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ABSTRACT

In this thesis, two efficient strategies of faults detection and diagnosis in Photovoltaic
(PV) systems are developed. The first strategy uses the probabilistic neural networks
(PNN) classifiers to detect and diagnose faults in the Direct Current (DC) side of Grid
Connected Photovoltaic (GCPV) systems. The second strategy suggests the development
of two statistical methods (such as the improved-ratio and control charts based methods)
to detect and diagnose the faults. The improved ratio based method consists on the
evaluation of three coefficients to detect and diagnose short-circuits and open-circuits
faults. While, the control charts based method applies the exponentially weighted moving
average (EWMA) and Shewhart charts to detect and diagnose the faults in GCPV
systems. However, the developed strategies require the availability of a high-quality
database that describes the system behavior for both healthy and faulty operations.
To deal with this concern, a PSIM™/Matlab™ co-simulation strategy is developed
to elaborate a trusted simulation model. This model requires the use of the One Diode
Model (ODM) electrical parameters. For this, an efficient strategy, based on the artificial
bee colony (ABC) and the best-so-far ABC algorithms, are developed to identify the ODM
parameters. Finally, the ODM identified parameters are used to elaborate an efficient
strategy of maximum power point (MPP) estimation. The efficiency of the developed
strategies is experimentally evaluated by using real measured data, collected from two
actual GCPV systems. The first one is a 9.54 kWp PV system located at Algiers (Algeria),

while the second one is a 0.9 kWp PV system, located at Jaen University (Spain).

Keywords: Grid connected, faults, probabilistic neural networks, statistical methods,
improved-ratio, control charts, EWMA, Shewhart, ABC, best-so-far ABC, one diode model.



Saiad Aghal by Sl Aalaill 3 lheY) adin 5 S plled el jiu) 21 5E) S5 da kY bl b
Ol g Qe (aniy (i) (PNN) Allaial) dpasll clall clivas sl e J6Y1 L) i)
Al 48 5k im0l Al La) V) £ i LS ASEIL Alatid) ddal g g Sl A (a,) aiusall
Ealae S pand 5 sha) Ll 45l saail Lpapddi s Cllae Y1 (i) (oSaill cilalade 485k 5 3 ) shal)
Jlexinl 8 pSaill cillalade 48yl ) saaii o5 AT dga o An i) 3l 55 ) pualiall 3l Gl Gasdiiiy CaiS]
] i) o ts A0S0 dlaiall kel 58 5 oSl Aakai¥) Qe addi 5 aiSl Shewhart s EWMA habis
8 Ao L A8l 5 Aagludl Al 8 s g S aldaill o gl cSlaal dad ) Ao 5 I3 iy BB 8 55 A i)
e gl Jlad 3lSae zsa kil PSIM™/Matlab™ (sl e adiad dal jin) #1581 & cnall s
it Alled dpadl yiul &) 581 5 (ladeall 228 2 padainl Jal (e slaall aal) 23 saill Clalaa 4 46 jea 73 salll
a0 Allad Aol i) skl (8 ilaleall Laliiial) adll Jaaind (Wi best-so-far ABC 5 ABC Sw )l sd e
Ol 685 568 aalla (e lgmen &8 Ll aladinly G ol ddeay da il Gl i) elal auli &5 (5 gaadll 5 8l ddais
U ALl o s 8 (L 3adl) daalall il all 8 0 g ge da) 5 5LS 9,54 G dpkal g8 g 5eS A8l plai s sV laill
(b)) Jaen dxsls 425 5e cdal 5518 0.9 Axas Aplal g8 5 56S A8l allas g8

Gllalaia b shall dandll (Cpiiloan) i b dallaiay) dsaal) GIGEN e ] @d<ually dlaidl 3 Lalida clals
leall Y #3501 (Best-so-far ABC <ABC «Shewhart <EWMA ¢Sasil)



RESUME

Dans cette thése, deux stratégies efficaces de détection et de diagnostic des défauts
dans les systemes photovoltaiques (PV) sont développées. La premiére stratégie utilise
les classificateurs a base des réseaux de neurones probabilistes (PNN) pour détecter et
diagnostiquer les défauts du cbté courant continue (CC) des systémes photovoltaiques
connectés au réseau (SPVCR). La deuxiéeme stratégie suggére le développement de
deux méthodes statistiques (telles que les méthodes basées sur les rapports améliorés et
les cartes de contréle) pour détecter et diagnostiquer les défauts. La méthode basée sur
les rapports améliorés consiste a I'évaluation de trois coefficients pour détecter et
diagnostiquer les défauts des court-circuits et des circuits-ouverts. Tandis que la méthode
basée sur les cartes de contrdle applique les cartes EWMA et Shewhart pour détecter et
diagnostiquer les défauts dans les SPVCR. Cependant, les stratégies développées
nécessitent la disponibilité d'une base de données de trés bonne qualité qui décrit le
comportement du systéme pour les opérations saines et défectueuses. A cet effet,
une stratégie de co-simulation PSIM™/Matlab™ est développée afin d’élaborer un modéle
fiable de simulation. Ce modéle nécessite I'utilisation des paramétres électriques du
Modéle a Une Diode (MUD). Pour cela, une stratégie efficace, basée sur les algorithmes
des colonies d'abeilles artificielles (ABC) et best-so-far ABC, est développée afin
d’identifier les paramétres du MUD. Finalement, les paramétres identifiés de ce modéle
sont utilisés pour élaborer une stratégie efficace d'estimation du point de puissance
maximale (PPM). L'efficacité des stratégies développées est évaluée expérimentalement
en utilisant des mesures réelles, collectées a partir de deux SPVCR. Le premier est un
systeme photovoltaique de 9,54 kWp situé a Alger (Algérie), tandis que le second est un

systéme photovoltaique de 0,9 kWp, situé a I'Université de Jaen (Espagne).

Mots clés: Connectés au réseau, défauts, réseaux de neurones probabilistes, méthodes
statistiques, rapports améliorés, cartes de controle, EWMA, Shewhart, ABC, best-so-far

ABC, modéle a une diode.
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INTRODUCTION

Context:

The need of sustainable energy solutions in the worldwide is a demand
nowadays, due to the high electricity consumption in combination with the desired
environmental friendly solutions for power production development. Photovoltaic
(PV) energy, which has gained a central place in governments’ energy policies, as
it is more suitable for grid connection and stand-alone schemes, is a promising
solution to address the aforementioned concerns [1, 2]. In addition, its eco-friendly
nature and abundance have given additional advantages that motivated its

worldwide deployment.
Problem statement:

Although the advanced tools for the PV power generation, in practice, several
factors can affect significantly the PV system performance by decreasing its
efficiency. Indeed, PV systems are frequently exposed to different sources of
faults and anomalies that affect the power generated by the PV generators. These
faults could considerably reduce the production efficiency and the lifespan of PV
arrays [3-7]. This is mainly due to external interferences or faults resulting from
dust accumulation on the PV modules, aging of PV modules, shading, MPPT

error, and inverters faults.

PV system, especially its DC side, may be subjected to defects and anomalies
causing a drop of the overall system performance or even to their total
unavailability [8]. Therefore, a real time fault detection and diagnosis procedure is
crucial, not only for lowering maintenance cost, but also to avoid any energy loss,

damage to equipment and safety hazards.

The increased attention given to fault detection and safety in PV systems has
led to the development of several methods of fault detection and diagnosis. These
methods are classified into three main types: Process-History Based methods,
Quantitative-Model Based methods, and Signal-Processing Based methods.
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Process History based methods rely mainly on machine learning and
computational intelligence methods. These methods depend on the availability of
quality input data, and their implementation is not an easy task, especially for real-
time applications. Moreover, multi-layer perceptron neural networks suffer from
their slow training step, they do not support noisy data, and could fall in local
minima instead of global one [9, 10]. These weaknesses could obviously affect the

reliability, the efficiency and even the real time utilization of these methods.

Moreover, statistical monitoring charts [11-13] are important tools for
monitoring sequential systems to make sure that they work stably and satisfactory.
However, until recently statistical control charts have not been widely used to
improve the performance of PV systems. In addition, the main shortcoming of
the proposed monitoring chart-based methods is their limitation to detect incipient

faults because they make decisions based only on the recent observations [11].

Quantitative-Model based methods compare analytically the real measured
outputs with the model-based outputs (simulated outputs) to detect and diagnose
faults in PV systems [14]. This category of methods requires the use of an
accurate simulation model that mimics the system operation under healthy and
faulty conditions. Also, it suffers from the manual strategy of threshold computation

and it requires that the PV array works at the maximum power point (MPP).

Signal-Processing Based methods rely on applying advanced techniques of
signal processing to detect and diagnose faults in PV systems. This category of
methods is an expensive strategy because it requires the use of additional
expensive devices (such as LCR meter, thermal camera... etc.) of signal

processing to detect and diagnose the faults [15, 16].
Objectives:

In the light of the above discussion, two novel strategies of faults detection and
diagnosis in GCPV systems, based on neuronal classifiers and statistical methods,

will be suggested in this thesis.

The first strategy consists on using probabilistic neural network (PNN) [9]
classifiers to detect and diagnose faults in the DC side of GCPV systems. This

choice is essentially due to the PNN convergence speed, its simplicity and
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its no-need to weights adaptations. Moreover, PNN classifier has a strong
robustness against noisy data generated by the measurement equipment and

involved sensors [9, 10].

The second strategy suggests the development of two statistical methods
(such as the improved-ratio [17] and control charts [14] based methods) to detect

and diagnose faults in GCPV systems.

The improved ratio based method consists on the evaluation of three
coefficients: currents coefficient, voltage coefficient and power coefficient,
to detect and diagnose short-circuits and open-circuits faults. While, the control
charts based method will apply two control charts, EWMA [11, 12] and Shewhart
[11] charts, to detect and diagnose the DC side faults.

The efficiency of the developed strategies will be experimentally assessed by

using real measurements collected from Algerian and Spanish PV systems.
Thesis organization:

The thesis is divided into four chapters in which the last three chapters denote
original works that have already been published.

In the first chapter, we will discuss the subject through a general study of PV
systems, as well as their different types of faults. Then, a literature review on the

already proposed methods of faults detection and diagnosis will be conducted.

The second chapter will be entirely dedicated to PV array modeling. Indeed,
the ODM of the PV module will be firstly introduced. Then, the five electrical
parameters of this model will be identified by two heuristics optimization algorithms
(ABC [18, 19] and best-so-far ABC [20, 21] ). Lastly, a new strategy for estimating

the maximum power will be suggested.

The third chapter will be devoted to the application of PNN classifiers for
faults detection and diagnosis. In this chapter, the developed strategy is based
essentially on (i) the parameters identification results, (ii) the elaboration of a
PSIM™/Matlab™ co-simulation model for the real PV system, and (iii) the

development of two PNN classifiers for faults detection and diagnosis.
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The fourth chapter will be dedicated to the development of two statistical
methods (such as the improved ratio and control chart based methods) for the

supervision, faults detection and diagnosis of PV systems.

Finally, some conclusions and future perspectives will be depicted.
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CHAPTER 1
STATE OF THE ART

1.1. Introduction:

Until recently, energy consumption in the world still grows up very obviously.
For this reason, one of the best efficient strategies, recently applied in the
developed countries, is to use renewable energy sources to satisfy their energetic
need [22, 23].

Among the different available renewable energy sources, PV energy is one of
the best alternative solutions [24]. Indeed, the sun is the most important source of
energy in our planet. Furthermore, PV sources are renewable, sustainable and
of eco-friendly nature. PV energy sources reduce significantly the pollution effect
on the environment, contrary to the traditional ones, (such as: oil, coal and
nuclear), which contaminate our atmosphere by releasing several venomous

gazes (carbon dioxide, sulphur dioxide, nitrous oxide and mercury).

In the other side, during its operation, PV systems are usually exposed to
different sources of failures and anomalies, which may noticeably reduce
the system energetic efficiency, degrade its performance and even decrease the
PV arrays lifetime [6]. Thus, efficient strategies to detect and diagnose PV system

failures at an earlier stage must be developed.

In this chapter, PV systems and their main components are briefly described.
Then, the different types of PV system failures and their main causes are listed.
Finally, a state of the art for the recently proposed strategies of faults detection

and diagnosis is presented.

1.2. PV systems:
PV systems are commonly divided into two main classes: Grid-Connected PV

(GCPV) systems and Stand-Alone PV systems. GCPV systems (also known as
grid-tied), are always interfaced to the local electricity grid, and they are mainly
used to solve the energy demand issue. In the other side, stand-alone PV systems
are self-contained, and they are mainly constructed to satisfy the energy need of

isolated customers. During the present research work, only GCPV systems
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are considered. Figure (1.1) shows the main components of a GCPV system,
while its electrical synoptic is depicted in Figure (1.2) [25].

The sun
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Figure (1.1): The main components of a grid connected PV system.

Whatever their types, PV systems are mainly composed of PV generators,

converters, cables, junction boxes and protection devices.

1.2.1. PV generator:

The PV generator is the essential unit of energy production. This unit converts
the solar energy into electrical energy through the photovoltaic effect. In other
term, the sunlight beams will be converted to electricity when they will be exposed

to some materials that exhibit the photovoltaic effect property.

1.2.1.1. PV cell:

The elementary component of PV generator is the PV cell. Generally
speaking, the generated voltage from commercial solar cell is about 0.6V, while its
produced current is mainly depending on the sunlight intensity and the solar cell
area [25].
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Figure 1.2: The electrical synoptic of a grid connected PV system [25].

1.2.1.2. PV _module:

The amount of generated current and voltage, i.e. produced power, of one
solar cell is not enough for real applications. Hence, the cells are connected in
series to increase the generated voltage and in parallel to increase the generated

current.

In fact, series and parallel interconnection of several solar cells forms a PV
module. The commercialized PV modules available nowadays are constructed of
36, 40, 54, 60, 72, or even 108 solar cells in series. These cells are sub-grouped
into several groups. Each one is connected in parallel with one bypass diode. The
main goal of this diode is to protect the group of cell from the reversed

polarization.
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1.2.1.3. PV string:
A PV string is the connection of several PV modules in series in order to reach

the required output voltage.

1.2.1.4. PV array:
In order to produce a required power under a tolerable voltage, PV modules

should be connected in series-parallel to form a PV array.

1.2.2. Converters:

PV systems are mainly composed of two types of converters, DC/DC and
DC/AC converters. The main goal of these converters is to extract the PV array
maximum power (DC power), and convert it into alternative power (AC power),

before the grid utility injection.

1.2.2.1. DC/DC converters:
When connecting a PV generator (PVG) to a load R, the operating point

(current and voltage) is defined as the intersection of the (I-V) characteristic curve
of the PVG and the (I-V) characteristic curve of the load R, as depicted in Figure
(1.3). This operating point depends on R, and the slope of the load characteristic
at this operating point is 1/R. However, there is only one optimal operating point at
which the PV generator produces the maximum power (Pmpp), and its
corresponding coordinates are noted as Impp and Vmpp. Thus, adaptation blocks are

required for the maximum power extraction.

These blocks of adaptation consist of DC/DC converters, which are equipped with
a maximum power point tracking (MPPT) algorithms. The main goal of these

algorithms is to operate the PV generator under its maximum power point.

1.2.2.2. DC/AC converters:
The DC/AC converters (inverters) are crucial blocks for the GCPV systems. In

fact, these blocks guaranty the conversion of the PV generator energy from DC to
AC. The DC/AC conversion is necessary to reach the grid utility injection in one

side, and to supply the AC electrical devices in the other side.
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Figure 1.3: The operating point variations for different values of resistive load.

1.2.2.3: Converters topologies:

GCPV systems consist of two topologies [26], central topologies (Figure (1.4))
and modular topologies (Figure (1.5)).

Central inverter String inverter Multi-String
topology topology inverter topology

C TTT

The grid : 230V/ 50 Hz

Figure 1.4: The central topologies of a GCPV system [25].
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Figure 1.5: The modular topologies of a GCPV system [25].

GCPV system has three main central topologies: central inverter, string inverter

and multi-string inverter.

- Central inverter: This type of topology is the frequently used topology nowadays.
It consists of using one DC/DC converter and one DC/AC converter to interface
the PV generator with the grid utility [25]. However, using only one DC/DC
converter, for the entire PV array, does not allow an accurately extraction of the

optimal maximum power point under partial shading conditions.

- String inverter: In this topology, one DC/DC converter and one DC/AC converter
are used for each PV string. This type of topology enhances the MPP extraction
procedure by increasing the number of MPP extraction blocks (number of DC/DC
converters). Moreover, this type of topology guaranties the energy availability in

case of failure of one inverter for instance [25].

- Multi-string inverter: In this last central topology, each PV string is equipped with
a single DC/DC converter, while only one DC/AC converter is associated
to the entire PV array [25]. The main advantage of this topology is the low cost
comparing with the string inverter one. However, it cannot guaranty the electricity

availability in case of inverter failure.

In the other side, the modular topologies are also vastly used nowadays. The

main goal of these topologies is to reduce the effect of one faulty module
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on the entire PV array operation. In other term, these topologies enhance the
maximum power point extraction procedure even in the presence of faulty PV

modules.

GCPV systems have three types of modular topologies: individual inverter, parallel

inverter and series inverter [26].

- Individual inverter: This first topology allows PV modules to supply directly the
grid. In other term, for each PV module, we associate individual DC/DC and
DC/AC converters.

- Parallel inverter: In this topology, each PV module is connected with a separate
DC/DC converter, while the whole DC/DC converters are connected with only one

inverter.

- Series inverter: This topology is similar to the parallel inverter topology, except

that in this particular case, the DC/DC converters are connected in series.

1.2.3. Cables:
Grid connected PV system requires the use of double isolated cables, which
are water resistant, to link the PV generator with the inverter. These cables should

be carefully sized to provide a reduced voltage drop [27].

1.2.4. Junction box:
The parallel connection of several PV strings is achieved by using a junction
box. Moreover, this block can comprise several safety devices such as: fuses and

interrupters [25].

1.2.5. Protection devices:

GCPV systems usually comprise several protection components, such as
bypass diodes and blocking diodes:

1.2.5.1. Bypass diode:

The bypass diode is usually used to protect solar cells from the reverse

polarization. In fact, when one of the serially connected solar cells/modules of
the PV generator receives less amount of photo-current (Iph) than the others, due
to the partial shading occurrence, it will become reversed biased. In other word,

this solar cell/module will dissipate energy instead of generating it, which results in
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the hotspot phenomenon [28]. Under these conditions, the cell temperature will
rise substantially till reaching a high level at which the PV cell/module will be
damaged. This phenomenon could considerably affect the entire PV module/array
safety. To avoid this problem, the most frequently used strategy is to add a bypass
diode in parallel with a preset group of serially connected PV cells. This diode is
reverse biased in the case of uniform insolation, i.e. it has no effect in this case.
However, it will be forward biased when the solar cells are partially shaded. In fact,
under the partial shading condition, the current will pass via this diode instead of

the shaded solar cells/modules.

