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ABSTRACT 

 

In this thesis, two efficient strategies of faults detection and diagnosis in Photovoltaic 

(PV) systems are developed. The first strategy uses the probabilistic neural networks 

(PNN) classifiers to detect and diagnose faults in the Direct Current (DC) side of Grid 

Connected Photovoltaic (GCPV) systems. The second strategy suggests the development 

of two statistical methods (such as the improved-ratio and control charts based methods) 

to detect and diagnose the faults. The improved ratio based method consists on the 

evaluation of three coefficients to detect and diagnose short-circuits and open-circuits 

faults. While, the control charts based method applies the exponentially weighted moving 

average (EWMA) and Shewhart charts to detect and diagnose the faults in GCPV 

systems. However, the developed strategies require the availability of a high-quality 

database that describes the system behavior for both healthy and faulty operations.        

To deal with this concern, a PSIMTM/MatlabTM co-simulation strategy is developed            

to elaborate a trusted simulation model. This model requires the use of the One Diode 

Model (ODM) electrical parameters. For this, an efficient strategy, based on the artificial 

bee colony (ABC) and the best-so-far ABC algorithms, are developed to identify the ODM 

parameters. Finally, the ODM identified parameters are used to elaborate an efficient 

strategy of maximum power point (MPP) estimation. The efficiency of the developed 

strategies is experimentally evaluated by using real measured data, collected from two 

actual GCPV systems. The first one is a 9.54 kWp PV system located at Algiers (Algeria), 

while the second one is a 0.9 kWp PV system, located at Jaen University (Spain). 

 

 

 

  

 

Keywords: Grid connected, faults, probabilistic neural networks, statistical methods, 
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 VENدE. 8وLطI=اYQLرو اXBظV= 78 باTBطM و ISPEص PQفIELMN8 Lن اEKراIEIJIEن اEGراح Eم اBطرو<=، ھذه 78

=IJIEراEK[ا \LوBدام اSEKا \]T تM_X`V LاQaPتM =Ia`NLا =ILMVE>[ا )PNN (LQفP صISPEو BاMطTر  بMIELا =YJ

اaKXL=  طرcI=( إ<`IEIeMن طرIEcIن اIXMdL= ا]EKراEcE =IJIEرحQaPLMa . MVQ= اEVL`[= 8وLطI=اYQLرو XbظL=V )ت.م( اVEKVLر

 iVMNVت idث 8<ص 78 اVLطورة اaKXL= طرVEE =cI<ور. وMY`ISPE اTBطMب PQLف) اQ>ELم SVططMتطرcI= و اVLطورة

 78 اMVNEKل اQ>ELم SVططMت طرVEE =cI<ور Vن YJ= أSرى، .اE_VLو<=اLدارة  و رةوV`cاL اLدارة أTطMب وISPEص PQLف

 EKراMIJIEتا] EKE[زم .اQaPLMa =]`EVL= 8وLطI=اYQLرو XظV=اB بو ISPEص أTطPQL Mف Shewhartو  SV7 EWMAطط

Lر<=اEcV و8رE دةTMG تMXMIa =NI8ر =ITوX ت ذاتMQM>VL وك]K مMظXLا MطTBMa =Gر8وVLو ا =VI]KLا oELM> 78 7eوpروYQL78 . با

ھذا  EKIوJب. MN8ل MQM>Vة VXوذج ELطوIر a TM/MatlabTMPSIMرVENE 7JVMXد T[\ اEKراIJIE= اEGراح Eم ،ھذا اL`دد

 XEدLMN8 KE= اEKراE =IJIEم اEGراح ،اMV]NVLت IGم ھذهص اViSEKن أJل  .اMV`Lم اM>Bدي VXوذجاMV]NV Lت IGمNVر8=  اVXLوذج

\]T IVوارزS7E ABC  و.best-so-far ABC MVMES، لVNEKE مIcLا =`]SEKVLت اMV]NV]L رIطوE 78 =IJIEراEKا =LMN8 رIدcEL 

 8وLطIIنYQروXظIVMن  Vن E MYNVJم MKMIGت SEKMaدام JE =_`aرEc =IaIر<=اVL ا]EKراMIJIEت أداء IIcEم Eم. اcL`وى اcLوة cXط=

 ا7XMdLاXLظMم  أن <Iن 78، )اJLزاeر( اV`MNL= اJLزاeر 78 وJودIQ V[وواط NK 9.54= 8وLطYQ=Iرو طX =GMظMم ھو اBول اXLظMم

  ).إNVMJ Jaen )MIXMaK= 78 دوJوIQ V[وواط، NK 0.9= 8وLطYQ=Iرو طX =GMظMم ھو
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RÈSUMÈ  

 

Dans cette thèse, deux stratégies efficaces de détection et de diagnostic des défauts 

dans les systèmes photovoltaïques (PV) sont développées. La première stratégie utilise 

les classificateurs à base des réseaux de neurones probabilistes (PNN) pour détecter et 

diagnostiquer les défauts du côté courant continue (CC) des systèmes photovoltaïques 

connectés au réseau (SPVCR). La deuxième stratégie suggère le développement de 

deux méthodes statistiques (telles que les méthodes basées sur les rapports améliorés et 

les cartes de contrôle) pour détecter et diagnostiquer les défauts. La méthode basée sur 

les rapports améliorés consiste à l'évaluation de trois coefficients pour détecter et 

diagnostiquer les défauts des court-circuits et des circuits-ouverts. Tandis que la méthode 

basée sur les cartes de contrôle applique les cartes EWMA et Shewhart pour détecter et 

diagnostiquer les défauts dans les SPVCR. Cependant, les stratégies développées 

nécessitent la disponibilité d'une base de données de très bonne qualité qui décrit le 

comportement du système pour les opérations saines et défectueuses. A cet effet,       

une stratégie de co-simulation PSIMTM/MatlabTM est développée afin d’élaborer un modèle 

fiable de simulation. Ce modèle nécessite l'utilisation des paramètres électriques du 

Modèle à Une Diode (MUD). Pour cela, une stratégie efficace, basée sur les algorithmes 

des colonies d'abeilles artificielles (ABC) et best-so-far ABC, est développée afin 

d’identifier les paramètres du MUD. Finalement, les paramètres identifiés de ce modèle 

sont utilisés pour élaborer une stratégie efficace d'estimation du point de puissance 

maximale (PPM). L'efficacité des stratégies développées est évaluée expérimentalement 

en utilisant des mesures réelles, collectées à partir de deux SPVCR. Le premier est un 

système photovoltaïque de 9,54 kWp situé à Alger (Algérie), tandis que le second est un 

système photovoltaïque de 0,9 kWp, situé à l'Université de Jaen (Espagne). 

 

 

  

 

Mots clés: Connectés au réseau, défauts, réseaux de neurones probabilistes, méthodes 

statistiques, rapports améliorés, cartes de contrôle, EWMA, Shewhart, ABC, best-so-far 

ABC, modèle à une diode. 
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INTRODUCTION 

 

Context: 

The need of sustainable energy solutions in the worldwide is a demand 

nowadays, due to the high electricity consumption in combination with the desired 

environmental friendly solutions for power production development. Photovoltaic 

(PV) energy, which has gained a central place in governments’ energy policies, as 

it is more suitable for grid connection and stand-alone schemes, is a promising 

solution to address the aforementioned concerns [1, 2]. In addition, its eco-friendly 

nature and abundance have given additional advantages that motivated its 

worldwide deployment.  

Problem statement: 

Although the advanced tools for the PV power generation, in practice, several 

factors can affect significantly the PV system performance by decreasing its 

efficiency. Indeed, PV systems are frequently exposed to different sources of 

faults and anomalies that affect the power generated by the PV generators. These 

faults could considerably reduce the production efficiency and the lifespan of PV 

arrays [3-7]. This is mainly due to external interferences or faults resulting from 

dust accumulation on the PV modules, aging of PV modules, shading, MPPT 

error, and inverters faults. 

PV system, especially its DC side, may be subjected to defects and anomalies 

causing a drop of the overall system performance or even to their total 

unavailability [8]. Therefore, a real time fault detection and diagnosis procedure is 

crucial, not only for lowering maintenance cost, but also to avoid any energy loss, 

damage to equipment and safety hazards. 

The increased attention given to fault detection and safety in PV systems has 

led to the development of several methods of fault detection and diagnosis. These 

methods are classified into three main types: Process-History Based methods, 

Quantitative-Model Based methods, and Signal-Processing Based methods.  
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Process History based methods rely mainly on machine learning and 

computational intelligence methods. These methods depend on the availability of 

quality input data, and their implementation is not an easy task, especially for real-

time applications. Moreover, multi-layer perceptron neural networks suffer from 

their slow training step, they do not support noisy data, and could fall in local 

minima instead of global one [9, 10]. These weaknesses could obviously affect the 

reliability, the efficiency and even the real time utilization of these methods. 

Moreover, statistical monitoring charts [11-13] are important tools for 

monitoring sequential systems to make sure that they work stably and satisfactory. 

However, until recently statistical control charts have not been widely used to 

improve the performance of PV systems. In addition, the main shortcoming of    

the proposed monitoring chart-based methods is their limitation to detect incipient 

faults because they make decisions based only on the recent observations [11]. 

Quantitative-Model based methods compare analytically the real measured 

outputs with the model-based outputs (simulated outputs) to detect and diagnose 

faults in PV systems [14]. This category of methods requires the use of an 

accurate simulation model that mimics the system operation under healthy and 

faulty conditions. Also, it suffers from the manual strategy of threshold computation 

and it requires that the PV array works at the maximum power point (MPP). 

Signal-Processing Based methods rely on applying advanced techniques of 

signal processing to detect and diagnose faults in PV systems. This category of 

methods is an expensive strategy because it requires the use of additional 

expensive devices (such as LCR meter, thermal camera� etc.) of signal 

processing to detect and diagnose the faults [15, 16]. 

Objectives: 

In the light of the above discussion, two novel strategies of faults detection and 

diagnosis in GCPV systems, based on neuronal classifiers and statistical methods, 

will be suggested in this thesis.  

The first strategy consists on using probabilistic neural network (PNN) [9] 

classifiers to detect and diagnose faults in the DC side of GCPV systems. This 

choice is essentially due to the PNN convergence speed, its simplicity and           
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its no-need to weights adaptations. Moreover, PNN classifier has a strong 

robustness against noisy data generated by the measurement equipment and 

involved sensors [9, 10]. 

The second strategy suggests the development of two statistical methods 

(such as the improved-ratio [17] and control charts [14] based methods) to detect 

and diagnose faults in GCPV systems. 

The improved ratio based method consists on the evaluation of three 

coefficients: currents coefficient, voltage coefficient and power coefficient,            

to detect and diagnose short-circuits and open-circuits faults. While, the control 

charts based method will apply two control charts, EWMA [11, 12] and Shewhart 

[11] charts, to detect and diagnose the DC side faults.  

The efficiency of the developed strategies will be experimentally assessed by 

using real measurements collected from Algerian and Spanish PV systems. 

Thesis organization: 

The thesis is divided into four chapters in which the last three chapters denote 

original works that have already been published. 

 In the first chapter, we will discuss the subject through a general study of PV 

systems, as well as their different types of faults. Then, a literature review on the 

already proposed methods of faults detection and diagnosis will be conducted. 

 The second chapter will be entirely dedicated to PV array modeling. Indeed, 

the ODM of the PV module will be firstly introduced. Then, the five electrical 

parameters of this model will be identified by two heuristics optimization algorithms 

(ABC [18, 19] and best-so-far ABC [20, 21] ). Lastly, a new strategy for estimating 

the maximum power will be suggested.  

The third chapter will be devoted to the application of PNN classifiers for 

faults detection and diagnosis. In this chapter, the developed strategy is based 

essentially on (i) the parameters identification results, (ii) the elaboration of a 

PSIMTM/MatlabTM co-simulation model for the real PV system, and (iii) the 

development of two PNN classifiers for faults detection and diagnosis.  



16 

 

The fourth chapter will be dedicated to the development of two statistical 

methods (such as the improved ratio and control chart based methods) for the 

supervision, faults detection and diagnosis of PV systems.  

Finally, some conclusions and future perspectives will be depicted. 
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CHAPTER 1  

STATE OF THE ART 

 
1.1. Introduction: 

Until recently, energy consumption in the world still grows up very obviously. 

For this reason, one of the best efficient strategies, recently applied in the 

developed countries, is to use renewable energy sources to satisfy their energetic 

need [22, 23]. 

Among the different available renewable energy sources, PV energy is one of 

the best alternative solutions [24]. Indeed, the sun is the most important source of 

energy in our planet. Furthermore, PV sources are renewable, sustainable and     

of eco-friendly nature. PV energy sources reduce significantly the pollution effect 

on the environment, contrary to the traditional ones, (such as: oil, coal and 

nuclear), which contaminate our atmosphere by releasing several venomous 

gazes (carbon dioxide, sulphur dioxide, nitrous oxide and mercury). 

In the other side, during its operation, PV systems are usually exposed to 

different sources of failures and anomalies, which may noticeably reduce           

the system energetic efficiency, degrade its performance and even decrease the 

PV arrays lifetime [6]. Thus, efficient strategies to detect and diagnose PV system 

failures at an earlier stage must be developed.   

In this chapter, PV systems and their main components are briefly described. 

Then, the different types of PV system failures and their main causes are listed. 

Finally, a state of the art for the recently proposed strategies of faults detection 

and diagnosis is presented.  

1.2. PV systems: 

PV systems are commonly divided into two main classes: Grid-Connected PV 

(GCPV) systems and Stand-Alone PV systems. GCPV systems (also known as 

grid-tied), are always interfaced to the local electricity grid, and they are mainly 

used to solve the energy demand issue. In the other side, stand-alone PV systems 

are self-contained, and they are mainly constructed to satisfy the energy need of 

isolated customers. During the present research work, only GCPV systems        
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are considered. Figure (1.1) shows the main components of a GCPV system, 

while its electrical synoptic is depicted in Figure (1.2) [25]. 

 

Figure (1.1): The main components of a grid connected PV system. 

Whatever their types, PV systems are mainly composed of PV generators, 

converters, cables, junction boxes and protection devices. 

1.2.1. PV generator:  

The PV generator is the essential unit of energy production. This unit converts 

the solar energy into electrical energy through the photovoltaic effect. In other 

term, the sunlight beams will be converted to electricity when they will be exposed 

to some materials that exhibit the photovoltaic effect property. 

1.2.1.1. PV cell: 

The elementary component of PV generator is the PV cell. Generally 

speaking, the generated voltage from commercial solar cell is about 0.6V, while its 

produced current is mainly depending on the sunlight intensity and the solar cell 

area [25].  
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Figure 1.2: The electrical synoptic of a grid connected PV system [25]. 

1.2.1.2. PV module: 

The amount of generated current and voltage, i.e. produced power, of one 

solar cell is not enough for real applications. Hence, the cells are connected in 

series to increase the generated voltage and in parallel to increase the generated 

current. 

In fact, series and parallel interconnection of several solar cells forms a PV 

module. The commercialized PV modules available nowadays are constructed of 

36, 40, 54, 60, 72, or even 108 solar cells in series. These cells are sub-grouped 

into several groups. Each one is connected in parallel with one bypass diode. The 

main goal of this diode is to protect the group of cell from the reversed 

polarization.  
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1.2.1.3. PV string:      

A PV string is the connection of several PV modules in series in order to reach 

the required output voltage.  

1.2.1.4. PV array: 

In order to produce a required power under a tolerable voltage, PV modules 

should be connected in series-parallel to form a PV array.  

1.2.2. Converters: 

PV systems are mainly composed of two types of converters, DC/DC and 

DC/AC converters. The main goal of these converters is to extract the PV array 

maximum power (DC power), and convert it into alternative power (AC power), 

before the grid utility injection.  

1.2.2.1. DC/DC converters: 

When connecting a PV generator (PVG) to a load R, the operating point 

(current and voltage) is defined as the intersection of the (I-V) characteristic curve 

of the PVG and the (I-V) characteristic curve of the load R, as depicted in Figure 

(1.3). This operating point depends on R, and the slope of the load characteristic 

at this operating point is 1/R. However, there is only one optimal operating point at 

which the PV generator produces the maximum power (Pmpp), and its 

corresponding coordinates are noted as Impp and Vmpp. Thus, adaptation blocks are 

required for the maximum power extraction.  

These blocks of adaptation consist of DC/DC converters, which are equipped with 

a maximum power point tracking (MPPT) algorithms. The main goal of these 

algorithms is to operate the PV generator under its maximum power point.   

1.2.2.2. DC/AC converters: 

The DC/AC converters (inverters) are crucial blocks for the GCPV systems. In 

fact, these blocks guaranty the conversion of the PV generator energy from DC to 

AC. The DC/AC conversion is necessary to reach the grid utility injection in one 

side, and to supply the AC electrical devices in the other side. 
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Figure 1.3: The operating point variations for different values of resistive load.   

1.2.2.3: Converters topologies: 

GCPV systems consist of two topologies [26], central topologies (Figure (1.4)) 

and modular topologies (Figure (1.5)).  

 

Figure 1.4: The central topologies of a GCPV system [25]. 
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Figure 1.5: The modular topologies of a GCPV system [25]. 

GCPV system has three main central topologies: central inverter, string inverter 

and multi-string inverter. 

- Central inverter: This type of topology is the frequently used topology nowadays. 

It consists of using one DC/DC converter and one DC/AC converter to interface 

the PV generator with the grid utility [25]. However, using only one DC/DC 

converter, for the entire PV array, does not allow an accurately extraction of the 

optimal maximum power point under partial shading conditions.  

- String inverter: In this topology, one DC/DC converter and one DC/AC converter 

are used for each PV string. This type of topology enhances the MPP extraction 

procedure by increasing the number of MPP extraction blocks (number of DC/DC 

converters). Moreover, this type of topology guaranties the energy availability in 

case of failure of one inverter for instance [25]. 

- Multi-string inverter: In this last central topology, each PV string is equipped with 

a single DC/DC converter, while only one DC/AC converter is associated              

to the entire PV array [25]. The main advantage of this topology is the low cost 

comparing with the string inverter one. However, it cannot guaranty the electricity 

availability in case of inverter failure. 

In the other side, the modular topologies are also vastly used nowadays. The 

main goal of these topologies is to reduce the effect of one faulty module              
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on the entire PV array operation. In other term, these topologies enhance the 

maximum power point extraction procedure even in the presence of faulty PV 

modules.  

GCPV systems have three types of modular topologies: individual inverter, parallel 

inverter and series inverter [26]. 

- Individual inverter: This first topology allows PV modules to supply directly the 

grid. In other term, for each PV module, we associate individual DC/DC and 

DC/AC converters. 

- Parallel inverter: In this topology, each PV module is connected with a separate 

DC/DC converter, while the whole DC/DC converters are connected with only one 

inverter. 

- Series inverter: This topology is similar to the parallel inverter topology, except 

that in this particular case, the DC/DC converters are connected in series. 

1.2.3. Cables:   

Grid connected PV system requires the use of double isolated cables, which 

are water resistant, to link the PV generator with the inverter. These cables should 

be carefully sized to provide a reduced voltage drop [27]. 

1.2.4. Junction box:  

The parallel connection of several PV strings is achieved by using a junction 

box. Moreover, this block can comprise several safety devices such as: fuses and 

interrupters [25]. 

1.2.5. Protection devices: 

GCPV systems usually comprise several protection components, such as 

bypass diodes and blocking diodes: 

1.2.5.1. Bypass diode:  

The bypass diode is usually used to protect solar cells from the reverse 

polarization. In fact, when one of the serially connected solar cells/modules of    

the PV generator receives less amount of photo-current (Iph) than the others, due 

to the partial shading occurrence, it will become reversed biased. In other word, 

this solar cell/module will dissipate energy instead of generating it, which results in 
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the hotspot phenomenon [28]. Under these conditions, the cell temperature will 

rise substantially till reaching a high level at which the PV cell/module will be 

damaged. This phenomenon could considerably affect the entire PV module/array 

safety. To avoid this problem, the most frequently used strategy is to add a bypass 

diode in parallel with a preset group of serially connected PV cells. This diode is 

reverse biased in the case of uniform insolation, i.e. it has no effect in this case. 

