of the 

second layer is the estimated original image and the weights between the third 

and the output layers represent the blurring function.   

 

Figure.4.22: Comparison between Different Learning Algorithms using MSE 

Evolution 
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Figure.4.23: The resultant Simulated Neural Network on Matlab/Simulink 

 
 

In our simulation we use gray scale images with size of 256x256 pixels and 

256 gray-levels. Some practical simulation results are given below. Before 

application to radiological images, we launch a step by step assessment 

procedure of our model using some test images restoration. Fig.6 shows a 

comparison between the classical blind iterative deconvolution (BID) that 

maximizes the likelihood using an iterative process and restoration via the 

optimized ARMA-NN model.  The reference images, used also for comparison, are 

two text images and one generated by the MATLAB function ‘checkerboard’. The 

last reference image contains all gray levels (from 0 to 255). The original image in 

Fig. 4.24(a) is blurred by 5×5 Gaussian blur and Gaussian noise with 10dB was 

added to the blurred image of Fig.4.24(b). Restoration results presented in 

Fig.4.24(c) and (d), reveal that the proposed approach gives a better image 

estimate than the (BID) method. 
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a  b c d  

a b c d  

a b c d  

Figure.4.24: a)Original image, b)Blurred image, c)Restored image with iterative 

blind deconvolution algorithm, d)Restored with the ARMA-NN model 

 

4.7.4.3. Application to Radiological Images:  

Medical radiology offers many good techniques helping doctors in their 

diseases diagnosis work and also it is widely used in medical research. 

Radiological images used here are gathered from radiological databases. Five 

images of different types are selected for experimentation to validate the proposed 

model, Fig.4.25.  

Some image quality measures are calculated for all restored images with 

reference to their original images. To extend tests, a set of six tables and seven 

graphs are constructed below, Fig.4.26-32. The implemented image quality 

measures are defined using the following expressions: 

1. Mean Square Error (MSE):   ( )∑∑
= =

−=
M
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N

k
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2. Peak Signal to Noise Ratio (PSNR in dB): ( )
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n 22
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5. Structural Content (SC): 
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a b c d  

a b c d  

a b c d  

a b c d  

a b c d  
 

Figure.4.25: a)Original image, b)blurred image, c)restored image with iterative 

blind deconvolution algorithm, d)restored with the ARMA-NN model 
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Table 4.11: Image metrics for the checkerboard image 

 Degraded Image Restored with BID  Restored with: 

ARMA-NN model 

Mean Square Error 6.7657e+003 2.2163e+003 1.8347e+003 

Peak Signal to Noise Ratio 9.8277 14.6746 15.4951 

Normalized Cross-Correlation 0.6518 0.9488 0.9597 

Average Difference -0.5576 -2.4622 -2.8398 

Structural Content 1.6781 1.0048 1.0237 

Maximum Difference 255 152 149 

Normalized Absolute Error 0.7074 0.1805 0.1863 

 

Table 4.12:  Image metrics for the first x-ray image 

 Degraded 

Image 

Restored with BID  Restored with: 

ARMA-NN model 

Mean Square Error 675.6993 535.6264 360.4974 

Peak Signal to Noise Ratio 19.8333 20.8422 22.5618 

Normalized Cross-Correlation 0.9316 0.9257 0.9727 

Average Difference 0.2043 -1.1556 -1.6216 

Structural Content 1.0656 1.0976 1.0146 

Maximum Difference 189 188 149 

Normalized Absolute Error 0.1843 0.2042 0.1833 

 

Table 4.13: Image metrics for the second x-ray image 

 Degraded 

Image 

Restored with BID  Restored with: 

ARMA-NN model 

Mean Square Error 158.2443 75.0939 12.4176 

Peak Signal to Noise Ratio 26.1375 29.3748 37.1904 

Normalized Cross-Correlation 0.9820 0.9539 0.9954 

Average Difference -2.8710 -2.2942 0.0352 

Structural Content 0.9805 1.0704 1.0048 

Maximum Difference 149 130 51 

Normalized Absolute Error 0.3183 0.2359 0.0556 
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Table 4.14: Image metrics for the magnetic resonance image 

