
Blida, 17 Décembre 2015

UNIVERSITE DE BLIDA 1

Faculté de Technologie

Département d’Electronique

THESE DE DOCTORAT

en Génie Electrique

FUZZY PREDICTIVE CONTROL USING META-HEURISTIC ALGORITHMS

Par

Oussama AIT SAHED

Devant le jury composé de :

A. GUESSOUM Professeur, U. de Blida 1 Président

F. BOUDJEMA Professeur, ENP, Alger Examinateur

K. BENMANSOUR Professeur, ESDAT, Alger Examinateur

M. CHETTOUH MCA, U. de Blida 1 Examinateur

K. KARA Professeur, U. de Blida 1 Rapporteur

REMERCIEMENTS

Je remercie Dieu le compassion et le miséricordieux de m’avoir aidé et

donné patience et courage pour accomplir ce modeste travail.

Je tiens à exprimer ma reconnaissance à mon directeur de thèse, le

professeur Kamel KARA, qui m’a donné courage et motivation à aller jusqu’au

bout du chemin et je suis reconnaissant pour sa présence à mes côtés aux

moments de doutes, pour ses précieux conseils, aide et soutient.

Je tiens à remercier le professeur Abderrezak GUESSOUM pour l'honneur

qu'il m'a fait en acceptant la présidence de mon jury de thèse.

Je remercie vivement le professeur Farès BOUDJEMA d'avoir accepté

d'examiner mon travail et de faire partie du jury.

J’exprime toute ma gratitude au professeur Khelifa BENMANSOUR d’avoir

accepté d’examiner ce travail et de faire partie du jury.

J’exprime mes vifs remerciements à monsieur Mourad CHETTOUH, qui a

accepté de faire partie des membres du jury, et d’examiner cette thèse.

Je remercie également les professeurs M’hamed BOUNEKHLA,

Noureddine GOLEA et Ahmed BENALLAL pour leurs conseils et

recommandations.

Je tiens aussi a remercié mon collègue le doctorant Abousoufyane

Benyoucef pour son aide et pour l’atmosphère de fraternité et le confort que j’ai

senti durant mes travaux dans le laboratoire d’automatique à ses côtés.

Je remercie aussi le docteur Mohamed Laid HADJILI, le professeur Vincent

WERTZ, le staff du laboratoire LABSET et du département d’électronique de

l’université de Blida1 ainsi que mes collègues et mes amis, pour leur aide et

soutient tout au long de ce travail.

A la fin, je remercie mes parents, ainsi que toute ma famille, pour leur

amour, soutient et encouragement. Ils m’ont toujours donné confiance en soi et

m’ont motivé pour toujours marcher en avant.

ABSTRACT

The aim of this work is to develop simple and efficient nonlinear predictive

control algorithms. The idea is to use the meta-heuristic approach to find, in a

reasonable computational time, an accurate suboptimal solution to the nonlinear

optimization problem. Mainly, particle swarm optimization and artificial bee colony

approaches are envisaged. Without loss of generalization to other models, Takagi-

Sugeno fuzzy models are used to construct prediction models.

The first proposed control algorithm is based on a modified version of the

PSO algorithm. The key idea of this algorithm is to use a reduced population size

with a small number of iterations in order to reduce the required computational

time. This can be achieved by distributing the initial particles positions, according

to the normal distribution law within the area around the current best position. The

radius limiting this area is adapted according to the tracking error value.

Artificial bee colony algorithm, a recently introduced meta-heuristic

optimization algorithm, has several characteristics that make it more attractive

than other meta-heuristic methods to design efficient nonlinear predictive control

algorithms. Two improved versions of this algorithm that allow overcoming some of

its deficiencies are proposed and used to develop two nonlinear predictive control

algorithms.

The performance and computational efficiency of the different proposed

algorithms are evaluated by considering a series of numerical benchmark

functions, the control of two benchmark systems and a DSP based experimental

setup. The obtained results are commented and compared with those of several

other methods.

Keywords: nonlinear predictive control; meta-heuristic algorithms; DSP

RESUME

Le but de ce travail est de développer des algorithmes simples et efficaces

pour la commande prédictive non linéaires. L'idée est d'utiliser l'approche

d’optimisation méta-heuristique pour trouver, dans un temps de calcul raisonnable,

une solution sous-optimale au problème d'optimisation non linéaire.

Principalement, les approches optimisation par essaim de particules et colonies

d'abeilles artificielles sont envisagées. Sans perte de généralisation à d'autres

types de modèles, les modèles flous de Takagi-Sugeno sont utilisés dans la mise

en œuvre des modèles de prédiction.

Le premier algorithme de commande proposé est basé sur une version

modifiée de l'algorithme PSO. L'idée de base de cet algorithme est d'utiliser un

nombre réduit de particules et d’itérations pour réduire le temps de calcul

nécessaire. Ceci peut être obtenu en distribuant les positions initiales des

particules, en utilisant la loi de distribution normale, à l'intérieur de la zone autour

de la meilleure position actuelle. Le rayon délimitant cette zone est adapté en

fonction de la valeur de l'écart entre la sortie du système et la trajectoire de

référence.

L’algorithme des colonies d'abeilles artificielles, un algorithme d'optimisation

méta-heuristique récemment introduit, a plusieurs caractéristiques plus attractives

que les autres méthodes d’optimisation méta-heuristiques. Deux versions

améliorées de cet algorithme permettant de surmonter un certain nombre de ses

inconvénients, sont proposées et utilisées pour développer deux algorithmes de

commande prédictive non linéaire.

Les performances et l'efficacité de calcul des différents algorithmes

proposés sont évaluées en considérant une série de fonctions benchmark, la

commande de deux systèmes de complexité différente et un dispositif

expérimental basé sur une implémentation sur DSP. Les résultats obtenus sont

commentés et comparés à ceux de plusieurs autres méthodes.

Mots-clés: Commande prédictive non-linéaire; algorithmes méta-

heuristiques; DSP

 ملخص

من أجل حل بسیطة وفعالة تحكم اشتقاق خوارزمیات ھوالعمل ان الھدف من وراء ھذا

من خوارزمیات البحث المتقدمان الفكرة تتلخص في استعمال . التحكم التنبؤي غیر الخطيمشكلة

لقد باستعمال ابسط امكانیات حسابیة ممكنة. الأمثلدقیقة لمشكلة ایجاد الحل على حلول أجل الحصول

 بالاضافة الى تبني ،ABCو PSOرزمیات البحث المتقدم المسماة اخوباستعمال قمنا في ھذا العمل

تبقى لة صّ النتائج المح، مع العلم أن Takagi-Sugenoمن نوع ةغیر الخطی ةتنبؤیال النماذج

 النماذج.صالحة في حال تم تبني نوع آخر من

. ان الفكرة العامة وراء ھذا الاقتراح PSOلقد قمنا باقتراح خوارزمیة تحكم استنادا على

 لتقلیص الامكانیات الحسابیة مع عدد أجیال محدودمجموعة سكانیة صغیرة تتلخص في استعمال

 الحالي الحل الأمثلحول لعناصر المجموعة السكانیة الأولیةالذكي المطلوبة عن طریق التوزیع

یتم تحدیده دوریا باستعمال في دائرة نصف قطرھا. ھذا التوزیع یتم الغاوسيقانون التوزیع باستعمال

 مخارج النظام و مسارات المرجعیة المنشودة.خطأ التتبع بین

تتمیز بالعدید ، حدیثة الانشاء، خوارزمیة بحث متقدم)ABCمستعمرة النحل الاصطناعیة (

التحكم عند تصمیم خوارزمیات جاذبیة من الخوارزمیات الأخرى أكثرمن الخصائص التي تجعلھا

من ھذه الخوارزمیة محسنتیننسختین و استعمال تم اقتراحالبسیطة و الفعالة. التنبؤي غیر الخطي

الحصول على حلول أكثر دقة، خاصة عند من أجل و النواقص المسجلة بعض على التغلب بھدف

 .مشكلة ایجاد الحل الأمثل الخاصة بنظام التحكم التنبؤي غیر الخطيحل

وال من خلال استعمال مجموعة من الدّ رزمیات الحسابیة تم تقییمھا اكفاءة الخوآداء و

قمنا بعد ذلك لقد . DSPالرقمیة، مشكلتي تحكم قیاسیتین بالاضافة الى تجارب تطبیقیة باستعمال

 .بتجمیع النتائج و التعلیق علیھا، بالاضافة الى مقارنتھا مع نتائج العدید من الخوارزمیات الأخرى

 ; DSP خوارزمیات البحث المتقدم ; التحكم التنبؤي غیر الخطیة تقنیة: كلمات البحث

CONTENT

PREFACE 1

ABSTACT 2

CONTENT 5

LIST OF ILLUSTRATIONS, GRAPHICS AND TABLES 9

INTRODUCTION 12

1. MODEL PREDICTIVE CONTROL

1. Introduction 17

2. Predictive control principle 17

2.1. Cost function 19

2.2. Prediction model 21

2.3. Constraints 22

3. Linear model predictive control 24

3.1. Prediction 25

3.2. Control law 27

3.3. The constrained problem 28

3.3.1. Formulation as a quadratic programming (QP) problem 28

3.3.2. Solving convex QP problems 30

4. Nonlinear model predictive control 39

4.1. Nonlinear model predictive control with successive

linearization (NMPC-SL)

40

4.2. Nonlinear model predictive control with nonlinear predictions

and linearization (NMPC-NPL)

40

4.3. Nonlinear model predictive control with nonlinear optimization

(NMPC-NO)

41

4.3.1. Deterministic numerical approaches 42

4.3.2. Stochastic numerical approaches 49

5. Efficient ways to reduce the NMPC on-line computing

requirement

50

6. Feasibility issues 52

7. Stability 54

6

7.1. State terminal equality constraint 55

7.2. Dual mode (Terminal constraint set) 56

7.3. Contractive NMPC 57

7.4. Quasi-infinite horizon NMPC 57

8. Conclusion 58

2. META-HEURISTIC ALGORITHMS

1. Introduction 59

2. Meta-heuristic algorithms: Basics 59

2.1. Classification 60

2.2. Populations based meta-heuristics 61

2.2.1. Initial population 62

2.2.2. Population size 62

2.2.3. Exploitation versus exploration 63

2.2.4. Stopping criteria 64

3. Solving optimization problems 65

3.1. General approach 65

3.2. Constraints handling 66

3.2.1. Reject strategies 66

3.2.2. Penalizing strategies 67

3.2.3. Repairing strategies 67

3.2.4. Preserving strategies 67

4. Variants of meta-heuristic algorithm 67

4.1. Genetic algorithm 68

4.1.1. Natural selection 69

4.1.2. Pairing 69

4.1.3. Mating 70

4.1.4. Mutation 71

4.2. Particle swarm optimization 71

4.3. Artificial bee colony 74

4.3.1. Basic algorithm 74

5. Proposed variants of the ABC algorithm 77

5.1. ABC Enhanced Version (ABCEV) 78

5.1.1. Initialization phase 78

7

5.1.2. Update equation 78

5.1.3. Scout bee 79

5.2. Equal Exploitation ABC (EEABC) 79

5.2.1. New probability equation 79

5.2.2. Adaptive exploration rate 81

5.2.3. Adaptive update mechanism 82

5.3. Experimental study on numerical benchmark functions 83

5.3.1. Benchmark functions 84

5.3.2. Experimental setup 86

5.3.3. Comparative results 86

6. Conclusion 94

3. FUZZY MODEL PREDICTIVE CONTROL BASED ON META-

HEURISTIC ALGORITHMS

1. Introduction 95

2. Fuzzy based model predictive control 95

2.1. Takagi-Sugeno dynamic fuzzy modelling 95

2.2. Notation 98

2.3. Solving the fuzzy NMPC optimization problem 99

2.3.1. Constraints handling 99

2.3.2. Why using the artificial bee colony? 102

3. Proposed control algorithms 103

3.1. Efficient PSO based controller 103

3.2. The ABCEV based controller 107

3.3. The EEABC based controller 110

4. Applications 113

4.1. CSTR 113

4.1.1. Process description 113

4.1.2. Fuzzy identification 114

4.1.3. Controllers implementation 115

4.2. Industrial Boiler 122

4.2.1. Process description 122

4.2.2. Fuzzy identification 125

4.2.3. Controller implementation 126

8

5. DSP-based implementation 133

5.1. Description of the eZDSP2812 test bench 133

5.2. Fuzzy identification and controllers implementation 134

5.3. Comparative study 135

6. Conclusion 139

CONCLUSION 140

APPENDIX

A. LIST OF ABBREVIATIONS
145

B. LIST OF SYMBOLS
147

C. CEC 2015 TECHNICAL REPORT 150

D. LIST OF PUBLICATIONS 163

REFERENCES 164

LIST OF ILLUSTRATIONS, GRAPHICS AND TABLES

Figure 1.1 Principle of Model Predictive Control Strategy 18

Figure 2.1 Flowchart of the standard GA 69

Figure 2.2 Flowchart of the ABC algorithm 77

Figure 2.3 Convergence speed for function f1 with D=60 92

Figure 2.4 Convergence speed for function f6 with D=30 92

Figure 2.5 Convergence speed for function f8 with D=100 93

Figure 2.6 Convergence speed for function f10 with D=30 93

Figure 3.1 Bloc diagram of the proposed NMPC algorithm 99

Figure 3.2 Weight function  y y 100

Figure 3.3 Continuous stirred tank reactor (CSTR) 113

Figure 3.4 Model and process validation for the CSTR 114

Figure 3.5 Reference trajectory for the CSTR 115

Figure 3.6 Control performances of the proposed control algorithms

for the CSTR

118

Figure 3.7 Control signals of the proposed control algorithms for the

CSTR

118

Figure 3.8 Control performances of the different control algorithms for

the CSTR

119

Figure 3.9 Control performances of the different control algorithms

between 40 and 50 min for the CSTR

120

Figure 3.10 MCV average values for the CSTR 121

Figure 3.11 The considered industrial boiler 122

Figure 3.12 Stabilization scheme for the industrial boiler 124

Figure 3.13 TS fuzzy model validation for the industrial boiler (Blue

solid line: Process output and red solid line: Process model

output)

125

Figure 3.14 Stabilization scheme for the boiler without direct

feedthrough

128

Figure 3.15 Response of the boiler using the proposed control

algorithms and the linear MPC controller (Blue dashed line:

129

10

ABCEV based controller; the red dashed dotted is the

EEABC based controller; brown dotted line is the efficient

PSO based controller and the green dotted is the linear

MPC based controller)

Figure 3.16 Response of the boiler for the different proposed control

algorithms and the linear MPC controller between the 200th

and 400th samples for the output 4y (Blue dashed line:

ABCEV based controller; the red dashed dotted is the

EEABC based controller; brown dotted line is the efficient

PSO based controller and the green dotted is the linear

MPC based controller)

130

Figure 3.17 Control signals for the considered controllers and the linear

MPC controller (Blue dashed line: ABCEV based controller;

the red dashed dotted is the EEABC based controller;

brown dotted line is the efficient PSO based controller and

the green dotted is the linear MPC based controller)

131

Figure 3.18 MCV average values for the industrial boiler 132

Figure 3.19 DSP based test bench 134

Figure 3.20 Reference trajectory for the DSP based implementation 135

Figure 3.21 Speed of the free load motor for the implemented

controllers

136

Figure 3.22 Speed of the motor for the implemented controllers 137

Figure 3.23 Control signals for the implemented controllers 138

Table 2.1 Characteristics of the different considered variants of the

ABC algorithm

83

Table 2.2 Unimodal benchmark functions 85

Table 2.3 Multimodal benchmark functions 85

Table 2.4 Summary of the CEC2015 expensive optimization test

problems

86

Table 2.5 Comparative results of the convergence quality for the 89

11

standard benchmark functions

Table 2.6 Comparative results of the convergence iteration 90

Table 2.7 Comparative results of the convergence quality for the

CEC 2015 benchmark functions

91

Table 3.1 Execution time of the considered algorithms for the CSTR 121

Table 3.2 Design parameters 126

Table 3.3 Execution time of the considered control algorithms for the

industrial boiler

133

Table 3.4 Execution time of the considered control algorithms (DSP) 139

12

INTRODUCTION

Model Predictive Control (MPC), also known as moving horizon control or

receding horizon control, is an advanced control strategy that has been developed

in late seventies. It is based on the use of an explicit model to online predict the

process future behaviour over a given finite horizon, and then computes a control

sequence that minimizes a given cost function. This function usually takes the

form of a quadratic function of the errors between the predicted responses and the

reference trajectory, and includes in most cases the control effort.

Since its creation, the predictive control has received a lot of attention from

the research community. Richalet, Rault, Testud and Pagon were the first to

introduce the predictive control philosophy with their Model Predictive Heuristic

Control (MPHC) strategy [1, 2], later followed by the Dynamic Matrix Control

(DMC) [3], and a number of other design techniques like: Internal Model Control

(IMC) [4], Linear Dynamic Matrix Control (LDMC) [5], Quadratic Dynamic Matrix

Control (QDMC) [6], and the famous Generalized Predictive Control (GPC)

technique introduced by Clarke and Mohtadi [7, 8].

 The MPC strategy is an advanced control technique that has been

successfully applied in many fields. This success can be attributed to three

important factors:

1) The use of an explicit process model which allows the controller to

consider all of the process dynamics.

2) The MPC algorithm considers process behaviour over a future horizon

in time. This means that the effects of feedforward and feedback disturbances can

be anticipated and removed providing better performances.

3) The ability to handle constraints directly during the design of the

controller [9].

In fact, this last property is the main reason behind its popular use in many

practical applications such as chemicals, polymers, air and gas processing,

refining, petrochemical, and food processing industries [10, 11]. Furthermore,

MPC techniques are able to deal with complex control problems which involve

13

multivariable process interactions, non-minimum phase behaviour, and variable or

unknown time delays [12, 13].

Although classical MPC algorithms, which use a linear prediction model,

provide satisfactory performance in many applications, against highly nonlinear

process, severe degradation in control performance can occur, unless the

operating conditions are very close to the steady state around which the model is

linearized [13]. Since the most practical processes are nonlinear by nature, new

efficient techniques, based on nonlinear models, have to be derived to incorporate

nonlinearities and ensure higher control performance. Indeed, a lot of attention

was given to the Nonlinear MPC (NMPC) strategies and several nonlinear control

algorithms have been proposed [14-16]. The use of nonlinear models allows

enhancing the overall controller performance; however the corresponding

optimization problem, which is nonlinear and non-convex, requires complex and

time consuming procedures [17-19]. Moreover, driving appropriate nonlinear

models is often a difficult task. It is clear that good and accurate system output

predictions are a prerequisite in any efficient predictive control scheme. Therefore

the developed model must have the ability to faithfully mimic the behaviour of the

real process, especially the dependence between the outputs, the current

measured variables and the current/future inputs. Nevertheless, obtaining an exact

representation of the physical process is impossible, only an approximation can be

constructed to predict the future process behaviour for a given control sequence.

A large class of various nonlinear models, which can be used within

predictive control strategies, exists. Nonetheless, the simplest model that gives

enough accurate predictions should be used [20]. To get reliable predictions, it is

not always necessary to include all of the physical, chemical and internal

behaviour of the process into the constructed model; but rather to only include the

dynamics that affect the predictions.

Fuzzy inference systems (FIS) are particularly interesting approaches that

were satisfactory used in nonlinear systems modelling [13, 17, 21]. Indeed, it has

been shown that FIS are capable of approximating any continuous function with a

certain level of accuracy [22]. Takagi-Sugeno (TS) models, a subdivision of fuzzy

models, are widely used and particularly suitable for NMPC algorithms [17, 23].

14

These models are able to express the dynamic nature of systems with

characteristics of randomness, large delay time and strong nonlinearity [24, 25].

Obtaining optimal solutions to the optimization problem, when a nonlinear

model is used, is a difficult task. In fact, all the proposed NMPC techniques seek to

find a suboptimal solution of adequate quality that can meet the control objectives.

Depending on how it is proceeded to obtain the suboptimal solution, Tatjewski [26]

has classified the existing methods into three main categories:

- Linearization of the nonlinear model in order to obtain an approximate linear and

convex optimization problem, which has a straightforward solution.

- Using a prediction model that is given by the sum of two terms: a free response

term, obtained from the nonlinear model of the system, and a forced response

term, computed using a linear model. The obtained optimization problem is convex

and can be resolved using quadratic programming algorithms.

- Nonetheless, with highly nonlinear processes that have quick reaction times,

approximating the nonlinear model in order to obtain a convex optimization

problem is insufficient. In fact, nothing but the complete use of the nonlinear model

appears to be acceptable. This class of algorithms tackles the nonlinear and

generally non-convex optimization problem directly using nonlinear optimization

techniques.

Numerical approaches were extensively used to solve nonlinear

optimization problem (NOP) [26-28]. We can distinguish two major families:

- Deterministic numerical approaches, which include the famous sequential

quadratic programming (SQP) and the nonlinear interior point (NIP) methods.

When using these methods, the nonlinear optimization problem will be handled by

solving a series of linear sub-problems. A large number of NMPC algorithms have

been proposed using this approach [29-32]. The major drawbacks of these

methods are the sensitivity to the initial conditions; as suitable initial guesses must

be provided to start the iterative process and to ensure the convergence toward

the global optimum [33-35]. For this reason, these approaches are sometimes

called local methods [33]. Furthermore, these methods could not be used with

some empirical models where the derivative details are either inaccessible or

extremely hard to get [36]. An additional drawback is the fact that these

15

approaches could only be used with continuous variables; they cannot handle

discrete problems [37].

- Stochastic numerical approaches which rely on stochastic meta-heuristic

optimization algorithms to directly solve the NOP. They are based on fundamental

elements and procedures that produce evolution and intelligent behaviours in

natural systems [38] or on physical principles [39], and are capable of handling the

majority of existing optimization problems [39, 40]. Stochastic meta-heuristic

algorithms have known huge success, both in academia and the industry [39, 41].

More enhanced variants and completely new meta-heuristic algorithms are

continuously developed and proposed by an increasingly active research

community, and the industry is adopting these methods to solve the different

existing engineering problems. This success could be attributed to the fact that the

meta-heuristic algorithms are simple, flexible, derivative-free, and able to handle

local optima while generating high quality solutions within a reasonable period of

time [39, 42-44]. Due to their heuristic and random natures, these algorithms have

a better searching capability than those of the classical approaches [45]. They are

also unaffected by initial conditions and can handle both discrete and continuous

problems.

Although different approaches to solve the NMPC problems using meta-

heuristic algorithms have been proposed [34, 46-48], compared to the

deterministic numerical methods, their use within the predictive control framework

is relatively limited.

The ABC, a recently introduced optimization algorithm, has been a

distinctive meta-heuristic algorithm. Several comparative studies [49, 50] between

this algorithm and several other meta-heuristic algorithms such as GA (Genetic

Algorithms), PSO (Particle Swarm Optimization) and DE (Differential Evolution),

have shown that the ABC performances are better or at least similar to the

performances of these algorithms. Furthermore, this algorithm was found to be

simpler, more computing efficient and to generate more accurate solutions

compared to other established algorithms. A survey [51] reviewing the advances

related to the ABC algorithm and its applications has indicated that more than 330

research papers were published within the scope of merely seven years of its

16

creation. Seeing that more scholars adopt this algorithm, this number is expected

to increase exponentially in the near future.

The efficiency and the performance of any NMPC based controller depend

on two key aspects of its design. The modelling of the nonlinear physical process

and the way the NOP is handled. In the present work, Takagi-Sugeno fuzzy

approach is used to construct the different required nonlinear models. This choice

is based on the previously mentioned advantages of fuzzy systems and Takagi-

Sugeno models.

The second design aspect, which deals with the NOP, is in fact the focal

point of our work. The main objective of this work is to propose efficient nonlinear

model predictive controllers based on meta-heuristic algorithms, as viable and

practical substitutes to the conventional NMPC controllers. Indeed, three control

algorithms are proposed: The first one is based on an efficient PSO algorithm, and

the other two are based on proposed ABC algorithms. In order to evaluate the

performances of these algorithms, several comparative studies using several

numerical benchmark functions and two control benchmark systems are carried

out. To further asses the efficiency of the developed algorithm, their

implementation using a DSP (digital signal processor) board is also considered.

The thesis layout is as follows: The first chapter deals with the main

concepts and the implementation issues of model predictive control. Both linear

and nonlinear control technique along with several control algorithms are

described. The feasibility and the stability issues are also addressed. The second

chapter is fully dedicated to meta-heuristic optimization algorithms. The chapter

starts with a description of the different notions associated with these algorithms,

followed by a detailed description of three meta-heuristic algorithms, namely the

genetic algorithm (GA), the particle swarm optimization (PSO) and the artificial bee

colony (ABC). The proposed ABC algorithms are presented and evaluated against

several meta-heuristic optimization algorithms using a number of numerical

benchmark functions. In the last chapter, three proposed NMPC based control

algorithms are presented and their control performances are evaluated and

compared with that of several conventional linear and nonlinear control techniques

by considering the control of SISO continuous stirred tank reactor model and the

MIMO industrial boiler model.

17

CHAPTER1:

MODEL PREDICTIVE CONTROL

1. Introduction

This chapter introduces the main concepts of the model predictive control

and gives some techniques used to solve both linear and nonlinear Model

Predictive Control (MPC) problems. The feasibility issue and some approaches

used to guarantee the stability of the closed loop are given at the end of this

chapter.

This chapter is built, if not otherwise indicated, based on the books given by

the references [10, 12, 26].

2. Predictive control principle

The general principle of the model predictive control is based on using an

explicit model to online predict the process future behaviour over a given finite

prediction horizon, and on determining a control sequence that optimizes a given

cost function. This strategy is illustrated, for a single-input single-output (SISO)

process, in figure 1.1. Usually, the control input sequence

        ˆ ˆ ˆ ˆ| | , 1 | , , 1 |pU t u t t u t tt t u t N     along the prediction horizon pN is

computed over a smaller horizon known as control horizon uN  u pN N , and the

control inputs beyond the horizon uN are kept constant (that is:

   ˆ ˆ| 1 |uu t j t u t N t    for j uN). The notation  ˆ |u t j t for 0 1pj N   is

used to express the value of the control input u at the sampling time t j that is

computed at the sampling time t .  y t is the measured process output, and

 ˆ |y t j t and  w t j (1 pj N ) are the predicted values of the process output

and the desired reference trajectory over the prediction horizon, respectively.

18

Figure 1.1 : Principle of model predictive control strategy.

All the MPC strategies can be described by the following steps:

 At each sampling time, the future values of the process outputs are

computed over a prediction horizon using the process model.

 A reference trajectory is specified over at least the prediction horizon.

 A future control sequence that minimizes the cost function over a

control horizon is computed. Only, the first element of this sequence is applied to

the system.

 In the next sampling time, the preceding steps are repeated according

to the receding horizon concept.

19

It is clear that good and accurate system output predictions are prerequisite

in any efficient predictive control scheme. Nevertheless, obtaining an exact

representation of the physical process is impossible. Only an approximation can

be constructed to predict the future process behaviour for a given control

sequence. Furthermore, the manipulated variables are often affected by

perturbations and measurement noise. The difference between the outputs

predictions and the actual measured outputs is denoted by      ˆ |d t y t y t t  .

To simplify notation, the vertical bar ‘ | t ’ used within the predicted variables

is sometimes omitted.

2.1. Cost function

The predictive control is formulated as a minimization problem of a given

objective function (cost function) that includes all the desired control objectives

over the prediction horizon. Mainly, it contains a term representing the tracking

error between the actual process output and the reference trajectory and another

one representing the control signals energy. To make solving the predictive control

problem simpler and quicker, the cost function is usually expressed as a quadratic

function. The most commonly used one has the following form:

 
    

                

     

2

1

ˆ

1

ˆ ˆmin , , ()

ˆ ˆ, , ()

ˆ ˆ

ˆ ˆ| |

1 1
u

u t

N

j N

N

j

T

T

J u t y t w t

J u t y t w t

u R u

y t j t w t j Q j y t j t w t j

t j j t j









 



      
 

    
 





where

 Δ Δ

    
 

 
 

2

1 1

2 2
ˆ ˆ| 1

uNN

j N j
Q j R j

y t j t w t j u t j
 

       = Δ

 (1.1)

where J is the cost function, 1N and 2N are respectively the minimum and the

maximum prediction horizons and Q and R are the weight matrices.

In the evaluation of the cost function of equation (1.1), the tracking errors

starting from 1t N to the end of the prediction horizon 2t N , are considered,

where 1 21 N N  . It is not necessary to start penalizing the tracking errors from

the sampling period 1t  by taking 1 1N  , because a delay could exist between

20

applying a given control action and seeing its effect on the system output.

Therefore, it is unnecessary to include the tracking errors of samples that cannot

be influenced by the current control sequence. Generally 1N is chosen based on

this delay, although sometimes in the literature, 1 1N  is assumed to simplify the

notation [26]. This choice will not change the obtained results, but rather increases

slightly the computational burden of the problem. For simplification, the above

notation of 1 1N  , unless indicated otherwise, will be adopted in the remaining of

this dissertation. We note that it is possible to penalize the tracking errors of some

chosen samples within the prediction horizon and ignore the others. The control

horizon on the other hand must satisfy the following constraint 20 uN N  .

Nevertheless, to decrease the dimensionality of the optimization problem and

obtain a more computing efficient formulation, it is usually preferred to select

2uN N .

The matrix  Q j is used to penalize the tracking error  e j between the

predicted outputs and the reference trajectory along the prediction horizon. Most

predictive controllers adopt this approach, although, in some situations, the

tracking errors of the different sampling times are not evenly penalized. In the case

where the scaling of the tracking error is not required,  Q j is replaced with a

unity matrix I of the same dimensionality. The second matrix  R j has the same

role as  Q j but with the control input increments   ˆ 1 for 1, , uu t j j N   Δ

instead of the tracking errors   2 for 1, ,e t j j N   . This matrix is sometimes

called the move suppression factor since any relative increase in its values relative

to the weights of  Q j has the effect of reducing the control activity [12]. To

ensure that 0J  , we must have   0Q j  and   0R j  .

 When choosing, in the formulation given by equations (1.1),  Q j I and

 R j I , the following typical cost function is obtained [20, 26]:

 

    
 

     
ˆ ˆ

1 1

2 2
ˆ ˆmin , , () min ˆ ˆ= | Δ 1|

upN N

u t u t
j j

J u t y t w t y t j t w t j u t j t
 

 

        (1.2)

21

where  is a positive scalar that defines the weighting factor of the control inputs

variations.

The second term in the right side of (1.2) could be completely taken out by

setting 0  to remove any restriction on the control actions changes. This will

often lead to the presence of huge input changes and insufficient robustness

against modelling errors [26]. In some situations, the values of the control inputs

are also penalized by introducing the term  
2

0ˆ |
S

u t j t u  to force the control

inputs to follow some ideal resting value. This is done when there is more inputs

than variables to be controlled [12].

The prediction horizons 1N and 2N , the control horizon uN , the weight

matrices  Q j and  R j are the design parameters of the predictive controller.

These parameters, in addition to the reference trajectory ()w t affect the behaviour

of the closed-loop combination of the process and the predictive controller.

Choosing the appropriate values for these parameters is sometimes dictated by

the economic objectives, but generally, they are tuned to meet the desired control

performance.

2.2. Prediction model

The first step in designing model predictive controllers is obtaining the

prediction model, which will be used to predict the future values of the process

outputs over a given prediction horizon. This model must have the ability to

faithfully mimic the behaviour of the real process, especially the dependence

between the outputs, the current measured variables and the current/future inputs.

The empirical (black box models), the fundamental (white box models or first

principle models obtained from balance equations) or the grey box (developed

from combining the two previous approaches) approach can be used to design

such model. Although, a large class of linear and nonlinear models exist and can

be used in MPC, the simplest model that gives enough accurate predictions

should be used. Indeed, in order to get reliable predictions, it is not always

necessary to include all of the physical, chemical and internal behaviour of the

process into the constructed model; but rather to include only the dynamics that

affect the predictions. Reduction techniques like singular perturbations could be

22

used to derive a more simpler model from a rigorous model that can retain the

basic dynamic behaviour of the full-scale model [52]. This approach has been

successfully applied in chemical engineering by Duchêne and Rouchon [53]-[54].

One of the strong characteristics of the model predictive control strategy is

its indifference toward the adopted modelling approach used in the construction of

the predictor; of course, this remains valid as long as the constructed model is

precise. This fact has ensured that a wide variety of modelling techniques have

been successfully implemented within the predictive control scheme. We could

mention the Artificial neural networks approaches [18, 55, 56], fuzzy modelling

techniques [25, 47, 57, 58], Hammerstein and Wiener models [59-62]. More linear

and nonlinear modelling techniques are given in [63, 64].