However, it will be forward biased when the solar cells are partially shaded. In fact, 

under the partial shading condition, the current will pass via this diode instead of 

the shaded solar cells/modules.  

1.2.5.2. Blocking diode:  

For a multi-strings PV system, the generated voltage of some strings could be 

different from the others. Under this circumstance, the PV string with lower voltage 

can dissipate a reversed current, originally generated from the other strings.         

A similar situation could lead to energy reduction and a PV string damage [25]. 

The most commonly used strategy to protect the system from the reversed 

current, is to connect a blocking diode in series of each PV string.  

1.3. Faults in PV systems: 

PV systems are usually exposed to several sorts of failures, which could affect 

significantly its performance by decreasing its efficiency [6].  

The flowchart of Figure (1.6) shows the different types of faults usually 

occurred in PV systems. As shown in this figure, faults in PV systems consist 

mainly of two classes [29]: faults in the direct current (DC) side, and faults in the 

alternative current (AC) side.  

Hereafter a detailed description of the most commonly occurred faults in PV 

systems is given:  
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Figure 1.6: Types of faults usually occurred in PV systems. 

1.3.1. DC side faults:  

Generally, faults of PV arrays and MPPT controllers are the main DC side 

faults, usually occurred in PV systems [29]. The detection of this first category of 

faults is often a mandatory stage to avoid energy loss, system shutdown and even 

disastrous fires. Details about DC side faults, their main causes and impacts are 

clarified in the following subsections.  

1.3.1.1. PV array faults: 

During its operation, PV array may be exposed to five crucial types of faults 

[29]: mismatch faults, open-circuits faults, earth faults, bridge faults (Line-Line 

fault) and short-circuits faults. 

a.  Mismatch faults: 

Mismatch fault can be defined as the connection of several solar cells or PV 

modules, which have different electrical parameters, or which are exposed to 

different operating conditions (temperature and irradiance) [29]. 
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This type of fault has been considered as a serious problem because of its 

hard detection and enormous effect on power reduction. Mismatch faults are 

categorized into two main groups: temporary mismatch faults and permanents 

mismatch faults [29]. 

- Temporary mismatch faults: 

These faults rely on the non-uniform temperature distribution (covering of 

snow) [29]. In fact, during winter season, the covered snow on the top of PV 

modules may cause a non-uniform temperature distribution. This effect can reduce 

considerably the PV systems energetic production.   

- Permanents mismatch faults: 

This subcategory of mismatch faults comprises mainly three faults [29]: 

degradation fault, soldering fault and hotspot phenomenon.  

Degradation fault: 

PV array degradation is due essentially to the ageing of PV cells. In fact, this 

type of fault occurs when the series resistance between PV cells increased over 

the time, due to the reduced adherence of contacts, or corrosion caused by water 

vapor [29, 30]. 

Soldering fault: 

This type of fault occurs when the solder bond between solar cells and their 

contacted ribbons are accidently disconnected [29]. 

Hotspot phenomenon: 

As previously explained (subsection 1.2.5.1), the hotspot phenomenon occurs 

when one of the series connected solar cells receives less amount of photo-

current (Iph) than the others, due to the partial shading occurrence. During this 

stage, this cell becomes reversed biased and it dissipates power instead of 

generating it. A similar situation leads to a significant temperature rise of this cell, 

and even to its damage. 

b. Open-circuit fault: 

This type of fault occurs when the series connection between the current-

carrying path and the load is accidently broken, opened or damaged [29].             
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A similar situation may occur due to the poor connection between solar cells, and 

to the break of cables between PV modules [29].   

c. Earth fault: 

This type of fault has been considered as the most commonly happened PV 

arrays faults. Earth fault can be reached when an unintentional connection            

to the ground is accidentally established [29].   

d. Bridge fault: 

Bridge fault (called also Line-Line fault) occurs when a connection of low-

resistance is established between two different points of dissimilar potential within 

different PV strings [29]. The main sources of this type of faults are: corrosion, 

mechanical damages and failure of cables’ insulation [29]. 

e. Short-circuit fault: 

This fault affects mainly solar cells, bypass diodes or PV modules. It is mainly 

due to the water infiltration into the modules, and to the bad wiring between 

modules and inverter [29]. This type of fault can be generated according to an 

accidental connection between two points of different voltages within one string or 

PV module. 

1.3.1.2. MPPT faults: 

The aim of MPPT controller (DC/DC converters) is to extract the MPP       

(Impp, Vmpp) of the PV array. However, during the real operation of PV systems, 

inefficient tracking of MPP could occur, especially under partial shading conditions 

[29]. 

1.3.2. AC side faults: 

Two main types of faults could happen in the AC side of PV systems: inverter 

faults and total blackout [29]. 

1.3.2.1. Inverter faults: 

The failure of each part of the inverter (transformer, capacitors, IGBTs, and 

drive circuitry) leads to the inverter faults [29].  
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1.3.2.2. Total blackout: 

This type of fault can be defined as a permanent power loss, mainly due to the 

occurrence of an accident or natural disaster [29]. Indeed, under these 

circumstances, the inverter will shut down immediately the power supply from the 

PV generator to the distributed grid.  

1.4. Faults detection and diagnosis methods in the literature: 

Up to now, methods of faults detection and diagnosis in PV systems are 

ranked into three main types: Process-History Based methods, Quantitative-Model 

Based methods, and Signal-Processing Based methods. These methods employ 

several measurements to detect and diagnose failures, such as: meteorological 

measurements (Temperature (T) and Irradiance (G)), the maximum power point 

coordinates of currents Impp and voltage Vmpp, inverters outputs of current Iac and 

voltage Vac, and finally the current-voltage (I-V) characteristic.  

Several criteria have been used to assess the efficiency of a such method, 

some of them are listed below: 

• The capacity to detect the occurrence of faults at an earlier stage. 

• The aptitude to diagnose correctly the type of detected faults. 

• The robustness of the developed method against modeling errors and 

noisy conditions.  

• The quality and the amount of the required data to be used during fault 

detection and diagnosis.  

1.4.1. Process History-based methods: 

In these methods, implicit empirical models, mainly derived from the available 

data analysis, are used to detect and diagnose PV system faults. Process History-

based methods rely mainly on machine learning and computational intelligence 

methods. Hereafter, a number of the most recently proposed works in this 

category are given.  

An Artificial neural network based method to detect partial shading occurrence 

has been proposed in [31]. It uses an ANN type Multi-Layer Perceptron (MLP) to 

estimate the output PV current and voltage based on solar irradiance and cell 

temperature. Detection and diagnosis of the partial shading has been achieved    
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by comparing the measured and the estimated PV current and voltage.             

The network inputs are solar irradiance and cell temperature, while its outputs are 

the PV current and voltage.  

The detailed flowchart of this method is depicted in figure (1.7) [31], where Ev and 

Ei are residual errors, while Si and Sv are their threshold values, respectively.    

 

Figure 1.7: Flowchart of the ANN-based strategy for partial shading detection [31]. 

In addition, a hybrid Neuro-Fuzzy approach of fault detection and diagnosis 

has been proposed in [32]. This work consists mainly on (i) the development of a 

Neuro-Fuzzy model of PV modules ,(ii) the analysis and extraction of six attributes 

(Isc, Voc, Impp, Vmpp, S1 and S2) using the I-V characteristic, and finally (iii) the 

application of Norm-test to detect and diagnose faults.  

S1 and S2 are the incremental derivative ratios, and they are computed as follows: 

Mpp sc

1

Mpp oc

I I
S

V V

−
=

−
 (1.1) 



30 

 

Mpp

2

oc Mpp

0 I
S

V V

−
=

−
 (1.2) 

In this work, three Neuro-Fuzzy models (blocks) have been developed to 

model the system under ideal, normal and faulty conditions. The ideal condition 

block defines the case when all the inputs and outputs are considered perfectly 

constants and noiseless. However, normal and faulty blocks reflect the real 

behavior that can be expected in healthy and faulty practical operating cases. 

The general flowchart of this strategy is depicted in Figure (1.8) [32]. 

 

Figure 1.8: Flowchart of the Neuro-Fuzzy based strategy of fault detection and 

diagnosis [32]. 

Normal and faulty residuals signals, RXid,nm and RXid,ft , are computed as follows 

[32]:  

id,nm id nmRX X X= −  (1.3) 

id,ft id ftRX X X= −  (1.4) 
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Where: X is the adequate attribute; the indexes (id, nm, ft) denote respectively 

ideal, normal and faulty status.  

Normal and faulty norms, Nn and Nf, are computed as follows [32]: 

( )
6

2

id,nm

i 1

Nn RX
=

= ∑  (1.5) 

( )
6

2

id,ft

i 1

Nf RX
=

= ∑  (1.6) 

To finish with, norms evaluation consisted on comparing the obtained normal 

norms (Nn and Nf) with experimentally set threshold values (S). This comparison 

could identify five operating cases: normal operating case, diode short-circuit 

operating case, lower earth fault operating case, upper earth fault operating case 

and partial shading operating case. System status classification strategy based on 

the norm test is summarized in Figure (1.9) [32]. 

 

Figure 1.9: System status classification by the norm test [32].  

Moreover, a machine learning based strategy has also been proposed in [33] 

as an efficient strategy of fault detection and classification. In fact, Zhao et al have 

suggested a Graph Based Semi-Supervised Learning (GBSSL) method to detect 

and diagnose PV system faults, using only few labeled training data [33]. Contrary 

to the traditional machine learning strategies, this method does not require a high 

amount of expensive labeled data, and its training strategy can automatically 

update the model under changing weather conditions. The proposed strategy used 

only readily available measurements of PV array voltage and current, PV module 

operating temperature and solar irradiance, to detect and diagnose faults.  
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In addition, this method focuses on two categories of faults: bridge faults and 

open-circuit faults. It is worth mentioning that the detection of the aforementioned 

faults is difficult task by using the conventional Over-Current-Protection-Devices 

(OCPD). 

As summary, this strategy presents the following contributions [33]: 

• A novel strategy of data normalization has been developed to enhance the 

detection and classification efficiency of machine learning methods, and to 

better improve data visualization. 

• GBSSL model has been used for the first time in this field of application. 

The advantages raised from using this model are: the low training cost and 

the high ability of self-learning over the time. 

• The developed strategy can be integrated into all PV inverter topologies 

and takes advantages of using only readily available measurements.  

The normalized PV current INorm and voltage VNorm are computed as follows [33]: 

mpp

Norm

Mod OC _ Ref

V
V

N *V
=  (1.7) 

mpp

Norm

Str SC _ Ref

I
I

N * I
=  (1.8) 

Where: Nmod and NStr define the number of modules and strings respectively; Voc_ref 

and Isc_ref are the reference open circuit voltage and short circuit current, 

respectively.  

The overview of the GBSSL based strategy of fault detection and diagnosis          

is summarized in five main steps, as can be depicted in the flowchart of            

Figure (1.10) [33].  

X is a labeled data matrix; Y is a matrix that includes the corresponding classes of 

these labeled data; Z is a binary matrix; and W is the weight matrix. More details 

about Z and W matrixes can be founded in [33].  
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The efficiency of this method has been tested on a small-scale grid connected PV 

system. Results have clearly demonstrated the efficiency of GBSSL based 

strategy in fault detection and diagnosis of bridge fault and open-circuit fault.  

 

Figure 1.10: Flowchart of the GBSSL based strategy  

of faults detection and diagnosis [33]. 

 

Chine et al have proposed an efficient strategy to detect, diagnose and 

localize faults in PV systems, using the ANN [34]. In this method, PV current, 

voltage and the number of peaks in the current-voltage (I-V) characteristic are 

computed based on a simulation model. The difference between the measured 

and simulated PV array output power is firstly computed and compared with the 

threshold value (S), to detect faults occurrence. Then, the analysis of the main 

attributes, derived from (I-V) characteristic of each separate PV string, is 

elaborated to diagnose and localize the faults.  

The different steps of this method for the detection, diagnosis and localization are 

summarized in Figure (1.11) [34]. 
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Figure 1.11:  The different steps of the ANN-based method [34]. 

This method could accurately detect, diagnose and localize eight types of faults, 

which are described in table (1.1) [34].  

Table 1.1: The possibly occurred faults that could be correctly detected by Chine’s 

strategy [34] 

Type of fault Name Symbol 

 

Module 

Short-circuit fault in any bypass diode or (cell or module) 

Inversed bypass diode fault or (cell or module) 

Shunted bypass diode fault of (cell or module) 

Open circuit fault in any cell (or module) 

F1 

F2 

F3 

F4 

Connection fault Connection resistance between PV modules F5 

Partial shadow 

fault. 

Shadow effect in the modules with normal operation of 

different components of PV string. 

 

F6 

Shadow effect 

with faulty 

bypass diode 

Shadow effect in a group of cells equipped by a faulted 

bypass diode. 
F7 

Shadow effect 

with connection 

fault 

Shadow effect in a group of modules connected by a 

connected resistance. 
F8 

 

As can be seen from Figure (1.11), this method employs two different algorithms, 

named algorithm #1 and algorithm #2.  
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The first algorithm, entitled signal threshold based approach, is described in detail 

in Figure (1.12) [34], and it allows the discrimination of six faulty cases. 

Parameters that are used in this first algorithm and their descriptions are 

summarized in table (1.2) [34].  

In the other side, the second algorithm is devoted to distinguish between the faulty 

cases F1, F2, F3 and F5, by using two ANN classifiers (multi-layer perceptron 

(MLP) and radial basis function (RBF) classifiers). 

 

Figure 1.12: The detailed flowchart of the first algorithm [34]. 

Table 1.2: The description of parameters used in Algorithm #1 

Variable description 

C1 a reduction in the short circuit current 

V1 a reduction in the open circuit voltage 

C2 a reduction or an increase in the output current 

V2 a reduction or an increase in the output voltage 

N An increased number of MPPs in the I-V characteristic 
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Moreover, Dhimish et al proposed an efficient strategy of faults detection 

based on theoretical curve modeling and fuzzy classification system [35].         

This method uses LabVIEW software to simulate the meteorological conditions     

(T and G), the voltage ratio VR, and the power ratio PR. 

In this approach, a third order polynomial function has been employed to 

compute two detection limits (high and low detection limits) of VR and PR ratios. 

Then, these limits are compared with real measured data of an actual PV 

generator. Samples that lie out of these limits are then introduced to a fuzzy-logic-

based classification system to diagnose the fault type. The general structure of this 

method is depicted in Figure (1.13) [35], while its detailed flowchart is depicted in 

Figure (1.14) [35].  

The theoretical power ratio (PR) and voltage ratio (VR) are computed using 

Equations (1.9-1.10). These ratios are used to categorize the faults regions.  

 G,T

G,T 0

P
PR

P QP
=

−
 (1.9) 

 G,T

G,T 0

V
VR

V QV
=

−
 (1.10) 

Where: PG,T and VG,T are respectively the theoretical power and voltage, generated 

from the PV generator, under specific meteorological conditions of temperature (T) 

and irradiance (G). Q is the number of PV modules. P0 and V0 denote respectively 

the maximum operating power and voltage, measured under standard test 

conditions (STC: T=25°C, G=1000W/m²).   

The low limits of PR and VR are given by:  

( )
G,T

G,T 0 sensor

P
PR Low limit

P nP
=

− η
                            (1.11) 

                                       
( )

G,T

G,T 0 sensor1

V
VR Low limit

V nV
=

− η
                          (1.12) 

Where sensor1η is the efficiency of voltage sensor, while sensorη is the efficiency of both 

current and voltage sensors and it is expressed as follows: 
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 sensor sensor1 sensor2(voltage sensor efficiency)+ (current sensor efficiency)η = η η    (1.13) 

The PR and VR high limits are those given by equations (1.9-1.10), and their real 

measured values are computed as follows: 

G,T

measured

P
Measured PR=

P
      (1.14) 

 G,T

measured

V
Measured VR=

V
                               (1.15) 

This method could efficiently detect the following faults [35]:  

• The presence of partial shading (PS) within the PV generator. 

• One short-circuited PV module and PS. 

• Two short-circuited PV modules and PS. 

• (Q-1) short-circuited PV modules and PS, where Q denotes the total 

number of PV modules.  

The main weakness of this method is that it depends on power and voltage ratios. 

Therefore, its efficiency depends highly of the efficiency of the instrumentation 

components.    
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Figure 1.13: The general structure of the theoretical curve based method [35]. 
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Figure 1.14: The detailed structure of the theoretical curve based method [35]. 

In addition, Lian et al have proposed an automatic fault detection and 

diagnosis method, for PV systems, by combining ANN and analytical based 

method [36]. In this method, a two-layered ANN type MLP was employed to 

predict the expected power of the PV system, which will be compared with the real 

measured one according to equation (1.16). Based on this comparison, a fault 

diagnosis strategy was developed by using a conventional analytical method. 

 
meas pred

p

pred

P P

P

−
∆ =  (1.16) 

The flowchart of this method is illustrated in Figure (1.15) [36], where 
1
ε and 

2
ε are 

predefined errors. Nss is the number of PV modules in each string, Voc-Si denotes 

the open-circuit voltage of one string, and μ is the allowance variable.  
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Figure 1.15: The detailed flowchart of lian’s method                                                
for faults detection and diagnosis [36]. 

Moreover, Todizara et al have proposed a fault detection strategy that uses 

the Least Square Method (LSM) and Fuzzy Logic system classification [37]. In this 

work, the Bishop model of the PV module has been used to simulate the PV 

system behavior under healthy and partial shading conditions. Simulations showed 

that the direct analysis of the generated voltage and power does not give sufficient 

information to detect and diagnose faults. For this reason, the LSM is used            

to compute the residuals, which are the least square error between measurements 
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and predictions. These residuals will be exploited by a fuzzy logic decision block to 

diagnose the type of fault. 

The Bishop model of the PV module is defined using equation (1.17) [37]. 

 

m

PV s PV PV s PV PV s PV
PV Ph 0

t sh b

V R I V R I V R I
I I I exp 1 1 L 1

V R V

−     + + +
 = − − − + −    
       

 (1.17) 

where: IPV and VPV are the PV cell current and voltage respectively. IPh is the light-

generated current, I0 is the dark saturation current, Vt is the thermal voltage, Rs 

and Rsh denote series and shunt resistances, respectively, L and m are the Bishop 

adjustment coefficients (3.4 L 4≤ ≤  and m 0.1= ) and Vb is the cell breakdown 

voltage (-10V to -30V).  

The diagram of the fuzzy logic classification system is depicted in Figure (1.16) 

[37].  

 

Figure 1.16: The diagram block of the fuzzy decision classification [37]. 

In addition, the (I-V) characteristic and the fuzzy logic classification system 

have also been used to elaborate a diagnosis method for PV systems [38].        

This method relies on analyzing the effects of faults on the PV array/string (I-V) 

characteristic, to detect three faults: shading, increased series resistance losses 

and potential inducing degradation (PID) affecting the PV string. Moreover, the 

proposed strategy has been formalized as fuzzy logic sets and rules to gain more 

robustness and flexibility, such that it will be useful for wide range of crystalline-

based PV systems. The different steps of this method are summarized in       

Figure (1.17) [38].  
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Figure 1.17: General structure of the diagnosis method based on I-V curve and fuzzy 

logic classification [38]. 

This method consists mainly on three stages. The first one relies on 

measuring the (I-V) curve and the in-plane irradiance (G) of the tested PV 

generator (module, string or array). The in-plane irradiance level (G) could be 

obtained by using irradiance sensors or mathematical estimations [38]. 

In the second stage, the in-plane irradiance level (G) is analyzed, such that if 

its value is lower than 500 W/m², the diagnosis procedure will be stopped.         

