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ABSTRACT 

The aim of this work is to develop simple and efficient nonlinear predictive 

control algorithms. The idea is to use the meta-heuristic approach to find, in a 

reasonable computational time, an accurate suboptimal solution to the nonlinear 

optimization problem. Mainly, particle swarm optimization and artificial bee colony 

approaches are envisaged. Without loss of generalization to other models, Takagi-

Sugeno fuzzy models are used to construct prediction models. 

The first proposed control algorithm is based on a modified version of the 

PSO algorithm. The key idea of this algorithm is to use a reduced population size 

with a small number of iterations in order to reduce the required computational 

time. This can be achieved by distributing the initial particles positions, according 

to the normal distribution law within the area around the current best position. The 

radius limiting this area is adapted according to the tracking error value.  

Artificial bee colony algorithm, a recently introduced meta-heuristic 

optimization algorithm, has several characteristics that make it more attractive 

than other meta-heuristic methods to design efficient nonlinear predictive control 

algorithms. Two improved versions of this algorithm that allow overcoming some of 

its deficiencies are proposed and used to develop two nonlinear predictive control 

algorithms.  

The performance and computational efficiency of the different proposed 

algorithms are evaluated by considering a series of numerical benchmark 

functions, the control of two benchmark systems and a DSP based experimental 

setup. The obtained results are commented and compared with those of several 

other methods. 

Keywords: nonlinear predictive control; meta-heuristic algorithms; DSP 



 
 

RESUME 

Le but de ce travail est de développer des algorithmes simples et efficaces 

pour la commande prédictive non linéaires. L'idée est d'utiliser l'approche 

d’optimisation méta-heuristique pour trouver, dans un temps de calcul raisonnable, 

une solution sous-optimale au problème d'optimisation non linéaire. 

Principalement, les approches optimisation par essaim de particules et colonies 

d'abeilles artificielles sont envisagées. Sans perte de généralisation à d'autres 

types de modèles, les modèles flous de Takagi-Sugeno sont utilisés dans la mise 

en œuvre des modèles de prédiction. 

Le premier algorithme de commande proposé est basé sur une version 

modifiée de l'algorithme PSO. L'idée de base de cet algorithme est d'utiliser un 

nombre réduit de particules et d’itérations pour réduire le temps de calcul 

nécessaire. Ceci peut être obtenu en distribuant les positions initiales des 

particules, en utilisant la loi de distribution normale, à l'intérieur de la zone autour 

de la meilleure position actuelle. Le rayon délimitant cette zone est adapté en 

fonction de la valeur de l'écart entre la sortie du système et la trajectoire de 

référence. 

L’algorithme des colonies d'abeilles artificielles, un algorithme d'optimisation 

méta-heuristique récemment introduit, a plusieurs caractéristiques plus attractives 

que les autres méthodes d’optimisation méta-heuristiques. Deux versions 

améliorées de cet algorithme permettant de surmonter un certain nombre de ses 

inconvénients, sont proposées et utilisées pour développer deux algorithmes de 

commande prédictive non linéaire. 

Les performances et l'efficacité de calcul des différents algorithmes 

proposés sont évaluées en considérant une série de fonctions benchmark, la 

commande de deux systèmes de complexité différente et un dispositif 

expérimental basé sur une implémentation sur DSP. Les résultats obtenus sont 

commentés et comparés à ceux de plusieurs autres méthodes. 

Mots-clés: Commande prédictive non-linéaire; algorithmes méta-

heuristiques; DSP 



 
 

 ملخص

من أجل حل  بسیطة وفعالة تحكم اشتقاق خوارزمیات ھوالعمل ان الھدف من وراء ھذا 

من  خوارزمیات البحث المتقدمان الفكرة تتلخص في استعمال . التحكم التنبؤي غیر الخطيمشكلة 

لقد  باستعمال ابسط امكانیات حسابیة ممكنة. الأمثلدقیقة لمشكلة ایجاد الحل على حلول أجل الحصول 

 بالاضافة الى تبني ،ABCو  PSOرزمیات البحث المتقدم المسماة اخوباستعمال قمنا في ھذا العمل 

تبقى لة صّ النتائج المح، مع العلم أن Takagi-Sugenoمن نوع  ةغیر الخطی ةتنبؤیال النماذج

  النماذج.صالحة في حال تم تبني نوع آخر من 

. ان الفكرة العامة وراء ھذا الاقتراح PSOلقد قمنا باقتراح خوارزمیة تحكم استنادا على 

 لتقلیص الامكانیات الحسابیة مع عدد أجیال محدودمجموعة سكانیة صغیرة تتلخص في استعمال 

 الحالي الحل الأمثلحول  لعناصر المجموعة السكانیة الأولیةالذكي المطلوبة عن طریق التوزیع 

یتم تحدیده دوریا باستعمال  في دائرة نصف قطرھا. ھذا التوزیع یتم الغاوسيقانون التوزیع  باستعمال

  مخارج النظام و مسارات المرجعیة المنشودة.خطأ التتبع بین 

تتمیز بالعدید ، حدیثة الانشاء، خوارزمیة بحث متقدم )ABCمستعمرة النحل الاصطناعیة (

التحكم عند تصمیم خوارزمیات  جاذبیة من الخوارزمیات الأخرى أكثرمن الخصائص التي تجعلھا 

من ھذه الخوارزمیة  محسنتیننسختین و استعمال  تم اقتراحالبسیطة و الفعالة.  التنبؤي غیر الخطي

الحصول على حلول أكثر دقة، خاصة عند  من أجل و النواقص المسجلة بعض على التغلب بھدف

  .مشكلة ایجاد الحل الأمثل الخاصة بنظام التحكم التنبؤي غیر الخطيحل 

وال من خلال استعمال مجموعة من الدّ رزمیات الحسابیة تم تقییمھا اكفاءة الخوآداء و 

قمنا بعد ذلك لقد . DSPالرقمیة، مشكلتي تحكم قیاسیتین بالاضافة الى تجارب تطبیقیة باستعمال 

  .بتجمیع النتائج و التعلیق علیھا، بالاضافة الى مقارنتھا مع نتائج العدید من الخوارزمیات الأخرى

  

  ; DSP  خوارزمیات البحث المتقدم ; التحكم التنبؤي غیر الخطیة تقنیة: كلمات البحث
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INTRODUCTION 

Model Predictive Control (MPC), also known as moving horizon control or 

receding horizon control, is an advanced control strategy that has been developed 

in late seventies. It is based on the use of an explicit model to online predict the 

process future behaviour over a given finite horizon, and then computes a control 

sequence that minimizes a given cost function. This function usually takes the 

form of a quadratic function of the errors between the predicted responses and the 

reference trajectory, and includes in most cases the control effort. 

Since its creation, the predictive control has received a lot of attention from 

the research community. Richalet, Rault, Testud and Pagon were the first to 

introduce the predictive control philosophy with their Model Predictive Heuristic 

Control (MPHC) strategy [1, 2], later followed by the Dynamic Matrix Control 

(DMC) [3], and a number of other design techniques like: Internal Model Control 

(IMC) [4], Linear Dynamic Matrix Control (LDMC) [5], Quadratic Dynamic Matrix 

Control (QDMC) [6], and the famous Generalized Predictive Control (GPC) 

technique introduced by Clarke and Mohtadi [7, 8]. 

 The MPC strategy is an advanced control technique that has been 

successfully applied in many fields. This success can be attributed to three 

important factors: 

1) The use of an explicit process model which allows the controller to 

consider all of the process dynamics. 

2) The MPC algorithm considers process behaviour over a future horizon 

in time. This means that the effects of feedforward and feedback disturbances can 

be anticipated and removed providing better performances. 

3) The ability to handle constraints directly during the design of the 

controller [9]. 

In fact, this last property is the main reason behind its popular use in many 

practical applications such as chemicals, polymers, air and gas processing, 

refining, petrochemical, and food processing industries [10, 11].  Furthermore, 

MPC techniques are able to deal with complex control problems which involve 
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multivariable process interactions, non-minimum phase behaviour, and variable or 

unknown time delays [12, 13]. 

Although classical MPC algorithms, which use a linear prediction model, 

provide satisfactory performance in many applications, against highly nonlinear 

process, severe degradation in control performance can occur, unless the 

operating conditions are very close to the steady state around which the model is 

linearized [13]. Since the most practical processes are nonlinear by nature, new 

efficient techniques, based on nonlinear models, have to be derived to incorporate 

nonlinearities and ensure higher control performance.  Indeed, a lot of attention 

was given to the Nonlinear MPC (NMPC) strategies and several nonlinear control 

algorithms have been proposed [14-16]. The use of nonlinear models allows 

enhancing the overall controller performance; however the corresponding 

optimization problem, which is nonlinear and non-convex, requires complex and 

time consuming procedures [17-19].  Moreover, driving appropriate nonlinear 

models is often a difficult task. It is clear that good and accurate system output 

predictions are a prerequisite in any efficient predictive control scheme. Therefore 

the developed model must have the ability to faithfully mimic the behaviour of the 

real process, especially the dependence between the outputs, the current 

measured variables and the current/future inputs. Nevertheless, obtaining an exact 

representation of the physical process is impossible, only an approximation can be 

constructed to predict the future process behaviour for a given control sequence. 

A large class of various nonlinear models, which can be used within 

predictive control strategies, exists. Nonetheless, the simplest model that gives 

enough accurate predictions should be used [20]. To get reliable predictions, it is 

not always necessary to include all of the physical, chemical and internal 

behaviour of the process into the constructed model; but rather to only include the 

dynamics that affect the predictions. 

Fuzzy inference systems (FIS) are particularly interesting approaches that 

were satisfactory used in nonlinear systems modelling [13, 17, 21]. Indeed, it has 

been shown that FIS are capable of approximating any continuous function with a 

certain level of accuracy [22]. Takagi-Sugeno (TS) models, a subdivision of fuzzy 

models, are widely used and particularly suitable for NMPC algorithms [17, 23]. 
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These models are able to express the dynamic nature of systems with 

characteristics of randomness, large delay time and strong nonlinearity [24, 25]. 

Obtaining optimal solutions to the optimization problem, when a nonlinear 

model is used, is a difficult task. In fact, all the proposed NMPC techniques seek to 

find a suboptimal solution of adequate quality that can meet the control objectives. 

Depending on how it is proceeded to obtain the suboptimal solution, Tatjewski [26] 

has classified the existing methods into three main categories: 

- Linearization of the nonlinear model in order to obtain an approximate linear and 

convex optimization problem, which has a straightforward solution.  

- Using a prediction model that is given by the sum of two terms: a free response 

term, obtained from the nonlinear model of the system, and a forced response 

term, computed using a linear model. The obtained optimization problem is convex 

and can be resolved using quadratic programming algorithms.  

- Nonetheless, with highly nonlinear processes that have quick reaction times, 

approximating the nonlinear model in order to obtain a convex optimization 

problem is insufficient. In fact, nothing but the complete use of the nonlinear model 

appears to be acceptable. This class of algorithms tackles the nonlinear and 

generally non-convex optimization problem directly using nonlinear optimization 

techniques.  

Numerical approaches were extensively used to solve nonlinear 

optimization problem (NOP) [26-28]. We can distinguish two major families: 

- Deterministic numerical approaches, which include the famous sequential 

quadratic programming (SQP) and the nonlinear interior point (NIP) methods. 

When using these methods, the nonlinear optimization problem will be handled by 

solving a series of linear sub-problems. A large number of NMPC algorithms have 

been proposed using this approach [29-32]. The major drawbacks of these 

methods are the sensitivity to the initial conditions; as suitable initial guesses must 

be provided to start the iterative process and to ensure the convergence toward 

the global optimum [33-35]. For this reason, these approaches are sometimes 

called local methods [33]. Furthermore, these methods could not be used with 

some empirical models where the derivative details are either inaccessible or 

extremely hard to get [36]. An additional drawback is the fact that these 
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approaches could only be used with continuous variables; they cannot handle 

discrete problems [37]. 

- Stochastic numerical approaches which rely on stochastic meta-heuristic 

optimization algorithms to directly solve the NOP. They are based on fundamental 

elements and procedures that produce evolution and intelligent behaviours in 

natural systems [38] or on physical principles [39], and are capable of handling the 

majority of existing optimization problems [39, 40]. Stochastic meta-heuristic 

algorithms have known huge success, both in academia and the industry [39, 41]. 

More enhanced variants and completely new meta-heuristic algorithms are 

continuously developed and proposed by an increasingly active research 

community, and the industry is adopting these methods to solve the different 

existing engineering problems. This success could be attributed to the fact that the 

meta-heuristic algorithms are simple, flexible, derivative-free, and able to handle 

local optima while generating high quality solutions within a reasonable period of 

time [39, 42-44]. Due to their heuristic and random natures, these algorithms have 

a better searching capability than those of the classical approaches [45]. They are 

also unaffected by initial conditions and can handle both discrete and continuous 

problems. 

Although different approaches to solve the NMPC problems using meta-

heuristic algorithms have been proposed [34, 46-48], compared to the 

deterministic numerical methods, their use within the predictive control framework 

is relatively limited.  

The ABC, a recently introduced optimization algorithm, has been a 

distinctive meta-heuristic algorithm. Several comparative studies [49, 50] between 

this algorithm and several other meta-heuristic algorithms such as GA (Genetic 

Algorithms), PSO (Particle Swarm Optimization) and DE (Differential Evolution), 

have shown that the ABC performances are better or at least similar to the 

performances of these algorithms. Furthermore, this algorithm was found to be 

simpler, more computing efficient and to generate more accurate solutions 

compared to other established algorithms. A survey [51] reviewing the advances 

related to the ABC algorithm and its applications has indicated that more than 330 

research papers were published within the scope of merely seven years of its 
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creation. Seeing that more scholars adopt this algorithm, this number is expected 

to increase exponentially in the near future. 

The efficiency and the performance of any NMPC based controller depend 

on two key aspects of its design. The modelling of the nonlinear physical process 

and the way the NOP is handled. In the present work, Takagi-Sugeno fuzzy 

approach is used to construct the different required nonlinear models. This choice 

is based on the previously mentioned advantages of fuzzy systems and Takagi-

Sugeno models.  

The second design aspect, which deals with the NOP, is in fact the focal 

point of our work. The main objective of this work is to propose efficient nonlinear 

model predictive controllers based on meta-heuristic algorithms, as viable and 

practical substitutes to the conventional NMPC controllers. Indeed, three control 

algorithms are proposed: The first one is based on an efficient PSO algorithm, and 

the other two are based on proposed ABC algorithms. In order to evaluate the 

performances of these algorithms, several comparative studies using several 

numerical benchmark functions and two control benchmark systems are carried 

out. To further asses the efficiency of the developed algorithm, their 

implementation using a DSP (digital signal processor) board is also considered. 

The thesis layout is as follows: The first chapter deals with the main 

concepts and the implementation issues of model predictive control. Both linear 

and nonlinear control technique along with several control algorithms are 

described. The feasibility and the stability issues are also addressed. The second 

chapter is fully dedicated to meta-heuristic optimization algorithms. The chapter 

starts with a description of the different notions associated with these algorithms, 

followed by a detailed description of three meta-heuristic algorithms, namely the 

genetic algorithm (GA), the particle swarm optimization (PSO) and the artificial bee 

colony (ABC). The proposed ABC algorithms are presented and evaluated against 

several meta-heuristic optimization algorithms using a number of numerical 

benchmark functions. In the last chapter, three proposed NMPC based control 

algorithms are presented and their control performances are evaluated and 

compared with that of several conventional linear and nonlinear control techniques 

by considering the control of SISO continuous stirred tank reactor model and the 

MIMO industrial boiler model. 
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CHAPTER1: 

MODEL PREDICTIVE CONTROL 

1. Introduction 

This chapter introduces the main concepts of the model predictive control 

and gives some techniques used to solve both linear and nonlinear Model 

Predictive Control (MPC) problems. The feasibility issue and some approaches 

used to guarantee the stability of the closed loop are given at the end of this 

chapter. 

This chapter is built, if not otherwise indicated, based on the books given by 

the references [10, 12, 26]. 

2. Predictive control principle 

The general principle of the model predictive control is based on using an 

explicit model to online predict the process future behaviour over a given finite 

prediction horizon, and on determining a control sequence that optimizes a given 

cost function. This strategy is illustrated, for a single-input single-output (SISO) 

process, in figure 1.1. Usually, the control input sequence 

        ˆ ˆ ˆ ˆ| | , 1 | , , 1 |pU t u t t u t tt t u t N      along the prediction horizon pN  is 

computed over a smaller horizon known as control horizon uN  u pN N , and the 

control inputs beyond the horizon uN  are kept constant (that is: 

   ˆ ˆ| 1 |uu t j t u t N t    for j uN ). The notation  ˆ |u t j t  for 0 1pj N    is 

used to express the value of the control input u  at the sampling time t j  that is 

computed at the sampling time t .  y t  is the measured process output, and

 ˆ |y t j t  and  w t j  (1 pj N  ) are the predicted values of the process output 

and the desired reference trajectory over the prediction horizon, respectively. 



18 
 

 
 

 

Figure 1.1 : Principle of model predictive control strategy. 

All the MPC strategies can be described by the following steps: 

 At each sampling time, the future values of the process outputs are 

computed over a prediction horizon using the process model.  

 A reference trajectory is specified over at least the prediction horizon. 

 A future control sequence that minimizes the cost function over a 

control horizon is computed. Only, the first element of this sequence is applied to 

the system. 

 In the next sampling time, the preceding steps are repeated according 

to the receding horizon concept. 
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It is clear that good and accurate system output predictions are prerequisite 

in any efficient predictive control scheme. Nevertheless, obtaining an exact 

representation of the physical process is impossible. Only an approximation can 

be constructed to predict the future process behaviour for a given control 

sequence. Furthermore, the manipulated variables are often affected by 

perturbations and measurement noise. The difference between the outputs 

predictions and the actual measured outputs is denoted by      ˆ |d t y t y t t  .  

To simplify notation, the vertical bar ‘ | t ’ used within the predicted variables 

is sometimes omitted. 

2.1. Cost function 

The predictive control is formulated as a minimization problem of a given 

objective function (cost function) that includes all the desired control objectives 

over the prediction horizon. Mainly, it contains a term representing the tracking 

error between the actual process output and the reference trajectory and another 

one representing the control signals energy. To make solving the predictive control 

problem simpler and quicker, the cost function is usually expressed as a quadratic 

function. The most commonly used one has the following form: 

 
    

                
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
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where   

                                             Δ   Δ

 

                                          
 

 
 

2

1 1

2 2
ˆ ˆ| 1

uNN

j N j
Q j R j

y t j t w t j u t j
 

         = Δ

 (1.1) 

where J  is the cost function, 1N  and 2N  are respectively the minimum and the 

maximum prediction horizons and Q  and R  are the weight matrices. 