If the constructed model used to generate the predictions has a linear form,

the optimization problem (1.2) is a minimization of a convex quadratic function that

has a unique and a global minimum, and for which a solution could easily be

obtained analytically especially if no inequality constraints are imposed. When

these constraints are present, the solution could be easily obtained using

quadratic programming techniques. This is very convenient for the on-line

applications. However, when the prediction model is nonlinear, the situation is

more complex. Due to the nonlinear relation between the predicted process

outputs and the control sequence, the optimization problem (1.2) becomes

nonlinear and non-convex. The analytical approach to solve this problem is

generally unfeasible even if no additional inequality constraints are present [26,

28], while the numerical optimization algorithms could easily be trapped in local

minima [33]. Moreover, it is difficult to estimate the time needed to solve the

optimization problem, and it is not guaranteed that the obtained solution is the

global optimum. Of course, nonlinear optimization requires complex and time

consuming procedures [17-19]. In order to simplify the optimization problem, the

most practical MPC algorithms are still using linear models [20, 26].

2.3. Constraints

One of the major advantages of the MPC scheme is its direct and

systematic ability to handle constraints. Indeed, the majority of practical processes

have limitations imposed on their variables that must be included, as constraints,

23

in the optimization problem. Depending on the nature of these limitations, different

types of constraints could be distinguished. Mainly, we could encounter:

 Constraints on the control inputs values:

  min max
ˆ | j=0, , 1uu uu t j t N   (1.3)

 Constraints on the increments inputs:

  min max
ˆ | j=0, , 1uu t j Nu t u      (1.4)

 Constraints on the values of the system outputs:

  min max
ˆ | j=1, , py t j ty y N  (1.5)

Other types of constraints could also be considered such as the system

outputs variation, imposing constraints for a sub window within the prediction

horizon, or instead of using two-sided constraints (known also as a band

constraints or range constraints), the special case of one sided constraints could

be used:

   max
ˆ | j=1, , py t j t y N  

These constraints originate mostly from physical limitations, safety reasons,

economic and environmental objectives. Input constraints, usually considered as

hard constraints that cannot be exceeded, are the physical limitations presented

by actuators with a limited range of action and a limited slew rate. On the other

hand, constraints on the output are of technological nature and can physically be

exceeded [26], although doing so, could lead to incorrect product specifications or

even cause damage to the equipment. Nevertheless, these constraints could be

treated as ‘soft constraints’; this means that a temporary violation of the

constraints is possible but under severe and special conditions.

Now, let us reformulate the optimization problem (1.2), to include all the

elements found in a general MPC problem:

24

 
    

          



 



        

ˆ

1 1

2 2

ˆ ˆmin , , ()

ˆ ˆwhere , , ()

 subject to : the constraints (1.3), (1.4) and (1.5)

ˆ ˆ | Δ 1|
p u

u t

N N

j j

J u t y t w t

J u t y t w t y t j t w t j u t j t

 (1.6)

The first step when solving the new optimization problem is to try to

translate all the linear inequality constraints ((1.3), (1.4) and (1.5)) into inequalities

concerning the decision variables  ˆ |u t j t  . If the prediction model is linear, the

resulting inequalities will remain linear. This property is going to be crucial if a

solution to the optimization problem were to be found quickly and efficiently. The

admissible solutions (feasible solutions) set of the constrained optimization

problem could become empty (unfeasible problem) if it is not possible to

simultaneously satisfy all the imposed constraints. The practical implementation of

MPC algorithms requires a special care to avoid getting in this undesirable

situation.

Even if the prediction model is linear, the mere presence of the constraints

will usually result in a nonlinear control law. The MPC controller behaves linearly

as long as the system is operating far from the constraints and nonlinearly when

the constraints are approached [12].

3. Linear Model Predictive Control

The first generations of model predictive algorithms and most commercial

MPC programs use a linear prediction model. Depending on the type of the

prediction model, several strategies have been proposed. The dynamic matrix

control (DMC), introduced by Cutler and Ramaker [3], was one of the first

successful implementation of the MPC control scheme in the industry. It uses a

discrete step response as a prediction model and can handle the constraints only

in an approximate way. This problem was solved by introducing the quadratic

dynamic matrix control (QDMC) in 1986 by Garcia and Morshedi [6]. Model

algorithmic control (MAC), also known as model predictive heuristic control

(MPHC), is another approach that uses an impulse response model and is almost

identical to the DMC strategy [10, 26]. The DMC and the MAC are both considered

25

to be the first generation of MPC algorithms [12], however, their use is limited to

stable processes.

Richalet [65] has introduced the predictive functional control (PFC) for the

case of fast processes. This approach uses a state space representation of the

process and can handle nonlinear dynamics and unstable linear internal models.

One of the most famous and successful MPC strategy, both in the industry and the

academia, is known as the generalized predictive control (GPC). It was first

proposed by Clarke et al. in 1987 [7, 8]. The GPC uses a process model, in the

form of discrete transfer function (or difference equations), that allows the use of a

wider class of disturbance models. In addition to these strategies, other linear

approaches were proposed [10, 12, 26].

In the next sections, the formulation of the GPC algorithm, for the siso case,

is given.

3.1. Prediction

The key idea is to formulate the prediction equation using the superposition

principle into a separately free output component and a forced one that explicitly

depends on future inputs.

The GPC formulation is based on the use of the CARIMA (Controlled Auto-

Regressive Integrated Moving-Average) model, which is defined, for a single-input

single-output (SISO) process, by:

            1 1 11d Ge t
A z y t B z z u t C z     


 (1.7)

where  Ge t is a zero mean white noise, d is the dead time of the system,

11 z   is the differentiating operator, while A , B and C are polynomials

described in the backward shift operator 1z by:

 
 
 

1 1 2
1 2

1 1 2
0 1 2

1 1 2
1 2

1

1

a

a

b

b

c

c

n
n

n
n

n
n

A z a z a z a z

B z b b z b z b z

C z c z c z c z

  

  

  

    

    

    







To simplify the formulation, the C polynomial is chosen to be 1.

26

Now let us consider the following Diophantine equation:

          1 1 1 1 11 with j
j jE z A z z F z A z A z          (1.8)

The polynomials jE and jF are uniquely defined with degrees 1j  and an

respectively. To get their expressions, it suffices to divide 1 by  1A z and

factorize the remainder as  1 1
jz F z  . The quotient of this division will be the

polynomial  1
jE z .

Multiplying equation (1.7) by  1 j
jE z z we get:

                1 1 1 1 11j j j GA z E z y t j E z B z u t j d E z e t j            (1.9)

which, using equation (1.8), could be written as:

               1 1 1 11 1j
j j j Gz F z y t j E z B z u t j d E z e t j             (1.10)

or as:

                1 1 1 11j j j Gy t j F z y t E z B z u t j d E z e t j            (1.11)

The noise terms in equation (1.11) are all in the future, thus the best

prediction of  y t j is:

          1 1ˆ | 1j jy t j t G z u t j d F z y t        (1.12)

where      1 1 1
j jG z E z B z   .

The polynomials jE and jF could be obtained easily by the recursion of the

Diophantine equation [7, 10].

Consequently, we could estimate the future process outputs along the

prediction horizon, assuming 1 1N d  , as follows:

      
1 11

ˆ | N Ny t N t G u t F y t   

      
1 11 1 1

ˆ 1| 1N Ny t N t G u t F y t      

 
      

2 22 2
ˆ | 1N Ny t N t G u t N F y t     

27

or, using the matrix representation, as:

        1 1ˆ ˆ 1Y G U F z y t G z u t       (1.13)

where:

 
 

 

 
 

 
2 1 2 1

01

1 01

1 2 02 2 1

0 0ˆ |

0ˆ 1| 1ˆ ˆ

ˆ | 1 N N N N

gy t N t u t

g gy t N t u t
Y U G

g g gy t N t u t N N    

      
     

           
     
     

              





    



  

  
  

    

1

1

2 1 2 1

2 2 1

1
0

1 1 2
1 0 11

11 1
0 1 1

N

N

N N N N
N N N

G z g z

G z g g z z
G z

G z g g z g z z



 


    
 

 
 
  
  
 
 
    
 





  

 
 

 

1

1

2

1

1
11

1

N

N

N

F z

F z
F z

F z








 
 
 

  
 
 
  



The first column of matrix G , that is the coefficients
2 10 1,..., N Ng g   ,

represents the step response of the plant when a unit step is applied.

The last two terms in the prediction equation (1.13) are the free response of

the system; they depend solely on previous control increments and inputs. Thus,

this equation could be rewritten as:

 ˆ ˆ
reeY G U F   (1.14)

3.2. Control law

The typical MPC cost function is usually formulated as:

             
2

1 1

2 2
ˆ ˆ, , () ˆ ˆ= | Δ 1|

uNN

j N j

J u t y t w t y t j t w t j u t j t
 

        (1.15)

Using the matrix representation and substituting the expression of (1.14) in

equation (1.15) result in:

28

    ˆ ˆ ˆ ˆ
T

T
ree reeJ G U F W G U F W U U          (1.16)

This equation could be expressed as:

 0

1 ˆ ˆ ˆ
2

T TJ U H U b U f      (1.17)

where:

 
 

   0

2

2

T

TT
ree

T

ree ree

H G G I

b F W G

f F w F w

 

 

  

If no constraints are imposed, the minimization of this type of cost function

can be analytically obtained by taking the derivative of J equal to 0. The solutions

of this equation give the optimal control sequence U . They are given by:

    
11 T T

reeU H b G G I G W F
      (1.18)

Inversing the matrix  TG G I is a computing demanding process that is

proportional to its dimensionality. To reduce the computing requirement of the

algorithm, the control horizon concept, in which the control actions will be made

constant after 2uN N samples, is introduced. Using this concept the algorithm

will have to inverse a matrix of u uN N elements instead of    2 1 2 1N N N N   .

3.3. The constrained problem

3.3.1. Formulation as a quadratic programming (QP) problem

Most practical control systems include constraints, thus, making the manner

in which they are handled by the control algorithm extremely important. In the

linear case, this is done by translating both constraints on the inputs and on the

outputs to be related directly to the control input increment through the dynamic

matrix G , as follows:

 Constraints on the values of the system outputs: from equation (1.5),

we could, using equation (1.14), write:

    min max
ˆ | reeV VG U t t F tY Y  (1.19)

29

where minVY and maxVY are vectors of 2 1 1N N  elements, with:

min max

min max

min max

 V V

y y

Y Y

y y

   
       
      

 

 Constraints on the increments inputs: from equation (1.4), we have:

  min max
ˆ |V VtU U t U     (1.20)

where minVU and maxVU are vectors of uN elements:

min max

min max

min max

 V V

u u

U U

u u

    
       
  

 

    

 

 Constraints on the control inputs values: equation (1.3) will be rewritten

to have the following expression:

      
0

ˆ ˆ| | 1
j

min max
i

u t j t u t i t u tu u


       (1.21)

We could write:

    min max1ˆ |VV VVU U t UJ t U t   (1.22)

where minVU , maxVU and VU are vectors of dimensionality uN that have the

following values:

 

 

min max

min max

min max

1

1
V V V

u u u t

U U U

u u u t

    
           
          

  

while VJ is a matrix of dimensionality u uN N :

1 0 0

1 1 0

1 1 1 1

VJ

 
 
 
 
 
 





   

30

Inequalities (1.19), (1.20) and (1.22), could easily be reformulated to obtain the

following form:

  ˆ |C U t t c  (1.23)

where C and c are matrix and vector known at time t [12, 66].

Using equation (1.17), the optimization problem will be given by:

0ˆ
min

subject to

1 ˆ ˆ

ˆ

2

ˆ

T T

U
U H U b U f

C U c


    

 

 (1.24)

Equation (1.24) is a standard optimization problem, known as (convex)

quadratic programming (QP) problem, which can always be solved (or shown to

be infeasible) within a limited number of iterations. Its computing requirement

depends strongly on the characteristics of the objective function and the number of

inequality constraints [67]. One of the approaches described in the next sub-

section can be used to solve, at each sampling period, this optimization problem.

This approach could be easily transformed to accommodate multi-input multi-

output (MIMO) processes [26, 66].

Solving a quadratic programming (QP) problem, even in quadratic form, is

not a trivial task. The analytical approach is no longer viable due to the presence

of constraints. Instead, the use of numerical algorithms from the group of active

set methods and interior point methods is considered to be the most effective way

to solve these problems [26]. The convex QP problems could also be solved by

other approaches like the augmented Lagrangian methods or by means of exact

penalty method [67].

3.3.2. Solving convex QP problems

Let us consider the following general form of a convex QP problem:

  min q =
1

2
 T

x

Tx Gx x dx  (1.25)

 Subject to

 , , for all T
i ia x b i  (1.26)

 , for all T
i ia x b i  (1.27)

31

where G is a positive semi-definite hessian matrix of n n elements,  and  are

finite sets of indices, d , x and  ,ia i   are vectors with n elements.

a) Optimality conditions

We define the active set ()x at any feasible solution x as the union of the

set  with the sub-set of the indices of the active inequality constraints, or as:

  () | T
i ix i a x b      (1.28)

The optimal active set *()x is defined as the active set at the optimal solution *x .

Suppose that the solution *x is a local solution of (1.25)-(1.27). Then there

must be a Lagrange multiplier vector * with component *,i i    , so that the

following necessary and sufficient conditions are satisfied:

  * *, 0x x   (1.29)

  * *, for all T
i i xa x b i  (1.30)

  * *,T
i ia x b i x    for all (1.31)

  ** 0, for all xi     (1.32)

with:

    , () T
i i

I
i

i

x q x a x b 


  


 (1.33)

Consequently:

  
 *

* * * *,x

i

i i

x

x Gx d a 


   


 (1.34)

These equations are obtained after simplifying the first order necessary conditions

for optimality, often referred to as the Karush-Kuhn-Tucker conditions, or KKT

conditions [67].

As a consequence of (1.25)-(1.27) being convex QP problem, any local

solution is also the global solution, and the KKT conditions (1.29)-(1.32) are in fact

necessary and sufficient conditions for the global solution.

32

The QP formulation given by (1.25)-(1.27) is the same as the one given by

(1.24). The constant 0f has been dropped out because it has no influence on the

solution and the equality constraints (1.26) have been presented explicitly.

To solve the optimization problem (1.25)-(1.27), two major approaches are

considered to offer the best performances: the active set methods successively

used since 1970s, and the more recent interior point (IP) methods. Generally, the

active set approaches are most effective for small to medium scale problems

whereas the IP methods have been shown to be effective for large scale QP

problems [67]. More details related to these approaches can be found in [67-69].

b) Active Set Methods

the active set methods start from an initial solution 0x and an initial working

set 0 that contains all the equality constraints i in addition to some (but not

necessary all) of the active constraints, then converge towards the optimal active

set *()x and the optimal solution *x by iteratively solving equality QP sub-

problems. Using the gradient and the Lagrange multipliers information, the solution

kx at the thk iteration and the working set k are continuously updated until the

optimal active set *()x and the optimal solution *x are obtained.

We could distinguish three varieties for active set methods known as primal,

dual and primal-dual [67]. In this section, the discussion is limited to the primal

methods for which the generated solutions along the iterations remain feasible

with respect to the primal problem (1.25)-(1.27). The general formulation of the

algorithm is outlined in the next paragraphs.

Suppose we have at the thk iteration the working set k with the feasible

solution kx . The first step is to check, using the simplified KKT conditions, if this

solution minimizes the QP (1.25)-(1.27) in the subspace defined by the working

set. If not, a new candidate solution is generated by computing a step p obtained

by solving a QP sub-problem in which the constraints in the working set k will be

enforced as equality constraints while the inactive inequality constraints are

disregarded. Let us define the following:

33

 , k k kp x x g Gx d   

Replacing x by his expression in the objective function of (1.25) will result in:

    
1

2
q =q = T t

kk p Gp gp px cx  

Where
1

2
T T
k k kc x Gx d x  is a constant term.

By dropping the constant term c , the QP sub-problem could be formulated as:

 min
1

2
 T t

p
kp Gp g p (1.35)

 Subject to

 0 , for all k
T
i ia p i  (1.36)

Let kp be the solution to this QP sub-problem.

Whatever the value of kp , the constraints in k will also be satisfied with x

for all ki because   0, since for all T T T
i k i i k k i i k ka x b a x p b a p i      . In

fact, this remains true even when  0,1, k kx x p     .

The step kp can be computed using one of the standard approaches to

solve the equality constraint QP (1.35)-(1.36) (see section 16.2 of [67] for an

overview), like the one based on the direct solution of the corresponding KKT

system:

* 00

T
k k

k

p gG A

A 

     
     
   





 (1.37)

where  
k

T

i i
A a





 is the Jacobian of constraints in the working set and *

k is the

vector of Lagrange multipliers for kp .

If the step kp is non zero, the next feasible solution 1kx  will be computed as:

 1k k kx x p   (1.38)

where
k is used to ensure that the new solution 1kx  satisfies the inactive

inequality constraints of (1.27). Its value is given by:

34

, 0

min 1, min
def

T
k i ka p

T
i i k

k T
i

i k

b a x

a p


 

 
  

 
 (1.39)

If 1k  , at least one of the inactive inequality constraints not in k is blocking the

step. As a result, a new working set 1k is constructed by adding one of the

blocking constraint to k .

The iterations are continued in this manner, adding inactive constraints to

the working set when necessary until the step 0p  , that is the current solution x̂

minimizes the objective function (1.25) over the current working set  . At this

point, we examine the Lagrange multipliers corresponding to the inequality

constraints in the working set. If they are all non-negative, the optimal solution to

the original QP problem (1.25)-(1.27) is found to be the current solution x̂ . If one

or more constraints have negative multipliers, the constraint corresponding to the

most negative multiplier is generally removed from the working set to permit

further decrease of the objective function. The algorithm continues iterating by

solving the QP sub-problem (1.35)-(1.36).

The active set approach for convex QP could be summarized in the

following algorithm [67]:

Algorithm 1.1

Compute a feasible starting point 0x ;

Set 0 to be a subset of the active constraints at 0x ;

for 0,1,2,...k 

 Solve (1.35)-(1.36) to find kp ;

 if 0kp 

 Compute Lagrange multipliers) (ki i  that satisfy  , 0kx kx   ;

 if 0 for all i ki     ;

 Stop with solution *
kx x ;

 else
 set arg min

kj jj     ;

 1k kx x  ;

  1 \k k j   ;

else  0// kp 

 compute k from (1.39);

35

 1k k k kx x p   ;

 if there are blocking constraints

 obtain 1k by adding one of the blocking constraints to k ;

 else

 1k k  

end for

The speed of the active set methods for a given QP problem depend greatly

on the quality of the initial feasible solution and the method used to solve the KKT

system (1.37). Within the context of linear MPC, the active set methods or any

other optimization approach for that matter could be enhanced by exploiting the

special structure of MPC problems. This special structure is essentially due to two

features [12]:

4) The resulting QP in the formulation of the MPC problem could be

sparse with a particular ordering of the variables.

5) A very good initial feasible solution for the current sampling time could

be obtained from the previously calculated solution.

The active set algorithm start iterating from an initial feasible solution. If the

proposed solution is of good quality, the algorithm will require only a few iterations

to converge towards the optimal solution. A good initial solution in an MPC based

QP problem could be generated using the solution found in the previous sampling

time 1t  , that is  0 1ˆ | 1x U t t  or by shifting this solution by one sampling

period and adding a zero in the last term as follows:

      0
ˆ ˆ ˆ| 1 , 1 | 1 , , 1 | 1 ,0ux u t t u t t u t N t        . This procedure remains

accurate as long as the disturbances and the reference trajectory changes, if any,

remain relatively small. Some other techniques to generate initial solutions could

be found in [10, section 7.3]. In the case where no prior information about feasible

solutions is available, specialized algorithms capable of generating either initial

solutions or determining that the problem is infeasible exist. One of such

approaches is the Phase I method in which the feasible solution will be generated

by solving a linear optimization problem or the Big M approach in which a term that

measures and penalizes the infeasibility, due to constraints violation, is added to

36

the objective function and the feasible solution is generated by solving the newly

resulting QP problem [12, 70].

When formulating the linear MPC based algorithm, the resulting QP problem

could be sparse. Wright [71] has pointed out that due to the structure of the

predictive control problem, the use of a banded matrix when solving the KKT

system (1.37) could be done and may be more advantageous, but at the cost of

introducing many more variables into the problem. Maciejowski [12] has used this

approach and proposed an approximate formula to determine whether the banded

scheme is more beneficial than the original dense scheme. He has also pointed

out that a careful comparison should be done for any particular application before

adopting either one of the above mentioned approaches. Moreover, the algorithm

could be warm started using solutions obtained in previous sampling periods to

facilitate the optimization procedure.

The active set methods were extensively used to solve the MPC problems

[29, 30, 72-74]. Nevertheless, they are not always preferred, especially for the

large scale QP problems resulting from long prediction horizons formulation. In

these cases, the IP methods are more appropriate.

c) Interior point methods

This approach represents the second major class of methods that are used

to solve convex QP problems. It was developed as an extension to the Kamarkar’s

algorithm [75] for solving linear programming problems. IP methods have mainly

two variants, the primal barrier and primal-dual methods. In this subsection, only a

brief indication of how the primal-dual method works will be given.

For simplicity, we restrict our description to convex QP problems with only

inequality constraints. The extension to the case of equality constraints can be

done easily.

The convex quadratic programming is defined as:

  min q =
1

2
 T

x

Tx Gx x dx  (1.40)

 Subject to
 Ax b (1.41)

37

where G is a positive semi-definite hessian matrix. The m n matrix A and the

right-hand-side vector b are defined as follows:

      1,2,...,, , i ii i
A a b b m

 
 

 


Suppose that the solution *x is a solution of (1.40)-(1.41). Then there must be a

Lagrange multiplier vector * , so that the following necessary and sufficient

conditions, obtained after specializing the general KKT conditions for (1.40)-(1.41),

are satisfied for    * *, ,x x  :

 

0

0

0, 1,2,...,

0

T

ii

Gx A d

Ax b

Ax b i m







  

 

  



By introducing the slack vector y Ax b  , we can rewrite these conditions as:

 0TGx A d   (1.42)

 0Ax y b   (1.43)

 0, 1,2,..., i iy i m   (1.44)

  , 0y   (1.45)

The equations (1.42)-(1.45) could be rewritten as a constrained system of

nonlinear equations and derive primal-dual IP algorithms by using a modified

Newton based method to this system.

Let us define:

    , , , , 0

TGx A d

F x y Ax y b y

Y e



 

  
 

    
  

where  1 2, ,..., mY diag y y y ,  1 2, ,..., mdiag     and  1,1,...,1
T

e  .

Let us also define a duality measure  for a current iterate  , ,x y  that satisfies

 , 0y   , as:

1

1 Tm

i i
i

y
y

m m


 



  (1.46)

38

The central path C is the set of points  , ,x y    0  where:

    
0

, , 0 , , 0 F x y y

e
     



 
  
 
  

The algorithm will try to move the current point  , ,x y  towards the point

 , ,x y   on the central path, where  is a parameter of the algorithm chosen

in  0,1 . The current point will be moved using the step obtained from:

0

0

0

T
d

b

G A x r

A I y r

Y Se e 

      
             
           

 (1.47)

where T
dr Gx A d   and br Ax y b   .

The new solution is obtained by:

      , , , , , ,x y x y x y          

where  is mainly chosen to retain the inequality  , 0y    .

Solving equation (1.47), at each iteration, is the most computing demanding

operation within the IP methods. As the active set methods, efficient formulation

resulting from the special structure of linear MPC problem could be used to reduce

the general computing requirement of the algorithm.

Interior point methods require a smaller number of iterations than the active

set methods [67, 76]. However, an iteration of the IP methods is more computing

expensive than that of the active set methods. IP methods have also the great

advantages of a relatively constant computing time per QP solution. The active set

methods keep the feasibility of the solution at each iteration while the new variants

of the IP methods do not ensure feasibility until the end of the search [12]. As a

result, if the optimization has not been finished within the allotted period of time or

was interrupted, the active set methods could generate a feasible solution while

the IP methods could not. This property is very important because in many MPC

39

problems, the feasibility of the solution is more important than the exact optimality

[12].

Starting an optimization process from feasible solutions in the vicinity of the

optimum could help the algorithm become more computing efficient as less

iterations are required to converge towards the optimum.

Active set methods are known to fully take advantage of this fact, while IP

methods are known to have difficulties with warm starting [69, 77]. To overcome

these difficulties, several warm starting strategies for the IP methods have been

proposed [78-80]. Moreover, the IP methods are easy to implement compared to

the active set methods.

The above mentioned advantages have made the IP methods very popular

within the MPC framework especially for large scale problems [31, 32, 81-83].

4. Nonlinear model predictive control

Although linear MPC algorithms provide satisfactory performance in many

applications, against highly nonlinear processes severe degradation of control

performance can occur, unless the operating conditions are very close to the

steady state around which the model is linearized [13]. To ensure higher control

performance, nonlinear techniques that use a nonlinear prediction model must be

investigated [84, 85]. In fact, in recent years, a lot of attention was given to the

Nonlinear MPC (NMPC) strategies and several nonlinear control algorithms have

been proposed [14-16]. Predicting the future behaviour of the system using

nonlinear models, albeit more accurate, will result in a nonlinear and generally

non-convex optimization problem that requires the use of complex and time

consuming optimization algorithms. Seeing that it is not guaranteed to find the

optimal solution when using these algorithms, the objective of most NMPC

strategies is not to find the global optimal solution but is rather to find a suboptimal

solution that can meet the control objectives.

Depending on how it is proceeded to obtain the suboptimal solution,

Tatjewski [26] has classified the existing methods into the following main

categories:

40

4.1. Nonlinear Model Predictive Control with Successive Linearization (NMPC-SL)

The aim is to use a more accurate nonlinear model of the system but still

obtain a quadratic and convex optimization problem. This could be done by

linearizing the nonlinear model, at each sampling period, around the current

operating conditions, and use the resulting linear model with any LMPC strategy

(DMC, GPC,…etc) [52, 86-89]. It is interesting to note that the obtained control

sequence is the optimal solution of the resulting quadratic optimization problem,

which is a linear approximation of the original nonlinear optimization problem.

Thus, the NMPC-SL approach is a suboptimal one.

For systems that have slow dynamics or systems that operate close to

certain equilibrium points for extended period of time, it is possible to further

improve the NMPC-SL algorithm by not performing the linearization process at

each sampling period, but rather after a predefined number of samples [12]. On

the other hand, for systems that have high nonlinearities when the reference

changes are quick or for dynamic transients after strong and rapid changes of

disturbances, such approach could be insufficient even if the linearization process

occurs at each sampling period [26].

4.2. Nonlinear Model Predictive Control with Nonlinear Predictions and
Linearization (NMPC-NPL)

It is clear that the previous approach (NMPC-SL) has some limitations.

Restricting the use of the nonlinear model to obtain linear approximations in each

sampling period appears to be insufficient. The nonlinear model must be further

incorporated within the control algorithm.

One key property of the LMPC formulation is the ability to use the

superposition principle for which a system response (output) could be

decomposed into separately computed free and forced components. This

decomposition is necessary to facilitate solving the optimization problem

analytically. Unfortunately, this principle is not applicable for nonlinear systems.

The NMPC-SL strategy uses this principle after evaluating both the free and

the forced responses using the approximated linearized version of the original

nonlinear system to compute the future predicted system outputs. More accurate

predictions could be obtained by using the nonlinear system to evaluate the free

41

response component of the predictions and use the approximated linearized

version for the forced component. The resulting optimization problem of the

NMPC-NPL approach is the same as in the NMPC-SL case (quadratic and

convex), but the way in which the predicted values of the free response

component are computed differs. They are obtained by using the nonlinear model

instead of the linearized system [52, 90-92].

From the computing requirement point of view, using a nonlinear model to

compute the free component does not considerably affect the total amount of the

required computing time in each sampling period; this component needs to be

evaluated only once per a sampling period. Thus using the NMPC-NPL is

generally more efficient and preferred than the NMPC-SL.

The efficacy of the NMPC-NPL is proportional to the values of the control

input increments; small ones lead to a solution that is close to an optimal one even

for a highly nonlinear system or when a transition to distant operating points is

required as long as the control action trajectory is smooth with small increments. If

quick reaction of the system that generates large control increments is necessary,

the NMPC-NPL might quickly become insufficient. Several improvements that

were proposed to the original NMPC-NPL are presented and explained in [26].

Although the NMPC-NPL control algorithm provides satisfactory

performance in many applications, against highly nonlinear processes with a quick

reaction time, significant loss of control performance can ensue. For this type of

systems, nothing less than the complete use of the nonlinear model within the

control algorithm appears to be sufficient. However, fully introducing the nonlinear

model in the MPC formulation will also mean the loss of the convexity in the

optimization problem, hence losing the well-established techniques for handling

convex optimization problems and be forced to rely on nonlinear optimization

techniques.

4.3. Nonlinear Model Predictive Control with Nonlinear Optimization (NMPC-NO)

The analytical solution to the nonlinear and non-convex optimization

problem is the most convenient approach from the solution accuracy angle. It has

the ability to solve the original optimization problem completely and determine the

global optimum. However, analytical approaches are generally impossible to

42

derive and numerical approaches are used instead [26-28]. We could distinguish

the following two major families:

4.3.1. Deterministic numerical approaches

These approaches solve the optimization problem numerically.

Consequently, the resulting solutions are only an approximation of the actual

solution.

Let us consider the discrete time dynamical systems augmented with

algebraic equations expressed by [93]:

  1 , , t t t tx f x z u  (1.48)

  , , 0t t tg x z u  (1.49)

where tx is a vector of differential states with xn elements, tz is a vector of

algebraic states with zn elements and un
tu  is the control vector (sequence).

The two functions f and g are both assumed twice differentiable, the algebraic

state tz is uniquely determined by equation (1.49), we assume that
g

z




 is invertible

everywhere, and both tx and tu have constant values.

Within the NMPC framework, an optimal control problem (OCP) will be

formulated based on the discrete dynamic model (1.48)-(1.49) that has to be

solved at each sampling period starting at the current initial state 0x :

  
0

0

1

, ,
min ,z ,u

pt t

i i i
x z u

i t

L x
 



 (1.50)

 subject to

0 0 0, tx x  (1.51)

  1 0 0, z , u 0, 1 ,...,i i i i px f x i t t t      (1.52)

   0 0,z ,u 0, 1 ,...,i i i pg x i t t t    (1.53)

  0 0,z ,u 0, 1 ,...,i i i ph x i t t t    (1.54)

The goal is to minimize the objective function (1.50) which contains a

Lagrange term L (sometimes called running cost) along the prediction horizon

0 0, 1pt t t    . The function h is assumed to be differentiable and to have the

43

appropriate dimension. The free parameters in this OCP are the differential state

vector  
0 00 1 1, ,..., ,

p p

T
T T T T

t t t tx x x x x   , the algebraic vector  
00 1 1, ,...,

p

T
T T T

t tz z z z   and

the control vector  
00 1 1, u ,..., u

p

T
T T T

t tu u   . The constant 0x is not a variable of the

OCP problem (1.50)-(1.54), but rather a parameter upon which the OCP depends

via initial conditions. The differential state vector x is computed until sampling

period 0 pt t while z and u stop at the time period 0 1pt t  .

The OCP problem (1.50)-(1.54) is a finite dimensional nonlinear programing

optimization problem (NLP) that can be solved using the so called direct methods.

When a continuous time dynamic system such as simple algebraic equation,

ordinary differential equation (ODE) or differential algebraic equation (DAE), is

used, the resulting OCP will constitute an infinite dimensional optimization problem

over the function space to which u belongs. In this case, three basic classes to

solve OCP problems of this form exist [94-96]:

a. Hamilton-Jacobi-Bellman partial differential equation / dynamic

programming: this approach tries to compute recursively a feedback control

 * ,u x t , for all time t and all initial state 0x , using the principle of optimality of

subarcs instead of looking for the optimal control trajectory for a single given 0x at

a time [95, 97]. This will lead to the Hamilton-Jacobi-Bellman (HJB) equation in the

continuous time case and to a partial differential equation (PDE) in state space

[95]. Since the complete solution for all t and 0x is considered at once, the HJB

approach will suffer severely from the curse of dimensionality and will require a

huge computing power. In practical situations, this approach could be useful only

in situations where small systems are considered [95, 97] although their use, even

in these situations, is limited. Nevertheless, NMPC algorithms, especially for small

scale problem, were developed based on this approach [95, 98, 99].

b. Euler-Lagrange differential equations / calculus of variations /

maximum principle (Indirect methods): using the necessary conditions for

optimality of the infinite dimensional optimization problem and the classical

calculus of variations, an explicit solution, which remains valid for the current given

initial state 0x [97], of the input as a function of time  u t and not as a feedback

44

control law, is obtained. This solution is formulated as a boundary value problem

(BVP) that has to be solved numerically [95]. The drawback with these methods is

the fact that the solutions will be difficult to derive due to strong nonlinearity and

instability. Moreover, the user must have significant knowledge and experience in

optimal control in order to use these approaches [94].

c. Direct methods: the first two classes are often known as ‘first

optimize, then discretize’ approaches. They solve the infinite dimensional

optimization problem by formulating the control u as a continuous function and

then discretize it to numerically obtain a solution. The direct methods transform the

infinite OCP into a finite dimensional nonlinear programming problem (NLP) then

solve this problem to obtain the discretized control u directly. Hence, this why this

class is often known by the strategy ‘first discretize, then optimize’.