The main reason of this limitation is that the power losses, due to the shading and 

the increase in series resistance, cannot be visible, using I-V curves under low 

irradiance level [38]. After that, if the in-plane irradiance is higher than 500 W/m², 

the measured I-V characteristic will be filtered from any noise and used to 

compute a set of diagnostic indicators. The indicators are then normalized to 

maintain the independency with the system configuration. Finally, the normalized 

indicators of diagnosis are analyzed automatically, based on three fuzzy logic 

classifiers, to detect and diagnose the aforementioned faults [38].  

The indicators that have been used in this method are: the I-V curve inflexion 

factor IVf, the maximum power point factor MPPf, the equivalent series resistance 

Rse and the fill factor FF.  
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This method can only be applied for the string inverter topology, which is not 

the most frequently used topology nowadays, and it gives efficient results only 

under high irradiance level (G>500W/m²). 

Also, a methodology that uses three ANN classifiers was developed to detect 

the occurrence of partial shading (PS) [39]. The first ANN aims to detect the PS 

occurrence and distinguish it from the uniform change of climatic conditions, while 

the two remaining networks compute the shading factor and the number of shaded 

modules. The shading factor is defined as the ratio of the lower irradiance level on 

the shaded PV modules to the higher irradiance level on the rest of the PV array. 

The inputs of the ANN that is used to detect the PS are the generated power 

and the short circuit current. The value ‘one’ of its output indicates that there is a 

PS, otherwise the ANN output is equal to ‘zero’.  

The inputs of the second network, which computes the shading factor, are the 

maximum power and the relative absolute change (ROC) of the output power due 

to shading. The output neuron gives the shadowing factor value. Finally, the last 

network, which is responsible of computing the number of shaded PV modules, 

considers the shading factor, generated from the second network, as input vector.  

In addition, Vergura et al have proposed a descriptive and inferential statistical 

based method to supervise and monitor the PV system operation [40]. In this work, 

the performance of the PV system is firstly assessed, using an offline supervising 

step. This has been accomplished by using both descriptive and inferential 

statistics. After that, an efficient strategy of real-time monitoring and fault detection 

has been elaborated by using an online inferential algorithm. This method is used 

to detect bad connections between PV modules and inverter, using the inverter 

generated energy as input data. It has been validated using both Gaussian and 

non-Gaussian data distribution.   

However, even though its efficiency to detect the aforementioned fault, this 

method has been considered as a complex statistical-based strategy. In fact, it 

requires the use of high complex tests (variance homogeneity test, normality test, 

ANOVA test and Kruskal-Wallis test) to detect only bad connections between PV 

modules and inverters.  
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Finally,  an efficient strategy of faults detection and monitoring in PV systems 

using outlier detection rules was proposed in [13]. In this work, three outlier 

monitoring rules, named three-sigma (Shewhart), Hampel identifier and Boxplot 

rules have been used to detect line-line faults, open-circuits faults, degradation 

faults and partial shading occurrence.  

This method uses the instantaneous current, generated from PV strings,        

to monitor the PV system operation and detect the faults occurrences.  

The main advantages of this method are [13]: 

• No model training procedure is required. 

• The total independency to the weather conditions, which make it a costly 

inexpensive strategy.   

• Its high simplicity for real-time implementation. 

This method is mainly based on comparing the PV string normalized current 

Istr_norm, given by equation (1.18), with the healthy system outlier detection limits 

(high and low limits). If the normalized PV string current lies outside these limits, 

then a faulty operation is identified [13].  

 str
str _ norm

sc

I
I

I
=  (1.18) 

Where Istr is the PV string operating current and Isc is the PV module short-circuit 

current measured under STC.    

Because it is mainly based on the value of the PV string current, this method only 

detects the faults occurrence and cannot diagnose its type.  

Process History-based methods: Advantages and Drawbacks: 

Methods of this class have showed their efficiencies in fault detection and 

diagnosis of PV systems. In fact, they require a minimal a prior knowledge of the 

system configuration, and use only healthy and faulty system data to monitor, 

detect and diagnose the faults.  

However, these methods depend on the availability of quality input data, and 

their implementation is not an easy task, especially for real-time applications. 



45 

 

Moreover, multi-layer perceptron neural networks suffer from their slow training 

step, they do not support noisy data, and could fall in local minima instead of 

global one [9, 10]. These weaknesses could obviously affect the reliability, the 

efficiency and even the real time utilization of these methods. 

Moreover, statistical monitoring charts [11-13] are important tools for 

monitoring sequential systems to make sure that they work stably and satisfactory. 

However, until recently statistical control charts have not been widely used to 

improve the performance of PV systems. In addition, the main shortcoming of     

the proposed monitoring chart-based methods is their limitation to detect incipient 

faults because they make decisions based only on the recent observations [11]. 

1.4.2. Quantitative Model-based methods: 

The methods of this second category analytically compare real measured 

outputs with model-based outputs (simulated outputs) to detect and diagnose PV 

system failures. In this type of method, a fault will be declared when a large 

difference between the measured and estimated outputs is identified. Hereafter, a 

list of the most recently proposed works in this second category of methods is 

given. 

Mahmoud Dhimish et al have proposed an efficient method of fault detection 

and diagnosis in GCPV systems based on voltage and power ratios [3]. In this 

work, the theoretical performance of the PV system is firstly simulated to compute 

the theoretical outputs voltage and power. Then, the ratios between the theoretical 

and measured voltage and power are computed and then analyzed, to detect the 

fault occurrence and diagnose its type. Current, Voltage and Power ratios are 

expressed by the following equations: 

 theoretical

measured

V
VR

V
=  (1.19) 

 theoretical

measured

P
PR

P
=  (1.20) 

 theoretical

measured

I
CR

I
=  (1.21) 
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Where: Ptheoretical, Vtheoretical and Itheoretical are the simulated outputs of power, voltage 

and current, respectively. Pmeasured, Vmeasured and Imeasured are the real measured 

outputs of power, voltage and current, respectively. 

The general structure of this strategy is depicted in Figure (1.18), where VR 

and PR computation details are shown in Figure (1.19). Moreover, detailed 

flowchart of the first region is illustrated in Figure (1.20). While those of the second 

and the third regions are shown in Figure (1.21). 

Despite of its high capacity in fault detection and diagnosis, this method 

depends completely on the power and voltage ratios. Therefore, it depends on the 

accuracy of both simulation model and measurements devices.   

 

   

Figure 1.18: General structure of Dimish method for fault detection and diagnosis [3]. 
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Figure 1.19: VR and PR computation details [3].  

 

Figure 1.20: The detailed flowchart of the first region of Dimish method [3]. 
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Figure 1.21: The detailed flowchart of the second  

and third regions of Dimish method [3]. 

In addition, Chouder et al have developed a diagnosis method for GCPV 

systems based on the power losses analysis [41]. The main idea of this work 

consists to continuously measure the DC side power losses (capture losses) and 

then examine if these losses lie within some theoretical boundaries. The system is 

considered under faulty operation if the measured power losses are beyond these 

boundaries. Finally, in order to diagnose the fault type, current and voltage ratios 

are evaluated and monitored.  

In this work, two novel indicators of power losses have been defined: Thermal 

capture losses (Lct) and Miscellaneous capture losses (Lcm). The evaluation of 

these indicators allows the fault detection. While the evaluation of current and 

voltage ratios, CR and VR, is used to diagnose the fault type. 

The DC side’s total power losses, Lc, are defined as follows:  

 dci
c r c a c c

ref ref

EH
L Y (G,T ) Y (G,T ) (G,T )

G P
= − = −  (1.22) 

Where: Yr(G,Tc) and Ya(G,Tc) denote respectively the reference and the array 

yields, measured under real operating conditions of irradiance G and cell 
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temperature Tc. Hi is the total in-plan irradiance of the PV array. Gref is                

the reference irradiance measured at STC (Gref=1000W/m²). Edc is the array 

produced energy and Pref is the array output of maximum power.   

Thermal capture losses occur when the PV module works at a temperature 

level higher than 25°C. Under this situation, the produced DC power will 

significantly decrease. In the other side, miscellaneous capture losses could be 

cause by: MPP tracker failures, module failure, string failure, angle of incidence 

losses and shading losses. The computation of thermal and miscellaneous capture 

losses is established by using the following equations [41]: 

 ct a a cL Y (G,25 C) Y (G,T )= ° −  (1.23) 

 cm c ctL L L= −  (1.24) 

Detailed flowcharts of this method are given in Figures (1.22-1.23). 

 

 

Figure 1.22: The flowchart of Chouder’s method for faults detection and diagnosis[41]. 
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Figure 1.23: The flowchart of current and voltage ratios evaluation strategy [41]. 

The efficiency of this method has been experimentally tested for three 

operating cases: healthy system operation, faulty string operation (string open-

circuited) and operation in the presence of partial shadowing.  

Moreover, a detailed procedure of supervision and fault diagnosis in GCPV 

systems have been proposed in [42]. In this work, the fault detection is achieved 

by comparing the measured and simulated yields, while the fault diagnosis is 

carried out by analyzing and comparing DC current and DC voltage with a set of 

healthy system thresholds.  

In this work, the measured meteorological conditions and the electrical 

parameters have been used to develop a LabVIEW-based software of: (i) capture 

losses computations, (ii) PV system simulation, (iii) online parameters supervision, 

and finally (iiii) fault detection and diagnosis [42].  

The error between measured and simulated capture losses is given by:  

 
c c _ meas c _ simEL L L= −  (1.25) 

The regular check of this error is required to detect any fault occurrence; i.e. if its 

value does not exceed predefined thresholds, given by equation (1.26), the system 

is considered working under healthy operation. 

( ) ( )c _ ref c _ ref c c _ ref c _ ref
EL 2 EL EL EL 2 EL− σ ≤ ≤ + σ

           
(1.26) 

Where: ELc_ref is the error between measured and simulated capture losses of     

the healthy system. σ is standard deviation of this error.  
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The values of the thresholds in equation (1.26) are set after statistical analysis of 

this error when the system is under healthy operation. 

The detailed flowchart of the fault detection strategy is depicted in Figure (1.24). 

 

Figure 1.24:The flowchart of the fault detection procedure [42]. 

When the presence of faults is detected, two novels indicators, called current error 

Ei and voltage error EV are computed using the following equations: 

 
i dc _ meas dc _ sim

E I I= −  (1.27) 

 
V dc _ meas dc _ sim

E V V= −  (1.28) 

Where: Idc_sim and Idc_meas are simulated and measured DC current. Vdc_sim and 

Vdc_meas are simulated and measured DC voltage.  

Similarly to the detection procedure described above, a set of predefined 

thresholds for Ei and Ev should be computed to diagnose the detected faults. In 

other term, the system is considered under healthy operation if: 

 
i _ ref i i i _ ref iE 2 (E ) E E 2 (E )− σ ≤ ≤ + σ  (1.29) 

 
v _ ref v v v _ ref vE 2 (E ) E E 2 (E )− σ ≤ ≤ + σ  (1.30) 
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Where: Ev_ref and Ei_ref are respectively the errors between the measured and 

simulated DC voltage and current for the healthy system. σ is the standard 

deviation of these errors.  

The flowchart given in Figure (1.25) illustrates the detailed strategy of faults 

diagnosis.  

 

Figure 1.25: The detailed flowchart of the faults diagnosis strategy [42]. 

This method has been experimentally tested under an actual GCPV system to 

detect and diagnose the occurrence of: inverter disconnection, partial shading and 

string disconnection in the array. Nevertheless, its main drawback is that it 

categorizes the entire possibly occurred faults into three groups instead of 

individually separates each faulty case. 

In addition, Mohammed Tadj et al have proposed an efficient approach of fault 

detection and diagnosis using GISTEL (Gisement solaire par télédétection: Solar 

Radiation by TeleDetection) approach [24]. In this work, the hourly global 

horizontal solar irradiance is firstly estimated using an improved GISTEL-Fuzzy 

model. This last is then used to estimate the DC power. To detect the faults 

occurrences, the estimated DC power is compared with the real measured one. 
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The flowchart of this method is shown in Figure (1.26), where d is the standard 

deviation of the estimated (simulated) output DC power, for a clear sky. CR and 

VR denote respectively the current and voltage ratios. 

 

Figure 1.26: The flowchart of the GISTEL_Fuzzy based method  

for fault detection and diagnosis [24]. 

As can be seen from the given flowchart, the presence of a fault is identified by 

comparing measured and simulated DC power, while, the detection of its type can 

be achieved by analyzing both current and voltage ratios. 

Also, Drews et al have developed a fault detection method that uses satellite 

observation data to estimate the PV energetic yield [43]. Based on this strategy, 

the fault occurrence is declared when a significant deviation between the real 

measured and the simulated energetic yields is identified. 
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Moreover, another efficient approach to detect PV arrays faults and partial 

shading, based on PV array voltage, PV array current and measured irradiances 

was proposed by Hariharan et al [44]. This method has the ability to distinguish 

between three possible cases: normal operation, partial shading, and permanent 

faults (bridge fault and open-circuits fault).  

The main idea of this method is to compute predefined thresholds, obtained 

from simple formulas, and which may be deemed constant for a given PV array 

under all conditions, to detect and diagnose faults [44]. This method does not 

require the use of a large amount of experimental training data.  

In this method, two novel variables, named gamma (γ) and array losses (Larray), 

have been introduced as follows:  

 pv pvV *I

G
γ =  (1.31) 

 ( )array m pv pv

0
Actual Power

Expected  Power

G
L P V *I

G

  
= −      14243
14243

 (1.32) 

Where: G is the instantaneous irradiance of an un-shaded portion of PV array. Vpv 

and Ipv are the instantaneous PV array voltage and current respectively. Larray is 

the difference between the instantaneous expected power and the actual power. 

Pm is the PV array maximum power, measured at the reference irradiance 

G0=1000 W/m². 

The detailed flowchart of this method is shown in Figure (1.27). The constants 

used in this flowchart are summarized in table (1.3). 
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Figure 1.27: The flowchart of Hariharan’s method  

for fault detection and diagnosis [44]. 

 

Table 1.3: Lists of constants used in Hariharan’s method [44]. 

Constant Formula Value 

1ε  
( )array

0

L  for one module mismatch fault under STC

G
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2ε  1

0
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Quantitative Model-based methods: advantages and drawbacks: 

Results from the aforementioned works show the high efficiency of this 

category of method to detect and diagnose failures. However, the use of an 

accurate simulation model that mimics the system operation under healthy and 

faulty operations is required. Moreover, this type of methods suffers from the 

manual strategy of threshold computation and it requires that the PV array works 

at MPP. 

1.4.3. Signal Processing-based methods: 

This category of methods relies on applying advanced techniques of signal 

processing to detect and diagnose PV systems failures. Hereafter, a list of the 

most recently proposed works is introduced. 

Il-Song Kim has suggested an online fault detection algorithm in PV systems 

based on the Wavelet Transformation [45]. In this work, the Multi-Level 

Decomposition (MLD) wavelet transformation has been used to detect, localize 

and diagnose faults in power conditioning systems (DC/DC and DC/AC 

converters) [45]. 

The developed strategy of fault detection employs 3-level MLD tree to detect 

switch open and over harmonics failures. In fact, power conditioning systems 

(PCS) transforms the generated DC voltage into AC grid voltage via switches 

(FET: Field Effect Transistor; IGBT: Insulated Gate Bipolar Transistor). In the case 

of breakdown of these switches, a fault of switch open will be occurred. During this 

fault, the distorted waveform of PCS current will keep providing high order 

harmonics to the grid [45].      

The proposed algorithm mainly relies on decomposing the measured signal of 

each wavelet tree level, and extracts its coefficients. The variation of these 

extracted coefficients will be then analyzed to identify the types of faults.    

Even though this is a simple and efficient strategy, it is useful only to detect AC 

side failures.   

In addition, Yihua Hu et al have proposed an efficient strategy to detect the 

mismatch of PV modules using a thermography-based temperature distribution 

analysis [15]. In this work, thermal images of an actual operating PV system       
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are recorded, processed and introduced to a mathematical model, to extract useful 

information of mismatch fault. This information is mainly based on the temperature 

distribution, and it is used to detect mismatch faults and to develop an enhanced 

MPPT strategy that overcomes the mismatch fault effect on MPPT efficiency. 

In this work, PV system modeling has been elaborated by combining both 

electrical and thermal models of solar cell. These models are interlinked via       

the energy balance principle [15]. Based on the severity of mismatch fault, three 

classes of mismatch have been defined and analyzed: minor, medium and heavy 

mismatch faults. 

This method can be summarized as follows:  

• Image that corresponds to the surface temperature of the tested PV panel 

is recorded via a thermal camera.  

• This image is send to a central computer to analyze its thermal feature. 

• The thermography (temperature distribution) of each PV module is 

extracted via a freehand cropping program of MatlabTM software. 

• For each PV module, mismatch fault occurrence can be detected by 

computing its relative temperature with a reference.  

• In order to distinguish between the three types of mismatch fault (minor, 

medium and heavy faults) the generated (I-V) curve, from each PV module, 

is analyzed.  

This strategy requires the use of a sophisticated thermal camera, for each PV 

array, to detect and diagnose mismatch faults. Therefore, it is a costly expensive 

fault detection strategy. 

Based on Time-Domain-Reflectometry (TDR), Schirone et al have developed 

an efficient strategy for detection and localization of short-circuit and open-circuit 

faults [46]. TDR is a well-known electrical method, usually used to measure        

the electrical characteristic of a transmission line, and to detect its breakdown 

point. Figure (1.28) shows the fundamental principle of TDR method [46]. As can 

be seen from this figure, an input signal is introduced to a transmission line.          

This signal will be then compared with the reflected signal (response signal from 

the devices under test (DUTs)). Comparison between these two signals forms a 
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shifted signal. This last signal is used to localize the fault position, while its 

waveform is used to diagnose the type of faults (short-circuit, open-circuit, 

degradations� etc.). 

 

Figure 1.28: The fundamental principle of TDR method [46]. 

Also, an experimental study of fault detection and localization in PV systems 

was carried out by Takumi et al [47]. In this study, the efficiency of Earth-

Capacitance-Measurement (ECM) and TDR methods to detect and localize string 

disconnection and degradation faults was tested. ECM is also a frequently applied 

strategy that is used to localize the disconnection position of a transmission line 

(Figure (1.29)). In this method, the distance (x) from the start point of the 

transmission line to the fault point is computed using equation (1.33). 

 
Cx

x D
Cd

 =  
 

 (1.33) 

Where: Cx is the earth capacitance value, measured from start point to the fault 

point (disconnection point); Cd is the earth capacitance value, measured for the 

whole transmission line; D is the length of the whole transmission line. 

.  

Figure 1.29: Fundamental principle of ECM method [47]. 
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Detection and localization of string disconnection fault, based on ECM 

method, has been reached by considering the PV string as a transmission line. 

Therefor, the module number (num_mod) to the disconnection position is 

computed using equation (1.34). 

 
Cx

num _ mod M
Cd

 =  
 

 (1.34) 

Where M is the total number of PV modules within the string.  

Moreover, TDR has been used to detect and localize degradation fault.  

Signal Processing-based Methods: advantages and drawbacks: 

The analysis of the aforementioned strategies shows the efficiency of this 

category of methods to detect and diagnose PV system faults. However, it suffers 

from several serious drawbacks:  

The TDR based method is limited by its technical requirements to turn off the 

entire PV system, which leads in reducing the system’s energetic performance. In 

addition, this method requires expensive and sophisticated tools since it needs to 

analyze input and output reflected signals.  

In the other side, ECM method requires additional and expensive monitoring 

tools, like LCL meter. Moreover, this method cannot identify the partially-shaded 

PV module disconnection due to the presence of bypass diodes. 

Finally, the thermal-camera based method is an expensive strategy, and it cannot 

guaranty the fault detection until reaching a dangerous faulty situation.  