In the evaluation of the cost function of equation (1.1), the tracking errors 

starting from 1t N  to the end of the prediction horizon 2t N , are considered, 

where 1 21 N N  . It is not necessary to start penalizing the tracking errors from 

the sampling period 1t   by taking 1 1N  , because a delay could exist between 
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applying a given control action and seeing its effect on the system output. 

Therefore, it is unnecessary to include the tracking errors of samples that cannot 

be influenced by the current control sequence. Generally 1N  is chosen based on 

this delay, although sometimes in the literature, 1 1N   is assumed to simplify the 

notation [26]. This choice will not change the obtained results, but rather increases 

slightly the computational burden of the problem. For simplification, the above 

notation of 1 1N  , unless indicated otherwise, will be adopted in the remaining of 

this dissertation. We note that it is possible to penalize the tracking errors of some 

chosen samples within the prediction horizon and ignore the others. The control 

horizon on the other hand must satisfy the following constraint 20 uN N  . 

Nevertheless, to decrease the dimensionality of the optimization problem and 

obtain a more computing efficient formulation, it is usually preferred to select

2uN N . 

The matrix  Q j  is used to penalize the tracking error  e j  between the 

predicted outputs and the reference trajectory along the prediction horizon. Most 

predictive controllers adopt this approach, although, in some situations, the 

tracking errors of the different sampling times are not evenly penalized. In the case 

where the scaling of the tracking error is not required,  Q j  is replaced with a 

unity matrix I  of the same dimensionality. The second matrix  R j  has the same 

role as  Q j  but with the control input increments   ˆ 1 for 1, , uu t j j N   Δ   

instead of the tracking errors   2 for 1, ,e t j j N   . This matrix is sometimes 

called the move suppression factor since any relative increase in its values relative 

to the weights of  Q j  has the effect of reducing the control activity [12]. To 

ensure that 0J  , we must have   0Q j   and   0R j  . 

 When choosing, in the formulation given by equations (1.1),  Q j I  and 

 R j I , the following typical cost function is obtained [20, 26]: 

 
 

    
 

     
ˆ ˆ

1 1

2 2
ˆ ˆmin  , , ( ) min  ˆ ˆ=  | Δ 1|

upN N

u t u t
j j

J u t y t w t y t j t w t j u t j t
 

 

         (1.2) 
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where   is a positive scalar that defines the weighting factor of the control inputs 

variations. 

The second term in the right side of (1.2) could be completely taken out by 

setting 0   to remove any restriction on the control actions changes. This will 

often lead to the presence of huge input changes and insufficient robustness 

against modelling errors [26]. In some situations, the values of the control inputs 

are also penalized by introducing the term  
2

0ˆ |
S

u t j t u   to force the control 

inputs to follow some ideal resting value. This is done when there is more inputs 

than variables to be controlled [12]. 

The prediction horizons 1N  and 2N , the control horizon uN , the weight 

matrices  Q j  and  R j  are the design parameters of the predictive controller. 

These parameters, in addition to the reference trajectory ( )w t  affect the behaviour 

of the closed-loop combination of the process and the predictive controller. 

Choosing the appropriate values for these parameters is sometimes dictated by 

the economic objectives, but generally, they are tuned to meet the desired control 

performance. 

2.2. Prediction model 

The first step in designing model predictive controllers is obtaining the 

prediction model, which will be used to predict the future values of the process 

outputs over a given prediction horizon. This model must have the ability to 

faithfully mimic the behaviour of the real process, especially the dependence 

between the outputs, the current measured variables and the current/future inputs. 

The empirical (black box models), the fundamental (white box models or first 

principle models obtained from balance equations) or the grey box (developed 

from combining the two previous approaches) approach can be used to design 

such model. Although, a large class of linear and nonlinear models exist and can 

be used in MPC, the simplest model that gives enough accurate predictions 

should be used. Indeed, in order to get reliable predictions, it is not always 

necessary to include all of the physical, chemical and internal behaviour of the 

process into the constructed model; but rather to include only the dynamics that 

affect the predictions. Reduction techniques like singular perturbations could be 
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used to derive a more simpler model from a rigorous model that can retain the 

basic dynamic behaviour of the full-scale model [52]. This approach has been 

successfully applied in chemical engineering by Duchêne and Rouchon [53]-[54]. 

One of the strong characteristics of the model predictive control strategy is 

its indifference toward the adopted modelling approach used in the construction of 

the predictor; of course, this remains valid as long as the constructed model is 

precise. This fact has ensured that a wide variety of modelling techniques have 

been successfully implemented within the predictive control scheme. We could 

mention the Artificial neural networks approaches [18, 55, 56], fuzzy modelling 

techniques [25, 47, 57, 58], Hammerstein and Wiener models [59-62]. More linear 

and nonlinear modelling techniques are given in [63, 64]. 

If the constructed model used to generate the predictions has a linear form, 

the optimization problem (1.2) is a minimization of a convex quadratic function that 

has a unique and a global minimum, and for which a solution could easily be 

obtained analytically especially if no inequality constraints are imposed. When 

these constraints are present, the solution could be easily obtained using 

quadratic programming techniques. This is very convenient for the on-line 

applications. However, when the prediction model is nonlinear, the situation is 

more complex. Due to the nonlinear relation between the predicted process 

outputs and the control sequence, the optimization problem (1.2) becomes 

nonlinear and non-convex. The analytical approach to solve this problem is 

generally unfeasible even if no additional inequality constraints are present [26, 

28], while the numerical optimization algorithms could easily be trapped in local 

minima [33]. Moreover, it is difficult to estimate the time needed to solve the 

optimization problem, and it is not guaranteed that the obtained solution is the 

global optimum. Of course, nonlinear optimization requires complex and time 

consuming procedures [17-19]. In order to simplify the optimization problem, the 

most practical MPC algorithms are still using linear models [20, 26]. 

2.3. Constraints 

One of the major advantages of the MPC scheme is its direct and 

systematic ability to handle constraints. Indeed, the majority of practical processes 

have limitations imposed on their variables that must be included, as constraints, 
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in the optimization problem.  Depending on the nature of these limitations, different 

types of constraints could be distinguished. Mainly, we could encounter: 

 Constraints on the control inputs values: 

  min max
ˆ |     j=0, , 1uu uu t j t N    (1.3) 

 Constraints on the increments inputs: 

  min max
ˆ |     j=0, , 1uu t j Nu t u       (1.4) 

 Constraints on the values of the system outputs: 

  min max
ˆ |     j=1, , py t j ty y N   (1.5) 

Other types of constraints could also be considered such as the system 

outputs variation, imposing constraints for a sub window within the prediction 

horizon, or instead of using two-sided constraints (known also as a band 

constraints or range constraints), the special case of one sided constraints could 

be used: 

   max
ˆ |     j=1, , py t j t y N    

These constraints originate mostly from physical limitations, safety reasons, 

economic and environmental objectives. Input constraints, usually considered as 

hard constraints that cannot be exceeded, are the physical limitations presented 

by actuators with a limited range of action and a limited slew rate. On the other 

hand, constraints on the output are of technological nature and can physically be 

exceeded [26], although doing so, could lead to incorrect product specifications or 

even cause damage to the equipment. Nevertheless, these constraints could be 

treated as ‘soft constraints’; this means that a temporary violation of the 

constraints is possible but under severe and special conditions. 

Now, let us reformulate the optimization problem (1.2), to include all the 

elements found in a general MPC problem: 
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 
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ˆ ˆwhere   , , ( )

          

           subject to :  the constraints (1.3), (1.4) and (1.5)

ˆ ˆ | Δ 1|
p u

u t

N N

j j

J u t y t w t

J u t y t w t y t j t w t j u t j t

 (1.6) 

The first step when solving the new optimization problem is to try to 

translate all the linear inequality constraints ((1.3), (1.4) and (1.5)) into inequalities 

concerning the decision variables  ˆ |u t j t  . If the prediction model is linear, the 

resulting inequalities will remain linear. This property is going to be crucial if a 

solution to the optimization problem were to be found quickly and efficiently. The 

admissible solutions (feasible solutions) set of the constrained optimization 

problem could become empty (unfeasible problem) if it is not possible to 

simultaneously satisfy all the imposed constraints. The practical implementation of 

MPC algorithms requires a special care to avoid getting in this undesirable 

situation. 

Even if the prediction model is linear, the mere presence of the constraints 

will usually result in a nonlinear control law. The MPC controller behaves linearly 

as long as the system is operating far from the constraints and nonlinearly when 

the constraints are approached [12].  

3. Linear Model Predictive Control 

The first generations of model predictive algorithms and most commercial 

MPC programs use a linear prediction model. Depending on the type of the 

prediction model, several strategies have been proposed. The dynamic matrix 

control (DMC), introduced by Cutler and Ramaker [3], was one of the first 

successful implementation of the MPC control scheme in the industry. It uses a 

discrete step response as a prediction model and can handle the constraints only 

in an approximate way. This problem was solved by introducing the quadratic 

dynamic matrix control (QDMC) in 1986 by Garcia and Morshedi [6]. Model 

algorithmic control (MAC), also known as model predictive heuristic control 

(MPHC), is another approach that uses an impulse response model and is almost 

identical to the DMC strategy [10, 26]. The DMC and the MAC are both considered 
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to be the first generation of MPC algorithms [12], however, their use is limited to 

stable processes. 

Richalet [65] has introduced the predictive functional control (PFC) for the 

case of fast processes. This approach uses a state space representation of the 

process and can handle nonlinear dynamics and unstable linear internal models. 

One of the most famous and successful MPC strategy, both in the industry and the 

academia, is known as the generalized predictive control (GPC). It was first 

proposed by Clarke et al. in 1987 [7, 8]. The GPC uses a process model, in the 

form of discrete transfer function (or difference equations), that allows the use of a 

wider class of disturbance models. In addition to these strategies, other linear 

approaches were proposed [10, 12, 26].  

In the next sections, the formulation of the GPC algorithm, for the siso case, 

is given. 

3.1. Prediction 

The key idea is to formulate the prediction equation using the superposition 

principle into a separately free output component and a forced one that explicitly 

depends on future inputs. 

The GPC formulation is based on the use of the CARIMA (Controlled Auto-

Regressive Integrated Moving-Average) model, which is defined, for a single-input 

single-output (SISO) process, by:   

            1 1 11d Ge t
A z y t B z z u t C z     


 (1.7) 

where  Ge t  is a zero mean white noise, d  is the dead time of the system, 

11 z    is the differentiating operator, while A , B  and C  are polynomials 

described in the backward shift operator 1z  by: 
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To simplify the formulation, the C  polynomial is chosen to be 1. 
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Now let us consider the following Diophantine equation: 

          1 1 1 1 11    with   j
j jE z A z z F z A z A z           (1.8) 

The polynomials jE  and jF  are uniquely defined with degrees 1j   and an  

respectively. To get their expressions, it suffices to divide 1 by  1A z  and 

factorize the remainder as  1 1
jz F z  . The quotient of this division will be the 

polynomial  1
jE z . 

Multiplying equation (1.7) by  1 j
jE z z  we get: 

                1 1 1 1 11j j j GA z E z y t j E z B z u t j d E z e t j             (1.9) 

which, using equation (1.8), could be written as: 

               1 1 1 11 1j
j j j Gz F z y t j E z B z u t j d E z e t j              (1.10) 

or as: 

                1 1 1 11j j j Gy t j F z y t E z B z u t j d E z e t j             (1.11) 

The noise terms in equation (1.11) are all in the future, thus the best 

prediction of  y t j  is: 

          1 1ˆ | 1j jy t j t G z u t j d F z y t         (1.12) 

where      1 1 1
j jG z E z B z   . 

The polynomials jE  and jF  could be obtained easily by the recursion of the 

Diophantine equation [7, 10]. 

Consequently, we could estimate the future process outputs along the 

prediction horizon, assuming 1 1N d  , as follows: 

      
1 11

ˆ | N Ny t N t G u t F y t     

      
1 11 1 1

ˆ 1| 1N Ny t N t G u t F y t        

  
      

2 22 2
ˆ | 1N Ny t N t G u t N F y t       
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or, using the matrix representation, as: 

        1 1ˆ ˆ 1Y G U F z y t G z u t        (1.13) 

where:  
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The first column of matrix G , that is the coefficients 
2 10 1,..., N Ng g   , 

represents the step response of the plant when a unit step is applied. 

The last two terms in the prediction equation (1.13) are the free response of 

the system; they depend solely on previous control increments and inputs. Thus, 

this equation could be rewritten as: 

 ˆ ˆ
reeY G U F    (1.14) 

3.2. Control law 

The typical MPC cost function is usually formulated as: 

             
2

1 1

2 2
ˆ ˆ, , ( ) ˆ ˆ= | Δ 1|

uNN

j N j

J u t y t w t y t j t w t j u t j t
 

         (1.15) 

Using the matrix representation and substituting the expression of (1.14) in 

equation (1.15) result in: 
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    ˆ ˆ ˆ ˆ
T

T
ree reeJ G U F W G U F W U U            (1.16) 

This equation could be expressed as: 

 0

1 ˆ ˆ ˆ
2

T TJ U H U b U f        (1.17) 

where: 
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If no constraints are imposed, the minimization of this type of cost function 

can be analytically obtained by taking the derivative of J  equal to 0. The solutions 

of this equation give the optimal control sequence U .  They are given by:  

    
11 T T

reeU H b G G I G W F
       (1.18) 

Inversing the matrix  TG G I  is a computing demanding process that is 

proportional to its dimensionality. To reduce the computing requirement of the 

algorithm, the control horizon concept, in which the control actions will be made 

constant after 2uN N  samples, is introduced. Using this concept the algorithm 

will have to inverse a matrix of u uN N elements instead of    2 1 2 1N N N N   . 

3.3. The constrained problem 

3.3.1. Formulation as a quadratic programming (QP) problem 

Most practical control systems include constraints, thus, making the manner 

in which they are handled by the control algorithm extremely important. In the 

linear case, this is done by translating both constraints on the inputs and on the 

outputs to be related directly to the control input increment through the dynamic 

matrix G , as follows: 

 Constraints on the values of the system outputs:  from equation (1.5), 

we could, using equation (1.14), write: 

    min max
ˆ | reeV VG U t t F tY Y   (1.19) 
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where minVY   and maxVY  are vectors of  2 1 1N N    elements, with: 

 
min max

min max

min max

          V V

y y

Y Y

y y

   
       
      

    

 Constraints on the increments inputs: from equation (1.4), we have: 

  min max
ˆ |V VtU U t U      (1.20) 

where minVU   and maxVU   are vectors of uN   elements: 

 
min max

min max

min max

          V V

u u

U U

u u

    
       
  

 

    

   

 Constraints on the control inputs values: equation (1.3) will be rewritten 

to have the following expression: 

      
0

ˆ ˆ| | 1
j

min max
i

u t j t u t i t u tu u


        (1.21) 

We could write: 

    min max1ˆ |VV VVU U t UJ t U t    (1.22) 

where minVU , maxVU  and VU  are vectors of dimensionality uN  that have the 

following values: 

 

 

 

min max

min max

min max

1

          

1
V V V

u u u t

U U U

u u u t

    
           
          

    

while VJ  is a matrix of dimensionality u uN N : 

 

1 0 0

1 1 0

1 1 1 1

VJ

 
 
 
 
 
 





   
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Inequalities (1.19), (1.20) and (1.22), could easily be reformulated to obtain the 

following form: 

  ˆ |C U t t c   (1.23) 

where C  and c  are matrix and vector known at time t  [12, 66]. 

Using equation (1.17), the optimization problem will be given by: 

 

0ˆ
min  

subject to

1 ˆ ˆ

   

ˆ

          

2

ˆ

T T

U
U H U b U f

C U c


    

 

 (1.24) 

Equation (1.24) is a standard optimization problem, known as (convex) 

quadratic programming (QP) problem, which can always be solved (or shown to 

be infeasible) within a limited number of iterations. Its computing requirement 

depends strongly on the characteristics of the objective function and the number of 

inequality constraints [67]. One of the approaches described in the next sub-

section can be used to solve, at each sampling period, this optimization problem. 

This approach could be easily transformed to accommodate multi-input multi-

output (MIMO) processes [26, 66]. 

Solving a quadratic programming (QP) problem, even in quadratic form, is 

not a trivial task. The analytical approach is no longer viable due to the presence 

of constraints. Instead, the use of numerical algorithms from the group of active 

set methods and interior point methods is considered to be the most effective way 

to solve these problems [26]. The convex QP problems could also be solved by 

other approaches like the augmented Lagrangian methods or by means of exact 

penalty method [67]. 

3.3.2. Solving convex QP problems 

Let us consider the following general form of a convex QP problem: 

  min      q =
1

2
 T

x

Tx Gx x dx    (1.25) 

 Subject to 

 ,  ,  for all T
i ia x b i    (1.26) 

 ,   for all T
i ia x b i    (1.27) 
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where G  is a positive semi-definite hessian matrix of n n  elements,   and   are 

finite sets of indices, d , x  and  ,ia i    are vectors with n  elements. 

a) Optimality conditions  

We define the active set ( )x  at any feasible solution x  as the union of the 

set   with the sub-set of the indices of the active inequality constraints, or as: 

  ( ) | T
i ix i a x b        (1.28) 

The optimal active set *( )x  is defined as the active set at the optimal solution *x . 

Suppose that the solution *x  is a local solution of (1.25)-(1.27). Then there 

must be a Lagrange multiplier vector *  with component *,i i    , so that the 

following necessary and sufficient conditions are satisfied: 

  * *, 0x x     (1.29) 

  * *,      for all T
i i xa x b i    (1.30) 

  * *,T
i ia x b i x             for all   (1.31) 

  ** 0,               for all xi       (1.32) 

with:   

    , ( ) T
i i

I
i

i

x q x a x b 


  


   (1.33) 

Consequently: 

  
 *

* * * *,x

i

i i

x

x Gx d a 


   


   (1.34) 

These equations are obtained after simplifying the first order necessary conditions 

for optimality, often referred to as the Karush-Kuhn-Tucker conditions, or KKT 

conditions [67]. 

As a consequence of (1.25)-(1.27) being convex QP problem, any local 

solution is also the global solution, and the KKT conditions (1.29)-(1.32) are in fact 

necessary and sufficient conditions for the global solution. 
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The QP formulation given by (1.25)-(1.27) is the same as the one given by 

(1.24). The constant 0f  has been dropped out because it has no influence on the 

solution and the equality constraints (1.26) have been presented explicitly. 

To solve the optimization problem (1.25)-(1.27), two major approaches are 

considered to offer the best performances: the active set methods successively 

used since 1970s, and the more recent interior point (IP) methods. Generally, the 

active set approaches are most effective for small to medium scale problems 

whereas the IP methods have been shown to be effective for large scale QP 

problems [67]. More details related to these approaches can be found in [67-69]. 

b) Active Set Methods 

the active set methods start from an initial solution 0x  and an initial working 

set 0  that contains all the equality constraints i  in addition to some (but not 

necessary all) of the active constraints, then converge towards the optimal active 

set *( )x  and the optimal solution *x  by iteratively solving equality QP sub-

problems. Using the gradient and the Lagrange multipliers information, the solution

kx  at the thk  iteration and the working set k  are continuously updated until the 

optimal active set *( )x  and the optimal solution *x  are obtained. 