 Degraded 

Image 

Restored with BID  Restored with: 

ARMA-NN model 

Mean Square Error 801.1238 265.2525 263.7717 

Peak Signal to Noise Ratio 19.0938 23.8942 23.9185 

Normalized Cross-Correlation 0.9156 0.9500 0.9802 

Average Difference 0.5833 -1.7516 -2.4985 

Structural Content 1.0480 1.0630 0.9992 

Maximum Difference 255 148 142 

Normalized Absolute Error 0.3130 0.2191 0.2254 

 

Table 4.15: Image metrics for the brain image 

 Degraded 

Image 

Restored with BID  Restored with: 

ARMA-NN model 

Mean Square Error 3.9938e+003 3.0085e+003 1.3441e+003 

Peak Signal to Noise Ratio 12.1169 13.3473 16.8464 

Normalized Cross-Correlation 0.9028 0.8235 0.9594 

Average Difference -2.9687 0.9376 0.2043 

Structural Content 0.9846 1.2418 1.0106 

Maximum Difference 255 246 210 

Normalized Absolute Error 0.4029 0.3876 0.2102 

 

Table 4.16: Image metrics for the blood vessel image 

 Degraded 

Image 

Restored with BID  Restored with: 

ARMA-NN model 

Mean Square Error 761.1953 381.9748  61.0878 

Peak Signal to Noise Ratio 19.3158 22.3105 30.2713 

Normalized Cross-Correlation 0.9978 0.9939 0.9865 

Average Difference -0.5042 -1.2890 0.4166 

Structural Content 0.9141 0.9641 1.0194 

Maximum Difference 147 122 51 

Normalized Absolute Error 0.2660 0.1616 0.0690 

     



78 

 

 

Figure.4.26: Mean Square Error Comparison Between classical BID and ARMA-

NN Model 

 

Figure.4.27: Peak Signal to Noise Ratio Comparison Between classical BID and 

ARMA-NN Model 

 

Figure.4.28: Normalized Cross-Correlation Comparison Between classical BID and 

ARMA-NN Model 
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Figure.4.29: Average Difference Comparison Between classical BID and ARMA-

NN Model 

 

Figure.4.30: Structural Content Comparison Between classical BID and ARMA-NN 

Model 

 

Figure.4.31: Maximum Difference Comparison Between classical BID and ARMA-

NN Model 
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Figure.4.32: Normalized Absolute Error Comparison Between classical BID and 

ARMA-NN Model 

 

From images visual inspection with numerical evaluation from Figures: 

4.26-32, we can judge that the PSNR is a little enhanced using the proposed 

model compared to standard (BID). The performance of this approach for restoring 

radiological images degraded by Gaussian and motion blur and an additive noise 

is revealed from experiments performed on some database images. Although the 

performance is demonstrated for such images, the proposed approach can be 

used to restore others images degraded with the same blurring function. In the 

future, we will try to implement models for other known blurring functions 

encountered in radiological images to further improve the performance.  

  
4.7.5. Comparison with other methods 

In the following, Table 4.11 and Fig.4.33, we have selected four best 

methods used for image and signal restoration: Truncated Singular Value 

Decomposition (TSVD), Tikhonov regularization, normalized Tikhonov in Sobolev 

space and Total Variation (TV) regularization solved with iterative recursive least 

squares method. For TSVD, the truncation parameter used in simulation is 4e-3.  

Tikhonov regularization used here is feasible by direct computation for such 

inverse problem using the Kronecker product structure, regularization parameter 

found as the used in simulation is 4e-5. The second Tikhonov regularization is an 

approximation of the popular Sobolev seminorm penalization, regularization 
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parameter found as the best used in simulation is 1e-5. In (TV), regularization 

parameter found as the used in simulation is 1e-3.  