1.5. Conclusion: 

In this chapter, the research topic has been firstly discussed through a general 

study of PV systems, as well as their different types of faults. Then, a literature 

review of the different methods for faults detection and diagnosis in the PV 

systems has been conducted. This review has allowed us to classify the methods 

of faults detection and diagnosis into three main types: process-history based 

methods, quantitative-model based methods and signal-processing based 

methods. The analysis of these methods has allowed us to clearly identify their 

limitations, which will be addressed in the next chapters. 
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CHAPTER 2 

 PV ARRAY MODELING AND VALIDATION 

 
2.1. Introduction: 

This chapter clarifies the developed strategy of PV array modeling and 

validation. In fact, the one diode model (ODM) of the PV module is firstly 

described, then, the procedure of PV module parameters identification is explained 

in detail. After that, the developed strategies of cost criterion minimization, using 

ABC [18, 19] and best-so-far ABC [20, 21] algorithms, are presented. Finally, an 

efficient strategy of MPP estimation based on the identified parameters is 

elaborated.  

The accuracy of the identified parameters is tested using real static (I-V) 

curves of different PV modules from several technologies. While, the developed 

strategy of MPP estimation is experimentally validated using real measurements 

collected from Algerian and Spanish PV systems.  

2.2. PV module modeling: 

Usually, the solar cell/module is described by the well-known one diode model 

(ODM). This model describes the PV module behavior by the following electrical 

circuit [48-50]: 

 

Figure 2.1: The one diode model of a solar cell. 

In this model, the output current versus the output voltage is given by the following 

equation [41]:  

    
( )

shd

PV s PV PV s PV
PV ph 0

B sh

II

q V R I V R I
I I I exp 1

nk T R

 +  +
= − − −      142431444442444443

    (2.1) 
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where:  

IPV and VPV denote respectively current and voltage outputs of the PV module;     

Iph stands for the light-generated current. I0 is the diode saturation current; Rs and 

Rsh are series and shunt resistances respectively; n is the diode ideality factors;              

kB is the Boltzmann constant ( )−= × 23
Bk 1.3806503 10 j / k , T is the cell temperature 

and q is the electronic charge ( )−= × 19q 1.60217646 10 c .   

2.3. PV module parameters identification: 

2.3.1: Fundamental principle:  

The ODM parameters identification stage can be described as an optimization 

problem, where the cost criterion to be minimized is the Root Mean Square Error 

(RMSE) between the measured and estimated currents, as given bellow:  

                                           
( )

S
2

i meas meas

i 1

1
RMSE g I , V ,

S =

= γ  ∑                              (2.2) 

where: 

 ( ) ( )meas s meas meas s meas
meas meas meas ph 0

B sh

q V R I V R I
g I , V , I I I exp 1

nk T R

  +  +
γ = − − − −        

 (2.3) 

Imeas and Vmeas are the measured current and voltage of the PV module, obtained 

from a set of experimental outdoor measurements, using an (I-V) curve tracer. The 

symbol γ  defines the vector of ODM parameters, and S is the size of experimental 

(I-V) curve data used during the ODM parameters identification stage. The ODM 

parameters identification scheme is highlighted in Figure (2.2) [49].  

The used temperature during this stage denotes the PV module temperature. The 

main goal of this stage is to find the optimal ODM parameters   
* * * * *
ph 0 s shI ,I ,n ,R ,R that 

minimize the cost criterion and gives the lowest RMSE value.  
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Figure 2.2: The ODM parameters identification scheme. 

2.3.2. The developed strategies of cost criterion minimization: 

In this thesis, two heuristic algorithms, namely Artificial Bee Colony (ABC) and 

best-so-far ABC, have been used to minimize the cost criterion of equation (2.2). 

2.3.2.1. The Artificial Bee Colony (ABC) Algorithm: 

ABC algorithm is a heuristic optimization algorithm, inspired from the foraging 

behavior of honey bees. In this algorithm, the bees are subdivided into three 

categories such as: employed, onlooker and scout bees [18]. The aim of the 

employed bees is to exploit the nectar sources explored before and share the 

information with the waiting bees (onlooker bees) in the hive. This information is 

related to the quality of food source sites exploited by the employed bees. Based 

on this information, the onlooker bees inside the hive decide on the food source to 

exploit. The goal of the scout bees is to search randomly around the hive in order 

to find a new food source site [18, 19]. 

The basic steps of the ABC algorithm are summarized in the following points [18]: 

a. Initializing phase: 

- Set the algorithm parameters (SN, LN, D, MCN, limit= ×SN D , cycle =1). 

SN and LN denote respectively the number of employed and onlooker bees, 

MCN is the Maximum Cycle Number, D is the solution dimension, and it 

denotes the number of parameters to be identified. Finally, limit is the 

number of unsuccessful trials to produce a better food source. 
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- Randomly generate the initial positions of food sources (initial solutions) 

using the following equation:   

 ( )min max min

ij j j jx x rand [0,1] x x= + −                        (2.4) 

Where: =i 1,...,SN , =j 1,...,D , min
jx and max

jx are the lower and upper limits of 

the solution position X in the dimension j, and rand [0,1] is a random number 

between 0 and 1. 

- Evaluate the fitness of the generated positions.  

 While cycle  ≤  MCN do: 

b. Employed bees phase: 

- For all employed bees (i=1� SN) do: 

�  Generate new food source according to equation (2.5): 

 ( )ij ij ij ij kjv x x x= + −φ                           (2.5) 

Where ijv is the new solution, ijx  is the previous solution, 
ijφ is a random 

number between [-1,1], The indexes k and j are randomly selected from 

{ }≠1,2,3,...,SN/ k i  and { }1,2,3,...,D , respectively.  

�  Evaluate the fitness value of the generated positions and compare    

the old and the new solutions, select then the best one. 

 

c. Onlooker bees phase: 

- For all onlooker bees (i=1� LN) do: 

� Evaluate the probability ip  given by: 

 i
i SN

nn 1

fit(x )
p

fit(x )
=

=
∑

                                        (2.6) 

where ifit(x ) is the fitness value of the position ix . 
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� Assign to each onlooker bee a food source using the roulette wheel and 

the probability ip . 

� According to equation (2.7), generate a new food source for each 

onlooker bee (i=1,2,�,LN): 

 ( )ij ij ij ij kjv x x x= + −φ                                  (2.7) 

  Where ijv is the new solution, ijx  is the old solution, 
ijφ is a random number      

   between [-1,1]. The indexes k and j are randomly selected from

{ }≠1,2,3,...,SN/ k i  and { }1,2,3,...,D , respectively.                  

- Evaluate the fitness value of the new generated positions and compare    

the old and the new solutions, select then the best one. 

d. Scout bees phase: 

- For all the onlooker bees, which their food sources quality does not improve 

in the determined number (limit) of cycles: 

� The food sources are abandoned and their onlooker bees become 

scout bees, which randomly generate new food source positions 

based on equation (2.8). 

                  ( )min max min

ij j j jx x rand [0,1] x x= + −                           (2.8) 

         - Evaluate the fitness of the generated positions. 

- Save the best solution as the new solution. 

    - cycle =cycle+1. 

End while. 

2.3.2.2. The best-so-far ABC Algorithm: 

Even the high accuracy of the ABC algorithm in solving a lot of optimization 

problems in different areas [51], the main weakness of this algorithm is its low 

convergence speed in some situations [20]. In order to solve this issue, the best-

so-far ABC algorithm has been proposed to improve both exploration and 

exploitation steps [20]. 
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The different steps of the best-so-far ABC algorithm are given below [20]: 

a. Initializing phase: 

- Set the algorithm parameters (SN, LN, D, MCN, limit= ×SN D , cycle =1).      

- Randomly generate the initial positions of the food sources (initial solutions) 

using equation (2.4).   

        - Evaluate the fitness of the generated positions.  

 While cycle  ≤  MCN do: 

b. Employed bees phase: 

- For all employed bees (i=1� SN) do: 

�  Generate new food source according to equation (2.5): 

� Evaluate the fitness value of the generated positions and compare the 

old and the new solutions, select then the best one.            

        - Find the best-so-far food source bx (the best food source position from all 

employed bees).  

- For all employed bees, determine the fitness bf  of the best-so-far food 

source bx (from all dimensions). 

c. Onlooker bees phase: 

- For all onlooker bees (i=1� LN) do: 

� Evaluate the probability ip  given in equation (2.6). 

� Assign to each onlooker bee a food source using the roulette wheel and 

the probability ip . 

� According to equation (2.9), generate a new food source for each 

onlooker bee (i=1,2,�,LN): 

 ( )id ij b ij bjv x  f x x= + −φ  (2.9) 

                 where idv is the ith onlooker bee’s new candidate solution in dimension d. 
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=d 1,  ... ,D , ijx is the ith selected solution of the jth selected dimension, 

and bjx is jth best-so-far selected food source, bf is the best-so-far food 

source’s fitness value.  

 - Evaluate the fitness value of the generated positions and compare the old 

and the new solutions, select then the best one. 

d. Scout bees phase: 

- For all the onlooker bees, which their food sources quality does not improve 

in the determined number (limit) of cycles: 

� The food sources are abandoned and their onlooker bees become 

scout bees, which randomly generate new food source positions 

based on equation (2.10). 

 ( )ij ij ij max max min ij

cycle
v x w w w x

MCN

 = + − −  
φ  (2.10) 

where: ijx is the abandoned food source position. ijv is the new food 

source position of the scout bee. 
ijφ
 
is a random number between        

[-1,+1]. maxw and minw are the maximum and the minimum percentage 

of the position adjustment for the scout bees. The values of maxw and 

minw  are fixed to 1 and 0.2, respectively. 

- Evaluate the fitness of the generated positions. 

- Save the best solution as the new solution. 

    - cycle =cycle+1. 

End while. 

2.3.3. Parameters identification results: 

2.3.3.1. Identification results using the ABC algorithm: 

In order to check the effectiveness of the identified parameters, obtained by 

using the ABC algorithm, outdoor measurements of (I-V) curves from three 

different PV modules (such as Isofoton106/12, SILIKEN (SLK60P6L)                 
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and PHHOTOWATT-poly (PW1650)) have been used. The electrical 

characteristics of these PV modules are summarized in table (2.1). 

Table 2.1: The electrical characteristics of the three PV modules 

 
ISOFOTON

106/12 
SILIKEN 

(SLK60P6L) 
PHHOTOWATT
-poly (PW1650) 

Pmpp (W) 106 220 155 
Voc (V) 21.6 36.7 43 
Isc (A) 6.54 8.10 4.8 

Vmpp (V) 17.4 29.2 34 
Impp (A) 6.10 7.54 4.6 
αIsc 

(%/°C) 
0.060 0.062 0.0015 

βVoc 

(%/°C) 
-0.36 -0.356 -0.158 

 

Table (2.2) summarizes the upper and lower limits for the three PV modules 

parameters. 

Table 2.2: Upper and lower variation limits of the three PV modules 

 ISOFOTON     
106W-1V2 

SILIKEN 
(SLK60P6L) 

PHHOTOWATT-
POLY(PW1650) 

RS(Ω) [0 – 1] [0 - 1] [0 - 1] 
Rp (Ω) [0 - 400] [0 - 400] [0 - 400] 

Iph0 (A) [0 - 10] [0 - 10] [0 - 10] 
Isat (A) [10-7 – 10-4] [10-7 – 10-4] [10-7 – 10-4] 

n [0 - 75] [70 - 130] [60 - 160] 
 

The adjustable parameters of ABC algorithm have been chosen as depicted in 

table (2.3).  

Table 2.3: The adjustable parameters of the ABC algorithm 

ABC parameters Values 

Colony size 150 
Number of employed bees 75 
Number of onlooker bees 75 
The limit of the scout bees 150 X 5 

Maximum number of iteration 10000 
 

The comparison between the measured (I-V) characteristics and the estimated 

using the identified parameters, for each PV module and for different 
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meteorological conditions, are illustrated in Figures (2.3-2.5). Finally, the 

convergence rate of the ABC algorithm during the identification process is 

illustrated in Figure (2.6). 

 

Figure 2.3: Measured and calculated (I-V) curve of Isofoton106/12 PV module 

for different meteorological conditions. 

 

Figure 2.4: Measured and calculated (I-V) curve of SILIKEN (SLK60P6L) PV 

module for different meteorological conditions. 
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Figure 2.5: Measured and calculated (I-V) curve of PHHOTOWATT-POLY 

(PW1650) PV module for different meteorological conditions. 

.

 

Figure 2.6: The convergence rate of the ABC algorithm during                     

the extraction process of Isofoton106/12 PV module. 
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The identified parameters of all PV modules are summarized in table (2.4).  

Table 2.4: The final identified parameters of the three PV modules. 

PV Modules IPh(A) Isat (A) Rs(Ω) Rsh(Ω) n RMSE 

Isofoton 106/12 6.68 1.43e-5 0.12 143 61.913 0.015 
SILIKEN 7.67 1.19e-5 0.21 400 95.50 0.069 

PHHOTOWATT 5.09 4.61e-5 0.25 387 130.35 0.029 
 

In order to check the performance of the proposed ABC algorithm, a 

comparative study with two others optimization algorithms found in the literature 

[52, 53] has been carried out using Isofoton 106W/12V PV module. The algorithms 

are: Differential Evolution (DE) [53] and Particle Swarm Optimization (PSO) [52] 

algorithms. In order to compute the average root mean square error (RMSE) value 

and the standard deviation STD value, the three algorithms have been executed 

30 times.  

The obtained results, given in table (2.5), show that the best results are 

obtained with the ABC algorithm.  

Table 2.5: The comparative study of the three optimization algorithms 

item ABC DE PSO 

Iph0(A) 6.73 6.71 6.73 
Isat(A) 1.38E-005 1.62E-005 1e-5 

n 61.76 62.53 60.24 
Rs(Ω) 0.12 0.12 0.13 
Rsh(Ω) 103 120 95.50 
RMSE 0.015 0.018 0.018 
STD 8.46E-005 1.48E-004 3.90E-004 

        

2.3.3.2. Identification results using the best-so-far ABC algorithm: 

Hereafter, the effectiveness of PV module parameters identification based on 

the best-so-far ABC algorithm is experimentally assessed. Towards this end, real 

experimental (I-V) curve measurements from individuals PV modules are used. 

These modules are part of two installed grid connected PV systems, Algerian and 

Spanish PV systems. Moreover, these PV modules are of two different 

technologies: the Spanish PV module is "KANEKA GEA060" PV module, type 

amorphous silicon (a-Si) technology, while the Algerian PV module is "Isofoton 

106/12" PV module, type mono-crystalline technology. 
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Table (2.6) summarizes the various irradiance and temperatures conditions at 

which the real measured (I-V) curves have been collected. 

Table 2.6: The experimental weather conditions obtained from                           
outdoor measurements of (I-V) curves. 

PV module Temperature (°C) Irradiance (W/m²) 

Isofoton 106-12 27.2 755 
KANEKA GEA060 25 1000 
 

The electrical characteristics given in the manufacturer datasheet, and which are 

obtained under the standard test conditions (STC) of the Spanish PV module are 

summarized in table (2.7). Parameters variation limits of both Algerian and 

Spanish PV modules are summarized in table (2.8).  

Table 2.7: The electrical parameters of  

KANEKA GEA060 module at STC condition 

Parameters KANEKA GEA060 

P
mpp

 (W) 60 

V
oc

 (V) 92 

I
sc

 (A) 1.19 

V
mpp

 (V) 64 

I
mpp

 (A) 0.90 

αI
sc 

(%/°C) -0.305 

βV
oc 

(%/°C) 0.0752 

 

Table 2.8: The PV module parameters’ variation limits 

 Isofoton 
106-12 

KANEKA 
GEA060 

Iph [A] [0-10] [0-10] 
I0 [A] [10-7-10-4] [0-1] 

n [0-75] [0-300] 
Rs [Ω] [0-1] [0-10] 

 Rsh[Ω] [0-400] [0-1000] 

 

The adjustable parameters of the best-so-far ABC algorithm are set to          

the following values: food source number = 150, number of employed bees = 75, 
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number of onlooker bees = 75, the solution dimension = 5 (i.e., number of 

parameters to be identified) and the maximum cycle number = 7500. The optimal 

values of the parameters [Iph, I0, n, Rs, Rsh], determined by the best-so-far ABC 

algorithm, which gives the best fitting of the measured (I-V) curves, are 

summarized in table (2.9). 

The optimal identified parameters are used to estimate the (I-V) curve by using 

the same irradiance and temperature conditions as the experiments. Then, the 

estimated (I-V) curves are compared with experimental (I-V) curves 

measurements to assess the parameter identification performance. Figures   

(2.7(a-b)) show the comparison between the real measured (I-V) curve and        

the estimated using the identified parameters, for the used PV modules under 

different meteorological conditions.  

 

Table 2.9: The identification results 

 Iph [A] I0 [A] n Rs [Ω] Rsh [Ω] RMSE 

Isofoton 106W-12V 6.54 1.11e-05 59.90 0.1474 202.6 0.014 
KANEKA GEA060 1.28 6.15e-07 259.24 4.52 990.93 0.0058 

 

 
Figure 2.7: (a) Measured and predicted (I-V) curves for the Isofoton 106/12 PV 

module. (b) Measured and predicted (I-V) curve for the KANEKA GEA060 PV module. 
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It can be seen that the obtained parameters by the used optimization algorithm 

fit well with the experimental (I-V) curves, for both amorphous silicon and mono-

crystalline technologies. 

 Furthermore, the lower value of the RMSE (see table (2.9)) indicates a good 

prediction performance of the best-so-far ABC algorithm to determine the best 

fitting parameters values, with an acceptable convergence rate, as shown in 

figures (2.8 (a-b)). 

 
 

Figure 2.8: Convergence rate of the best-so-far ABC algorithm for (a) KANEKA 
GEA060 and (b) Isofoton 106-12V PV module. 

2.4. The Developed approach of MPP estimation: 

2.4.1. Fundamental principle:  

Based on the identified parameters, the values of Impp, Vmpp and Pmpp can be 

estimated using equations (2.11-2.13) [54]. 

                ( )0

mpp 0 0 0
mpp T mpp s

T c 0 c eff eff

V T G G
V V ln I R 1

1 C T T T G G

   
= + − −   + −    

                   (2.11) 

                              
0

0
mpp mpp

eff

G
I I

G
=                   (2.12) 

          mpp mpp mppP I V= ×                   (2.13) 
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where:  

G0 is the nominal irradiance (G0=1000 W/m²), T0 is the nominal temperature 

(T0=25°C), sR is the series resistance. effG  is the effective irradiance, TC is           

the temperature coefficient of power (typical value for monocristalin silicium is        

-0.0044 k-1
 ), cT is the cell temperature, and it is given by the NOCT relationship, 

given hereafter: 

 ( ) ( ) eff
c eff amb amb ambN

N

G
T G ,T T NOCT T

G
= + −  (2.14) 

ambT is the ambient temperature, °=NOCT 48 C  is the Nominal Operating Cell 

Temperature and it is given in the PV module data-sheet, = 2
NG 800 W / m and

=ambNT 20 °C  are the test conditions for the NOCTevaluation, TV is the thermal 

voltage and it is  expressed as follows: 

 T

nkT
V

q
=  (2.15) 

0mppV and 
0mppI are the nominal maximum voltage and current respectively               

(the maximum power point coordinates), and they are given within the PV module 

data-sheet. 

 2.4.2. MPP estimation results: 

2.4.2.1. MPP estimation results using the ABC-based identified parameters: 

In order to assess the accuracy of the ABC-based identified parameters, MPP 

model given in equations (2.11-2.13) has been plotted against real daily 

production for two conditions: a clear sky condition and cloudy sky condition, of an 

actual Algerian PV system. This system is formed by two parallel strings; each 

string is composed of fifteen series connected Isofoton 106-12 PV modules. 

Figures (2.9-2.11) show the time evolution of the simulated and measured 

current, voltage and power, respectively, for a clear sky day profile. While, time 

evolution of the same quantities for a cloudy day profile is shown in figures (2.12-

2.14). These results show clearly the efficiency of the proposed MPP estimation 

strategy for both clear sky and cloudy sky conditions.  
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Figure 2.9: Comparison between measured and estimated 

mppI
 

for a clear sky day profile. 

 

 

Figure 2.10: Comparaison between measured and estimated Vmpp  

for clear sky day profile. 
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Figure 2.11: Comparaison between measured and estimated Pmpp  

for clear sky day profile. 