We could distinguish three varieties for active set methods known as primal, 

dual and primal-dual [67]. In this section, the discussion is limited to the primal 

methods for which the generated solutions along the iterations remain feasible 

with respect to the primal problem (1.25)-(1.27). The general formulation of the 

algorithm is outlined in the next paragraphs. 

Suppose we have at the thk  iteration the working set k  with the feasible 

solution kx . The first step is to check, using the simplified KKT conditions, if this 

solution minimizes the QP (1.25)-(1.27) in the subspace defined by the working 

set. If not, a new candidate solution is generated by computing a step p  obtained 

by solving a QP sub-problem in which the constraints in the working set k  will be 

enforced as equality constraints while the inactive inequality constraints are 

disregarded. Let us define the following: 
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 ,      k k kp x x g Gx d      

Replacing x  by his expression in the objective function of (1.25) will result in: 

    
1

2
q =q = T t

kk p Gp gp px cx     

Where 
1

2
T T
k k kc x Gx d x   is a constant term. 

By dropping the constant term c , the QP sub-problem could be formulated as:  

 min
1

2
     T t

p
kp Gp g p   (1.35) 

 Subject to 

 0 ,     for all k
T
i ia p i    (1.36) 

Let kp  be the solution to this QP sub-problem. 

Whatever the value of kp , the constraints in k  will also be satisfied with x  

for all ki  because   0, since  for all T T T
i k i i k k i i k ka x b a x p b a p i      . In 

fact, this remains true even when  0,1,  k kx x p     . 

The step kp  can be computed using one of the standard approaches to 

solve the equality constraint QP (1.35)-(1.36) (see section 16.2 of [67] for an 

overview), like the one based on the direct solution of the corresponding KKT 

system: 

 
* 00

T
k k

k

p gG A

A 

     
     
   





  (1.37) 

where  
k

T

i i
A a





 is the Jacobian of constraints in the working set and *

k  is the 

vector of Lagrange multipliers for kp . 

If the step kp  is non zero, the next feasible solution 1kx   will be computed as: 

 1k k kx x p         (1.38) 

where 
k  is used to ensure that the new solution 1kx   satisfies the inactive 

inequality constraints of (1.27). Its value is given by: 
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, 0

min 1, min
def

T
k i ka p

T
i i k

k T
i

i k

b a x

a p


 

 
  

 
  (1.39) 

If 1k  , at least one of the inactive inequality constraints not in k  is blocking the 

step. As a result, a new working set 1k  is constructed by adding one of the 

blocking constraint to k . 

The iterations are continued in this manner, adding inactive constraints to 

the working set when necessary until the step 0p  , that is the current solution x̂  

minimizes the objective function (1.25) over the current working set  . At this 

point, we examine the Lagrange multipliers corresponding to the inequality 

constraints in the working set. If they are all non-negative, the optimal solution to 

the original QP problem (1.25)-(1.27) is found to be the current solution x̂ . If one 

or more constraints have negative multipliers, the constraint corresponding to the 

most negative multiplier is generally removed from the working set to permit 

further decrease of the objective function. The algorithm continues iterating by 

solving the QP sub-problem (1.35)-(1.36). 

The active set approach for convex QP could be summarized in the 

following algorithm [67]: 

Algorithm 1.1 

Compute a feasible starting point 0x ; 

Set 0  to be a subset of the active constraints at 0x ; 

for 0,1,2,...k    

 Solve (1.35)-(1.36) to find kp ; 

 if 0kp    

  Compute Lagrange multipliers ) ( ki i   that satisfy  , 0kx kx   ; 

   if 0  for all i ki     ; 

    Stop with solution *
kx x ; 

   else 
    set arg min

kj jj     ; 

    1k kx x   ; 

     1 \k k j   ; 

else  0// kp    

  compute k  from (1.39); 
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  1k k k kx x p   ; 

  if   there are blocking constraints 

   obtain 1k  by adding one of the blocking constraints to k ; 

  else 

   1k k     

end for 

The speed of the active set methods for a given QP problem depend greatly 

on the quality of the initial feasible solution and the method used to solve the KKT 

system (1.37). Within the context of linear MPC, the active set methods or any 

other optimization approach for that matter could be enhanced by exploiting the 

special structure of MPC problems. This special structure is essentially due to two 

features [12]: 

4) The resulting QP in the formulation of the MPC problem could be 

sparse with a particular ordering of the variables. 

5) A very good initial feasible solution for the current sampling time could 

be obtained from the previously calculated solution. 

The active set algorithm start iterating from an initial feasible solution. If the 

proposed solution is of good quality, the algorithm will require only a few iterations 

to converge towards the optimal solution. A good initial solution in an MPC based 

QP problem could be generated using the solution found in the previous sampling 

time 1t  , that is  0 1ˆ | 1x U t t   or by shifting this solution by one sampling 

period and adding a zero in the last term as follows: 

      0
ˆ ˆ ˆ| 1 , 1 | 1 , , 1 | 1 ,0ux u t t u t t u t N t        . This procedure remains 

accurate as long as the disturbances and the reference trajectory changes, if any, 

remain relatively small. Some other techniques to generate initial solutions could 

be found in [10, section 7.3]. In the case where no prior information about feasible 

solutions is available, specialized algorithms capable of generating either initial 

solutions or determining that the problem is infeasible exist. One of such 

approaches is the Phase I method in which the feasible solution will be generated 

by solving a linear optimization problem or the Big M approach in which a term that 

measures and penalizes the infeasibility, due to constraints violation, is added to 
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the objective function and the feasible solution is generated by solving the newly 

resulting QP problem [12, 70]. 

When formulating the linear MPC based algorithm, the resulting QP problem 

could be sparse. Wright [71] has pointed out that due to the structure of the 

predictive control problem, the use of a banded matrix when solving the KKT 

system (1.37) could be done and may be more advantageous, but at the cost of 

introducing many more variables into the problem. Maciejowski [12] has used this 

approach and proposed an approximate formula to determine whether the banded 

scheme is more beneficial than the original dense scheme. He has also pointed 

out that a careful comparison should be done for any particular application before 

adopting either one of the above mentioned approaches. Moreover, the algorithm 

could be warm started using solutions obtained in previous sampling periods to 

facilitate the optimization procedure.  

The active set methods were extensively used to solve the MPC problems 

[29, 30, 72-74]. Nevertheless, they are not always preferred, especially for the 

large scale QP problems resulting from long prediction horizons formulation. In 

these cases, the IP methods are more appropriate. 

c) Interior point methods 

This approach represents the second major class of methods that are used 

to solve convex QP problems. It was developed as an extension to the Kamarkar’s 

algorithm [75] for solving linear programming problems. IP methods have mainly 

two variants, the primal barrier and primal-dual methods. In this subsection, only a 

brief indication of how the primal-dual method works will be given. 

For simplicity, we restrict our description to convex QP problems with only 

inequality constraints. The extension to the case of equality constraints can be 

done easily. 

The convex quadratic programming is defined as: 

  min      q =
1

2
 T

x

Tx Gx x dx    (1.40) 

 Subject to 
 Ax b   (1.41) 
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where G  is a positive semi-definite hessian matrix. The m n  matrix A  and the 

right-hand-side vector b  are defined as follows: 

      1,2,...,, ,          i ii i
A a b b m

 
 

 
  

Suppose that the solution *x  is a solution of (1.40)-(1.41). Then there must be a 

Lagrange multiplier vector * , so that the following necessary and sufficient 

conditions, obtained after specializing the general KKT conditions for (1.40)-(1.41), 

are satisfied for    * *, ,x x  : 

 
 

0

0

0, 1,2,...,

0

     

T

ii

Gx A d

Ax b

Ax b i m







  

 

  



  

By introducing the slack vector y Ax b  , we can rewrite these conditions as: 

 0TGx A d     (1.42) 

 0Ax y b     (1.43) 

 0, 1,2,...,     i iy i m     (1.44) 

  , 0y     (1.45) 

The equations (1.42)-(1.45) could be rewritten as a constrained system of 

nonlinear equations and derive primal-dual IP algorithms by using a modified 

Newton based method to this system. 

Let us define: 

    , , , , 0     

TGx A d

F x y Ax y b y

Y e



 

  
 

    
  

  

where  1 2, ,..., mY diag y y y ,  1 2, ,..., mdiag      and  1,1,...,1
T

e  . 

Let us also define a duality measure   for a current iterate  , ,x y   that satisfies

 , 0y   , as: 

 
1

1 Tm

i i
i

y
y

m m


 



    (1.46) 
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The central path C  is the set of points  , ,x y     0   where: 

    
0

, , 0 , , 0     F x y y

e
     



 
  
 
  

  

The algorithm will try to move the current point  , ,x y   towards the point 

 , ,x y    on the central path, where   is a parameter of the algorithm chosen 

in  0,1 . The current point will be moved using the step obtained from: 

 

0

0

0

T
d

b

G A x r

A I y r

Y Se e 

      
             
           

  (1.47) 

where T
dr Gx A d    and br Ax y b   . 

The new solution is obtained by: 

      , , , , , ,x y x y x y             

where   is mainly chosen to retain the inequality  , 0y    . 

Solving equation (1.47), at each iteration, is the most computing demanding 

operation within the IP methods. As the active set methods, efficient formulation 

resulting from the special structure of linear MPC problem could be used to reduce 

the general computing requirement of the algorithm. 

Interior point methods require a smaller number of iterations than the active 

set methods [67, 76]. However, an iteration of the IP methods is more computing 

expensive than that of the active set methods. IP methods have also the great 

advantages of a relatively constant computing time per QP solution. The active set 

methods keep the feasibility of the solution at each iteration while the new variants 

of the IP methods do not ensure feasibility until the end of the search [12]. As a 

result, if the optimization has not been finished within the allotted period of time or 

was interrupted, the active set methods could generate a feasible solution while 

the IP methods could not. This property is very important because in many MPC 
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problems, the feasibility of the solution is more important than the exact optimality 

[12]. 

Starting an optimization process from feasible solutions in the vicinity of the 

optimum could help the algorithm become more computing efficient as less 

iterations are required to converge towards the optimum. 

Active set methods are known to fully take advantage of this fact, while IP 

methods are known to have difficulties with warm starting [69, 77]. To overcome 

these difficulties, several warm starting strategies for the IP methods have been 

proposed [78-80]. Moreover, the IP methods are easy to implement compared to 

the active set methods. 

The above mentioned advantages have made the IP methods very popular 

within the MPC framework especially for large scale problems [31, 32, 81-83].  

4. Nonlinear model predictive control 

Although linear MPC algorithms provide satisfactory performance in many 

applications, against highly nonlinear processes severe degradation of control 

performance can occur, unless the operating conditions are very close to the 

steady state around which the model is linearized [13]. To ensure higher control 

performance, nonlinear techniques that use a nonlinear prediction model must be 

investigated [84, 85].  In fact, in recent years, a lot of attention was given to the 

Nonlinear MPC (NMPC) strategies and several nonlinear control algorithms have 

been proposed [14-16]. Predicting the future behaviour of the system using 

nonlinear models, albeit more accurate, will result in a nonlinear and generally 

non-convex optimization problem that requires the use of complex and time 

consuming optimization algorithms. Seeing that it is not guaranteed to find the 

optimal solution when using these algorithms, the objective of most NMPC 

strategies is not to find the global optimal solution but is rather to find a suboptimal 

solution that can meet the control objectives.  

Depending on how it is proceeded to obtain the suboptimal solution, 

Tatjewski [26] has classified the existing methods into the following main 

categories: 
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4.1. Nonlinear Model Predictive Control with Successive Linearization (NMPC-SL) 

The aim is to use a more accurate nonlinear model of the system but still 

obtain a quadratic and convex optimization problem. This could be done by 

linearizing the nonlinear model, at each sampling period, around the current 

operating conditions, and use the resulting linear model with any LMPC strategy 

(DMC, GPC,…etc) [52, 86-89]. It is interesting to note that the obtained control 

sequence is the optimal solution of the resulting quadratic optimization problem, 

which is a linear approximation of the original nonlinear optimization problem. 

Thus, the NMPC-SL approach is a suboptimal one. 

For systems that have slow dynamics or systems that operate close to 

certain equilibrium points for extended period of time, it is possible to further 

improve the NMPC-SL algorithm by not performing the linearization process at 

each sampling period, but rather after a predefined number of samples [12]. On 

the other hand, for systems that have high nonlinearities when the reference 

changes are quick or for dynamic transients after strong and rapid changes of 

disturbances, such approach could be insufficient even if the linearization process 

occurs at each sampling period [26]. 

4.2. Nonlinear Model Predictive Control with Nonlinear Predictions and 
Linearization (NMPC-NPL) 

It is clear that the previous approach (NMPC-SL) has some limitations. 

Restricting the use of the nonlinear model to obtain linear approximations in each 

sampling period appears to be insufficient. The nonlinear model must be further 

incorporated within the control algorithm. 

One key property of the LMPC formulation is the ability to use the 

superposition principle for which a system response (output) could be 

decomposed into separately computed free and forced components. This 

decomposition is necessary to facilitate solving the optimization problem 

analytically. Unfortunately, this principle is not applicable for nonlinear systems. 

The NMPC-SL strategy uses this principle after evaluating both the free and 

the forced responses using the approximated linearized version of the original 

nonlinear system to compute the future predicted system outputs. More accurate 

predictions could be obtained by using the nonlinear system to evaluate the free 
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response component of the predictions and use the approximated linearized 

version for the forced component. The resulting optimization problem of the 

NMPC-NPL approach is the same as in the NMPC-SL case (quadratic and 

convex), but the way in which the predicted values of the free response 

component are computed differs. They are obtained by using the nonlinear model 

instead of the linearized system [52, 90-92]. 

From the computing requirement point of view, using a nonlinear model to 

compute the free component does not considerably affect the total amount of the 

required computing time in each sampling period; this component needs to be 

evaluated only once per a sampling period. Thus using the NMPC-NPL is 

generally more efficient and preferred than the NMPC-SL. 

The efficacy of the NMPC-NPL is proportional to the values of the control 

input increments; small ones lead to a solution that is close to an optimal one even 

for a highly nonlinear system or when a transition to distant operating points is 

required as long as the control action trajectory is smooth with small increments. If 

quick reaction of the system that generates large control increments is necessary, 

the NMPC-NPL might quickly become insufficient. Several improvements that 

were proposed to the original NMPC-NPL are presented and explained in [26]. 

Although the NMPC-NPL control algorithm provides satisfactory 

performance in many applications, against highly nonlinear processes with a quick 

reaction time, significant loss of control performance can ensue. For this type of 

systems, nothing less than the complete use of the nonlinear model within the 

control algorithm appears to be sufficient. However, fully introducing the nonlinear 

model in the MPC formulation will also mean the loss of the convexity in the 

optimization problem, hence losing the well-established techniques for handling 

convex optimization problems and be forced to rely on nonlinear optimization 

techniques. 

4.3. Nonlinear Model Predictive Control with Nonlinear Optimization (NMPC-NO) 

The analytical solution to the nonlinear and non-convex optimization 

problem is the most convenient approach from the solution accuracy angle. It has 

the ability to solve the original optimization problem completely and determine the 

global optimum. However, analytical approaches are generally impossible to 
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derive and numerical approaches are used instead [26-28]. We could distinguish 

the following two major families: 

4.3.1. Deterministic numerical approaches 

These approaches solve the optimization problem numerically. 

Consequently, the resulting solutions are only an approximation of the actual 

solution. 

Let us consider the discrete time dynamical systems augmented with 

algebraic equations expressed by [93]: 

  1 , ,                           t t t tx f x z u    (1.48) 

  , , 0t t tg x z u    (1.49) 

where tx  is a vector of differential states with xn  elements, tz  is a vector of 

algebraic states with zn  elements and un
tu   is the control vector (sequence). 

The two functions f  and g  are both assumed twice differentiable, the algebraic 

state tz  is uniquely determined by equation (1.49), we assume that 
g

z




 is invertible 

everywhere, and both tx  and tu  have constant values. 

Within the NMPC framework, an optimal control problem (OCP) will be 

formulated based on the discrete dynamic model (1.48)-(1.49) that has to be 

solved at each sampling period starting at the current initial state 0x : 

  
0

0

1

, ,
min ,z ,u

pt t

i i i
x z u

i t

L x
 



   (1.50) 

 subject to 
 

0 0 0,                                        tx x    (1.51) 

  1 0 0, z , u 0, 1                       ,...,i i i i px f x i t t t        (1.52) 

   0 0,z ,u 0, 1                               ,...,i i i pg x i t t t      (1.53) 

  0 0,z ,u 0, 1                                                              ,...,i i i ph x i t t t      (1.54) 

The goal is to minimize the objective function (1.50) which contains a 

Lagrange term L (sometimes called running cost) along the prediction horizon 

0 0, 1pt t t    . The function h  is assumed to be differentiable and to have the 
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appropriate dimension. The free parameters in this OCP are the differential state 

vector  
0 00 1 1, ,..., ,

p p

T
T T T T

t t t tx x x x x   , the algebraic vector  
00 1 1, ,...,

p

T
T T T

t tz z z z    and 

the control vector  
00 1 1, u ,..., u

p

T
T T T

t tu u   . The constant 0x  is not a variable of the 

OCP problem (1.50)-(1.54), but rather a parameter upon which the OCP depends 

via initial conditions. The differential state vector x  is computed until sampling 

period 0 pt t  while z  and u  stop at the time period 0 1pt t  . 

The OCP problem (1.50)-(1.54) is a finite dimensional nonlinear programing 

optimization problem (NLP) that can be solved using the so called direct methods. 