For the online optimization of an NMPC problem, the approaches that

belong to the last class are usually used [94, 95, 97, 100]. In the following sub-

sections, only approaches belonging to this class are presented. More details

about the first two classes and the general optimal control problem can be found in

[37, 94, 95, 101, 102].

A) Solution of the NMPC problems using direct methods

 Let us consider, in this subsection, the finite dimensional NMPC problem

(1.50)-(1.54).

Equality constraints (1.51)-(1.53) uniquely define both variables x and z for

a given control u . Expressing the variables x and z as functions  x u and  z u

that satisfy (1.51)-(1.53) for all u will transform the optimization problem (1.50)-

(1.54) to yield the following reduced NLP problem:

     
0

0

1

min ,z ,u
pt t

i i i
u

i t

L x u u
 



   (1.55)

 subject to

      0 0,z ,u 0, 1 ,...,i i i ph x u u i t t t     (1.56)

This problem has interesting characteristics, given that its variable space

has been severely reduced to include only the control variable u , this strategy is

similar to the dense scheme in linear MPC. Solving this reduced problem instead

45

of the original problem could be more appealing. This approach is known as

sequential approach to optimal control due to the fact that in each optimization

iteration, both system simulation (to reduce the variable space) and optimization

are performed sequentially, one after the other.

In contrast to the sequential approach, we have the simultaneous method in

which both the system simulation and the optimization are performed

simultaneously by directly considering the original NLP problem (1.50)-(1.54) and

using a Newton type optimization algorithm.

Using the sequential approach will lead to an NLP problem which has a

reduced variable space with less structure in the linear sub-problems than the

simultaneous approach. In this method, often an off-the-shelf code for nonlinear

optimization could be used [93]. This approach is used by many practitioners given

that the practical implementation will be much more easy to accomplish [93].

Another advantage of the sequential approach is the continued feasibility of the

solutions within the optimization iterations. Even if the optimization was interrupted

or could not be finished in time, the intermediate solutions are guaranteed to be

feasible and, thus, could be used at any moment. However, this is not true for the

simultaneous method in which the feasibility of the solution is only ensured at the

end of the optimization procedure [94, 97, 100].

When using the simultaneous approach, the full optimization problem (1.50)

-(1.54) with the variables , and u x z will be considered. In this case, specially

designed optimization algorithms could be used to exploit the resulting special

structure in the optimization problem in order to efficiently compute the most

crucial and often complex steps in Newton based algorithms [93, 97], mainly

computing the derivatives and solving the subsequent sub-problems QP. As a

result, even with more variables, the simultaneous approach could be more

computing efficient than the sequential approach. It is also important to note that

the simultaneous approach is able to deal with unstable nonlinear systems better

than the sequential approach [100].

Once the NLP problem formulation has been chosen (sequential or

simultaneous), the resulting NLP must be solved using dedicated optimization

algorithms.

46

B) Optimization algorithms

The NMPC problems (1.50)-(1.54) and (1.55)-(1.56) are in fact specially

structured cases of generic NLP problems that could be solved using any

optimization algorithm that is dedicated to solving generic NLP problems. Although

directly applying the optimization algorithms to the NMPC problems is possible, it

is highly ill advised. The optimization algorithm should take advantage of the

moving horizon formulation and fully exploit the special structure generally found in

NMPC based NLP problems. Let us consider the following generic NLP problem:

  

 

 

min

0

0

X
F X

G X

H X





subject to:

 (1.57)

Under mild assumptions, we could state that for any local solution *X to the

NLP problem (1.57), there exist multiplier vectors * and * such that the

following necessary and sufficient conditions (KKT conditions) hold:

  * * *, , 0X X    (1.58)

  * 0G X  (1.59)

  * 0H X  (1.60)

 * 0  (1.61)

  * * 0, 1,..., i i HH X i n   (1.62)

where:

        , ,
T T

X F X G X H X     

The Newton based optimization algorithms will then try to locate a local

solution by using successive linearization of the problem functions in (1.58)-(1.62)

and looking for points that satisfy these conditions. Two big families of Newton

based algorithms could be distinguished depending on how to treat the inequality

constraints (1.60)-(1.61); we have sequential quadratic programming (SQP) and

the nonlinear interior point (NIP) methods.

47

In the sequential quadratic programming, all of the nonlinear functions within

the resulting KKT system will be linearized. The resulting linearized KKT system is

equivalent to the KKT system of the following QP:

  

     

     

min

0

0

subject to:

k
QP

X

Tk k k

Tk k k

F X

G X G X X X

H X H X X X

  

  

 (1.63)

where:

          2 , ,
1

2

T Tk k k
X

k
Q

k
P

k kF X F X X X XXX X       

If the hessian matrix  2 , ,k k
X

kX    of (1.63) is positive semi-definite, then this

QP is convex and the global solution can reliably be found by using one of the

optimization methods previously described in section 3.3.2. The solution to this QP

problem will provide the required step kX to generate the point 1k k kX X X   

for the next iteration. In this SQP version, both hessian and Jacobian matrices are

exactly obtained. However, the more widely used SQP variants are based on

inexact approximation of them like the Powell’s classical SQP methods [103] in

which an approximation of the hessian matrix, updated in each optimization

iteration, is used. Another variant, like the one given in [104], uses a reduced

hessian approximation that approximates only the portion of the Hessian matrix

relevant at the time, making the algorithm more computing efficient. More SQP

variants could be found in [105].

In addition to the SQP algorithm, we could use a nonlinear interior point

(NIP) algorithm to solve the KKT system (1.58)-(1.62) by replacing the last non-

smooth condition by a nonlinear approximation and using one of Newton’s

methods. This approach uses the same concepts the IP method for convex QP

does. The only difference is that a linearization of all problem functions is

performed in each iteration. More details can be found in [69].

Several NMPC based algorithms were developed using the SQP methods

[106-108] and the NIP approach [32, 83].

48

C) Classification of direct methods

According to the adopted strategy at each optimization step, several

variants of Newton based optimization algorithms could be built. Mainly, the

following strategies can be envisaged:

(a) NLP formulation: sequential or simultaneous

(b) Treatment of inequalities: SQP or nonlinear IP

(c) Derivative computation: full or reduced

(d) Linear algebra of linearized sub-problems: banded (sparse) or

condensing (state elimination).

Based on these choices, we could distinguish between several algorithm

variants like the classical single shooting method [109] which could be classified

as (Sequential, SQP, Reduced) or as (Sequential, SQP, Full, Condensing)

depending on whether the reduced derivatives were used, and the classical

reduced SQP collocation methods, like the one used in [110], which could be

classified as (Simultaneous, SQP, Full, Condensing). An exhaustive review of

different optimization methods is given in [37].

Nonetheless, several problems have been reported concerning the

implementation of deterministic numerical approaches. Numerous methods are

initial conditions sensitive; suitable initial guesses must be provided to start the

iterative process and to ensure converging toward the global optimum [33-35]. Of

course, obtaining a suitable initial guess is not a trivial matter especially as the

complexity of the system grows [111]. For this reason, these approaches are

sometimes called local methods [33]. Moreover, these approaches could only be

used when a mathematical based model of the process is available like in the case

of fundamental models. These approaches could not be used with some empirical

models. In fact, even if a mathematical based model is available, derivative

information, nonetheless, is sometimes hard, impossible to get, or simply not

available [36]. An additional drawback is the fact that these approaches could only

be used with continuous variables, they cannot handle discrete problems [37].

49

4.3.2. Stochastic numerical approaches

Another approach to solve the nonlinear and generally non-convex

optimization of the NMPC problem is the use of the stochastic meta-heuristics

algorithms, abbreviated in this dissertation to meta-heuristics algorithms to simplify

the notation. These algorithms are based on fundamental elements and

procedures that produce evolution and intelligent behaviours in natural systems

[38] or on physical principles [39], and are capable of handling the majority of

optimization problems [39, 40]. These methods have known huge success, both in

academia and the industry [39, 41]. This success could be attributed to the facts

that the meta-heuristic algorithms are simple, flexible, derivative-free, generally

able to handle local optima and generate high quality solutions in a reasonable

period of time [39, 42-44]. In fact due to their heuristic and random natures, these

algorithms have a better-searching capability than that of the classical analytical

approach [45], are unaffected by initial conditions and can handle both discrete

and continuous problems.

Numerous meta-heuristic variants exist. We could mention: genetic

algorithm (GA) [112, 113], Differential Evolution (DE) [114, 115], Particle Swarm

Optimization [40, 116], Ant Colony Optimization (ACO) [117, 118]. Some of the

more recent variants are the: Artificial Bee Colony (ABC) [119, 120], Gravitational

Search Algorithm (GSA) [121, 122], Kinetic Gas Molecule Optimization (KGMO)

[123] and Grey Wolf Optimizer (GWO) [42]. In fact, meta-heuristic is still an active

research field where enhancements of current variants and completely new

algorithms are continuously proposed. A good review about the different meta-

heuristic approaches could be found in [39, 124].

 These algorithms were successfully applied to solve multiple engineering

problems in diverse fields including the predictive control where at each sampling

period, a control action is computed by solving an NLP optimization problem.

Let us reconsider the generic NLP problem of (1.57). If X has a limited

number of possible values, then the ideal approach to solve this problem, from the

accuracy and simplicity angles, is to evaluate the objective function  .F for all

possible X and determine the value(s) that give(s) the minimum value of the

objective function and fulfils the imposed constraints. However, in most realistic

50

problems, the admissible set of (1.57) tend to be at the least large enough to make

this approach irrelevant except for the most trivial problems. The meta-heuristic

algorithms are based on this concept, but instead of evaluating all possible values

of X , only a limited number of strategic evaluations will be performed with the

hope of locating a solution of reasonable quality.

More details about how to use the meta-heuristic algorithms to solve the

NMPC problem will be given in chapters 2 and 3.

Although their success, the meta-heuristic algorithms are not perfect

optimization techniques. In fact, several drawbacks could be enumerated like the

necessity to tune several parameters of the algorithm before its use [124, 125].

These parameters, which have not universal optimal values, have great influence

on the efficiency and the effectiveness of the algorithm [39]. The meta-heuristic

based algorithms are generally able to generate high quality solutions in a

reasonable amount of time, but this does not mean that they will guarantee this

fact or the fact that the generated solutions are in the neighbourhood of the global

optimum.

5. Efficient ways to reduce the NMPC on-line computing requirement

Implementing on-line NMPC algorithms requires a huge computing power

which can limit their use in fast-sampling systems and real time applications. To

reduce the computing requirement of these algorithms, several approaches taking

advantages of the special structure of NMPC formulation were proposed.

Bemporad, Morari [126] have proposed the explicit MPC for linear models where

the optimization problem is pre-computed off-line for a given range of operating

conditions of interest. In their work, they exploited the multi-parametric

programming techniques to express the optimal control as an explicit function of

the state and the reference vectors reducing the online computations to a simple

function evaluation. This function is usually piecewise affine (PWA) and the

controller is mapped into a lookup table of linear gains [127]. This approach has

attracted the interest of the research community and was extended to nonlinear

MPC [16, 128-130] where the computing requirements are even more significant.

The major challenge that has limited the applicability of the explicit MPC is that the

numbers of entries in the lookup table increase exponentially with the number of

51

decision variables [15, 34]. Moreover, the nonlinear constraints are represented

using piecewise affine approximation. Consequently, the entries in the lookup

table will also increase if more approximation accuracy is required [15]. Hence, the

explicit MPC use is limited to small problems with low dimensions [15].

Another approach is based on the work of Zheng and Zhang [131] where

the authors have proposed a control algorithm in which the first control move was

exactly calculated while the rest of the control moves were approximated, given

that only the first control action is to be applied to the system. Their approach

should significantly reduce the online computing requirement as the considered

NMPC optimization problem will always have a control horizon of one move

regardless of the original control horizon.

The computing requirement needed to solve an optimization problem

depends on the number of constraints. However, only constraints that can become

active can influence the optimization result. The other remaining superfluous

constraints, which can never be violated, have no influence on the optimization

result; therefore, they can be eliminated from the optimization problem without any

repercussion. The resulting simpler equivalent optimization problem will have

fewer constraints and could be solved using less computing power. Several

methods that can determine the superfluous constraints in an optimization problem

were proposed. However, their computing requirement is quite important. For

more details about constraints reduction, see [10].

Patrinos, Sopasakis [76] have proposed a reformulation of the strictly

convex QP arising in constrained LMPC as a system of piecewise affine

equations. They have shown that the resulting linear system that needs to be

solved at each iteration is positive semi-definite and has a significantly smaller

dimension than that of the original problem. This system showed considerable

merit when applied to MPC over standard active set or interior point algorithms. In

fact, they have claimed that the proposed algorithm is orders of magnitudes faster

than the state-of-the-art QP solvers especially for large-scale problems and long

horizons. Several implementations on different systems of various dimensions and

prediction horizons have been given in their paper.

52

This is by no means a complete survey or a thorough investigation of

techniques that reduce the on-line computing requirement of NMPC optimization

problems. It is a simple presentation of some techniques. In this thesis, we are

only interested in approaches that tackle and solve the original nonlinear and

generally non-convex optimization problem completely on line.

6. Feasibility issues

Solving a constrained optimization problem does not necessarily mean that

a solution to this problem exists. In fact, in the presence of certain conditions, it will

be impossible to satisfy simultaneously all of the imposed constraints, especially

those on the output. In this case, the optimization problem is said to be infeasible.

Within the NMPC framework, the infeasibility of the optimization problem

means that no control action has been calculated for the next sampling time. This

situation is unacceptable for an on-line controller; a control action has to be

applied at each sampling period. Therefore, the infeasibility issue should be either

avoided by making sure that the original optimization problem (or a more relaxed

form) remains feasible regardless of the current situation or by introducing a back-

up control strategy to take over until the feasibility has been recovered.

Infeasibilities within the NMPC framework, are due to multiple causes [10].

Instances where the desired set points cannot be reached while maintaining the

constraints on the inputs are one example of unobtainable control objectives.

These problems arise from bad formulation and contradictory constraints and

should be corrected at the design stage by putting reasonable control objectives.

In other instances where perturbations or large reference changes may force

variables out of their permissible sets without having the ability to return these

variables to their admissible sets is another reason for infeasibilities. In addition, if

the operator changes the operational variable limits during operation, current

variables could be outside of the new limits and, as a consequence, the

optimization problem will be unfeasible. Another reason is due to system/model

mismatch which can, erroneously, let the controller thinks that it cannot satisfy the

constraints if the modelling errors keep growing [12].

53

The infeasibility issue is more pronounced in instances where the operating

objectives force the system to operate in the vicinity of the constraints in the

presence of perturbations. In general, the infeasibility of the optimization problem

is difficult to anticipate [12].

To avoid the situation where no control action is computed, several

strategies were proposed [10]:

a. Ad hoc measures: when the infeasibility is detected, the controller

could apply the same control output used for the previous sampling time, that is

   ˆ1 |u t u t t  , or use instead the control signal    ˆ1 1 |u t u t t   . However,

this approach could lead to unpredictable closed-loop behaviour [132].

b. Disconnection of the controller: this strategy is based on the idea of

replacing the NMPC controller when the infeasibility occurred by a backup control

strategy, and returning to automatic operation once the feasibility is recovered.

However, the infeasibility occurs when the system is in critical operating conditions

and special care should be used to re-establish normal operation to avoid

catastrophic failure due to violation of safety or economic based constraints. This

strategy is usually used where the infeasibility problems are not frequent.

c. Constraints elimination: the reason of infeasibility is the inability to

satisfy, simultaneously, all the imposed constraints. So, one way to avoid this

situation is to eliminate the constraint(s) causing the infeasibility and solve a more

relaxed version of the optimization problem.

During normal operation, if the optimization problem becomes infeasible, the

controller removes the constraints one by one starting by the relatively less

important ones until the feasibility is recovered. In the upcoming sampling times,

the feasibility is continuously analysed in order to reintroduce the removed

constraints. This is a widely accepted approach [12] although it may pose some

computing problems when used. Indeed, the optimization problem will be solved

after each time a constraint is removed until the feasibility is regained. Another

problem that may arise is to which level, the controller is allowed to remove

constraints in order to recover feasibility. Does the controller have the authority to

remove the safety based constraints? Or should it be limited to non-critical

54

constraints. If so, what to do in case the infeasibility will not be recovered by

removing the non-critical constraints?

d. Constraints relaxation: another frequently practical approach is to

soften some or all the output constraints [26]; this means that a violation of the

constraints is allowed but under severe and special conditions. The easy way to

soften the outputs constraints is to add new variables, called slack variables, to the

cost function. These variables will heavily penalize any violation of the constraints

in order to force the optimizer to violate these constraints only when the

infeasibility issue arises. This approach could not be used on systems that do not

tolerate any violation of the imposed hard output constraints.

e. Changing the constraints horizons: most of constraints violations

occur at the first part of the control horizon due to sudden perturbations that could

force the system variables outside of their permissible sets [10]. The idea is to

ignore the constraints when solving the optimization problem during this first part.

This approach of constraint window is adopted by some commercial MPC [10].

7. Stability

It has been shown that using a finite horizon criterion does not guarantee

the closed-loop stability and that the only way to achieve it in practical

implementation is to use a suitable tuning of the design parameters such as the

prediction, the control horizons and the weighting matrices [133]. However, no

‘controller design procedure’ that allows determining the stabilizing prediction and

control horizons for an NMPC setup based on the process model and the chosen

cost function exists [134].

Using the infinite horizon approach to achieve the stability is computationally

impracticable [134, 135]. Hence, the attention was directed to more practical

methods with finite horizon. Most of these methods change the OCP (NLP)

formulation by introducing suitable equality and inequality constraints or even

adding new term to the cost function. The sole purpose of these modifications is to

achieve closed loop stability of the controller regardless of the design parameters

or the considered system. The introduced constraints are called stability

55

constraints [19, 136] and NMPC strategies based on these modifications are

called NMPC approaches with guaranteed stability [134].

It is also interesting to note that optimality does not imply stability [137].

However, under mild assumptions, the feasibility of the optimization problem alone

could suffice for the stability [138].

In the following paragraphs, four NMPC approaches with guaranteed

stability are briefly discussed. A thorough and complete review can be found in

[134].

First, let us reconsider the OCP problem (1.50)-(1.54) without the algebraic

state for simplification (constraint (1.53) is removed) and with prediction and

control horizons of the same length. At each sampling period, full measurement of

the state is assumed to be available, no disturbances (persistent or not) act on the

system and there is no model/process mismatch between the dynamical model

and the physical process. The set un of admissible control u is compact and

convex while xn the set of admissible differential state x is closed and simply

connected with  0,0 in the interior of x un n  . The function L is quadratic in x

and u , while f is twice continuously differentiable on x un n  , with the

assumption that  0,0 0f  (without loss of generality). The objective of the control

is to bring the system to the assumed equilibrium point of  0,0 .

7.1. State terminal equality constraint

This approach widely used to design NMPC strategy with guaranteed

stability introduces a ‘zero state terminal equality constraint’ into the original OCP

problem to force the state to zero at the end of the prediction horizon:

0

0
pt tx   (1.64)

Introducing a single constraint to the original OCP is one of the easiest ways

to establish closed-loop stability. Its theoretical framework is clear and no changes

to the optimization algorithm are required (in the case when the original OCP is

constrained). These facts have made this approach one of the more popular ways

in establishing closed-loop stability [134]. However, adding a new equality

constraint to the original OCP problem could be too restrictive and result in a

56

significantly reduced feasibility set especially if relatively short horizons are used.

In this case, the controller does not have enough time to bring the state back to

the origin. Another drawback is the computing requirement of the new constraint; it

is a well-known fact that constraints increase the computing requirement to solve

OCP problems.

7.2. Dual mode (Terminal constraints set)

Instead of using the restrictive constraint (1.64) to establish the stability of

the closed loop, a two-steps approach is used. In the first step, the states are

driven inside a terminal region  in the neighbourhood of the origin using a

NMPC controller with variable horizons. Then, in the second step, the state is

forced to the origin using a linear state feedback controller t tu Kx [139]. The term

dual is used to point out the fact that the two controllers are used.

The terminal region  and the state feedback K are computed offline to

ensure that the terminal region is a positive invariant region of attraction for the

nonlinear system controller with the linear state feedback law while the input and

state constraints are satisfied within this region.

The original OCP formulation is slightly changed to accommodate the dual-

mode approach. The original cost function is replaced by

  
, ,N
min ,u , N
t t p

t t p
x u

J x (1.65)

where pN has been taken as an additional variable decision. The second

modification concerns the following additional constraint:

 |pN t Bx  (1.66)

This constraint is used to ensure that the states at the end of the prediction

horizon are at the boundary B of the terminal region  . It is interesting to note

that this constraint is less restrictive than the one given by (1.64).

Under mild assumptions, the feasibility of the new OCP problem will ensure

the closed-loop stability [19, 134].

57

This approach is more attractive than the previous one; it has less restrictive

constraint. However, its implementation is more complex due to its dual-mode

control strategy.

7.3. Contractive NMPC

In this strategy [140], the following stability constraint is added to the original

OCP problem:

  
2 2

| , 0,1
pN t tx x   (1.67)

This constraint, known as contraction stability constraint, will ensure that the

magnitude of the state will be at least decreasing (contracting) by a pre-specified

factor at the end of the prediction horizon.

In this approach, the predictive formulation is different. Once the input

vector ut is calculated, the entire elements of this vector will be applied to the

system contrary to the conventional approach of only the first element. Thus, the

next optimization problem will be solved at time pt N .

This approach is not practical, given that feasibility issues could arise in the

intermediate sampling periods where the optimization problem is not solved.

7.4. Quasi-infinite horizon NMPC

In this scheme, an inequality stability constraint:

 |pN tx  (1.68)

and a quadratic terminal penalty term described by:

  | | |p p p

T
N t N t N tx x Px  (1.69)

are both added to the original OCP. The reasoning behind this approach was to

choose the matrix P in (1.69) off line in such a way to make the objective function

of the new OCP problem approximates that of an infinite horizon. In this way, the

closed-loop stability can be achieved while numerically solving an optimization

problem over a finite horizon [134].

58

The terminal region  and a linear state feedback controller are chosen to

make  positively invariant for the closed loop and the nonlinear system

asymptotically stable in this region.

This approach was established based on the dual-mode scheme, but

instead of switching between two control strategies, the proposed approach uses

only a NMPC strategy [135].

The aforementioned methods remain valid as long as the proposed

assumptions are verified. However, assumptions such as no perturbation acts on

the system or no model/process mismatch exists do not represent practical

situations where both perturbations and model/process mismatch are actual facts.

To this end, a robustness analysis of the NMPC controller is necessary to

determine to which extent the previous result about stability remains valid in the

presence of uncertainties.

8. Conclusion

This chapter has covered the main aspects and properties of model

predictive control. In the next chapter, the meta-heuristic algorithms will be

described in details.

59

CHAPTER 2:

META-HEURISTIC ALGORITHMS

1. Introduction

In this chapter, the basic concepts of meta-heuristic optimization algorithms

and the formulation of the corresponding generic optimization problem are

introduced. Mainly, Genetic Algorithm (GA), Particle Swarm Optimization (PSO)

and Artificial Bees Colony (ABC) are considered. The last section of this chapter

gives the details of two proposed variants of the ABC algorithm.

2. Meta-heuristic algorithms: Basics

Heuristic or approximate algorithms, used to solve optimization problems,

have been present for several decades. In fact, this concept has been originally

introduced in 1945 by Polya [141] and has known, since then, rapid dissemination

within the research community. Several algorithms have been developed to tackle

the increasingly difficult and more complex optimization problems. Variants were

proposed to enhance the already existing versions, conferences and other

scientific events dedicated to heuristic have started to appear. A more concise

definition, as stated by Caserta and Voß [142], is that heuristic is a technique

which seeks good solutions (approximates) at a reasonable computational cost.

In 1986, Glover [143] has introduced the term ‘meta-heuristic’ to designate

the newly introduced, more efficient and general purpose optimizations algorithms,

that are based on classical heuristic algorithms, artificial intelligence, biological

evolution, neural systems and statistical mechanics [144]. The suffix ‘meta’ is a

Greek word that means ‘upper level methodology’. In fact, meta-heuristics are

considered to be ‘an iterative generation process which guides a subordinate

heuristic, by intelligently combining different concepts, for exploring and exploiting

the search spaces using learning strategies to structure information in order to find

efficiently near-optimal solutions’ [144].

60

2.1. Classification

Meta-heuristic algorithms could be classified based on several criteria [39]:

a. Nature inspired versus non-nature inspired: the meta-heuristic

algorithms could be classified depending on whether they were designed based on

natural processes or on non-natural processes: Artificial immune system algorithm

from biology; particle swarm, bee and ant colony optimization are inspired from

swarm intelligence whereas simulated annealing for example is inspired from

physics.

b. Memory usage versus memoryless: in some algorithms, the

evolution of the search does not require information already collected about the

search space. This approach is adopted by the simulated annealing algorithm. In

contrast, tabu search and PSO, for example, use memory to save dynamically

extracted information for future exploitation.

c. Deterministic versus stochastic: stochastic algorithms use some

randomness during the search in contrast to the deterministic algorithms which

use deterministic decisions. As such, in deterministic algorithms: starting from the

same initial solution will always lead to the same final solution. However, due to

the introduced randomness within the stochastic algorithms, starting from the

same initial solution will typically lead to different final solutions.

d. Iterative versus greedy: in iterative algorithms, the search starts with

an initial solution(s), then they iteratively try to enhance the solution(s) using some

search operators in contrast to the greedy algorithms in which the search starts

from an empty solution. The solution is built step by step by assigning a single

decision variable of the problem in each step. Most meta-heuristic algorithms are

iterative [39].

e. Population-based search versus single solution based search:

population-based algorithms work with a population (numerous) of solutions. In

each iteration, all of the current solutions will be manipulated to generate the next

population of solutions (e.g., PSO, GA). In the single solution based approaches,

only one solution will be evolved during the search process (e.g., simulated

annealing). Population based algorithm are more exploration-oriented as they

allow to explore the search space more effectively while single solution based

61

approaches are more exploitation oriented as they permit an in-depth search of

local regions.

In this dissertation, only stochastic iterative population-based meta-heuristic

algorithms are exclusively used. Henceforth, when the meta-heuristic algorithms

are mentioned, it is implied that we are talking about the stochastic iterative

population-based meta-heuristic variants.

2.2. population based meta-heuristics

In this family, the search algorithm, starting from a population of initial

solutions, will iteratively try to improve the solutions using some search operators

on the current population. In order to obtain a population of expectantly better

solutions, a replacement strategy is carried out to replace part (or all) of the

current population from the new generated population. These processes of

generation and replacement will continue until a given condition is satisfied

(stopping criteria). The population based meta-heuristic algorithms encompasses

a very large number of algorithms, most of which are nature inspired algorithms

[39]. We could mention: genetic algorithm, particle swarm optimization, Artificial

Immune Systems (AIS), artificial bee colony and many other variants. These

algorithms are identified based on their adopted generation/replacement

strategies.

The general formulation standard to any population based meta-heuristic

algorithm is given by Algorithm 2.1 [39].

Algorithm 2.1

 Set the initial population 0P

 0t 
 repeat

 Generate the new population '
tP // Generation process

  '1 select-populationt t tP P P   // Replacement process

 t  
 until (stopping criteria is satisfied)
 output: best solution(s) found.

62

2.2.1. Initial population

Although the distribution of the initial population plays a critical role in the

effectiveness and efficiency of the meta-heuristic algorithms, this step is often

disregarded in their design [39]. Nevertheless, when considering implementing an

optimization algorithm, a special care on how to generate the initial population

should be taken [145].

If the initial population does not efficiently cover the search space, the

optimization algorithm may not be able to locate the appropriate solution points,

thereby missing the global optimum [146] and converging toward a local optimum

(premature convergence).

Regardless of the used meta-heuristic algorithm, we could distinguish four

strategies to generate the initial population [39]: random generation, sequential

diversification, parallel diversification and heuristic initialization. Their evaluation is

done based on the diversity of the initial population, the computing requirement,

and the quality of the solutions. More details about these approaches could be

found in [39].

2.2.2. Population size

The population size is an extremely important parameter in any population

based meta-heuristic algorithms. The larger a population is chosen, the better its

solutions will be, and the more computing requirement it will need. A compromise

must be reached between the contradictory objectives of having good quality

solutions and the low computing requirement. No definitive rule exists on how to

choose the population size, although some practical design rules have been

extracted depending on the used algorithms (PSO,GA, DE …etc) and the problem

dimension. In the PSO case, Clerc [40] has found that a population of 20 to 30

could handle almost all of the classical optimization problems. For the

evolutionary algorithms, Talbi [39] has indicated that a population between 20 and

100 is usually sufficient. Storn and Price [147] have recommended, for the DE

algorithms, a population size of 5 to 10 times the dimension of the problem.

Generally, the size of the population is chosen based on the problem dimension

[148].

63

Other researchers have considered the problem from another angle. Instead

of using the design rules to determine the best population size, a dynamical

strategy could be used to regulate the population size on-line during the run. The

algorithm could increase or decrease its population based on the current situation.

This approach was used by Michalewicz [149] who introduced the concept of ‘age’

of a chromosome (GA). Fit chromosomes stay alive longer than the less fit ones.

Using such approach, the population size will vary from an iteration to the next.

Clerc [40] has described an adaptive PSO where the swarm population size is

obtained through different strategies that regulate the population by removing

badly performing particles and creating new ones. In [150], an adaptive DE in

which the population size is adjusted based on the current search status, was

used.

2.2.3. Exploitation versus exploration

Another important factor that can heavily influence the performance of the

meta-heuristic algorithms is its ability to both explore (global search) the search

space looking for regions of interest and to exploit (local search) these regions in

order to locate optimum solutions. Ideally, an optimization algorithm that has both

of these characteristics fully integrated should be designed. However, the

exploration and the exploitation are somewhat exclusive characteristics.

The computing power available in the majority of practical situations is quite

limited. Therefore, it is necessary to judiciously use this power. When solving an

optimization problem, a certain balance between exploring the search space and

exploiting its prominent regions must be established. If the exploration has not

been thorough, the optimizer may miss a prominent region(s) of the search space.

If this region contains the optimum solution(s), the algorithm will not be able to find

this optimum or even a solution in its neighbourhood. Thus, the undesirable

phenomenon of premature convergence will occur; the algorithm will converge

toward a local optimum and be trapped in it. The convergence speed of the

optimization algorithm could also be affected if the exploration has not been

sufficiently performed as prominent regions of the search space will take more

time to be, if ever, discovered.

64

On the other hand, once the exploration has determined a prominent region

where an optimum or at least a solution of a good quality may be found, the

optimization algorithm will start the exploitation process of this region by

concentrating the search in its immediate neighbourhood. If this process is

prematurely interrupted, the algorithm may overlook a good solution or even an

optimum to converge toward a lesser solution. Consequently, and in addition to

the fact that the convergence speed of the algorithm depends greatly on this

process, it is necessary to give the exploitation process the required time to

complete its task.

Generally, all meta-heuristic algorithms use several mechanisms to balance

between these two abilities. A good balance between them is necessary to obtain

an efficient optimizer [151-153].

2.2.4. Stopping criteria

Depending on the optimization problem at hand, several criteria could be

used to stop the optimization procedure. We could mention [39]:

 Static procedure: In this method, the end of the optimization process is

known a priori. This could be implemented with a fixed number of iterations, a limit

on computation resources or a maximum number of objective function evaluations.

This procedure is usually used when a time limit is imposed.

 Adaptive procedure: In this method, the end of the optimization

process cannot be known a priori. This could be implemented with a fixed number

of non-improving iterations or when an optimum or a satisfactory solution is

obtained with a predefined error tolerance.

Some other procedures are specific to population based meta-heuristic

algorithms. They generally depend on some statistics of the current population or

its evolution [39]. For example, in some situations, the algorithm will be stopped if

its diversity drops below a given threshold where the population will be considered

stagnant. When this happens, continuing the optimization process is meaningless

[39].

65

3. Solving optimization problems

3.1. General approach

Let us reconsider the following generic NLP problem:

  min

subject to:

X
F X (2.1)

   0 G X  (2.2)

   0 H X  (2.3)

where xnX  is the decision variable, F is the cost (objective) function, while

 and G H are the constraints functions.