1.2.5.2. Blocking diode:

For a multi-strings PV system, the generated voltage of some strings could be

different from the others. Under this circumstance, the PV string with lower voltage
can dissipate a reversed current, originally generated from the other strings.
A similar situation could lead to energy reduction and a PV string damage [25].
The most commonly used strategy to protect the system from the reversed
current, is to connect a blocking diode in series of each PV string.

1.3. Faults in PV systems:

PV systems are usually exposed to several sorts of failures, which could affect

significantly its performance by decreasing its efficiency [6].

The flowchart of Figure (1.6) shows the different types of faults usually
occurred in PV systems. As shown in this figure, faults in PV systems consist
mainly of two classes [29]: faults in the direct current (DC) side, and faults in the

alternative current (AC) side.

Hereafter a detailed description of the most commonly occurred faults in PV

systems is given:
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Figure 1.6: Types of faults usually occurred in PV systems.

1.3.1. DC side faults:

Generally, faults of PV arrays and MPPT controllers are the main DC side

faults, usually occurred in PV systems [29]. The detection of this first category of
faults is often a mandatory stage to avoid energy loss, system shutdown and even
disastrous fires. Details about DC side faults, their main causes and impacts are

clarified in the following subsections.

1.3.1.1. PV array faults:

During its operation, PV array may be exposed to five crucial types of faults

[29]: mismatch faults, open-circuits faults, earth faults, bridge faults (Line-Line
fault) and short-circuits faults.

a. Mismatch faults:

Mismatch fault can be defined as the connection of several solar cells or PV
modules, which have different electrical parameters, or which are exposed to

different operating conditions (temperature and irradiance) [29].
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This type of fault has been considered as a serious problem because of its
hard detection and enormous effect on power reduction. Mismatch faults are
categorized into two main groups: temporary mismatch faults and permanents

mismatch faults [29].

- Temporary mismatch faults:

These faults rely on the non-uniform temperature distribution (covering of
snow) [29]. In fact, during winter season, the covered snow on the top of PV
modules may cause a non-uniform temperature distribution. This effect can reduce

considerably the PV systems energetic production.

- Permanents mismatch faults:

This subcategory of mismatch faults comprises mainly three faults [29]:

degradation fault, soldering fault and hotspot phenomenon.

Degradation fault:

PV array degradation is due essentially to the ageing of PV cells. In fact, this
type of fault occurs when the series resistance between PV cells increased over
the time, due to the reduced adherence of contacts, or corrosion caused by water
vapor [29, 30].

Soldering fault:

This type of fault occurs when the solder bond between solar cells and their
contacted ribbons are accidently disconnected [29].

Hotspot phenomenon:

As previously explained (subsection 1.2.5.1), the hotspot phenomenon occurs
when one of the series connected solar cells receives less amount of photo-
current (Iph) than the others, due to the partial shading occurrence. During this
stage, this cell becomes reversed biased and it dissipates power instead of
generating it. A similar situation leads to a significant temperature rise of this cell,

and even to its damage.

b. Open-circuit fault:

This type of fault occurs when the series connection between the current-

carrying path and the load is accidently broken, opened or damaged [29].
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A similar situation may occur due to the poor connection between solar cells, and

to the break of cables between PV modules [29].

c. Earth fault:
This type of fault has been considered as the most commonly happened PV
arrays faults. Earth fault can be reached when an unintentional connection

to the ground is accidentally established [29].

d. Bridge fault:
Bridge fault (called also Line-Line fault) occurs when a connection of low-

resistance is established between two different points of dissimilar potential within
different PV strings [29]. The main sources of this type of faults are: corrosion,

mechanical damages and failure of cables’ insulation [29].

e. Short-circuit fault:

This fault affects mainly solar cells, bypass diodes or PV modules. It is mainly
due to the water infiltration into the modules, and to the bad wiring between
modules and inverter [29]. This type of fault can be generated according to an
accidental connection between two points of different voltages within one string or
PV module.

1.3.1.2. MPPT faults:

The aim of MPPT controller (DC/DC converters) is to extract the MPP
(Impp, Vmpp) Of the PV array. However, during the real operation of PV systems,
inefficient tracking of MPP could occur, especially under partial shading conditions
[29].

1.3.2. AC side faults:
Two main types of faults could happen in the AC side of PV systems: inverter
faults and total blackout [29].

1.3.2.1. Inverter faults:

The failure of each part of the inverter (transformer, capacitors, IGBTs, and

drive circuitry) leads to the inverter faults [29].
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1.3.2.2. Total blackout:

This type of fault can be defined as a permanent power loss, mainly due to the

occurrence of an accident or natural disaster [29]. Indeed, under these
circumstances, the inverter will shut down immediately the power supply from the

PV generator to the distributed grid.

1.4. Faults detection and diagnosis methods in the literature:

Up to now, methods of faults detection and diagnosis in PV systems are
ranked into three main types: Process-History Based methods, Quantitative-Model
Based methods, and Signal-Processing Based methods. These methods employ
several measurements to detect and diagnose failures, such as: meteorological
measurements (Temperature (T) and Irradiance (G)), the maximum power point
coordinates of currents Impp and voltage Vmpp, inverters outputs of current lac and

voltage Vac, and finally the current-voltage (I-V) characteristic.

Several criteria have been used to assess the efficiency of a such method,

some of them are listed below:

e The capacity to detect the occurrence of faults at an earlier stage.

e The aptitude to diagnose correctly the type of detected faults.

e The robustness of the developed method against modeling errors and
noisy conditions.

e The quality and the amount of the required data to be used during fault
detection and diagnosis.

1.4.1. Process History-based methods:

In these methods, implicit empirical models, mainly derived from the available
data analysis, are used to detect and diagnose PV system faults. Process History-
based methods rely mainly on machine learning and computational intelligence
methods. Hereafter, a number of the most recently proposed works in this

category are given.

An Artificial neural network based method to detect partial shading occurrence
has been proposed in [31]. It uses an ANN type Multi-Layer Perceptron (MLP) to
estimate the output PV current and voltage based on solar irradiance and cell
temperature. Detection and diagnosis of the partial shading has been achieved
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by comparing the measured and the estimated PV current and voltage.

The network inputs are solar irradiance and cell temperature, while its outputs are

the PV current and voltage.

The detailed flowchart of this method is depicted in figure (1.7) [31], where Ev and

Ei are residual errors, while Si and Sv are their threshold values, respectively.
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Figure 1.7: Flowchart of the ANN-based strategy for partial shading detection [31].

In addition, a hybrid Neuro-Fuzzy approach of fault detection and diagnosis

has been proposed in [32]. This work consists mainly on (i) the development of a

Neuro-Fuzzy model of PV modules ,(ii) the analysis and extraction of six attributes

(Isc, Voc, lmpp, Vmpp, S1 and S2) using the |-V characteristic, and finally (iii) the

application of Norm-test to detect and diagnose faults.

S1 and Sz are the incremental derivative ratios, and they are computed as follows:

1

I I

_ Mpp e

V V

Mpp T Voc

(1.1)
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0-1
_ Mpp (1.2)
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In this work, three Neuro-Fuzzy models (blocks) have been developed to
model the system under ideal, normal and faulty conditions. The ideal condition
block defines the case when all the inputs and outputs are considered perfectly
constants and noiseless. However, normal and faulty blocks reflect the real

behavior that can be expected in healthy and faulty practical operating cases.

The general flowchart of this strategy is depicted in Figure (1.8) [32].
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Figure 1.8: Flowchart of the Neuro-Fuzzy based strategy of fault detection and

diagnosis [32].

Normal and faulty residuals signals, RXis,nm and RXiqft , are computed as follows
[32]:

(1.3)

(1.4)
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Where: X is the adequate attribute; the indexes (id, nm, ft) denote respectively

ideal, normal and faulty status.
Normal and faulty norms, Nn and Nf, are computed as follows [32]:

6

|Nn|= Z(RXid,nm )2 (1.5)

i=1

6

m¢=2@%J (1.6)
To finish with, norms evaluation consisted on comparing the obtained normal
norms (Nn and Nf) with experimentally set threshold values (S). This comparison
could identify five operating cases: normal operating case, diode short-circuit
operating case, lower earth fault operating case, upper earth fault operating case
and partial shading operating case. System status classification strategy based on

the norm test is summarized in Figure (1.9) [32].
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Normal operating Diode short Lower earth  Partial shading Upper earth
conditions circuit fault conditions fault

Figure 1.9: System status classification by the norm test [32].

Moreover, a machine learning based strategy has also been proposed in [33]
as an efficient strategy of fault detection and classification. In fact, Zhao et al have
suggested a Graph Based Semi-Supervised Learning (GBSSL) method to detect
and diagnose PV system faults, using only few labeled training data [33]. Contrary
to the traditional machine learning strategies, this method does not require a high
amount of expensive labeled data, and its training strategy can automatically
update the model under changing weather conditions. The proposed strategy used
only readily available measurements of PV array voltage and current, PV module

operating temperature and solar irradiance, to detect and diagnose faults.
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In addition, this method focuses on two categories of faults: bridge faults and
open-circuit faults. It is worth mentioning that the detection of the aforementioned
faults is difficult task by using the conventional Over-Current-Protection-Devices
(OCPD).

As summary, this strategy presents the following contributions [33]:

e A novel strategy of data normalization has been developed to enhance the
detection and classification efficiency of machine learning methods, and to
better improve data visualization.

e GBSSL model has been used for the first time in this field of application.
The advantages raised from using this model are: the low training cost and
the high ability of self-learning over the time.

e The developed strategy can be integrated into all PV inverter topologies

and takes advantages of using only readily available measurements.
The normalized PV current Inorm and voltage Vnorm are computed as follows [33]:

o Ve (1.7)

V,
Norm
%
NMod VOC _Ref

:% (1.8)

Norm
%
NSlr ISC _Ref

Where: Nmod and Nstr define the number of modules and strings respectively; Voc_ref
and Isc_ref are the reference open circuit voltage and short circuit current,

respectively.

The overview of the GBSSL based strategy of fault detection and diagnosis
is summarized in five main steps, as can be depicted in the flowchart of
Figure (1.10) [33].

X is a labeled data matrix; Y is a matrix that includes the corresponding classes of
these labeled data; Z is a binary matrix; and W is the weight matrix. More details

about Z and W matrixes can be founded in [33].
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The efficiency of this method has been tested on a small-scale grid connected PV

system. Results have clearly demonstrated the efficiency of GBSSL based

strategy in fault detection and diagnosis of bridge fault and open-circuit fault.

Step #1

Step #2

Step #3

Step #4

Start

v

Labeled data
initialization

<l

Y

Record of unlabelled data and
matrixes (X,Y,Z,W,D and S) build

Y

Step #5

Run GBSSL and obtain
solution matrix F

Indication of PV

system

status

Y

Z and Y matrixes labels update

A

A

Figure 1.10: Flowchart of the GBSSL based strategy

of faults detection and diagnosis [33].

Chine et al have proposed an efficient strategy to detect, diagnose and

localize faults in PV systems, using the ANN [34]. In this method, PV current,

voltage and the number of peaks in the current-voltage (I-V) characteristic are

computed based on a simulation model. The difference between the measured

and simulated PV array output power is firstly computed and compared with the

threshold value (S), to detect faults occurrence. Then, the analysis of the main

attributes, derived from (I-V) characteristic of each separate PV string, is

elaborated to diagnose and localize the faults.

The different steps of this method for the detection, diagnosis and localization are

summarized in Figure (1.11) [34].
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Figure 1.11: The different steps of the ANN-based method [34].

This method could accurately detect, diagnose and localize eight types of faults,
which are described in table (1.1) [34].

Table 1.1: The possibly occurred faults that could be correctly detected by Chine’s
strategy [34]

Type of fault Name Symbol
Short-circuit fault in any bypass diode or (cell or module) F1
Inversed bypass diode fault or (cell or module) F2
Module Shunted bypass diode fault of (cell or module) F3
Open circuit fault in any cell (or module) F4
Connection fault Connection resistance between PV modules F5

Partial shadow | Shadow effect in the modules with normal operation of

fault. different components of PV string. F6
Shadow effect _ _
. Shadow effect in a group of cells equipped by a faulted
with faulty . F7
. bypass diode.
bypass diode
Shadow effect

Shadow effect in a group of modules connected by a

with connection . F8
connected resistance.

fault

As can be seen from Figure (1.11), this method employs two different algorithms,

named algorithm #1 and algorithm #2.
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The first algorithm, entitled signal threshold based approach, is described in detail
in Figure (1.12) [34], and it allows the discrimination of six faulty cases.
Parameters that are used in this first algorithm and their descriptions are

summarized in table (1.2) [34].

In the other side, the second algorithm is devoted to distinguish between the faulty
cases F1, F2, F3 and F5, by using two ANN classifiers (multi-layer perceptron
(MLP) and radial basis function (RBF) classifiers).

Calculation of the attributes
string amplitude

Open circuit
fault

Group of faults: Sha.dow effect
-cells, diodes or leth fz:il_l}tgl’
. modules are shunted. ypass diode
Shadow e.ffect wih Connection -cells, diodes or
connection fault fault modules are short-

Y circuited.
-cells, diodes or

Partial shadow with any modules are inversed.
fault on bypass diode -connection fault

Identified by the ANN

Figure 1.12: The detailed flowchart of the first algorithm [34].

Table 1.2: The description of parameters used in Algorithm #1

Variable description
C1 a reduction in the short circuit current
V1 a reduction in the open circuit voltage
C2 a reduction or an increase in the output current
V2 a reduction or an increase in the output voltage
N An increased number of MPPs in the |-V characteristic
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Moreover, Dhimish et al proposed an efficient strategy of faults detection
based on theoretical curve modeling and fuzzy classification system [35].
This method uses LabVIEW software to simulate the meteorological conditions

(T and G), the voltage ratio VR, and the power ratio PR.

In this approach, a third order polynomial function has been employed to
compute two detection limits (high and low detection limits) of VR and PR ratios.
Then, these limits are compared with real measured data of an actual PV
generator. Samples that lie out of these limits are then introduced to a fuzzy-logic-
based classification system to diagnose the fault type. The general structure of this
method is depicted in Figure (1.13) [35], while its detailed flowchart is depicted in
Figure (1.14) [35].

The theoretical power ratio (PR) and voltage ratio (VR) are computed using
Equations (1.9-1.10). These ratios are used to categorize the faults regions.

P
PR=—23%L (1.9)
PG,T _QPO
V
VR=—31 (1.10)
VG,T _QVO

Where: Pc,t and Vg tare respectively the theoretical power and voltage, generated
from the PV generator, under specific meteorological conditions of temperature (T)
and irradiance (G). Q is the number of PV modules. Po and Vo denote respectively
the maximum operating power and voltage, measured under standard test
conditions (STC: T=25°C, G=1000W/m?).

The low limits of PR and VR are given by:

P
PR Low limit = 6.1 (1.11)

(PG,T - nPO )nsensor

VG,T
(VG,T - 1’1\/0 ) 1’]sensorl

VR Low limit = (1.12)

Where n_.,is the efficiency of voltage sensor, while n___ is the efficiency of both
current and voltage sensors and it is expressed as follows:
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= N, (VOItage sensor efficiency)+n ., (current sensor efficiency) (1.13)

T]SCHSOI‘

The PR and VR high limits are those given by equations (1.9-1.10), and their real

measured values are computed as follows:

PG T

Measured PR=——=— (1.14)
measured
VG T

Measured VR=——=— (1.15)

measured

This method could efficiently detect the following faults [35]:

e The presence of partial shading (PS) within the PV generator.

e One short-circuited PV module and PS.

e Two short-circuited PV modules and PS.

e (Q-1) short-circuited PV modules and PS, where Q denotes the total

number of PV modules.

The main weakness of this method is that it depends on power and voltage ratios.
Therefore, its efficiency depends highly of the efficiency of the instrumentation

components.
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Figure 1.13: The general structure of the theoretical curve based method [35].
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Figure 1.14: The detailed structure of the theoretical curve based method [35].

In addition, Lian et al have proposed an automatic fault detection and
diagnosis method, for PV systems, by combining ANN and analytical based
method [36]. In this method, a two-layered ANN type MLP was employed to
predict the expected power of the PV system, which will be compared with the real
measured one according to equation (1.16). Based on this comparison, a fault

diagnosis strategy was developed by using a conventional analytical method.

\P —P

meas pred

b P

pred

A (1.16)
The flowchart of this method is illustrated in Figure (1.15) [36], where ¢ and ¢, are

predefined errors. Nss is the number of PV modules in each string, Voc-si denotes

the open-circuit voltage of one string, and pis the allowance variable.
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Figure 1.15: The detailed flowchart of lian’s method
for faults detection and diagnosis [36].

Moreover, Todizara et al have proposed a fault detection strategy that uses
the Least Square Method (LSM) and Fuzzy Logic system classification [37]. In this
work, the Bishop model of the PV module has been used to simulate the PV
system behavior under healthy and partial shading conditions. Simulations showed
that the direct analysis of the generated voltage and power does not give sufficient
information to detect and diagnose faults. For this reason, the LSM is used

to compute the residuals, which are the least square error between measurements
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and predictions. These residuals will be exploited by a fuzzy logic decision block to
diagnose the type of fault.

The Bishop model of the PV module is defined using equation (1.17) [37].

L, =1, -1, {exp {—VPV J;/RSIPV ]—1} _ Vo TRy [1 + L(l Ve PRIy J{IRSIPV ] ] (1.17)

t sh b

where: Ipv and Vpy are the PV cell current and voltage respectively. Iph is the light-
generated current, lo is the dark saturation current, V: is the thermal voltage, Rs

and Rsh denote series and shunt resistances, respectively, L and m are the Bishop

adjustment coefficients (3.4<L<4 and m=0.1) and Vs is the cell breakdown
voltage (-10V to -30V).

The diagram of the fuzzy logic classification system is depicted in Figure (1.16)
[37].

irradiance
Shading I LSM »| Decision block
Residual
Outputs
Inputs

Figure 1.16: The diagram block of the fuzzy decision classification [37].

In addition, the (I-V) characteristic and the fuzzy logic classification system
have also been used to elaborate a diagnosis method for PV systems [38].
This method relies on analyzing the effects of faults on the PV array/string (I-V)
characteristic, to detect three faults: shading, increased series resistance losses
and potential inducing degradation (PID) affecting the PV string. Moreover, the
proposed strategy has been formalized as fuzzy logic sets and rules to gain more
robustness and flexibility, such that it will be useful for wide range of crystalline-
based PV systems. The different steps of this method are summarized in
Figure (1.17) [38].
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Figure 1.17: General structure of the diagnosis method based on |-V curve and fuzzy

logic classification [38].

This method consists mainly on three stages. The first one relies on
measuring the (I-V) curve and the in-plane irradiance (G) of the tested PV
generator (module, string or array). The in-plane irradiance level (G) could be

obtained by using irradiance sensors or mathematical estimations [38].

In the second stage, the in-plane irradiance level (G) is analyzed, such that if
its value is lower than 500 W/m? the diagnosis procedure will be stopped.
The main reason of this limitation is that the power losses, due to the shading and
the increase in series resistance, cannot be visible, using I-V curves under low
irradiance level [38]. After that, if the in-plane irradiance is higher than 500 W/m?,
the measured |-V characteristic will be filtered from any noise and used to
compute a set of diagnostic indicators. The indicators are then normalized to
maintain the independency with the system configuration. Finally, the normalized
indicators of diagnosis are analyzed automatically, based on three fuzzy logic

classifiers, to detect and diagnose the aforementioned faults [38].