When a continuous time dynamic system such as simple algebraic equation, 

ordinary differential equation (ODE) or differential algebraic equation (DAE), is 

used, the resulting OCP will constitute an infinite dimensional optimization problem 

over the function space to which u  belongs. In this case, three basic classes to 

solve OCP problems of this form exist [94-96]: 

a. Hamilton-Jacobi-Bellman partial differential equation / dynamic 

programming: this approach tries to compute recursively a feedback control 

 * ,u x t , for all time t  and all initial state 0x , using the principle of optimality of 

subarcs instead of looking for the optimal control trajectory for a single given 0x  at 

a time [95, 97]. This will lead to the Hamilton-Jacobi-Bellman (HJB) equation in the 

continuous time case and to a partial differential equation (PDE) in state space 

[95]. Since the complete solution for all t  and 0x  is considered at once, the HJB 

approach will suffer severely from the curse of dimensionality and will require a 

huge computing power. In practical situations, this approach could be useful only 

in situations where small systems are considered [95, 97] although their use, even 

in these situations, is limited. Nevertheless, NMPC algorithms, especially for small 

scale problem, were developed based on this approach [95, 98, 99]. 

b. Euler-Lagrange differential equations / calculus of variations / 

maximum principle (Indirect methods): using the necessary conditions for 

optimality of the infinite dimensional optimization problem and the classical 

calculus of variations, an explicit solution, which remains valid for the current given 

initial state 0x  [97], of the input as a function of time  u t  and not as a feedback 
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control law, is obtained. This solution is formulated as a boundary value problem 

(BVP) that has to be solved numerically [95]. The drawback with these methods is 

the fact that the solutions will be difficult to derive due to strong nonlinearity and 

instability. Moreover, the user must have significant knowledge and experience in 

optimal control in order to use these approaches [94]. 

c. Direct methods: the first two classes are often known as ‘first 

optimize, then discretize’ approaches. They solve the infinite dimensional 

optimization problem by formulating the control u  as a continuous function and 

then discretize it to numerically obtain a solution. The direct methods transform the 

infinite OCP into a finite dimensional nonlinear programming problem (NLP) then 

solve this problem to obtain the discretized control u  directly. Hence, this why this 

class is often known by the strategy ‘first discretize, then optimize’.  

For the online optimization of an NMPC problem, the approaches that 

belong to the last class are usually used [94, 95, 97, 100]. In the following sub-

sections, only approaches belonging to this class are presented. More details 

about the first two classes and the general optimal control problem can be found in 

[37, 94, 95, 101, 102]. 

A) Solution of the NMPC problems using direct methods 

 Let us consider, in this subsection, the finite dimensional NMPC problem 

(1.50)-(1.54). 

Equality constraints (1.51)-(1.53) uniquely define both variables x  and z  for 

a given control u . Expressing the variables x  and z  as functions  x u  and  z u  

that satisfy (1.51)-(1.53) for all u  will transform the optimization problem (1.50)-

(1.54) to yield the following reduced NLP problem: 

     
0

0

1

min ,z ,u
pt t

i i i
u

i t

L x u u
 



     (1.55) 

 subject to 

      0 0,z ,u 0, 1                    ,...,i i i ph x u u i t t t       (1.56) 

This problem has interesting characteristics, given that its variable space 

has been severely reduced to include only the control variable u , this strategy is 

similar to the dense scheme in linear MPC. Solving this reduced problem instead 
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of the original problem could be more appealing. This approach is known as 

sequential approach to optimal control due to the fact that in each optimization 

iteration, both system simulation (to reduce the variable space) and optimization 

are performed sequentially, one after the other. 

In contrast to the sequential approach, we have the simultaneous method in 

which both the system simulation and the optimization are performed 

simultaneously by directly considering the original NLP problem (1.50)-(1.54) and 

using a Newton type optimization algorithm. 

Using the sequential approach will lead to an NLP problem which has a 

reduced variable space with less structure in the linear sub-problems than the 

simultaneous approach. In this method, often an off-the-shelf code for nonlinear 

optimization could be used [93]. This approach is used by many practitioners given 

that the practical implementation will be much more easy to accomplish [93]. 

Another advantage of the sequential approach is the continued feasibility of the 

solutions within the optimization iterations. Even if the optimization was interrupted 

or could not be finished in time, the intermediate solutions are guaranteed to be 

feasible and, thus, could be used at any moment. However, this is not true for the 

simultaneous method in which the feasibility of the solution is only ensured at the 

end of the optimization procedure [94, 97, 100]. 

When using the simultaneous approach, the full optimization problem (1.50)

-(1.54) with the variables ,   and u x z  will be considered. In this case, specially 

designed optimization algorithms could be used to exploit the resulting special 

structure in the optimization problem in order to efficiently compute the most 

crucial and often complex steps in Newton based algorithms [93, 97], mainly 

computing the derivatives and solving the subsequent sub-problems QP. As a 

result, even with more variables, the simultaneous approach could be more 

computing efficient than the sequential approach. It is also important to note that 

the simultaneous approach is able to deal with unstable nonlinear systems better 

than the sequential approach [100]. 

Once the NLP problem formulation has been chosen (sequential or 

simultaneous), the resulting NLP must be solved using dedicated optimization 

algorithms. 
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B) Optimization algorithms 

The NMPC problems (1.50)-(1.54) and (1.55)-(1.56) are in fact specially 

structured cases of generic NLP problems that could be solved using any 

optimization algorithm that is dedicated to solving generic NLP problems. Although 

directly applying the optimization algorithms to the NMPC problems is possible, it 

is highly ill advised. The optimization algorithm should take advantage of the 

moving horizon formulation and fully exploit the special structure generally found in 

NMPC based NLP problems. Let us consider the following generic NLP problem:  

  

 

 

min

0

0

X
F X

G X

H X





  

subject to:

      

      

  (1.57) 

Under mild assumptions, we could state that for any local solution *X  to the 

NLP problem (1.57), there exist multiplier vectors *  and *  such that the 

following necessary and sufficient conditions (KKT conditions) hold: 

  * * *, , 0X X      (1.58) 

  * 0G X    (1.59) 

  * 0H X    (1.60) 

 * 0    (1.61) 

  * * 0, 1,...,               i i HH X i n     (1.62) 

where: 

        , ,
T T

X F X G X H X        

The Newton based optimization algorithms will then try to locate a local 

solution by using successive linearization of the problem functions in (1.58)-(1.62) 

and looking for points that satisfy these conditions. Two big families of Newton 

based algorithms could be distinguished depending on how to treat the inequality 

constraints (1.60)-(1.61); we have sequential quadratic programming (SQP) and 

the nonlinear interior point (NIP) methods. 
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In the sequential quadratic programming, all of the nonlinear functions within 

the resulting KKT system will be linearized. The resulting linearized KKT system is 

equivalent to the KKT system of the following QP: 

  

     

     

min

0

0

  

subject to:

      

      

k
QP

X

Tk k k

Tk k k

F X

G X G X X X

H X H X X X

  

  

  (1.63) 

where: 

          2 , ,
1

2

T Tk k k
X

k
Q

k
P

k kF X F X X X XXX X          

If the hessian matrix  2 , ,k k
X

kX     of (1.63) is positive semi-definite, then this 

QP is convex and the global solution can reliably be found by using one of the 

optimization methods previously described in section 3.3.2. The solution to this QP 

problem will provide the required step kX  to generate the point 1k k kX X X     

for the next iteration. In this SQP version, both hessian and Jacobian matrices are 

exactly obtained. However, the more widely used SQP variants are based on 

inexact approximation of them like the Powell’s classical SQP methods [103] in 

which an approximation of the hessian matrix, updated in each optimization 

iteration, is used. Another variant, like the one given in [104], uses a reduced 

hessian approximation that approximates only the portion of the Hessian matrix 

relevant at the time, making the algorithm more computing efficient. More SQP 

variants could be found in [105]. 

In addition to the SQP algorithm, we could use a nonlinear interior point 

(NIP) algorithm to solve the KKT system (1.58)-(1.62) by replacing the last non-

smooth condition by a nonlinear approximation and using one of Newton’s 

methods. This approach uses the same concepts the IP method for convex QP 

does. The only difference is that a linearization of all problem functions is 

performed in each iteration. More details can be found in [69]. 

Several NMPC based algorithms were developed using the SQP methods 

[106-108] and the NIP approach [32, 83]. 
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C) Classification of direct methods 

According to the adopted strategy at each optimization step, several 

variants of Newton based optimization algorithms could be built. Mainly, the 

following strategies can be envisaged:  

(a) NLP formulation: sequential or simultaneous 

(b) Treatment of inequalities: SQP or nonlinear IP 

(c) Derivative computation: full or reduced 

(d) Linear algebra of linearized sub-problems: banded (sparse) or 

condensing (state elimination). 

Based on these choices, we could distinguish between several algorithm 

variants like the classical single shooting method [109] which could be classified 

as (Sequential, SQP, Reduced) or as (Sequential, SQP, Full, Condensing) 

depending on whether the reduced derivatives were used, and the classical 

reduced SQP collocation methods, like the one used in  [110], which could be 

classified as (Simultaneous, SQP, Full, Condensing). An exhaustive review of 

different optimization methods is given in [37]. 

Nonetheless, several problems have been reported concerning the 

implementation of deterministic numerical approaches. Numerous methods are 

initial conditions sensitive; suitable initial guesses must be provided to start the 

iterative process and to ensure converging toward the global optimum [33-35]. Of 

course, obtaining a suitable initial guess is not a trivial matter especially as the 

complexity of the system grows [111]. For this reason, these approaches are 

sometimes called local methods [33]. Moreover, these approaches could only be 

used when a mathematical based model of the process is available like in the case 

of fundamental models. These approaches could not be used with some empirical 

models. In fact, even if a mathematical based model is available, derivative 

information, nonetheless, is sometimes hard, impossible to get, or simply not 

available [36]. An additional drawback is the fact that these approaches could only 

be used with continuous variables, they cannot handle discrete problems [37]. 
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4.3.2. Stochastic numerical approaches 

Another approach to solve the nonlinear and generally non-convex 

optimization of the NMPC problem is the use of the stochastic meta-heuristics 

algorithms, abbreviated in this dissertation to meta-heuristics algorithms to simplify 

the notation. These algorithms are based on fundamental elements and 

procedures that produce evolution and intelligent behaviours in natural systems 

[38] or on physical principles [39], and are capable of handling the majority of 

optimization problems [39, 40]. These methods have known huge success, both in 

academia and the industry [39, 41]. This success could be attributed to the facts 

that the meta-heuristic algorithms are simple, flexible, derivative-free, generally 

able to handle local optima and generate high quality solutions in a reasonable 

period of time [39, 42-44]. In fact due to their heuristic and random natures, these 

algorithms have a better-searching capability than that of the classical analytical 

approach [45], are unaffected by initial conditions and can handle both discrete 

and continuous problems. 

Numerous meta-heuristic variants exist. We could mention: genetic 

algorithm (GA) [112, 113], Differential Evolution (DE) [114, 115], Particle Swarm 

Optimization [40, 116], Ant Colony Optimization (ACO) [117, 118]. Some of the 

more recent variants are the: Artificial Bee Colony (ABC) [119, 120], Gravitational 

Search Algorithm (GSA) [121, 122], Kinetic Gas Molecule Optimization (KGMO) 

[123] and Grey Wolf Optimizer (GWO) [42]. In fact, meta-heuristic is still an active 

research field where enhancements of current variants and completely new 

algorithms are continuously proposed. A good review about the different meta-

heuristic approaches could be found in [39, 124]. 

 These algorithms were successfully applied to solve multiple engineering 

problems in diverse fields including the predictive control where at each sampling 

period, a control action is computed by solving an NLP optimization problem. 

Let us reconsider the generic NLP problem of (1.57). If X  has a limited 

number of possible values, then the ideal approach to solve this problem, from the 

accuracy and simplicity angles, is to evaluate the objective function  .F  for all 

possible X  and determine the value(s) that give(s) the minimum value of the 

objective function and  fulfils the imposed constraints. However, in most realistic 
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problems, the admissible set of (1.57) tend to be at the least large enough to make 

this approach irrelevant except for the most trivial problems. The meta-heuristic 

algorithms are based on this concept, but instead of evaluating all possible values 

of X , only a limited number of strategic evaluations will be performed with the 

hope of locating a solution of reasonable quality. 

More details about how to use the meta-heuristic algorithms to solve the 

NMPC problem will be given in chapters 2 and 3. 

Although their success, the meta-heuristic algorithms are not perfect 

optimization techniques. In fact, several drawbacks could be enumerated like the 

necessity to tune several parameters of the algorithm before its use [124, 125]. 

These parameters, which have not universal optimal values, have great influence 

on the efficiency and the effectiveness of the algorithm [39]. The meta-heuristic 

based algorithms are generally able to generate high quality solutions in a 

reasonable amount of time, but this does not mean that they will guarantee this 

fact or the fact that the generated solutions are in the neighbourhood of the global 

optimum. 

5. Efficient ways to reduce the NMPC on-line computing requirement 

Implementing on-line NMPC algorithms requires a huge computing power 

which can limit their use in fast-sampling systems and real time applications. To 

reduce the computing requirement of these algorithms, several approaches taking 

advantages of the special structure of NMPC formulation were proposed. 

Bemporad, Morari [126] have proposed the explicit MPC for linear models where 

the optimization problem is pre-computed off-line for a given range of operating 

conditions of interest. In their work, they exploited the multi-parametric 

programming techniques to express the optimal control as an explicit function of 

the state and the reference vectors reducing the online computations to a simple 

function evaluation. This function is usually piecewise affine (PWA) and the 

controller is mapped into a lookup table of linear gains [127]. This approach has 

attracted the interest of the research community and was extended to nonlinear 

MPC [16, 128-130] where the computing requirements are even more significant. 

The major challenge that has limited the applicability of the explicit MPC is that the 

numbers of entries in the lookup table increase exponentially with the number of 
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decision variables [15, 34]. Moreover, the nonlinear constraints are represented 

using piecewise affine approximation. Consequently, the entries in the lookup 

table will also increase if more approximation accuracy is required [15]. Hence, the 

explicit MPC use is limited to small problems with low dimensions [15]. 

Another approach is based on the work of Zheng and Zhang [131] where 

the authors have proposed a control algorithm in which the first control move was 

exactly calculated while the rest of the control moves were approximated, given 

that only the first control action is to be applied to the system. Their approach 

should significantly reduce the online computing requirement as the considered 

NMPC optimization problem will always have a control horizon of one move 

regardless of the original control horizon.  

The computing requirement needed to solve an optimization problem 

depends on the number of constraints. However, only constraints that can become 

active can influence the optimization result. The other remaining superfluous 

constraints, which can never be violated, have no influence on the optimization 

result; therefore, they can be eliminated from the optimization problem without any 

repercussion. The resulting simpler equivalent optimization problem will have 

fewer constraints and could be solved using less computing power. Several 

methods that can determine the superfluous constraints in an optimization problem 

were proposed. However, their computing requirement is quite important. For 

more details about constraints reduction, see [10]. 

Patrinos, Sopasakis [76] have proposed a reformulation of the strictly 

convex QP arising in constrained LMPC as a system of piecewise affine 

equations. They have shown that the resulting linear system that needs to be 

solved at each iteration is positive semi-definite and has a significantly smaller 

dimension than that of the original problem. This system showed considerable 

merit when applied to MPC over standard active set or interior point algorithms. In 

fact, they have claimed that the proposed algorithm is orders of magnitudes faster 

than the state-of-the-art QP solvers especially for large-scale problems and long 

horizons. Several implementations on different systems of various dimensions and 

prediction horizons have been given in their paper. 
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This is by no means a complete survey or a thorough investigation of 

techniques that reduce the on-line computing requirement of NMPC optimization 

problems. It is a simple presentation of some techniques. In this thesis, we are 

only interested in approaches that tackle and solve the original nonlinear and 

generally non-convex optimization problem completely on line.  

6. Feasibility issues 

Solving a constrained optimization problem does not necessarily mean that 

a solution to this problem exists. In fact, in the presence of certain conditions, it will 

be impossible to satisfy simultaneously all of the imposed constraints, especially 

those on the output. In this case, the optimization problem is said to be infeasible. 

Within the NMPC framework, the infeasibility of the optimization problem 

means that no control action has been calculated for the next sampling time. This 

situation is unacceptable for an on-line controller; a control action has to be 

applied at each sampling period. Therefore, the infeasibility issue should be either 

avoided by making sure that the original optimization problem (or a more relaxed 

form) remains feasible regardless of the current situation or by introducing a back-

up control strategy to take over until the feasibility has been recovered. 

Infeasibilities within the NMPC framework, are due to multiple causes [10]. 

Instances where the desired set points cannot be reached while maintaining the 

constraints on the inputs are one example of unobtainable control objectives. 

These problems arise from bad formulation and contradictory constraints and 

should be corrected at the design stage by putting reasonable control objectives. 

In other instances where perturbations or large reference changes may force 

variables out of their permissible sets without having the ability to return these 

variables to their admissible sets is another reason for infeasibilities. In addition, if 

the operator changes the operational variable limits during operation, current 

variables could be outside of the new limits and, as a consequence, the 

optimization problem will be unfeasible. Another reason is due to system/model 

mismatch which can, erroneously, let the controller thinks that it cannot satisfy the 

constraints if the modelling errors keep growing [12]. 
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The infeasibility issue is more pronounced in instances where the operating 

objectives force the system to operate in the vicinity of the constraints in the 

presence of perturbations. In general, the infeasibility of the optimization problem 

is difficult to anticipate [12]. 

To avoid the situation where no control action is computed, several 

strategies were proposed [10]: 

a. Ad hoc measures: when the infeasibility is detected, the controller 

could apply the same control output used for the previous sampling time, that is 

   ˆ1 |u t u t t  , or use instead the control signal    ˆ1 1 |u t u t t   . However, 

this approach could lead to unpredictable closed-loop behaviour [132]. 

b. Disconnection of the controller: this strategy is based on the idea of 

replacing the NMPC controller when the infeasibility occurred by a backup control 

strategy, and returning to automatic operation once the feasibility is recovered. 

However, the infeasibility occurs when the system is in critical operating conditions 

and special care should be used to re-establish normal operation to avoid 

catastrophic failure due to violation of safety or economic based constraints. This 

strategy is usually used where the infeasibility problems are not frequent. 

c. Constraints elimination: the reason of infeasibility is the inability to 

satisfy, simultaneously, all the imposed constraints. So, one way to avoid this 

situation is to eliminate the constraint(s) causing the infeasibility and solve a more 

relaxed version of the optimization problem. 

During normal operation, if the optimization problem becomes infeasible, the 

controller removes the constraints one by one starting by the relatively less 

important ones until the feasibility is recovered. In the upcoming sampling times, 

the feasibility is continuously analysed in order to reintroduce the removed 

constraints. This is a widely accepted approach [12] although it may pose some 

computing problems when used. Indeed, the optimization problem will be solved 

after each time a constraint is removed until the feasibility is regained. Another 

problem that may arise is to which level, the controller is allowed to remove 

constraints in order to recover feasibility. Does the controller have the authority to 

remove the safety based constraints? Or should it be limited to non-critical 
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constraints. If so, what to do in case the infeasibility will not be recovered by 

removing the non-critical constraints? 

d. Constraints relaxation: another frequently practical approach is to 

soften some or all the output constraints [26]; this means that a violation of the 

constraints is allowed but under severe and special conditions. The easy way to 

soften the outputs constraints is to add new variables, called slack variables, to the 

cost function. These variables will heavily penalize any violation of the constraints 

in order to force the optimizer to violate these constraints only when the 

infeasibility issue arises. This approach could not be used on systems that do not 

tolerate any violation of the imposed hard output constraints. 

e. Changing the constraints horizons: most of constraints violations 

occur at the first part of the control horizon due to sudden perturbations that could 

force the system variables outside of their permissible sets [10]. The idea is to 

ignore the constraints when solving the optimization problem during this first part. 