 

 

Figure 2.12: Comparaison between measured and estimated Impp  

for a cloudy sky day profile. 
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Figure 2.13: Comparaison between measured and estimated Vmpp  

for a cloudy sky day profile. 

 

 

Figure 2.14: Comparaison between measured and estimated Pmpp  

for a cloudy day profile. 
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2.4.2.2. MPP estimation results using the best-so-far ABC-based identified 

parameters: 

The identified parameters based on the best-so-far ABC algorithm are used to 

estimate the dynamic evolution of MPP coordinates of current and power under 

real operating conditions for the Algerian and Spanish PV systems. 

The dynamic MPP estimation approach has been validated experimentally 

using real daily weather conditions collected from two sites (Algiers province of 

Algeria and Jaén province of Spain). To assess the proposed MPP estimation 

approach under different operating conditions, two daily profiles are also selected 

for both the Algerian and Spanish sites, clear and cloudy sky conditions (see 

Figures (2.15-2.16)). The measured versus estimated MPP current and power of 

the Algerian GCPV system under clear sky day condition are shown in Figures 

(2.17(a-b)), and under cloudy sky day condition are shown in Figures (2.17(c-d)). 

For Jaén PV array, the measured and estimated MPP current and power under 

clear sky day condition are presented in Figure (2.18(a-b)), and under cloudy sky 

day condition are shown in Figure (2.18(c-d)). These Figures show that the 

observed data are well-fitted by the MPP estimation strategy for the two studied 

systems.  

 

Figure 2.15: The Algerian PV system (a) clear day profile of irradiation level, (b) clear 
day profile of temperature level, (c) cloudy day profile of irradiation level and (d) 

cloudy day profile of temperature level. 
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Figure 2.16: the Spanish PV system (a) clear day profile of irradiation level, (b) clear 
day profile of temperature level, (c) cloudy day profile of irradiation level and (d) 

cloudy day profile of temperature level. 

 

Figure 2.17: Measured versus estimated MPP current and power under clear sky day 
condition (a-b) and cloudy sky day condition (c-d) of the Algerian PV system.  



80 

 

 

Figure 2.18: Measured versus estimated MPP current and power under clear sky day 
condition (a-b) and cloudy sky day condition (c-d) of the Spanish PV system. 

 

2.5. Conclusion: 

This chapter is mainly devoted to clarify the developed strategy of PV array 

modeling and validation. It reports the ODM description, the PV module 

parameters identification using ABC and best-so-far ABC algorithms, and finally 

the proposed approach to estimate the MPP coordinates. .  

The proposed parameters identification algorithms have been tested using 

several PV modules of different technologies. The identified parameters of each 

module have been introduced into the characteristic equation, and then tested 

against real (I-V) curves measurements. The obtained results show clearly the 

effectiveness of the proposed algorithms to extract the PV module parameters. 

Finally, an efficient approach of MPP estimation, based on the identified 

parameters, has been developed. MPP estimation results have clearly 

demonstrated the effectiveness of this strategy.   
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CHAPTER 3  

FAULTS DETECTION AND DIAGNOSIS OF PHOTOVOLTAIC 

SYSTEMS USING PROBABILISTIC NEURAL NETWORKS 

 
3.1. Introduction:  

In this chapter, a novel procedure for fault detection and diagnosis in the DC 

side of PV systems, based on the probabilistic neural network (PNN) [9, 10] 

classifier, is proposed. The suggested procedure consists of four main stages: (i) 

PV module parameters extraction, (ii) PV array simulation and experimental 

validation (iii) the elaboration of a relevant database of both healthy and faulty 

operations, and (iiii) network construction, training and testing. In the first stage, 

the unknown electrical parameters of the one diode model (ODM) will be 

accurately identified using the best-so-far ABC algorithm. Then, based on these 

parameters the PV array will be simulated and experimentally validated by using a 

PSIMTM/MatlabTM co-simulation. Finally, an efficient fault detection and diagnosis 

procedure based on PNN classifier will be implemented. Four operating cases are 

tested in a GCPV system of 9.54 kWp: Healthy system, three modules short-

circuited in one string, ten modules short-circuited in one string, and a string 

disconnected from the array. Moreover, the PNN method will be compared, under 

real operating conditions, with the feed forward back-propagation ANN classifiers 

method, for noiseless and noisy data.  

3.2. Description of the PV system and the faults detection and diagnosis 
strategy: 

3.2.1. PV system description:  

PV plant under study is an actual Algerian GCPV system, located in Algiers 

(Algeria) (Latitude: 36°43’N, Longitude: 3°15’E). This PV plant is a 9.54 kWp 

arranged in 3 sub-arrays of 3.18 kWp each one. Each sub-array contains 30 

Isofoton 106W-12V PV modules, mounted in 2 parallel strings of 15 PV modules in 

series, and connected to a 2.5 kW (IG30 Fronius) single phase inverter. Tilted and 

horizontal irradiances are measured using a Kipp & Zonen CM11 thermoelectric 

pyranometer, while the PV module temperature is measured using K-type 

thermocouple. 
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 Meteorological variables as well as electrical variables measurements are 

performed by a data logger (Agilent 34970) as depicted in Figure (3.1). 

 

 

Figure 3.1: PV plant under study and the monitoring system. 
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3.2.2. Faults detection and diagnosis strategy: 

The main objective of this work is to design an efficient and reliable procedure, 

based on PNN classifier, to detect faults in a photovoltaic system and to diagnose 

their origin. However, using this type of method, to deal with the classification 

problem, requires the availability of a high-quality database that describes very 

well the process for each class. Practically speaking, obtaining such a database 

cannot often be guaranteed, especially in PV systems. In fact, operating a PV 

system under some types of failures can make the system completely insecure 

and cause catastrophic damages and safety hazards. Therefore, the best way to 

deal with this concern is to have a trusted simulation model that mimics the actual 

behavior of a PV system under healthy and faulty states. The flowchart, given in 

Figure (3.2), summarizes the adopted steps followed to construct the fault 

detection and diagnosis strategy, namely: PV module parameters extraction, 

model validation, database elaboration and finally fault detection and diagnosis.  

3.2.2.1. PV module parameters extraction:  

In this work, the same strategy of PV module parameters extraction, which has 

been developed in chapter 2 based on the best-so-far ABC algorithm, is used to 

extract the ODM five electrical parameters. This choice is essentially due to its 

capacity to converge regardless the initial conditions, to accurate global solutions, 

high convergence speed and its simplicity in terms of implementation [21, 55, 56].  

3.2.2.2. Model validation: 

The extracted ODM parameters are, subsequently, used to simulate the real 

PV system for normal conditions using PSIMTM/MatlabTM Co-simulation. Indeed, 

the physical model of solar module, included in PSIMTM software, is used to 

simulate the physical behavior of the actual PV system. This can be reached by 

introducing the ODM identified parameters into this model, and then simulate the 

whole PV system for real daily profile measurements of temperatures and 

irradiances. On the other hand, data processing and involved calculations are 

performed in MatlabTM/SimulinkTM environment. Finally, the simulated power (Psim) 

and the measured one (Pmeas) are then compared. 
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Figure 3.2: Flowchart of the followed steps of the proposed faults detection and 
diagnosis strategy. 
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3.2.2.3. Database elaboration: 

This stage consists of elaborating a high-quality database that accurately 

describes the system behavior, in normal and faulty conditions. To this end,        

the validated PV system model is used to generate healthy and faulty samples, by 

intentionally introducing the desired faults, with real daily profiles of temperature 

and irradiance. The recorded samples, corresponding to each operating condition, 

include four attributes: module Temperature “T”, tilted Irradiance “G”, current at 

MPP “Impp” and voltage at MPP “Vmpp”.  

3.2.2.4. Fault detection and diagnosis based on PNN classifier: 

Based on the elaborated data base, the last step consists of constructing two 

probabilistic neural networks (PNN) classifiers: the first one is dedicated to fault 

detection and the second is responsible for diagnosing the origin of faults.          

The methodology of PNN construction, training and test are explained in details 

hereafter. 

3.3. The proposed neuronal strategy of faults detection and diagnosis: 

3.3.1. Probabilistic neural network:  

The Probabilistic Neural Network (PNN), as a learning based method, has 

been considered as a powerful classification technique. Similarly to the other 

neural network strategies, the PNN uses a training set to extract pattern statistics, 

and a testing set to check the classification accuracy. Its architecture is similar to 

that of the back propagation one [9], except of using the exponential function, as 

an activation function, instead of using the sigmoid function [9]. As shown in     

Figure (3.3), the probabilistic neural network consists of: input units, pattern units, 

summation units and output units [9, 10].  

The aim of the input units is to directly distribute the input vector X to the 

pattern units, while the number of neurons in these units corresponds to the input 

vector size.  

Besides, the pattern units, described by Figure (3.4), consider the use of       

the same number of neurons as the input units. The pattern units are responsible 

for the dot multiplication of the elements of the input vector and their respective 

weights = •i iZ X W , given that the weight coefficient Wi of each pattern unit is set to 
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the same value Xi of the training set. The result, Zi , will be then introduced to a 

nonlinear activation function, given by the following equation [9]:  

      ( ) i
i 2

(Z 1)
Q Z exp

− =  
 σ

                                     (3.1) 

In the case of normalized input and weight vectors, the activation function      

(equation (3.1)) will result in [9]: 

( ) ( ) ( )
( )

t

i i

2

W X W X
Q X exp

2

 − − −
 =
 
 σ

                            (3.2) 

where σ denotes the smoothing parameter. 

The outputs of the pattern units will be then transmitted to the summation 

units, in which the number of neurons matches the number of classes. The outputs 

of each summation unit are given by [9]:  

( ) ( )t
m

i Ai i Ai

A P 2
i 1P2

W X W X1 1
f (X) exp

m 2
(2 )

=

 − − −
=  

σ  π σ
∑                     (3.3) 

where: Af (X)  is the Probability Density Function (PDF) of the input vector X; P is 

the number of patterns; m is the learning set size; XAi describes the corresponding 

ith training pattern of class A. The output units define the decision blocks.          

PNN comprises only one neuron in its output layer. This layer receives, from       

the summation layer, the probability density functions (PDF) values of each class 

and predicts the adequate class of the new sample. In other terms, this last layer 

outputs the adequate target that corresponds to the highest probability density 

function in the summation units. The efficiency of PNN classifier depends on       

the used PDF accuracy, which is defined by the best choice of its smoothing 

parameter value [9]. 

Compared with the conventional back-propagation network, PNN has several 

important advantages such as [9]: 

• Its training stage requires only one single pass (neither iterations nor 

weights computation).  

• It can support both erroneous and noisy samples. 

• It has only one adjustable parameter (the smoothing parameter σ). 



87 

 

 

Figure 3.3: PNN structure for classification problem of two dimensions [9]. 

 

 

Figure 3.4: PNN Pattern unit [9]. 

  

3.3.2. PNN based method for fault detection and diagnosis: 

As stated before, the objective of this work is to detect and diagnose faults in 

the DC side of a GCPV system based on PNN classifier. Using PNN as fault 

detection and diagnosis approach requires four essential steps: (i) the elaboration 

of a relevant database that contains the necessary data to train and test the 

network, (ii) the network construction, (iii) train the network using the learning set, 

and finally (iiii) the test and evaluation of the network efficiency based on the test 

set.  
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3.3.2.1. The elaboration of the relevant database: 

To be able to obtain a pertinent database for both healthy and faulty systems, 

the physical model of the PV module implemented in PSIMTM software, is used to 

simulate, under healthy and faulty conditions, the real operation of the previously 

described Algerian GCPV system. The employed PV array comprises two parallel 

strings of fifteen PV modules in series (Isofoton 106W-12V).  

During this simulation, the physical model of the PV array requires the 

introduction of the ODM parameters’ values, which are obtained using the best-so-

far ABC algorithm. This can be achieved by using the developed parameters 

extraction strategy of chapter 2.  

 The proposed strategy for simulating the photovoltaic system using the 

PSIMTM software is characterized by its physical nature, which makes it possible to 

easily simulate the behavior of several faults that usually happen in the DC side of 

PV systems, such as: shading faults, short circuit faults, open circuit faults, line-

line faults, �etc.  

Moreover, the used simulation model requires much reduced time to simulate 

the behavior of PV system whatever its physical configuration, and even for a very 

high number of meteorological data.  

In this work, the simulations of four operating cases have been considered: 

healthy system; three modules short-circuited in a string; ten modules short-

circuited in a string, and finally a completely disconnected string in an array, as 

depicted in Figure (3.5). To finish with, the final database is constructed 

considering four attributes [T, G, Impp, and Vmpp] for each operating case. Figure 

(3.6) shows the flowchart of PNN dataset elaboration.  

3.3.2.2.The networks construction: 

Since the proposed work aims both fault detection and diagnosis, two PNN 

classifiers are then constructed. Indeed, the occurrence of any fault in the PV 

system is detected by the first network, while the diagnosis of its type is carried out 

by the second one.  

The detection network, shown in Figure (3.7), has four inputs (T, G, Impp and 

Vmpp) and two outputs (healthy state, faulty state), while the diagnosis network, 

shown in Figure (3.8), has the same inputs as the first one, and three outputs   

(fault #1, fault #2 and fault #3) corresponding to the three faulty operating cases. 
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 PNN classifiers of fault detection and diagnosis (Figures (3.7-3.8)) comprise only 

one neuron in their output layers. This neuron outputs the class that corresponds 

to the highest probability density function in the summation units.  

In order to avoid any conflict, the detection and diagnostic networks are 

connected in series so that the diagnostic network will not be activated as long as 

the faulty alarm does not occur from the detection network. This concept is 

explicitly explained by the flowchart of Figure (3.9), given below. 

 

Figure 3.5: The tested open circuit and short circuit failures 

 of the studied PV system. 
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Figure 3.6:  The dataset elaboration flowchart. 

 

Figure 3.7: PNN detection network. 

 

Figure 3.8: PNN diagnosis network. 



91 

 

 

Figure 3.9:  Flowchart of the two classifiers’ connection strategy. 

3.3.2.3. The learning stage: 

Now, the detection and diagnostic networks are formed by using the learning 

data set previously obtained. It should be noted here that, on one hand, the input 

data (T, G, Impp and Vmpp), are of continuous type which are directly processed by 

the two PNNs. On the other hand, the outputs (healthy state, faulty state, fault #1, 

fault #2 and fault #3) are nominal variables that are not supported by this type of 

networks. For this reason, particular codes, arbitrary chosen, have been assigned 

to the PNN outputs as mentioned below: 

• Healthy system: code “2”, and which will be used for the faults detection 

network to describe the healthy operating case. 

• Faulty system: code “8”, and which will be used for the faults detection 

network to describe the occurrence of possible DC side faults. 

• Fault #1: code “4”, and which will be used for the diagnosis network to 

describe the occurrence of short circuit of three PV modules in one string. 

• Fault #2: code “6”, and which will be used for the diagnosis network to 

describe the occurrence of short circuit of ten PV modules in one string. 
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• Fault #3: code “9”, and which will be used for the diagnosis network to 

describe the occurrence of a complete string disconnection from the PV 

array. 

Finally, to train both detection and diagnosis networks, learning set values and the 

codes of their corresponding classes are used as input and target vectors, 

respectively. 

3.3.2.4. The testing stage 

After having learned both detection and diagnosis networks, the next stage is 

to test their effectiveness while using the testing set. Similarly to the training stage, 

the input testing set to the two PNN classifiers are the four attributes (T, G, Impp 

and Vmpp), while their outputs denote their corresponding estimated classes.  

In order to assess the networks efficiency, a performance test of the classifiers 

has been carried out by using the following four standard metrics [57]: 

       all classesTP
Classification Accuracy 100

d
 −= ×                        (3.4) 

     class(x )

class(x ) class(x )

TP
Sensitivity(class(x)) 100

TP FN
= ×

+
                   (3.5) 

 class(x )

class(x ) class(x )

TN
Specificity(class(x)) 100

TN FP
= ×

+
                 (3.6) 

class(x )

class(x ) class(x )

TP
Positive Predictivity(class(x)) 100

TP FP
= ×

+
            (3.7) 

where:  

TP is the True Positive classifications number, which denotes the number of 

samples which are supposed to be classified in class “x” and they are really 

classified into this class. FN is the False Negative classifications number, which 

denotes the number of samples from class “x” and are classified into another class 

than class “x”. TN is the True Negative classifications number, which denotes    

the number of samples which are not supposed to be classified in class “x” and 

are really classified, according to the classifier, into another class than class “x”. 

FP is the False Positive classifications number, which denotes the number of 

samples which are not supposed to be classified into class “x”, while they really 
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are classified, according to the classifiers, into this class, and ‘d’ defines the size of 

the testing set. 

In addition to these performance evaluation standard metrics, the confusion 

matrix is another metric usually used to evaluate the classifier performance. In 

fact, confusion matrix (also called contingency table) is a clean and unambiguous 

way to depict the classification results. As an example of a binary classification 

problem (Problem with two possible classes), the confusion matrix is composed of 

two rows and two columns, as can be seen in table (3.1). 

 

Table 3.1: The confusion matrix of a binary classification problem 

 
The first class 

(Predicted) 
The second class 

(Predicted) 

The first class (Actual) True Positive (TP) False Negative (FN) 

The second class (Actual) False Positive (FP) True Negative (TN) 

 

3.4. Simulation and experimental results: 

In order to verify the performance and effectiveness of the proposed approach, 

described previously in section (3.3.2), a simulation study and an experimental 

evaluation are carried out, and the main results are highlighted. This section is 

subdivided into three sub-sections: PV module parameters extraction results, 

model validation results, and finally, PNN based fault detection and diagnosis 

results.  

3.4.1. PV module parameters extraction results:  

In the first stage, the efficiency of PV module parameters extraction method 

based on the best-so-far ABC algorithm was experimentally validated. To this end, 

experimental (I-V) curve measurements, using an I-V curve tracer (PVPM40), 

were recorded and compared with the prediction model (Equation (2.1).              

the module temperature and the irradiance level used in this particular test were 

27.2 °C and 755 W/m2, respectively.  

The best-so-far ABC algorithm adjustable parameters are summarized in 

Table (3.2), while the optimal values of the electrical parameters [Iph, I0, n, Rs, Rsh], 

determined by the best-so-far ABC algorithm, are summarized in Table (3.3). 
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Table 3.2: The adjustable parameters of the best-so-far ABC algorithm 

The 
adjustable 
Parameters 

Food 
source 
number 

Number of 
employed 

bees 

Number of 
onlooker 

bees 

The 
solution 

dimension 

Maximum 
cycles 

number 

The selected 
value 

150 75 75 5 2000 

 

Table 3.3: Isofoton 106W-12V PV module’s extracted parameters 

The electrical 
parameter 

Iph [A]
 

I0 [A]
 

n Rs [Ω]
 

Rsh [Ω]
 

RMSE 

The identified 
value 

6.54 1.11e-05 1.66 0.1474 202.6 0.014 

 
The simulation result of the prediction model (Equ.3.2), obtained with the 

optimal parameters, and the experimental curves are shown in Figure (3.10).  

It is clearly shown the good agreement between the experimental curve and 

the predicted one when simulated with the extracted parameters.  

Also, the smallest value of the RMSE, given in table (3.3), reveals the high 

accuracy of the best-so-far ABC algorithm to extract the best fitting parameters. 

In Figure (3.11), it is shown the best-so-far ABC algorithm convergence rate 

for each cycle until reaching the convergence condition (smallest RMSE value). 

While in Figure (3.12), it is depicted the absolute error between measured current 

(Imeas) and estimated current (Iest), computed by the following equation. 

meas estcurrent_mismatch I I= −                                        (3.8) 

According to Figure (3.12), the highest value of the absolute error does not 

exceed 0.06 which confirm the high accuracy of the best-so-far ABC algorithm to 

extract the best fitting parameters of the ODM.  
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Figure 3.10: The real measured (I-V) curve against the estimated one. 