The indicators that have been used in this method are: the |-V curve inflexion
factor IVs, the maximum power point factor MPPs, the equivalent series resistance
Rse and the fill factor FF.
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This method can only be applied for the string inverter topology, which is not
the most frequently used topology nowadays, and it gives efficient results only
under high irradiance level (G>500W/m?).

Also, a methodology that uses three ANN classifiers was developed to detect
the occurrence of partial shading (PS) [39]. The first ANN aims to detect the PS
occurrence and distinguish it from the uniform change of climatic conditions, while
the two remaining networks compute the shading factor and the number of shaded
modules. The shading factor is defined as the ratio of the lower irradiance level on

the shaded PV modules to the higher irradiance level on the rest of the PV array.

The inputs of the ANN that is used to detect the PS are the generated power
and the short circuit current. The value ‘one’ of its output indicates that there is a

PS, otherwise the ANN output is equal to ‘zero’.

The inputs of the second network, which computes the shading factor, are the
maximum power and the relative absolute change (ROC) of the output power due
to shading. The output neuron gives the shadowing factor value. Finally, the last
network, which is responsible of computing the number of shaded PV modules,

considers the shading factor, generated from the second network, as input vector.

In addition, Vergura et al have proposed a descriptive and inferential statistical
based method to supervise and monitor the PV system operation [40]. In this work,
the performance of the PV system is firstly assessed, using an offline supervising
step. This has been accomplished by using both descriptive and inferential
statistics. After that, an efficient strategy of real-time monitoring and fault detection
has been elaborated by using an online inferential algorithm. This method is used
to detect bad connections between PV modules and inverter, using the inverter
generated energy as input data. It has been validated using both Gaussian and

non-Gaussian data distribution.

However, even though its efficiency to detect the aforementioned fault, this
method has been considered as a complex statistical-based strategy. In fact, it
requires the use of high complex tests (variance homogeneity test, normality test,
ANOVA test and Kruskal-Wallis test) to detect only bad connections between PV

modules and inverters.
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Finally, an efficient strategy of faults detection and monitoring in PV systems
using outlier detection rules was proposed in [13]. In this work, three outlier
monitoring rules, named three-sigma (Shewhart), Hampel identifier and Boxplot
rules have been used to detect line-line faults, open-circuits faults, degradation

faults and partial shading occurrence.

This method uses the instantaneous current, generated from PV strings,
to monitor the PV system operation and detect the faults occurrences.

The main advantages of this method are [13]:

e No model training procedure is required.
e The total independency to the weather conditions, which make it a costly
inexpensive strategy.

e Its high simplicity for real-time implementation.

This method is mainly based on comparing the PV string normalized current
Istr_norm, given by equation (1.18), with the healthy system outlier detection limits
(high and low limits). If the normalized PV string current lies outside these limits,
then a faulty operation is identified [13].
str_norm =ISA (1 18)

Where Istr is the PV string operating current and Isc is the PV module short-circuit

current measured under STC.

Because it is mainly based on the value of the PV string current, this method only

detects the faults occurrence and cannot diagnose its type.

Process History-based methods: Advantages and Drawbacks:

Methods of this class have showed their efficiencies in fault detection and
diagnosis of PV systems. In fact, they require a minimal a prior knowledge of the
system configuration, and use only healthy and faulty system data to monitor,

detect and diagnose the faults.

However, these methods depend on the availability of quality input data, and

their implementation is not an easy task, especially for real-time applications.
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Moreover, multi-layer perceptron neural networks suffer from their slow training
step, they do not support noisy data, and could fall in local minima instead of
global one [9, 10]. These weaknesses could obviously affect the reliability, the

efficiency and even the real time utilization of these methods.

Moreover, statistical monitoring charts [11-13] are important tools for
monitoring sequential systems to make sure that they work stably and satisfactory.
However, until recently statistical control charts have not been widely used to
improve the performance of PV systems. In addition, the main shortcoming of
the proposed monitoring chart-based methods is their limitation to detect incipient

faults because they make decisions based only on the recent observations [11].

1.4.2. Quantitative Model-based methods:
The methods of this second category analytically compare real measured

outputs with model-based outputs (simulated outputs) to detect and diagnose PV
system failures. In this type of method, a fault will be declared when a large
difference between the measured and estimated outputs is identified. Hereafter, a
list of the most recently proposed works in this second category of methods is

given.

Mahmoud Dhimish et al have proposed an efficient method of fault detection
and diagnosis in GCPV systems based on voltage and power ratios [3]. In this
work, the theoretical performance of the PV system is firstly simulated to compute
the theoretical outputs voltage and power. Then, the ratios between the theoretical
and measured voltage and power are computed and then analyzed, to detect the
fault occurrence and diagnose its type. Current, Voltage and Power ratios are

expressed by the following equations:

VR — Vtheoretical (1 1 9)
Vmeasured
PR — l;theoretical (1 20)

measured

CR — Itheoretical (1 21 )

measured
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Where: Ptheoretical, Vitheoretical and ltheoretical are the simulated outputs of power, voltage

and current, respectively. Pmeasured, Vmeasured and Imeasured are the real measured

outputs of power, voltage and current, respectively.

The general structure of this strategy is depicted in Figure (1.18), where VR

and PR computation details are shown in Figure (1.19). Moreover, detailed

flowchart of the first region is illustrated in Figure (1.20). While those of the second

and the third regions are shown in Figure (1.21).

Despite of its high capacity in fault detection and diagnosis, this method

depends completely on the power and voltage ratios. Therefore, it depends on the

accuracy of both simulation model and measurements devices.

Sleep mode rl;;lgge}?:. Two faulty PV madules or Faé’i?;:’;ﬂ"g
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Figure 1.18: General structure of Dimish method for fault detection and diagnosis [3].
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In addition, Chouder et al have developed a diagnosis method for GCPV

systems based on the power losses analysis [41]. The main idea of this work

consists to continuously measure the DC side power losses (capture losses) and

then examine if these losses lie within some theoretical boundaries. The system is

considered under faulty operation if the measured power losses are beyond these

boundaries. Finally, in order to diagnose the fault type, current and voltage ratios

are evaluated and monitored.

In this work, two novel indicators of power losses have been defined: Thermal

capture losses (Lc¢t) and Miscellaneous capture losses (Lcm). The evaluation of

these indicators allows the fault detection. While the evaluation of current and

voltage ratios, CR and VR, is used to diagnose the fault type.

The DC side’s total power losses, Lc, are defined as follows:

L. =Y.(GT)-Y,(G,T)= G

H,

(G,T.)— 2

ref

P

ref

(1.22)

Where: Y+(G,Tc) and Ya(G,Tc) denote respectively the reference and the array

yields, measured under real operating conditions of irradiance G and cell
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temperature Tc. Hi is the total in-plan irradiance of the PV array. Grer is
the reference irradiance measured at STC (Gre=1000W/m?). Edc is the array

produced energy and Pref is the array output of maximum power.

Thermal capture losses occur when the PV module works at a temperature
level higher than 25°C. Under this situation, the produced DC power will
significantly decrease. In the other side, miscellaneous capture losses could be
cause by: MPP tracker failures, module failure, string failure, angle of incidence
losses and shading losses. The computation of thermal and miscellaneous capture

losses is established by using the following equations [41]:
L,=Y,(G,25°C)-Y,(G,T,) (1.23)

L,=L.,-L

cm C ct

(1.24)

Detailed flowcharts of this method are given in Figures (1.22-1.23).
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Ya sim{G,25°C) LC_meas=Yt_meas-Ya_meas

LC_sim=Yt_sim-Ya_sim

LC_sim-20<LC_meas<LC_sim+20o

Yes Mo

Set signal-fault=0 Set signal-fault=1

Figure 1.22: The flowchart of Chouder’'s method for faults detection and diagnosis[41].
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Figure 1.23: The flowchart of current and voltage ratios evaluation strategy [41].

The efficiency of this method has been experimentally tested for three
operating cases: healthy system operation, faulty string operation (string open-

circuited) and operation in the presence of partial shadowing.

Moreover, a detailed procedure of supervision and fault diagnosis in GCPV
systems have been proposed in [42]. In this work, the fault detection is achieved
by comparing the measured and simulated yields, while the fault diagnosis is
carried out by analyzing and comparing DC current and DC voltage with a set of

healthy system thresholds.

In this work, the measured meteorological conditions and the electrical
parameters have been used to develop a LabVIEW-based software of: (i) capture
losses computations, (ii) PV system simulation, (iii) online parameters supervision,

and finally (iiii) fault detection and diagnosis [42].

The error between measured and simulated capture losses is given by:

EL, =|L

C

c_meas c_sim

(1.25)

The regular check of this error is required to detect any fault occurrence; i.e. if its
value does not exceed predefined thresholds, given by equation (1.26), the system

is considered working under healthy operation.

EL 26(EL, . )<EL, <EL

c c_ref

+20(EL, ) (1.26)

c_ref

Where: ELc ref is the error between measured and simulated capture losses of

the healthy system. cis standard deviation of this error.



51

The values of the thresholds in equation (1.26) are set after statistical analysis of
this error when the system is under healthy operation.

The detailed flowchart of the fault detection strategy is depicted in Figure (1.24).

Begin

Compute
Elc=abs(Lc_meas-Lc-sim)

Ic_ref-20<ELc<Elc_ref+2c

No

System in faulty operation
(alarm activation)

Diagnosis

Figure 1.24:The flowchart of the fault detection procedure [42].

When the presence of faults is detected, two novels indicators, called current error

Ei and voltage error Ev are computed using the following equations:

E =

1

I

(1.27)

dc_meas dc_sim

E, =|V

dc_meas dc_sim

(1.28)

Where: ldc_sim and ldc_meas are simulated and measured DC current. Vgc sim and

Vdc_meas are simulated and measured DC voltage.

Similarly to the detection procedure described above, a set of predefined
thresholds for Ei and Ev should be computed to diagnose the detected faults. In

other term, the system is considered under healthy operation if:

E. . -26(E)<E. <E, _ +20(E)) (1.29)

i_ref i_ref

E, .. -206(E,)<E <E, _+20(E,) (1.30)

v_ref v_ref
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Where: Ey ref and Ei ref are respectively the errors between the measured and
simulated DC voltage and current for the healthy system. cis the standard

deviation of these errors.

The flowchart given in Figure (1.25) illustrates the detailed strategy of faults
diagnosis.
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Ei=abs(ldc_sim-ldc_meas)
EV=abs(Vdc_sim-Vdc_meas)

No yes

Ei_ref-2*stdi<Ei< Ei_ref-2*stdi

EV_ref-2*stdisEV< EV_ref-2*stdi EV_ref-2*stdi<EV< EV_ref-2*stdi
No

yes

Possible faults: Possible faults:
Possible faults: O GFF Fere Then GRE -short circuit of one or Faulse alarm
-preser;jc;e OT shadowing. string are broken. more then one
-ground fault. -one or more then one module.
-Line-line fault. el are brel e, -short circuit of one or
-blocking diode failure. more then one bypass
diode.

Figure 1.25: The detailed flowchart of the faults diagnosis strategy [42].

This method has been experimentally tested under an actual GCPV system to
detect and diagnose the occurrence of: inverter disconnection, partial shading and
string disconnection in the array. Nevertheless, its main drawback is that it
categorizes the entire possibly occurred faults into three groups instead of
individually separates each faulty case.

In addition, Mohammed Tadj et al have proposed an efficient approach of fault
detection and diagnosis using GISTEL (Gisement solaire par télédétection: Solar
Radiation by TeleDetection) approach [24]. In this work, the hourly global
horizontal solar irradiance is firstly estimated using an improved GISTEL-Fuzzy
model. This last is then used to estimate the DC power. To detect the faults

occurrences, the estimated DC power is compared with the real measured one.
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The flowchart of this method is shown in Figure (1.26), where d is the standard
deviation of the estimated (simulated) output DC power, for a clear sky. CR and

VR denote respectively the current and voltage ratios.
Altitude
v

Simulated solar

Longitude

!

Day & hour

|

Measured solar

irradiance by
GISTEL

irradinace

v

Y

Output simulated
Power Psim

Output measured
Power Pmeas

_Y

Yes No

Psim-d<Pmeas<Psim+d

h 4 ¢ J'
Fault free operation . .
: Failure in
error signal=0 Yes Calculation of CR )
and VR opergtlon error
signal=1
No
-faulty modules
in string.
-false alarm
Yes
No
Faulty string 0
Yes

Partial shading

Figure 1.26: The flowchart of the GISTEL_Fuzzy based method
for fault detection and diagnosis [24].
As can be seen from the given flowchart, the presence of a fault is identified by
comparing measured and simulated DC power, while, the detection of its type can

be achieved by analyzing both current and voltage ratios.

Also, Drews et al have developed a fault detection method that uses satellite
observation data to estimate the PV energetic yield [43]. Based on this strategy,
the fault occurrence is declared when a significant deviation between the real

measured and the simulated energetic yields is identified.
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Moreover, another efficient approach to detect PV arrays faults and partial
shading, based on PV array voltage, PV array current and measured irradiances
was proposed by Hariharan et al [44]. This method has the ability to distinguish
between three possible cases: normal operation, partial shading, and permanent

faults (bridge fault and open-circuits fault).

The main idea of this method is to compute predefined thresholds, obtained
from simple formulas, and which may be deemed constant for a given PV array
under all conditions, to detect and diagnose faults [44]. This method does not

require the use of a large amount of experimental training data.

In this method, two novel variables, named gamma (y) and array losses (Larray),

have been introduced as follows:

V. *1
= W 1.31
Y G (1.31)
Loy = (Pm {ED -(V,,*1,) (1.32)
GO I
- Actual Power

Expected Power

Where: G is the instantaneous irradiance of an un-shaded portion of PV array. Vpv
and lpv are the instantaneous PV array voltage and current respectively. Larray is
the difference between the instantaneous expected power and the actual power.
Pm is the PV array maximum power, measured at the reference irradiance
Go=1000 W/m?2.

The detailed flowchart of this method is shown in Figure (1.27). The constants

used in this flowchart are summarized in table (1.3).



Start
A
Set offset, count,i,yi1,Yi.2 to zero
AR
Measure and store Vpv(i), Ipv(i) and G(i)

A

Calculate Ayi=Yi-Yi1

\
Calculate Ayi1=Yi1-Yi2

#1

(AyitAyig)<€;

i=i+80
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Figure 1.27: The flowchart of Hariharan’s method

for fault detection and diagnosis [44].

Table 1.3: Lists of constants used in Hariharan’s method [44].

Constant Formula Value
(Larra for one module mismatch fault under STC)
81 - i '0.2 m2
GO
e, (MPP of PV array under STC] e, 14m?
GO
Lo Larray at G=100W/m? 100 W
offset s 0.1m?
G, '
i+80
¥j
K1 i S /
80
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Quantitative Model-based methods: advantages and drawbacks:

Results from the aforementioned works show the high efficiency of this
category of method to detect and diagnose failures. However, the use of an
accurate simulation model that mimics the system operation under healthy and
faulty operations is required. Moreover, this type of methods suffers from the
manual strategy of threshold computation and it requires that the PV array works
at MPP.

1.4.3. Signal Processing-based methods:

This category of methods relies on applying advanced techniques of signal
processing to detect and diagnose PV systems failures. Hereafter, a list of the
most recently proposed works is introduced.

[I-Song Kim has suggested an online fault detection algorithm in PV systems
based on the Wavelet Transformation [45]. In this work, the Multi-Level
Decomposition (MLD) wavelet transformation has been used to detect, localize
and diagnose faults in power conditioning systems (DC/DC and DC/AC
converters) [45].

The developed strategy of fault detection employs 3-level MLD tree to detect
switch open and over harmonics failures. In fact, power conditioning systems
(PCS) transforms the generated DC voltage into AC grid voltage via switches
(FET: Field Effect Transistor; IGBT: Insulated Gate Bipolar Transistor). In the case
of breakdown of these switches, a fault of switch open will be occurred. During this
fault, the distorted waveform of PCS current will keep providing high order

harmonics to the grid [45].

The proposed algorithm mainly relies on decomposing the measured signal of
each wavelet tree level, and extracts its coefficients. The variation of these

extracted coefficients will be then analyzed to identify the types of faults.

Even though this is a simple and efficient strategy, it is useful only to detect AC

side failures.

In addition, Yihua Hu et al have proposed an efficient strategy to detect the
mismatch of PV modules using a thermography-based temperature distribution
analysis [15]. In this work, thermal images of an actual operating PV system
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are recorded, processed and introduced to a mathematical model, to extract useful
information of mismatch fault. This information is mainly based on the temperature
distribution, and it is used to detect mismatch faults and to develop an enhanced

MPPT strategy that overcomes the mismatch fault effect on MPPT efficiency.

In this work, PV system modeling has been elaborated by combining both
electrical and thermal models of solar cell. These models are interlinked via
the energy balance principle [15]. Based on the severity of mismatch fault, three
classes of mismatch have been defined and analyzed: minor, medium and heavy

mismatch faults.
This method can be summarized as follows:

Image that corresponds to the surface temperature of the tested PV panel

is recorded via a thermal camera.

« This image is send to a central computer to analyze its thermal feature.

« The thermography (temperature distribution) of each PV module is
extracted via a freehand cropping program of Matlab™ software.

« For each PV module, mismatch fault occurrence can be detected by
computing its relative temperature with a reference.

« In order to distinguish between the three types of mismatch fault (minor,
medium and heavy faults) the generated (I-V) curve, from each PV module,

is analyzed.

This strategy requires the use of a sophisticated thermal camera, for each PV
array, to detect and diagnose mismatch faults. Therefore, it is a costly expensive

fault detection strategy.

Based on Time-Domain-Reflectometry (TDR), Schirone et al have developed
an efficient strategy for detection and localization of short-circuit and open-circuit
faults [46]. TDR is a well-known electrical method, usually used to measure
the electrical characteristic of a transmission line, and to detect its breakdown
point. Figure (1.28) shows the fundamental principle of TDR method [46]. As can
be seen from this figure, an input signal is introduced to a transmission line.
This signal will be then compared with the reflected signal (response signal from

the devices under test (DUTs)). Comparison between these two signals forms a
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shifted signal. This last signal is used to localize the fault position, while its
waveform is used to diagnose the type of faults (short-circuit, open-circuit,

degradations... etc.).

Input signal from signal source

Open

DUT DuUT

—
Signal | (-
source respCind signall from DL,|T

.
— e —— ——
= — — =

Figure 1.28: The fundamental principle of TDR method [46].

Also, an experimental study of fault detection and localization in PV systems
was carried out by Takumi et al [47]. In this study, the efficiency of Earth-
Capacitance-Measurement (ECM) and TDR methods to detect and localize string
disconnection and degradation faults was tested. ECM is also a frequently applied
strategy that is used to localize the disconnection position of a transmission line
(Figure (1.29)). In this method, the distance (x) from the start point of the
transmission line to the fault point is computed using equation (1.33).