Let xnS  be the set of admissible solution X that satisfy constraints (2.2)

and (2.3) and popn be the population size. The basic steps needed to solve the

optimization problem (OP) (2.1)-(2.3) using a population based meta-heuristic

algorithm are summarized in algorithm 2.2.

Algorithm 2.2

for 1: poph n // Initial population

 Choose an initial solution for hX from S

end for

Randomly choose one of the initial solutions as the best solution BestX

1iter  // Set the current number of iteration

for 1: poph n // Find the best solution in current population

 if    h BestF X F X

 Best hX X

 end if

end for

Repeat // Iterative process

for 1: poph n // Generation/Replacement processes

 Generate a new solution hNewX

 Apply a replacement strategy

66

 if replacement is necessary

 h hNewX X

 end if

end for

for 1: poph n // Find the best solution in current population

 if    h BestF X F X

 Best hX X

 end if

end for

iter   // Set the current number of iteration

until (stopping criteria satisfied)

At the end of the process, the optimization solution will be stored in BestX .

This is a general layout of population based algorithms; it cannot accurately

describe all existing population based algorithms as each algorithm has its own

peculiarities.

3.2. Constraints handling

In the previous section, we have presented how to solve optimization

problem using meta-heuristic algorithms with the assumption that the admissible

set named S is known a priori. In practical situation, building the admissible set

from constraints is not always easy or possible. In fact, even if this set could be

known, several difficulties could emerge within the generation process as this set

could not be invariant with respect to the generation process. As such, the strategy

adopted to handle the constraints is of capital importance for the design of a good

and efficient optimization algorithm. These approaches can be grouped into the

following categories [39]:

3.2.1. Reject strategies

In these methods, also known as death penalty approaches, only feasible

solutions are used during the search. If an infeasible solution is generated, this

solution will be automatically discarded.

67

These approaches are only attractive when the majority of the search space

is feasible. These approaches do not use infeasible solutions to gather information

about global optimal solutions that can be either on the boundary between feasible

and infeasible solutions or on another independent feasible region if the

admissible set contains discontinuous regions.

3.2.2. Penalizing strategies

In these approaches, both feasible and unfeasible solutions could be

considered. However, the original cost function will be modified to include a new

term that will heavily penalize the unfeasible solutions. These are the most popular

and widely used approaches to handle constraints.

3.2.3. Repairing strategies

In these strategies, custom built heuristic algorithms are used on the

generated unfeasible solutions in order to transform them or ‘repair them’ into

feasible solutions. The success of the strategy depends greatly on the efficiency of

the constructed algorithm.

The problem with these methods is the extra variant computing requirement

needed to repair all the generated infeasible solutions.

3.2.4. Preserving strategies

In these methods, the optimization algorithm will be slightly modified in order

to ensure that each generated solution will always be feasible by incorporating

problem-specific knowledge. Of course, the tailored algorithm cannot be used to

solve any given optimization problem. Furthermore, feasible initial solutions have

to be generated to start the algorithm which could be problematic.

The hybrid approach that combines more than one strategy can also be

used to handle the constraints.

4. variants of meta-heuristic algorithm

In the hope of producing efficient algorithms, several meta-heuristic

optimization algorithms have been proposed. given this huge numbers of

algorithms, the question that will instinctively arise is which variant must we use to

68

efficiently solve our optimization problems? What algorithm has the best

performances?

Contrary to some beliefs, a simple answer to this question exists. There

does not exist and will not exist an optimization algorithm that outperforms all the

remaining algorithms on all possible optimization problems. This statement was

given based on the ‘no free lunch theorem’ introduced by Wolpert and Macready in

[154, 155]. The authors have stated in [154]:

«All algorithms that search for an extremum of a cost function perform
exactly the same, according to any performance measure, when averaged
over all possible cost functions. In particular, if algorithm A outperforms
algorithm B on some cost functions, then loosely speaking there must exist
exactly as many other functions where B outperforms A.»

However our interest does not include all possible cost functions. In fact, in

practical situations, the number of objective functions of interest is quite limited.

The idea is to evaluate the best optimization algorithms against these functions. If

A outperforms B in these functions, it does not matter that B will outperforms A in

other, loosely speaking, non-important functions.

4.1. Genetic algorithm

The genetic algorithm is one of the most famous and successful meta-

heuristic optimization algorithms that have made a big impact within the research

community. This algorithm has been originally developed by Holland [156] and his

collaborators during the 1960s and 1970s. Since then, the algorithm has been the

object of intensive study, exploitation and developments. The algorithm is a model

of biological evolution based on the theory of natural selection [157]. Starting from

an initial population, the algorithm will begin the optimization process by

generating new more fit populations (generations) of chromosomes using genetic

operators like crossover, recombination and mutation. The main steps of the

algorithm are given by the flowchart of figure 2.1.

Each chromosome  1= , , (=1, ,)h h hD popx x x h n  is a D -dimensional vector

of variables that represents a possible solution to the optimization problem with a

fitness value  itness hF x . Once the initial population has been generated and its

69

chromosomes’ fitness evaluated, the algorithm start iterating through the following

steps [113]:

Figure : 2.1 Flowchart of the standard GA.

4.1.1. Natural selection

Based on the fitness information gathered in the last phase, the

chromosomes will be sorted in a descending manner according to their fitness.

Chromosomes that are fit enough will be selected to survive and possibly

reproduce offspring for the next generation while the rest will die off. Of the popn

chromosomes in the population, only the best keepN members will be kept for

mating. The remaining chromosomes will be removed to make place for the new

offspring. This process will permit the population to evolve over the generations.

4.1.2. Pairing

In this stage, two parents are chosen from the surviving population to

produce two offspring that contain traits from each parent. Several pairing

70

mechanisms exit: we could randomly choose the parents, use the roulette wheel

based on their fitness or pair them from top to bottom, as the chromosomes will be

ordered starting from the top of the (fitness orderly) population. More details about

pairing approaches could be found in [113]. The chosen parent will also be added

to the new population.

This procedure is repeated until the new population has been completely

regenerated.

4.1.3. Mating

The offspring will be generated by merging the parents to pass on genetic

material. The simplest method consists of choosing randomly a single or multiple

crossover points in the chromosome. The first offspring will be built by copying the

first parent until the crossover point, after which the second parent will be used.

This procedure is inversed for the second offspring.

Let  1= , , f f fDx x x and  1= , , m m mDx x x be the parent, then the offspring

1x and 2x are given:

 
 

1 1 2 3 4 5

2 1 2 3 4 5

= , , , , ,...,

= , , , , ,...,

f f f m m mD

m m m f f fD

x x x x x x x

x x x x x x x





This approach of generating offspring is not attractive since no new genetic

material is introduced once an initial population has been chosen. We are merely

interchanging variables between chromosomes; no new variables will be added to

the chromosomes in this stage.

Another more interesting method is the ‘blending methods’ in which the

offspring are built by combining variables values of the parents as follows:

   

   
1

2

1 , 1,...,

1 , 1,...,

i fi mi

i mi fi

x x x i D

x x x i D

 

 

   

   

where  is a random number in  0,1

This blending could be done to all variables or only to a limited number.

More details can be found in [39, 113, 158]

71

4.1.4. Mutation

To allow the algorithm to explore other regions of the search space and

escape local optima, a change or a mutation in some of the variables is randomly

introduced. A parameter called mutation rate is used to determine the probability

of a variable being mutated. For example, a mutation rate of 20% indicates that

1/5 of the variables in all of the chromosomes will be replaced by randomly

generated values. The variables to mutate are also chosen randomly.

The algorithm will continue iterating by repeating the previous four phases

until the stopping criterion has been satisfied.

Originally, GA algorithm used a binary representation as chromosomes

were represented by binary strings of 0 and 1. However, this discrete

representation worked well only for problems requiring solutions of low

dimensionality and precision. To overcome this limitation, the concept of real

coded GA was introduced [159] where a vector of real-valued genes was used to

represent a chromosome. The remaining phases of the algorithm are the same as

in the binary representation.

Genetic algorithm is one of the most widely used optimization algorithm in

modern nonlinear optimization [157], nonetheless, it has several known

deficiencies [157, 160]. Namely, its tendency to converge toward local optimum if

the fitness function has not been correctly formulated, its slow convergence rate

[159] and the huge computing requirement needed to find a solution. In fact, given

the same problem and computation time, simpler optimization algorithms may find

better solutions.

In order to overcome these issues, the balance between exploration and

exploitation must be enhanced. Within the GA, the crossover operation affects

decisively the exploration capability of the algorithm [159]. As such, a lot of

research has been conducted on how to produce more efficient crossover

operators [161-164].

4.2. Particle swarm optimization

Particle Swarm Optimization algorithm is a meta-heuristic optimization

algorithm that was introduced by Kennedy and Eberhart in 1995 as a solution for

72

the optimization problem of a single objective continuous problem. It is based on

the observation of the collective behaviour of social insects such as ants, termites

and bees as well as the behaviour of other animal societies such as flocks of birds

or schools of fish [165]. Basically, a number of randomly distributed particles will

start surfing the search space looking for a solution to an optimization problem.

Every particle represents a potential solution, and by means of a fitness function

  .itnessF , the suitability of the particle will be assessed and evaluated. Using

these data, the particles will change their locations to try to enhance their fitness to

provide more accurate solutions. This change is influenced by the history of the

particle or its best position, its neighbourhood history, mainly the best position

found by the whole swarm, in addition to some random behaviour.

The first step is to generate the initial population, evaluate the particles

finesses and determine the global best solution gP . Then the algorithm will start

iterating by updating the positions of the particles.

The particles movements are bound by the following equations:

    1 (1)v m v m a m    (2.4)

    1 (1)X m x m v m    (2.5)

where , , v a x m and are velocity, acceleration, position and iteration index

respectively. For the algorithm proposed by Clerc-Kennedy [166], the acceleration

of a given particle i is given by the following expression:

      1 2 1i g i i i ia c P X c P X v          (2.6)

where 0.729843788  , 2.05c  , 21 and   are random numbers from the uniform

distribution  0,1U , ix and iv are the current position and velocity of particle i

respectively, iP is the personal best position of particle i , while gP is the global

best position of all particles. Note that ia could take negative values as well as

positive ones. The parameter  guarantees a decreasing velocity for each particle

as the number of iteration increases. This property will improve the convergence

quality; as the particles approach the solution, their movement will be more and

more limited which help fine tune the found solution.

73

The PSO algorithm is summarized in algorithm 2.3.

Algorithm 2.3

 for each particle h

 Randomly initialize ,h hx v

 h hP x // Initialize personal best position

 end for

 repeat
 for each particle h

 update particle position hx using (2.4)-(2.6)

 if    itness h itness hF x F P // Update personal best

 h hP x

 end if

 if    itness h itness gF x F P // Update Global best

 g hP x

 end if
 until (stopping criteria satisfied)

 output: best solution stored in gP .

PSO algorithm has a serious weakness that could seriously reduce its

performances if no actions are to be taken. Mainly, the PSO algorithm has a

problem keeping a healthy balance between exploring the search space and

exploiting prominent regions of the search space [167-169]. As a direct result, the

optimization algorithm would be susceptible to getting trapped within local

optimum especially over multimodal, rugged, and non-separable fitness

landscapes [45]. Thus, the algorithm will be vulnerable to the premature

convergence problem.

A lot of research has been conducted in order to address this problem and

make the PSO algorithm more efficient. Indeed, various variants of the PSO

algorithm have been proposed. For example, Silva, Neves [169] have proposed a

predator prey strategy in order to maintain diversity. While He, Wu [170] have

introduced a passive congregation PSO (PSOPC) in which information can be

transferred among particles to avoid misjudging information and becoming trapped

by poor local minima, Sun, Fang [171] have proposed a quantum behaved particle

74

swarm optimization with Gaussian distributed local attractor point. More variants of

the PSO algorithm can be found in [168, 172-175].

4.3. Artificial bee colony

The ABC is a meta-heuristic optimization algorithm that was introduced by

Karaboga in 2005 [119] to solve the optimization problem in multivariable

functions. It is based on the observation made on the social behaviour of the

honey bee swarm.

The colony of artificial bees contains three groups of bees: employed bees,

onlooker bees and scouts. The first half of the colony consists of the artificial

employed bees and the second one includes the onlookers.

 Employed bees: the employed bee exploits a food source and

advertises its position to the onlookers by dancing in the nearby hive. There is one

employed bee per source.

 Onlooker bees: the onlookers tend to choose the best food sources to

further exploit based on information communicated by employed bees. Therefore,

the good food sources attract more onlooker bees compared, to the bad ones.

 Scout bees: When the food source is considered exhausted, it will be

abandoned and its employed bee will be converted to a scout which will randomly

choose a new food source to replace the old one.

The number of food sources is equal to the number of employed bees

and also equal to the number of onlooker bees.

In this algorithm, the position of the food source represents a possible

solution to the optimization problem while the nectar amount (quality of the food

source) corresponds to the fitness of the associated solution. This fitness is

usually evaluated using a given cost function. The size of the population

designated by PN is the sum of the number of employed bees  SN and the

number of onlooker bees  LN . Each solution  1= , , (=1, ,)h h hDx x x h SN  is a D -

dimensional vector where D is the number of optimization parameters.

4.3.1. Basic algorithm

The main phases of the basic (original) ABC algorithm are as follows:

75

a. Initialization phase: The employed bees are placed on random initial

food sources around the hive within the boundary of the allowed search space.

The positions of these initial food sources are generated using the following

expression:

   min max minh j j hj j jx x x x   (2.7)

where: =1, ,h SN , =1, ,Dj  , min jx and max jx are respectively, the lower and the

upper bound of the dimension j and  0 1hj  is a uniformly distributed random

number. Each food source hx is assigned to only one employed bee.

The food sources are subjected to repeated iterations of the search

processes of the employed, onlooker and scout bees. The Termination criterion is

chosen to be either a maximal number of iterations or achieving a specific error

tolerance.

b. Employed bee phase: In this stage, each employed bee will generate

a new candidate food source position hv in the neighbourhood of its old food

source position hx according to the following expression:

   k h j h j hj h j jv x x x   (2.8)

where  1, , /k SN k h  and  1, ,j D  are uniform randomly chosen

indexes,  1 1hj   is a uniformly distributed random number.

If a new generated position exceeds its predetermined boundary values, it is

adapted to remain within the search space boundary. The fitness of the generated

candidate food source hv is evaluated and compared to the fitness of hx . After

that, a greedy selection is applied to decide which one of them to keep.

Only one optimization parameter is updated when generating the new

candidate food source.

c. Probabilistic selection phase: Once all the employed bees complete

their update process, they will share the nectar amount (fitness) of their food

sources in the hive with the onlookers. Using this information, each onlooker bee

76

will randomly choose a food source to exploit with a probability value hp . The hp

value is given by the following expression:

 

 
1

itness h
h SN

itness hh

f x
p

f x





 (2.9)

where  itness hf x

is the fitness value of the food source hx . Clearly, the higher the

nectar amount of a given food source is, the higher its probability to be chosen by

an onlooker.

d. Onlookers bee phase: Once all the onlooker bees have chosen their

food sources, each one will produce a new candidate food source position hv in

the neighbourhood of the selected food source hx using equation (2.8). Then, the

greedy selection between hx and hv is used.

e. Scout bee phase: A food source hx is abandoned after a given

number of unsuccessful trials to produce a better food source in its

neighbourhood, is exhausted; this number is denoted by limit. The food source

which is abandoned by the employed bee is replaced with a new random food

source that is generated by the scout bee. The position of this food source is

obtained using equation (2.7).

The value of the limit parameter is given by the following expression:

 limit SN D  (2.10)

The limit parameter allows keeping the diversity within the ABC population

by regulating the generation of the scout bees.

The location of the best ever food source discovered in the whole search

space by any artificial bee is stored in bestx . If a given artificial bee produces a

better food source, bestx will be replaced by its position.

The different steps of the ABC algorithm are given by the flowchart of figure

2.2.

77

Figure 2.2 : Flowchart of the ABC algorithm.

5. Proposed variants of the ABC algorithm

Two improved variants of the ABC algorithm were proposed. They are

designated by ABCEV (ABC Enhanced Version) and EEABC (Equal Exploitation

ABC).

78

5.1. ABC Enhanced Version (ABCEV)

To enhance the overall performance of the ABC algorithm, several

modifications were introduced to the original ABC algorithm. These modifications

are described in details as follows:

5.1.1. Initialization phase

The distribution of the initial population in any evolutionary based algorithm

is a critical task especially if no information about the solution is available. If the

population does not cover the search space efficiently, it may not be able to locate

the appropriate solution points, thereby missing the global optimum [146]. This

difficulty may be minimized to a great extent by using a well-organized distribution

mechanism rather than the more conventional random initialization.

Chaotic map has been successfully used to distribute the initial population

of different evolutionary algorithms. Using such initialization will increase the

diversity within the population and help to generate high quality solutions. Several

versions of chaotic initialization have been considered. The ‘Chaotic initialization

based on logistic equation’ used in [152] was found to be more efficient in both

initial solutions quality and computing requirement. Hence, in this proposed

version, the position of the initial food sources is generated using the following

expression:

   min max minh j j h j j jx x x x   (2.11)

where =1, ,h SN , =1, ,Dj  and  1 4 1h j h j h j     with  1 0 1j  is a uniformly

distributed random number not a multiple of 0.25.

5.1.2. Update equation

Equation (2.8) encompasses a large portion of the ABC philosophy. It is

responsible, in large, for both the exploratory and especially the exploitation

behaviour of the algorithm. Based on a mutation strategy of the DE algorithm, Gao

and Liu [176] have proposed the following equation as a replacement for equation

(2.8):

  1 2 r h j best j hj r j jv x x x   (2.12)

79

where  1 2 1 2 1, , /r r SN r r h  and  are uniform randomly chosen indexes.

From equation (2.12), the best ever food source bestx is biasing the newly

generated food sources towards itself, increasing thus the exploitation capabilities

of the algorithm especially around the current best food source, and also

increasing the convergence speed. But, as the exploitation capability of the

algorithm increases, its exploration capability on the other hand decreases. To

address this issue, the limit value which controls the scout bees was also modified.

5.1.3. Scout bee

The exploratory behaviour of the algorithm can be increased by generating

more scout bees. This can be done by decreasing the value of the control

parameter limit. Its new expression is then given by:

 0.6limit SN D   (2.13)

This expression was inspired from [177], and has proven to be efficient

compared to other expressions.

5.2. Equal Exploitation ABC (EEABC)

In the previous version (ABCEV), a new update equation was used. This

equation will increase the exploitation capabilities of the algorithm especially

around the best ever food source bestx , increasing, thus the convergence speed.

But, on the other hand, it will make all the artificial bees in the population converge

towards the same region of the search space. Consequently, both the diversity

within the population and the exploratory behaviour of the algorithm will be

decreased, which will make the algorithm more vulnerable to premature

convergence and to get trapped in local optima even when the limit parameter

value is decreased.

To address this issue and further increase the convergence speed of the

algorithm, the following modifications have been introduced to the ABCEV:

5.2.1. New probability equation

The original ABC uses equation (2.9) to assign onlooker bees to further

exploit the different prominent regions of the search space found so far. But, as

80

the optimization process progresses, it will converge towards a single solution

around which all the artificial bees (Employed and onlooker) will be clustered. This

behaviour is extremely desirable if this solution is the global optimum as all the

population will be exploiting the most prominent region of the search space.

However, if this solution is not the global optimum, the population diversity is low

and the algorithm will not be able to explore the remaining search space. Hence, it

will converge toward this solution making the algorithm premature convergent.

Scout bees, introduced to avoid converging toward local optima, are generally not

able to introduce sufficient diversity within the population to escape a sub optimal

solution. In fact, when a scout bee, having a low probability for attracting any

onlooker bees to exploit its new source, is generated, it will be attracted to the

other artificial bees clustered around the sub optimal solution. This problem will be

further amplified if equation (2.12) is used.

In order to address the diversity issue and the premature convergence

problem, we propose the following new probability equation as a replacement for

equation (2.9):

  
 

 

 

 1 1

1

1
1

itness h h
h SN SN

itness hh h
h

f x ExplInd x
p

f x
ExplInd x

 

 

  

 
 (2.14)

where:  is a constant called Exploration rate and chosen in the interval  0,1 ,

 hExplInd x is called Exploitation Index of food source hx , which represents the

number of times this food source was exploited by either an employed or an

onlooker bee. It is different from the number of unsuccessful trials used with the

limit parameter. In this case, both successful and unsuccessful trials are counted.

Using this parameter, we can keep track of how much the different food sources

are being exploited.

Contrary to the original probability equation where the onlookers chose a

food source solely based on the fitness values, the probability of an onlooker to

choose a food source depends, according to (2.14), on the fitness of the food

sources and their exploitation indexes. The second term in the right side of (2.14)

will favour the exploitation by the onlookers of the food sources that are not being

81

thoroughly exploited whereas the first term will favour the exploitation of the food

sources with higher fitness. Using both terms, the onlookers will not only exploit

the possible prominent regions of the search space, but also the less exploited

food sources maintaining a higher diversity within the population which tends to

increase the exploration capabilities of the algorithm.

The exploration rate  is used to balance between exploiting prominent

regions of the search space and exploring this space by maintaining diversity

within the population. The value of  should be chosen carefully, a small one

tends to make (2.14) more close to (2.9) while a value approaching 1 will increase

the exploration of the algorithm but decreases severely its exploratory capabilities.

This algorithm is called Equal Exploitation ABC because it tends to equally

exploit all the food sources not only the fittest ones. As the algorithm starts

iterating, a given food source LowIndexx that has the lowest exploitation index will be

more and more exploited by onlookers, which tends to increase its exploitation

index compared to the other food sources. When the exploitation index of a given

food source increases, the probability to further exploit it will decrease giving rise

to the exploitation of other food sources with lower exploitation index, which

ensures that all food sources get a chance to be thoroughly exploited.

The scout bees’ role will also be strengthened. In fact, seeing that the food

source generated by a new scout bee has not been previously exploited, it has a

high probability to attract onlookers to its position which ensures that this position

will get an adequate chance to be exploited. When a scout bee generates new

food source, its Exploitation Index is immediately given the value of the lowest

Exploitation Index found within the population.

5.2.2. Adaptive exploration rate

The value of the exploration rate  of equation (2.14) is of crucial

importance; it makes a good balance between exploring the search space and

exploiting its prominent regions. Determining a fixed single value for  in order to

ensure good performances for any optimization problem is somewhat difficult if not

outright impossible as each optimization problem has its own characteristics.

Some problems require more exploration than exploitation or vice versa. In other

82

situations, depending on the current status of the optimization, more exploration

(exploitation) is momentarily required.

The ideal situation would be to design an adaptive strategy where the

exploration rate  is automatically adjusted based on details about the current

status of the optimization. This is done by adopting Rechenberg’s 1/5 mutation

rule that states that: the ratio of successful mutation to all mutation should be

equal to 1/5 in any efficient optimization process [178]. Using the value of this

ratio, we could determine if more exploration (exploitation) is required.

The value of the exploration rate  is adjusted using the following formula:

0.85 1 / 5

/ 0.85 1 / 5

1/ 5

 if

 if

 if

 

  

 

 


 
 

 (2.15)

where  is the ratio of successful mutation to all mutations computed every 10 D

iterations. The value of  is adjusted every D iterations.

The initial value for  is chosen equal to 0.1.

5.2.3. Adaptive update mechanism

In the basic ABC, each new solution is generated by updating only one

optimization parameter at a time. This approach helps explore the search space

more vigorously and avoid premature convergence. However, the algorithm will

require more time to converge toward good solutions. In order to increase the

convergence speed of the algorithm without compromising its ability to explore and

escape local optima, an adaptive update strategy where one or more optimization

parameters could simultaneously be updated, is developed.

The idea revolves around the fact that at the start of the optimization, the

diversity within the population is relatively high, so, instead of updating only one

optimization parameter at a time, multiple (not necessarily all) parameters could be

updated to increase the convergence speed without worrying about the premature

convergence problem. However, as the algorithm start iterating, the number of

parameters to be updated will be constantly reduced as a response to the typically

83

diminishing diversity, until having only one optimization parameter to update at the

end of the optimization process.

The number of dimensions to update, in each iteration, is given by:

   0.1 1 / _updateN D m Max iter    (2.16)

where m denotes the current number of iteration.

The updateN updated dimensions are randomly chosen each time a new

candidate food source is generated.

5.3. Experimental study on numerical benchmark functions

In this section, the performances of the proposed algorithms are evaluated

and compared to those of the ABC algorithm [119] and its well-known variants

(GABC [153], ‘the best-so-far selection in ABC’ dubbed here ‘best-so-far ABC’

[179], MABC [180]). To highlight the main similarities and differences between

these algorithms and the proposed ones, the different operations involved in each

algorithm are gathered in table 2.1.

Table 2.1 : Characteristics of the different considered variants of the ABC
algorithm.

Approach Initial
population

Update equation for
employed bees

Update equation for
onlookers bees

The Limit
parameter

Basic ABC Random   k h j h j h j h j jv x x x  
The same as that of the

employed bees
limit SN D 

GABC Random  
 

 k

 h

h j h j h j h j j

h j j j

v x x x

y x





  

 

The same as that of the
employed bees

limit SN D 

Best-so-far
ABC

Random   k h j h j h j h j jv x x x     k h j h j h j b h j jv x f x x  

limit SN D 

MABC Random   k

,

 ,

h j h j h j h j j

h j

v x x x

rand SF SF





  

   

The same as that of the
employed bees

limit SN D 

ABCEV Chaotic  
1 2 r h j best j h j r j jv x x x   The same as that of the

employed bees
0.6limit SN D  

EEABC Chaotic  

1 2 r h j best j h j r j jv x x x   The same as that of the
employed bees

0.6limit SN D  

In these algorithms, except for the best-so-far, the MABC and the EEABC

algorithms, the update equation is applied to only one dimension of the solution. In

the case of the MABC algorithm, the number of dimensions to be updated is a

84

control parameter of the algorithm whereas all dimensions of the onlooker bees’

position are updated in the case of the best-so-far algorithm. In the EEABC

algorithm, the number of dimensions to update is given by (2.16).

The probability equation for all algorithms is given by (2.9), except for the

EEABC algorithm which uses that given by (2.14).

Some newer enhanced version of the ABC algorithm such as the works

given in [152, 181] were not considered in this comparison. In these works more

than one equation are used to update the onlooker’s positions at the same time. In

this work, only algorithms with one update equation are considered.

The comparative study is exclusively limited to ABC variants due to the fact

that previous papers have already compared the performance of the ABC

algorithm against existing conventional approaches such as GA, PSO and many

other optimization algorithms [49, 120, 182].

5.3.1. Benchmark functions

Tables 2.2 and 2.3 give twelve standard benchmark functions frequently

used to evaluate optimization algorithms [42]. While table 2.2 contains six

unimodal benchmark functions, table 2.3 contains 6 multimodal benchmark

functions where D denote the dimension of the solution. The global minimum of

all these functions, except for 7f , is equal to 0. The other test bed we have also

chosen is the fifteen benchmark functions proposed in the CEC2015 special

session on ‘Bound Constrained Single-Objective Computationally Expensive

Numerical Optimization’ [183]. These functions, which include hybrid and

composition functions, are computationally expensive optimization problems that

offer great complexity compared to the standard benchmark functions. Table 2.4

[183] lists a summary of these benchmark functions. A more detailed description of

the CEC 2015 benchmark function could be found in annex C and in the CEC

2015 technical report [183]. The CEC 2015 benchmark functions were slightly

modified in order to shift their minimums to 0.

85

Table 2.2 : Unimodal benchmark functions.

Function Search range Min

  2
1

1

D

i
i

f x x


 
  100,100

D
 0

 2 1
1

D
D

i ii
i

f x x x




  
  10,10

D
 0

   3 max ,1i if x x i D  
  100,100

D
 0

     
1 2 22

4 1
1

100 1
D

i i i
i

f x x x x





   
  30,30

D
 0

   
2

5
1

0.5
D

i
i

f x x


 
  100,100

D
 0

   4
6

1

0,1
D

i
i

f x ix random


 
  ,

D
1.28 1.28 0

Table 2.3 : Multimodal benchmark functions.

Function Search range Min

   7
1

sin
D

i i
i

f x x x


 
  100,100

D


418.9829*D

    2
8

1

10cos 2 10
D

i i
i

f x x x


  
  10,10

D
 0

   2
9

1 1

1 1
20 e 20exp 0.2 cos 2

D D

i i
i i

f x x -exp x
D D


 

   
          

 


 100,100
D

 0

   
2

10
1 1

1 100
100 cos

4000

D D
i

i
i i

x
f x x - +1

i 

    
     

    
 

  30,30
D

 0

            

 
 

 

1
2 22

11 1 1
1 1

10sin 1 1 10sin 1 ,10,100,4

1
1

4

, , , 0

D D

i i D i
i i

i
i

m

i i

i i

m

i i

f x y y y y u x
D

x
y

k x a x a

u x a k m -a x a

k x a x a


 




 

 
       

 


 

  


  


   

 


 100,100
D

 0

             

 

2 22 2 2
12 1

1

1

0.1 sin 3 1 1 sin 3 1 1 1 sin 2

,5,100,4

D

i i D D
i

D

i
i

f x x x x x x

u x

  




 
        

 








  ,

D
1.28 1.28 0

86

Table 2.4 : Summary of the CEC2015 expensive optimization test problems.

Categories Function Description Related basic functions
Unimodal
functions

1F Rotated Bent Cigar function Bent Cigar function

2F Rotated Discus function Discus function

Simple
multimodal
functions

3F Shifted and rotated Weierstrass function Weierstrass function

4F Shifted and rotated Schwefel’s function Schwefel’s function

5F Shifted and rotated Katsuura function Katsuura function

6F Shifted and rotated HappyCat function HappyCat function

7F Shifted and rotated HGBat function HGBat function

8F Shifted and rotated Expanded Griewank’s
plus Rosenbrock’s function

Griewank’s function
Rosenbrock’s function

9F Shifted and rotated Expanded Scaffer’s F6
function

Expanded Scaffer’s F6 function

Hybrid functions
10F Hybrid function 1 Schwefel’s function

Rastrigin’s function
High Conditioned Elliptic function

11F Hybrid function 2 Griewank’s function
Weierstrass function
Rosenbrock’s function
Scaffer’s F6 function

12F Hybrid function 3 Katsuura function
HappyCat function
Griewank’s function
Rosenbrock’s function
Schwefel’s function
Ackley’s function

Composition
functions 13F Composition function 1 Rosenbrock’s function

High Conditioned Elliptic function
Bent Cigar function
Discus function
High Conditioned Elliptic function

14F Composition function 2 Schwefel’s function
Rastrigin’s function
High Conditioned Elliptic function

15F Composition function 3 HGBat function
Rastrigin’s function
Schwefel’s function
Weierstrass function
High Conditioned Elliptic function

5.3.2. Experimental setup

The aim of this analysis is to compare the minimization quality of the

proposed algorithms against other variants of the ABC algorithm by considering

the numerical optimization (minimization) of the benchmark functions of table 2.2,

2.3 and 2.4.

For the first twelve benchmark functions, a population of 20 employed bees

and 20 onlooker bees and a maximum number of 1500 iterations is chosen. The

results of each algorithm are averaged over 150 runs. For the CEC 2015

87

benchmark functions, a population of 50 employed bees and 50 onlooker bees

and a maximum number of 3000 iterations is used while the number of parameters

to be updated in each iteration will be calculated using:

   0.2 1 / _updateN D m Max iter    (2.17)

The results of each algorithm are averaged over 25 runs.

All the simulations are executed on the same Intel Core i5 3.10 GHz (TM)

based machine. If the numerical function evaluation drops below 2.22e-16, it is

reported as 0.

We are interested in recording the mean (found in column named Mean) of

objectives values, its standard deviations (found in column named SD) and the

medians (found in column named median) of the best solution in the last iteration.

We are also interested in recording the number of iterations required to converge

toward the solutions (only for the twelve first benchmark functions that have

converged to zero within 7500 iterations) and the convergence speed of each

algorithm.

5.3.3. Comparative results

The results of the comparison between the proposed algorithms and the

other variants of the ABC algorithm are presented in tables 2.5 and 2.6 for the

standard benchmark functions and in table 2.7 for the CEC 2015 benchmark

functions. The bold font is used to indicate the minimum mean values in each row,

whereas the grey background is used to indicate better optimization result than

both of the proposed algorithms.

It can be observed from table 2.5 that both of the proposed algorithms give

the best general results compared to the rest of the algorithms. From the 36

considered cases, both of these algorithms give the best solutions in 26 cases

compared to all the other remaining algorithms. The GABC gives best solutions in

7 cases, the MABC is the best in 5 cases and the best-so-far is the best in only 2

cases. The basic ABC algorithm is outperformed by all of the other algorithms.