This approach of constraint window is adopted by some commercial MPC [10]. 

7. Stability 

It has been shown that using a finite horizon criterion does not guarantee 

the closed-loop stability and that the only way to achieve it in practical 

implementation is to use a suitable tuning of the design parameters such as the 

prediction, the control horizons and the weighting matrices [133]. However, no 

‘controller design procedure’ that allows determining the stabilizing prediction and 

control horizons for an NMPC setup based on the process model and the chosen 

cost function exists [134]. 

Using the infinite horizon approach to achieve the stability is computationally 

impracticable [134, 135]. Hence, the attention was directed to more practical 

methods with finite horizon. Most of these methods change the OCP (NLP) 

formulation by introducing suitable equality and inequality constraints or even 

adding new term to the cost function. The sole purpose of these modifications is to 

achieve closed loop stability of the controller regardless of the design parameters 

or the considered system. The introduced constraints are called stability 
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constraints [19, 136] and NMPC strategies based on these modifications are 

called NMPC approaches with guaranteed stability [134]. 

It is also interesting to note that optimality does not imply stability [137]. 

However, under mild assumptions, the feasibility of the optimization problem alone 

could suffice for the stability [138]. 

In the following paragraphs, four NMPC approaches with guaranteed 

stability are briefly discussed. A thorough and complete review can be found in 

[134].  

First, let us reconsider the OCP problem (1.50)-(1.54) without the algebraic 

state for simplification (constraint (1.53) is removed) and with prediction and 

control horizons of the same length. At each sampling period, full measurement of 

the state is assumed to be available, no disturbances (persistent or not) act on the 

system and there is no model/process mismatch between the dynamical model 

and the physical process. The set un  of admissible control u  is compact and 

convex while xn  the set of admissible differential state x   is closed and simply 

connected with  0,0  in the interior of x un n  . The function L  is quadratic in x  

and u , while f  is twice continuously differentiable on x un n  , with the 

assumption that  0,0 0f   (without loss of generality). The objective of the control 

is to bring the system to the assumed equilibrium point of  0,0 . 

7.1. State terminal equality constraint 

This approach widely used to design NMPC strategy with guaranteed 

stability introduces a ‘zero state terminal equality constraint’ into the original OCP 

problem to force the state to zero at the end of the prediction horizon: 

 
0

0
pt tx     (1.64) 

Introducing a single constraint to the original OCP is one of the easiest ways 

to establish closed-loop stability. Its theoretical framework is clear and no changes 

to the optimization algorithm are required (in the case when the original OCP is 

constrained). These facts have made this approach one of the more popular ways 

in establishing closed-loop stability [134]. However, adding a new equality 

constraint to the original OCP problem could be too restrictive and result in a 
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significantly reduced feasibility set especially if relatively short horizons are used. 

In this case, the controller does not have enough time to bring the state back to 

the origin. Another drawback is the computing requirement of the new constraint; it 

is a well-known fact that constraints increase the computing requirement to solve 

OCP problems. 

7.2. Dual mode (Terminal constraints set) 

Instead of using the restrictive constraint (1.64) to establish the stability of 

the closed loop, a two-steps approach is used. In the first step, the states are 

driven inside a terminal region   in the neighbourhood of the origin using a 

NMPC controller with variable horizons. Then, in the second step, the state is 

forced to the origin using a linear state feedback controller t tu Kx  [139]. The term 

dual is used to point out the fact that the two controllers are used.  

The terminal region   and the state feedback K  are computed offline to 

ensure that the terminal region is a positive invariant region of attraction for the 

nonlinear system controller with the linear state feedback law while the input and 

state constraints are satisfied within this region. 

The original OCP formulation is slightly changed to accommodate the dual-

mode approach. The original cost function is replaced by 

  
, ,N
min ,u , N
t t p

t t p
x u

J x   (1.65) 

where pN  has been taken as an additional variable decision. The second 

modification concerns the following additional constraint: 

 |pN t Bx    (1.66) 

This constraint is used to ensure that the states at the end of the prediction 

horizon are at the boundary B  of the terminal region  . It is interesting to note 

that this constraint is less restrictive than the one given by (1.64). 

Under mild assumptions, the feasibility of the new OCP problem will ensure 

the closed-loop stability [19, 134].  
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This approach is more attractive than the previous one; it has less restrictive 

constraint. However, its implementation is more complex due to its dual-mode 

control strategy.  

7.3. Contractive NMPC 

In this strategy [140], the following stability constraint is added to the original 

OCP problem: 

  
2 2

| , 0,1          
pN t tx x     (1.67) 

This constraint, known as contraction stability constraint, will ensure that the 

magnitude of the state will be at least decreasing (contracting) by a pre-specified 

factor at the end of the prediction horizon. 

In this approach, the predictive formulation is different. Once the input 

vector ut  is calculated, the entire elements of this vector will be applied to the 

system contrary to the conventional approach of only the first element. Thus, the 

next optimization problem will be solved at time pt N . 

This approach is not practical, given that feasibility issues could arise in the 

intermediate sampling periods where the optimization problem is not solved. 

7.4. Quasi-infinite horizon NMPC 

In this scheme, an inequality stability constraint: 

 |pN tx    (1.68) 

and a quadratic terminal penalty term described by: 

  | | |p p p

T
N t N t N tx x Px    (1.69) 

are both added to the original OCP. The reasoning behind this approach was to 

choose the matrix P  in (1.69) off line in such a way to make the objective function 

of the new OCP problem approximates that of an infinite horizon. In this way, the 

closed-loop stability can be achieved while numerically solving an optimization 

problem over a finite horizon [134]. 
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The terminal region   and a linear state feedback controller are chosen to 

make   positively invariant for the closed loop and the nonlinear system 

asymptotically stable in this region. 

This approach was established based on the dual-mode scheme, but 

instead of switching between two control strategies, the proposed approach uses 

only a NMPC strategy [135]. 

The aforementioned methods remain valid as long as the proposed 

assumptions are verified. However, assumptions such as no perturbation acts on 

the system or no model/process mismatch exists do not represent practical 

situations where both perturbations and model/process mismatch are actual facts. 

To this end, a robustness analysis of the NMPC controller is necessary to 

determine to which extent the previous result about stability remains valid in the 

presence of uncertainties.  

8. Conclusion 

This chapter has covered the main aspects and properties of model 

predictive control. In the next chapter, the meta-heuristic algorithms will be 

described in details. 
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CHAPTER 2: 

META-HEURISTIC ALGORITHMS 

1. Introduction 

In this chapter, the basic concepts of meta-heuristic optimization algorithms 

and the formulation of the corresponding generic optimization problem are 

introduced. Mainly, Genetic Algorithm (GA), Particle Swarm Optimization (PSO) 

and Artificial Bees Colony (ABC) are considered. The last section of this chapter 

gives the details of two proposed variants of the ABC algorithm.   

2. Meta-heuristic algorithms: Basics 

Heuristic or approximate algorithms, used to solve optimization problems, 

have been present for several decades. In fact, this concept has been originally 

introduced in 1945 by Polya [141] and has known, since then, rapid dissemination 

within the research community. Several algorithms have been developed to tackle 

the increasingly difficult and more complex optimization problems. Variants were 

proposed to enhance the already existing versions, conferences and other 

scientific events dedicated to heuristic have started to appear. A more concise 

definition, as stated by Caserta and Voß [142], is that heuristic is a technique 

which seeks good solutions (approximates) at a reasonable computational cost. 

In 1986, Glover [143] has introduced the term ‘meta-heuristic’ to designate 

the newly introduced, more efficient and general purpose optimizations algorithms, 

that are based on classical heuristic algorithms, artificial intelligence, biological 

evolution, neural systems and statistical mechanics [144]. The suffix ‘meta’ is a 

Greek word that means ‘upper level methodology’. In fact, meta-heuristics are 

considered to be ‘an iterative generation process which guides a subordinate 

heuristic, by intelligently combining different concepts, for exploring and exploiting 

the search spaces using learning strategies to structure information in order to find 

efficiently near-optimal solutions’ [144]. 
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2.1. Classification 

Meta-heuristic algorithms could be classified based on several criteria [39]: 

a. Nature inspired versus non-nature inspired: the meta-heuristic 

algorithms could be classified depending on whether they were designed based on 

natural processes or on non-natural processes: Artificial immune system algorithm 

from biology; particle swarm, bee and ant colony optimization are inspired from 

swarm intelligence whereas simulated annealing for example is inspired from 

physics. 

b. Memory usage versus memoryless: in some algorithms, the 

evolution of the search does not require information already collected about the 

search space. This approach is adopted by the simulated annealing algorithm. In 

contrast, tabu search and PSO, for example, use memory to save dynamically 

extracted information for future exploitation. 

c. Deterministic versus stochastic: stochastic algorithms use some 

randomness during the search in contrast to the deterministic algorithms which 

use deterministic decisions. As such, in deterministic algorithms: starting from the 

same initial solution will always lead to the same final solution. However, due to 

the introduced randomness within the stochastic algorithms, starting from the 

same initial solution will typically lead to different final solutions. 

d. Iterative versus greedy: in iterative algorithms, the search starts with 

an initial solution(s), then they iteratively try to enhance the solution(s) using some 

search operators in contrast to the greedy algorithms in which the search starts 

from an empty solution. The solution is built step by step by assigning a single 

decision variable of the problem in each step. Most meta-heuristic algorithms are 

iterative [39]. 

e. Population-based search versus single solution based search: 

population-based algorithms work with a population (numerous) of solutions. In 

each iteration, all of the current solutions will be manipulated to generate the next 

population of solutions (e.g., PSO, GA). In the single solution based approaches, 

only one solution will be evolved during the search process (e.g., simulated 

annealing). Population based algorithm are more exploration-oriented as they 

allow to explore the search space more effectively while single solution based 
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approaches are more exploitation oriented as they permit an in-depth search of 

local regions. 

In this dissertation, only stochastic iterative population-based meta-heuristic 

algorithms are exclusively used. Henceforth, when the meta-heuristic algorithms 

are mentioned, it is implied that we are talking about the stochastic iterative 

population-based meta-heuristic variants. 

2.2. population based meta-heuristics 

In this family, the search algorithm, starting from a population of initial 

solutions, will iteratively try to improve the solutions using some search operators 

on the current population. In order to obtain a population of expectantly better 

solutions, a replacement strategy is carried out to replace part (or all) of the 

current population from the new generated population. These processes of 

generation and replacement will continue until a given condition is satisfied 

(stopping criteria). The population based meta-heuristic algorithms encompasses 

a very large number of algorithms, most of which are nature inspired algorithms 

[39]. We could mention: genetic algorithm, particle swarm optimization, Artificial 

Immune Systems (AIS), artificial bee colony and many other variants. These 

algorithms are identified based on their adopted generation/replacement 

strategies. 

The general formulation standard to any population based meta-heuristic 

algorithm is given by Algorithm 2.1 [39]. 

Algorithm 2.1 

 Set the initial population 0P  

 0t    
 repeat 

  Generate the new population '
tP  // Generation process 

   '1 select-populationt t tP P P     // Replacement process 

  t     
 until (stopping criteria is satisfied) 
 output: best solution(s) found. 
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2.2.1. Initial population 

Although the distribution of the initial population plays a critical role in the 

effectiveness and efficiency of the meta-heuristic algorithms, this step is often 

disregarded in their design [39]. Nevertheless, when considering implementing an 

optimization algorithm, a special care on how to generate the initial population 

should be taken [145]. 

If the initial population does not efficiently cover the search space, the 

optimization algorithm may not be able to locate the appropriate solution points, 

thereby missing the global optimum [146] and converging toward a local optimum 

(premature convergence). 

Regardless of the used meta-heuristic algorithm, we could distinguish four 

strategies to generate the initial population [39]: random generation, sequential 

diversification, parallel diversification and heuristic initialization. Their evaluation is 

done based on the diversity of the initial population, the computing requirement, 

and the quality of the solutions. More details about these approaches could be 

found in [39]. 

2.2.2. Population size 

The population size is an extremely important parameter in any population 

based meta-heuristic algorithms. The larger a population is chosen, the better its 

solutions will be, and the more computing requirement it will need. A compromise 

must be reached between the contradictory objectives of having good quality 

solutions and the low computing requirement. No definitive rule exists on how to 

choose the population size, although some practical design rules have been 

extracted depending on the used algorithms (PSO,GA, DE …etc) and the problem 

dimension. In the PSO case, Clerc [40] has found that a population of 20 to 30 

could handle almost all of the classical optimization problems. For the  

evolutionary algorithms, Talbi [39] has indicated that a population between 20 and 

100 is usually sufficient. Storn and Price [147] have recommended, for the DE 

algorithms, a population size of 5 to 10 times the dimension of the problem. 

Generally, the size of the population is chosen based on the problem dimension 

[148]. 
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Other researchers have considered the problem from another angle. Instead 

of using the design rules to determine the best population size, a dynamical 

strategy could be used to regulate the population size on-line during the run. The 

algorithm could increase or decrease its population based on the current situation. 

This approach was used by Michalewicz [149] who introduced the concept of ‘age’ 

of a chromosome (GA). Fit chromosomes stay alive longer than the less fit ones. 

Using such approach, the population size will vary from an iteration to the next. 

Clerc [40] has described an adaptive PSO where the swarm population size is 

obtained through different strategies that regulate the population by removing 

badly performing particles and creating new ones. In [150], an adaptive DE in 

which the population size is adjusted based on the current search status, was 

used. 

2.2.3. Exploitation versus exploration 

Another important factor that can heavily influence the performance of the 

meta-heuristic algorithms is its ability to both explore (global search) the search 

space looking for regions of interest and to exploit (local search) these regions in 

order to locate optimum solutions. Ideally, an optimization algorithm that has both 

of these characteristics fully integrated should be designed. However, the 

exploration and the exploitation are somewhat exclusive characteristics. 

The computing power available in the majority of practical situations is quite 

limited. Therefore, it is necessary to judiciously use this power. When solving an 

optimization problem, a certain balance between exploring the search space and 

exploiting its prominent regions must be established. If the exploration has not 

been thorough, the optimizer may miss a prominent region(s) of the search space. 

If this region contains the optimum solution(s), the algorithm will not be able to find 

this optimum or even a solution in its neighbourhood. Thus, the undesirable 

phenomenon of premature convergence will occur; the algorithm will converge 

toward a local optimum and be trapped in it. The convergence speed of the 

optimization algorithm could also be affected if the exploration has not been 

sufficiently performed as prominent regions of the search space will take more 

time to be, if ever, discovered. 
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On the other hand, once the exploration has determined a prominent region 

where an optimum or at least a solution of a good quality may be found, the 

optimization algorithm will start the exploitation process of this region by 

concentrating the search in its immediate neighbourhood. If this process is 

prematurely interrupted, the algorithm may overlook a good solution or even an 

optimum to converge toward a lesser solution. Consequently, and in addition to 

the fact that the convergence speed of the algorithm depends greatly on this 

process, it is necessary to give the exploitation process the required time to 

complete its task. 

Generally, all meta-heuristic algorithms use several mechanisms to balance 

between these two abilities. A good balance between them is necessary to obtain 

an efficient optimizer [151-153]. 

2.2.4. Stopping criteria 

Depending on the optimization problem at hand, several criteria could be 

used to stop the optimization procedure. We could mention [39]: 

 Static procedure: In this method, the end of the optimization process is 

known a priori. This could be implemented with a fixed number of iterations, a limit 

on computation resources or a maximum number of objective function evaluations. 

This procedure is usually used when a time limit is imposed. 

 Adaptive procedure: In this method, the end of the optimization 

process cannot be known a priori. This could be implemented with a fixed number 

of non-improving iterations or when an optimum or a satisfactory solution is 

obtained with a predefined error tolerance. 

Some other procedures are specific to population based meta-heuristic 

algorithms. They generally depend on some statistics of the current population or 

its evolution [39]. For example, in some situations, the algorithm will be stopped if 

its diversity drops below a given threshold where the population will be considered 

stagnant. When this happens, continuing the optimization process is meaningless 

[39]. 
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3. Solving optimization problems 

3.1. General approach 

Let us reconsider the following generic NLP problem: 

  min   

subject to:

X
F X   (2.1) 

   0      G X    (2.2) 

   0      H X    (2.3) 

where xnX   is the decision variable, F  is the cost (objective) function, while 

 and G H  are the constraints functions. 

Let xnS   be the set of admissible solution X  that satisfy constraints (2.2) 

and (2.3) and popn  be the population size. The basic steps needed to solve the 

optimization problem (OP) (2.1)-(2.3) using a population based meta-heuristic 

algorithm are summarized in algorithm 2.2. 

Algorithm 2.2 

for 1: poph n   // Initial population 

  Choose an initial solution for hX  from S   

end for 

Randomly choose one of the initial solutions as the best solution BestX   

1iter   // Set the current number of iteration 

for 1: poph n  // Find the best solution in current population 

  if    h BestF X F X   

   Best hX X   

  end if 

end for 

Repeat // Iterative process 

for 1: poph n  // Generation/Replacement processes 

  Generate a new solution hNewX  

  Apply a replacement strategy 
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   if replacement is necessary 

    h hNewX X   

   end if 

end for 

for 1: poph n  // Find the best solution in current population 

  if    h BestF X F X   

   Best hX X   

  end if 

end for 

iter    // Set the current number of iteration 

until (stopping criteria satisfied) 

At the end of the process, the optimization solution will be stored in BestX . 

This is a general layout of population based algorithms; it cannot accurately 

describe all existing population based algorithms as each algorithm has its own 

peculiarities. 

3.2. Constraints handling 

In the previous section, we have presented how to solve optimization 

problem using meta-heuristic algorithms with the assumption that the admissible 

set named S  is known a priori. In practical situation, building the admissible set 

from constraints is not always easy or possible. In fact, even if this set could be 

known, several difficulties could emerge within the generation process as this set 

could not be invariant with respect to the generation process. As such, the strategy 

adopted to handle the constraints is of capital importance for the design of a good 

and efficient optimization algorithm. These approaches can be grouped into the 

following categories [39]: 

3.2.1. Reject strategies 

In these methods, also known as death penalty approaches, only feasible 

solutions are used during the search. If an infeasible solution is generated, this 

solution will be automatically discarded. 
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These approaches are only attractive when the majority of the search space 

is feasible. These approaches do not use infeasible solutions to gather information 

about global optimal solutions that can be either on the boundary between feasible 

and infeasible solutions or on another independent feasible region if the 

admissible set contains discontinuous regions. 

3.2.2. Penalizing strategies 

In these approaches, both feasible and unfeasible solutions could be 

considered. However, the original cost function will be modified to include a new 

term that will heavily penalize the unfeasible solutions. These are the most popular 

and widely used approaches to handle constraints. 

3.2.3. Repairing strategies 

In these strategies, custom built heuristic algorithms are used on the 

generated unfeasible solutions in order to transform them or ‘repair them’ into 

feasible solutions. The success of the strategy depends greatly on the efficiency of 

the constructed algorithm. 