X :(%jD (1.33)

Where: Cx is the earth capacitance value, measured from start point to the fault
point (disconnection point); Cd is the earth capacitance value, measured for the

whole transmission line; D is the length of the whole transmission line.

& .,

i R I Sl
T 1] I
= £ >

Cx = (7"

\

cD

Figure 1.29: Fundamental principle of ECM method [47].
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Detection and localization of string disconnection fault, based on ECM
method, has been reached by considering the PV string as a transmission line.
Therefor, the module number (num_mod) to the disconnection position is

computed using equation (1.34).

num_mod:(ng (1.34)
cd

Where M is the total number of PV modules within the string.
Moreover, TDR has been used to detect and localize degradation fault.

Signal Processing-based Methods: advantages and drawbacks:

The analysis of the aforementioned strategies shows the efficiency of this
category of methods to detect and diagnose PV system faults. However, it suffers

from several serious drawbacks:

The TDR based method is limited by its technical requirements to turn off the
entire PV system, which leads in reducing the system’s energetic performance. In
addition, this method requires expensive and sophisticated tools since it needs to

analyze input and output reflected signals.

In the other side, ECM method requires additional and expensive monitoring
tools, like LCL meter. Moreover, this method cannot identify the partially-shaded

PV module disconnection due to the presence of bypass diodes.

Finally, the thermal-camera based method is an expensive strategy, and it cannot
guaranty the fault detection until reaching a dangerous faulty situation.

1.5._Conclusion:

In this chapter, the research topic has been firstly discussed through a general
study of PV systems, as well as their different types of faults. Then, a literature
review of the different methods for faults detection and diagnosis in the PV
systems has been conducted. This review has allowed us to classify the methods
of faults detection and diagnosis into three main types: process-history based
methods, quantitative-model based methods and signal-processing based
methods. The analysis of these methods has allowed us to clearly identify their
limitations, which will be addressed in the next chapters.
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CHAPTER 2
PV ARRAY MODELING AND VALIDATION

2.1. Introduction:

This chapter clarifies the developed strategy of PV array modeling and
validation. In fact, the one diode model (ODM) of the PV module is firstly
described, then, the procedure of PV module parameters identification is explained
in detail. After that, the developed strategies of cost criterion minimization, using
ABC [18, 19] and best-so-far ABC [20, 21] algorithms, are presented. Finally, an
efficient strategy of MPP estimation based on the identified parameters is

elaborated.

The accuracy of the identified parameters is tested using real static (I-V)
curves of different PV modules from several technologies. While, the developed
strategy of MPP estimation is experimentally validated using real measurements
collected from Algerian and Spanish PV systems.

2.2. PV module modeling:

Usually, the solar cell/module is described by the well-known one diode model
(ODM). This model describes the PV module behavior by the following electrical
circuit [48-50]:

Iph Rs Ipv
vd — >
MWV :

_>
Photo
current Id|y Ish § Rsh Vpv

Figure 2.1: The one diode model of a solar cell.

In this model, the output current versus the output voltage is given by the following

equation [41]:

V., +R 1
[(q< & Mv_ 1)

nk,T R,,
(S —
Id Ish
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where:

lrv and Vev denote respectively current and voltage outputs of the PV module;
loh stands for the light-generated current. lo is the diode saturation current; Rs and

Rsh are series and shunt resistances respectively; n is the diode ideality factors;

ks is the Boltzmann constant(k, =1.3806503x10j/k), T is the cell temperature

and q is the electronic charge(q =1 .60217646><10’190).

2.3. PV module parameters identification:

2.3.1: Fundamental principle:

The ODM parameters identification stage can be described as an optimization
problem, where the cost criterion to be minimized is the Root Mean Square Error

(RMSE) between the measured and estimated currents, as given bellow:

1 S
RMSE = \/§Z[g1 (IlTleas"\/vmeas”Y):|2 (22)
i=1
where:
q VmeaS+RsImeas Vmeas + RsImeas
g(Ilneas’Vmea59Y) = Imeas _(Iph _IO {exp( ( nkBT )j_lJ_T] (23)

Imeas and Vmeas are the measured current and voltage of the PV module, obtained
from a set of experimental outdoor measurements, using an (I-V) curve tracer. The

symbol y defines the vector of ODM parameters, and S is the size of experimental

(I-V) curve data used during the ODM parameters identification stage. The ODM
parameters identification scheme is highlighted in Figure (2.2) [49].

The used temperature during this stage denotes the PV module temperature. The

* *

main goal of this stage is to find the optimal ODM parameters [Iph,lo,n*,R;,R;h]that

minimize the cost criterion and gives the lowest RMSE value.
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Figure 2.2: The ODM parameters identification scheme.

2.3.2. The developed strategies of cost criterion minimization:

In this thesis, two heuristic algorithms, namely Artificial Bee Colony (ABC) and

best-so-far ABC, have been used to minimize the cost criterion of equation (2.2).

2.3.2.1. The Artificial Bee Colony (ABC) Algorithm:

ABC algorithm is a heuristic optimization algorithm, inspired from the foraging

behavior of honey bees. In this algorithm, the bees are subdivided into three

categories such as: employed, onlooker and scout bees [18]. The aim of the

employed bees is to exploit the nectar sources explored before and share the

information with the waiting bees (onlooker bees) in the hive. This information is

related to the quality of food source sites exploited by the employed bees. Based

on this information, the onlooker bees inside the hive decide on the food source to

exploit. The goal of the scout bees is to search randomly around the hive in order

to find a new food source site [18, 19].

The basic steps of the ABC algorithm are summarized in the following points [18]:

a. Initializing phase:

- Set the algorithm parameters (SN, LN, D, MCN, limit=SNxD, cycle =1).

SN and LN denote respectively the number of employed and onlooker bees,

MCN is the Maximum Cycle Number, D is the solution dimension, and it

denotes the number of parameters to be identified. Finally, limit is the

number of unsuccessful trials to produce a better food source.
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- Randomly generate the initial positions of food sources (initial solutions)
using the following equation:

X, = xgni“ +rand [0, 1](){3mx - xmi“) (2.4)

y ]

Where: i=1,...,SN ,j:1,...,D,xjmi”and X" are the lower and upper limits of
the solution position X in the dimension j, and rand [0,1]is a random number

between 0 and 1.
- Evaluate the fitness of the generated positions.
While cycle < MCN do:
b. Employed bees phase:
- For all employed bees (i=1... SN) do:
» Generate new food source according to equation (2.5):

\Z :xij+¢ij(xij—xkj) (2.5)

Where v, is the new solution, x; is the previous solution, ¢,is a random

number between [-1,1], The indexes k and j are randomly selected from

{12,3,..,SN/k =i} and {123,...,D}, respectively.

» Evaluate the fitness value of the generated positions and compare
the old and the new solutions, select then the best one.
c. Onlooker bees phase:

- For all onlooker bees (i=1... LN) do:

= Evaluate the probability p. given by:

_ M) (2.6)

P =
> fit(x, )

where fit(x;)is the fitness value of the position X.
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= Assign to each onlooker bee a food source using the roulette wheel and

the probability p. .

= According to equation (2.7), generate a new food source for each
onlooker bee (i=1,2,...,LN):

\Z :xij+¢ij(xij—xkj) (2.7)

Where v;is the new solution, x; is the old solution, ¢,is a random number

between [-1,1]. The indexes k and j are randomly selected from

{12,3,....SN/k =i} and {123,...,D}, respectively.

- Evaluate the fitness value of the new generated positions and compare

the old and the new solutions, select then the best one.
d. Scout bees phase:

- For all the onlooker bees, which their food sources quality does not improve

in the determined number (limit) of cycles:

= The food sources are abandoned and their onlooker bees become
scout bees, which randomly generate new food source positions

based on equation (2.8).
X, = X}m“ +rand [O,l](xj“aX —X;mn) (2.8)
- Evaluate the fithess of the generated positions.
- Save the best solution as the new solution.
- cycle =cycle+1.

End while.

2.3.2.2. The best-so-far ABC Algorithm:

Even the high accuracy of the ABC algorithm in solving a lot of optimization

problems in different areas [51], the main weakness of this algorithm is its low
convergence speed in some situations [20]. In order to solve this issue, the best-
so-far ABC algorithm has been proposed to improve both exploration and

exploitation steps [20].
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The different steps of the best-so-far ABC algorithm are given below [20]:
a. Initializing phase:
- Set the algorithm parameters (SN, LN, D, MCN, limit=SNx D, cycle =1).

- Randomly generate the initial positions of the food sources (initial solutions)

using equation (2.4).

- Evaluate the fitness of the generated positions.

While cycle < MCN do:
b. Employed bees phase:
- For all employed bees (i=1... SN) do:

» Generate new food source according to equation (2.5):
» Evaluate the fitness value of the generated positions and compare the

old and the new solutions, select then the best one.

- Find the best-so-far food source x, (the best food source position from all

employed bees).

- For all employed bees, determine the fitness f, of the best-so-far food

source X, (from all dimensions).

c. Onlooker bees phase:
- For all onlooker bees (i=1... LN) do:

= Evaluate the probability p, given in equation (2.6).
= Assign to each onlooker bee a food source using the roulette wheel and
the probabilityp..

= According to equation (2.9), generate a new food source for each
onlooker bee (i=1,2,...,LN):

Vg =X+ ¢ 1, (xij - ij) (2.9)

where v, is the i" onlooker bee’s new candidate solution in dimension d.
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d=1 ...,D, X;is the i"" selected solution of the j" selected dimension,
and x,;is "™ best-so-far selected food source, f,is the best-so-far food

source’s fitness value.

- Evaluate the fitness value of the generated positions and compare the old

and the new solutions, select then the best one.
d. Scout bees phase:

- For all the onlooker bees, which their food sources quality does not improve

in the determined number (limit) of cycles:

= The food sources are abandoned and their onlooker bees become
scout bees, which randomly generate new food source positions

based on equation (2.10).

Vij = Xij +¢ij |:Wmax - ;Zéllff (Wmax _Wmin )j| Xij (210)

where: x;is the abandoned food source position. v,is the new food
source position of the scout bee. ¢, is a random number between
[-1,+1]. w,,,and w_, are the maximum and the minimum percentage
of the position adjustment for the scout bees. The values of w__, and

w_. are fixed to 1 and 0.2, respectively.

- Evaluate the fitness of the generated positions.
- Save the best solution as the new solution.
- cycle =cycle+1.

End while.

2.3.3. Parameters identification results:

2.3.3.1. Identification results using the ABC algorithm:

In order to check the effectiveness of the identified parameters, obtained by
using the ABC algorithm, outdoor measurements of (I-V) curves from three
different PV modules (such as Isofoton106/12, SILIKEN (SLK60P6L)



and PHHOTOWATT-poly

(PW1650))

have

been

used.

characteristics of these PV modules are summarized in table (2.1).

Table 2.1: The electrical characteristics of the three PV modules

ISOFOTON SILIKEN PHHOTOWATT
106/12 (SLK60P6L) | -poly (PW1650)
Pmpp (W) 106 220 155
Voc (V) 21.6 36.7 43
Isc (A) 6.54 8.10 4.8
Vimpp (V) 17 .4 29.2 34
Impp (A) 6.10 7.54 4.6
(Xlsc
(%/°C) 0.060 0.062 0.0015
BVoc ) ) )
(%/°C) 0.36 0.356 0.158

Table (2.2) summarizes the upper and lower limits for the three PV modules

parameters.

Table 2.2: Upper and lower variation limits of the three PV modules

ISOFOTON SILIKEN PHHOTOWATT-
106W-1V2 (SLK60P6L) | POLY(PW1650)
Rs(Q) [0—1] [0-1] [0-1]
R (Q) [0 - 400] [0 - 400] [0 - 400]
loho (A) [0-10] [0-10] [0-10]
lsat (A) [107 — 10 [107 — 107 [107 — 107
n [0 - 75] [70 - 130] [60 - 160]

The adjustable parameters of ABC algorithm have been chosen as depicted in

table (2.3).

Table 2.3: The adjustable parameters of the ABC algorithm

ABC parameters Values
Colony size 150
Number of employed bees 75
Number of onlooker bees 75
The limit of the scout bees 150 X 5
10000

Maximum number of iteration

The comparison between the measured (I-V) characteristics and the estimated
for each PV module and for different

using the

identified parameters,

The electrical
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conditions, are illustrated in Figures (2.3-2.5). Finally, the

convergence rate of the ABC algorithm during the identification process is

illustrated in Figure (2.6).
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Figure 2.3: Measured and calculated (I-V) curve of Isofoton106/12 PV module
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Figure 2.4: Measured and calculated (I-V) curve of SILIKEN (SLK60P6L) PV

module for different meteorological conditions.
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The identified parameters of all PV modules are summarized in table (2.4).

Table 2.4: The final identified parameters of the three PV modules.

PV Modules | Ipn(A) | Isat(A) |Rs(Q) [Rsn(Q) | n | RMSE

Isofoton 106/12 | 6.68 | 1.43e-5 | 0.12 143 |61.913 | 0.015
SILIKEN 7.67 | 1.19e-5 | 0.21 400 95.50 | 0.069
PHHOTOWATT | 5.09 | 4.61e-5 | 0.25 387 | 130.35 | 0.029

In order to check the performance of the proposed ABC algorithm, a
comparative study with two others optimization algorithms found in the literature
[52, 53] has been carried out using Isofoton 106W/12V PV module. The algorithms
are: Differential Evolution (DE) [53] and Particle Swarm Optimization (PSO) [52]
algorithms. In order to compute the average root mean square error (RMSE) value
and the standard deviation STD value, the three algorithms have been executed

30 times.

The obtained results, given in table (2.5), show that the best results are
obtained with the ABC algorithm.

Table 2.5: The comparative study of the three optimization algorithms

item ABC DE PSO
Ioho(A) 6.73 6.71 6.73
lsat(A) | 1.38E-005 | 1.62E-005 1e-5
n 61.76 62.53 60.24
Rs(Q) 0.12 0.12 0.13
Rsn(Q) 103 120 95.50
RMSE 0.015 0.018 0.018
STD | 8.46E-005 | 1.48E-004 | 3.90E-004

2.3.3.2. Identification results using the best-so-far ABC algorithm:

Hereafter, the effectiveness of PV module parameters identification based on
the best-so-far ABC algorithm is experimentally assessed. Towards this end, real
experimental (I-V) curve measurements from individuals PV modules are used.
These modules are part of two installed grid connected PV systems, Algerian and
Spanish PV systems. Moreover, these PV modules are of two different
technologies: the Spanish PV module is "KANEKA GEA060" PV module, type
amorphous silicon (a-Si) technology, while the Algerian PV module is "Isofoton

106/12" PV module, type mono-crystalline technology.
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Table (2.6) summarizes the various irradiance and temperatures conditions at

which the real measured (I-V) curves have been collected.

Table 2.6: The experimental weather conditions obtained from
outdoor measurements of (I-V) curves.

PV module Temperature (°C) Irradiance (W/m?)
Isofoton 106-12 27.2 755
KANEKA GEA060 25 1000

The electrical characteristics given in the manufacturer datasheet, and which are
obtained under the standard test conditions (STC) of the Spanish PV module are
summarized in table (2.7). Parameters variation limits of both Algerian and

Spanish PV modules are summarized in table (2.8).

Table 2.7: The electrical parameters of
KANEKA GEA060 module at STC condition

Parameters KANEKA GEA060
mpp (W) 60
V. (V) 92
I, (A) 1.19
Ve (V) 64
| (A) 0.90
ol (%/°C) -0.305
BV__(%I°C) 0.0752

Table 2.8: The PV module parameters’ variation limits

Isofoton | KANEKA
106-12 GEA060

Iph [A] [0-10] [0-10]

I0[A] | [107-109 | [0-1]
n [0-75] [0-300]

Rs [Q] [0-1] [0-10]

Rsh[Q] | [0-400] | [0-1000]

The adjustable parameters of the best-so-far ABC algorithm are set to

the following values: food source number = 150, number of employed bees = 75,
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number of onlooker bees = 75, the solution dimension = 5 (i.e., number of
parameters to be identified) and the maximum cycle number = 7500. The optimal
values of the parameters [lpn, lo, n, Rs, Rsh], determined by the best-so-far ABC
algorithm, which gives the best fitting of the measured (I-V) curves, are

summarized in table (2.9).

The optimal identified parameters are used to estimate the (I-V) curve by using
the same irradiance and temperature conditions as the experiments. Then, the
(I-V) (1-V)

measurements to assess the parameter identification performance. Figures

estimated curves are compared with experimental curves
(2.7(a-b)) show the comparison between the real measured (I-V) curve and
the estimated using the identified parameters, for the used PV modules under

different meteorological conditions.

Table 2.9: The identification results

Iph[A] | 10 [A] n | Rs[Q]]| Rsh[Q] | RMSE
Isofoton 106W-12V | 6.54 1.11e-05 | 59.90 | 0.1474 | 202.6 0.014
KANEKA GEA060 1.28 6.15e-07 | 2569.24 | 4.52 990.93 | 0.0058
[ T T () T T HL*h T T 1h] T T
izt
Rl - ——— = —measured data for T=25 and G= 1000
B | o 20|+ calculated dta for T-25 and G100
b L
o Jos
) Dt
4 b2
0 : : : D : : ! :
0 5 10 15 20 25 [ ] a0 B0 B ]

Voltage(V) Vaoltage [V]
Figure 2.7: (a) Measured and predicted (I-V) curves for the Isofoton 106/12 PV
module. (b) Measured and predicted (I-V) curve for the KANEKA GEA060 PV module.
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It can be seen that the obtained parameters by the used optimization algorithm
fit well with the experimental (I-V) curves, for both amorphous silicon and mono-

crystalline technologies.

Furthermore, the lower value of the RMSE (see table (2.9)) indicates a good
prediction performance of the best-so-far ABC algorithm to determine the best
fitting parameters values, with an acceptable convergence rate, as shown in

figures (2.8 (a-b)).
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Figure 2.8: Convergence rate of the best-so-far ABC algorithm for (a) KANEKA
GEAO060 and (b) Isofoton 106-12V PV module.

2.4. The Developed approach of MPP estimation:

2.4.1. Fundamental principle:

Based on the identified parameters, the values of Impp, Vmpp and Pmpp can be

estimated using equations (2.11-2.13) [54].

v
V. o= oy Jop[ So |y g[Sy (2.11)
1+ (T.-T,) 'T. |G

T . (2.12)

P =1 xV (2.13)
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where:

Go is the nominal irradiance (Go=1000 W/m?), To is the nominal temperature

(To=25°C), R_is the series resistance. G, is the effective irradiance,C;is

the temperature coefficient of power (typical value for monocristalin silicium is

-0.0044 k), T_is the cell temperature, and it is given by the NOCT relationship,

given hereafter:

Tc (Geff s Tamb ) = Tamb + (NOCT - TambN ) GGeff

(2.14)

N

T,..is the ambient temperature, NOCT =48°C is the Nominal Operating Cell

a

Temperature and it is given in the PV module data-sheet, G, =800 W /m*and

T.mon =20 °C are the test conditions for the NOCT evaluation, V;is the thermal

a

voltage and it is expressed as follows:

V, =— (2.15)

\Y 0and I

mpp o, are the nominal maximum voltage and current respectively

m

(the maximum power point coordinates), and they are given within the PV module

data-sheet.