Nonetheless, the proposed EEABC algorithm seems to be having some

problems with the functions 9 10 11 12, , and f f f f . A big difference is observed when

88

comparing the median values with the average values. Let us take the function 10f

with 30 dimensions as an example. In this case, the median value is equal to 0

which means that in at least half of the 150 performed runs, the algorithm

converged to zero. However, the average value of all 150 runs equals 1.381E-0.3

which indicates that in some of the runs, the optimization results were big enough

to shift the average from 0 to 1.381E-0.3. The more reasonable conclusion is that

the proposed algorithm is sometimes getting trapped within some local optimum

instead of converging toward the global optimum. This problem is less apparent in

the proposed ABCEV algorithm.

In table 2.6, the average convergence number of iterations of each

algorithm is recorded. These results were obtained by increasing the maximum

number of iterations to 7500. If the algorithm could converge within this number,

the average number of iterations required to converge toward the optimum will be

recorded. If for a given function, no algorithm could converge toward the optimum,

the convergence information of this function is omitted.

Of the 24 cases, the EEABC requires the least number of iterations to

converge in 17 cases, 4 cases for the ABCEV, 2 cases for the best-so-far and only

one case for the MABC.

Comparing the convergence quality of the ABCEV and the EEABC, the

EEABC is slightly better than the ABCEV. However, when comparing their

convergence speed, the EEABC clearly outperforms the ABCEV.

The CEC 2015 benchmark results are gathered in table 2.7. From the 30

cases presented in this table, the EEABC algorithm outperforms its counterparts in

half of them. The MABC has better results in 8 cases, the basic ABC in 5 cases,

the Best-so-far in 2 cases while the ABCEV in only 1 case.

Comparing the obtained results with those of the standard benchmark

functions, it appears that the ABCEV along with the GABC are not suitable for

optimization problems of great complexity. This does not hold true, however, for

the MABC which appears to achieve good performances and the basic algorithm

whose performances have increased.

89

Table 2.5 : Comparative results of the convergence quality for the standard benchmark functions.

F D
Basic ABC (best in 0 case) GABC (best in 7 cases) Best-so-far ABC (best in 2 cases) MABC (best in 5 cases) ABCEV (best in 14 cases) EEABC (Best in 14 cases)

Average STD Median Average STD Median Average STD Median Average STD Median Average STD Median Average STD Median

1f

30 3.167E-14 9.537E-14 1.065E-14 0.000E+00 0.000E+00 0.000E+00 4.529E-08 3.619E-07 2.714E-13 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00

60 1.174E-07 1.855E-07 6.139E-08 5.707E-10 9.422E-10 3.361E-10 9.971E-03 9.071E-03 7.494E-03 1.035E-08 5.890E-09 9.096E-09 1.680E-14 2.129E-14 9.945E-15 0.00E+00 0.00E+00 0.00E+00

100 1.103E-04 1.900E-04 7.890E-05 3.520E-04 3.960E-04 2.104E-04 7.360E+02 2.641E+02 7.367E+02 5.181E-03 1.580E-03 4.971E-03 1.808E-07 1.298E-07 1.536E-07 4.09E-09 2.29E-09 3.54E-09

2f

30 5.857E-08 2.765E-08 5.210E-08 1.702E-12 1.131E-12 1.419E-12 6.297E-07 7.710E-06 1.543E-10 1.040E-13 6.539E-14 8.475E-14 1.548E-16 3.181E-16 0.000E+00 0.00E+00 0.00E+00 0.00E+00

60 2.524E-04 6.567E-05 2.411E-04 9.991E-06 7.151E-06 8.068E-06 3.024E-03 8.331E-04 2.892E-03 4.971E-06 1.537E-06 4.736E-06 2.140E-08 8.380E-09 2.087E-08 9.56E-11 3.76E-11 9.01E-11

100 1.275E-02 2.138E-03 1.250E-02 1.113E-02 1.207E-02 4.936E-03 4.418E+00 7.502E-01 4.451E+00 4.362E-02 1.361E-02 4.068E-02 7.185E-05 5.167E-05 5.718E-05 7.33E-01 2.62E+00 4.56E-06

3f

30 1.298E+01 3.701E+00 1.296E+01 8.622E+00 1.391E+00 8.622E+00 2.441E+01 2.839E+00 2.473E+01 5.900E+00 3.037E+00 6.091E+00 4.465E+00 9.912E-01 4.508E+00 9.669E-01 2.562E-01 9.251E-01

60 5.527E+01 3.833E+00 5.517E+01 5.156E+01 3.136E+00 5.173E+01 5.977E+01 2.067E+00 5.978E+01 2.008E+01 3.035E+00 2.011E+01 5.476E+01 3.693E+00 5.485E+01 1.967E+01 2.735E+00 1.968E+01

100 7.757E+01 2.928E+00 7.791E+01 7.633E+01 2.485E+00 7.679E+01 7.492E+01 1.420E+00 7.492E+01 4.668E+01 3.993E+00 4.688E+01 8.440E+01 3.314E+00 8.506E+01 5.352E+01 4.083E+00 5.366E+01

4f

2 7.842E-03 9.184E-03 5.147E-03 3.606E-03 3.735E-03 2.281E-03 5.881E-11 3.350E-10 4.609E-13 4.894E-03 4.951E-03 3.570E-03 1.385E-04 1.933E-04 7.277E-05 2.061E-05 3.299E-05 8.817E-06

3 1.106E-01 1.114E-01 8.147E-02 3.012E-02 2.511E-02 2.258E-02 4.782E-04 3.713E-03 2.267E-06 4.574E-02 4.539E-02 3.209E-02 2.365E-03 2.859E-03 1.189E-03 3.473E-04 5.845E-04 1.653E-04

10 2.275E-01 3.335E-01 1.023E-01 2.098E-01 2.907E-01 9.135E-02 4.207E-01 9.850E-01 1.085E-01 1.565E+00 1.914E+00 6.589E-01 3.682E-01 1.172E+00 8.833E-03 2.891E-01 1.046E+00 7.752E-03

5f

30 4.100E-14 1.421E-13 1.216E-14 0.000E+00 0.000E+00 0.000E+00 1.471E-08 1.727E-07 3.482E-13 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

60 8.621E-08 8.932E-08 6.014E-08 4.666E-10 5.142E-10 2.936E-10 9.382E-03 7.023E-03 7.252E-03 9.998E-09 4.576E-09 9.269E-09 1.706E-14 1.997E-14 1.178E-14 0.000E+00 0.000E+00 0.000E+00

100 9.177E-05 5.774E-05 7.622E-05 3.821E-04 7.200E-04 2.035E-04 7.312E+02 2.696E+02 7.051E+02 5.219E-03 1.447E-03 4.905E-03 1.548E-07 9.510E-08 1.341E-07 3.995E-09 2.147E-09 3.795E-09

6f

30 7.825E-02 2.020E-02 7.880E-02 5.399E-02 1.340E-02 5.338E-02 1.794E-02 6.893E-03 1.685E-02 1.089E-01 2.846E-02 1.060E-01 4.098E-02 1.019E-02 4.193E-02 2.801E-02 7.776E-03 2.706E-02

60 2.843E-01 9.218E-02 2.847E-01 2.777E-01 4.100E-02 2.784E-01 1.626E-01 4.630E-02 1.573E-01 2.418E-01 4.679E-02 2.442E-01 1.703E-01 3.236E-02 1.721E-01 8.521E-02 1.777E-02 8.301E-02

100 6.893E-01 2.441E-01 6.861E-01 9.391E-01 1.178E-01 9.439E-01 8.697E-01 1.685E-01 8.477E-01 4.773E-01 8.177E-02 4.717E-01 6.069E-01 7.966E-02 6.029E-01 2.525E-01 3.116E-01 2.237E-01

7f

30 -1.24E+04 8.578E+01 -1.25E+04 -1.25E+04 6.891E+01 -1.26E+04 -1.19E+04 1.812E+02 -1.19E+04 -8.78E+03 3.424E+02 -8.77E+03 -1.25E+04 7.948E+01 -1.26E+04 -1.24E+04 1.68E+02 -1.25E+04

60 -2.35E+04 2.315E+02 -2.35E+04 -2.37E+04 2.433E+02 -2.37E+04 -2.17E+04 3.087E+02 -2.17E+04 -1.56E+04 6.132E+02 -1.55E+04 -2.49E+04 1.747E+02 -2.49E+04 -2.3E+04 5.24E+02 -2.30E+04

100 -3.66E+04 3.811E+02 -3.66E+04 -3.63E+04 4.052E+02 -3.63E+04 -3.21E+04 4.799E+02 -3.21E+04 -1.73E+04 6.475E+02 -1.73E+04 -4.11E+04 2.743E+02 -4.10E+04 -3.69E+04 8.99E+02 -3.69E+04

8f

30 3.064E-09 2.916E-08 8.583E-12 4.257E-12 1.959E-11 2.274E-13 3.073E+00 1.023E+00 3.123E+00 4.145E+01 7.918E+00 4.129E+01 1.305E-08 8.599E-08 5.684E-14 9.984E-02 3.599E-01 1.376E-09

60 6.335E+00 2.413E+00 6.332E+00 4.036E+00 1.168E+00 4.158E+00 3.532E+01 3.363E+00 3.523E+01 1.346E+02 1.735E+01 1.343E+02 2.560E-01 4.924E-01 1.327E-08 7.353E+00 3.611E+00 6.965E+00

100 4.346E+01 6.645E+00 4.434E+01 4.150E+01 3.814E+00 4.087E+01 1.368E+02 8.790E+00 1.378E+02 6.386E+02 3.641E+01 6.429E+02 6.659E+00 2.326E+00 6.633E+00 4.179E+01 1.237E+01 3.956E+01

9f

30 6.938E-08 9.298E-08 4.655E-08 1.444E-11 1.241E-11 1.052E-11 5.272E-05 3.475E-04 2.543E-06 3.885E-02 1.857E-01 2.180E-03 5.503E-14 1.074E-14 5.418E-14 5.086E-01 2.712E+00 3.286E-14

60 1.080E-04 5.513E-05 9.591E-05 1.028E-04 5.794E-05 8.725E-05 1.682E+00 5.634E-01 1.788E+00 6.130E-01 4.739E-01 5.559E-01 1.581E-07 8.615E-08 1.405E-07 4.720E+00 7.160E+00 4.870E-09

100 1.460E+00 2.859E-01 1.508E+00 3.600E-01 1.142E-01 3.583E-01 7.744E+00 6.564E-01 7.695E+00 2.884E+00 9.173E-01 2.739E+00 5.734E-03 3.361E-03 4.631E-03 8.880E+00 8.656E+00 9.554E+00

10f

30 9.704E-04 3.574E-03 6.967E-13 4.471E-04 2.057E-03 4.772E-13 6.285E-04 2.519E-03 9.207E-13 8.688E-06 4.859E-05 8.915E-08 3.531E-03 9.950E-03 1.937E-14 1.381E-03 3.373E-03 0.000E+00

60 4.424E-03 8.443E-03 2.905E-07 5.517E-04 2.726E-03 1.374E-08 3.574E-03 6.214E-03 9.381E-04 9.569E-05 3.027E-04 2.791E-05 2.112E-03 7.000E-03 2.943E-13 1.035E-03 3.233E-03 0.000E+00

100 1.537E-02 2.808E-02 2.154E-04 2.770E-02 3.019E-02 1.720E-02 1.215E+00 7.561E-02 1.202E+00 1.459E-02 9.615E-03 1.222E-02 1.168E-03 3.896E-03 2.007E-07 1.165E-03 4.526E-03 1.939E-09

11f

30 1.487E-12 1.074E-11 2.413E-15 0.000E+00 0.000E+00 0.000E+00 2.201E-10 2.063E-09 8.477E-15 1.294E-01 3.064E-01 3.410E-06 2.561E-16 3.136E-15 0.000E+00 6.911E-04 8.465E-03 0.000E+00

60 1.820E-08 6.892E-08 2.323E-09 1.261E-10 9.159E-10 6.181E-12 2.197E-04 3.310E-04 1.400E-04 1.607E+00 1.010E+00 1.598E+00 3.396E-15 2.166E-14 0.000E+00 1.590E-02 5.303E-02 0.000E+00

100 1.004E-06 1.213E-06 7.084E-07 2.146E-06 1.031E-05 2.144E-07 2.164E+00 5.237E-01 2.136E+00 5.308E+00 1.820E+00 5.132E+00 6.098E-09 6.687E-08 2.401E-10 1.075E-01 2.027E-01 2.875E-06

12f

30 2.255E-11 2.572E-10 2.211E-14 0.000E+00 0.000E+00 0.000E+00 6.088E-10 5.875E-09 3.140E-14 1.217E-03 3.371E-03 5.544E-07 1.048E-09 1.284E-08 0.000E+00 3.649E-14 3.444E-13 0.000E+00

60 1.671E-07 5.576E-07 5.133E-08 3.282E-09 1.423E-08 2.112E-10 1.651E-03 2.485E-03 8.860E-04 9.465E-03 5.452E-03 7.018E-03 3.372E-14 1.464E-13 5.887E-15 1.094E-02 1.304E-01 0.000E+00

100 6.083E-05 9.151E-05 3.875E-05 1.904E-04 1.118E-03 9.569E-06 9.447E+03 2.108E+04 1.112E+03 1.118E+00 1.878E-01 1.097E+00 4.007E-05 4.887E-04 1.075E-08 9.123E-02 4.941E-01 2.653E-08

90

Table 2.6 : Comparative results of the convergence iteration.

F D

Basic
ABC

(best in 0
cases)

GABC
(best in 0

cases)

Best-so-
far ABC
(best in 2

cases)

MABC
(best in 1

cases)

ABCEV
(best in 4

cases)

EEABC
(best in 17

cases)

1f

30 1699.167 1127.62 2050.907 1230.013 813.8333 610.98

60 3478.78 2317.333 5159.513 2336.173 1672.013 1166.2

100 5862.527 3915.393 7500 3943.72 2849.26 1899.653

2f

30 3419.22 1960.067 2231.433 1749.173 1477.567 954.42

60 7043.107 4048.687 5035.72 3376.42 3069.093 1745.84

100 7500 6905.613 7500 5785.087 5233.307 3025.04

3f 30 7500 7500 7500 7498.707 7500 7500

4f
2 7500 7500 4175.1 7500 7500 7500

3 7500 7500 7461.487 7500 7500 7500

5f

30 1706.44 1127 1982.173 1234.767 820.4933 611.9067

60 3459.767 2310.753 5193.213 2339.02 1674.273 1166.04

100 5876.127 3912.953 7498.78 3942.913 2846.227 1897.193

8f

30 3348.093 2457.813 3271.407 7500 2068.947 2164.927

60 6900.487 6620.707 7477.147 7500 6565.127 7407.893

100 7489.14 7475.4 7500 7500 7332.727 7500

10f

30 4539.533 3765.58 2227.007 6869.927 2538.54 1183.653

60 5078.867 4675.28 4337.633 7368.767 2965.44 1865.387

100 6425.513 5526.747 6321.64 7450 3682.173 2609.493

11f

30 1649.753 1063.367 1911.947 7500 753.9 575.88

60 3240.733 2130.573 4517.793 7500 1501.713 1361.58

100 5415.113 3543.073 7329.28 7500 2510.387 2800.313

12f

30 1813.22 1147.02 1894.7 7500 812.1 600.7267

60 3713.173 2313.053 4700.773 7500 1656.473 1209.54

100 6092.047 3928.413 7482.413 7500 2800.12 2396.7

Figures 2.3 - 2.6 show the convergence speed results of the different

algorithms (only 4 cases are considered). In figures 2.3, 2.4 and 2.6, the MABC

starts as the fastest algorithm; however the proposed EEABC rapidly reaches and

surpasses it. Figure 2.5 shows that the proposed ABCEV is the fastest algorithm,

although at the start of the optimization process, the EEABC was faster.

91

Table 2.7 : Comparative results of the convergence quality for the CEC 2015 benchmark functions.

F D
Basic ABC (best in 5 case) GABC (best in 0 cases) Best-so-far ABC (best in 2 cases) MABC (best in 8 cases) ABCEV (best in 1 cases) EEABC (Best in 15 cases)

Average STD Median Average STD Median Average STD Median Average STD Median Average STD Median Average STD Median

1F

10 1.710E+03 1.136E+03 1.496E+03 7.512E+03 4.802E+03 6.434E+03 6.81E+02 5.530E+02 5.612E+02 7.687E+02 1.326E+03 1.163E+02 1.219E+04 9.303E+03 1.109E+04 1.032E+04 1.009E+04 6.034E+03

30 8.30E+02 5.914E+02 5.838E+02 9.316E+03 4.642E+03 8.700E+03 1.001E+04 8.496E+03 7.585E+03 1.436E+03 1.137E+03 1.150E+03 3.874E+03 3.417E+03 2.826E+03 5.259E+03 3.934E+03 5.596E+03

2F

10 9.628E+03 2.502E+03 9.874E+03 8.284E+03 2.138E+03 8.334E+03 1.387E+04 4.365E+03 1.363E+04 1.357E+04 4.088E+03 1.319E+04 5.842E+03 1.759E+03 5.806E+03 5.341E+03 1.898E+03 4.941E+03
30 8.783E+04 1.208E+04 8.971E+04 8.511E+04 1.350E+04 8.656E+04 9.123E+04 1.220E+04 9.358E+04 7.263E+04 1.358E+04 7.493E+04 7.659E+04 1.122E+04 7.674E+04 3.845E+04 6.794E+03 3.850E+04

3F

10 4.432E+00 8.264E-01 4.551E+00 3.393E+00 9.429E-01 3.508E+00 3.673E+00 7.387E-01 3.886E+00 2.837E+00 9.606E-01 2.924E+00 2.707E+00 1.096E+00 2.414E+00 2.099E+00 1.434E+00 1.991E+00
30 3.048E+01 1.471E+00 3.035E+01 2.759E+01 2.056E+00 2.777E+01 3.180E+01 2.104E+00 3.161E+01 1.740E+01 1.790E+00 1.744E+01 2.738E+01 2.104E+00 2.766E+01 1.729E+01 2.418E+00 1.772E+01

4F

10 2.000E-02 3.203E-02 3.001E-11 4.965E-05 2.464E-04 0.000E+00 9.346E-02 4.378E-02 8.474E-02 7.444E+01 5.702E+01 5.835E+01 1.819E-14 1.286E-13 0.000E+00 0.000E+00 0.000E+00 0.000E+00

30 3.400E-01 4.878E-01 1.770E-01 5.868E-01 1.163E+00 2.302E-01 5.989E+00 2.051E+00 5.763E+00 1.456E+03 2.826E+02 1.478E+03 5.270E-01 9.966E-01 1.458E-01 2.633E+01 4.473E+01 9.088E+00

5F

10 2.471E-01 5.898E-02 2.469E-01 4.456E-01 1.074E-01 4.494E-01 3.754E-01 7.473E-02 3.827E-01 9.341E-02 3.695E-02 8.883E-02 4.052E-01 1.326E-01 4.011E-01 4.207E-01 1.309E-01 3.971E-01
30 6.960E-01 1.401E-01 6.871E-01 8.462E-01 1.623E-01 8.549E-01 8.537E-01 1.666E-01 8.610E-01 1.633E-01 4.829E-02 1.587E-01 9.163E-01 2.040E-01 9.246E-01 1.032E+00 2.348E-01 1.009E+00

6F

10 1.454E-01 2.292E-02 1.444E-01 1.437E-01 3.052E-02 1.477E-01 8.794E-02 1.963E-02 8.387E-02 1.159E-01 3.456E-02 1.127E-01 1.192E-01 2.258E-02 1.211E-01 1.126E-01 1.882E-02 1.134E-01
30 1.822E-01 2.873E-02 1.810E-01 2.401E-01 3.441E-02 2.421E-01 2.076E-01 3.019E-02 2.110E-01 2.733E-01 3.544E-02 2.789E-01 1.829E-01 3.137E-02 1.819E-01 2.292E-01 4.391E-02 2.285E-01

7F

10 1.336E-01 3.019E-02 1.359E-01 7.976E-02 1.705E-02 7.955E-02 6.663E-02 1.992E-02 6.718E-02 1.644E-01 5.796E-02 1.569E-01 5.769E-02 1.739E-02 5.483E-02 5.352E-02 1.762E-02 5.056E-02

30 2.258E-01 3.504E-02 2.261E-01 2.117E-01 2.967E-02 2.102E-01 2.265E-01 2.417E-02 2.261E-01 2.693E-01 2.779E-02 2.714E-01 1.853E-01 1.994E-02 1.789E-01 1.934E-01 3.040E-02 1.875E-01

8F

10 8.301E-01 2.769E-01 8.179E-01 7.307E-01 2.046E-01 7.229E-01 8.638E-01 1.940E-01 8.712E-01 7.206E-01 2.276E-01 7.144E-01 6.413E-01 1.642E-01 6.207E-01 5.757E-01 1.092E-01 5.875E-01
30 1.918E+01 3.772E+00 1.958E+01 1.400E+01 2.353E+00 1.408E+01 2.727E+01 3.994E+00 2.750E+01 6.567E+00 1.732E+00 6.531E+00 1.107E+01 2.309E+00 1.179E+01 5.650E+00 1.433E+00 5.800E+00

9F

10 2.784E+00 2.478E-01 2.813E+00 2.579E+00 2.970E-01 2.566E+00 2.652E+00 2.161E-01 2.673E+00 3.082E+00 2.347E-01 3.140E+00 2.577E+00 2.798E-01 2.574E+00 2.397E+00 2.219E-01 2.372E+00
30 1.270E+01 2.823E-01 1.274E+01 1.251E+01 3.245E-01 1.254E+01 1.277E+01 2.692E-01 1.278E+01 1.216E+01 3.850E-01 1.228E+01 1.248E+01 2.997E-01 1.251E+01 1.229E+01 3.071E-01 1.225E+01

10F

10 3.992E+03 2.748E+03 2.843E+03 3.869E+03 1.737E+03 3.585E+03 1.346E+04 1.314E+04 8.778E+03 9.675E+02 4.345E+02 9.361E+02 2.660E+03 1.321E+03 2.308E+03 3.263E+03 1.772E+03 3.003E+03
30 3.856E+05 2.240E+05 3.373E+05 6.405E+05 2.809E+05 5.692E+05 9.260E+05 2.909E+05 8.975E+05 4.231E+04 3.108E+04 3.327E+04 6.406E+05 5.197E+05 4.219E+05 5.384E+05 3.081E+05 4.045E+05

11F

10 3.230E+00 5.660E-01 3.306E+00 2.882E+00 4.821E-01 2.821E+00 2.376E+00 4.075E-01 2.390E+00 2.907E+00 5.953E-01 2.967E+00 2.620E+00 4.567E-01 2.572E+00 2.246E+00 3.766E-01 2.142E+00
30 1.909E+01 1.308E+00 1.923E+01 1.891E+01 1.602E+00 1.928E+01 1.758E+01 1.453E+00 1.785E+01 1.554E+01 1.278E+00 1.579E+01 1.928E+01 1.480E+00 1.939E+01 1.735E+01 1.741E+00 1.719E+01

12F

10 2.863E+01 3.691E+00 2.785E+01 2.804E+01 2.100E+00 2.793E+01 3.044E+01 4.920E+00 2.920E+01 3.057E+01 9.616E+00 2.786E+01 2.792E+01 2.612E+00 2.696E+01 2.708E+01 2.038E+00 2.668E+01
30 3.129E+02 1.086E+02 2.844E+02 2.808E+02 9.185E+01 2.865E+02 3.515E+02 1.075E+02 3.615E+02 1.489E+02 6.317E+01 1.345E+02 2.967E+02 1.006E+02 3.001E+02 1.652E+02 6.945E+01 1.482E+02

13F

10 2.45E+02 6.665E+01 2.263E+02 2.974E+02 3.910E+01 3.152E+02 2.601E+02 5.664E+01 2.385E+02 3.059E+02 3.090E+01 3.149E+02 3.156E+02 7.581E-01 3.151E+02 3.153E+02 3.633E-01 3.157E+02

30 3.277E+02 4.276E-02 3.277E+02 3.278E+02 2.322E-01 3.278E+02 3.279E+02 1.017E-01 3.279E+02 3.276E+02 3.298E-13 3.276E+02 3.279E+02 8.221E-01 3.278E+02 3.276E+02 2.760E-13 3.276E+02

14F

10 1.917E+02 3.438E+00 1.917E+02 1.914E+02 3.957E+00 1.909E+02 1.913E+02 3.531E+00 1.921E+02 1.898E+02 3.399E+00 1.896E+02 1.880E+02 3.494E+00 1.881E+02 1.870E+02 4.494E+00 1.865E+02
30 2.223E+02 3.349E+00 2.223E+02 2.224E+02 3.431E+00 2.222E+02 2.250E+02 3.779E+00 2.250E+02 2.182E+02 2.683E+00 2.181E+02 2.228E+02 4.899E+00 2.228E+02 2.156E+02 3.266E+00 2.161E+02

15F

10 1.235E+01 2.463E+00 1.182E+01 1.228E+01 1.995E+00 1.209E+01 1.845E+01 5.492E+01 1.010E+01 8.760E+01 1.541E+02 1.163E+01 8.977E+00 1.037E+00 9.099E+00 7.524E+00 1.994E+00 7.275E+00
30 4.31E+02 7.436E+00 4.307E+02 4.522E+02 1.651E+01 4.475E+02 4.365E+02 8.704E+00 4.357E+02 4.386E+02 1.959E+01 4.346E+02 4.499E+02 2.317E+01 4.465E+02 6.774E+02 9.249E+01 6.917E+02

92

Figure 2.3 : Convergence speed for function f1 with D=60.

Figure 2.4 : Convergence speed for function f6 with D=30.

93

Figure 2.5 : Convergence speed for function f8 with D=100.

Figure 2.6 : Convergence speed for function f10 with D=30.

94

6. conclusion

In this chapter, two novel variants of the ABC algorithm were proposed. A

comparative study against several existing variants of the ABC algorithm has

indicated the good performances of the proposed algorithms.

Although the EEABC has generated relatively good performances, in some

situations, some deficiencies has been observed. As such, further future

improvements should be carried out in order to overcome these deficiencies.

95

CHAPTER3:

FUZZY MODEL PREDICTIVE CONTROL BASED ON META-HEURISTIC

ALGORITHMS

1. Introduction

After evaluating the proposed optimization algorithms using numerical

benchmark functions in chapter 2. The next phase would be to implement these

optimization algorithms within nonlinear control strategies, and evaluate the

performances of the entire controllers.

The current chapter starts by formulating the complete fuzzy predictive

control strategy. TS fuzzy technique, used to construct nonlinear prediction

models, is initially given. The developed control algorithm around meta-heuristic

algorithms is then presented along with the adopted techniques used to handle the

constraints.

The next section of the chapter contains a detailed description of the

proposed NMPC control algorithms; two are based on the previously developed

ABC algorithms while the last one is based on an efficient PSO algorithm. These

three control algorithms are evaluated and compared to a number of linear and

non-linear control strategies by considering the control of a simulated CSTR

process, a model of an industrial boiler and a DSP based experimental setup.

2. Fuzzy based model predictive control

2.1. Takagi-Sugeno dynamic fuzzy modelling

The first step in the fuzzy based nonlinear model predictive control

(FNMPC) is the construction of the fuzzy nonlinear model of the system.

Fuzzy Inference Systems (FIS) are capable of approximating any

continuous function with a certain level of accuracy; they are universal

approximators [22]. In addition, they have the ability to either extract or incorporate

human knowledge directly via linguistic data [13, 184]. Takagi-Sugeno (TS)

models, a subdivision of fuzzy models, are particularly suitable for NMPC

96

algorithms [23]. These models are able to express the dynamic nature of systems

with characteristics of randomness, large delay time and strong nonlinearity [185,

186].

The Takagi-Sugeno FIS are based on the so called IF-THEN rules that have

the following form:

 (3.1)

where is the set of

premise values, is the set

of inputs and outputs values used in the consequent regressors,

 is the set of membership functions associated

with the antecedents of the rule, is the

parameter vector of the sub-model while is its output (; is the

number of fuzzy rules).

It is clear, from equation (3.1), that the Takagi-Sugeno fuzzy models only

have fuzzy propositions in their antecedents while their consequences are linear

functions of the antecedents or their variables.

Using Input/output data extracted from a nonlinear process, a fuzzy model

can be constructed to mimic the process behaviour by defining the parameter

matrix as:

 (3.2)

and the normalized membership grade vector as:

 (3.3)

The inferred output of the TS fuzzy model is given by:

 (3.4)

Using the input/output representation, the TS model given by (3.4) can be

rewritten as follows:

: IF is THEN jj
T

j jR A y  

{ (), (1) (1), (), (1) (1)}a ay t y t y t n u t u t u t m          a an m

            { , 1 1 , , 1 1 ,1}T
r ry t y t y t n u t u t u t m        

rm rn

1, 2, , 1, 2, ,{ , , , }
a aj j j n j j j m jA A A A B B B  

thj ,1 ,2 , ,1 ,2 ,{ , , , , }
r r

T
j j j j n j j j m ja a a b b b c   

thj jy 1 j r  r

1 2Θ [, ,]r   

1 2[,],T
r    

 
T

ˆ(1) Θ y t   

97

 (3.5)

where , and .

The global output of the fuzzy model can be written as:

 (3.6)

where is the output of the sub-model and:

 (3.7)

Assuming that a set of input-output data pairs is available

and defining , a regression matrix which has the following

expression can be constructed:

 (3.8)

The vector can be calculated by solving the following least square

problem:

 (3.9)

where .

The resolution of equation (3.9) which is the last step in TS fuzzy model

construction deals with the definition of the consequences part of the rules.

However, the antecedent which involves in part the number, the position, the

shape and the distribution of the membership functions must be first selected. A lot

         
1 1

ˆ 1 1 1 ()
a an m

p p

p p

y t a t y t p b t u t p c t
 

        

    ,
1

r

p l l p
l

aa t t


      ,
1

r

p l l p
l

bb t t


     
1

r

l l
l

c t t c


 

   

 
1

1 1

ˆ 1

() (), , ()

(1)

(1), , ()

()

r

p p
p

r r

T

y t t y

t y t t u t m t

t

t

   

 



 

 





  







(1)py t  thp

1 2 T T T T
r      



N     ,u t y t

 max ,r rL m n

 
 1

Φ

(1)

T

T

T

L

L

N







 
 

 
 
 

 



ΦY  

 1 , , ()
T

Y y L y N    

98

of techniques for the construction of fuzzy models from Input-Output data are

described in the literature [184, 187].

2.2. Notation

First, let us define the adopted notation in the formulation of the proposed

control algorithm. We consider a MIMO system with inputs and outputs and

for which a TS fuzzy model [185] is used as the explicit model of the system. The

process output at the future instant is given by:

 (3.10)

where , is the TS fuzzy model estimated using measured

and estimated past values of the system output and is a disturbance

(model/process mismatch).

Since  d t j cannot be measured, an estimate value will be used. The

predicted disturbance over the future sampling time will be considered equal to

that of the current sampling time [13, 188]. Therefore:

 (3.11)

The optimal control sequence is denoted by

, where is the

system input vector. The cost function is used to calculate the fitness function

.

The position of the element (gene, particle, artificial bee…etc.) at the

sampling time , is represented by:

         , 1 , , 1h uh h hX u t u t u tt N     (3.12)

where .

The control structure is shown in figure 3.1.

m n

t j

   ˆ ˆ| | ()modely t j t y t j t d t j    

1 2N j N   ˆ |modely t j t

 d t

ˆ() () () ()modeld t j d t y t y t   

        , 1 , , 1uU ut t u t u t N        1 2(), (), , ()
T

mu t u t u t u t 

J

 
 
1

.
.

itnessf
J



thh

t

  1 (), , () =0, , -1
Th h

h m uu t j u t j u t j j N      

99

Figure 3.1 : Bloc diagram of the proposed NMPC algorithm.

2.3. Solving the fuzzy NMPC optimization problem

Let us consider the following typical NMPC optimal control problem:

 (3.13)

 Subject to:

 (3.14)

 (3.15)

 (3.16)

 (3.17)

 and limit the range where the

outputs are allowed to exist, and limit

the range of the inputs while and

 limit the range of the inputs increments. The predictions

 are obtained using a TS fuzzy model of the system.

The first step toward solving the OCP (3.13)-(3.17) consists of choosing a

suitable strategy to handle its constraints.