 

Figure 3.11: The best-so-far ABC algorithm convergence rate. 
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Figure 3.12: The evolution of the absolute error between  

the measured and estimated current. 

3.4.2. Model validation results: 

The extracted parameters, calculated in the previous section, are now 

introduced into the whole PV plant that models the Algerian GCPV system, in 

normal operating conditions. The inputs to this model are the actual measured 

daily profiles of temperature and irradiance. In this work, a co-simulation 

methodology was adopted by combining PSIMTM and MatlabTM software, where 

the physical system (PV generator and MPPT) is implemented in PSIMTM, while 

data processing and the involved calculations are implemented in 

Matlab/SimulinkTM. The simulated output power (Pmpp-sim) is then compared to    

the output measured power (Pmpp-mea), under the same temperature and irradiance 

inputs, as shown in Figure (3.13). 

As this stage is crucial for the fault detection and diagnosis step, detailed in 

the next section, the results given in Figure (3.13) must be quantified in terms of 

discrepancy between measured and simulated powers. To this end, the Mean 

Absolute Error (MAE), given by equation (3.9), was considered to evaluate the 

daily mean gap between Pmpp-sim and Pmpp-meas. The calculated MAE for this 

particular day, characterized by fast-moving clouds, is found to be about 8 watts.  
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L

Pmpp mpp_ meas mpp _sim

d 1

1
MAE P P

L =

= −∑                           (3.9) 

where: L denotes the length of MPP power vector.  

 
Figure 3.13: Real measured against simulated peak power. 

3.4.3. Fault detection and diagnosis results 

In this subsection, the effectiveness of the proposed fault detection and 

diagnosis approach is presented in detail. At first, the PNN construction, training 

and validation are conducted with noiseless data, obtained from the simulation 

model, in normal and faulty operations. In the second step, the constructed PNNs 

are tested against noisy data, obtained by adding a predefined noise to               

the simulated data. In addition, a comparison study with classical ANN classifier 

for both noiseless and noisy data is also carried out in this subsection. 

3.4.3.1. Noiseless data case: 

Once the simulation model has been validated, the previously described DC 

side failures have been simulated under measured daily profiles of temperature 

and irradiance. This simulation aims the elaboration of a high-quality database for 

both healthy and faulty systems as described in section (3.3). The formed 

database contains 2960 data for each operating case, which means a total of 

11840 data for the four simulated scenarios. For the training phase, we have 
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chosen 75% (8880 data) while the test set contains the remaining 25 %          

(2960 data). The details of the total database construction are given bellow:     

• 740 data are associated with each of the four attributes (T, G, Impp and 

Vmpp) for each operating case. Thus, a total of 2960 = 740 x 4 data set is 

associated with each operating case. More precisely, the vector of each 

attribute is subdivided into two sub-vectors: a first one comprises 556 

samples (75% of 740) and it is stated as the classifier training set, while   

the second sub-vector includes the remaining 184 samples (25% of 740), 

and it is used as the classifier testing set. 

• The test dataset comprises 184 x 4 =736 data for each attribute, organized 

in the following manner:  

- The test set of healthy system includes 184 samples. 

- The test set of fault #1 includes 184 samples. 

- The test set of fault #2 includes 184 samples. 

- The test set of fault #3 includes 184 samples. 

On the other hand, this work proposes the use of two classifiers (two 

different networks). The first PNN is responsible of failures detection, while 

the second classifier aims to diagnose accurately the type of the occurred 

fault. Therefore, the performance of the detection network is assessed by 

using the test set in the following manner:  

- Healthy system test set includes 184 samples for each attribute. 

- Faulty system test set includes 184 x 3=552 samples (Denoted by the 

three faulty cases: Fault #1, Fault #2 and Fault #3) for each attribute. 

• While the performance of the diagnosis network is assessed by using       

the test set in the following manner:  

- Fault #1 test set includes 184 samples for each attribute. 

- Fault #2 test set includes 184 samples for each attribute. 

- Fault #3 test set includes 184 samples for each attribute. 

It is worth mentioning here that the measured data from the real operating 

system are considered as noiseless data as the quantification of error 

measurements and sensor drifts is a very difficult task. 

For comparison purpose, the performances of the proposed fault detection 

and diagnosis in PV systems are compared with those obtained with the classical 

ANN classifier. Toward this end, two ANNs have been constructed, trained and 
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tested with the same dataset as the PNN.  The number of the hidden layers in    

the ANN networks and the smoothing parameter,σ, for the PNN networks are 

obtained by trial and error tests. The main parameters used in this work, for each 

network, are summarized in table (3.4). Classifiers efficiency (total efficiency) and 

classification sensitivity results for ANN and PNN classifiers are summarized in 

Table (3.5). 

Table 3.4: ANN and PNN networks adjustable parameters 

 
Feed Forward Back-Propagation Network 

(ANN) 
Probabilistic Neural 

Network (PNN) 

 
Detection 
network 

The weights adjustment’s method: back 
propagation algorithm. 
The number of neurons in the hidden layer= 25. 
The activation function: tangent sigmoid. 
The training phase’s maximum number of epochs 
= 100. 
The training phase’s performance goal = 10-5. 

 
The smoothing parameter     
σ = 1.1. 
 
The activation function: 
exponential 

Diagnosis 
network 

The weights adjustment’s method:  back 
propagation algorithm. 
The number of neurons in the hidden layer = 40. 
The activation function: tangent sigmoid. 
The training phase’s maximum number of epochs 
= 100. 
The training phase’s performance goal = 10-5. 

 
The smoothing parameter     
σ = 1.1. 
 
The activation function: 
exponential 

 

Table 3.5: Classification accuracy and sensitivity results for noiseless data 

Detection networks tested with noiseless data 

 
The classifier 

type 

Classification 
accuracy % 

Sensitivity % 

Healthy operating 
case 

Faulty operating 
case 

ANN 90.35 100 78.14 
PNN 100 100 100 

Diagnosis networks tested with noiseless data 

 
The classifier 

type 

Classification 
accuracy % 

Sensitivity % 

Fault 1 Fault 2 Fault 3 

ANN 73.18 86.96 100 32.61 
PNN 100 100 100 100 
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While the confusion matrixes of the two networks (ANN and PNN for detection and 

diagnosis) are summarized in tables (3.6-3.7) respectively. 

Table 3.6: Confusion matrixes of ANN networks for noiseless data 

Detection network type ANN tested on the noiseless data 

The real classes 
The predicted classes 

Healthy case Faulty case 

Healthy case 184 0 

Faulty case 71 481 

Diagnosis network type ANN tested on the noiseless test data 

The real classes 
The predicted classes 

Fault 1 Fault 2 Fault 3 

Fault 1 160 24 0 

Fault 2 0 184 0 

Fault 3 119 5 60 

 

Table 3.7: Confusion matrixes of PNN networks for noiseless data 

Detection network type PNN tested on noiseless data 

The real classes 
The predicted classes 

Healthy case Faulty case 

Healthy case 184 0 

Faulty case 0 552 

Diagnosis network type PNN tested on the noiseless test data 

The real classes 
The predicted classes 

Fault 1 Fault 2 Fault 3 

Fault 1 184 0 0 

Fault 2 0 184 0 

Fault 3 0 0 184 

 

For more clarity of the obtained classification results, the confusion matrixes 

have been displayed graphically for the two networks (PNN and ANN). Figures 

(3.14-3.15) are the simulation results of the ANN classifiers in detection and 

diagnosis stages respectively, while Figures (3.16-3.17) are the results of the PNN 
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classifiers. The simulation results in terms of Specificity and Positive Predictivity 

for noiseless data are summarized in table (3.8) (ANN networks) and table (3.9) 

(PNN networks), respectively. 

 
Figure 3.14: Fault detection results based on ANN classifier  

for the case of noiseless data. 

 

 

Figure 3.15: Fault diagnosis results based on ANN classifier  

for the case of noiseless data. 
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Figure 3.16: Fault detection results based on PNN classifier  

for the case of noiseless data. 

 

Figure 3.17: Fault diagnosis results based on PNN classifier  

for noiseless data 
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Table 3.8: Classification Specificity and Positive Predictivity for ANN networks with 
noiseless data 

Detection network type ANN tested on noiseless data 

classes Specificity (%) Positive Predictivity (%) 

Healthy case 87.14 72.16 

Faulty case 100 100 

Diagnosis network type ANN tested on the noiseless test data 

classes Specificity (%) Positive Predictivity (%) 

Fault1 67.66 57.35 

Fault2 92.12 86.38 

Fault3 100 100 

 
Table 3.9: Classification Specificity and Positive Predictivity for PNN networks with 

noiseless data 

Detection network type PNN tested on the noiseless test data 

classes Specificity (%) Positive Predictivity (%) 

Healthy case 100 % 100 % 

Faulty case 100 % 100 % 

Diagnosis network type PNN tested on the noiseless test data 

classes Specificity (%) Positive Predictivity (%) 

Fault1 100 % 100 % 

Fault2 100 % 100 % 

Fault3 100 % 100 % 

 

According to the results given above, the high classification abilities of          

the proposed method, based on PNN classifiers, are clearly demonstrated, 

whether at the detection stage or at the diagnosis stage. In fact, all the evaluated 

metrics (classification accuracy, sensitivity, specificity and positive predictivity) 

give a 100% success rate for the classification of the input samples in their 

corresponding classes (see table (3.5) and table (3.9)). Furthermore, these high 

performances, to correctly classify the incoming samples in their right classes, are 

highlighted by the confusion matrixes given in table (3.7) and represented 

graphically in Figures (3.16-3.17). However, the evaluation metrics for ANN 

classifiers (Table (3.5)) have given lower percentage rate in both detection         
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and diagnosis stages. For instance, a very low percentage rate is obtained for 

sensitivity metric (32.61%) in case of fault#3. This luck to classify some samples in 

their right classes, observed in ANN classifiers, is clearly observed in the 

confusion matrixes plots where data belonging to certain classes are wrongly 

classified in another classes (Figures (3.14-3.15)). Thus, with the case of 

noiseless data, the PNN classifiers have given better results than ANN classifiers 

regarding fault detection and diagnosis. 

3.4.3.2. Noisy data case 

In practical cases, the measured quantities from the PV system are subjected 

to various types of disturbances and noises, caused mainly by the tolerances of 

the measuring devices and sensor drifts.  

However, since these disturbances are difficult to be quantified from a 

practical point of view and in order to test the performances of the proposed PNN 

with noisy data, we have considered the measured data as noiseless data where a 

predefined noise function is added to each attribute to form the noisy data.  

This predefined noise function is a simple MatlabTM routine given by the 

following equation:  

    Disturbance randn(1, N)= α +β×                      (3.10) 

Where: 

α is the mean of the disturbance signal; β is the standard deviation of the 

disturbance signal and which defines its magnitude; “randn” is an implemented 

Matlab function used to generate a normal distributed number, and N is the size of 

the disturbance signal. 

Subsequently, the two networks (ANN and PNN), previously constructed in 

subsection (3.3.2.2), are tested on noisy data as follows: 

- The disturbance signal is added to the corresponding attributes (T, G, Impp 

and Vmpp) by using equation (3.10). 

- The added noisy signals are characterized by their means equal to zero 

and their standard deviations equal to the disturbance magnitude. 

- The chosen magnitudes of each disturbed attribute are: βT = 4°C,                  

βG= 5 W/m², βImpp = 2 A, and βVmpp =5 V. 

In order to test the networks efficiency with noisy data, the used learning set is 

composed of noiseless data, while the test set includes only the noisy attributes.  
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By following the same assessment steps, described in subsection (3.4.3.1), the 

simulation results in terms of Classification Accuracy (Total Efficiency), 

Classification Sensitivity, Confusion Matrixes, Specificity and Positive Predictivity 

for the case of noisy data are summarized in Tables (3.10-3.14) and graphically 

represented in Figures (3.18-3.21). 

Table 3.10: Classification accuracy and Sensitivity results with noisy data 

Detection networks tested on the noisy test data 

 
The classifier 

type 

Classification 
accuracy % 

Sensitivity % 

Healthy operating 
case 

Faulty operating 
case 

ANN 58.02 66.85 55.07 

PNN 82.34 61.96 89.13 

Diagnosis networks tested on the noisy data 

 
The classifier 

type 

Classification 
accuracy % 

Sensitivity % 

Fault 1 Fault 2 Fault 3 

ANN 76.63 69.02 91.85 69.02 

PNN 98.19 100 94.57 100 

 

Table 3.11: Confusions matrixes of ANN networks with noisy data 

Detection network type ANN tested on the noisy test data 

The real classes 
The predicted classes 

Healthy case Faulty case 

Healthy case 123 61 

Faulty case 248 304 

Diagnosis network type ANN tested on the noisy test data 

The real classes 
The predicted classes 

Fault 1 Fault 2 Fault 3 

Fault 1 127 57 0 

Fault 2 15 169 0 

Fault 3 15 42 127 
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Table 3.12: Confusions matrixes of PNN networks for the case of noisy data. 

Detection network type PNN with noisy data 

The real classes 
The predicted classes 

Healthy case Faulty case 

Healthy case 114 70 

Faulty case 60 492 

Diagnosis network type PNN with noisy data 

The real classes 
The predicted classes 

Fault 1 Fault 2 Fault 3 

Fault 1 184 0 0 

Fault 2 10 174 0 

Fault 3 0 0 184 

 

 
Figure 3.18: Fault detection results based on ANN classifier for the case of noisy data. 
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Figure 3.19: fault diagnosis results based on ANN classifier for the case of noisy data. 

 

 

Figure 3.20: fault detection results based on PNN classifier for the case of noisy data. 
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Figure 3.21: Fault diagnosis results based on PNN classifier  

for the case of noisy data. 

 

 
Table 3.13: Classification specificity and Positive Predictivity  

for ANN networks under noisy data 

Detection network type ANN tested on the noisy test data 

classes Specificity (%) Positive Predictivity (%) 

Healthy case 55.07 33.15 

Faulty case 66.85 83.29 

Diagnosis network type ANN tested on the noisy test data 

classes Specificity (%) Positive Predictivity (%) 

Fault1 91.85 80.89 

Fault2 73.10 63.06 

Fault3 100 100 
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Table 3.14: Classification specificity and Positive Predictivity  

for PNN networks under noisy data. 

Detection network type PNN tested on the noisy test data 

classes Specificity (%) Positive Predictivity (%) 

Healthy case 89.13 65.52 

Faulty case 61.96 87.54 

Diagnosis network type PNN tested on the noisy test data 

classes Specificity (%) Positive Predictivity (%) 

Fault1 97.28 94.85 

Fault2 100 100 

Fault3 100 100 

 

By closely analyzing the above results, it can be noted that even the 

exaggerated magnitudes of the noisy attributes (βT = 4°C, βG= 5W/m², βImpp = 2A, 

and βVmpp =5V), the two PNN classifiers still have a motivated results in both 

detection and diagnosis stages. 

 In addition, according to table (3.10) and table (3.14), the main performance 

metrics have not undergone a serious decline even under this test condition. For 

instance, the recorded classification efficiency, for the proposed classifiers, is 

82.34% for detection network, and 98.19% for diagnosis network.  

In contrast, the test of the ANN classifiers under noisy data has led to a 

significant decrease of almost all the performance metric indicators. For instance, 

the recorded classification efficiency is 58.02% for the detection network. 

Moreover, a very low percentage rate is obtained for the positive predictivity metric 

(33.15%) in the case of the healthy state (Table (3.13)). This significant decrease 

of the performances for ANN classifiers is also clearly observed in the confusion 

matrixes plots where several amounts of data belonging to certain class are 

wrongly classified in another classes (Figures (3.18-3.19)). 
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 3.4.3.3. PNN classifiers’ efficiency under real operating conditions: 

a. PNN classifier’ efficiency under noiseless data: 

As mentioned in the previous sections, the on-site measurements have been 

considered as noiseless data in this work. Thus, in this subsection a real 

measured daily profile of temperature and irradiance is used to assess the 

detection and diagnosis capabilities of the proposed PNN classifiers when the 

prescribed faults occur in a particular time of day. For clarity purposes, the 

measurements of a clear day are taken as a test pattern, where faults are 

intentionally introduced in the following manner: 

From 2h:00 to 8h:00, the PV system is in normal working conditions (no 

faults), then a short-circuit of three PV modules (Fault#1) in the same string has 

been introduced at 8h:01. The system remains in that faulty condition until 9h:30. 

At this time, the fault is cleared and the system comes back to its normal state. At 

11h:00, the system was forced to work under a condition of ten (10) short-circuited 

PV modules (Fault#2). The system keep working in this state until 12h:30 where 

the fault is cleared and the PV system comes back to its normal condition. After 

that, from 14h:00 to 15h:30 the first string of the PV array is completely 

disconnected (Fault#3). Thereafter, this fault is removed and the system continues 

working in normal conditions. These details are graphically shown in Figures 

(3.22-3.23), for the monitored irradiance and module temperature, and Figures 

(3.24-3.26), for Impp, Vmpp and Pmpp. 

 
Figure 3.22: The used daily profile of onsite irradiance level. 
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      Figure 3.23: The used daily profile of onsite temperature level. 

 

 
        Figure 3.24: The used daily profile of real measured current at MPP “Impp”. 
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Figure 3.25: The used daily profile of real measured voltage at MPP “Vmpp”. 

 
Figure 3.26: The used daily profile of real measured power at MPP “Pmpp”. 
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The main results, obtained when using the previous patterns, are shown in 

Figure (3.27) (detection) and in Figure (3.28) (diagnosis). 

 It is clearly shown that, before the occurrence of any fault, the detection PNN 

network (Figure (3.27)) generates 'Class 2', indicating healthy operating state. 

While the diagnosis PNN generates, in this particular case, "class 0" which 

denotes that is not yet activated. Therefore, the entire photovoltaic array is 

considered to be in a normal operating state.  

In case of faulty operation, the detection PNN generates "Class 8" indicating 

the occurrence of a fault (see Figure (3.27)), while the diagnosis PNN generates 

"Class 4, Class 6 and Class 9", which are the corresponding classes for             

the considered faults diagnosed at the time of their appearance (Figure (3.28)). 

 
Figure3.27: Fault detection results of PNN classifier in the presence  

of multiple faults and tested under noiseless data. 

 
Figure 3.28: Fault diagnosis results of PNN classifier in the presence  

of multiple faults and tested under noiseless data. 
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b-  PNN classifiers’ efficiency under noisy data. 

In this last test, the effectiveness of the proposed method is carried out by 

superimposing the predefined noise levels (Equation (3.10)) to the monitored data. 

The same patterns, described above, have been used in this test. Fault detection 

and diagnosis results are summarized in Figures (3.29-3.30), respectively. 

 
Figure 3.29: Fault detection results of PNN classifier in the presence 

 of multiple faults and tested under noisy data. 

 
Figure 3.30: Fault diagnosis results of PNN classifier in the presence  

of multiple faults and tested under noisy data. 
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In this particular test, the results shown in figures (3.29-3.30) include some 

misclassifications mainly due to the exaggerated magnitudes of the superimposed 

noises. Obviously, such noise levels can lead to highly distorted attributes. But, 

despite the use of noise signals of a such magnitude, fault detection and diagnosis 

results based on PNN classifiers are very motivating even with the appearance of 

these misclassifications. In fact, the recorded PNN classifier efficiency is of 

82.34% for the detection network and 98.19% for the diagnosis network. 

3.5. Conclusion: 

    This chapter has proposed an enhanced machine learning based approach 

for fault detection and diagnosis of PV systems. The efficiency of this method has 

been tested and validated using experimental measurements and simulated data. 

In the other side, the proposed strategy has been tested and compared with the 

conventional feed-forward ANN classifier for both noisy and noiseless data.  

Finally, this method has been evaluated under real operating conditions, using real 

experimental measurements, collected from the tested PV system, in order to 

evaluate its performance and robustness. Results have shown clearly the high 

efficiency of this method to detect and diagnose DC side anomalies occurrences 

for both noiseless and noisy data. 