Finally, in solving TV regularization problem using swarm intelligence, the 

regularization parameter found as the used in simulation is 1e-3.    

To get rid of impulse noise, it is found that the hybrid implementation of 

BFO and PSO (with and without regularization) can offer good quality results 

compared to the enhanced median filter and the soft heuristic SURE thresholding 

in wavelet decomposition, Fig.4.34. The recent split Bregman approach seems to 

be a good choice.    

 
 

Table 4.17: Quality comparison based on RMSE and PSNR values between the 
best four methods and the proposed Swarm Intelligence Algorithms  

 

  
RMSE 

 
PSNR 

 
Blurred 

 
0.57 

 
52.99dB 

TSVD Restoration 0.08 69.86 
Tikhonov Restoration   0.06 71.92 
Tikhonov (sobolev) 

Restoration 
0.12 66.83 

TV Regularization 
Iterative LS Restoration 

0.24 60.41 

PSO Restoration 0.05 74.01dB 
BFO Restoration 0.09 68.68dB 
Hybrid BFO-PSO 

Restoration 
 0.04 75.50dB 

 

 

a b c d e  
Figure.4.33: Quality comparison between the best four methods (TSVD, 

Tikhonov regularization, Tikhonov in Sobolev space and TV regularization 
solved with iterative method) and the Hybrid Algorithms BFO-PSO  
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a b c d  

e f g  
Fig.4.34: a) original, b) stained with impulse noise, c) restored with median 
Filter, d) with soft heuristic SURE thresholding in wavelet decomposition, e) 

with split Bregman denoise, f) with hybrid BFO-PSO, g) with regularized 
hybrid BFO-PSO  

 

4.7.6  Application to Neutron Radiography Images Restoration: 

Digital radiological image is a digital image acquired by a certain 

radiological procedure which can be X-rays, gamma camera, nuclear magnetic 

resonance or neutron radiography. It is a two-dimensional MXN array of non-

negative integers (gray levels). For neutron radiography, Fig.4.35, the gray level 

value represents the relative linear attenuation coefficient of the object. Each of 

these gray images has 8-bit representations of their intensity levels. Hence, there 

are 256 gray levels. Degradations in this imaging technique are essentially due to 

bad situation with respect to randomly distributed neutron flux causing dissimilarity 

in images taken for the same object, in addition to the presence of gamma 

radiations causing additive noises.  

 

 

 

 

 

 

 
 
 
 
 

Figure.4.35: Neutron Imaging System 
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In order to evaluate the performance of the proposed approaches when 

applied to neutron radiography images, we make use of corrupted images due to 

degradation (neutron flux perturbation) and additive noise (gamma radiations) 

taken by neutron radiography in a hostile site. Computer simulations prove that 

PSO, BFO algorithms, Fig.4.36 and 37; in addition to their Synergy of them, yield 

excellent results and present good efficiency in neutron images restoration, as 

illustrated in Figures.4.38, 4.39, 4.40 and Table 4.12.   

 
 

 

 

 

 

Figure.4.36: Neutron Radiography Image restoration using PSO: a)Original, 

b)blurred, c)Blurred/Noisy, d)Restored Image with PSO 

 

   a)  b)  c)  

Figure.4.37: Neutron Radiography Image Restoration: a)Original, 
b)Blurred/Noisy, c)Restored image with BFO 
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a)  b)  c)  d)  
 

a)  b)  c)  d)  
 

a) b) c) d)  
Fig.4.38: a) original image, b) with added noise, c) using median filter, d) using 

hybrid BFO-PSO 
 

a) b)  

c) d) e) f) g)

h) i)  
 

Figure.4.39: a)Original image of an electrical relay, b) Hardly motion blurred 
image, c)TSVD, d)Tikhonov regularization, e)Tikhonov (sobolev), f)TV 

regularization, g) Restored with PSO, h)Restored with BFO, i) restores with 
BFO-PSO Synergy   
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a) b)  

c) d) e) f)  

g) h) i)  
 