2.3.1. Constraints handling

From chapter 1, we could consider the constraints (3.14)-(3.16) on the

inputs as hard constraints that cannot be violated whereas the constraint (3.17) on

the outputs as soft constraint that can be violated. As such, a hybrid approach in

handling the constraints (3.14)-(3.17) is adopted. The input constraints are

 
    

 
   

 
 

 

2

1

ˆ ˆ
1

2 2
ˆ ˆmin , , () min ˆ ˆ| 1

uNN

u t u t
j N j

Q j R j
J u t y t w t y t j t w t j u t j

 
 

        

 ˆ 1 0 for uu t j j N    

 ˆ 1 for min max uu uu t j Nj      

 ˆ
min maxuu t u 

 ˆ
min maxy y t y 

 min1 min, ,
T

min ny y y   max1 max, ,
T

max ny y y 

 min1 min, ,
T

min mu u u   max1 max, ,
T

max mu u u 

 min1 min, ,
T

min mu u u   

 max1 max, ,
T

max mu u u   

 ˆ |y t j t

100

handled using a preserving strategy while the output constraints are handled using

a penalizing strategy.

a) Outputs constraints

The easy way to soften the outputs constraints is to add new variables,

called slack variables, in the cost function to heavily penalize any deviation or

violation of the constraints. The output-dependent weight function (Figure

3.2) was chosen to soften the output constraints. It has the following expression

[9]:

 (3.18)

where , and is used to define the

degree of softening: indicates hard constraint while indicates no

constraint.

The function can also be used on the unconstrained outputs by

setting and respectively to and .

Figure 3.2 : Weight function  y y .

 y y

 

 
 

 

ˆ 1

ˆ 2

ˆ

ˆ 0 ... 0

ˆ0 0
ˆ , with

0 0

ˆ0 0

2

n

y

y

y

y n

y

y
y

y

 
 

  
 
 

  



 



1

 

   

 

   

2

min min

min max

2

max max

0 1 if

0 if

0 1 if

i

i i

i

y i i i i i

y i y i i i

y i i i i i

y y y y

y y y y

y y y y





     
 


    


      

1, ,i n     1 2(), (),ˆ ,ˆ ˆ)ˆ (
T

ny y yt yt t t  i

i   0i 

iy iy

min iy max iy  

101

By introducing the weight function , the OCP problem (3.13)-(3.17) is

reformulated to have the following expression:

 (3.19)

 Subject to:

 (3.20)

 (3.21)

 (3.22)

b) Inputs constraints

The constraints (3.21) and (3.22) on the inputs could be combined into a

single constraint on the inputs as follow:

For a given feasible solution associated with hX (1,..., poph n), we can

write from (3.21):

 (3.23)

If , then is the already calculated control action .

On the other hand, the constraint (3.22) on the inputs magnitudes could also

be written as:

 (3.24)

Hence, (3.23) and (3.24) could be combined into a single constraint as

follows:

 (3.25)

where

 y y

 
    

 
     

 

2

1

ˆ ˆ
1

2 2
ˆ ˆmin , , () min ˆ ˆ| 1

u

y

NN

u t u t
j N j

R j
J u t y t w t y t j t w t j u t j

 
 


         

 ˆ 1 0 for uu t j j N    

 ˆ 1 for min max uu uu t j Nj      

 ˆ
min maxuu t u 

hU

 

   
min max

min max

|

(1|) | (1|) | (1|)

ˆ

ˆ ˆ ˆ ˆ ˆ

(1,.., ; 0,.., 1)

,

h
i i

h h h

i

i i
h h

i i i i

u

i

u t j t u

u t j t t j t

u

u u u u u

i m

t j t

j

t j t u t j t

N

   

           



   

  

0j  1|)ˆ (h
i tu t (1)iu t 

 min max
ˆ , (1,.., ; 0,.. 1| ,)h

i i uiu i mu t j t u j N     

     min max| , ˆ (1,.., ; 0,. , . 1)i
h h h

ui it j u iL t j t L t j m j N     

102

The inequality (3.25) defines the boundary of the feasible search space of

the following OCP problem:

 (3.26)

 Subject to:

 (3.27)

 (3.28)

2.3.2. Why using the artificial bee colony ?

Although the no free lunch theorem [154] states that all optimization

algorithms are somewhat equivalents, restricting their use within the NMPC

framework clearly changes the circumstances. In fact, huge performance

differences are observed when using different meta-heuristic algorithms or even

when using different variants of the same algorithm.

Regardless of the used modelling approach, several meta-heuristic

algorithms have been used to find high quality solutions to the NMPC optimization

problem using as little computing requirements as possible. Among these

algorithms, genetic algorithms [13, 14, 34, 189-191] and particle swarm

optimization [46, 58, 186, 192-195] have been extensively used in developing

NMPC algorithms. Recently, some other meta-heuristic algorithms, such as: ant

colony optimization (ACO) [47], Bacterial Foraging Optimization (BFO) [48] and

simulated annealing (SA) [189], were applied in solving the NMPC optimization

problem. It is true that this shift to use other optimization algorithms than the GA

and the PSO algorithm was partially motivated by the limitations of these

algorithms. Nevertheless, the main reason could be attributed to the huge

advances made in the optimization field. Indeed, an increasingly large number of

new and mostly more efficient meta-heuristic optimization algorithms are

continuously being proposed

 
   

 
   

min min min

min

max max max

min

max

max

ˆ ˆ

 Otherwise

ˆ ˆ

1 | if 1 | >

1 | if 1 | <

i i
i

h h
h i i i

i

h h
ii i

i
h i i

i

u t j t u t j t u
L

u

u t j t u t j t u
L

u

u u
t j

u u
t j

  
  



 
 

     

     

 Otherwise





 
    

 
     

 

2

1

ˆ ˆ
1

2 2
ˆ ˆmin , , () min ˆ ˆ| 1

u

y

NN

u t u t
j N j

R j
J u t y t w t y t j t w t j u t j

 
 


         

     min max| , ˆ (1,.., ; 0,. , . 1)i
h h h

ui it j u iL t j t L t j m j N     

 ˆ 1 0 for uu t j j N    

103

The ABC, a recently introduced algorithm, has been a distinctive meta-

heuristic algorithm. In fact, many comparative studies [49, 50] between the ABC

algorithm and several other meta-heuristic algorithms such as GA, PSO and DE

(Differential Evolution) have shown that the ABC performances are better or at

least similar to the performances of these algorithms. Moreover, it was found that

the ABC algorithm is more computing efficient, has better solutions accuracy, and

is simpler than the other algorithms. A recent survey [51], related to the advances

to the ABC algorithm and its applications, has indicated that more than 330

research papers were published within the scope of merely seven years of its

creation. Given that more scholars adopt this algorithm, this numbers is expected

to be increasing exponentially in the near future.

The ABC has been used in many fields; however its presence within the

control engineering framework is quite limited. In fact, in the above mentioned

survey, only nine research papers have been classified within the systems control

field. Moreover, two-thirds of these papers deal solely with the design of the

proportional integral differential (PID) controller and its parameters tuning.

Given the good performances of the ABC algorithm and its successful

implementation in many engineering fields [196-201], and the fact that the control

community has not yet fully exploited the ABC algorithm to solve the different

control engineering problems, especially the nonlinear predictive control one, it is

expected that its use in predictive control will provide good results.

3. Proposed control algorithms

Assuming the MPC design parameters have been

chosen and the fuzzy prediction model has been obtained, the basic steps of the

proposed control algorithms are given in the following sub-sections:

3.1. Efficient PSO based controller

The proposed algorithm is based on the idea that takes advantage of both

prior knowledge about the search space landscape and the fact that in most

practical applications the dynamic optimization problem changes are gradual

[165]. So it is, in most cases, logical to assume that once a solution was found, it is

better to track it rather than to look for it every time the optimization problem

  1 2, , , 0andu yN N N  

104

changes. In the used PSO algorithm, a group of candidate solutions is generated

using the Gaussian distribution and the fittest one is chosen as the initial global

best position of the PSO population. Then the quality of this initial solution is

enhanced by favouring the search within an adaptive immediate neighbourhood

around this initial global best position. This increases the efficiency of the

algorithm in regard of the execution time, by using a small population size, and the

quality of the solutions. It is known that the conventional PSO algorithm involves,

in order to find satisfactory solutions, the use of a large population size to

effectively probe the whole search space. The downside, of course, will be the

huge computing requirement necessary to manage this population.

The different steps of the algorithm are drawn based on the following points:

1) The solutions obtained at the sampling time t

      0
1 , 1 , , 1 uX u t u t u t N     and       0

2 1 , 2 , , uX u t u t u t N    

where      1u uu t N u t N    are both evaluated and the best one is chosen as

the initial global best position         0 0 0 01 , 1 2 , , best utX u t u t u t N     of the

entire PSO population.

2) Using the Gaussian distribution, the particles   1,...,h popX h n are

distributed around 0
bestX within the radius  1

T

d d dmr r r  according to the

following expression:

   0 (0,..,() 1 ; 1,.., ; 1,...,)
u

m
u pop

N
h
i

d

i di j

k
j Nu t j u t j r d

d
n

s
i m h

i t
       (3.29)

where jd is a random value from the normal distribution [0,1]N , mk is a random

value from the normal distribution
1

 [0,]
3

N and 2

1

u

j

N

d jdist d


  .

The value of the radius dr at the sampling time 1t  is given by:

     1 dr u t u t   (3.30)

105

To explore the whole search space, the particles positions are updated

according to (2.4), (2.5) and (2.6).

Using a Gaussian distribution will ensure that the density of the particles

gets higher around the chosen initial global best position; thus the optimal solution

can be reached in few iterations and using a small number of particles. This is

very interesting in the cases when the system outputs changes are small, the

system is operating in the steady state or if we want to fine tune the solution. The

use of a uniform distribution favours the diversity of the particles and increases the

probability to find better solutions relatively far from the previous one. Since the

number of PSO particles and the allowed iterations number should not be large,

their initial positions carry a lot of influence in the quality of the solution.

To keep the algorithm from converging toward a local optimum, a minimal

value  1min min

T

dmin d dmr r r  given by the following expression is imposed to dr :

    1 2dminr w t y t    (3.31)

where 1 is an n m matrix of scaling parameters and 2 (1m ) is used to

impose a minimum value to dminr regardless of the tracking error (the value of dminr

can have a fixed value by setting 1 to zero).

If the current solution is far from the global optimum, the corresponding

tracking error will be large and consequently the values of dminr will also be large.

When di mi dn ir r (1, ,i m ), the particles are distributed around 0
gbestX within di minr

instead of dir . This will allow the algorithm to escape the current local optimum by

looking for a better solution far from the actual one.

The resulting control algorithm is summarized in Algorithm 3.1:

Algorithm 3.1

 Do // start a new sampling period

 // Increment sampling period identifier

Specify the desired reference trajectory between and

_ 0Sample ID 

_Sample ID  

1t N 2t N

106

Make the system measurements

 // Set the current number of iteration

 Compute the initial global best position 0
bestX according to point 1)

 Compute the value of dr using (3.30) and the value of mindr using (3.31)

If mindi dir r

  min 1,..., mdi di ir r 

 end if

 Set 0
Best gbestX X

 for 1,..., poph n // Generate initial population

 Randomly initialize the velocity hv

 Using (3.29), distribute the particle hX around BestX within the radius

dr

 end for

for 1,..., poph n // Evaluate initial population

 Compute predictions between 1t N and 2t N for solution hX

 Compute the cost  hF X associated with the solution

Set h hP X // Update personal best solution

If    h BestF H F X // Update the global best solution

 Best hX X

 end if

end for

Repeat // Iterative process of the algorithm

for 1,..., poph n

 Update the solution hX using (2.4), (2.5) and (2.6)

 Compute the predictions between 1t N and 2t N for solution

hX

 Compute the cost  hF X

 If    h hF X F P // Update personal best solution

1iter 

hX

107

 h hP X

 If    h BestF P F X // Update the global best solution

 Best hX P

 end if
 end if

end for

 // Update current number of iteration

until () // Criterion for stopping the optimization

 // Collect best solution

Send the first element of to the system

 wait // Wait for next sampling period

3.2. The ABCEV based controller

The predictive controller based on the proposed ABCEV algorithm is

summarized in Algorithm 3.2.

Algorithm 3.2

 for // Initial population

 Choose an initial solution for using (2.11)

 end for

 Do // start a new sampling period

 // Increment sampling period identifier

Specify the desired reference trajectory between and

Make the system measurements

 // Set the current number of iteration

 Randomly choose one of the initial solutions as the best solution

for // Evaluate initial population

 Compute the predictions between and for the solution

iter  

Max_iter Iter

 opt BestU t X

 u t  optU t

_ 0Sample ID 

1:h SN

hX

_Sample ID  

1t N 2t N

1iter 

BestX

1:h SN

1t N 2t N

hX

108

 Compute the cost associated with solution

if // Find the best solution in current population

 end if

 // Number of unsuccessful attempts to enhance a food source

end for

Repeat // Iterative process of the ABCEV

for // Employed bee phase

 Generate a new solution using (2.12)

 Compute the predictions between and for

 Compute the cost

 if // Use greedy selection

 if // Update the best solution

 end if

 else

 end if

end for

for // Probabilistic selection phase

 Evaluate the probability using (2.9)

end for

for // Onlookers bee phase

 Using , select a food source to exploit

using the roulette wheel selection

 hF X hX

   h BestF X F X

Best hX X

  1Trial h 

1:h SN

hNewX

1t N 2t N hNewX

 hNewF X

   hNew hF X F X

h hNewX X

  1Trial h 

   h BestF X F X

Best hX X

    1Trial h Trial h 

1:h SN

hp

1:h SN

hp   1, ,rX r SN 

109

 Generates a new solution in the neighbourhood of

using (2.12)

 Compute predictions between and for

 Compute the cost

 if // Use greedy selection

   1Trial r 

 if // Update the best solution

 end if

 else

     1Trial r Trial r 

 end if

end for

for // Scout bee phase

 if // Randomly generate a new solution

 Generate a new solution hX using (2.7)

 end if

end for

 // Update current number of iteration

until () // Criterion for stopping the optimization

 // Collect best solution

Send the first element of to the system

Sort the food sources according to their cost in ascendant

manner

for // Keep best two food sources for the next sampling period

 Generate a new solution using (2.11)

hV rX

1t N 2t N hV

 hF V

   h rF V F X

r hX V

   r BestF X F X

Best rX X

1:h SN

 Trial h limit

  0Trial h 

iter  

Max_iter Iter

 opt BestU t X

 u t  optU t

 1, , hX h SN 

      1 2i i iSNF xFx xF  

3 :h SN

hNewX

110

end for

 wait // Wait for next sampling period

3.3. The EEABC based controller

The predictive controller based on the proposed EEABC algorithm is

summarized in Algorithm 3.3.

Algorithm 3.3

 for // Initial population

 Choose an initial solution for using (2.11)

 end for

 Do // start a new sampling period

 // Increment sampling period identifier

Specify the desired reference trajectory between and

Make the system measurements

 // Set the current number of iteration

 Randomly choose one of the initial solutions as the best solution

for // Evaluate initial population

 Compute the predictions between and for solution

 Compute the cost associated with the solution

if // Find the best solution in current population

 end if

 // Number of unsuccessful attempts to enhance a food source

 // Exploitation index

end for

Repeat // Iterative process of the EEABC

if

_ 0Sample ID 

1:h SN

hX

_Sample ID  

1t N 2t N

1iter 

BestX

1:h SN

1t N 2t N hX

 hF X hX

   h BestF X F X

Best hX X

  1Trial h 

  0ExplIn hd 

 mod ,10 0uiter N 

111

 Compute the ratio of successful mutation to all mutations

 end if

if // Update the exploration rate

 Compute the new exploration rate using (2.15)

 end if

for // Employed bee phase

 Generate a new solution using (2.16) and (2.12)

 Compute the predictions between and for

 Compute the cost

 if // Use greedy selection

 if // Update the best solution

 end if

 else

 end if

end for

for // Probabilistic selection phase

 Evaluate the probability using (2.14)

end for

for // Onlookers bee phase

 Using , select a food source to exploit

using the roulette wheel selection

 Generates a new solution in the neighbourhood of

using (2.16) and (2.12)

     1ExplInd ExplInr d r 



 mod , 0uiter N 



1:h SN

hNewX

    1ExplInd ExplInh d h 

1t N 2t N hNewX

 hNewF X

   hNew hF X F X

h hNewX X

  1Trial h 

   h BestF X F X

Best hX X

    1Trial h Trial h 

1:h SN

hp

1:h SN

hp   1, ,rX r SN 

hV rX

112

 Compute the predictions between 1t N and 2t N for hV

 Compute the cost  hF V

 if    h rF V F X // Use greedy selection

 r hX V

   1Trial r 

 if    r BestF X F X // Update the best solution

 Best rX X

 end if

 else

     1Trial r Trial r 

 end if

end for

for 1:h SN // Scout bee phase

 if  Trial h limit // Randomly generate a new solution

 Generate a new solution hX using (2.7)

   0Trial h 

       1 ,...,ExplInd ExplInd ExplIh Min Nnd S

 end if

end for

iter   // Update current number of iteration

until (Max_iter Iter) // Criterion for stopping the optimization

 opt BestU t X // Collect best solution

Send the first element  u t of  optU t to the system

Sort the food sources  1, , hX h SN  according to their cost in ascendant

manner       1 2i i iSNF xFx xF  

for 3 :h SN // Keep best two food sources for the next sampling period

 Generate a new solution hNewX using (2.11)

end for

113

 wait // Wait for next sampling period

4. Applications

In this section, the proposed control algorithms are implemented and their

performances are evaluated against several other controllers. To this end, two

highly nonlinear processes models have been considered: a SISO continuous

stirred tank reactor (CSTR) and 4x4 MIMO industrial boiler.

4.1. CSTR

4.1.1. Process description

Figure 3.3 : Continuous stirred tank reactor (CSTR).

The process considered is the continuous stirred tank reactor (figure 3.3)

within it a given product A will be converted into another product B via an

exothermic chemical reaction. A coolant flow cq (the control input) controls the

reactor temperature which controls in its turn the concentration of the resulting

product aC (The process output). The process is described by the following

equations:

    

()
0 0() ()

E

RT t
a a a a

q
C t C C t k C t e

v



   (3.32)

            
3
()

0 1 2 0() 1 ()c

E k

RT t q t
a c c

q
T t T T t k C t e k q t e T T t

v

  
    


 

 


 (3.33)

114

The constant k1, k2 and k3 are given by: 0
1

p

Hk
k

C


 , 2

pccC

p

k
C v




 and

3
a

c pc

h
k

C
 .

0aC , 0T represent respectively the inlet feed concentration and the

temperature while 0cT is the coolant temperature and T the mixture temperature.v

, /E R , 0k , 1k , 2k and 3k are thermodynamic and chemical constants. The

numerical values for these constants can be found in [184].

4.1.2. Fuzzy identification

Figure 3.4 : Model and process validation for the CSTR.

A TS fuzzy model of the CSTR process is constructed using a dataset [202]

containing 7500 input/output samples measurements of the CSTR process taken

with a 6s interval. The following model structure is considered:

115

           ˆ ˆ ˆ ˆ1 , 1 , 2 , 1a a a a cC t f C t C t C t q t     (3.34)

where f represents the fuzzy relationship between the input and the output.

A two triangular membership functions per input have been adopted to

construct the TS fuzzy model while a set of 5000 input/output samples are used to

train it. The model validation is carried out using the remaining 2500 samples.

Figure 3.4 illustrates the accuracy of the obtained model. It can be seen that the

process and the model responses are superposed and the prediction error is very

small.

4.1.3. Controllers implementation

The controlled output is the concentration ()ac t of the desired product and

the control input is the coolant flow rate ()cq t . The product concentration ()ac t

must follow, as faithfully as possible, the reference trajectory given in figure 3.5.

Figure 3.5 : Reference trajectory for the CSTR.

A sampling period of 6s and the following values of the design parameters

are used to determine the control law of each controller:

 4
1 21, 10, 2, 2 10u

NuN N N R I    

No constraints are imposed on the output, as such, the parameters miny and

maxy are respectively set to  and  while  0
iy has been set to 1. A

116

limitation on the possible coolant flowrate (mol/l) has imposed the following

constraint on the computed values of the control signal:

 89 111cq 

The system evolves starting from the following initial conditions:

97.227 l/min, =0.080 mol/l and 443.339 Kc aq C T 

The following linear and nonlinear controllers are implemented:

 Efficient PSO based controller (control algorithm given by Algorithm 3.1).

 Proposed ABCEV based controller (control algorithm given by Algorithm

3.2).

 Proposed EEABC based controller (control algorithm given by Algorithm

3.3). The number of solutions to be updated in each iteration is computed

using:

   1 / _updateN D m Max iter   (3.35)

 Basic ABC based controller (the original version of the ABC algorithm

proposed in [119] is used).

 Best-so-far ABC based controller (the enhanced version of the basic

ABC algorithm in [179] is used).

 PSO algorithm based controller (the PSO version described in section

4.2 of chapter 2 is used).

 GA algorithm based controller (the GA, with a mutation rate of 20%,

described in section 4.1 of chapter 2 is used).

 GPC based controller: the control low is carried out using the following

output error linear model of the considered system [184]:

  
4 1

1 2 3 4

1.653 10ˆ 1 ()
1 2.43 2.4 1.189 0.269

a c

z
C k q k

z z z z

 

   


 

   
 (3.36)

 Analytical nonlinear approach: it is based on the control algorithm found

in [184]. The idea is to use an approximation of the free and forced

117

responses of the process using a TS fuzzy prediction model in order to

obtain the control law analytically.

The population size is fixed to have 16 elements (bees, particles or

individuals) and a number of 10 iterations is used. In the PSO and the GA based

controllers, the solution of the previous sampling time is taken as a possible

solution for the current one, while in the Basic ABC, the best-so-far ABC and the

proposed ABC based controllers, the best two food sources from the previous

sampling time are always taken as a possible solution for the current one.

Figures 3.6 and 3.7 give, respectively, the system output and the control

signals for the proposed controllers while figures 3.8 and 3.9 give the system

output for all considered controllers. The obtained results clearly show that the

proposed controllers provide good control performance. It is shown in figure 3.9

that the performances of the EEABC based controller are slightly better than those

of the ABCEV and the efficient PSO based controllers.

The Mean Cost Value (MCV) given by equation (3.37) is used to further

compare the performance of the considered algorithms. The MCV is evaluated for

several values of the population size (number of: bees, particles, individuals) and

the number of iterations. The design parameters values are the same and each

control algorithm is executed 10 times using the reference trajectory given in figure

3.5. The average values of the MCV are depicted in figure 3.10.

   
1

,
1

 is the number of samples
N

t

U t NMCV J
N 

  (3.37)

The three proposed controllers give the smallest average values of the

MCV. The EEABC based controller has smaller values than the ABCEV and the

efficient PSO based controller especially for the configurations with a relatively

small population size. For the same population size, the basic ABC, the best-so-far

ABC and the PSO based controllers require more iterations to converge toward

the same MCV average values as in the proposed controllers. GA based controller

has the poorest performances.

Another interesting observation is the fact that the MCV values of all ABC

based controllers are smaller than those of the PSO and GA based controllers.

The ABC variants based controllers are more efficient than those based on the

118

PSO and the GA algorithms with the exception of the proposed efficient PSO

based controller.

Figure 3.6 : Control performances of the proposed control algorithms for the
CSTR.

Figure 3.7 : Control signals of the proposed control algorithms for the CSTR.

119

Figure 3.8 : Control performances of the different control algorithms for the CSTR.

120

Figure 3.9 : Control performances of the different control algorithms between 40
and 50 min for the CSTR.

The execution time of a control algorithm is a very important parameter to

evaluate its computing efficiency and real time implementation applicability. Table

3.1 gives the execution time of the considered NMPC algorithms for several

configurations (population size x number of iterations); they were executed on an

Intel Core i5 3.1 GHz (TM) based machine.

GA based controller appears to be the most computing efficient control

algorithm. However, a larger population size, thus more computing power is

required in order to obtain comparable performances with the other control

algorithms. On the other hand, all the ABC based controllers are more computing

efficient than those based on the PSO algorithm. The EEABC based controller has

the lowest computing requirement, with at least 10% less computations compared

to the other controllers. The proposed efficient PSO based controller and the PSO

based controller have the same computing requirement.

121

Figure 3.10 : MCV average values for the CSTR.

Table 3.1 : Execution time of the considered control algorithms for the CSTR.

Control
algorithms

Execution time (ms)
Computation

Vs EEABC
Configuration (Population size x Iterations)

10x10 10x20 10x30 10x50 30x10 30x20 30x30 30x50

Basic ABC 15.51 30.38 45.24 75.04 44.92 88.72 132.38 219.93 + 11.69 %

Best-so-far
ABC

15.72 30.76 45.69 75.21 45.49 89.25 133.97 221.95 + 12.71 %

Proposed
ABCEV

16.55 32.30 48.43 80.17 45.98 90.96 136.16 226.08 + 15.89 %

Proposed
EEABC

14.21 27.52 40.99 67.35 40.61 79.33 118.27 195.57 0 %

PSO 17.73 33.49 49.42 81.15 52.26 99.59 147.68 242.64 + 24.00 %

Efficient PSO 17.46 33.37 49.34 80.94 51.17 98.76 146.48 241.32 + 23.12 %

Genetic
algorithm

12.4 23.84 35.11 57.62 35.53 68.09 101.48 167.44 - 14.10 %

122

4.2. Industrial Boiler

4.2.1. Process description

Figure 3.11 : the considered industrial boiler [184].

To further evaluate the performance of the proposed constrained nonlinear

predictive controller, the control of the industrial boiler model given in [203] is

considered. This model represents a dual fuel (oil and gaz) boiler in the Abott

Power Plant in Champaign, Illinois, which could be used for both heating and

electric generation. It is a MIMO process (figure 3.11) with four manipulated inputs

(fuel flow rate, air flow rate, feed water flow rate and steam demand) and four

measured outputs (pressure, oxygen level in the flue gas, drum water level and

steam flow). The control objective is to maintain the pressure, the level of the

water in the drum and the oxygen level in the flue gas at their desired values

regardless of the steam flow rate provided by the boiler and any other

disturbances such as the fluctuations in the heating value of the fuel or the

variations in the ambient temperature. This boiler is capable of providing an

industrial quality steam up to 22.096 kg/s. The used mathematical model includes

perturbations and measurement noises, and is described by the following

equations:

         

   
       

   

         

       

9

8
1 11 4 1 12 1 1 13 3 3 14

22 2 2 23 1 1 24 1 1 2
2 21 2

25 2 2 26 1 1

3 31 1 32 4 1 33 3 3

4 41 4 42 1 1 43 41 4

x t c x t x t c u t c u t c

c u t c u t c u t x t
x t c x t

c u t c u t

x t c x t c x t x t c u t

x t c x t c u t c c u t

 

  

 





     

    
  

  

   

     









 (3.38)

123

   

   

         

   

   
   

     

1 51 1 4 1

2 61 2 5 2

3 70 1 6 71 3 6 72 4 6 1 6

73 3 3 6 74 1 1 6

75 1 6 76 77 3 6

79 3

3 6 1 6 78

4 81 4 7 82 1 7 4

()

()

1
()

()

y t c x t n t

y t c x t n t

y t c x t c x t c x t x t

c u t c u t

c x t c c x t
c n t

x t x t c

y t c x t c x t n t





   

   

 

 

 

  

  

       

     

           
    

      

 (3.39)

where 1x is the drum pressure state  2/Kgf cm , 1y is the measured drum

pressure (PSI), 2y and 2x are the measured excess oxygen level and its state (%),

respectively, 3x is the system fluid density  3/Kg m , 3y is the drum water level

(in), 4y is the steam flow rate  /Kg s , 1u , 2u and 3u are, respectively, the fuel,

air, the feed water flow rates which takes values in the interval [0 1] and 4x is the

exogenous variable related to the steam flowrate demand. The variables in are

the outputs of the first-order colored noise models driven by zero mean and unit

variance white noise. They are considered to be unmeasured output disturbances.

The remaining coefficients values could be found in Pellegrinetti and Bentsman

[203] or in Espinosa and Vandewalle [204].

 1 1 2 2 3 3 4 4

0.75 0.1 0.019 0.001 0.105 0.038 0.01 0.0001
 ; ; ;

0.001 0.024 0.01 0.001

s s s s
n w n w n w n w

s s s s

   
   

   

where , 1,..., 4in i  is a colored noise and , 1,..., 4iw i  is the unit variance white

noise.

The process is supposed to be initially operating around the following

states:

 

 

 

0

0

0

22.5, 2.5, 621.17, 0.6941

320, 2.5, 0, 9.3053

0.3227, 0.39503, 0.37404, 0

T

T

T

x

y

u







 (3.40)

The linear representation of the boiler around these operating states is

described by:

124

b b

b b

x A x B u

y C x D u

 

 


 (3.41)

where

0.005508 0 0 -0.15872 0.28 0 0.01348 0

0 -0.20625 0 0 9.374893 7.658411 0 0
 ,

-0.012156 0 0 0.566887 0 0 0.731706 0

0 0 0 0.04 0.029989 0 0 0.04

14.214 0 0 0

0 1 0 0

0.322072 0 0.149410 11.1486

b b

b

A B

C

    
       
   
   

   



0 0 0 0

0 0 0 0
 ,

62 1.272 0 0.20797 0

0.413307 0 0 19.274175 0 0 0 0

bD

   
   
   
   
   
   

There is a direct feedthrough between the output 3y and the inputs 1u and

3u expressed by a non-zero D matrix in the state representation. This property will

create some problems when considering the linear MPC controller [12]. In order to

have Db = 0, a delay was introduced to the inputs 1u and 3u with regards to the

output 3y
 (see section 4.2.3 for more details).

This process is inherently unstable. Essentially, a stabilisation scheme of

the water level must be introduced to make any identification approaches possible

by incorporating a proportional feedforward action (C2) of 0.0403 and a PI

controller (C1) with Kp=0.258 and Ti=1.1026e-4, as it is illustrated in figure 3.12.

Figure 3.12 : Stabilization scheme for the industrial boiler.

125

4.2.2. Fuzzy identification

Four fuzzy multi inputs single output models are constructed to predict the

future behaviour of the process. Two triangular membership functions per input

and the models given by the following equations are used.

  1 1 1 1 4ˆ ˆ ˆ(1), (5), (3)y f y k u k x k    (3.42)

  3 2 3 1 4 4ˆ ˆ (1), (12), (13), (10), (10)Levely f y k u k r k u k x k      (3.43)

  4 3 4 1 4 4ˆ ˆ (1), (4), (2), (2)y f y k u k u k x k     (3.44)

  4 4 4 1 4ˆ ˆ (1), (2), (1)x f x k u k u k    (3.45)

where , 1,..., 4if i  represent the fuzzy relationships between the inputs and the

outputs.

The TS fuzzy models were trained using a custom built dataset generated

using the mathematical model described by (3.38)-(3.40) and a sampling period of

3s. The validation results of the obtained models are given by figure 3.13.

Figure 3.13 : TS fuzzy model validation for the industrial boiler (Blue solid line:
Process output and red solid line: Process model output).

126

4.2.3. Controller implementation

Pellegrinetti [203] has indicated that the relationship between the fuel/air

ratio (2 1/FAR u u) and the oxygen level output is nearly linear. Consequently, the

oxygen level output 2y can be kept constant at a desired value by maintaining the

corresponding FAR value constant. Given that 1u affects all the systems outputs,

the suitable way to maintain the FAR value constant would be to adjust the input

2u depending on the value of 1u . To keep the desired oxygen level in the flue gas

2y around 2.5% the FAR must be equal to 1.2241 and 2u equals 1.2241
 1u .

The control objective is to force the steam flow rate 4y to track a desired

reference trajectory, while fulfilling the following constraints on the manipulated

inputs:

1 2

4 4

3

 u 0.1 and u 0.1

4 4 and u 1

0.2 0.35 and u 0.1

0 1

Level

Max Max

Level r Max

Max

r

u

u

   

    

    

 

 (3.46)

and the following constraints on the outputs:

1

2

3

320

2.5

0

y

y

y







 (3.47)

The MPC design parameters have the following values: 2uN  and R is

given by  100 0 0 0; 0 0 0 0; 0 0 2 0; 0 0 0 400R  . The values of the other

parameters are gathered in table 3.2.

Table 3.2 : Design parameters.

1N 2N i  0 miny maxy

1ŷ 1 10 1 0.0085 318 322

3ŷ 10 20 0.7 0.0065 -1.5 1.5

4ŷ 1 10 0 1.006 / /

4x̂ 1 10 0 0 / /

127

The following MPC based controllers are considered:

 Efficient PSO based controller (control algorithm given by Algorithm 3.1).

 Proposed ABCEV based controller (control algorithm given by Algorithm

3.2).

 Proposed EEABC based controller (control algorithm given by Algorithm

3.3). The number of solutions to be update in each iteration is computed

using:

   1 / _updateN D m Max iter   (3.48)

 Basic ABC based controller (the original version of the ABC algorithm

proposed in [119] is used).