The problem with these methods is the extra variant computing requirement 

needed to repair all the generated infeasible solutions. 

3.2.4. Preserving strategies 

In these methods, the optimization algorithm will be slightly modified in order 

to ensure that each generated solution will always be feasible by incorporating 

problem-specific knowledge. Of course, the tailored algorithm cannot be used to 

solve any given optimization problem. Furthermore, feasible initial solutions have 

to be generated to start the algorithm which could be problematic. 

The hybrid approach that combines more than one strategy can also be 

used to handle the constraints.  

4. variants of meta-heuristic algorithm 

In the hope of producing efficient algorithms, several meta-heuristic 

optimization algorithms have been proposed. given this huge numbers of 

algorithms, the question that will instinctively arise is which variant must we use to 
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efficiently solve our optimization problems? What algorithm has the best 

performances? 

Contrary to some beliefs, a simple answer to this question exists. There 

does not exist and will not exist an optimization algorithm that outperforms all the 

remaining algorithms on all possible optimization problems. This statement was 

given based on the ‘no free lunch theorem’ introduced by Wolpert and Macready in 

[154, 155]. The authors have stated in [154]: 

«All algorithms that search for an extremum of a cost function perform 
exactly the same, according to any performance measure, when averaged 
over all possible cost functions. In particular, if algorithm A outperforms 
algorithm B on some cost functions, then loosely speaking there must exist 
exactly as many other functions where B outperforms A.» 

However our interest does not include all possible cost functions. In fact, in 

practical situations, the number of objective functions of interest is quite limited. 

The idea is to evaluate the best optimization algorithms against these functions. If 

A outperforms B in these functions, it does not matter that B will outperforms A in 

other, loosely speaking, non-important functions. 

4.1. Genetic algorithm 

The genetic algorithm is one of the most famous and successful meta-

heuristic optimization algorithms that have made a big impact within the research 

community. This algorithm has been originally developed by Holland [156] and his 

collaborators during the 1960s and 1970s. Since then, the algorithm has been the 

object of intensive study, exploitation and developments. The algorithm is a model 

of biological evolution based on the theory of natural selection [157]. Starting from 

an initial population, the algorithm will begin the optimization process by 

generating new more fit populations (generations) of chromosomes using genetic 

operators like crossover, recombination and mutation. The main steps of the 

algorithm are given by the flowchart of figure 2.1. 

Each chromosome  1= , ,  ( =1, , )h h hD popx x x h n   is a D -dimensional vector 

of variables that represents a possible solution to the optimization problem with a 

fitness value  itness hF x . Once the initial population has been generated and its 
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chromosomes’ fitness evaluated, the algorithm start iterating through the following 

steps [113]: 

 

Figure : 2.1 Flowchart of the standard GA. 

4.1.1. Natural selection 

Based on the fitness information gathered in the last phase, the 

chromosomes will be sorted in a descending manner according to their fitness. 

Chromosomes that are fit enough will be selected to survive and possibly 

reproduce offspring for the next generation while the rest will die off. Of the popn  

chromosomes in the population, only the best keepN  members will be kept for 

mating. The remaining chromosomes will be removed to make place for the new 

offspring. This process will permit the population to evolve over the generations. 

4.1.2. Pairing 

In this stage, two parents are chosen from the surviving population to 

produce two offspring that contain traits from each parent. Several pairing 
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mechanisms exit: we could randomly choose the parents, use the roulette wheel 

based on their fitness or pair them from top to bottom, as the chromosomes will be 

ordered starting from the top of the (fitness orderly) population. More details about 

pairing approaches could be found in [113]. The chosen parent will also be added 

to the new population. 

This procedure is repeated until the new population has been completely 

regenerated. 

4.1.3. Mating 

The offspring will be generated by merging the parents to pass on genetic 

material. The simplest method consists of choosing randomly a single or multiple 

crossover points in the chromosome. The first offspring will be built by copying the 

first parent until the crossover point, after which the second parent will be used. 

This procedure is inversed for the second offspring.  

Let  1= , ,  f f fDx x x and  1= , ,  m m mDx x x  be the parent, then the offspring 

1x  and 2x  are given: 

 
 

1 1 2 3 4 5

2 1 2 3 4 5

= , , , , ,...,  

= , , , , ,...,  

f f f m m mD

m m m f f fD

x x x x x x x

x x x x x x x




  

This approach of generating offspring is not attractive since no new genetic 

material is introduced once an initial population has been chosen. We are merely 

interchanging variables between chromosomes; no new variables will be added to 

the chromosomes in this stage. 

Another more interesting method is the ‘blending methods’ in which the 

offspring are built by combining variables values of the parents as follows: 

 
   

   
1

2

1 ,     1,...,

1 ,     1,...,

i fi mi

i mi fi

x x x i D

x x x i D

 

 

   

   
  

where   is a random number in  0,1   

This blending could be done to all variables or only to a limited number. 

More details can be found in [39, 113, 158]  
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4.1.4. Mutation 

To allow the algorithm to explore other regions of the search space and 

escape local optima, a change or a mutation in some of the variables is randomly 

introduced. A parameter called mutation rate is used to determine the probability 

of a variable being mutated. For example, a mutation rate of 20% indicates that 

1/5 of the variables in all of the chromosomes will be replaced by randomly 

generated values. The variables to mutate are also chosen randomly. 

The algorithm will continue iterating by repeating the previous four phases 

until the stopping criterion has been satisfied. 

Originally, GA algorithm used a binary representation as chromosomes 

were represented by binary strings of 0 and 1. However, this discrete 

representation worked well only for problems requiring solutions of low 

dimensionality and precision. To overcome this limitation, the concept of real 

coded GA was introduced [159] where a vector of real-valued genes was used to 

represent a chromosome. The remaining phases of the algorithm are the same as 

in the binary representation. 

Genetic algorithm is one of the most widely used optimization algorithm in 

modern nonlinear optimization [157], nonetheless, it has several known 

deficiencies [157, 160]. Namely, its tendency to converge toward local optimum if 

the fitness function has not been correctly formulated, its slow convergence rate 

[159] and the huge computing requirement needed to find a solution. In fact, given 

the same problem and computation time, simpler optimization algorithms may find 

better solutions. 

In order to overcome these issues, the balance between exploration and 

exploitation must be enhanced. Within the GA, the crossover operation affects 

decisively the exploration capability of the algorithm [159]. As such, a lot of 

research has been conducted on how to produce more efficient crossover 

operators [161-164]. 

4.2. Particle swarm optimization 

Particle Swarm Optimization algorithm is a meta-heuristic optimization 

algorithm that was introduced by Kennedy and Eberhart in 1995 as a solution for 
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the optimization problem of a single objective continuous problem. It is based on 

the observation of the collective behaviour of social insects such as ants, termites 

and bees as well as the behaviour of other animal societies such as flocks of birds 

or schools of fish [165]. Basically, a number of randomly distributed particles will 

start surfing the search space looking for a solution to an optimization problem. 

Every particle represents a potential solution, and by means of a fitness function 

  .itnessF , the suitability of the particle will be assessed and evaluated. Using 

these data, the particles will change their locations to try to enhance their fitness to 

provide more accurate solutions. This change is influenced by the history of the 

particle or its best position, its neighbourhood history, mainly the best position 

found by the whole swarm, in addition to some random behaviour. 

The first step is to generate the initial population, evaluate the particles 

finesses and determine the global best solution gP . Then the algorithm will start 

iterating by updating the positions of the particles. 

The particles movements are bound by the following equations: 

    1 ( 1)v m v m a m      (2.4) 

    1 ( 1)X m x m v m      (2.5) 

where ,  ,  v a x m  and  are velocity, acceleration, position and iteration index 

respectively. For the algorithm proposed by Clerc-Kennedy [166], the acceleration 

of a given particle i  is given by the following expression: 

      1 2 1i g i i i ia c P X c P X v            (2.6) 

where 0.729843788  , 2.05c  , 21 and    are random numbers from the uniform 

distribution  0,1U , ix  and iv  are the current position and velocity of particle i  

respectively, iP  is the personal best position of particle i , while gP  is the global 

best position of all particles. Note that ia  could take negative values as well as 

positive ones. The parameter   guarantees a decreasing velocity for each particle 

as the number of iteration increases. This property will improve the convergence 

quality; as the particles approach the solution, their movement will be more and 

more limited which help fine tune the found solution. 
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The PSO algorithm is summarized in algorithm 2.3.  

Algorithm 2.3  

 for each particle h   

  Randomly initialize ,h hx v   

  h hP x  // Initialize personal best position 

 end for 
 
 repeat 
  for each particle h  

   update particle position hx  using (2.4)-(2.6) 

   if    itness h itness hF x F P  // Update personal best 

    h hP x  

   end if 

   if    itness h itness gF x F P  // Update Global best 

    g hP x  

   end if  
 until (stopping criteria satisfied) 

 output: best solution stored in gP  . 

PSO algorithm has a serious weakness that could seriously reduce its 

performances if no actions are to be taken. Mainly, the PSO algorithm has a 

problem keeping a healthy balance between exploring the search space and 

exploiting prominent regions of the search space [167-169]. As a direct result, the 

optimization algorithm would be susceptible to getting trapped within local 

optimum especially over multimodal, rugged, and non-separable fitness 

landscapes [45]. Thus, the algorithm will be vulnerable to the premature 

convergence problem. 

A lot of research has been conducted in order to address this problem and 

make the PSO algorithm more efficient. Indeed, various variants of the PSO 

algorithm have been proposed. For example, Silva, Neves [169] have proposed a 

predator prey strategy in order to maintain diversity. While He, Wu [170] have 

introduced a passive congregation PSO (PSOPC) in which information can be 

transferred among particles to avoid misjudging information and becoming trapped 

by poor local minima, Sun, Fang [171] have proposed a quantum behaved particle 
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swarm optimization with Gaussian distributed local attractor point. More variants of 

the PSO algorithm can be found in [168, 172-175]. 

4.3. Artificial bee colony 

The ABC is a meta-heuristic optimization algorithm that was introduced by 

Karaboga in 2005 [119] to solve the optimization problem in multivariable 

functions. It is based on the observation made on the social behaviour of the 

honey bee swarm. 

The colony of artificial bees contains three groups of bees: employed bees, 

onlooker bees and scouts. The first half of the colony consists of the artificial 

employed bees and the second one includes the onlookers. 

 Employed bees: the employed bee exploits a food source and 

advertises its position to the onlookers by dancing in the nearby hive. There is one 

employed bee per source. 

 Onlooker bees: the onlookers tend to choose the best food sources to 

further exploit based on information communicated by employed bees. Therefore, 

the good food sources attract more onlooker bees compared, to the bad ones. 

 Scout bees: When the food source is considered exhausted, it will be 

abandoned and its employed bee will be converted to a scout which will randomly 

choose a new food source to replace the old one. 

The  number  of  food  sources  is  equal  to  the number of  employed bees  

and  also  equal  to  the number of onlooker bees. 

In this algorithm, the position of the food source represents a possible 

solution to the optimization problem while the nectar amount (quality of the food 

source) corresponds to the fitness of the associated solution. This fitness is 

usually evaluated using a given cost function. The size of the population 

designated by PN  is the sum of the number of employed bees  SN  and the 

number of onlooker bees  LN . Each solution  1= , ,  ( =1, , )h h hDx x x h SN   is a D -

dimensional vector where D  is the number of optimization parameters. 

4.3.1. Basic algorithm 

The main phases of the basic (original) ABC algorithm are as follows: 
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a. Initialization phase: The employed bees are placed on random initial 

food sources around the hive within the boundary of the allowed search space. 

The positions of these initial food sources are generated using the following 

expression: 

   min max minh j j hj j jx x x x     (2.7) 

where: =1, ,h SN , =1, ,Dj  , min jx  and max jx  are respectively, the lower and the 

upper bound of the dimension j  and  0 1hj   is a uniformly distributed random 

number. Each food source hx  is assigned to only one employed bee. 

The food sources are subjected to repeated iterations of the search 

processes of the employed, onlooker and scout bees. The Termination criterion is 

chosen to be either a maximal number of iterations or achieving a specific error 

tolerance. 

b. Employed bee phase: In this stage, each employed bee will generate 

a new candidate food source position hv  in the neighbourhood of its old food 

source position hx according to the following expression: 

     k h j h j hj h j jv x x x     (2.8) 

where  1, , /k SN k h   and  1, ,j D   are uniform randomly chosen 

indexes,  1 1hj    is a uniformly distributed random number.  

If a new generated position exceeds its predetermined boundary values, it is 

adapted to remain within the search space boundary. The fitness of the generated 

candidate food source hv  is evaluated and compared to the fitness of hx . After 

that, a greedy selection is applied to decide which one of them to keep. 

Only one optimization parameter is updated when generating the new 

candidate food source. 

c. Probabilistic selection phase: Once all the employed bees complete 

their update process, they will share the nectar amount (fitness) of their food 

sources in the hive with the onlookers.  Using this information, each onlooker bee 
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will randomly choose a food source to exploit with a probability value hp . The hp  

value is given by the following expression: 

 
 

 
1
 

itness h
h SN

itness hh

f x
p

f x





  (2.9) 

where  itness hf x
 
is the fitness value of the food source hx . Clearly, the higher the 

nectar amount of a given food source is, the higher its probability to be chosen by 

an onlooker. 

d. Onlookers bee phase: Once all the onlooker bees have chosen their 

food sources, each one will produce a new candidate food source position hv  in 

the neighbourhood of the selected food source hx  using equation (2.8). Then, the 

greedy selection between hx  and hv  is used. 

e. Scout bee phase: A food source hx  is abandoned after a given 

number of unsuccessful trials to produce a better food source in its 

neighbourhood, is exhausted; this number is denoted by limit. The food source 

which is abandoned by the employed bee is replaced with a new random food 

source that is generated by the scout bee. The position of this food source is 

obtained using equation (2.7). 

The value of the limit parameter is given by the following expression: 

 limit SN D    (2.10) 

The limit parameter allows keeping the diversity within the ABC population 

by regulating the generation of the scout bees. 

The location of the best ever food source discovered in the whole search 

space by any artificial bee is stored in bestx . If a given artificial bee produces a 

better food source, bestx will be replaced by its position. 

The different steps of the ABC algorithm are given by the flowchart of figure 

2.2. 
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Figure 2.2 : Flowchart of the ABC algorithm. 

5. Proposed variants of the ABC algorithm 

Two improved variants of the ABC algorithm were proposed. They are 

designated by ABCEV (ABC Enhanced Version) and EEABC (Equal Exploitation 

ABC).   
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5.1.  ABC Enhanced Version (ABCEV) 

To enhance the overall performance of the ABC algorithm, several 

modifications were introduced to the original ABC algorithm. These modifications 

are described in details as follows: 

5.1.1. Initialization phase 

The distribution of the initial population in any evolutionary based algorithm 

is a critical task especially if no information about the solution is available. If the 

population does not cover the search space efficiently, it may not be able to locate 

the appropriate solution points, thereby missing the global optimum [146]. This 

difficulty may be minimized to a great extent by using a well-organized distribution 

mechanism rather than the more conventional random initialization. 

Chaotic map has been successfully used to distribute the initial population 

of different evolutionary algorithms. Using such initialization will increase the 

diversity within the population and help to generate high quality solutions. Several 

versions of chaotic initialization have been considered. The ‘Chaotic initialization 

based on logistic equation’ used in [152] was found to be more efficient in both 

initial solutions quality and computing requirement. Hence, in this proposed 

version, the position of the initial food sources is generated using the following 

expression: 

   min  max minh j j h j j jx x x x     (2.11) 

where =1, ,h SN , =1, ,Dj   and  1   4 1h j h j h j      with  1 0 1j   is a uniformly 

distributed random number not a multiple of 0.25. 

5.1.2. Update equation 

Equation (2.8) encompasses a large portion of the ABC philosophy. It is 

responsible, in large, for both the exploratory and especially the exploitation 

behaviour of the algorithm. Based on a mutation strategy of the DE algorithm, Gao 

and Liu [176] have proposed the following equation as a replacement for equation 

(2.8): 

  1 2   r  h j best j hj r j jv x x x     (2.12) 
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where  1 2 1 2  1, , /r r SN r r h  and   are uniform randomly chosen indexes. 

From equation (2.12), the best ever food source bestx  is biasing the newly 

generated food sources towards itself, increasing thus the exploitation capabilities 

of the algorithm especially around the current best food source, and also 

increasing the convergence speed. But, as the exploitation capability of the 

algorithm increases, its exploration capability on the other hand decreases. To 

address this issue, the limit value which controls the scout bees was also modified. 

5.1.3. Scout bee 

The exploratory behaviour of the algorithm can be increased by generating 

more scout bees. This can be done by decreasing the value of the control 

parameter limit. Its new expression is then given by: 

 0.6limit SN D     (2.13) 

This expression was inspired from [177], and has proven to be efficient 

compared to other expressions. 

5.2. Equal Exploitation ABC (EEABC) 

In the previous version (ABCEV), a new update equation was used. This 

equation will increase the exploitation capabilities of the algorithm especially 

around the best ever food source bestx , increasing, thus the convergence speed. 

But, on the other hand, it will make all the artificial bees in the population converge 

towards the same region of the search space. Consequently, both the diversity 

within the population and the exploratory behaviour of the algorithm will be 

decreased, which will make the algorithm more vulnerable to premature 

convergence and to get trapped in local optima even when the limit parameter 

value is decreased. 

To address this issue and further increase the convergence speed of the 

algorithm, the following modifications have been introduced to the ABCEV: 

5.2.1. New probability equation 

The original ABC uses equation (2.9) to assign onlooker bees to further 

exploit the different prominent regions of the search space found so far. But, as 
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the optimization process progresses, it will converge towards a single solution 

around which all the artificial bees (Employed and onlooker) will be clustered. This 

behaviour is extremely desirable if this solution is the global optimum as all the 

population will be exploiting the most prominent region of the search space. 

However, if this solution is not the global optimum, the population diversity is low 

and the algorithm will not be able to explore the remaining search space. Hence, it 

will converge toward this solution making the algorithm premature convergent. 

Scout bees, introduced to avoid converging toward local optima, are generally not 

able to introduce sufficient diversity within the population to escape a sub optimal 

solution. In fact, when a scout bee, having a low probability for attracting any 

onlooker bees to exploit its new source, is generated, it will be attracted to the 

other artificial bees clustered around the sub optimal solution. This problem will be 

further amplified if equation (2.12) is used.  

In order to address the diversity issue and the premature convergence 

problem, we propose the following new probability equation as a replacement for 

equation (2.9): 

  
 

 

 

 1 1

1

1
1  

itness h h
h SN SN

itness hh h
h

f x ExplInd x
p

f x
ExplInd x

 

 

  

 
  (2.14) 

where:   is a constant called Exploration rate and chosen in the interval  0,1 , 

 hExplInd x  is called Exploitation Index of food source hx , which represents the 

number of times this food source was exploited by either an employed or an 

onlooker bee. It is different from the number of unsuccessful trials used with the 

limit parameter. In this case, both successful and unsuccessful trials are counted. 