Figure.4.40: a) Original image of computer hard disk, b) Hardly motion 
blurred image, c) Restored with TSVD, d) Restored with Tikhonov 

regularization, e) Restored with Tikhonov (sobolev), f) Restored with TV 
regularization, g)Restored with PSO, h)Restored with BFO, i) restores with 

BFO-PSO Synergy   
 

Table 4.18:  Regularized Neutron Radiography Image Restoration with Hybrid 
BFO-PSO of mixing light water (H2O) and heavy water (D2O) 

 
Original Image Blurred Image Restored Image 
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4.7.7. Some examples of image denoising and deblurring using PSO and BFO 

 

     

 

             Figure.4.41: Gaussian Noise removal using (TV) Swarm Optimization 

 

                          

 

Figure.4.42: Image deblurring using (TV) Swarm Optimization 
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4.8 Conclusion: 

In our experiments, the proposed swarm methods always converges to 

acceptable results, from a quality point of view, with the computation time 

proportional to the matrix (image) size. Different types of blurring and noises are 

tested with the optimal regularization parameter λ chosen based on many trials 

and PSNR progress. Numerical results show that these methods are promising for 

many image restoration applications. We remark also that using TSVD as a direct 

method, the computed restorations are comparable to iterative methods but are 

computationally less expensive. However in Swarm Intelligence methods, we can 

obtain a closer approximation of the true image with very good RMSE and PSNR 

compared to the other existing methods; the number of iterations is a little larger 

and requires long computation time which merits further research, and 

regularization deserves a rigorous study to attain better results.   
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CONCLUSIONS AND FUTURE WORK 

 

 

 

In this thesis, we have introduced Swarm intelligence optimization 

algorithms in image restoration to solve the ill-posed inverse problem based on 

total variations (TV) approach that deals with the problem of minimizing a 

combination of a residue norm (one-norm) and regularization for the the Laplacian 

constraint has been used to smooth deblurred images in the presence of noise.  

Different types of blurring and noises have been tested with optimal 

regularization parameter λ chosen based on many trials and PSNR progress 

through algorithms balancing parameters. Numerical results show that these 

methods are promising for many image restoration applications. To achieve further 

improvements in visual quality, intensive research is needed that could 

significantly improve performance in practical applications. We can not say that 

our proposed solutions are the best but they can be considered as additional 

solutions to former ones.  

In the light of this thesis, we conclude that Total Variation algorithms 

combined with swarm intelligence algorithms is capable of restoring images from 

data with noise. According to our experiments, this is even good solution for gray 

level neutron radiography images taken in a hostile medium due to neutron flux 

non linearity and presence of gamma radiations. We can judge that such methods 

always converges to acceptable results, we obtained a closed approximation to 

the true image with good PSNR compared to the strong existing methods, from 

quality point of view. The computation time is a little larger and proportional to 

matrix (image) size which merits further investigation; also regularization deserves 

a rigorous study to attain better results.  
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The new approach that combines two swarm algorithms appears to be 

promising as we stated before, but more investigations need to be undertaken on 

all swarm methods in order to take advantage of each method in a hybrid 

implementation. This will be our subject of research to enhance results in many 

applications, in addition to reducing computation time with maintaining restoration 

quality by implementation on real time devices, and digital signal processors are 

certainly valid alternatives.  

The ARMA (autoregressive moving average) model used for the non 

linearly degraded image deconvolution, which is identified using a fast trained 

neural network by a hybrid implementation of the two swarm algorithms: PSO and 

BFO. This optimized model will be implemented, in a future work, on 

reconfigurable hardware by means of field programmable gate array (FPGA). Our 

objective is to combine: the swarm intelligence optimization power, the parallel 

computing scheme of neural networks and real time functioning of the hardware 

and put all into practice in an embedded design.   
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