 Gbest-guided ABC based controller (the enhanced version of the basic

ABC algorithm proposed in [153] is used).

 The best-so-far ABC based controller (the enhanced version of the basic

ABC algorithm in [179] is used).

 PSO algorithm based controller (the PSO version described in section

4.2 of chapter 2 is used).

 Linear MPC strategy: to implement the linear MPC, a linear

representation of the process must be derived. First we have to remove the

direct feedthrough between the output 3y and the inputs 1u and 3u . As

such, the linear state space representation of (3.41) is slightly modified by

introducing a unit delay in these inputs (figure 3.14). The obtained system

is then linearized around the operating state given by (3.40), and

discretized using a sampling period of 3s. The following discrete state

space representation is obtained:

(1) () ()

(1) ()

b b

b

x k A x k B u k

y k C x k

  

 


 (3.49)

where:

128

0.9861 0 0.001485 -0.3706 0.8172 0 -0.009937 -0.02264

0 0.5386 0 0 -20.97 17.13 0 0
 ,

-0.1736 0 0.9187 5.665 -0.3384 0 0.5441 -0.3525

0 0 0 0.8869 0.08478 0 0 0.1131

14.21 0 0 0

0 1 0 0

0.3221 0 0.1494 1

b b

b

A B

C

   
   
    
   
   
   


1.15

0.4133 0 0 19.27

 
 
 
 
 
 

Some design parameters have been slightly modified in order to

accommodate the linear controller. The new values are: 2 15N  for all outputs

and  0.4 0 0 0; 0 0 0 0; 0 0 0.5 0; 0 0 0 2.006Q  .

For the linear MPC strategy, the constraints are only considered on the

inputs variables and their increments.

Figure 3.14 : Stabilization scheme for the boiler without direct feedthrough.

A population size of 16 elements (artificial bees or particles) and 10

iterations are used for all these controllers. At the end of each sampling time, the

best two food sources are always kept as possible solutions for the next sampling

time while in the case of the PSO based algorithm, only the best solution is kept.

The EEABC based controller is implemented using 0.05  and the limit

expression of (2.13).

The system outputs for the proposed control algorithms and the linear MPC

are given by figures 3.15 and 3.16 while the corresponding control signals are

depicted by figure 3.17. It can be seen that the proposed controllers presents good

performance.

129

Figure 3.15 : Response of the boiler using the proposed control algorithms and
the linear MPC controller (Blue dashed line: ABCEV based controller; the red

dashed dotted is the EEABC based controller; brown dotted line is the efficient
PSO based controller and the green dotted is the linear MPC based controller).

130

Figure 3.16 : Response of the boiler for the different proposed control
algorithms and the linear MPC controller between the 200th and 400th samples for
the output 4y (Blue dashed line: ABCEV based controller; the red dashed dotted is

the EEABC based controller; brown dotted line is the efficient PSO based
controller and the green dotted is the linear MPC based controller).

To assess the performances of each proposed control algorithms, the Mean

Cost Value (MCV) given by (3.37) is used. The MCV is evaluated for several

values of the population size (number of bees or particles) and the number of

iterations. The design parameters values are the same and each control algorithm

is executed 15 times. The average values of the MCV are depicted in figure 3.18.

It can be seen from figure 3.18 that the proposed ABCEV and EEABC

control algorithms give the smallest average values of the MCV, although the

EEABC is slightly better than the ABCEV. For the same population size, the

remaining control algorithms require more iterations to converge toward the same

MCV average values as those of the EEABC based controller.

The proposed efficient PSO based controller gives better result than the

basic PSO based algorithm; however, the ABC based controllers are better.

131

Figure 3.17 : Control signals for the considered controllers and the linear MPC
controller (Blue dashed line: ABCEV based controller; the red dashed dotted is the

EEABC based controller; brown dotted line is the efficient PSO based controller
and the green dotted is the linear MPC based controller).

132

Figure 3.18 : MCV average values for the industrial boiler.

Table 3.3 gives the execution time of the considered NMPC controllers

using several population sizes and number of iterations. These algorithms were

executed on an Intel Core i5 3.1 GHz (TM) based machine.

The computing time of the EEABC and the ABCEV based controllers is,

respectively, around 4% and 10% more important than those of the other ABC

based controllers. This could be due to the fact that the proposed ABC based

controllers are generating more scout bees because of the reduced adopted limit

expression, thus both algorithms have more possible solutions to evaluate

compared to the other ABC variants.

On the other hand, all ABC based controllers are more computing efficient

than those based on the PSO algorithm.

133

Table 3.3 : Execution time of the considered control algorithms for the industrial
boiler.

Control
algorithms

Execution time (ms) Computation
Vs EEABC

10x5 10x10 10x20 10x30 20x5 20x10 20x20 20x30

Basic ABC 65.04 124.49 242.47 359.58 129.52 247.19 483.07 718.53 - 3.60 %

GABC 65.22 125.43 243.15 359.74 130.08 248.31 486.09 720.59 - 3.25 %

Best-so-far
ABC

64.5 125.84 238.63 355.22 128.57 245.55 477.91 712.2 - 4.48 %

Proposed
ABCEV

71.63 137.30 268.9 401.46 142.36 275.67 535.8 796.3 + 6.95 %

Proposed
EEABC

66.95 128.05 250.9 374.28 133.11 254.73 500.68 749.75 0 %

PSO 82.28 151.82 292.61 432.06 164.42 305.2 585.88 863.59 + 17.06 %

Efficient PSO 77.28 141.57 272.4 402.36 152.36 281.58 541.62 800.81 + 8.60 %

5. DSP-based implementation

To experimentally validate the obtained results, a DSP based experimental

setup has been used to implement several linear and non-linear control strategies

and then compare their performances.

5.1. Description of the eZDSP2812 test bench

Figure 3.19 illustrates the test bench used in this implementation. It contains

an eZdsp F2812 starter kit based on the Texas Instrument TMS320F2812 DSP, a

brushed DC motor equipped with an incremental encoder, a power and a

protection circuits.

Using Code Composer Studio (CCS), the Internal Development

Environment (IDE) provided by Texas Instrument, the different considered control

algorithms are coded, compiled and then sent via a parallel cable to the DSP. The

control results of the DC motor speed are saved in a file and then plotted using

plotting software.

134

Figure 3.19 : DSP based test bench.

5.2. Fuzzy identification and controllers implementation

To obtain a Takagi-Sugeno FIS model of the free load DC motor, a set of

input/output data is generated using a normal random input signal. Triangular

membership function and 16 fuzzy rules were used to construct the model given

by:

           Ω̂ 1 Ω , Ω 1 , Ω 2 , t f t t t V t    (3.50)

Where Ω (Tr/min) and V (Volts) represent respectively the motor speed (output)

and supply voltage (input).

A sampling period of 0.1s and the following values of the design parameters

are used to determine the control law of each controller:

4
1 21 , 8 , 2 , 10uN N N    

The supply voltage (control signal) of the DC motor has been limited using

the following constraint:

 6 () 17 V t 

The control objective is to force the process output (velocity of the DC

motor) to follow the reference trajectory given in figure 3.20 as faithfully as

possible, while satisfying any imposed constraints.

135

Figure : 3.20 Reference trajectory for the DSP based implementation.

5.3. Comparative study

The following control strategies have been considered:

 Efficient PSO based controller: The implemented control algorithm is

described by Algorithm 3.1 with 1 20.001375 and 0.5   .

 Proposed ABCEV based controller (control algorithm given by Algorithm

3.2).

 Proposed EEABC based controller (control algorithm given by Algorithm

3.3). The number of solutions to be updated in each iteration is computed

using:

   1 / _updateN D m Max iter   (3.51)

 Basic ABC based controller (the original version of the ABC algorithm

proposed in [119] is used).

 Best-so-far ABC based controller (the enhanced version of the basic

ABC algorithm by [179] is used).

136

 GABC based controller (the enhanced version GBest-guided ABC [153]

is used).

 MABC based controller (the enhanced ABC version found in [180] is

used).

 PSO algorithm based controller (the PSO version described in section

4.2 of chapter 2 is used).

 GPC controller the control law is built using the following output error

linear model of the considered system:

  
1

1 2

13.6 26.3
Ω̂ 1 ()

1 0.86 0.1

z
t V t

z z



 


 

 
 (3.52)

 PID controller (the implemented controller also uses the linear model of

(3.52)).

The population based controllers are implemented with a population of 6

elements (particles or artificial bees) and 5 iterations. In the PSO based controller

the solution of the previous sampling time is taken as a possible solution for the

current one while in the ABC controllers, the best two food sources from the

previous sampling time are always taken as a possible solutions for the current

one.

Figure 3.21 : Speed of the free load motor for the implemented controllers.

137

The control results for some of the implemented controllers are given in

figure 3.21. A fast response is obtained in the case of the proposed controllers

with a small tracking error.

To assess the robustness of each control algorithm, the experimental setup,

where a metallic disc of 1700g attached directly to the motor’s shaft, is considered.

The obtained results are given by figures 3.22 and 3.23. Compared to the results

of figure 3.21, the responses of figure 3.22 are quite slow. This was expected; the

introduction of the load reduces the motor acceleration.

A severe degradation of the control performance is observed in the case of

the PID controller and the GPC, with the appearance of an oscillatory behaviour

with relatively huge overshoots. The proposed controllers’ responses were also

affected. However, no overshoot is observed. Figure 3.23, presents the associated

control signals.

Figure 3.22 : Speed of the motor for the implemented controllers.

138

Figure 3.23 : Control signals for the implemented controllers.

The computing complexity of all of the implemented control algorithms has

been evaluated by measuring the DSP computing time required to solve the

NMPC control problem when considering a single iteration. The results, obtained

for multiple population sizes, are gathered in table 3.4.

The proposed EEABC is the most computing efficient control algorithm with

around 1% less computations than the other ABC based controllers and around

20% less computations than the PSO algorithms. On the other hand, the proposed

ABCEV algorithm along with the remaining ABC variants, have similar computing

requirements.

The proposed efficient PSO based controller has the largest computing

requirement with around 22% more computations than the EEABC. In fact both

PSO algorithms need around 20% more computation than any ABC based

algorithm.

These results have further validated the computing efficiency of the ABC

algorithm in general and the proposed EEABC variant in particular, especially

against PSO based algorithms.

139

Table 3.4 : Execution time of the considered control algorithms (DSP).

Control
algorithms

Execution time (ms)
Computation

Vs EEABC
Population size

6 10 16 24 36 48 72 100

Basic ABC 31.7 51.4 80.8 120.4 179.3 237.7 356.2 493.2 + 1.04 %

GABC 31.7 51.4 80.4 120.4 178.1 237.6 355.4 491.1 + 0.74 %

Best-so-far
ABC

31.8 51.6 81.4 121.1 180.5 239.9 357.5 496.9 + 1.69 %

MABC 31.8 51.4 81.4 120.7 179.9 239.2 355.7 493.3 + 1.21 %

Proposed
ABCEV

33.7 53.2 82.7 120.2 179.4 238.1 355.4 493.4 + 1.39 %

Proposed
EEABC

33.7 51.6 81.2 118.6 177.2 234.3 351.8 486.4 0 %

PSO 37.3 60.2 94.9 141.8 213.1 280.6 420.8 581.3 + 19.23 %

Efficient
PSO

39.4 62.8 98.9 145.4 216.1 286.9 427.6 594 + 21.91 %

6. conclusion

Within this chapter, the formulation of constrained fuzzy predictive control

based on the meta-heuristic algorithms has been presented along with three

proposed control algorithms.

The conducted comparative studies on two control problems and a DSP

based experimental setup have indicated that the proposed algorithms have

presented good performances. The efficient PSO algorithm has outperformed the

conventional PSO algorithms in all three considered comparative case studies in

regard of the quality of the solutions; however, within regard to its computing

complexity, the lead is less apparent. The proposed ABC algorithms on the other

hand have outperformed their ABC counterparts, especially the EEABC algorithm,

which has generated better solutions with less computing complexity compared to

all considered algorithms.

We have also confirmed the computing efficiency of the ABC algorithm

against other conventional algorithm such as the PSO. The obtained results have

clearly indicated that all ABC based algorithms are more computing efficient than

those based on the PSO algorithm.

140

CONCLUSION

The aim of this thesis was to develop simple and efficient nonlinear

predictive control algorithms. The idea was to use the meta-heuristic approach to

find, in a reasonable computational time, an accurate suboptimal solution to the

nonlinear optimization problem. Mainly, particle swarm optimization and artificial

bee colony approaches were envisaged. Without loss of generalization to other

models, such as neural networks models, Takagi-Sugeno fuzzy models were used

in developing these algorithms.

The MPC is considered as one of the most successful advanced control

strategies. Its attraction is due to its ability to handle complex control problems

which involve multivariable process interactions, constraints in the system

variables, non-minimum phase behaviour, and variable or unknown time delays.

Despite the large number of advanced linear predictive control algorithms that

were developed, the need for efficient control algorithms that can efficiently handle

highly nonlinear systems is still an open research subject. Indeed, using a NMPC

scheme should result in a substantial increase in the overall control performances.

This aspect is very desirable. However, fully introducing the nonlinear model in the

MPC formulation leads to a non-convex optimization problem that cannot be

resolved using the well-established techniques of convex optimization.

Solving nonlinear optimization problem using analytical approaches is

generally unfeasible even when no constraints are present while the deterministic

numerical approaches are less effective and could easily be trapped in local

minima. Recently, several works have showed that stochastic meta-heuristic

algorithms are powerful tools that can efficiently handle complex nonlinear

optimization problems. These algorithms have known a quick dissemination within

the academic and industrial society, and several successful implementations to

solve multiple engineering problems are continuously developed by an

increasingly active research community. This success could be attributed to the

fact that the meta-heuristic algorithms are simple, flexible, derivative-free,

generally able to handle local optima and generate high quality solutions in a

reasonable amount of time. In fact, due to their heuristic and random nature, these

141

algorithms, that have better searching capability than the classical approaches,

are unaffected by initial conditions and can handle almost any optimization

problem, albeit discrete or continuous. Despite their success, the meta-heuristic

based algorithms, like any other approaches, are not perfect optimization

techniques. In fact, several factors could heavily influence the performance of any

such algorithm, if care is not taken. One such important factor is the algorithm

ability to both explore (global search) the search space looking for regions of

interest, and to exploit (local search) these regions in order to locate optimum

solutions. Ideally, an optimization algorithm that has both of these characteristics

fully integrated should be designed. However, the exploration and the exploitation

are somewhat exclusive characteristics.

Although, numerous meta-heuristic variants exist, our interest has been

directed to the artificial bee colony (ABC) algorithm. This choice was based on the

result of numerous comparative studies between the ABC algorithm and several

other meta-heuristic algorithms such as GA, PSO and DE (Differential Evolution).

The comparative results have clearly indicated that the ABC performances are

better or at least similar to the performances of these algorithms. Moreover, they

were found to be more computing efficient, to have better solutions accuracy, and

to be simpler than the other algorithms. Nevertheless, some deficiencies were also

observed; the ABC algorithm has poor convergence rate in some situations and

cannot escape local optimum when solving some of the complex multimodal

function optimization problems. To overcome these deficiencies and further

improve the exploration/exploitation equilibrium of the algorithm, we have

proposed, in the second part of chapter 2, the ABCEV and the EEABC, two

enhanced versions of the ABC algorithm. In the first version, instead of using the

conventional random distribution, a chaotic based distribution mechanism was

used to distribute more efficiently the initial population over the search space.

Also, the exploitation capability of the algorithm was increased especially around

the current global best food source by using a modified update equation to focus

the search in the best food source vicinity. The exploratory behaviour of the

algorithm was also increased by tuning the limit parameter. This parameter affects

the generation of the scout bees, which are responsible for exploring the search

space and maintaining diversity within the population.

142

In the proposed ABCEV algorithm, a new update equation was used. This

equation allows increasing the exploitation capabilities of the algorithm especially

around the best ever food source increasing the convergence speed. But on the

other hand, it makes all the artificial bees within the population converge towards

the same region of the search space. Consequently, both the diversity within the

population and the exploratory behaviour of the algorithm will be decreased. This

will make the algorithm more vulnerable to premature convergence and to get

trapped in local optima even when the limit parameter value is decreased. To

address these issues and further enhance the solution quality and the

convergence speed, without compromising the population diversity and the

exploratory capability, another version (EEABC) of the ABC algorithm was

proposed. In this version a new probability equation, that allows the onlookers to

select the food sources for further exploitation, was introduced. Using this

probability equation, the onlookers do not just exploit the possible prominent

regions of the search space (best food sources) but also exploit the less exploited

food sources. Hence, the diversity within the population is increased and the

problem of premature convergence can be avoided. To make a good balance

between the exploration and exploitation capabilities, depending on which of them

is currently more beneficial, and make the algorithm more immune with respect to

the premature convergence problem, an adaptive control parameter called ‘the

exploration rate’ was introduced. Furthermore, to increase the convergence speed

of the algorithm without compromising its ability to explore and escape local

optima, an adaptive update strategy, where one or several optimization

parameters could simultaneously be updated, was developed.

To assess the performance of the proposed algorithms, two sets of

benchmark functions encompassing 12 commonly used standard numerical

benchmark functions and 15 benchmark functions proposed in a CEC2015 special

session, were used to implement a comparative study against four variants of the

ABC algorithm. The obtained results have showed the good performance of the

proposed algorithms.

It is a known fact that even with an efficient optimization algorithm, the

NMPC overall performances is still hugely influenced by the quality of the

nonlinear model. Using Takagi-Sugeno fuzzy modelling, three predictive control

143

algorithms were proposed. The first one is based on an improved version of the

PSO algorithm while the other algorithms are based on the proposed versions of

the ABC algorithm. To evaluate the computational efficiency and the control

performance of the developed algorithms, the control of two benchmark systems

of different complexity, namely the model of a continuous stirred tank reactor and

the model of an industrial boiler, was considered. The obtained performances

were compared to those of several other conventional linear and nonlinear MPC

strategies. The comparative study and the DSP based experimental setup have

showed that the proposed algorithms present good performances. Indeed, the

modified PSO based controller has outperformed the controllers that are based on

the other PSO algorithms. Also, good performances were obtained in the case of

the controllers that are based on the proposed versions of the ABC algorithm.

Especially, the EEABC algorithm which has given accurate solutions with less

computing complexity compared to all considered algorithms.

In this dissertation, nonlinear model predictive controllers based on meta-

heuristic algorithms were proposed as viable and practical substitute to the

conventional NMPC controllers. However, solving the NMPC optimization problem

using meta-heuristic is relatively a new and a virgin research subject, for which a

lot of enhancements and improvements opportunities exist.

Developing computing efficient NMPC based controllers does not only

depend on the adopted optimization algorithm, the used nonlinear model is of

capital importance. This aspect has not been assessed in this thesis. A more

thorough analysis of the impact of the chosen modelling approach on both the

control performance and the computing requirement is a critical task that should

be developed. Another important factor that influences both the control

performances and the computing requirement of NMPC techniques is how to

select the optimal values of the design parameters, especially the prediction and

control horizons. As such, adopting a strategy to obtain the optimal values for

these parameters should also be envisaged.

Although a DSP based setup was considered, a more in depth experimental

implementations are still necessary to further evaluate the proposed control

strategies in a real control environment.

144

The evaluation of the proposed meta-heuristic optimization algorithms at the

end of chapter 2 has indicated some deficiencies when handling certain numerical

benchmark functions. A thorough review to identify the sources of these

deficiencies and then correct the underlying problems should also be investigated.

145

A. LIST OF ABBREVIATIONS

ABC : Artificial Bee Colony

ABCEV : ABC Enhanced Version

ACO : Ant Colony Optimization

AIS : Artificial Immune Systems

BFO : Bacterial Foraging Optimization

BVP : Boundary Value Problem

CARIMA : Controlled Auto-Regressive Integrated Moving-Average

CCS : Code Composer Studio

CEC : Congress on Evolutionary Computation

CSTR : Continuous Stirred Tank Reactor

DAE : Differential Algebraic Equation

DC : Direct Current

DE : Differential Evolution

DMC : Dynamic Matrix Control

DSP : Digital Signal Processor

EEABC : Equal Exploitation ABC

FAR : Fuel /Air Ratio

FIS : Fuzzy Inference System

FNMPC : Fuzzy based Nonlinear Model Predictive Control

GA : Genetic Algorithm

GABC : Global Best ABC

GPC : Generalized Predictive Control

GSA : Gravitational Search Algorithm

GWO : Grey Wolf Optimizer

HJB : Hamilton-Jacobi-Bellman

IDE : Internal Development Environment

IP : Interior Point

KGMO : Kinetic Gas Molecule Optimization

KKT : Karush-Kuhn-Tucker

LMPC : Linear Model Predictive Control

146

MABC : Modified ABC

MAC : Model Algorithmic Control

MCV : Mean Cost Value

MIMO : Multi-Input Multi -Output

MPC : Model predictive Control

MPHC : Model Predictive Heuristic Control

NIP : Nonlinear Interior Point

NLP : Nonlinear Programing

NMPC : Nonlinear Model Predictive Control

NMPC-NO : Nonlinear Model Predictive Control with Nonlinear

Optimization

NMPC-NPL : Nonlinear Model Predictive Control with Nonlinear Predictions

and Linearization

NMPC-SL : Nonlinear Model Predictive Control with Successive

Linearization

NOP : Nonlinear Optimization Problem

OCP : Optimal Control Problem

ODE : Ordinary Differential Equation

OP : Optimization Problem

PDE : Partial Differential Equation

PFC : Predictive Functional Control

PID : Proportional Integral Differential

PSO : Particle Swarm Optimization

PSOPC : Passive Congregation PSO

PWA : PieceWise Affine

QDMC : Quadratic Dynamic Matrix Control

QP : Quadratic Programming

SA : Simulated Annealing

SD : Standard Deviation

SISO : Single-Input Single-Output

SQP : Sequential Quadratic Programming

TS : Takagi-Sugeno

147

B. LIST OF SYMBOLS

ia Acceleration of particle i (PSO)

()x Active set at the feasible solution x

bestx Best ever food source (ABC)

BestX Best solution

 û tΔ Computed increment of the control action

 ˆ 1 |u t t Control action computed at time t to be applied at time 1t 

uN Control horizon

 J Cost function of the optimization problem

d Dead time of the system

 Degree of softening

 d t Error between measured and predicted process output

 hExplInd x Exploitation Index of food source hx

 exploration rate (ABC)

 .itnessF Fitness function

gP Global best position (PSO)

0 Initial working set

 y t Measured value of the process output

_Max iter Maximal number of iteration

2N Maximum of the prediction horizon

maxu Maximal value for the control action

maxu Maximal value for the increment of the control action

maxy Maximal value of the output

1N Minimum of the prediction horizon

dminr Minimal radius imposed to dr

minu Minimal value for the control action

148

minu Minimal value for the increment of the control action

miny Minimal value of the output

SN Number of artificial employed bees (ABC)

updateN Number of dimensions to update in each iteration (ABC)

 Number of system inputs

 Number of system outputs

PN Number of total artificial bees (ABC)

LN Number of artificial onlooker bees (ABC)

*()x Optimal active set

 Output-dependent weight function

hP Personal best position (PSO)

hp Probability attached to the food source h (ABC)

jE Polynomial of the Diophantine equation

jF Polynomial of the Diophantine equation

popn Population size

pN Prediction horizon

 ˆ |y t j t Predicted values of the process output at time t j computed

at time t

 mod
ˆ |ely t j t Predicted values of the process output at time t j computed

at time t using the model

dr Radius around which the PSO particle will be distributed

 w t Reference trajectory

V Supply voltage of the DC motor

 e t Tracking errors

reeF Vector which contains the free response of the system

iv Velocity of particle i (PSO)

Ω Velocity of the DC motor

 Weighing factor penalizing variations in the control signal within

predictive control / Lagrange multiplier vector within KKT

m

n

 y y

149

condition

Q Weight matrix used to penalize the tracking error

R Weight matrix used to penalize the control input increments

k Working set at iteration k

 Ge t zero mean white noise

150

C. CEC 2015 TECHNICAL REPORT
(http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2015)

163

D. LIST OF PUBLICATIONS

 Ait sahed Oussama, Kamel Kara, and Mohamed Laid Hadjili. "Pso-

Based Fuzzy Predictive Control." Paper presented at the IECON 2012 -

38th Annual Conference on IEEE Industrial Electronics Society, 25-28 Oct.

2012 2012.

 Mohamed Laid Hadjili, Kara Kamel, Ait sahed Oussama, and

Bouyanzar Jamal. "Fuzzy Predictive Control Using Particle Swarm

Optimization: Application to Scara Robot." Applied Mechanics and

Materials 527 (2014): 230-36.

 Ait sahed Oussama, Kamel Kara, and Abousoufyane Benyoucef.

"Artificial Bee Colony-Based Predictive Control for Non-Linear Systems."

Transactions of the Institute of Measurement and Control 37 (2015): 780-

792.

 Benyoucef Abou soufyane, Aissa Chouder, Kamel Kara, Santiago

Silvestre, and Ait sahed Oussama. "Artificial Bee Colony Based Algorithm

for Maximum Power Point Tracking (Mppt) for Pv Systems Operating

under Partial Shaded Conditions." Applied Soft Computing 32, no. 0

(2015): 38-48.

 Ait sahed Oussama, Kamel Kara, and Mohamed Laid Hadjili.

"Constrained Fuzzy Predictive Control Using Particle Swarm

Optimization." Applied Computational Intelligence and Soft Computing

(2015): 1-15.

 Ait sahed Oussama, Kamel Kara, Abousoufyane Benyoucef, and

Mohamed Laid Hadjili. "A new artificial bee colony algorithm for numerical

optimization." presented at the CEIT’2015 3rd International Conference on

Control, Engineering & Information Technology, 25-27 May, 2015.

164

REFERENCES

1. Richalet, J., A. Rault, J.L. Testud, and J. Pagon. Algorithmic control of industrial processes.

in proceedings of the 4th IFAC Symposium on Identification and System Parameter

Estimation. 1976.

2. Richalet, J., A. Rault, J.L. Testud, and J. Pagon, Model predictive heuristic control:

application to industrial processes. Automatica, 1978. 14: p. 413-428.

3. Cutler, C.R. and B.C. Ramaker. Dynamic Matrix Control- A computer control algorithm. in

proceedings of the automatic control conference. 1980.

4. Garcia, C.E. and M. Morari, Internal model control. A unifying review and some new

results. Ind. Eng. Chem. Proc. Des. Dev., 1982. 21: p. 308-323.

5. Morshedi, M., C.R. Cutler, and T.A. Skrovanek. Optimal solution of dynamic matrix control

with linear programming techniques (LDMC). in proceedings of the American Control

Conference. 1985.

6. Garcia, C.E. and A.M. Morshedi, Quadratic programming solution of dynamic matrix control

(QDMC). Chemical Engineering Communications, 1986. 46: p. 73-87.

7. Clarke, D.W., C. Mohtadi, and P.S. Tuffts, Generalized predictive control part I, The basic

algorithm. Automatica, 1987. 23: p. 137-148.

8. Clarke, D.W., C. Mohtadi, and P.S. Tuffts, Generalized predictive control part II, Extensions

and interpretations. Automatica, 1987. 23: p. 149-160.

9. Kouvaritakis, B. and M. Cannon, Nonlinear Predictive Control, theory and practice. 2001,

United Kingdom: The Institution of Engineering and Technology.

10. Camacho, E.F. and C. Bordons, Model Predictive Control. 1999, London: Springer London.

11. Richalet, J. and D. O’Donovan, Functional Control, Principles and Industrial Applications.

2009, London: Springer-Verlag London Limited.

12. Maciejowski, J.M., Predictive Control with Constraints. 2002, England: Prentice Hall.

13. Sarimveis, H. and G. Bafas, Fuzzy model predictive control of non-linear processes using

genetic algorithms. Fuzzy Sets and Systems, 2003. 139: p. 59-80.

14. Salahshoor, K., E. Safari, and I. Ahangari, A novel adaptive fuzzy predictive control for

hybrid systems with mixed inputs. Engineering Applications of Artificial Intelligence, 2013.

26(5–6): p. 1512-1531.

15. Yanhui, X., R. Ghaemi, J. Sun, and J.S. Freudenberg, Model Predictive Control for a Full

Bridge DC/DC Converter. Control Systems Technology, IEEE Transactions on, 2012.

20(1): p. 164-172.

16. Grancharova, A. and T. Johansen, Explicit NMPC via Approximate mp-NLP, in Explicit

Nonlinear Model Predictive Control. 2012, Springer Berlin Heidelberg. p. 87-110.

17. Marusak, P.M., Advantages of an easy to design fuzzy predictive algorithm in control

systems of nonlinear chemical reactors. Applied Soft Computing, 2009. 9: p. 1111-1125.

165

18. Hong-Gui, H., W. Xiao-Long, and Q. Jun-Fei, Real-Time Model Predictive Control Using a

Self-Organizing Neural Network. Neural Networks and Learning Systems, IEEE

Transactions on, 2013. 24(9): p. 1425-1436.

19. Mayne, D.Q., J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert, Constrained model predictive

control: Stability and optimality. Automatica, 2000. 36(6): p. 789-814.

20. Rossiter, J.A., Model-Based Predictive Control. A Practical Approach. 2004, Florida: CRC

Press.

21. Roubos, J., R. Babuska, P. Bruijn, and H. Verbruggen. Predictive control by local

linearization of a Takagi-Sugeno fuzzy model. in proceedings of the IEEE International

Conference on Fuzzy Systems. 1998.

22. Kosko, B. Fuzzy systems as universal approximators. in proceedings of First IEEE

International Conference on Fuzzy System. 1992.

23. Baocang, D. and P. Xubin, Output Feedback Predictive Control With One Free Control

Move for Nonlinear Systems Represented by a Takagi-Sugeno Model. Fuzzy Systems,

IEEE Transactions on, 2014. 22(2): p. 249-263.

24. Takagi, T. and M. Sugeno. Identification of systems and its applications to modeling and

control. in proceedings of the International Conference on Systems, Man and Cybernetics.

1985.

25. Jiang, H., C.K. Kwong, Z. Cen, and Y.C. Ysim, Chaos particle swarm optimization and T-S

fuzzy modeling approaches to constrained predictive control. Expert Systems with

Applications, 2012. 39: p. 194-201.

26. Tatjewski, P., Advanced Control of Industrial Process Structure and Algorithms. Advances

in industrial control. 2007, London: Springer-Verlag London Limited.

27. Grüne, L. and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms.

2011, London: Springer London.

28. Xiangjie, L., G. Ping, and C.W. Chan, Nonlinear Multivariable Power Plant Coordinate

Control by Constrained Predictive Scheme. Control Systems Technology, IEEE

Transactions on, 2010. 18(5): p. 1116-1125.

29. Coen, T., J. Anthonis, and J. De Baerdemaeker, Cruise control using model predictive

control with constraints. Computers and Electronics in Agriculture, 2008. 63(2): p. 227-236.

30. Borrelli, F., M. Baotić, J. Pekar, and G. Stewart, On the computation of linear model

predictive control laws. Automatica, 2010. 46(6): p. 1035-1041.

31. Rao, C.V., S.J. Wright, and J.B. Rawlings, Application of Interior-Point Methods to Model

Predictive Control. Journal of Optimization Theory and Applications, 1998. 99(3): p. 723-

757.

32. Harinath, E., L.T. Biegler, and G.A. Dumont, Control and optimization strategies for

thermo-mechanical pulping processes: Nonlinear model predictive control. Journal of

Process Control, 2011. 21(4): p. 519-528.

33. Rocha, M., R. Mendes, O. Rocha, I. Rocha, and E.C. Ferreira, Optimization of fed-batch

fermentation processes with bio-inspired algorithms. Expert Systems with Applications,

2014. 41(5): p. 2186-2195.

166

34. Li, Y., J. Shen, K.Y. Lee, and X. Liu, Offset-free fuzzy model predictive control of a boiler–

turbine system based on genetic algorithm. Simulation Modelling Practice and Theory,

2012. 26: p. 77-95.

35. Modares, H. and M.-B. Naghibi Sistani, Solving nonlinear optimal control problems using a

hybrid IPSO–SQP algorithm. Engineering Applications of Artificial Intelligence, 2011. 24(3):

p. 476-484.

36. Johansen, T.A., Introduction to nonlinear model predictive control and moving horizon

estimation. Selected Topics on Constrained and Nonlinear Control, 2011: p. 187.

37. Betts, J.T., Survey of Numerical Methods for Trajectory Optimization. Journal of Guidance,

Control, and Dynamics, 1998. 21(2): p. 193-207.

38. Parsopoulos, K.E. and M.N. Vrahatis, Particle Swarm Optimization and Intelligence:

Advances and Applications. 2010, United States of America: Information Science

Reference (an imprint of IGI Global).