2.4.2. MPP estimation results:

2.4.2.1. MPP estimation results using the ABC-based identified parameters:

In order to assess the accuracy of the ABC-based identified parameters, MPP
model given in equations (2.11-2.13) has been plotted against real daily
production for two conditions: a clear sky condition and cloudy sky condition, of an
actual Algerian PV system. This system is formed by two parallel strings; each

string is composed of fifteen series connected Isofoton 106-12 PV modules.

Figures (2.9-2.11) show the time evolution of the simulated and measured
current, voltage and power, respectively, for a clear sky day profile. While, time
evolution of the same quantities for a cloudy day profile is shown in figures (2.12-
2.14). These results show clearly the efficiency of the proposed MPP estimation

strategy for both clear sky and cloudy sky conditions.
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2.4.2.2. MPP estimation results using the best-so-far ABC-based identified
parameters:

The identified parameters based on the best-so-far ABC algorithm are used to

estimate the dynamic evolution of MPP coordinates of current and power under

real operating conditions for the Algerian and Spanish PV systems.

The dynamic MPP estimation approach has been validated experimentally
using real daily weather conditions collected from two sites (Algiers province of
Algeria and Jaén province of Spain). To assess the proposed MPP estimation
approach under different operating conditions, two daily profiles are also selected
for both the Algerian and Spanish sites, clear and cloudy sky conditions (see
Figures (2.15-2.16)). The measured versus estimated MPP current and power of
the Algerian GCPV system under clear sky day condition are shown in Figures
(2.17(a-b)), and under cloudy sky day condition are shown in Figures (2.17(c-d)).
For Jaén PV array, the measured and estimated MPP current and power under
clear sky day condition are presented in Figure (2.18(a-b)), and under cloudy sky
day condition are shown in Figure (2.18(c-d)). These Figures show that the
observed data are well-fitted by the MPP estimation strategy for the two studied
systems.
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Figure 2.15: The Algerian PV system (a) clear day profile of irradiation level, (b) clear
day profile of temperature level, (c) cloudy day profile of irradiation level and (d)
cloudy day profile of temperature level.
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2.5. Conclusion:

This chapter is mainly devoted to clarify the developed strategy of PV array
modeling and validation. It reports the ODM description, the PV module
parameters identification using ABC and best-so-far ABC algorithms, and finally

the proposed approach to estimate the MPP coordinates. .

The proposed parameters identification algorithms have been tested using
several PV modules of different technologies. The identified parameters of each
module have been introduced into the characteristic equation, and then tested
against real (I-V) curves measurements. The obtained results show clearly the

effectiveness of the proposed algorithms to extract the PV module parameters.

Finally, an efficient approach of MPP estimation, based on the identified
parameters, has been developed. MPP estimation results have clearly

demonstrated the effectiveness of this strategy.
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CHAPTER 3

FAULTS DETECTION AND DIAGNOSIS OF PHOTOVOLTAIC
SYSTEMS USING PROBABILISTIC NEURAL NETWORKS

3.1. Introduction:

In this chapter, a novel procedure for fault detection and diagnosis in the DC
side of PV systems, based on the probabilistic neural network (PNN) [9, 10]
classifier, is proposed. The suggested procedure consists of four main stages: (i)
PV module parameters extraction, (i) PV array simulation and experimental
validation (iii) the elaboration of a relevant database of both healthy and faulty
operations, and (iiii) network construction, training and testing. In the first stage,
the unknown electrical parameters of the one diode model (ODM) will be
accurately identified using the best-so-far ABC algorithm. Then, based on these
parameters the PV array will be simulated and experimentally validated by using a
PSIM™/Matlab™ co-simulation. Finally, an efficient fault detection and diagnosis
procedure based on PNN classifier will be implemented. Four operating cases are
tested in a GCPV system of 9.54 kWp: Healthy system, three modules short-
circuited in one string, ten modules short-circuited in one string, and a string
disconnected from the array. Moreover, the PNN method will be compared, under
real operating conditions, with the feed forward back-propagation ANN classifiers

method, for noiseless and noisy data.

3.2. Description of the PV system and the faults detection and diagnosis

strateqy:
3.2.1. PV system description:

PV plant under study is an actual Algerian GCPV system, located in Algiers
(Algeria) (Latitude: 36°43’'N, Longitude: 3°15°E). This PV plant is a 9.54 kWp
arranged in 3 sub-arrays of 3.18 kWp each one. Each sub-array contains 30
Isofoton 106W-12V PV modules, mounted in 2 parallel strings of 15 PV modules in
series, and connected to a 2.5 kW (IG30 Fronius) single phase inverter. Tilted and
horizontal irradiances are measured using a Kipp & Zonen CM11 thermoelectric
pyranometer, while the PV module temperature is measured using K-type

thermocouple.
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Meteorological variables as well as electrical variables measurements are
performed by a data logger (Agilent 34970) as depicted in Figure (3.1).

Temperature Horizontal In plane irradiance

SEnNsor; irradiance sensor; SCNSOr;

K-type Kipp & Zonen CM11 Kipp & Zonen CM11 PV inverter
thermocouple pyranometer pyranometer (IG30 Fronius)

National
distribution grid
S50Hz

Data acquisition
[Agilent 34970A])

Data analysis
[Personnel Computer)

Figure 3.1: PV plant under study and the monitoring system.
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3.2.2. Faults detection and diagnosis strateqy:

The main objective of this work is to design an efficient and reliable procedure,
based on PNN classifier, to detect faults in a photovoltaic system and to diagnose
their origin. However, using this type of method, to deal with the classification
problem, requires the availability of a high-quality database that describes very
well the process for each class. Practically speaking, obtaining such a database
cannot often be guaranteed, especially in PV systems. In fact, operating a PV
system under some types of failures can make the system completely insecure
and cause catastrophic damages and safety hazards. Therefore, the best way to
deal with this concern is to have a trusted simulation model that mimics the actual
behavior of a PV system under healthy and faulty states. The flowchart, given in
Figure (3.2), summarizes the adopted steps followed to construct the fault
detection and diagnosis strategy, namely: PV module parameters extraction,

model validation, database elaboration and finally fault detection and diagnosis.

3.2.2.1. PV module parameters extraction:

In this work, the same strategy of PV module parameters extraction, which has
been developed in chapter 2 based on the best-so-far ABC algorithm, is used to
extract the ODM five electrical parameters. This choice is essentially due to its
capacity to converge regardless the initial conditions, to accurate global solutions,

high convergence speed and its simplicity in terms of implementation [21, 55, 56].

3.2.2.2. Model validation:

The extracted ODM parameters are, subsequently, used to simulate the real

PV system for normal conditions using PSIM™/Matlab™ Co-simulation. Indeed,
the physical model of solar module, included in PSIM™ software, is used to
simulate the physical behavior of the actual PV system. This can be reached by
introducing the ODM identified parameters into this model, and then simulate the
whole PV system for real daily profile measurements of temperatures and
irradiances. On the other hand, data processing and involved calculations are
performed in Matlab™/Simulink™ environment. Finally, the simulated power (Psim)

and the measured one (Pmeas) are then compared.
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Figure 3.2: Flowchart of the followed steps of the proposed faults detection and
diagnosis strategy.
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3.2.2.3. Database elaboration:

This stage consists of elaborating a high-quality database that accurately
describes the system behavior, in normal and faulty conditions. To this end,
the validated PV system model is used to generate healthy and faulty samples, by
intentionally introducing the desired faults, with real daily profiles of temperature
and irradiance. The recorded samples, corresponding to each operating condition,
include four attributes: module Temperature “T”, tilted Irradiance “G”, current at
MPP “Impp” and voltage at MPP “Vmpp”.

3.2.2.4. Fault detection and diagnosis based on PNN classifier:

Based on the elaborated data base, the last step consists of constructing two
probabilistic neural networks (PNN) classifiers: the first one is dedicated to fault
detection and the second is responsible for diagnosing the origin of faults.
The methodology of PNN construction, training and test are explained in details

hereafter.

3.3. The proposed neuronal strateqgy of faults detection and diagnosis:

3.3.1. Probabilistic neural network:

The Probabilistic Neural Network (PNN), as a learning based method, has
been considered as a powerful classification technique. Similarly to the other
neural network strategies, the PNN uses a training set to extract pattern statistics,
and a testing set to check the classification accuracy. Its architecture is similar to
that of the back propagation one [9], except of using the exponential function, as
an activation function, instead of using the sigmoid function [9]. As shown in
Figure (3.3), the probabilistic neural network consists of: input units, pattern units,
summation units and output units [9, 10].

The aim of the input units is to directly distribute the input vector X to the
pattern units, while the number of neurons in these units corresponds to the input
vector size.

Besides, the pattern units, described by Figure (3.4), consider the use of
the same number of neurons as the input units. The pattern units are responsible

for the dot multiplication of the elements of the input vector and their respective

weights Z, = Xe W., given that the weight coefficient Wi of each pattern unit is set to
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the same value Xi of the training set. The result, Zi , will be then introduced to a

nonlinear activation function, given by the following equation [9]:

Q(Zi)=exp((Zi”j (3.1)

o)

In the case of normalized input and weight vectors, the activation function

(equation (3.1)) will result in [9]:

Q(X)zexp[<wx>‘(wx)J 52)

(207)

where G denotes the smoothing parameter.

The outputs of the pattern units will be then transmitted to the summation
units, in which the number of neurons matches the number of classes. The outputs

of each summation unit are given by [9]:

t
f(X)= 1P iZeXp _(Wi_XAi)z(Wi_XAi)
(271)56P M i 20

(3.3)

where: f,(X) is the Probability Density Function (PDF) of the input vector X; P is

the number of patterns; m is the learning set size; Xai describes the corresponding
it training pattern of class A. The output units define the decision blocks.
PNN comprises only one neuron in its output layer. This layer receives, from
the summation layer, the probability density functions (PDF) values of each class
and predicts the adequate class of the new sample. In other terms, this last layer
outputs the adequate target that corresponds to the highest probability density
function in the summation units. The efficiency of PNN classifier depends on
the used PDF accuracy, which is defined by the best choice of its smoothing
parameter value [9].

Compared with the conventional back-propagation network, PNN has several
important advantages such as [9]:

e Its training stage requires only one single pass (neither iterations nor

weights computation).
e |t can support both erroneous and noisy samples.

e |t has only one adjustable parameter (the smoothing parameter o).
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Figure 3.3: PNN structure for classification problem of two dimensions [9].
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Figure 3.4: PNN Pattern unit [9].

3.3.2. PNN based method for fault detection and diagnosis:

As stated before, the objective of this work is to detect and diagnose faults in
the DC side of a GCPV system based on PNN classifier. Using PNN as fault
detection and diagnosis approach requires four essential steps: (i) the elaboration
of a relevant database that contains the necessary data to train and test the
network, (ii) the network construction, (iii) train the network using the learning set,
and finally (iiii) the test and evaluation of the network efficiency based on the test
set.
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3.3.2.1. The elaboration of the relevant database:

To be able to obtain a pertinent database for both healthy and faulty systems,
the physical model of the PV module implemented in PSIM™ software, is used to
simulate, under healthy and faulty conditions, the real operation of the previously
described Algerian GCPV system. The employed PV array comprises two parallel
strings of fifteen PV modules in series (Isofoton 106W-12V).

During this simulation, the physical model of the PV array requires the
introduction of the ODM parameters’ values, which are obtained using the best-so-
far ABC algorithm. This can be achieved by using the developed parameters
extraction strategy of chapter 2.

The proposed strategy for simulating the photovoltaic system using the
PSIM™ software is characterized by its physical nature, which makes it possible to
easily simulate the behavior of several faults that usually happen in the DC side of
PV systems, such as: shading faults, short circuit faults, open circuit faults, line-
line faults, ...etc.

Moreover, the used simulation model requires much reduced time to simulate
the behavior of PV system whatever its physical configuration, and even for a very
high number of meteorological data.

In this work, the simulations of four operating cases have been considered:
healthy system; three modules short-circuited in a string; ten modules short-
circuited in a string, and finally a completely disconnected string in an array, as
depicted in Figure (3.5). To finish with, the final database is constructed
considering four attributes [T, G, Impp, and Vmpp] for each operating case. Figure
(3.6) shows the flowchart of PNN dataset elaboration.

3.3.2.2.The networks construction:

Since the proposed work aims both fault detection and diagnosis, two PNN
classifiers are then constructed. Indeed, the occurrence of any fault in the PV
system is detected by the first network, while the diagnosis of its type is carried out
by the second one.

The detection network, shown in Figure (3.7), has four inputs (T, G, Impp and
Vmpp) and two outputs (healthy state, faulty state), while the diagnosis network,
shown in Figure (3.8), has the same inputs as the first one, and three outputs

(fault #1, fault #2 and fault #3) corresponding to the three faulty operating cases.
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PNN classifiers of fault detection and diagnosis (Figures (3.7-3.8)) comprise only
one neuron in their output layers. This neuron outputs the class that corresponds
to the highest probability density function in the summation units.

In order to avoid any conflict, the detection and diagnostic networks are
connected in series so that the diagnostic network will not be activated as long as
the faulty alarm does not occur from the detection network. This concept is
explicitly explained by the flowchart of Figure (3.9), given below.

String 1 String =2 Ipv

OoCPD #3

#1

W

-

Centralized
Inverter

GFDI

Vpv

&

2 Gsys

S Series fuse for
overcurrent protection

. PV module

#1 Three modules short-circuited
1 #2 Ten modules short-circuited

#3  First string completely disconnected
15

Figure 3.5: The tested open circuit and short circuit failures

of the studied PV system.
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Figure 3.6: The dataset elaboration flowchart.
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Figure 3.7: PNN detection network.
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3.3.2.3. The learning stage:

Now, the detection and diagnostic networks are formed by using the learning
data set previously obtained. It should be noted here that, on one hand, the input
data (T, G, Impp and Vmpp), are of continuous type which are directly processed by
the two PNNs. On the other hand, the outputs (healthy state, faulty state, fault #1,
fault #2 and fault #3) are nominal variables that are not supported by this type of
networks. For this reason, particular codes, arbitrary chosen, have been assigned
to the PNN outputs as mentioned below:

e Healthy system: code “2”, and which will be used for the faults detection

network to describe the healthy operating case.

e Faulty system: code “8”, and which will be used for the faults detection

network to describe the occurrence of possible DC side faults.

e Fault #1: code “4”, and which will be used for the diagnosis network to

describe the occurrence of short circuit of three PV modules in one string.

e Fault #2: code “6”, and which will be used for the diagnosis network to

describe the occurrence of short circuit of ten PV modules in one string.
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e Fault #3: code “9”, and which will be used for the diagnosis network to
describe the occurrence of a complete string disconnection from the PV
array.

Finally, to train both detection and diagnosis networks, learning set values and the
codes of their corresponding classes are used as input and target vectors,

respectively.

3.3.2.4. The testing stage

After having learned both detection and diagnosis networks, the next stage is

to test their effectiveness while using the testing set. Similarly to the training stage,
the input testing set to the two PNN classifiers are the four attributes (T, G, Impp
and Vmpp), While their outputs denote their corresponding estimated classes.

In order to assess the networks efficiency, a performance test of the classifiers

has been carried out by using the following four standard metrics [57]:

. : TP
Classification Accuracy =100x % (3.4)
e _ TPclass(x)
Sensitivity(class(x)) =100 x (3.5)
TPclass(x) + FNclass(x)
TN
Specificity(class(x)) = 100 x cass () (3.6)
TNclass(x) + FPclass(x)
Positive Predictivity(class(x)) =100 x Mo (3.7)
TP + FP

class(x) class(x)

where:

TP is the True Positive classifications number, which denotes the number of

samples which are supposed to be classified in class “x” and they are really

classified into this class. FN is the False Negative classifications number, which

denotes the number of samples from class “x” and are classified into another class

6y,

than class “x”. TN is the True Negative classifications number, which denotes

the number of samples which are not supposed to be classified in class “x” and
are really classified, according to the classifier, into another class than class “x”.
FP is the False Positive classifications number, which denotes the number of

6y,

samples which are not supposed to be classified into class “x”, while they really
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are classified, according to the classifiers, into this class, and ‘d’ defines the size of
the testing set.

In addition to these performance evaluation standard metrics, the confusion
matrix is another metric usually used to evaluate the classifier performance. In
fact, confusion matrix (also called contingency table) is a clean and unambiguous
way to depict the classification results. As an example of a binary classification
problem (Problem with two possible classes), the confusion matrix is composed of

two rows and two columns, as can be seen in table (3.1).

Table 3.1: The confusion matrix of a binary classification problem

The first class The second class

(Predicted) (Predicted)
The first class (Actual) True Positive (TP) False Negative (FN)
The second class (Actual) False Positive (FP) True Negative (TN)

3.4. Simulation and experimental results:

In order to verify the performance and effectiveness of the proposed approach,
described previously in section (3.3.2), a simulation study and an experimental
evaluation are carried out, and the main results are highlighted. This section is
subdivided into three sub-sections: PV module parameters extraction results,
model validation results, and finally, PNN based fault detection and diagnosis

results.

3.4.1. PV module parameters extraction results:

In the first stage, the efficiency of PV module parameters extraction method
based on the best-so-far ABC algorithm was experimentally validated. To this end,
experimental (I-V) curve measurements, using an |-V curve tracer (PVPM40),
were recorded and compared with the prediction model (Equation (2.1).
the module temperature and the irradiance level used in this particular test were
27.2 °C and 755 W/m?, respectively.

The best-so-far ABC algorithm adjustable parameters are summarized in
Table (3.2), while the optimal values of the electrical parameters [lph, lo, N, Rs, Rsh],

determined by the best-so-far ABC algorithm, are summarized in Table (3.3).
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Table 3.2: The adjustable parameters of the best-so-far ABC algorithm

The Food Number of | Number of The Maximum
adjustable source | employed | onlooker solution cycles
Parameters number bees bees dimension number

The selected

150 75 75 5 2000
value

Table 3.3: Isofoton 106W-12V PV module’s extracted parameters

The electrical

parameter Ion [A] lo [A] n Rs [Q] | Rsh [Q] | RMSE

The identified 6.54 | 1.11e-05 | 1.66 | 0.1474 | 202.6 | 0.014
value

The simulation result of the prediction model (Equ.3.2), obtained with the
optimal parameters, and the experimental curves are shown in Figure (3.10).

It is clearly shown the good agreement between the experimental curve and
the predicted one when simulated with the extracted parameters.

Also, the smallest value of the RMSE, given in table (3.3), reveals the high
accuracy of the best-so-far ABC algorithm to extract the best fitting parameters.

In Figure (3.11), it is shown the best-so-far ABC algorithm convergence rate
for each cycle until reaching the convergence condition (smallest RMSE value).
While in Figure (3.12), it is depicted the absolute error between measured current

(Imeas) and estimated current (lest), computed by the following equation.