Using this parameter, we can keep track of how much the different food sources 

are being exploited. 

Contrary to the original probability equation where the onlookers chose a 

food source solely based on the fitness values, the probability of an onlooker to 

choose a food source depends, according to (2.14), on the fitness of the food 

sources and their exploitation indexes. The second term in the right side of (2.14) 

will favour the exploitation by the onlookers of the food sources that are not being 
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thoroughly exploited whereas the first term will favour the exploitation of the food 

sources with higher fitness. Using both terms, the onlookers will not only exploit 

the possible prominent regions of the search space, but also the less exploited 

food sources maintaining a higher diversity within the population which tends to 

increase the exploration capabilities of the algorithm. 

The exploration rate   is used to balance between exploiting prominent 

regions of the search space and exploring this space by maintaining diversity 

within the population. The value of   should be chosen carefully, a small one 

tends to make (2.14) more close to (2.9) while a value approaching 1 will increase 

the exploration of the algorithm but decreases severely its exploratory capabilities. 

This algorithm is called Equal Exploitation ABC because it tends to equally 

exploit all the food sources not only the fittest ones. As the algorithm starts 

iterating, a given food source LowIndexx  that has the lowest exploitation index will be 

more and more exploited by onlookers, which tends to increase its exploitation 

index compared to the other food sources. When the exploitation index of a given 

food source increases, the probability to further exploit it will decrease giving rise 

to the exploitation of other food sources with lower exploitation index, which 

ensures that all food sources get a chance to be thoroughly exploited. 

The scout bees’ role will also be strengthened. In fact, seeing that the food 

source generated by a new scout bee has not been previously exploited, it has a 

high probability to attract onlookers to its position which ensures that this position 

will get an adequate chance to be exploited. When a scout bee generates new 

food source, its Exploitation Index is immediately given the value of the lowest 

Exploitation Index found within the population. 

5.2.2. Adaptive exploration rate 

The value of the exploration rate   of equation (2.14) is of crucial 

importance; it makes a good balance between exploring the search space and 

exploiting its prominent regions. Determining a fixed single value for   in order to 

ensure good performances for any optimization problem is somewhat difficult if not 

outright impossible as each optimization problem has its own characteristics. 

Some problems require more exploration than exploitation or vice versa. In other 
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situations, depending on the current status of the optimization, more exploration 

(exploitation) is momentarily required. 

The ideal situation would be to design an adaptive strategy where the 

exploration rate   is automatically adjusted based on details about the current 

status of the optimization. This is done by adopting Rechenberg’s 1/5 mutation 

rule that states that: the ratio of successful mutation to all mutation should be 

equal to 1/5 in any efficient optimization process [178]. Using the value of this 

ratio, we could determine if more exploration (exploitation) is required. 

The value of the exploration rate   is adjusted using the following formula: 

 

0.85 1 / 5

/ 0.85 1 / 5

1/ 5

     if 

     if 

              if 

 

  

 

 


 
 

  (2.15) 

where   is the ratio of successful mutation to all mutations computed every 10 D  

iterations. The value of   is adjusted every D  iterations. 

The initial value for   is chosen equal to 0.1. 

5.2.3. Adaptive update mechanism 

In the basic ABC, each new solution is generated by updating only one 

optimization parameter at a time. This approach helps explore the search space 

more vigorously and avoid premature convergence. However, the algorithm will 

require more time to converge toward good solutions. In order to increase the 

convergence speed of the algorithm without compromising its ability to explore and 

escape local optima, an adaptive update strategy where one or more optimization 

parameters could simultaneously be updated, is developed. 

The idea revolves around the fact that at the start of the optimization, the 

diversity within the population is relatively high, so, instead of updating only one 

optimization parameter at a time, multiple (not necessarily all) parameters could be 

updated to increase the convergence speed without worrying about the premature 

convergence problem. However, as the algorithm start iterating, the number of 

parameters to be updated will be constantly reduced as a response to the typically 
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diminishing diversity, until having only one optimization parameter to update at the 

end of the optimization process. 

The number of dimensions to update, in each iteration, is given by: 

   0.1 1 / _updateN D m Max iter      (2.16) 

where m  denotes the current number of iteration. 

The updateN  updated dimensions are randomly chosen each time a new 

candidate food source is generated. 

5.3. Experimental study on numerical benchmark functions 

In this section, the performances of the proposed algorithms are evaluated 

and compared to those of the ABC algorithm [119] and its well-known variants 

(GABC [153], ‘the best-so-far selection in ABC’ dubbed here ‘best-so-far ABC’ 

[179], MABC [180]). To highlight the main similarities and differences between 

these algorithms and the proposed ones, the different operations involved in each 

algorithm are gathered in table 2.1. 

Table 2.1 : Characteristics of the different considered variants of the ABC 
algorithm. 

Approach Initial  
population 

Update equation for 
employed bees 

Update equation for 
onlookers bees 

The Limit 
parameter 

Basic ABC Random      k h j h j h j h j jv x x x    
The same as that of the 

employed bees 
limit SN D   

GABC Random  
 

    k 

 h  

h j h j h j h j j

h j j j

v x x x

y x





  

 
 

The same as that of the 
employed bees 

limit SN D   

Best-so-far 
ABC 

Random      k h j h j h j h j jv x x x         k h j h j h j b h j jv x f x x  
 

limit SN D   

MABC Random      k 

 

,

  ,

h j h j h j h j j

h j

v x x x

rand SF SF





  

   

 

The same as that of the 
employed bees 

limit SN D   

ABCEV Chaotic  
1 2   r   h j best j h j r j jv x x x    The same as that of the 

employed bees 
0.6limit SN D  

 
EEABC Chaotic  

1 2   r   h j best j h j r j jv x x x    The same as that of the 
employed bees 

0.6limit SN D  
 

 

In these algorithms, except for the best-so-far, the MABC and the EEABC 

algorithms, the update equation is applied to only one dimension of the solution. In 

the case of the MABC algorithm, the number of dimensions to be updated is a 
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control parameter of the algorithm whereas all dimensions of the onlooker bees’ 

position are updated in the case of the best-so-far algorithm. In the EEABC 

algorithm, the number of dimensions to update is given by (2.16). 

The probability equation for all algorithms is given by (2.9), except for the 

EEABC algorithm which uses that given by (2.14). 

Some newer enhanced version of the ABC algorithm such as the works 

given in [152, 181] were not considered in this comparison. In these works more 

than one equation are used to update the onlooker’s positions at the same time. In 

this work, only algorithms with one update equation are considered. 

The comparative study is  exclusively limited to ABC variants due to the fact 

that previous papers have already compared the performance of the ABC 

algorithm against existing conventional approaches such as GA, PSO and many 

other optimization algorithms [49, 120, 182]. 

5.3.1. Benchmark functions 

Tables 2.2 and 2.3 give twelve standard benchmark functions frequently 

used to evaluate optimization algorithms [42]. While table 2.2 contains six 

unimodal benchmark functions, table 2.3 contains 6 multimodal benchmark 

functions where D  denote the dimension of the solution. The global minimum of 

all these functions, except for 7f , is equal to 0. The other test bed we have also 

chosen is the fifteen benchmark functions proposed in the CEC2015 special 

session on ‘Bound Constrained Single-Objective Computationally Expensive 

Numerical Optimization’ [183]. These functions, which include hybrid and 

composition functions, are computationally expensive optimization problems that 

offer great complexity compared to the standard benchmark functions. Table 2.4 

[183] lists a summary of these benchmark functions. A more detailed description of 

the CEC 2015 benchmark function could be found in annex C and in the CEC 

2015 technical report [183]. The CEC 2015 benchmark functions were slightly 

modified in order to shift their minimums to 0. 
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Table 2.2 : Unimodal benchmark functions. 

Function Search range Min 

  2
1

1

D

i
i

f x x


 
   100,100

D
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i
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D
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D
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i
i
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Table 2.3 : Multimodal benchmark functions. 

Function Search range Min 
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Table 2.4 : Summary of the CEC2015 expensive optimization test problems. 

Categories Function Description Related basic functions 
Unimodal 
functions 

1F   Rotated Bent Cigar function Bent Cigar function 

2F  Rotated Discus function Discus function 

Simple 
multimodal 
functions 

3F  Shifted and rotated Weierstrass function Weierstrass function 

4F  Shifted and rotated Schwefel’s function Schwefel’s function 

5F  Shifted and rotated Katsuura function Katsuura function 

6F  Shifted and rotated HappyCat function HappyCat function 

7F  Shifted and rotated HGBat function HGBat function 

8F  Shifted and rotated Expanded Griewank’s 
plus Rosenbrock’s function 

Griewank’s function 
Rosenbrock’s function 

9F  Shifted and rotated Expanded Scaffer’s F6 
function 

Expanded Scaffer’s F6 function 

Hybrid functions 
10F  Hybrid function 1 Schwefel’s function 

Rastrigin’s function 
High Conditioned Elliptic function 

11F  Hybrid function 2 Griewank’s function 
Weierstrass function 
Rosenbrock’s function 
Scaffer’s F6 function 

12F  Hybrid function 3 Katsuura function 
HappyCat function 
Griewank’s function 
Rosenbrock’s function 
Schwefel’s function 
Ackley’s function 

Composition 
functions 13F  Composition function 1 Rosenbrock’s function 

High Conditioned Elliptic function 
Bent Cigar function 
Discus function 
High Conditioned Elliptic function 

14F  Composition function 2 Schwefel’s function 
Rastrigin’s function 
High Conditioned Elliptic function 

15F  Composition function 3 HGBat function 
Rastrigin’s function 
Schwefel’s function 
Weierstrass function 
High Conditioned Elliptic function 

5.3.2. Experimental  setup 

The aim of this analysis is to compare the minimization quality of the 

proposed algorithms against other variants of the ABC algorithm by considering 

the numerical optimization (minimization) of the benchmark functions of table 2.2, 

2.3 and 2.4. 

For the first twelve benchmark functions, a population of 20 employed bees 

and 20 onlooker bees and a maximum number of 1500 iterations is chosen. The 

results of each algorithm are averaged over 150 runs. For the CEC 2015 
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benchmark functions, a population of 50 employed bees and 50 onlooker bees 

and a maximum number of 3000 iterations is used while the number of parameters 

to be updated in each iteration will be calculated using: 

   0.2 1 / _updateN D m Max iter      (2.17) 

The results of each algorithm are averaged over 25 runs. 

All the simulations are executed on the same Intel Core i5 3.10 GHz (TM) 

based machine. If the numerical function evaluation drops below 2.22e-16, it is 

reported as 0. 

We are interested in recording the mean (found in column named Mean) of 

objectives values, its standard deviations (found in column named SD) and the 

medians (found in column named median) of the best solution in the last iteration. 

We are also interested in recording the number of iterations required to converge 

toward the solutions (only for the twelve first benchmark functions that have 

converged to zero within 7500 iterations) and the convergence speed of each 

algorithm.  

5.3.3. Comparative  results 

The results of the comparison between the proposed algorithms and the 

other variants of the ABC algorithm are presented in tables 2.5 and 2.6 for the 

standard benchmark functions and in table 2.7 for the CEC 2015 benchmark 

functions. The bold font is used to indicate the minimum mean values in each row, 

whereas the grey background is used to indicate better optimization result than 

both of the proposed algorithms. 

It can be observed from table 2.5 that both of the proposed algorithms give 

the best general results compared to the rest of the algorithms. From the 36 

considered cases, both of these algorithms give the best solutions in 26 cases 

compared to all the other remaining algorithms. The GABC gives best solutions in 

7 cases, the MABC is the best in 5 cases and the best-so-far is the best in only 2 

cases. The basic ABC algorithm is outperformed by all of the other algorithms. 

Nonetheless, the proposed EEABC algorithm seems to be having some 

problems with the functions 9 10 11 12,  ,  and  f f f f . A big difference is observed when 
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comparing the median values with the average values. Let us take the function 10f  

with 30 dimensions as an example. In this case, the median value is equal to 0 

which means that in at least half of the 150 performed runs, the algorithm 

converged to zero. However, the average value of all 150 runs equals 1.381E-0.3 

which indicates that in some of the runs, the optimization results were big enough 

to shift the average from 0 to 1.381E-0.3. The more reasonable conclusion is that 

the proposed algorithm is sometimes getting trapped within some local optimum 

instead of converging toward the global optimum. This problem is less apparent in 

the proposed ABCEV algorithm. 

In table 2.6, the average convergence number of iterations of each 

algorithm is recorded. These results were obtained by increasing the maximum 

number of iterations to 7500. If the algorithm could converge within this number, 

the average number of iterations required to converge toward the optimum will be 

recorded. If for a given function, no algorithm could converge toward the optimum, 

the convergence information of this function is omitted. 

Of the 24 cases, the EEABC requires the least number of iterations to 

converge in 17 cases, 4 cases for the ABCEV, 2 cases for the best-so-far and only 

one case for the MABC.  

Comparing the convergence quality of the ABCEV and the EEABC, the 

EEABC is slightly better than the ABCEV. However, when comparing their 

convergence speed, the EEABC clearly outperforms the ABCEV. 

The CEC 2015 benchmark results are gathered in table 2.7. From the 30 

cases presented in this table, the EEABC algorithm outperforms its counterparts in 

half of them. The MABC has better results in 8 cases, the basic ABC in 5 cases, 

the Best-so-far in 2 cases while the ABCEV in only 1 case. 

Comparing the obtained results with those of the standard benchmark 

functions, it appears that the ABCEV along with the GABC are not suitable for 

optimization problems of great complexity. This does not hold true, however, for 

the MABC which appears to achieve good performances and the basic algorithm 

whose performances have increased. 
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Table 2.5 : Comparative results of the convergence quality for the standard benchmark functions. 

 

F D 
Basic ABC (best in 0 case) GABC (best in 7 cases) Best-so-far ABC (best in 2 cases) MABC (best in 5 cases) ABCEV (best in 14 cases) EEABC (Best in 14 cases) 

Average STD Median Average STD Median Average STD Median Average STD Median Average STD Median Average STD Median 

1f
 

30 3.167E-14 9.537E-14 1.065E-14 0.000E+00 0.000E+00 0.000E+00 4.529E-08 3.619E-07 2.714E-13 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 

60 1.174E-07 1.855E-07 6.139E-08 5.707E-10 9.422E-10 3.361E-10 9.971E-03 9.071E-03 7.494E-03 1.035E-08 5.890E-09 9.096E-09 1.680E-14 2.129E-14 9.945E-15 0.00E+00 0.00E+00 0.00E+00 

100 1.103E-04 1.900E-04 7.890E-05 3.520E-04 3.960E-04 2.104E-04 7.360E+02 2.641E+02 7.367E+02 5.181E-03 1.580E-03 4.971E-03 1.808E-07 1.298E-07 1.536E-07 4.09E-09 2.29E-09 3.54E-09 

2f
 

30 5.857E-08 2.765E-08 5.210E-08 1.702E-12 1.131E-12 1.419E-12 6.297E-07 7.710E-06 1.543E-10 1.040E-13 6.539E-14 8.475E-14 1.548E-16 3.181E-16 0.000E+00 0.00E+00 0.00E+00 0.00E+00 

60 2.524E-04 6.567E-05 2.411E-04 9.991E-06 7.151E-06 8.068E-06 3.024E-03 8.331E-04 2.892E-03 4.971E-06 1.537E-06 4.736E-06 2.140E-08 8.380E-09 2.087E-08 9.56E-11 3.76E-11 9.01E-11 

100 1.275E-02 2.138E-03 1.250E-02 1.113E-02 1.207E-02 4.936E-03 4.418E+00 7.502E-01 4.451E+00 4.362E-02 1.361E-02 4.068E-02 7.185E-05 5.167E-05 5.718E-05 7.33E-01 2.62E+00 4.56E-06 

3f
 

30 1.298E+01 3.701E+00 1.296E+01 8.622E+00 1.391E+00 8.622E+00 2.441E+01 2.839E+00 2.473E+01 5.900E+00 3.037E+00 6.091E+00 4.465E+00 9.912E-01 4.508E+00 9.669E-01 2.562E-01 9.251E-01 

60 5.527E+01 3.833E+00 5.517E+01 5.156E+01 3.136E+00 5.173E+01 5.977E+01 2.067E+00 5.978E+01 2.008E+01 3.035E+00 2.011E+01 5.476E+01 3.693E+00 5.485E+01 1.967E+01 2.735E+00 1.968E+01 

100 7.757E+01 2.928E+00 7.791E+01 7.633E+01 2.485E+00 7.679E+01 7.492E+01 1.420E+00 7.492E+01 4.668E+01 3.993E+00 4.688E+01 8.440E+01 3.314E+00 8.506E+01 5.352E+01 4.083E+00 5.366E+01 

4f
 

2 7.842E-03 9.184E-03 5.147E-03 3.606E-03 3.735E-03 2.281E-03 5.881E-11 3.350E-10 4.609E-13 4.894E-03 4.951E-03 3.570E-03 1.385E-04 1.933E-04 7.277E-05 2.061E-05 3.299E-05 8.817E-06 

3 1.106E-01 1.114E-01 8.147E-02 3.012E-02 2.511E-02 2.258E-02 4.782E-04 3.713E-03 2.267E-06 4.574E-02 4.539E-02 3.209E-02 2.365E-03 2.859E-03 1.189E-03 3.473E-04 5.845E-04 1.653E-04 

10 2.275E-01 3.335E-01 1.023E-01 2.098E-01 2.907E-01 9.135E-02 4.207E-01 9.850E-01 1.085E-01 1.565E+00 1.914E+00 6.589E-01 3.682E-01 1.172E+00 8.833E-03 2.891E-01 1.046E+00 7.752E-03 

5f
 

30 4.100E-14 1.421E-13 1.216E-14 0.000E+00 0.000E+00 0.000E+00 1.471E-08 1.727E-07 3.482E-13 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

60 8.621E-08 8.932E-08 6.014E-08 4.666E-10 5.142E-10 2.936E-10 9.382E-03 7.023E-03 7.252E-03 9.998E-09 4.576E-09 9.269E-09 1.706E-14 1.997E-14 1.178E-14 0.000E+00 0.000E+00 0.000E+00 

100 9.177E-05 5.774E-05 7.622E-05 3.821E-04 7.200E-04 2.035E-04 7.312E+02 2.696E+02 7.051E+02 5.219E-03 1.447E-03 4.905E-03 1.548E-07 9.510E-08 1.341E-07 3.995E-09 2.147E-09 3.795E-09 

6f
 

30 7.825E-02 2.020E-02 7.880E-02 5.399E-02 1.340E-02 5.338E-02 1.794E-02 6.893E-03 1.685E-02 1.089E-01 2.846E-02 1.060E-01 4.098E-02 1.019E-02 4.193E-02 2.801E-02 7.776E-03 2.706E-02 