39. Talbi, E.-G., Metaheuristics: From Design to Implementation. 2009: Wiley Publishing. 593.

40. Clerc, M., Particle Swarm Optimization. 2006, United Kingdom: ISTE Ltd.

41. Xin-She, Y. and S. Deb. Cuckoo Search via Lévy flights. in Nature & Biologically Inspired

Computing, 2009. NaBIC 2009. World Congress on. 2009.

42. Mirjalili, S., S.M. Mirjalili, and A. Lewis, Grey Wolf Optimizer. Advances in Engineering

Software, 2014. 69(0): p. 46-61.

43. dos Santos Coelho, L. and P. Alotto, Gaussian Artificial Bee Colony Algorithm Approach

Applied to Loney's Solenoid Benchmark Problem. Magnetics, IEEE Transactions on, 2011.

47(5): p. 1326-1329.

44. Kronfeld, M. and A. Zell, Gaussian Process Assisted Particle Swarm Optimization, in

Learning and Intelligent Optimization, C. Blum and R. Battiti, Editors. 2010, Springer Berlin

Heidelberg. p. 139-153.

45. Nasir, M., S. Das, D. Maity, S. Sengupta, U. Halder, and P.N. Suganthan, A dynamic

neighborhood learning based particle swarm optimizer for global numerical optimization.

Information Sciences, 2012. 209(0): p. 16-36.

46. Germin Nisha, M. and G.N. Pillai, Nonlinear model predictive control with relevance vector

regression and particle swarm optimization. Journal of Control Theory and Applications,

2013. 11(4): p. 563-569.

47. Bououden, S., M. Chadli, and H.R. Karimi, An ant colony optimization-based fuzzy

predictive control approach for nonlinear processes. Information Sciences, 2015. 299(0): p.

143-158.

48. Chakrabarty, A., S. Banerjee, S. Maity, and A. Chatterjee, Fuzzy model predictive control

of non-linear processes using convolution models and foraging algorithms. Measurement,

2013. 46(4): p. 1616-1629.

49. Karaboga, D. and B. Basturk, On the performance of artificial bee colony (ABC) algorithm.

applied Soft Computing, 2008. 8: p. 687-697.

50. Karaboga, D. and B. Akay, A comparative study of artificial bee colony algorithm. applied

Mathematics and Computation, 2009. 214: p. 108-132.

167

51. Karaboga, D., B. Gorkemli, C. Ozturk, and N. Karaboga, A comprehensive survey: artificial

bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 2014. 42(1): p.

21-57.

52. Henson, M.A., Nonlinear model predictive control: current status and future directions.

Computers & Chemical Engineering, 1998. 23(2): p. 187-202.

53. Duchêne, P. and P. Rouchon, Kinetic scheme reduction via geometric singular perturbation

techniques. Chemical Engineering Science, 1996. 51(20): p. 4661-4672.

54. Lévine, J. and P. Rouchon, Quality control of binary distillation columns via nonlinear

aggregated models. Automatica, 1991. 27(3): p. 463-480.

55. Kara, K., M.L. Hadjili, K.e. Hemsas, and T. Missoum. Predictive Control Using Neural

Networks. 2009. Portugal.

56. Ferreira, P.M., A.E. Ruano, S. Silva, and E.Z.E. Conceição, Neural networks based

predictive control for thermal comfort and energy savings in public buildings. Energy and

Buildings, 2012. 55(0): p. 238-251.

57. Ait Sahed, O., K. Kara, and A. Benyoucef, Artificial bee colony-based predictive control for

non-linear systems. Transactions of the Institute of Measurement and Control, 2015. 37(6):

p. 780-792.

58. Ait Sahed, O., K. Kara, and M.L. Hadjili, Constrained Fuzzy Predictive Control Using

Particle Swarm Optimization. Applied Computational Intelligence and Soft Computing,

2015. 2015: p. 1-15.

59. Fruzzetti, K.P., A. Palazoğlu, and K.A. McDonald, Nolinear model predictive control using

Hammerstein models. Journal of Process Control, 1997. 7(1): p. 31-41.

60. Jurado, F., Predictive control of solid oxide fuel cells using fuzzy Hammerstein models.

Journal of Power Sources, 2006. 158(1): p. 245-253.

61. Mahmoodi, S., J. Poshtan, M.R. Jahed-Motlagh, and A. Montazeri, Nonlinear model

predictive control of a pH neutralization process based on Wiener–Laguerre model.

Chemical Engineering Journal, 2009. 146(3): p. 328-337.

62. Shafiee, G., M.M. Arefi, M.R. Jahed-Motlagh, and A.A. Jalali, Nonlinear predictive control

of a polymerization reactor based on piecewise linear Wiener model. Chemical

Engineering Journal, 2008. 143(1–3): p. 282-292.

63. Qin, S.J. and T.A. Badgwell, A survey of industrial model predictive control technology.

Control Engineering Practice, 2003. 11(7): p. 733-764.

64. Camacho, E. and C. Bordons, Nonlinear Model Predictive Control: An Introductory Review,

in Assessment and Future Directions of Nonlinear Model Predictive Control, R. Findeisen,

F. Allgöwer, and L. Biegler, Editors. 2007, Springer Berlin Heidelberg. p. 1-16.

65. Richalet, J., Pratique de la commande predictive. 1992: Hermes.

66. Baocang, D., Modern predictive control. 2010, United States of America: CRC Press.

67. Nocedal, J. and S.J. Wright, Numerical Optimization. Springer Series in Operations

Research and Financial Engineering. 1999, New York: Springer New York.

68. Bartholomew–Biggs, M., Nonlinear Optimization with Engineering Applications. Vol. 19.

2008, New York, USA: Springer US.

168

69. Wright, S.J., Primal-Dual Interior-Point Methods. 1997, Philadelphia. USA: SIAM

Publications.

70. Fletcher, R., Practical Methods of Optimization: 2nd edition. 1987: Wiley.

71. Wright, S.J., Applying New Optimization Algorithms To Model Predictive Control, in Fifth

International Conference on Chemical Process Control – CPC V, J.C. Kantor, C.E. García,

and B. Carnahan, Editors. 1996, CACHE Corporation, AIChE and CACHE Corporation. p.

147-155.

72. Cannon, M., B. Kouvaritakis, and J.A. Rossiter, Efficient active set optimization in triple

mode MPC. Automatic Control, IEEE Transactions on, 2001. 46(8): p. 1307-1312.

73. Ferreau, H.J., P. Ortner, P. Langthaler, L.d. Re, and M. Diehl, Predictive control of a real-

world Diesel engine using an extended online active set strategy. Annual Reviews in

Control, 2007. 31(2): p. 293-301.

74. Naik, V.V., D.N. Sonawane, D.D. Ingole, and D. Ginoya. Model Predictive Control of DC

Servomotor using Active Set Method. in Control Applications (CCA), 2013 IEEE

International Conference on. 2013.

75. Karmarkar, N., A new polynomial-time algorithm for linear programming. Combinatorica,

1984. 4(4): p. 373-395.

76. Patrinos, P., P. Sopasakis, and H. Sarimveis, A global piecewise smooth Newton method

for fast large-scale model predictive control. Automatica, 2011. 47(9): p. 2016-2022.

77. Ye, Y., Interior point algorithms: theory and analysis. 1997: John Wiley & Sons, Inc. 418.

78. Gondzio, J. and A. Grothey, A New Unblocking Technique to Warmstart Interior Point

Methods Based on Sensitivity Analysis. SIAM Journal on Optimization, 2008. 19(3): p.

1184-1210.

79. Cai, X., M.J. Tippett, L. Xie, and J. Bao, Fast distributed MPC based on active set method.

Computers & Chemical Engineering, 2014. 71(0): p. 158-170.

80. Shahzad, A., E.C. Kerrigan, and G.A. Constantinides. A warm-start interior-point method

for predictive control. in Control 2010, UKACC International Conference on. 2010.

81. Zang, H., H. Li, J. Huang, and J. Wang, A Composite Model Predictive Control Strategy for

Furnaces. Chinese Journal of Chemical Engineering, 2014. 22(7): p. 788-794.

82. Jerez, J.L., E.C. Kerrigan, and G.A. Constantinides, A sparse and condensed QP

formulation for predictive control of LTI systems. Automatica, 2012. 48(5): p. 999-1002.

83. Amrit, R., J.B. Rawlings, and L.T. Biegler, Optimizing process economics online using

model predictive control. Computers & Chemical Engineering, 2013. 58(0): p. 334-343.

84. Lu, C.-H. and C.-C. Tsai, Adaptive Predictive Control With Recurrent Neural Network for

Industrial Processes: An Application to Temperature Control of a Variable-Frequency Oil-

Cooling Machine. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008. 55(3):

p. 1366-1375.

85. Allgower, F., F. Rolf, and K.N. Zoltan, Nonlinear Model Predictive Control: From Theory to

Application. Journal of the Chinese Institute of Chemical Engineers, 2004. 35: p. 299-315.

86. Roubos, J.A., R. Babuska, P.M. Bruijn, and H. Verbruggen. Predictive control by local

linearization of a Takagi-Sugeno fuzzy model. in Fuzzy Systems Proceedings, 1998. IEEE

169

World Congress on Computational Intelligence., The 1998 IEEE International Conference

on. 1998.

87. Abonyi, J., L. Nagy, and F. Szeifert, Fuzzy model-based predictive control by

instantaneous linearization. Fuzzy Sets and Systems, 2001. 120(1): p. 109-122.

88. Townsend, S. and G.W. Irwin, Nonlinear model based predictive control using multiple

local models. Non-linear Predictive Control: theory and practice. 2001: Institution of

Engineering and Technology. 223-244.

89. Cannon, M., D. Ng, and B. Kouvaritakis, Successive Linearization NMPC for a Class of

Stochastic Nonlinear Systems, in Nonlinear Model Predictive Control, L. Magni, D.

Raimondo, and F. Allgöwer, Editors. 2009, Springer Berlin Heidelberg. p. 249-262.

90. Garcia, C.E. Quadratic/dynamic matrix control of nonlinear processes: an application to a

batch reaction process. in AIChE annual meeting. 1984. San Francesco.

91. Marusak, P. and P. Tatjewski. Fuzzy Dynamic Matrix Control algorithm for nonlinear plants.

in 6th Int. Conf. methods and models in Automation and obotics MMAR'00. 2000.

Miedzyzdroje, Poland.

92. Camacho, E.F., M. Berenguel, and F.R. Rubio, Advanced Control of Solar Plants.

Advances in Industrial Control. 1997: Springer London.

93. Diehl, M., H. Ferreau, and N. Haverbeke, Efficient Numerical Methods for Nonlinear MPC

and Moving Horizon Estimation, in Nonlinear Model Predictive Control, L. Magni, D.

Raimondo, and F. Allgöwer, Editors. 2009, Springer Berlin Heidelberg. p. 391-417.

94. Binder, T., L. Blank, H.G. Bock, R. Bulirsch, W. Dahmen, M. Diehl, T. Kronseder, W.

Marquardt, J. Schlöder, and O. von Stryk, Introduction to Model Based Optimization of

Chemical Processes on Moving Horizons, in Online Optimization of Large Scale Systems,

M. Grötschel, S. Krumke, and J. Rambau, Editors. 2001, Springer Berlin Heidelberg. p.

295-339.

95. Saerens, B., M. Diehl, and E. Van den Bulck, Optimal Control Using Pontryagin’s

Maximum Principle and Dynamic Programming, in Automotive Model Predictive Control, L.

del Re, F. Allgöwer, L. Glielmo, C. Guardiola, and I. Kolmanovsky, Editors. 2010, Springer

London. p. 119-138.

96. Mayne, D.Q., Optimization in Model Predictive Control, in Methods of Model Based

Process Control, R. Berber, Editor. 1995, Springer Netherlands. p. 367-396.

97. Findeisen, R. and F. Allgöwer, An introduction to nonlinear model predictive control, in 21st

Benelux Meeting on Systems and Control. 2002.

98. Herceg, M., M. Kvasnica, and M. Fikar, Parametric Approach to Nonlinear Model Predictive

Control, in Nonlinear Model Predictive Control Lecture Notes in Control and Information

Sciences, L. Magni, D.M. Raimondo, and F. Allgöwer, Editors. 2009, Springer Berlin

Heidelberg: Berlin. p. 381-389.

99. Nevistic, V. and J.A. Primbs. Model predictive control: breaking through constraints. in

Decision and Control, 1996., Proceedings of the 35th IEEE Conference on. 1996.

100. Diehl, M., Optimization Algorithms for Model Predictive Control, in Encyclopedia of

Systems and Control, J. Baillieul and T. Samad, Editors. 2014, Springer London. p. 1-11.

170

101. Betts, J.T., Practical Methods for Optimal Control and Estimation Using Nonlinear

Programming. 2010: SIAM.

102. Lebedev, L.P. and M.J. Cloud, The Calculus of Variations and Functional Analysis: With

Optimal Control and Applications in Mechanics. 2003, Singapore: World Scientific

Publishing Co. Pte. Ltd.

103. Powell, M.J.D., A fast algorithm for nonlinearly constrained optimization calculations, in

Numerical Analysis, G.A. Watson, Editor. 1978, Springer Berlin Heidelberg. p. 144-157.

104. Byrd, R. and J. Nocedal, An analysis of reduced Hessian methods for constrained

optimization. Mathematical Programming, 1990. 49(1-3): p. 285-323.

105. Boggs, P.T. and J.W. Tolle, Sequential Quadratic Programming. Acta Numerica, 1995. 4:

p. 1-51.

106. Schäfer, A., P. Kühl, M. Diehl, J. Schlöder, and H.G. Bock, Fast reduced multiple shooting

methods for nonlinear model predictive control. Chemical Engineering and Processing:

Process Intensification, 2007. 46(11): p. 1200-1214.

107. Kirches, C., L. Wirsching, H.G. Bock, and J.P. Schlöder, Efficient direct multiple shooting

for nonlinear model predictive control on long horizons. Journal of Process Control, 2012.

22(3): p. 540-550.

108. Wang, S.W., D.L. Yu, J.B. Gomm, G.F. Page, and S.S. Douglas, Adaptive neural network

model based predictive control for air–fuel ratio of SI engines. Engineering Applications of

Artificial Intelligence, 2006. 19(2): p. 189-200.

109. Sargent, R.W.H. and G.R. Sullivan, The development of an efficient optimal control

package, in Optimization Techniques, J. Stoer, Editor. 1978, Springer Berlin Heidelberg. p.

158-168.

110. Biegler, L.T., Solution of dynamic optimization problems by successive quadratic

programming and orthogonal collocation. Computers & Chemical Engineering, 1984. 8(3–

4): p. 243-247.

111. Bayón, L., J.M. Grau, M.M. Ruiz, and P.M. Suárez, Initial guess of the solution of dynamic

optimization of chemical processes. Journal of Mathematical Chemistry, 2010. 48(1): p. 28-

37.

112. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning. 1989:

Addison-Wesley Longman Publishing Co., Inc. 372.

113. Haupt, R.L. and S.E. Haupt, Practical Genetic Algorithms. 2004: John Wiley & Sons, Inc.

114. Storn, R. and K. Price, Differential evolution-a simple and efficient adaptive scheme for

global optimization over continuous spaces. 1995, Technical Report TR-95-012,

International Computer Science Institute, Berkeley, USA.

115. Feoktistov, V., Differential Evolution In Search of Solutions. Differential Evolution. Vol. 5.

2006: Springer US.

116. Kennedy, J. and R. Eberhart. Particle swarm optimization. in Neural Networks, 1995.

Proceedings., IEEE International Conference on. 1995.

117. Dorigo, M., V. Maniezzo, and A. Colorni, Ant system: optimization by a colony of

cooperating agents. IEEE Trans Syst Man Cybern B Cybern, 1996. 26(1): p. 29-41.

171

118. Bonabeau, E., M. Dorigo, and G. Theraulaz, Swarm intelligence: from natural to artificial

systems. 1999: Oxford university press.

119. Karaboga, D., An idea based on honey bee swarm for numerical optimization. 2005,

Erciyes University: Kayseri/Turkey.

120. Karaboga, D. and B. Basturk, A powerful and efficient algorithm for numerical function

optimization: artificial bee colony (ABC) algorithm. journal of global optimization, 2007.

39(3): p. 459-471.

121. Rashedi, E., H. Nezamabadi-pour, and S. Saryazdi, GSA: A Gravitational Search

Algorithm. Information Sciences, 2009. 179(13): p. 2232-2248.

122. Rashedi, E., H. Nezamabadi-pour, and S. Saryazdi, BGSA: binary gravitational search

algorithm. Natural Computing, 2010. 9(3): p. 727-745.

123. Moein, S. and R. Logeswaran, KGMO: A swarm optimization algorithm based on the

kinetic energy of gas molecules. Information Sciences, 2014. 275(0): p. 127-144.

124. Dréo, J., P. Siarry, A. Pétrowski, and E. Taillard, Metaheuristics for Hard Optimization.

2006: Springer Berlin Heidelberg.

125. Maniezzo, V., T. Stützle, and S. Voß, Matheuristics: Hybridizing Metaheuristics and

Mathematical Programming. Annals of Information Systems. Vol. 10. 2010: Springer US.

126. Bemporad, A., M. Morari, V. Dua, and E.N. Pistikopoulos. The explicit solution of model

predictive control via multiparametric quadratic programming. in American Control

Conference, 2000. Proceedings of the 2000. 2000.

127. Alessio, A. and A. Bemporad, A Survey on Explicit Model Predictive Control, in Nonlinear

Model Predictive Control, L. Magni, D. Raimondo, and F. Allgöwer, Editors. 2009, Springer

Berlin Heidelberg. p. 345-369.

128. Johansen, T.A. On multi-parametric nonlinear programming and explicit nonlinear model

predictive control. in Decision and Control, 2002, Proceedings of the 41st IEEE Conference

on. 2002.

129. Johansen, T.A., Approximate explicit receding horizon control of constrained nonlinear

systems. Automatica, 2004. 40(2): p. 293-300.

130. Grancharova, A., T. Johansen, and P. Tøndel, Computational Aspects of Approximate

Explicit Nonlinear Model Predictive Control, in Assessment and Future Directions of

Nonlinear Model Predictive Control, R. Findeisen, F. Allgöwer, and L. Biegler, Editors.

2007, Springer Berlin Heidelberg. p. 181-192.

131. Zheng, A. and W.-h. Zhang, Computationally efficient non linear predictive control

algorithm for control of constrained nonlinear systems. Non-linear Predictive Control:

theory and practice, ed. B. Kouvaritakis and M. Cannon. 2001: Institution of Engineering

and Technology. 173-188.

132. Kerrigan, E.C., Robust Constraint Satisfaction Invariant Sets and Predictive Control, in

Department of Engineering. 2000, University of Cambridge.

133. Bithmead, R.P., V. Wertz, and M. Gerers, Adaptive Optimal Control: The Thinking Man's

G.P.C. 1991: Prentice Hall Professional Technical Reference. 244.

172

134. Allgöwer, F., T.A. Badgwell, J.S. Qin, J.B. Rawlings, and S.J. Wright, Nonlinear Predictive

Control and Moving Horizon Estimation — An Introductory Overview, in Advances in

Control, P. Frank, Editor. 1999, Springer London. p. 391-449.

135. Chen, H. and F. AllgöWer, A Quasi-Infinite Horizon Nonlinear Model Predictive Control

Scheme with Guaranteed Stability. Automatica, 1998. 34(10): p. 1205-1217.

136. de Oliveira, S. and M. Morari, Contractive Model Predictive Control with Local Linearization

for Nonlinear Systems, in Nonlinear Model Based Process Control, R. Berber and C.

Kravaris, Editors. 1998, Springer Netherlands. p. 403-431.

137. Kalman, R.E., Contributions to the theory of optimal contro. Boletin Sociedad Matematica

Mexicana, 1960. 5: p. 102-119.

138. Scokaert, P.O.M., D.Q. Mayne, and J.B. Rawlings, Suboptimal model predictive control

(feasibility implies stability). Automatic Control, IEEE Transactions on, 1999. 44(3): p. 648-

654.

139. Michalska, H. and D.Q. Mayne, Robust receding horizon control of constrained nonlinear

systems. Automatic Control, IEEE Transactions on, 1993. 38(11): p. 1623-1633.

140. Yang, T.H. and E. Polak, Moving horizon control of nonlinear systems with input saturation,

disturbances and plant uncertainty. International Journal of Control, 1993. 58(4): p. 875-

903.

141. Polya, G., How to Solve It: A New Aspect of Mathematical Method. 1945, Princeton, New

Jersey: Princeton University Press.

142. Caserta, M. and S. Voß, Metaheuristics: Intelligent Problem Solving, in Matheuristics, V.

Maniezzo, T. Stützle, and S. Voß, Editors. 2010, Springer US. p. 1-38.

143. Glover, F., Future paths for integer programming and links to artificial intelligence.

Computers & Operations Research, 1986. 13(5): p. 533-549.

144. Osman, I.H. and J.P. Kelly, Meta-Heuristics: An Overview, in Meta-Heuristics, I.H. Osman

and J.P. Kelly, Editors. 1996, Springer US. p. 1-21.

145. Maaranen, H., K. Miettinen, and A. Penttinen, On initial populations of a genetic algorithm

for continuous optimization problems. journal of global optimization, 2007. 37(3): p. 405-

436.

146. Grosan, C., A. A, and M. Nicoara, Search Optimization Using Hybrid Particle Sub-Swarms

and Evolutionary Algorithms. International Journal of Simulation Systems, Science &

Technology, 2005. 6(10&11): p. 60-79.

147. Storn, R. and K. Price, Differential Evolution – A Simple and Efficient Heuristic for global

Optimization over Continuous Spaces. journal of global optimization, 1997. 11(4): p. 341-

359.

148. Iba, H. and C. Aranha, Practical Applications of Evolutionary Computation to Financial

Engineering. Vol. 11. 2012: Springer Berlin Heidelberg.

149. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs. 1996:

Springer Berlin Heidelberg.

173

150. Hui, W., S. Rahnamayan, and W. Zhijian. Adaptive Differential Evolution with variable

population size for solving high-dimensional problems. in Evolutionary Computation (CEC),

2011 IEEE Congress on. 2011.

151. Chen, S.-M., A. Sarosh, and Y.-F. Dong, Simulated annealing based artificial bee colony

algorithm for global numerical optimization. Applied Mathematics and Computation, 2012.

219(8): p. 3575-3589.

152. Xiang, W.-l. and M.-q. An, An efficient and robust artificial bee colony algorithm for

numerical optimization. Computers & Operations Research, 2013. 40(5): p. 1256-1265.

153. Zhu, G. and S. Kwong, Gbest-guided artificial bee colony algorithm for numerical function

optimization. Applied Mathematics and Computation, 2010. 217(7): p. 3166-3173.

154. Wolpert, D.H. and W.G. Macready, No free lunch theorems for search. July 1995, Santa Fe

Institute: Santa Fe, NM.

155. Wolpert, D.H. and W.G. Macready, No free lunch theorems for optimization. Evolutionary

Computation, IEEE Transactions on, 1997. 1(1): p. 67-82.

156. Holland, J.H., Adaptation in natural and artificial systems: An introductory analysis with

applications to biology, control, and artificial intelligence. 1975: U Michigan Press.

157. Yang, X.-S., Engineering Optimization. An Introduction with Metaheuristic Applications.

2010, New Jersey. USA: John Wiley & Sons, Inc.

158. Reeves, C.R., Genetic Algorithms, in Handbook of Metaheuristics, M. Gendreau and J.-Y.

Potvin, Editors. 2010, Springer US. p. 109-139.

159. Thakur, M., A new genetic algorithm for global optimization of multimodal continuous

functions. Journal of Computational Science, 2014. 5(2): p. 298-311.

160. Valle, Y.d., G.K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez, and R.G. Harley,

Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power

Systems. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008. 12(2): p.

171-195.

161. Radcliffe, N.J., Equivalence class analysis of genetic algorithms. Complex systems, 1991.

5(2): p. 183-205.

162. Eshelman, L.J. and J.D. Schaffer, Real-Coded Genetic Algorithms and Interval-Schemata,

in Foundations of Genetic Algorithms, W. L. Darrell, Editor. 1993, Elsevier. p. 187-202.

163. Kaelo, P. and M.M. Ali, Integrated crossover rules in real coded genetic algorithms.

European Journal of Operational Research, 2007. 176(1): p. 60-76.

164. Deep, K. and M. Thakur, A new crossover operator for real coded genetic algorithms.

Applied Mathematics and Computation, 2007. 188(1): p. 895-911.

165. Blum, C. and D. Merkle, Swarm Intelligence, Introduction and Applications. 2008, Berlin:

Springer.

166. Clerc, M. and J. Kennedy, The particle swarm - explosion, stability, and convergence in a

multidimensional complex space. Evolutionary Computation, IEEE Transactions on, 2002.

6(1): p. 58-73.

167. Xinchao, Z., A perturbed particle swarm algorithm for numerical optimization. Applied Soft

Computing, 2010. 10(1): p. 119-124.

174

168. Ostadmohammadi Arani, B., P. Mirzabeygi, and M. Shariat Panahi, An improved PSO

algorithm with a territorial diversity-preserving scheme and enhanced exploration–

exploitation balance. Swarm and Evolutionary Computation, 2013. 11(0): p. 1-15.

169. Silva, A., A. Neves, and E. Costa, SAPPO: A Simple, Adaptable, Predator Prey Optimiser,

in Progress in Artificial Intelligence, F. Pires and S. Abreu, Editors. 2003, Springer Berlin

Heidelberg. p. 59-73.

170. He, S., Q.H. Wu, J.Y. Wen, J.R. Saunders, and R.C. Paton, A particle swarm optimizer

with passive congregation. Biosystems, 2004. 78(1–3): p. 135-147.

171. Sun, J., W. Fang, V. Palade, X. Wu, and W. Xu, Quantum-behaved particle swarm

optimization with Gaussian distributed local attractor point. Applied Mathematics and

Computation, 2011. 218(7): p. 3763-3775.

172. Ji, W., J. Wang, and J. Zhang, Improved PSO based on update strategy of double extreme

value. International Journal of Control and Automation, 2014. 7(2): p. 231-240.

173. Kaveh, A. and A. Zolghadr, Democratic PSO for truss layout and size optimization with

frequency constraints. Computers & Structures, 2014. 130(0): p. 10-21.

174. He, G. and N.-j. Huang, A new particle swarm optimization algorithm with an application.

Applied Mathematics and Computation, 2014. 232(0): p. 521-528.

175. Wang, H., H. Sun, C. Li, S. Rahnamayan, and J.-s. Pan, Diversity enhanced particle

swarm optimization with neighborhood search. Information Sciences, 2013. 223(0): p. 119-

135.

176. Gao, W. and S. Liu, A modified artificial bee colony algorithm. Computers & Operations

Research, 2012. 39: p. 687-697.

177. Gao, W., S. Liu, and L. Huang, A global best artificial bee colony algorithm for global

optimization. Journal of Computational and Applied Mathematics, 2012. 326: p. 2741-2753.

178. Bäck, T., Evolutionary algorithms in theory and practice: evolution strategies, evolutionary

programming, genetic algorithms. 1996, New York, USA: Oxford University Press Oxford.

179. Banharnsakun, A., T. Achalakul, and B. Sirinaovakul, The best-so-far selection in Artificial

Bee Colony algorithm. Applied Soft Computing, 2011. 11: p. 2888-2901.

180. Akay, B. and D. Karaboga, A modified Artificial Bee Colony algorithm for real-parameter

optimization. Information Sciences, 2012. 192: p. 120-142.

181. Li, G., P. Niu, and X. Xiao, Development and investigation of efficient artificial bee colony

algorithm for numerical function optimization. Applied Soft Computing, 2012. 12: p. 320-

332.

182. Karaboga, D. and B. Akay, A comparative study of Artificial Bee Colony algorithm. Applied

Mathematics and Computation, 2009. 214(1): p. 108-132.

183. Chen, Q., B. Liu, Q. Zhang, P.N.S. J. J. Liang, and B.Y. Qu, Problem Definition and

Evaluation Criteria for CEC 2015 Special Session and Competition on Bound Constrained

Single-Objective Computationally Expensive Numerical Optimization. Nov 2014, Technical

Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China

and technical report, Nanyang Technological University, Singapore.

175

184. Espinosa, J., J. Vandewalle, and V. Wertz, Fuzzy logic, identification and predictive control.

2005, United Kingdom: Springer-Verlag London Limited.

185. Takagi, T. and M. Sugeno, identification of systems and its applications to modeling and

control. IEEE transactions on systems, man and cybernetics, 1985. SMC-15: p. 116-132.

186. Jiang, H., C.K. Kwong, Z. Chen, and Y.C. Ysim, Chaos particle swarm optimization and T–

S fuzzy modeling approaches to constrained predictive control. Expert Systems with

Applications, 2012. 39(1): p. 194-201.

187. Hadjili, M.L., Fuzzy logic in nonlinear modeling and control. Université Catholique de

Louvain: Belgium.

188. Shridhar, R. and D.J. Cooper, A Tuning Strategy for Unconstrained SISO Model Predictive

Control. Industrial & Engineering Chemistry Research, 1997. 36: p. 729-746.

189. Venkateswarlu, C. and A.D. Reddy, Nonlinear Model Predictive Control of Reactive

Distillation Based on Stochastic Optimization. Industrial & Engineering Chemistry

Research, 2008. 47(18): p. 6949-6960.

190. Grosman, B. and D.R. Lewin, Automated nonlinear model predictive control using genetic

programming. Computers & Chemical Engineering, 2002. 26(4–5): p. 631-640.

191. Onnen, C., R. Babuška, U. Kaymak, J.M. Sousa, H.B. Verbruggen, and R. Isermann,

Genetic algorithms for optimization in predictive control. Control Engineering Practice,

1997. 5(10): p. 1363-1372.

192. Coelho, J.P., P.B. de Moura Oliveira, and J.B. Cunha, Greenhouse air temperature

predictive control using the particle swarm optimisation algorithm. Computers and

Electronics in Agriculture, 2005. 49(3): p. 330-344.

193. Ait sahed, O., K. Kara, and M.L. Hadjili. PSO-based fuzzy predictive control. in IECON

2012 - 38th Annual Conference on IEEE Industrial Electronics Society. 2012.

194. Hadjili, M.L., K. Kara, O. Ait sahed, and J. Bouyanzar, Fuzzy Predictive Control Using

Particle Swarm Optimization: Application to SCARA Robot. Applied Mechanics and

Materials, 2014. 527: p. 230-236.

195. Ying, S., C. Zengqiang, and Y. Zhuzhi, New Chaotic PSO-Based Neural Network

Predictive Control for Nonlinear Process. Neural Networks, IEEE Transactions on, 2007.

18(2): p. 595-601.

196. Chang, W.-D., Nonlinear CSTR control system design using an artificial bee colony

algorithm. Simulation Modeling Practice and Theory, 2013. 31: p. 1-9.

197. Bose, D., S. Biswas, A.V. Vasilakos, and S. Laha, Optimal filter design using an improved

artificial bee colony algorithm. Information Sciences, 2014. 281(0): p. 443-461.

198. Zhou, J., X. Zhang, G. Zhang, and D. Chen, Optimization and Parameters Estimation in

Ultrasonic Echo Problems Using Modified Artificial Bee Colony Algorithm. Journal of Bionic

Engineering, 2015. 12(1): p. 160-169.

199. Govardhan, M. and R. Roy, Generation scheduling in smart grid environment using global

best artificial bee colony algorithm. International Journal of Electrical Power & Energy

Systems, 2015. 64(0): p. 260-274.

176

200. Contreras-Cruz, M.A., V. Ayala-Ramirez, and U.H. Hernandez-Belmonte, Mobile robot path

planning using artificial bee colony and evolutionary programming. Applied Soft

Computing, 2015. 30(0): p. 319-328.

201. Benyoucef, A.s., A. Chouder, K. Kara, S. Silvestre, and O. Ait sahed, Artificial bee colony

based algorithm for maximum power point tracking (MPPT) for PV systems operating

under partial shaded conditions. Applied Soft Computing, 2015. 32(0): p. 38-48.

202. De Moor, B.L.R., DaISy: Database for the Identification of Systems, E.S. Department of

Electrical Engineering, K.U.Leuven, Editor.: Belgium.

203. Pellegrinetti, G. and J. Bentsman, Nonlinear Control Oriented Boiler Modeling-A

Benchmark Problem for Controller Design. IEEE Transactions on Control Systems

Technology, 1996. 4: p. 57-64.

204. Espinosa, J. and J. Vandewalle. Predictive Control Using Fuzzy Models Applied to a

Steam Generating Unit. in proceedings of the 3rd International Workshop on Fuzzy Logic

and Intelligent Technologies for Nuclear Science and Industry. 1998.