I

(3.8)

current_mismatch = |I

meas est

According to Figure (3.12), the highest value of the absolute error does not
exceed 0.06 which confirm the high accuracy of the best-so-far ABC algorithm to

extract the best fitting parameters of the ODM.
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Figure 3.11: The best-so-far ABC algorithm convergence rate.
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Figure 3.12: The evolution of the absolute error between
the measured and estimated current.

3.4.2. Model validation results:

The extracted parameters, calculated in the previous section, are now
introduced into the whole PV plant that models the Algerian GCPV system, in
normal operating conditions. The inputs to this model are the actual measured
daily profiles of temperature and irradiance. In this work, a co-simulation
methodology was adopted by combining PSIM™ and Matlab™ software, where
the physical system (PV generator and MPPT) is implemented in PSIM™, while
data processing and the involved calculations are implemented in
Matlab/Simulink™. The simulated output power (Pmpp-sim) is then compared to
the output measured power (Pmpp-mea), under the same temperature and irradiance
inputs, as shown in Figure (3.13).

As this stage is crucial for the fault detection and diagnosis step, detailed in
the next section, the results given in Figure (3.13) must be quantified in terms of
discrepancy between measured and simulated powers. To this end, the Mean
Absolute Error (MAE), given by equation (3.9), was considered to evaluate the
daily mean gap between Pmppsim and Pmpp-meas. The calculated MAE for this

particular day, characterized by fast-moving clouds, is found to be about 8 watts.
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(3.9)

mpp _meas mpp _sim

1 L
MAE, :E;\P _pP

where: L denotes the length of MPP power vector.
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Figure 3.13: Real measured against simulated peak power.

3.4.3. Fault detection and diagnosis results

In this subsection, the effectiveness of the proposed fault detection and
diagnosis approach is presented in detail. At first, the PNN construction, training
and validation are conducted with noiseless data, obtained from the simulation
model, in normal and faulty operations. In the second step, the constructed PNNs
are tested against noisy data, obtained by adding a predefined noise to
the simulated data. In addition, a comparison study with classical ANN classifier

for both noiseless and noisy data is also carried out in this subsection.

3.4.3.1. Noiseless data case:

Once the simulation model has been validated, the previously described DC
side failures have been simulated under measured daily profiles of temperature
and irradiance. This simulation aims the elaboration of a high-quality database for
both healthy and faulty systems as described in section (3.3). The formed
database contains 2960 data for each operating case, which means a total of

11840 data for the four simulated scenarios. For the training phase, we have
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chosen 75% (8880 data) while the test set contains the remaining 25 %

(2960 data). The details of the total database construction are given bellow:

740 data are associated with each of the four attributes (T, G, Impp and
Vmpp) for each operating case. Thus, a total of 2960 = 740 x 4 data set is
associated with each operating case. More precisely, the vector of each
attribute is subdivided into two sub-vectors: a first one comprises 556
samples (75% of 740) and it is stated as the classifier training set, while
the second sub-vector includes the remaining 184 samples (25% of 740),
and it is used as the classifier testing set.

The test dataset comprises 184 x 4 =736 data for each attribute, organized

in the following manner:

The test set of healthy system includes 184 samples.

The test set of fault #1 includes 184 samples.

The test set of fault #2 includes 184 samples.

The test set of fault #3 includes 184 samples.

On the other hand, this work proposes the use of two classifiers (two
different networks). The first PNN is responsible of failures detection, while
the second classifier aims to diagnose accurately the type of the occurred
fault. Therefore, the performance of the detection network is assessed by
using the test set in the following manner:

- Healthy system test set includes 184 samples for each attribute.

- Faulty system test set includes 184 x 3=552 samples (Denoted by the
three faulty cases: Fault #1, Fault #2 and Fault #3) for each attribute.
While the performance of the diagnosis network is assessed by using

the test set in the following manner:
- Fault #1 test set includes 184 samples for each attribute.
- Fault #2 test set includes 184 samples for each attribute.

- Fault #3 test set includes 184 samples for each attribute.

It is worth mentioning here that the measured data from the real operating

system are considered as noiseless data as the quantification of error

measurements and sensor drifts is a very difficult task.

For comparison purpose, the performances of the proposed fault detection

and diagnosis in PV systems are compared with those obtained with the classical

ANN classifier. Toward this end, two ANNs have been constructed, trained and
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tested with the same dataset as the PNN. The number of the hidden layers in
the ANN networks and the smoothing parameter, o, for the PNN networks are
obtained by trial and error tests. The main parameters used in this work, for each
network, are summarized in table (3.4). Classifiers efficiency (total efficiency) and
classification sensitivity results for ANN and PNN classifiers are summarized in
Table (3.5).

Table 3.4: ANN and PNN networks adjustable parameters

Feed Forward Back-Propagation Network
(ANN)

Probabilistic Neural
Network (PNN)

The weights adjustment’s method: back
propagation algorithm.

The number of neurons in the hidden layer= 25. The smoothing parameter

oc=11.

Detection | The activation function: tangent sigmoid.
network | The training phase’s maximum number of epochs The activation function:
=100. : '
The training phase’s performance goal = 10-°. exponential
The weights adjustment’s method: back
propagation algorithm. .
. .| The number of neurons in the hidden layer = 40. Th_e smoothing parameter
Diagnosis L - . . o=1.1.
network The activation function: tangent sigmoid.

The training phase’s maximum number of epochs
=100.
The training phase’s performance goal = 10-°.

The activation function:
exponential

Table 3.5: Classification accuracy and sensitivity results for noiseless data

Detection networks tested with noiseless data
Classification Sensitivity %

The classifier accuracy % Healthy operating | Faulty operating
type case case
ANN 90.35 100 78.14
PNN 100 100 100

Diagnosis networks tested with noiseless data
Classification Sensitivity %

The classifier accuracy % Fault 1 Fault 2 Fault 3
type
ANN 73.18 86.96 100 32.61
PNN 100 100 100 100




100

While the confusion matrixes of the two networks (ANN and PNN for detection and

diagnosis) are summarized in tables (3.6-3.7) respectively.

Table 3.6: Confusion matrixes of ANN networks for noiseless data

Detection network type ANN tested on the noiseless data

The predicted classes

The real classes

Healthy case Faulty case
Healthy case 184 0
Faulty case 71 481

Diagnosis network type ANN tested on the noiseless test data

The predicted classes

The real classes
Fault 1 Fault 2 Fault 3
Fault 1 160 24 0
Fault 2 0 184 0
Fault 3 119 5 60

Table 3.7: Confusion matrixes of PNN networks for noiseless data

Detection network type PNN tested on noiseless data

The predicted classes
The real classes
Healthy case Faulty case
Healthy case 184 0
Faulty case 0 552

Diagnosis network type PNN tested on the noiseless test data

The predicted classes

The real classes
Fault 1 Fault 2 Fault 3
Fault 1 184 0 0
Fault 2 0 184 0
Fault 3 0 0 184

For more clarity of the obtained classification results, the confusion matrixes
have been displayed graphically for the two networks (PNN and ANN). Figures
(3.14-3.15) are the simulation results of the ANN classifiers in detection and

diagnosis stages respectively, while Figures (3.16-3.17) are the results of the PNN
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The simulation results in terms of Specificity and Positive Predictivity

for noiseless data are summarized in table (3.8) (ANN networks) and table (3.9)

(PNN networks), respectively.
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Figure 3.14: Fault detection results based on ANN classifier

for the case of noiseless data.
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Figure 3.15: Fault diagnosis results based on ANN classifier

for the case of noiseless data.
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Figure 3.16: Fault detection results based on PNN classifier

for the case of noiseless data.
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Figure 3.17: Fault diagnosis results based on PNN classifier

for noiseless data
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Table 3.8: Classification Specificity and Positive Predictivity for ANN networks with

noiseless data

Detection network type ANN tested on noiseless data

classes Specificity (%) Positive Predictivity (%)
Healthy case 87.14 72.16
Faulty case 100 100

Diagnosis network type ANN tested on the noiseless test data

classes Specificity (%) Positive Predictivity (%)
Fault1 67.66 57.35
Fault2 92.12 86.38
Fault3 100 100

Table 3.9: Classification Specificity and Positive Predictivity for PNN networks with

noiseless data

Detection network type PNN tested on the noiseless test data

classes Specificity (%) Positive Predictivity (%)
Healthy case 100 % 100 %
Faulty case 100 % 100 %

Diagnosis network type PNN tested on the noiseless test data

classes Specificity (%) Positive Predictivity (%)
Fault1 100 % 100 %
Fault2 100 % 100 %
Fault3 100 % 100 %

According to the results given above, the high classification abilities of

the proposed method, based on PNN classifiers, are clearly demonstrated,

whether at the detection stage or at the diagnosis stage. In fact, all the evaluated

metrics (classification accuracy, sensitivity, specificity and positive predictivity)

give a 100% success rate for the classification of the input samples in their

corresponding classes (see table (3.5) and table (3.9)). Furthermore, these high

performances, to correctly classify the incoming samples in their right classes, are

highlighted by the confusion matrixes given in table (3.7) and represented

graphically in Figures (3.16-3.17). However, the evaluation metrics for ANN

classifiers (Table (3.5)) have given lower percentage rate in both detection
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and diagnosis stages. For instance, a very low percentage rate is obtained for
sensitivity metric (32.61%) in case of fault#3. This luck to classify some samples in
their right classes, observed in ANN classifiers, is clearly observed in the
confusion matrixes plots where data belonging to certain classes are wrongly
classified in another classes (Figures (3.14-3.15)). Thus, with the case of
noiseless data, the PNN classifiers have given better results than ANN classifiers

regarding fault detection and diagnosis.

3.4.3.2. Noisy data case

In practical cases, the measured quantities from the PV system are subjected
to various types of disturbances and noises, caused mainly by the tolerances of
the measuring devices and sensor drifts.

However, since these disturbances are difficult to be quantified from a
practical point of view and in order to test the performances of the proposed PNN
with noisy data, we have considered the measured data as noiseless data where a
predefined noise function is added to each attribute to form the noisy data.

This predefined noise function is a simple Matlab™ routine given by the
following equation:

Disturbance = o, + 3 x randn(1, N) (3.10)
Where:

a is the mean of the disturbance signal; B is the standard deviation of the
disturbance signal and which defines its magnitude; “randn” is an implemented
Matlab function used to generate a normal distributed number, and N is the size of
the disturbance signal.
Subsequently, the two networks (ANN and PNN), previously constructed in
subsection (3.3.2.2), are tested on noisy data as follows:
- The disturbance signal is added to the corresponding attributes (T, G, Impp
and Vmpp) by using equation (3.10).
- The added noisy signals are characterized by their means equal to zero
and their standard deviations equal to the disturbance magnitude.
- The chosen magnitudes of each disturbed attribute are: B;= 4°C,

Be=5W/m? B, ,=2A, and By, =5 V.

In order to test the networks efficiency with noisy data, the used learning set is

composed of noiseless data, while the test set includes only the noisy attributes.
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By following the same assessment steps, described in subsection (3.4.3.1), the

simulation results in terms of Classification Accuracy (Total Efficiency),
Classification Sensitivity, Confusion Matrixes, Specificity and Positive Predictivity
for the case of noisy data are summarized in Tables (3.10-3.14) and graphically
represented in Figures (3.18-3.21).

Table 3.10: Classification accuracy and Sensitivity results with noisy data

Detection networks tested on the noisy test data

. Sensitivity %
The classifier Classification - :
accuracy % Healthy operating | Faulty operating
type case case
ANN 58.02 66.85 55.07
PNN 82.34 61.96 89.13
Diagnosis networks tested on the noisy data
L Sensitivity %
- Classification
The classifier o
type accuracy % Fault 1 Fault 2 Fault 3
ANN 76.63 69.02 91.85 69.02
PNN 98.19 100 94.57 100

Table 3.11: Confusions matrixes of ANN networks with noisy data

Detection network type ANN tested on the noisy test data

The predicted classes

The real classes
Healthy case Faulty case
Healthy case 123 61
Faulty case 248 304

Diagnosis netw

ork type ANN tested on the noisy test data

The real classes

The predicted classes

Fault 1 Fault 2 Fault 3
Fault 1 127 57 0
Fault 2 15 169 0
Fault 3 15 42 127




106

Table 3.12: Confusions matrixes of PNN networks for the case of noisy data.

Detection network type PNN with noisy data

The predicted classes
The real classes
Healthy case Faulty case
Healthy case 114 70
Faulty case 60 492
Diagnosis network type PNN with noisy data
The predicted classes
The real classes
Fault 1 Fault 2 Fault 3
Fault 1 184 0 0
Fault 2 10 174 0
Fault 3 0 0 184

the real classes
()]

*  healthy system must belongs to classe 2
*  faulty system must belongs to class 8

22 R Z #
Samples

Figure 3.18: Fault detection results based on ANN classifier for the case of noisy data.
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*

fault 2 must belongs to class 6 []
fault 3 must belongs to class 9
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healthy system must belongs to classe 2
faulty system must belongs to class 8

*
*

800

Samples
Figure 3.19: fault diagnosis results based on ANN classifier for the case of noisy data.
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Figure 3.20: fault detection results based on PNN classifier for the case of noisy data.
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Figure 3.21: Fault diagnosis results based on PNN classifier

for the case of noisy data.

Table 3.13: Classification specificity and Positive Predictivity

for ANN networks under noisy data

Detection network type ANN tested on the noisy test data

classes Specificity (%) Positive Predictivity (%)
Healthy case 55.07 33.15
Faulty case 66.85 83.29

Diagnosis netw

ork type ANN tested on the noisy test data

classes Specificity (%) Positive Predictivity (%)
Fault1 91.85 80.89
Fault2 73.10 63.06
Fault3 100 100
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Table 3.14: Classification specificity and Positive Predictivity
for PNN networks under noisy data.

Detection network type PNN tested on the noisy test data

classes Specificity (%) Positive Predictivity (%)
Healthy case 89.13 65.52
Faulty case 61.96 87.54
Diagnosis network type PNN tested on the noisy test data
classes Specificity (%) Positive Predictivity (%)
Fault1 97.28 94.85
Fault2 100 100
Fault3 100 100

By closely analyzing the above results, it can be noted that even the

exaggerated magnitudes of the noisy attributes (= 4°C, Bg= 5W/m2, B, = 2A,

and By, =5V), the two PNN classifiers still have a motivated results in both

detection and diagnosis stages.

In addition, according to table (3.10) and table (3.14), the main performance
metrics have not undergone a serious decline even under this test condition. For
instance, the recorded classification efficiency, for the proposed classifiers, is

82.34% for detection network, and 98.19% for diagnosis network.

In contrast, the test of the ANN classifiers under noisy data has led to a
significant decrease of almost all the performance metric indicators. For instance,
the recorded classification efficiency is 58.02% for the detection network.
Moreover, a very low percentage rate is obtained for the positive predictivity metric
(33.15%) in the case of the healthy state (Table (3.13)). This significant decrease
of the performances for ANN classifiers is also clearly observed in the confusion
matrixes plots where several amounts of data belonging to certain class are

wrongly classified in another classes (Figures (3.18-3.19)).
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3.4.3.3. PNN classifiers’ efficiency under real operating conditions:

a. PNN classifier’ efficiency under noiseless data:

As mentioned in the previous sections, the on-site measurements have been
considered as noiseless data in this work. Thus, in this subsection a real
measured daily profile of temperature and irradiance is used to assess the
detection and diagnosis capabilities of the proposed PNN classifiers when the
prescribed faults occur in a particular time of day. For clarity purposes, the
measurements of a clear day are taken as a test pattern, where faults are
intentionally introduced in the following manner:

From 2h:00 to 8h:00, the PV system is in normal working conditions (no
faults), then a short-circuit of three PV modules (Fault#1) in the same string has
been introduced at 8h:01. The system remains in that faulty condition until 9h:30.
At this time, the fault is cleared and the system comes back to its normal state. At
11h:00, the system was forced to work under a condition of ten (10) short-circuited
PV modules (Fault#2). The system keep working in this state until 12h:30 where
the fault is cleared and the PV system comes back to its normal condition. After
that, from 14h:00 to 15h:30 the first string of the PV array is completely
disconnected (Fault#3). Thereafter, this fault is removed and the system continues
working in normal conditions. These details are graphically shown in Figures
(3.22-3.23), for the monitored irradiance and module temperature, and Figures
(3.24-3.26), for Impp, Vmpp and Pmpp.
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Figure 3.22: The used daily profile of onsite irradiance level.
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Figure 3.24: The used daily profile of real measured current at MPP “Inpp”.
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Figure 3.23: The used daily profile of onsite temperature level.

P F S A

......................................

""""
‘‘‘‘‘‘
,,,,,,,
- -
-
-
.......................................

L
- g
-

L e o S

f | 1 |

0 : '
02h:00 03h:30 05h:00 06h:30 08h:00 0Sh:30 11h:00 12h:30 14h:00 15h:30 17h:00 18h:30 20h:00

Time

111



Voltage at MPP "“Vmpp" [V]

00 SRBRE L g g g 1
Regionof ___: . ..
sl Fault #2
200 ......... ....................
150 _________ ......... :
Region of :
Fault#1 =% o
00k Feerenens 3 FEUURTTOUROU SOV RO NN P U . Region of
Fault #3
50 . o
H B B e

U i L
02h:00 03h:30 05h:00 06h:30 08h:00 09h:30 11h:00 12h:30 14h:00 15h:30 17h:00 18h:30 20h:00

Time

Figure 3.25: The used daily profile of real measured voltage at MPP “Vipp”.
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Figure 3.26: The used daily profile of real measured power at MPP “Pmpp”.
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The main results, obtained when using the previous patterns, are shown in
Figure (3.27) (detection) and in Figure (3.28) (diagnosis).

It is clearly shown that, before the occurrence of any fault, the detection PNN
network (Figure (3.27)) generates 'Class 2', indicating healthy operating state.
While the diagnosis PNN generates, in this particular case, "class 0" which
denotes that is not yet activated. Therefore, the entire photovoltaic array is
considered to be in a normal operating state.

In case of faulty operation, the detection PNN generates "Class 8" indicating
the occurrence of a fault (see Figure (3.27)), while the diagnosis PNN generates
"Class 4, Class 6 and Class 9", which are the corresponding classes for

the considered faults diagnosed at the time of their appearance (Figure (3.28)).
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Figure3.27: Fault detection results of PNN classifier in the presence

of multiple faults and tested under noiseless data.
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Figure 3.28: Fault diagnosis results of PNN classifier in the presence

of multiple faults and tested under noiseless data.
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b- PNN classifiers’ efficiency under noisy data.
In this last test, the effectiveness of the proposed method is carried out by

superimposing the predefined noise levels (Equation (3.10)) to the monitored data.
The same patterns, described above, have been used in this test. Fault detection

and diagnosis results are summarized in Figures (3.29-3.30), respectively.
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Figure 3.29: Fault detection results of PNN classifier in the presence
of multiple faults and tested under noisy data.
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Figure 3.30: Fault diagnosis results of PNN classifier in the presence

of multiple faults and tested under noisy data.