However, the efficiency of this approach to detect and diagnose short-circuit 

faults is guaranteed from at least two short-circuited PV modules. In fact, short-

circuit of one PV module cannot be detected using this approach. This is due to its 

high similarity with healthy system for a large scale PV plant. 
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CHAPTER 4 

FAULTS DETECTION AND DIAGNOSIS OF PHOTOVOLTAIC 

SYSTEMS USING STATISTICAL APPROACHES  

 
4.1. Introduction:   

In this chapter, two statistical-based methods of faults detection and diagnosis 

in PV systems are developed. The first method denotes the improved ratio-based 

strategy [17]. It consists on the evaluation of three coefficients: currents coefficient

α , voltage coefficient β  and power coefficient γ , and it allows the detection and 

diagnosis of short-circuits and open-circuits faults.  

In the other side, the second statistical-based method applies two control 

charts, EWMA [11, 12, 58] and Shewhart [59-61] charts, to detect and diagnose 

DC side faults. This last strategy combines the ODM flexibility, and the control 

charts aptitude in detecting small changes in PV systems, to elaborate an efficient 

strategy of faults detection and diagnosis.   

The detailed explanations of these two methods will be given in the next 

sections.  

4.2. The improved ratio-based method: 

This section proposes an efficient strategy to detect and diagnose short-

circuits and open-circuits faults in PV systems, based on the evaluation of three 

coefficients. The proposed method consists fundamentally on two steps: an offline 

step based on a simulation model, and an online step at which a comparison 

between the real measured coefficients against those obtained in the offline step is 

performed. The simulation model of the PV array has been validated using real 

experimental data of a daily profile from the Algerian PV system described 

previously. The effectiveness of the proposed method has been evaluated also 

based on the PSIM/Matlab Co-simulation approach of four operating cases: 

healthy operating case, one short-circuited module in a string, five short-circuited 

modules in a string, and finally a completely disconnected string in the array 

operating case. Simulation results have demonstrated the ability of the proposed 
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method to detect and diagnose short-circuits and open-circuits faulty operations 

under any meteorological condition.  

4.2.1. Fundamental principle:  

In order to detect and diagnose both short-circuits faults and open-circuits 

faults, three coefficients for each type of fault have been introduced: current 

coefficientα , voltage coefficient β  and finally power coefficient .γ  

The expressions given bellow define each coefficient.  

                                  mpp _ healthy _ case

faulty _ case

mpp _ faulty _ case

I (T,G)
(T,G)

I (T,G)
α =

    
         (4.1) 

mpp _ healthy _ case

faulty _ case

mpp _ faulty _ case

V (T,G)
(T,G)

V (T,G)
β =                          (4.2) 

           mpp _ healthy _ case

faulty _ case

mpp _ faulty _ case

P (T,G)
(T,G)

P (T,G)
γ =                           (4.3) 

where:  

mpp _healthy _caseI , mpp _healthy _ caseV and mpp _healthy _caseP are the non-faulty case’s MPP 

coordinates; mpp_ faulty _caseI , mpp _ faulty _caseV and mpp_ faulty _caseP are the MPP coordinates 

of the faulty cases (short-circuits and open-circuits faults ). 

The proposed approach consists of two main steps: an offline step that aims   

to extract the lower and higher boundaries of each one of the three coefficients, for 

each category of fault, and an online step in which we calculate the three real 

onsite coefficients and compare them against the variation boundaries of each 

type of fault.   

Hereafter the detailed procedure of this method is presented: 

a- The offline step 

As described before, the aim of this step is to extract, for each faulty case, the 

variation boundaries of each coefficient. Toward this end, three stages should be 

accomplished, as follows: 
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• Simulate both healthy and faulty operating cases, under few 

meteorological conditions, using a PSIMTM/MatlabTM Co-simulation. This 

step is devoted to extract few MPP coordinates for each simulated case. 

• Calculate the three coefficients (α ,β  and γ ) of each faulty case                    

(short-circuits and open-circuits faults) based on equations (4.1-4.3).  

• For each type of fault, extract the variation boundaries of the three 

coefficients by adding an offset of ± 2%  for the three obtained 

coefficients. 

b- The online step: 

During the real operation of PV system, both meteorological conditions and 

MPP values could be measured and monitored using the different sensors.                 

These measurements will be used to calculate the three real onsite coefficients, 

such as: 

 mpp _ healthy _ case

measured

mpp _ real _ case

I (T,G)
(T,G)

I (T,G)
α =                            (4.4) 

 mpp _ healthy _ case

measured

mpp _ real _ case

V (T,G)
(T,G)

V (T,G)
β =                           (4.5) 

 mpp _ healthy _ case

measured

mpp _ real _ case

P (T,G)
(T,G)

P (T,G)
γ =                           (4.6) 

 Where:  

mpp _healthy _caseI , mpp _healthy _ caseV and mpp _healthy _caseP describe the MPP current, Voltage 

and Power of the healthy case, and which could be obtained directly based on our 

proposed MPP estimation strategy given in chapter 2. 

mpp _real_ caseI  , mpp_real_caseV
 
and mpp _real_ caseP  denote the real measured MPP current, 

voltage and power, respectively. 

Finally, the real onsite coefficients are compared against the variations boundaries 

of each faulty case, stored before from the offline step.  
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To finish with, the fault occurrence will be identified by using the real onsite power 

coefficients γmeasured  in such away if its value exceeds 1.02, a DC side’s fault alarm 

will be triggered. In the other hand, the type of faults will be diagnosed based on 

the comparison between the three real onsite coefficients and the variation 

boundaries of each simulated faulty case.   

4.2.2. Simulation results: 

The effectiveness of the proposed improved ratio-based approach has been 

tested based on PSIM/Matlab Co-simulation of the previously described 

Algerian GCPV system.  

Four case studies: healthy PV array, one short-circuited PV module in a string, 

five short-circuited PV modules in a string and a completely disconnected string in 

the array; are suggested in this work, to show the performance of the proposed 

procedure to detect and diagnose the previously described faults. The four 

scenarios are simulated using real daily profile of irradiance and temperature. 

The MPP data points obtained from the simulation results have been 

subdivided into two sets; the first set includes few measurements, and it has been 

reserved to the offline step, where the upper and lower variation boundaries of the 

three coefficients have been extracted for each fault type, while the second set 

includes the remaining measurements, and it has been considered as the test set 

of the proposed fault detection and diagnosis method. Simulations results of the 

offline step for the three faulty cases are shown in Figures (4.1-4.3). 

 

Figure 4.1: Current coefficient α evaluated under the different faulty operations. 
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Figure 4.2: Voltage coefficient β  evaluated under the different faulty operations. 

 

Figure 4.3: Power coefficient ɤ evaluated under the different faulty operations. 

As described previously, the next stage consists on the online step, where the 

actual MPP measurements should be compared against the boundary sets of 

each faulty case, in order to diagnose the type of the occurred faults. 

Simulation results of the actual measured coefficients against those obtained 

in the offline step are shown in figures (4.4-4.6). During this simulation,                

the variation boundaries of each faulty case have been achieved from their faulty 

coefficients with an offset of± 2% .  
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Figure 4.4: Actual measured coefficients against their variations boundaries  

for one short-circuited PV module faulty case. 

 

Figure 4.5: Actual measured coefficients against their variations boundaries  

for five modules short circuited faulty case 
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Figure 4.6: Actual measured coefficients against their variations boundaries  

for the completely disconnected string faulty case. 

As can be seen from the simulation results, for all the simulated faulty 

operations, the three measured coefficients obtained from the online step are 

inside their boundary sets obtained from the offline step. Therefore, these results 

show clearly the efficiency of this strategy to detect and diagnose the 

aforementioned faults.   

4.3. Control charts-based method: 

Here, an efficient approach for faults detection and diagnosis is suggested [11, 

62, 63]. This approach combines the flexibility and simplicity of the ODM with the 

extended capacity of an exponentially weighted moving average (EWMA) control 

chart to detect incipient changes in a PV system. The one-diode model, which is 

easily calibrated due to its limited calibration parameters, is used to predict the 

healthy PV array’s maximum power and its coordinates (current ‘Impp’ and voltage 

‘Vmpp’) using measured temperatures and irradiances. Residuals, which capture 

the difference between the measurements and the predictions of the ODM,               

are generated and used as fault indicators. Then, the EWMA monitoring chart       

is applied on these residuals to detect fault occurrence and identify its type. Actual 

data, from the previously described Algerian GCPV system, are used to assess 

the performance of the proposed approach. Results show that the proposed 
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approach successfully monitors the DC side of PV systems and detects the DC 

side faults. 

 4.3.1. Fundamental principle: 

The overarching goal of this strategy is to improve the PV system efficiency by 

monitoring its DC side in an efficient manner. Traditionally in manufacturing 

industries, statistical quality control is used for monitoring and controlling product 

quality. Furthermore, statistical process control charts can provide early warnings 

of the abnormal changes in the system operations, helping the operators              

to identify the onset of potential faults, such as short-circuits faults, open-circuits 

faults, sensor bias and shading faults. These statistical charts include Shewhart, 

cumulative sum (CUSUM) [64-66], and EWMA charts. 

The univariate statistical methods, such as the Shewhart and EWMA charts , 

have been widely used to monitor industrial processes for many years [11, 62]. 

These methods are briefly introduced here. 

 4.3.1.1. Shewhart monitoring chart: 

In a Shewhart chart, a sequence of samples (denoted as xi) is plotted against 

time. Upper and lower control limits for these samples are established around     

the process mean (µ) based on the three-sigma rule, i.e., UCL \ LCL = µ0  ± 3σ0, 

where σ0 is the standard deviation of the fault-free (healthy system) data 

computed when the process is running under healthy conditions.  

Whenever the most recent measured point or a consecutive sequence of 

points is outside the control limits, an abnormal condition is encountered, and 

attention is focused on diagnosing the source of the problem. Here, the Shewhart 

chart is used as a benchmark for fault detection and diagnosis in the DC side of a 

PV system. In the next section, EWMA chart and its use in fault detection and 

diagnosis will be briefly described. 

4.3.1.2. EWMA monitoring chart: 

In this section, the basic idea of the EWMA chart and its properties are 

introduced. For a more detailed discussion about its design, implementation and 

properties, refer to [11, 58]. EWMA is constructed based on the exponential 

weighting of available observations, a design that provides improved sensitivity     
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to small changes in the mean of a multivariate process. EWMA charts are able     

to detect small shifts in the process mean because its statistic is a time weighted 

average of all previous observations. This chart was firstly introduced by Roberts 

[12, 58] and it has been extensively used in time series analysis. It is an anomaly-

detection technique widely used by scientists and engineers in various disciplines 

[63, 67, 68]. 

Assume that {x1,x2,...,xn} are individual observations collected from a 

monitored process. The expression for EWMA is given as follows: 

 
( )t t t 1

0 0

z x 1 z     if  t 0

z

−= λ + − λ >


= µ
                            (4.7) 

The starting value, z0, is usually set to be the mean of the fault-free data, µ0. zt is 

the output of the EWMA chart and xt is the observation from the monitored process 

at the current time.  

The forgetting parameter, λ∈ [0,1], determines how fast EWMA forgets the data 

history.  

From equation (4.7), it is easy to see that: 
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Using equation (4.7) recursively, we find that the EWMA is a linear combination of 

the observations: 

( ) ( ) ( ) ( )2 n 1 n

n n n 1 n 2 1 0z x 1 x 1 x ... 1 x 1
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− −= λ + λ − λ + λ − λ + + λ − λ + λ −λ µ          (4.8) 

Equation (4.8) can also be written as follows: 
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Where: λ(1−λ)n−t is the weight for xt, which decreases off exponentially for the past 

observations. 
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In other words, as time passes, the smoothed statistic zt becomes the weighted 

average of a greater and greater number of the past observations xt−n, and the 

weights assigned to the previous observations are in general proportional to the 

terms of the geometric progression{ }2 3, (1 ), (1 ) , (1 ) ,...λ λ −λ λ −λ λ −λ . 

A geometric progression is the discrete version of an exponential function, so this 

is where the name of this method is originated. The weighting for older data point 

decreases exponentially, giving much more important to the recent observation 

while still not discarding the older observation entirely. It can be seen that if λ is 

small, more weight is assigned to the past observations and the chart is efficient at 

detecting small changes in the process mean. On the other hand, if λ is large, 

more weight is assigned to the current observation and less weight is assigned     

to its previous observations. The chart is thus able to detect large shifts [62]. In the 

special case when λ=1, EWMA is equal to the most recent observation, xt, and 

provides the same results as the Shewhart chart provides. 

As λ approaches zero, EWMA approximates the CUSUM criteria, which give equal 

weight to the historical observations. 

Under fault-free conditions, the standard deviation of zt is defined as [11, 62]: 

 ( )
t

2t

z 0 1 1
2

λ  σ = σ − −λ −λ
                                   (4.10) 

Where: σ0 is the standard deviation of the fault-free or preliminary data. Therefore, 

in such cases, ( )
t

2

t 0 zz N ,µ σ . However, in the presence of a mean shift at         

the time point, the chart statistic will be defined as follows [11, 62]:  

( ) ( )( )t

n 1 2

t 0 1 0 zz N 1 1 ,
−τ+ = µ + − −λ µ −µ σ                        (4.11) 

It can be seen from equation (4.11) that the mean of the EWMA statistic in          

the presence of faults is a weighted average of µ0 and µ1, and the weight of µ1 is 

larger when n is larger. Therefore, the EWMA statistic, zt, indeed contains useful 

information about the mean shift. 

The upper and lower control limits of the EWMA chart for detecting a mean shift 

are: 
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t0 zUCL / LCL L= µ ± σ                                    (4.12) 

where L is a multiplier of the EWMA standard deviation, σzt. The parameters L and 

λ need to be set carefully [11, 62]. L is usually specified in practice to be 3, which 

corresponds to a false alarm rate of 0.27% implying that 99.73% of the 

observations should be contained within the control limits in normal conditions. 

The value of λ is usually set between 0.2 and 0.3 [11]. 

On the other hand, from equation (4.10), it can be seen that the term [1 − (1 − λ) 2t] 

converges to unity as t gets larger. In practice, people often use the asymptotic 

variance of zt, 
t

2 2

z 0
2

λ
σ = σ

−λ
% . 

Of course, If zt is within the [LCL,UCL] interval, then it will be concluded that        

the process is under control up to time point t. Otherwise, the process is 

considered out of control. 

4.3.1.3. ODM-based EWMA for faults detection and diagnosis: 

In general, the model is firstly built and then a fault diagnosis procedure is 

accordingly performed. The estimation of the residuals, which is crucial in this 

method, depends on the appropriate system modeling. Once the ODM is built, 

based on the healthy system data, and validated, it can be used to monitor          

the future deviations in the system. Here, the advantages of the ODM with those of 

the EWMA monitoring chart are combined, which should result in an improved 

fault detection and diagnosis strategy, especially for detecting small changes. 

Specifically, in this approach, the EWMA chart is employed for fault detection and 

diagnosis to indicate how well the measurements conform to the model or how 

large the deviation from the normal model is.   

Towards this end, the EWMA chart is applied to monitor residuals obtained 

from the ODM (see Figure (4.7)). 

The differences between the real measured and predicted MPP current, MPP 

voltage and MPP power (obtained from the simulation model) are the residuals 

that can be used as indicators to detect and diagnose the possible faults. 

 [ ]t t t t t t t t t
ˆ ˆ ˆI I I ,   V V V ,    P P P ,    t 1,n= − = − = − ∈% % %                        (4.13) 
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where: It and tÎ  are the measured and the predicted MPP current, respectively; tV

and tV̂ are the measured and predicted MPP voltage, respectively; tP and tP̂ are the 

measured and the predicted peak power, respectively. 

 

Figure 4.7: The flowchart of the proposed strategy 

 of faults detection and diagnosis. 

In this work, the residuals are used as fault indicators. Indeed, under normal 

operation, the residuals are close to zero due to measurement noise and errors, 

while they significantly deviate from zero in the presence of abnormal events.    

The implementation of the developed monitoring methods comprises two stages: 

(i) an offline modeling and (ii) an online monitoring. In the offline modeling phase, 

the ODM is used on the normal operating data (training data), enabling us             

to obtain a reference model. Then, the fault detection procedure is executed by 

using the reference simulated model with the EWMA chart in the online monitoring 

phase.  

The ODM-EWMA fault detection and diagnosis algorithm is summarized as 

follows: 

Given:  

• Real measurements of irradiance and module temperature.  
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• Real measurements of MPP (Impp and Vmpp) collected from the PV plant 

under normal operating condition. 

• The PV module electrical characteristics obtained from the manufacturer 

datasheet. 

 

Build the ODM using the fault-free training data: 

• Extract the ODM electrical parameters based on the measured cell 

temperature and irradiance, collected from the monitored PV system under 

normal operating conditions, using the best-so-far ABC algorithm. 

• The extracted parameters are then used to simulate the PV system 

behavior (PSIMTM/MatlabTM co-simulation). 

• Compute the residuals between the measured and the predicted DC 

current, DC voltage and DC power (Impp, Vmpp and Pmpp) from the 

constructed model using fault-free data. 

• Compute the control limits for the EWMA chart using equation (4.12). 

 

Test the new data: 

• Generate residual vectors, %I , %V and %P, by using the simulation model. 

• Compute the EWMA monitoring statistic for the new data using equation 

(4.7). 

 

Check for faults: 

• Declare a fault when the EWMA decision statistic for the new data exceeds 

the control limits. 

To improve the system operations, we want not only to monitor the system in 

an efficient manner, but also to identify the type of fault that results in any 

degradation of the PV system, including declines in operation reliability, and 

profitability, such that we can accordingly respond by making any necessary 

correction to the system.  

Towards this end, the EWMA chart is applied on the residual of output DC 

power to detect the presence of faults. Then, the type of fault is identified by 
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analyzing the monitoring results of the EWMA chart when it is applied to the 

residuals of output DC current and voltage. The fault identification procedure is 

summarized in Figure (4.8). 

The proposed strategy tests at the first stage the DC output power to detect a 

fault. This choice is mainly due to the fact that faults affect it inevitably. Thus, it is 

used as the fault indicator in the detection phase. On the other hand, both DC 

output current and voltage are unsuitable to be used as sensitive indicators in this 

phase. For example, when a short circuit occurs in one PV module from a string, 

current indicator value will not be significantly changed from its healthy set point. 

Meanwhile, a substantial change will appear in the power indicator (peak of 

power). 

Besides, the same situation occurs when a string is completely disconnected. 

Indeed, the DC output voltage remains unaltered regarding its healthy status in 

contrast to the peak power, which will decrease significantly. Moreover, the 

ranking of the current and voltage indicators is unimportant in the fault diagnosis 

phase. 

 

Figure 4.8: The fault identification procedure. 



130 

 

 4.3.2. ODM-based monitoring charts results of fault detection and diagnosis: 

The proposed fault detection scheme is validated using practical data 

collected from the previously described Algerian GCPV system. In this section,   

the ability of the EWMA chart to detect the presence of faults in the data and         

to identify the type of detected fault is assessed. To this end, three cases, 

involving different types of faults, were conducted. In the first case, it is assumed 

that the PV system contains one or more short-circuited PV modules. In the 

second case, an open-circuit PV string is considered. In the third case, the 

monitored PV system is exposed to temporary shadowing. 

 4.3.2.1. Normal operating condition: 

Monitoring results from ODM-based Shewhart chart under normal operating 

conditions are shown in Figure (4.9(a-c)), monitoring results from the EWMA chart 

under normal operating conditions are presented in Figure (4.10(a-c)). Since the 

Shewhart plots for current, voltage and power shown in Figure (4.9(a-c)) are 

based on normal operating data; we expect that almost all the data will lie within 

the lower and upper control limits. Similarly, the data points in the EWMA charts 

are also within the confidence limits (see Figure (4.10(a-c))). It can be concluded 

that the ODM model describes the data well when no faults are presented. 

 

Figure 4.9: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b) 

and DC power (c) under normal operating conditions. 