115

In this particular test, the results shown in figures (3.29-3.30) include some
misclassifications mainly due to the exaggerated magnitudes of the superimposed
noises. Obviously, such noise levels can lead to highly distorted attributes. But,
despite the use of noise signals of a such magnitude, fault detection and diagnosis
results based on PNN classifiers are very motivating even with the appearance of
these misclassifications. In fact, the recorded PNN classifier efficiency is of
82.34% for the detection network and 98.19% for the diagnosis network.

3.5. Conclusion:

This chapter has proposed an enhanced machine learning based approach
for fault detection and diagnosis of PV systems. The efficiency of this method has
been tested and validated using experimental measurements and simulated data.
In the other side, the proposed strategy has been tested and compared with the
conventional feed-forward ANN classifier for both noisy and noiseless data.
Finally, this method has been evaluated under real operating conditions, using real
experimental measurements, collected from the tested PV system, in order to
evaluate its performance and robustness. Results have shown clearly the high
efficiency of this method to detect and diagnose DC side anomalies occurrences

for both noiseless and noisy data.

However, the efficiency of this approach to detect and diagnose short-circuit
faults is guaranteed from at least two short-circuited PV modules. In fact, short-
circuit of one PV module cannot be detected using this approach. This is due to its

high similarity with healthy system for a large scale PV plant.
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CHAPTER 4

FAULTS DETECTION AND DIAGNOSIS OF PHOTOVOLTAIC
SYSTEMS USING STATISTICAL APPROACHES

4.1. Introduction:

In this chapter, two statistical-based methods of faults detection and diagnosis
in PV systems are developed. The first method denotes the improved ratio-based
strategy [17]. It consists on the evaluation of three coefficients: currents coefficient

o, voltage coefficient B and power coefficienty, and it allows the detection and

diagnosis of short-circuits and open-circuits faults.

In the other side, the second statistical-based method applies two control
charts, EWMA [11, 12, 58] and Shewhart [59-61] charts, to detect and diagnose
DC side faults. This last strategy combines the ODM flexibility, and the control
charts aptitude in detecting small changes in PV systems, to elaborate an efficient

strategy of faults detection and diagnosis.

The detailed explanations of these two methods will be given in the next

sections.

4.2. The improved ratio-based method:

This section proposes an efficient strategy to detect and diagnose short-
circuits and open-circuits faults in PV systems, based on the evaluation of three
coefficients. The proposed method consists fundamentally on two steps: an offline
step based on a simulation model, and an online step at which a comparison
between the real measured coefficients against those obtained in the offline step is
performed. The simulation model of the PV array has been validated using real
experimental data of a daily profile from the Algerian PV system described
previously. The effectiveness of the proposed method has been evaluated also
based on the PSIM™/Matlab™ Co-simulation approach of four operating cases:
healthy operating case, one short-circuited module in a string, five short-circuited
modules in a string, and finally a completely disconnected string in the array

operating case. Simulation results have demonstrated the ability of the proposed
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method to detect and diagnose short-circuits and open-circuits faulty operations

under any meteorological condition.

4.2.1. Fundamental principle:

In order to detect and diagnose both short-circuits faults and open-circuits

faults, three coefficients for each type of fault have been introduced: current

coefficienta, voltage coefficient p and finally power coefficient Y -

The expressions given bellow define each coefficient.

| ) (T,G
afaultyfcase (T’ G) = o ety o ( ) (4 . 1 )
Imppifaullyicase (T’ G)
V T,G
Bfaulty_case (T’ G) = mppiheallhyicase( ) (42)
Vmpp_faulty_case (T’ G)
P ) (T,G
’Yfaultyicase (T, G) = PmPP_hedlthy_Cdse( ) (43)

(T,G)

mpp _ faulty _case

where:

I V

mpp _healthy _ case

V

mpp _ faulty _ case

and P

mpp _healthy _case

are the non-faulty case’s MPP

mpp _healthy _case »

and P

mpp_ faulty _ case

coordinates; | are the MPP coordinates

mpp _ faulty _case

of the faulty cases (short-circuits and open-circuits faults ).

The proposed approach consists of two main steps: an offline step that aims
to extract the lower and higher boundaries of each one of the three coefficients, for
each category of fault, and an online step in which we calculate the three real
onsite coefficients and compare them against the variation boundaries of each

type of fault.
Hereafter the detailed procedure of this method is presented:

a- The offline step

As described before, the aim of this step is to extract, for each faulty case, the
variation boundaries of each coefficient. Toward this end, three stages should be

accomplished, as follows:



118

e Simulate both healthy and faulty operating cases, under few
meteorological conditions, using a PSIM™/Matlab™ Co-simulation. This

step is devoted to extract few MPP coordinates for each simulated case.

e Calculate the three coefficients (o, andy) of each faulty case

(short-circuits and open-circuits faults) based on equations (4.1-4.3).

e For each type of fault, extract the variation boundaries of the three
coefficients by adding an offset of + 2% for the three obtained

coefficients.

b- The online step:

During the real operation of PV system, both meteorological conditions and
MPP values could be measured and monitored using the different sensors.

These measurements will be used to calculate the three real onsite coefficients,

such as:
| ! (T,G
ameasured (T, G) — mpp_healthy_case( ) (44)
Imppirealicase (T’ G)
V. T,G
Bmeasured (T, G) — mppihealthyicase( ) (4 5)
Vmpp_real_case (T5 G)
P ) (T,G
,Ymeasured (T, G) — mpp_hedlthy_case( ) (4 6)
Pmppirealicase (T’ G)
Where:

I Vv

mpp _ healthy _case

and P, 1eatny cased€Scribe the MPP current, Voltage

mpp _healthy _ case *
and Power of the healthy case, and which could be obtained directly based on our

proposed MPP estimation strategy given in chapter 2.

I V

mpp _real _case

and P

mpp _real _case

denote the real measured MPP current,

mpp_real _case

voltage and power, respectively.

Finally, the real onsite coefficients are compared against the variations boundaries

of each faulty case, stored before from the offline step.
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To finish with, the fault occurrence will be identified by using the real onsite power

coefficients 7y, ...eq IN SUCh away if its value exceeds 1.02, a DC side’s fault alarm

will be triggered. In the other hand, the type of faults will be diagnosed based on
the comparison between the three real onsite coefficients and the variation

boundaries of each simulated faulty case.

4.2.2. Simulation results:

The effectiveness of the proposed improved ratio-based approach has been
tested based on PSIM™/Matlab™ Co-simulation of the previously described

Algerian GCPV system.

Four case studies: healthy PV array, one short-circuited PV module in a string,
five short-circuited PV modules in a string and a completely disconnected string in
the array; are suggested in this work, to show the performance of the proposed
procedure to detect and diagnose the previously described faults. The four

scenarios are simulated using real daily profile of irradiance and temperature.

The MPP data points obtained from the simulation results have been
subdivided into two sets; the first set includes few measurements, and it has been
reserved to the offline step, where the upper and lower variation boundaries of the
three coefficients have been extracted for each fault type, while the second set
includes the remaining measurements, and it has been considered as the test set
of the proposed fault detection and diagnosis method. Simulations results of the

offline step for the three faulty cases are shown in Figures (4.1-4.3).
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Figure 4.1: Current coefficient a evaluated under the different faulty operations.
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Figure 4.2: Voltage coefficient B evaluated under the different faulty operations.
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Figure 4.3: Power coefficient ¥ evaluated under the different faulty operations.

As described previously, the next stage consists on the online step, where the
actual MPP measurements should be compared against the boundary sets of

each faulty case, in order to diagnose the type of the occurred faults.

Simulation results of the actual measured coefficients against those obtained
in the offline step are shown in figures (4.4-4.6). During this simulation,
the variation boundaries of each faulty case have been achieved from their faulty

coefficients with an offset of + 2% .
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Figure 4.4: Actual measured coefficients against their variations boundaries

for one short-circuited PV module faulty case.
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Figure 4.6: Actual measured coefficients against their variations boundaries
for the completely disconnected string faulty case.

As can be seen from the simulation results, for all the simulated faulty
operations, the three measured coefficients obtained from the online step are
inside their boundary sets obtained from the offline step. Therefore, these results
show clearly the efficiency of this strategy to detect and diagnose the

aforementioned faults.

4 3. Control charts-based method:

Here, an efficient approach for faults detection and diagnosis is suggested [11,

62, 63]. This approach combines the flexibility and simplicity of the ODM with the
extended capacity of an exponentially weighted moving average (EWMA) control
chart to detect incipient changes in a PV system. The one-diode model, which is
easily calibrated due to its limited calibration parameters, is used to predict the
healthy PV array’s maximum power and its coordinates (current ‘Impp’ and voltage
‘Vmpp') using measured temperatures and irradiances. Residuals, which capture
the difference between the measurements and the predictions of the ODM,
are generated and used as fault indicators. Then, the EWMA monitoring chart
is applied on these residuals to detect fault occurrence and identify its type. Actual
data, from the previously described Algerian GCPV system, are used to assess

the performance of the proposed approach. Results show that the proposed
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approach successfully monitors the DC side of PV systems and detects the DC

side faults.

4.3.1. Fundamental principle:

The overarching goal of this strategy is to improve the PV system efficiency by
monitoring its DC side in an efficient manner. Traditionally in manufacturing
industries, statistical quality control is used for monitoring and controlling product
quality. Furthermore, statistical process control charts can provide early warnings
of the abnormal changes in the system operations, helping the operators
to identify the onset of potential faults, such as short-circuits faults, open-circuits
faults, sensor bias and shading faults. These statistical charts include Shewhart,
cumulative sum (CUSUM) [64-66], and EWMA charts.

The univariate statistical methods, such as the Shewhart and EWMA charts ,
have been widely used to monitor industrial processes for many years [11, 62].

These methods are briefly introduced here.

4.3.1.1. Shewhart monitoring chart:

In a Shewhart chart, a sequence of samples (denoted as xi) is plotted against
time. Upper and lower control limits for these samples are established around
the process mean (u) based on the three-sigma rule, i.e., UCL \ LCL = po % 300,
where oo is the standard deviation of the fault-free (healthy system) data

computed when the process is running under healthy conditions.

Whenever the most recent measured point or a consecutive sequence of
points is outside the control limits, an abnormal condition is encountered, and
attention is focused on diagnosing the source of the problem. Here, the Shewhart
chart is used as a benchmark for fault detection and diagnosis in the DC side of a
PV system. In the next section, EWMA chart and its use in fault detection and

diagnosis will be briefly described.

4.3.1.2. EWMA monitoring chart:

In this section, the basic idea of the EWMA chart and its properties are

introduced. For a more detailed discussion about its design, implementation and
properties, refer to [11, 58]. EWMA is constructed based on the exponential

weighting of available observations, a design that provides improved sensitivity
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to small changes in the mean of a multivariate process. EWMA charts are able
to detect small shifts in the process mean because its statistic is a time weighted
average of all previous observations. This chart was firstly introduced by Roberts
[12, 58] and it has been extensively used in time series analysis. It is an anomaly-
detection technique widely used by scientists and engineers in various disciplines
[63, 67, 68].

Assume that {x1,x2,...,xn} are individual observations collected from a

monitored process. The expression for EWMA is given as follows:

4.7)

{zt =hx, +(1-1)z,_, if t>0
Zy = H

The starting value, zo, is usually set to be the mean of the fault-free data, po. zt is
the output of the EWMA chart and x: is the observation from the monitored process

at the current time.

The forgetting parameter, A€ [0,1], determines how fast EWMA forgets the data
history.

From equation (4.7), it is easy to see that:

Zi

z, = hx, +(1-2)[ax, +(1-2)z,, |

=Ax +A(1=0)x, +(1-2) z

Using equation (4.7) recursively, we find that the EWMA is a linear combination of

the observations:
z, = 0x, +A(1-2)x, A (1=A) x, 5+t A (1=2) x, + A (1-2)" 1, (4.8)

Equation (4.8) can also be written as follows:
-t

z_x21 x X, +(1-1)"p (4.9)

Where: A(1-A\)""t is the weight for xi, which decreases off exponentially for the past

observations.
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In other words, as time passes, the smoothed statistic z: becomes the weighted
average of a greater and greater number of the past observations xi-n, and the

weights assigned to the previous observations are in general proportional to the

terms of the geometric progression{k,k(l—k),k(l—k)z,k(l—k)3,...} .

A geometric progression is the discrete version of an exponential function, so this
is where the name of this method is originated. The weighting for older data point
decreases exponentially, giving much more important to the recent observation
while still not discarding the older observation entirely. It can be seen that if A is
small, more weight is assigned to the past observations and the chart is efficient at
detecting small changes in the process mean. On the other hand, if A is large,
more weight is assigned to the current observation and less weight is assigned
to its previous observations. The chart is thus able to detect large shifts [62]. In the
special case when A=1, EWMA is equal to the most recent observation, x:, and

provides the same results as the Shewhart chart provides.

As \ approaches zero, EWMA approximates the CUSUM criteria, which give equal

weight to the historical observations.

Under fault-free conditions, the standard deviation of z: is defined as [11, 62]:

A

o, =so\/ﬂ[l—(1—x)2t] (4.10)

Where: oo is the standard deviation of the fault-free or preliminary data. Therefore,

in such cases, ZtDN(MO,G;)- However, in the presence of a mean shift at

the time point, the chart statistic will be defined as follows [11, 62]:
Zt:N(u0+|:l—(1—7\,)n_ﬁ—l:|(“1_MO)’Gi) (411)

It can be seen from equation (4.11) that the mean of the EWMA statistic in
the presence of faults is a weighted average of po and p1, and the weight of p1 is
larger when n is larger. Therefore, the EWMA statistic, z:, indeed contains useful

information about the mean shift.

The upper and lower control limits of the EWMA chart for detecting a mean shift

are:
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UCL/LCL=p,tLo, (4.12)

where L is a multiplier of the EWMA standard deviation, ozt. The parameters L and
A need to be set carefully [11, 62]. L is usually specified in practice to be 3, which
corresponds to a false alarm rate of 0.27% implying that 99.73% of the
observations should be contained within the control limits in normal conditions.

The value of A is usually set between 0.2 and 0.3 [11].

On the other hand, from equation (4.10), it can be seen that the term [1 = (1 = A) %]
converges to unity as t gets larger. In practice, people often use the asymptotic

. ~2 _ }\d 2
variance of z, 6 =5 5%

Zy

Of course, If z is within the [LCL,UCL] interval, then it will be concluded that
the process is under control up to time point t. Otherwise, the process is

considered out of control.

4.3.1.3. ODM-based EWMA for faults detection and diagnosis:

In general, the model is firstly built and then a fault diagnosis procedure is

accordingly performed. The estimation of the residuals, which is crucial in this
method, depends on the appropriate system modeling. Once the ODM is built,
based on the healthy system data, and validated, it can be used to monitor
the future deviations in the system. Here, the advantages of the ODM with those of
the EWMA monitoring chart are combined, which should result in an improved
fault detection and diagnosis strategy, especially for detecting small changes.
Specifically, in this approach, the EWMA chart is employed for fault detection and
diagnosis to indicate how well the measurements conform to the model or how

large the deviation from the normal model is.

Towards this end, the EWMA chart is applied to monitor residuals obtained
from the ODM (see Figure (4.7)).

The differences between the real measured and predicted MPP current, MPP
voltage and MPP power (obtained from the simulation model) are the residuals

that can be used as indicators to detect and diagnose the possible faults.

I=1-1, V,=V,-V, B =P-P, te[ln] (4.13)
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where: |t and Tt are the measured and the predicted MPP current, respectively; V,

and \7tare the measured and predicted MPP voltage, respectively; P,and If’tare the

measured and the predicted peak power, respectively.
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Figure 4.7: The flowchart of the proposed strategy
of faults detection and diagnosis.

In this work, the residuals are used as fault indicators. Indeed, under normal

operation, the residuals are close to zero due to measurement noise and errors,

while they significantly deviate from zero in the presence of abnormal events.

The implementation of the developed monitoring methods comprises two stages:

(i) an offline modeling and (ii) an online monitoring. In the offline modeling phase,

the ODM is used on the normal operating data (training data), enabling us

to obtain a reference model. Then, the fault detection procedure is executed by

using the reference simulated model with the EWMA chart in the online monitoring

phase.

The ODM-EWMA fault detection and diagnosis algorithm is summarized as

follows:

Given:

¢ Real measurements of irradiance and module temperature.
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e Real measurements of MPP (Impp and Vmpp) collected from the PV plant
under normal operating condition.
e The PV module electrical characteristics obtained from the manufacturer

datasheet.

Build the ODM using the fault-free training data:

e Extract the ODM electrical parameters based on the measured cell
temperature and irradiance, collected from the monitored PV system under
normal operating conditions, using the best-so-far ABC algorithm.

e The extracted parameters are then used to simulate the PV system
behavior (PSIM™/Matlab™ co-simulation).

e Compute the residuals between the measured and the predicted DC
current, DC voltage and DC power (lmpp, Vmpp and Pmpp) from the
constructed model using fault-free data.

e Compute the control limits for the EWMA chart using equation (4.12).

Test the new data:

e Generate residual vectors, 1, Vand P, by using the simulation model.
e Compute the EWMA monitoring statistic for the new data using equation
4.7).

Check for faults:

e Declare a fault when the EWMA decision statistic for the new data exceeds

the control limits.

To improve the system operations, we want not only to monitor the system in
an efficient manner, but also to identify the type of fault that results in any
degradation of the PV system, including declines in operation reliability, and
profitability, such that we can accordingly respond by making any necessary

correction to the system.

Towards this end, the EWMA chart is applied on the residual of output DC

power to detect the presence of faults. Then, the type of fault is identified by
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analyzing the monitoring results of the EWMA chart when it is applied to the
residuals of output DC current and voltage. The fault identification procedure is

summarized in Figure (4.8).

The proposed strategy tests at the first stage the DC output power to detect a
fault. This choice is mainly due to the fact that faults affect it inevitably. Thus, it is
used as the fault indicator in the detection phase. On the other hand, both DC
output current and voltage are unsuitable to be used as sensitive indicators in this
phase. For example, when a short circuit occurs in one PV module from a string,
current indicator value will not be significantly changed from its healthy set point.
Meanwhile, a substantial change will appear in the power indicator (peak of

power).

Besides, the same situation occurs when a string is completely disconnected.
Indeed, the DC output voltage remains unaltered regarding its healthy status in
contrast to the peak power, which will decrease significantly. Moreover, the
ranking of the current and voltage indicators is unimportant in the fault diagnosis

phase.
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Figure 4.8: The fault identification procedure.
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4.3.2. ODM-based monitoring charts results of fault detection and diagnosis:

The proposed fault detection scheme is validated using practical data
collected from the previously described Algerian GCPV system. In this section,
the ability of the EWMA chart to detect the presence of faults in the data and
to identify the type of detected fault is assessed. To this end, three cases,
involving different types of faults, were conducted. In the first case, it is assumed
that the PV system contains one or more short-circuited PV modules. In the
second case, an open-circuit PV string is considered. In the third case, the

monitored PV system is exposed to temporary shadowing.

4.3.2.1. Normal operating condition:
Monitoring results from ODM-based Shewhart chart under normal operating

conditions are shown in Figure (4.9(a-c)), monitoring results from the EWMA chart

under normal operating conditions are presented in Figure (4.10(a-c)). Since the
Shewhart plots for current, voltage and power shown in Figure (4.9(a-c)) are
based on normal operating data; we expect that almost all the data will lie within
the lower and upper control limits. Similarly, the data points in the EWMA charts
are also within the confidence limits (see Figure (4.10(a-c))). It can be concluded

that the ODM model describes the data well when no faults are presented.
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Figure 4.9: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b)
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and DC power (c) under normal operating conditions.
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and DC power (c) under normal operating conditions.
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4.3.2.2. Case of open-circuit PV string:

In this case, the performance of the two monitoring charts when there is an
open-circuit fault is investigated. To do so, an open-circuit fault in a PV array
is introduced by disconnecting the second string from the monitored PV system

(see fault #1 in Figure (4.11)) between sample times 300-500. To monitor the PV

system, the residuals (i.e.,1,Vand P) are firstly computed. Then both monitoring

charts, Shewhart and EWMA, are used for fault detection and diagnosis.

The Shewhart and EWMA charts based on the MPP residuals of current,
voltage and power are presented in Figures (4.12-4.13) ,respectively. The shaded
area is the region where the fault is introduced. The plots in Figures (4.12(c)-
4.13(c)) indicate that before the occurrence of the fault, both charts are within the
lower and upper control limits. The PV system is thus working normally. For this
case, the two charts can both give fault signals because the introduced fault is

quite large.

Figures (4.12(c)-4.13(c)), show that the Shewhart and EWMA charts based on

the output power residuals,P, significantly decrease and exceed the lower control
limits, indicating that there is a significant power loss. Since one of the two strings
of the PV array is disconnected at this fault, a large amount of power (nearly 50%
of the rated power) is lost. After detecting the presence of a fault, the monitoring
results related to the output DC current and voltage are analyzed to identify the

type of fault.

Both Figures (4.12(b)-4.13(b)) are within the lower and upper control limits
before and after the fault, which means that the DC voltage is almost the same
after the occurrence of this open-circuit fault. The two monitoring charts based on
the current residuals are given in Figures (4.12(a)-4.13(a)). These figures show
that both charts exceed the lower control limits, indicating the presence of a faulty
string (open-circuit fault). Indeed, the current of the faulty string drops to zero
when the string is disconnected from the PV array. As a result, the residuals,
which indicate the difference between the simulated and measured DC current,
immediately decrease after the occurrence of the open-circuit fault. From this
case, it can be seen that the open-circuit fault in a PV array increases the power

loss, reduces the array current and results in almost the same array voltage as
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the normal PV array voltage. These results indicate the efficiency of these charts

in detecting and diagnosing open-circuit faults in a PV system.
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Figure 4.12: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b)

and DC power (c) in the presence of an open-circuit fault.
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4.3.2.3. Case of a short-circuit fault in a PV string:

In this case, the detection of short-circuited PV modules in the monitored PV
system is investigated. Four examples are given in this study (see Figure (4.11),
faults #2-#5).

a- One short-circuited PV module:

In the first example, the second module of the first string is short-circuited from
the observation number 300 until the end of the testing data (see Figure (4.11),
fault #2). The output DC current, voltage and power were monitored using
Shewhart and EWMA charts. The two monitoring charts are shown in Figure
(4.14(a-c)) and Figure (4.15(a-c)). Figure (4.14) shows that the Shewhart chart
cannot detect this fault. In fact, Shewhart chart is insensitive to this fault because it
is designed to detect relatively moderate and large faults, while the fault in this
case is quite small. This is mainly due to the fact that the Shewhart chart uses only
observed data at a particular instant to make a decision about the process
performance and it ignores past data. On the other hand, the plot in Figure
(4.15(c)) shows clearly the capability of the EWMA monitoring chart in detecting
this small fault. From the plots in Figures (4.15(a-b)), it can be seen that the DC
current residuals are within the control limits, while the DC voltage residuals
exceeds the lower control limit. Thus, we can conclude that the detected fault is
related to a faulty module in the string. This case shows clearly the superiority of
the EWMA over the Shewhart chart in detecting small faults.
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Figure 4.14: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b)

and DC power (c) in the presence of one short-circuited module.
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Figure 4.15: Monitoring results of a EWMA chart for DC current (a), DC voltage (b)
and DC power (c) in the presence of one short-circuited module.
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b- Three short-circuited PV modules:

In the second example, three modules have been short circuited in the first
string (see Figure (4.11), fault #3). The monitoring results of the Shewhart and
EWMA charts are shown in Figures (4.16-4.17), respectively. The performance
of the Shewhart chart when it is applied to the output power residuals is presented
in  Figure (4.16(c)), which shows that the Shewhart statistic clearly violates
the lower control limit. The Shewhart chart detects this fault (i.e., a power loss) but
it misses some data. On the other hand, the plot in Figure (4.17(c)) shows clearly
the capability of the EWMA monitoring chart in correctly detecting this moderate
fault without missed data. This short-circuit fault degrades the performance of
the monitored systems and leads to a significant power loss (i.e., approximately
15% power loss). After detecting the fault based on the output DC power, the two
monitoring charts based on residuals of output DC current and voltage, which are
shown in Figures (4.16(a-b)-4.17(a-b)), can provide more information about the
type of fault. Both Figures (4.16(b)-4.17(b)) show fault signals because
the decrease in the output DC voltage in this case is quite large. The output DC
current from the array does not change by much. Because the output DC voltage
decreases compared to the output DC voltage of the normal array and the output
DC current does not change by much, we then conclude that this fault is a short

circuit in the PV array.

(a) (b) (c)
—_ = [ e Miszed detections
o3 =] o
= 0.2 = 01 -
P=_l, =] : UCL/LCL %
z 5 0 3
b ey @
= | =0 -
g . 2 o2 2
5 — . — UCL/LCL 2 =
= — e = =
(4] 100 200 300 400 500 o 100 200 300 400 500 (4] 100 200 300 400 500
Observation Number Observation Number Observation Number

Figure 4.16: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b)
and DC power (c) in the presence of three short-circuited modules in a PV array.

() _ ) ©

EWMA statistic
‘ o«
o -
|
’ | (j([
|
EWMA statistic
;5
N [=]
|
EWMA statistic

0.1 LCL/UCL
777777777777777777777777 0.4
0.2 s | S T SN |
o 100 200 300 400 500 o 100 200 300 400 500 o 100 200 300 400 500
Observation number Observation number . Observation number

Figure 4.17: Monitoring results of a EWMA chart for DC current (a), DC voltage (b)
and DC power (c) in the presence of three short-circuited modules in a PV array.



135

c- Five short-circuited PV modules:

In the third example, five modules in the first string are short-circuited (Figure
(4.11), fault #4). This fault leads to a power loss of 30% compared to the healthy
PV array. Both monitoring charts can detect this quite large fault as shown in
Figures (4.18(c)-4.19(c)). Similar to the above cases, to identify this fault, we look

at the monitoring results related to the array voltage and current (see Figures

(4.18(a-b)-4.19(a-b)). In fact, it is a fault that corresponds to a short-circuited PV
module, since both charts based on voltage are below the control limits (see
Figure (4.18(b)-4.19(b)), and the current does not change by much (see Figure
(4.18(a)-4.19(a)). This demonstrates the effectiveness of the proposed strategy in

detecting and diagnosing faults related to five short-circuited modules.
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Figure 4.18: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b)
and DC power (c) in the presence of five short-circuited modules in a PV array.
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Figure 4.19: Monitoring results of a EWMA chart for DC current (a), DC voltage (b)
and DC power (c) in the presence of five short-circuited modules in a PV array.

d- Ten short-circuited PV modules:

In the fourth example, ten PV modules in the second string of the monitored
PV array were short-circuited (see Figure (4.11), fault #5). Indeed, the fault
resulted in large voltage drops and significant power loss (i.e. nearly 63%). Both
monitoring charts can clearly detect and identify this quite large fault (see Figures

(4.20(a-c)-4.21(a-c)).
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Figure 4.20: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b)
and DC power (c) in the presence of ten short-circuited modules in a PV array.
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Figure 4.21: Monitoring results of a EWMA chart for DC current (a), DC voltage (b)
and DC power (c) in the presence of ten short-circuited modules in a PV array.

4.3.2.4. Case of temporarily shading fault:
The aim of this study is to assess the potential of the proposed ODM-based

EWMA method to detect and identify temporarily shading faults in a PV system.

a- Temporarily shading of four PV modules

In this example, the first four PV modules of the second string were
temporarily shaded (see Figure (4.22), fault #6), between samples 150
and 250. Figures (4.23-4.24) show that both charts can detect and identify
this fault. This type of fault may cause decreases in current and voltage

and significant power loss.
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Figure 4.22: Typical faults in a PV array: temporarily shading and faulty modules.
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Figure 4.23: Monitoring results of Shewhart chart for DC current (a), DC voltage (b)
and DC power (c) in the presence of four PV modules temporarily shaded in the PV

system.
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Figure 4.24: Monitoring results of EWMA chart for DC current (a), DC voltage (b ) and
DC power (c) in the presence of four PV modules temporarily shaded in the PV
system.

b- Temporarily shading of one PV module:

In this example, the module #14 of the first string of the PV system was
temporarily exposed to a fully shading (see Figure (4.22), fault #7), between
samples 150 and 250. The shewhart chart fails to detect this fault, as shown in
Figure (4.25(a-c)). Figure (4.26(c)) shows that the EWMA chart is able to detect
the fault, but it cannot identify its type (see Figure 4.26(b-c)).
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Figure 4.25: Monitoring results of Shewhart chart for DC current (a), DC voltage (b)
and DC power (c) in the presence of one PV module fully shaded in the PV system.
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Figure 4.26: Monitoring results of EWMA chart for DC current (a), DC voltage (b) and
DC power (c) in the presence of one PV module fully shaded in the PV system.

4.3.2.5. Case of multiple faults:

To assess the capacity of the proposed method to detect multiple faults, four
modules in the PV system were exposed to partial shading (Figure (4.22),
fault #6), between samples 150 and 250, and then five modules in the first string
were short-circuited (Figure (4.22), fault #8). Monitoring results of the Shewhart
and EWMA charts are illustrated in Figures (4.27-4.28), respectively. In this case,

both charts can accurately detect and identify these multiple faults.
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Figure 4.27: Monitoring results of a Shewhart chart for DC current (a), DC voltage (b)
and DC power (c) in the presence of four PV modules that are partially shaded and
five short-circuited modules in the PV system.
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Figure 4.28: Monitoring results of a EWMA chart for DC current (a), DC voltage (b)
and DC power (c) in the presence of four PV modules that are partially shaded and
five short-circuited modules in the PV system.



139

4.4. Conclusion:

In this chapter, two statistical strategies of faults detection and diagnosis
have been proposed. The first one consists on applying an improved ratio-based
method to detect short-circuits and open-circuits faults in PV systems. The second
strategy employs two statistical control charts, EWMA and Shewhart charts, to
detect and diagnose faults in PV systems. This strategy provides satisfactory
results in detecting and identifying short-circuit faults, open-circuit faults, and
shading occurrence. In addition, to detect small changes (e.g., one short-circuited

module in a string), the EWMA chart is more effective.
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CONCLUSION AND PERSPECTIVES

The developed strategies carried out in this research deal with faults detection
and diagnosis in GCPV systems. In fact, the main goal of this research was to
improve the PV system efficiency and protect it from potential faults, by developing
efficient strategies of fault detection and diagnosis. More particularly, the use of
the artificial intelligence tools (such neuronal classifiers and statistical methods) to

deal with this concern was the thesis principal goal.

However, using the artificial intelligence tools to deal with this problem, require
the availability of a high-quality database that can, in one side, express the
relationship between faults and PV system parameters, and in the other side,

describes very well the system behavior for both healthy and faulty operations.

In practical point of view, obtaining such a database cannot often be
guaranteed. Indeed, operating a PV system under some types of anomalies can
lead to dangerous situations and even catastrophic damages. Therefore, the best
way to deal with this concern was to develop an accurate simulation model that
well mimics the PV system behavior for both healthy and faulty operations. In this
thesis, a PSIM™/Matlab™ co-simulation strategy has been developed to elaborate

this model of simulation

In addition, the developed simulation model requires the use of the ODM five
electrical parameters. For this reason, an efficient strategy, based on the ABC and
the best-so-far ABC algorithms, has been developed to extract the ODM
parameters. These algorithms have been utilized due to their efficiency in solving
optimization problems, their convergence speeds and there simplicity in terms of
real time implementation. The efficiency of the ODM parameters extraction stage
has been experimentally validated using several PV modules of different

technologies.

After that, the extracted ODM parameters have been used to develop an
efficient strategy of MPP estimation. This strategy has been experimentally
validated using real measurements collected from Algerian and Spanish GCPV
systems. The efficiency test has been carried out for clear sky and cloudy sky

conditions.
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Based on the elaborated database, the next step was the development of a
neuronal based strategy of fault detection and diagnosis. In fact, two PNN
classifiers have been developed to deal with this concern. The first one was
dedicated to the fault detection, while the second was responsible of the fault
diagnosis. In addition, to test the efficiency of this strategy, the PNN classifiers
have been compared, under real operating conditions, with the feed-forward back-
propagation ANN classifiers method. This strategy has been validated using
experimental measurements and simulation data. The obtained results have

shown the high effectiveness of this strategy for noiseless and noisy data cases.

Finally, two statistical strategies for faults detection and diagnosis have been
developed. The first strategy is the improved-ratio based method and it has been
used to detect and diagnose open-circuit and short-circuit faults. The second
strategy is the control-charts based method for fault detection and diagnosis. This
strategy uses two control charts, EWMA and Shewhart charts, to detect and
diagnose the faults. The efficiency of the statistical strategies has been

experimentally validated.

Despite the promising results for fault detection and diagnosis, the strategies
carried out in this thesis raise a number of questions and provides some directions

for future works. In particular, the following points merit a serious consideration:

e The developed control-charts based method can be extended to be
able to detect the number of open-circuited and short-circuited PV
modules.

e In this thesis, the faults diagnosis is carried out using the climatic
conditions and the MPP coordinates of current and voltage. However,
using only these data does not allow the discrimination of large
number of faults. To bypass this shortcoming, more input data, such
as open circuit voltage (Voc), short circuit current (lsc) and fill factor
(FF), can be added to the developed strategies to detect more
categories of faults.

e The developed strategies can also be used to detect and diagnose AC

side faults.
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APPENDIX ‘A’
LIST OF ABBREVIATIONS

Artificial Bee Colony

Alternative Current

Adaptive Neuro-Fuzzy Inference System
Artificial Neural Network

Cumulative Sum

Direct Current

Differential Evolution

Device Under Test

Earth Capacitance Measurement
Exponentially Weighted Moving Average
Field Effect Transistor

False Negative

False Positive
Graph-Based-Semi-Supervised Learning

Grid Connected PV system
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Solar Radiation by Teledetection (Gisement solaire par télédétection)

Insulated Gate Bipolar Transistor
Lower Control Limit

Mean Absolute Error

Multi-Level Decomposition
Multi-Layer Perceptron

Maximum Power Point Tracking
Normal Operating Cell Temperature
Over Current Protection Device
One Diode Model

Power Conditioning system
Probability Density Function
Potential Inducing Degradation
Probabilistic Neural Network
Partial Shading



PSO
PV
RBF
RMSE
ROC
sTC
STD
TDR
TN
TP
ucCL

Particle Swarm Optimization
Photovoltaic

Radial Basis Function

Root Mean Square Error
Relative Absolute Change
Standard Test Conditions
Standard Deviation

Time Domain Reflectometry
True Negative

True Positive

Upper Control Limit

143



—>

o>

<

Cud
CR
Cr
Cx

Edc
Ei

Ei

Ei ref
ELc

Ev
Ey

Eviref

Lac
id
Ldc

Impp

APPENDIX ‘B’
LIST OF SYMBOLS

The forgetting parameter [ ]

The instantaneous predicted current [A]
The instantaneous predicted power [W]
The instantaneous predicted voltage [V]

The earth capacitance value for the whole transmission line [nF]
The current ratio [ ]
The temperature coefficient of power [%/°C]

The earth capacitance value from the start point to the fault point
[nF]

The length of the whole transmission line [m]
The array produced energy [kWh]

The current error [A]

The residual error of DC current [A]

The current error of the healthy system [A]

The error between the measured and simulated capture losses for
the healthy system [Wh/Wp]

The residual error of DC voltage [V]
The voltage error [V]

The voltage error of the healthy system [V]
The file factor [ ]

The faulty status [ ]

The irradiance level [W/m?]

Gamma [m?]

The nominal irradiance (1000 [W/m?])
The measured irradiance [W/m?]

The diode saturation current [A]

The inverter output current [A]

The ideal status [ ]

The DC side output current [A]

The current at the maximum power point [A]
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The normalized current [A]

The light-generated current [A]

The short circuit current [A]

The reference short-circuit current [A]

The PV string current [A]

The instantaneous measured current [A]
The simulated current [A]

The (I-V) curve inflexion factor [ ]

The Boltzmann’s constant (1.38x10-23 [J/K])
The Bishop adjustment coefficients] ]

The array losses [W]

The total capture losses [Wh/Wp]

The miscellaneous capture losses [Wh/Wp]
The thermal capture losses [Wh/Wp]

The number of unsuccessful trials to produce better food source [ ]
The number of onlooker bees [ ]

The maximum cycle number [ ]

The maximum power point factor [A-]

The diode ideality factor [ ]

The sensor efficiency [%]

The faulty norm [ ]

The normal status [ ]

The number of PV modules [ ]

The normal norm []

The number of PV modules in each string [ ]
The number of PV strings [ ]

The module number to the disconnection point [ ]
The maximum operating power, measured at STC [W]
The measured power [W]

The peak power [W]

The power ratio [ ]

The array output maximum power [W]

The simulated power [W]

The instantaneous measured power [W]
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The simulated power [W]

The charge of an electron (1.602x10-"°[C])

The load [Q]

The series resistance [Q]

The equivalent series resistance [Q]

The parallel resistance (shunt resistance) [Q]

The residual signal of the attribute X []

The threshold value of current [A]

The number of employed bees [ ]

The voltage coefficient [ ]

The temperature coefficient of open circuit voltage [%/°C]
The threshold value of voltage [V]

The PV cell temperature (in [Kelvins] or [Degrees Celsius])
The ambient temperature [°C]

The reference temperature (25 [°C])

The maximum operating voltage, measured at STC [V]
The inverter output voltage [V]

The cell breakdown voltage of the bishop model [V]
The DC side output voltage [V]

The voltage at the maximum power point [V]

The normalized voltage [V]

The open circuit voltage [V]

The reference open circuit voltage [V]

The string’s open circuit voltage [V]

The voltage Ratio [ ]

The thermal voltage [V]

The simulated voltage [V]

The network weights [ ]

The Maximum and minimum percentage of the scout bees position

[]

The actual observation [ ]
The array yield [Hours]
The reference yield [Hours]

The control chart output characteristic [ ]



Ollsc

AP
Di,j

The current coefficient [ ]

The temperature coefficient of short-circuit current [%/°C]
The smoothing parameter [ ]

The difference of power [W]

Random number between [-1, +1]
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