 

Figure 4.10: Monitoring results of a EWMA chart for DC current (a), DC voltage (b) 

and DC power (c) under normal operating conditions. 
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4.3.2.2. Case of open-circuit PV string: 

In this case, the performance of the two monitoring charts when there is an 

open-circuit fault is investigated. To do so, an open-circuit fault in a PV array         

is introduced by disconnecting the second string from the monitored PV system 

(see fault #1 in Figure (4.11)) between sample times 300-500. To monitor the PV 

system, the residuals (i.e., %I , %V and %P) are firstly computed. Then both monitoring 

charts, Shewhart and EWMA, are used for fault detection and diagnosis. 

The Shewhart and EWMA charts based on the MPP residuals of current, 

voltage and power are presented in Figures (4.12-4.13) ,respectively. The shaded 

area is the region where the fault is introduced. The plots in Figures (4.12(c)-

4.13(c)) indicate that before the occurrence of the fault, both charts are within the 

lower and upper control limits. The PV system is thus working normally. For this 

case, the two charts can both give fault signals because the introduced fault is 

quite large.  

Figures (4.12(c)-4.13(c)), show that the Shewhart and EWMA charts based on 

the output power residuals, %P, significantly decrease and exceed the lower control 

limits, indicating that there is a significant power loss. Since one of the two strings 

of the PV array is disconnected at this fault, a large amount of power (nearly 50% 

of the rated power) is lost. After detecting the presence of a fault, the monitoring 

results related to the output DC current and voltage are analyzed to identify the 

type of fault.    

Both Figures (4.12(b)-4.13(b)) are within the lower and upper control limits 

before and after the fault, which means that the DC voltage is almost the same 

after the occurrence of this open-circuit fault. The two monitoring charts based on 

the current residuals are given in Figures (4.12(a)-4.13(a)). These figures show 

that both charts exceed the lower control limits, indicating the presence of a faulty 

string (open-circuit fault). Indeed, the current of the faulty string drops to zero 

when the string is disconnected from the PV array. As a result, the residuals, 

which indicate the difference between the simulated and measured DC current, 

immediately decrease after the occurrence of the open-circuit fault. From this 

case, it can be seen that the open-circuit fault in a PV array increases the power 

loss, reduces the array current and results in almost the same array voltage as   
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the normal PV array voltage. These results indicate the efficiency of these charts 

in detecting and diagnosing open-circuit faults in a PV system. 

 

Figure 4.11: Open-circuit and short-circuits faults 

 

Figure 4.12: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b) 

and DC power (c) in the presence of an open-circuit fault. 

 

Figure 4.13: Monitoring results of a EWMA chart for DC current (a), DC voltage (b) 

and DC power (c) in the presence of an open-circuit fault. 
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4.3.2.3. Case of a short-circuit fault in a PV string:  

In this case, the detection of short-circuited PV modules in the monitored PV 

system is investigated. Four examples are given in this study (see Figure (4.11), 

faults #2-#5). 

a- One short-circuited PV module:   

In the first example, the second module of the first string is short-circuited from 

the observation number 300 until the end of the testing data (see Figure (4.11), 

fault #2). The output DC current, voltage and power were monitored using 

Shewhart and EWMA charts. The two monitoring charts are shown in Figure 

(4.14(a-c)) and Figure (4.15(a-c)). Figure (4.14) shows that the Shewhart chart 

cannot detect this fault. In fact, Shewhart chart is insensitive to this fault because it 

is designed to detect relatively moderate and large faults, while the fault in this 

case is quite small. This is mainly due to the fact that the Shewhart chart uses only 

observed data at a particular instant to make a decision about the process 

performance and it ignores past data. On the other hand, the plot in Figure 

(4.15(c)) shows clearly the capability of the EWMA monitoring chart in detecting 

this small fault. From the plots in Figures (4.15(a-b)), it can be seen that the DC 

current residuals are within the control limits, while the DC voltage residuals 

exceeds the lower control limit. Thus, we can conclude that the detected fault is 

related to a faulty module in the string. This case shows clearly the superiority of 

the EWMA over the Shewhart chart in detecting small faults.  

 

Figure 4.14: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b) 
and DC power (c) in the presence of one short-circuited module. 

 

Figure 4.15: Monitoring results of a EWMA chart for DC current (a), DC voltage (b) 
and DC power (c) in the presence of one short-circuited module. 



134 

 

b- Three short-circuited PV modules: 

In the second example, three modules have been short circuited in the first 

string (see Figure (4.11), fault #3). The monitoring results of the Shewhart and 

EWMA charts are shown in Figures (4.16-4.17), respectively. The performance     

of the Shewhart chart when it is applied to the output power residuals is presented 

in   Figure (4.16(c)), which shows that the Shewhart statistic clearly violates        

the lower control limit. The Shewhart chart detects this fault (i.e., a power loss) but 

it misses some data. On the other hand, the plot in Figure (4.17(c)) shows clearly 

the capability of the EWMA monitoring chart in correctly detecting this moderate 

fault without missed data. This short-circuit fault degrades the performance of     

the monitored systems and leads to a significant power loss (i.e., approximately 

15% power loss). After detecting the fault based on the output DC power, the two 

monitoring charts based on residuals of output DC current and voltage, which are 

shown in Figures (4.16(a-b)-4.17(a-b)), can provide more information about the 

type of fault. Both Figures (4.16(b)-4.17(b)) show fault signals because                

the decrease in the output DC voltage in this case is quite large. The output DC 

current from the array does not change by much. Because the output DC voltage 

decreases compared to the output DC voltage of the normal array and the output 

DC current does not change by much, we then conclude that this fault is a short 

circuit in the PV array.  

 

Figure 4.16: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b) 
and DC power (c) in the presence of three short-circuited modules in a PV array. 

 

 

Figure 4.17: Monitoring results of a EWMA chart for DC current (a), DC voltage (b) 
and DC power (c) in the presence of three short-circuited modules in a PV array. 
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c- Five  short-circuited PV modules:  

In the third example, five modules in the first string are short-circuited (Figure 

(4.11), fault #4). This fault leads to a power loss of 30% compared to the healthy 

PV array. Both monitoring charts can detect this quite large fault as shown in 

Figures (4.18(c)-4.19(c)). Similar to the above cases, to identify this fault, we look 

at the monitoring results related to the array voltage and current (see Figures 

(4.18(a-b)-4.19(a-b)). In fact, it is a fault that corresponds to a short-circuited PV 

module, since both charts based on voltage are below the control limits (see 

Figure (4.18(b)-4.19(b)), and the current does not change by much (see Figure 

(4.18(a)-4.19(a)). This demonstrates the effectiveness of the proposed strategy in 

detecting and diagnosing faults related to five short-circuited modules.   

 

Figure 4.18: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b) 
and DC power (c) in the presence of five short-circuited modules in a PV array. 

 

Figure 4.19: Monitoring results of a EWMA chart for DC current (a), DC voltage (b) 
and DC power (c) in the presence of five short-circuited modules in a PV array. 

d- Ten  short-circuited PV modules: 

In the fourth example, ten PV modules in the second string of the monitored 

PV array were short-circuited (see Figure (4.11), fault #5). Indeed, the fault 

resulted in large voltage drops and significant power loss (i.e. nearly 63%). Both 

monitoring charts can clearly detect and identify this quite large fault (see Figures 

(4.20(a-c)-4.21(a-c)). 
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Figure 4.20: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b) 
and DC power (c) in the presence of ten short-circuited modules in a PV array. 

 

Figure 4.21: Monitoring results of a EWMA chart for DC current (a), DC voltage (b) 
and DC power (c) in the presence of ten short-circuited modules in a PV array. 

4.3.2.4. Case of temporarily shading fault: 

The aim of this study is to assess the potential of the proposed ODM-based 

EWMA method to detect and identify temporarily shading faults in a PV system. 

a- Temporarily shading of four PV modules 

In this example, the first four PV modules of the second string were 

temporarily shaded (see Figure (4.22), fault #6), between samples 150 

and 250. Figures (4.23-4.24) show that both charts can detect and identify 

this fault. This type of fault may cause decreases in current and voltage 

and significant power loss. 

 

Figure 4.22: Typical faults in a PV array: temporarily shading and faulty modules. 
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Figure 4.23: Monitoring results of Shewhart chart for DC current (a), DC voltage (b) 
and DC power (c) in the presence of four PV modules temporarily shaded in the PV 

system. 

 

Figure 4.24: Monitoring results of EWMA chart for DC current (a), DC voltage (b ) and 
DC power (c) in the presence of four PV modules temporarily shaded in the PV 

system. 

b-  Temporarily shading of one PV module:  

In this example, the module #14 of the first string of the PV system was 

temporarily exposed to a fully shading (see Figure (4.22), fault #7), between 

samples 150 and 250. The shewhart chart fails to detect this fault, as shown in 

Figure (4.25(a-c)). Figure (4.26(c)) shows that the EWMA chart is able to detect 

the fault, but it cannot identify its type (see Figure 4.26(b-c)). 

 

Figure 4.25: Monitoring results of Shewhart chart for DC current (a), DC voltage (b) 
and DC power (c) in the presence of one PV module fully shaded in the PV system. 
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Figure 4.26: Monitoring results of EWMA chart for DC current (a), DC voltage (b) and 
DC power (c) in the presence of one PV module fully shaded in the PV system. 

4.3.2.5. Case of multiple faults: 

To assess the capacity of the proposed method to detect multiple faults, four 

modules in the PV system were exposed to partial shading (Figure (4.22),         

fault #6), between samples 150 and 250, and then five modules in the first string 

were short-circuited (Figure (4.22), fault #8). Monitoring results of the Shewhart 

and EWMA charts are illustrated in Figures (4.27-4.28), respectively. In this case, 

both charts can accurately detect and identify these multiple faults. 

 

Figure 4.27: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b) 
and DC power (c) in the presence of four PV modules that are partially shaded and 

five short-circuited modules in the PV system. 

 

Figure 4.28: Monitoring results of a EWMA chart for DC current (a), DC voltage (b) 
and DC power (c) in the presence of four PV modules that are partially shaded and 

five short-circuited modules in the PV system. 
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4.4. Conclusion:  

In this chapter, two statistical strategies of faults detection and diagnosis 

have been proposed. The first one consists on applying an improved ratio-based 

method to detect short-circuits and open-circuits faults in PV systems. The second 

strategy employs two statistical control charts, EWMA and Shewhart charts, to 

detect and diagnose faults in PV systems. This strategy provides satisfactory 

results in detecting and identifying short-circuit faults, open-circuit faults, and 

shading occurrence. In addition, to detect small changes (e.g., one short-circuited 

module in a string), the EWMA chart is more effective. 
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CONCLUSION AND PERSPECTIVES 
 

The developed strategies carried out in this research deal with faults detection 

and diagnosis in GCPV systems. In fact, the main goal of this research was to 

improve the PV system efficiency and protect it from potential faults, by developing 

efficient strategies of fault detection and diagnosis. More particularly, the use of 

the artificial intelligence tools (such neuronal classifiers and statistical methods) to 

deal with this concern was the thesis principal goal. 

However, using the artificial intelligence tools to deal with this problem, require 

the availability of a high-quality database that can, in one side, express the 

relationship between faults and PV system parameters, and in the other side, 

describes very well the system behavior for both healthy and faulty operations. 

In practical point of view, obtaining such a database cannot often be 

guaranteed. Indeed, operating a PV system under some types of anomalies can 

lead to dangerous situations and even catastrophic damages. Therefore, the best 

way to deal with this concern was to develop an accurate simulation model that 

well mimics the PV system behavior for both healthy and faulty operations. In this 

thesis, a PSIMTM/MatlabTM co-simulation strategy has been developed to elaborate 

this model of simulation 

In addition, the developed simulation model requires the use of the ODM five 

electrical parameters. For this reason, an efficient strategy, based on the ABC and 

the best-so-far ABC algorithms, has been developed to extract the ODM 

parameters. These algorithms have been utilized due to their efficiency in solving 

optimization problems, their convergence speeds and there simplicity in terms of 

real time implementation. The efficiency of the ODM parameters extraction stage 

has been experimentally validated using several PV modules of different 

technologies.  

After that, the extracted ODM parameters have been used to develop an 

efficient strategy of MPP estimation. This strategy has been experimentally 

validated using real measurements collected from Algerian and Spanish GCPV 

systems. The efficiency test has been carried out for clear sky and cloudy sky 

conditions. 
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Based on the elaborated database, the next step was the development of a 

neuronal based strategy of fault detection and diagnosis. In fact, two PNN 

classifiers have been developed to deal with this concern. The first one was 

dedicated to the fault detection, while the second was responsible of the fault 

diagnosis. In addition, to test the efficiency of this strategy, the PNN classifiers 

have been compared, under real operating conditions, with the feed-forward back-

propagation ANN classifiers method. This strategy has been validated using 

experimental measurements and simulation data. The obtained results have 

shown the high effectiveness of this strategy for noiseless and noisy data cases. 

Finally, two statistical strategies for faults detection and diagnosis have been 

developed. The first strategy is the improved-ratio based method and it has been 

used to detect and diagnose open-circuit and short-circuit faults. The second 

strategy is the control-charts based method for fault detection and diagnosis. This 

strategy uses two control charts, EWMA and Shewhart charts, to detect and 

diagnose the faults. The efficiency of the statistical strategies has been 

experimentally validated.  

Despite the promising results for fault detection and diagnosis, the strategies 

carried out in this thesis raise a number of questions and provides some directions 

for future works. In particular, the following points merit a serious consideration: 

• The developed control-charts based method can be extended to be 

able to detect the number of open-circuited and short-circuited PV 

modules. 

• In this thesis, the faults diagnosis is carried out using the climatic 

conditions and the MPP coordinates of current and voltage. However, 

using only these data does not allow the discrimination of large 

number of faults. To bypass this shortcoming, more input data, such 

as open circuit voltage (Voc), short circuit current (Isc) and fill factor 

(FF), can be added to the developed strategies to detect more 

categories of faults.  

• The developed strategies can also be used to detect and diagnose AC 

side faults. 
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APPENDIX ‘A’ 

LIST OF ABBREVIATIONS 

 
 
ABC Artificial Bee Colony  

AC Alternative Current 

ANFIS Adaptive Neuro-Fuzzy Inference System 

ANN Artificial Neural Network 

CUSUM Cumulative Sum 

DC Direct Current 

DE Differential Evolution 

DUT Device Under Test 

ECM Earth Capacitance Measurement 

EWMA Exponentially Weighted Moving Average  

FET Field Effect Transistor 

FN False Negative 

FP False Positive 

GBSSL Graph-Based-Semi-Supervised Learning 

GCPV Grid Connected PV system 

GISTEL Solar Radiation by Teledetection (Gisement solaire par télédétection)  

IGBT Insulated Gate Bipolar Transistor 

LCL Lower Control Limit 

MAE Mean Absolute Error 

MLD Multi-Level Decomposition 

MLP Multi-Layer Perceptron 

MPPT Maximum Power Point Tracking 

NOCT Normal Operating Cell Temperature 

OCPD Over Current Protection Device 

ODM One Diode Model 

PCS Power Conditioning system 

PDF Probability Density Function 

PID Potential Inducing Degradation 

PNN Probabilistic Neural Network 

PS Partial Shading 
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PSO Particle Swarm Optimization 

PV Photovoltaic 

RBF Radial Basis Function 

RMSE Root Mean Square Error 

ROC Relative Absolute Change 

STC Standard Test Conditions 

STD Standard Deviation 

TDR Time Domain Reflectometry  

TN True Negative 

TP True Positive 

UCL Upper Control Limit 
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APPENDIX ‘B’ 

LIST OF SYMBOLS 

 
 

λ  The forgetting parameter [ ] 

tÎ  The instantaneous predicted current [A] 

tP̂  The instantaneous predicted power [W] 

tV̂  The instantaneous predicted voltage [V] 

Cd The earth capacitance value for the whole transmission line [nF] 

CR The current ratio [ ] 

CT The temperature coefficient of power [%/°C] 

Cx The earth capacitance value from the start point to the fault point 
[nF] 

D The length of the whole transmission line [m] 

Edc The array produced energy [kWh] 

Ei The current error [A] 

Ei The residual error of DC current [A] 

Ei_ref The current error of the healthy system [A] 

ELc The error between the measured and simulated capture losses for 
the healthy system [Wh/Wp] 

Ev The residual error of DC voltage [V] 

Ev The voltage error [V] 

Ev_ref The voltage error of the healthy system [V] 

FF The file factor [ ] 

ft  The faulty status [ ] 

G The irradiance level [W/m²] 

ɤ Gamma [m²] 

G0 The nominal irradiance (1000 [W/m²]) 

Gmeas The measured irradiance [W/m²] 

I0 The diode saturation current [A] 

Iac The inverter output current [A] 

id The ideal status [ ] 

Idc The DC side output current [A] 

Impp The current at the maximum power point [A] 
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Inorm The normalized current [A] 

Iph The light-generated current [A] 

Isc The short circuit current [A] 

Isc_ref The reference short-circuit current [A] 

Istr The PV string current [A] 

It The instantaneous measured current [A] 

Itheorique The simulated current [A] 

IVf The (I-V) curve inflexion factor [ ] 

KB The Boltzmann’s constant (1.38×10-23 [J/K]) 

L,m The Bishop adjustment coefficients[ ] 

Larray The array losses [W] 

Lc The total capture losses [Wh/Wp] 

Lcm The miscellaneous capture losses [Wh/Wp] 

Lct The thermal capture losses [Wh/Wp]  

Limit The number of unsuccessful trials to produce better food source [ ]  

LN The number of onlooker bees [ ] 

MCN The maximum cycle number [ ] 

MPPf The maximum power point factor [A-1] 

n The diode ideality factor [ ] 

ƞ The sensor efficiency [%] 

Nf The faulty norm [ ] 

nm The normal status [ ] 

Nmod The number of PV modules [ ] 

Nn The normal norm [ ] 

Nss The number of PV modules in each string [ ] 

Nstr The number of PV strings [ ] 

Num_mod The module number to the disconnection point [ ] 

P0 The maximum operating power, measured at STC [W] 

Pmeas The measured power [W] 

Pmpp The peak power [W] 

PR The power ratio [ ] 

Pref The array output maximum power [W] 

Psim The simulated power [W] 

Pt The instantaneous measured power [W] 
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Ptheorique The simulated power [W] 

q The charge of an electron (1.602×10-19 [C]) 

R   The load [Ω] 

Rs The series resistance [Ω] 

RSe The equivalent series resistance [Ω] 

Rsh The parallel resistance (shunt resistance) [Ω] 

Rx The residual signal of the attribute X [ ] 

Si The threshold value of current [A] 

SN The number of employed bees [ ] 

ß The voltage coefficient [ ] 

ßVoc The temperature coefficient of open circuit voltage [%/°C] 

Sv The threshold value of voltage [V] 

T The PV cell temperature (in [Kelvins] or [Degrees Celsius]) 

Tamb The ambient temperature [°C] 

Tref The reference temperature (25 [°C]) 

V0 The maximum operating voltage, measured at STC [V] 

Vac The inverter output voltage [V] 

Vb The cell breakdown voltage of the bishop model [V] 

Vdc The DC side output voltage [V] 

Vmpp The voltage at the maximum power point [V] 

Vnorm The normalized voltage [V] 

Voc The open circuit voltage [V] 

Voc_ref The reference open circuit voltage [V] 

Voc_si The string’s open circuit voltage [V] 

VR The voltage Ratio [ ] 

Vt The thermal voltage [V] 

Vtheorique The simulated voltage [V] 

Wi The network weights [ ] 

Wmax,Wmin The Maximum and minimum percentage of the scout bees position 
[ ] 

Xt The actual observation [ ] 

Ya The array yield [Hours] 

Yr The reference yield [Hours] 

Zt The control chart output characteristic  [ ] 
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α The current coefficient [ ] 

αIsc The temperature coefficient of short-circuit current [%/°C] 

δ The smoothing parameter [ ] 

∆P The difference of power [W] 

Φi,j Random number between [-1, +1] 
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