60 2.843E-01 9.218E-02 2.847E-01 2.777E-01 4.100E-02 2.784E-01 1.626E-01 4.630E-02 1.573E-01 2.418E-01 4.679E-02 2.442E-01 1.703E-01 3.236E-02 1.721E-01 8.521E-02 1.777E-02 8.301E-02 

100 6.893E-01 2.441E-01 6.861E-01 9.391E-01 1.178E-01 9.439E-01 8.697E-01 1.685E-01 8.477E-01 4.773E-01 8.177E-02 4.717E-01 6.069E-01 7.966E-02 6.029E-01 2.525E-01 3.116E-01 2.237E-01 

7f
 

30 -1.24E+04 8.578E+01 -1.25E+04 -1.25E+04 6.891E+01 -1.26E+04 -1.19E+04 1.812E+02 -1.19E+04 -8.78E+03 3.424E+02 -8.77E+03 -1.25E+04 7.948E+01 -1.26E+04 -1.24E+04 1.68E+02 -1.25E+04 

60 -2.35E+04 2.315E+02 -2.35E+04 -2.37E+04 2.433E+02 -2.37E+04 -2.17E+04 3.087E+02 -2.17E+04 -1.56E+04 6.132E+02 -1.55E+04 -2.49E+04 1.747E+02 -2.49E+04 -2.3E+04 5.24E+02 -2.30E+04 

100 -3.66E+04 3.811E+02 -3.66E+04 -3.63E+04 4.052E+02 -3.63E+04 -3.21E+04 4.799E+02 -3.21E+04 -1.73E+04 6.475E+02 -1.73E+04 -4.11E+04 2.743E+02 -4.10E+04 -3.69E+04 8.99E+02 -3.69E+04 

8f
 

30 3.064E-09 2.916E-08 8.583E-12 4.257E-12 1.959E-11 2.274E-13 3.073E+00 1.023E+00 3.123E+00 4.145E+01 7.918E+00 4.129E+01 1.305E-08 8.599E-08 5.684E-14 9.984E-02 3.599E-01 1.376E-09 

60 6.335E+00 2.413E+00 6.332E+00 4.036E+00 1.168E+00 4.158E+00 3.532E+01 3.363E+00 3.523E+01 1.346E+02 1.735E+01 1.343E+02 2.560E-01 4.924E-01 1.327E-08 7.353E+00 3.611E+00 6.965E+00 

100 4.346E+01 6.645E+00 4.434E+01 4.150E+01 3.814E+00 4.087E+01 1.368E+02 8.790E+00 1.378E+02 6.386E+02 3.641E+01 6.429E+02 6.659E+00 2.326E+00 6.633E+00 4.179E+01 1.237E+01 3.956E+01 

9f
 

30 6.938E-08 9.298E-08 4.655E-08 1.444E-11 1.241E-11 1.052E-11 5.272E-05 3.475E-04 2.543E-06 3.885E-02 1.857E-01 2.180E-03 5.503E-14 1.074E-14 5.418E-14 5.086E-01 2.712E+00 3.286E-14 

60 1.080E-04 5.513E-05 9.591E-05 1.028E-04 5.794E-05 8.725E-05 1.682E+00 5.634E-01 1.788E+00 6.130E-01 4.739E-01 5.559E-01 1.581E-07 8.615E-08 1.405E-07 4.720E+00 7.160E+00 4.870E-09 

100 1.460E+00 2.859E-01 1.508E+00 3.600E-01 1.142E-01 3.583E-01 7.744E+00 6.564E-01 7.695E+00 2.884E+00 9.173E-01 2.739E+00 5.734E-03 3.361E-03 4.631E-03 8.880E+00 8.656E+00 9.554E+00 

10f
 

30 9.704E-04 3.574E-03 6.967E-13 4.471E-04 2.057E-03 4.772E-13 6.285E-04 2.519E-03 9.207E-13 8.688E-06 4.859E-05 8.915E-08 3.531E-03 9.950E-03 1.937E-14 1.381E-03 3.373E-03 0.000E+00 

60 4.424E-03 8.443E-03 2.905E-07 5.517E-04 2.726E-03 1.374E-08 3.574E-03 6.214E-03 9.381E-04 9.569E-05 3.027E-04 2.791E-05 2.112E-03 7.000E-03 2.943E-13 1.035E-03 3.233E-03 0.000E+00 

100 1.537E-02 2.808E-02 2.154E-04 2.770E-02 3.019E-02 1.720E-02 1.215E+00 7.561E-02 1.202E+00 1.459E-02 9.615E-03 1.222E-02 1.168E-03 3.896E-03 2.007E-07 1.165E-03 4.526E-03 1.939E-09 

11f
 

30 1.487E-12 1.074E-11 2.413E-15 0.000E+00 0.000E+00 0.000E+00 2.201E-10 2.063E-09 8.477E-15 1.294E-01 3.064E-01 3.410E-06 2.561E-16 3.136E-15 0.000E+00 6.911E-04 8.465E-03 0.000E+00 

60 1.820E-08 6.892E-08 2.323E-09 1.261E-10 9.159E-10 6.181E-12 2.197E-04 3.310E-04 1.400E-04 1.607E+00 1.010E+00 1.598E+00 3.396E-15 2.166E-14 0.000E+00 1.590E-02 5.303E-02 0.000E+00 

100 1.004E-06 1.213E-06 7.084E-07 2.146E-06 1.031E-05 2.144E-07 2.164E+00 5.237E-01 2.136E+00 5.308E+00 1.820E+00 5.132E+00 6.098E-09 6.687E-08 2.401E-10 1.075E-01 2.027E-01 2.875E-06 

12f
 

30 2.255E-11 2.572E-10 2.211E-14 0.000E+00 0.000E+00 0.000E+00 6.088E-10 5.875E-09 3.140E-14 1.217E-03 3.371E-03 5.544E-07 1.048E-09 1.284E-08 0.000E+00 3.649E-14 3.444E-13 0.000E+00 

60 1.671E-07 5.576E-07 5.133E-08 3.282E-09 1.423E-08 2.112E-10 1.651E-03 2.485E-03 8.860E-04 9.465E-03 5.452E-03 7.018E-03 3.372E-14 1.464E-13 5.887E-15 1.094E-02 1.304E-01 0.000E+00 

100 6.083E-05 9.151E-05 3.875E-05 1.904E-04 1.118E-03 9.569E-06 9.447E+03 2.108E+04 1.112E+03 1.118E+00 1.878E-01 1.097E+00 4.007E-05 4.887E-04 1.075E-08 9.123E-02 4.941E-01 2.653E-08 
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Table 2.6 : Comparative results of the convergence iteration. 

F D 

Basic 
ABC 

(best in 0 
cases) 

GABC 
(best in 0 

cases) 

Best-so-
far ABC 
(best in 2 

cases) 

MABC 
(best in 1 

cases) 

ABCEV 
(best in 4 

cases) 

EEABC 
(best in 17 

cases) 

1f  

30 1699.167 1127.62 2050.907 1230.013 813.8333 610.98 

60 3478.78 2317.333 5159.513 2336.173 1672.013 1166.2 

100 5862.527 3915.393 7500 3943.72 2849.26 1899.653 

2f  

30 3419.22 1960.067 2231.433 1749.173 1477.567 954.42 

60 7043.107 4048.687 5035.72 3376.42 3069.093 1745.84 

100 7500 6905.613 7500 5785.087 5233.307 3025.04 

3f  30 7500 7500 7500 7498.707 7500 7500 

4f  
2 7500 7500 4175.1 7500 7500 7500 

3 7500 7500 7461.487 7500 7500 7500 

5f  

30 1706.44 1127 1982.173 1234.767 820.4933 611.9067 

60 3459.767 2310.753 5193.213 2339.02 1674.273 1166.04 

100 5876.127 3912.953 7498.78 3942.913 2846.227 1897.193 

8f  

30 3348.093 2457.813 3271.407 7500 2068.947 2164.927 

60 6900.487 6620.707 7477.147 7500 6565.127 7407.893 

100 7489.14 7475.4 7500 7500 7332.727 7500 

10f  

30 4539.533 3765.58 2227.007 6869.927 2538.54 1183.653 

60 5078.867 4675.28 4337.633 7368.767 2965.44 1865.387 

100 6425.513 5526.747 6321.64 7450 3682.173 2609.493 

11f  

30 1649.753 1063.367 1911.947 7500 753.9 575.88 

60 3240.733 2130.573 4517.793 7500 1501.713 1361.58 

100 5415.113 3543.073 7329.28 7500 2510.387 2800.313 

12f  

30 1813.22 1147.02 1894.7 7500 812.1 600.7267 

60 3713.173 2313.053 4700.773 7500 1656.473 1209.54 

100 6092.047 3928.413 7482.413 7500 2800.12 2396.7 

 

Figures 2.3 - 2.6 show the convergence speed results of the different 

algorithms (only 4 cases are considered). In figures 2.3, 2.4 and 2.6, the MABC 

starts as the fastest algorithm; however the proposed EEABC rapidly reaches and 

surpasses it. Figure 2.5 shows that the proposed ABCEV is the fastest algorithm, 

although at the start of the optimization process, the EEABC was faster. 
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Table 2.7 : Comparative results of the convergence quality for the CEC 2015 benchmark functions. 

F D 
Basic ABC (best in 5 case) GABC (best in 0 cases) Best-so-far ABC (best in 2 cases) MABC (best in 8 cases) ABCEV (best in 1 cases) EEABC (Best in 15 cases) 

Average STD Median Average STD Median Average STD Median Average STD Median Average STD Median Average STD Median 

1F
 

10 1.710E+03 1.136E+03 1.496E+03 7.512E+03 4.802E+03 6.434E+03 6.81E+02 5.530E+02 5.612E+02 7.687E+02 1.326E+03 1.163E+02 1.219E+04 9.303E+03 1.109E+04 1.032E+04 1.009E+04 6.034E+03 

30 8.30E+02 5.914E+02 5.838E+02 9.316E+03 4.642E+03 8.700E+03 1.001E+04 8.496E+03 7.585E+03 1.436E+03 1.137E+03 1.150E+03 3.874E+03 3.417E+03 2.826E+03 5.259E+03 3.934E+03 5.596E+03 

2F
 

10 9.628E+03 2.502E+03 9.874E+03 8.284E+03 2.138E+03 8.334E+03 1.387E+04 4.365E+03 1.363E+04 1.357E+04 4.088E+03 1.319E+04 5.842E+03 1.759E+03 5.806E+03 5.341E+03 1.898E+03 4.941E+03 
30 8.783E+04 1.208E+04 8.971E+04 8.511E+04 1.350E+04 8.656E+04 9.123E+04 1.220E+04 9.358E+04 7.263E+04 1.358E+04 7.493E+04 7.659E+04 1.122E+04 7.674E+04 3.845E+04 6.794E+03 3.850E+04 

3F
 

10 4.432E+00 8.264E-01 4.551E+00 3.393E+00 9.429E-01 3.508E+00 3.673E+00 7.387E-01 3.886E+00 2.837E+00 9.606E-01 2.924E+00 2.707E+00 1.096E+00 2.414E+00 2.099E+00 1.434E+00 1.991E+00 
30 3.048E+01 1.471E+00 3.035E+01 2.759E+01 2.056E+00 2.777E+01 3.180E+01 2.104E+00 3.161E+01 1.740E+01 1.790E+00 1.744E+01 2.738E+01 2.104E+00 2.766E+01 1.729E+01 2.418E+00 1.772E+01 

4F
 

10 2.000E-02 3.203E-02 3.001E-11 4.965E-05 2.464E-04 0.000E+00 9.346E-02 4.378E-02 8.474E-02 7.444E+01 5.702E+01 5.835E+01 1.819E-14 1.286E-13 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

30 3.400E-01 4.878E-01 1.770E-01 5.868E-01 1.163E+00 2.302E-01 5.989E+00 2.051E+00 5.763E+00 1.456E+03 2.826E+02 1.478E+03 5.270E-01 9.966E-01 1.458E-01 2.633E+01 4.473E+01 9.088E+00 

5F
 

10 2.471E-01 5.898E-02 2.469E-01 4.456E-01 1.074E-01 4.494E-01 3.754E-01 7.473E-02 3.827E-01 9.341E-02 3.695E-02 8.883E-02 4.052E-01 1.326E-01 4.011E-01 4.207E-01 1.309E-01 3.971E-01 
30 6.960E-01 1.401E-01 6.871E-01 8.462E-01 1.623E-01 8.549E-01 8.537E-01 1.666E-01 8.610E-01 1.633E-01 4.829E-02 1.587E-01 9.163E-01 2.040E-01 9.246E-01 1.032E+00 2.348E-01 1.009E+00 

6F
 

10 1.454E-01 2.292E-02 1.444E-01 1.437E-01 3.052E-02 1.477E-01 8.794E-02 1.963E-02 8.387E-02 1.159E-01 3.456E-02 1.127E-01 1.192E-01 2.258E-02 1.211E-01 1.126E-01 1.882E-02 1.134E-01 
30 1.822E-01 2.873E-02 1.810E-01 2.401E-01 3.441E-02 2.421E-01 2.076E-01 3.019E-02 2.110E-01 2.733E-01 3.544E-02 2.789E-01 1.829E-01 3.137E-02 1.819E-01 2.292E-01 4.391E-02 2.285E-01 

7F
 

10 1.336E-01 3.019E-02 1.359E-01 7.976E-02 1.705E-02 7.955E-02 6.663E-02 1.992E-02 6.718E-02 1.644E-01 5.796E-02 1.569E-01 5.769E-02 1.739E-02 5.483E-02 5.352E-02 1.762E-02 5.056E-02 

30 2.258E-01 3.504E-02 2.261E-01 2.117E-01 2.967E-02 2.102E-01 2.265E-01 2.417E-02 2.261E-01 2.693E-01 2.779E-02 2.714E-01 1.853E-01 1.994E-02 1.789E-01 1.934E-01 3.040E-02 1.875E-01 

8F
 

10 8.301E-01 2.769E-01 8.179E-01 7.307E-01 2.046E-01 7.229E-01 8.638E-01 1.940E-01 8.712E-01 7.206E-01 2.276E-01 7.144E-01 6.413E-01 1.642E-01 6.207E-01 5.757E-01 1.092E-01 5.875E-01 
30 1.918E+01 3.772E+00 1.958E+01 1.400E+01 2.353E+00 1.408E+01 2.727E+01 3.994E+00 2.750E+01 6.567E+00 1.732E+00 6.531E+00 1.107E+01 2.309E+00 1.179E+01 5.650E+00 1.433E+00 5.800E+00 

9F
 

10 2.784E+00 2.478E-01 2.813E+00 2.579E+00 2.970E-01 2.566E+00 2.652E+00 2.161E-01 2.673E+00 3.082E+00 2.347E-01 3.140E+00 2.577E+00 2.798E-01 2.574E+00 2.397E+00 2.219E-01 2.372E+00 
30 1.270E+01 2.823E-01 1.274E+01 1.251E+01 3.245E-01 1.254E+01 1.277E+01 2.692E-01 1.278E+01 1.216E+01 3.850E-01 1.228E+01 1.248E+01 2.997E-01 1.251E+01 1.229E+01 3.071E-01 1.225E+01 

10F
 

10 3.992E+03 2.748E+03 2.843E+03 3.869E+03 1.737E+03 3.585E+03 1.346E+04 1.314E+04 8.778E+03 9.675E+02 4.345E+02 9.361E+02 2.660E+03 1.321E+03 2.308E+03 3.263E+03 1.772E+03 3.003E+03 
30 3.856E+05 2.240E+05 3.373E+05 6.405E+05 2.809E+05 5.692E+05 9.260E+05 2.909E+05 8.975E+05 4.231E+04 3.108E+04 3.327E+04 6.406E+05 5.197E+05 4.219E+05 5.384E+05 3.081E+05 4.045E+05 

11F
 

10 3.230E+00 5.660E-01 3.306E+00 2.882E+00 4.821E-01 2.821E+00 2.376E+00 4.075E-01 2.390E+00 2.907E+00 5.953E-01 2.967E+00 2.620E+00 4.567E-01 2.572E+00 2.246E+00 3.766E-01 2.142E+00 
30 1.909E+01 1.308E+00 1.923E+01 1.891E+01 1.602E+00 1.928E+01 1.758E+01 1.453E+00 1.785E+01 1.554E+01 1.278E+00 1.579E+01 1.928E+01 1.480E+00 1.939E+01 1.735E+01 1.741E+00 1.719E+01 

12F
 

10 2.863E+01 3.691E+00 2.785E+01 2.804E+01 2.100E+00 2.793E+01 3.044E+01 4.920E+00 2.920E+01 3.057E+01 9.616E+00 2.786E+01 2.792E+01 2.612E+00 2.696E+01 2.708E+01 2.038E+00 2.668E+01 
30 3.129E+02 1.086E+02 2.844E+02 2.808E+02 9.185E+01 2.865E+02 3.515E+02 1.075E+02 3.615E+02 1.489E+02 6.317E+01 1.345E+02 2.967E+02 1.006E+02 3.001E+02 1.652E+02 6.945E+01 1.482E+02 

13F
 

10 2.45E+02 6.665E+01 2.263E+02 2.974E+02 3.910E+01 3.152E+02 2.601E+02 5.664E+01 2.385E+02 3.059E+02 3.090E+01 3.149E+02 3.156E+02 7.581E-01 3.151E+02 3.153E+02 3.633E-01 3.157E+02 

30 3.277E+02 4.276E-02 3.277E+02 3.278E+02 2.322E-01 3.278E+02 3.279E+02 1.017E-01 3.279E+02 3.276E+02 3.298E-13 3.276E+02 3.279E+02 8.221E-01 3.278E+02 3.276E+02 2.760E-13 3.276E+02 

14F
 

10 1.917E+02 3.438E+00 1.917E+02 1.914E+02 3.957E+00 1.909E+02 1.913E+02 3.531E+00 1.921E+02 1.898E+02 3.399E+00 1.896E+02 1.880E+02 3.494E+00 1.881E+02 1.870E+02 4.494E+00 1.865E+02 
30 2.223E+02 3.349E+00 2.223E+02 2.224E+02 3.431E+00 2.222E+02 2.250E+02 3.779E+00 2.250E+02 2.182E+02 2.683E+00 2.181E+02 2.228E+02 4.899E+00 2.228E+02 2.156E+02 3.266E+00 2.161E+02 

15F
 

10 1.235E+01 2.463E+00 1.182E+01 1.228E+01 1.995E+00 1.209E+01 1.845E+01 5.492E+01 1.010E+01 8.760E+01 1.541E+02 1.163E+01 8.977E+00 1.037E+00 9.099E+00 7.524E+00 1.994E+00 7.275E+00 
30 4.31E+02 7.436E+00 4.307E+02 4.522E+02 1.651E+01 4.475E+02 4.365E+02 8.704E+00 4.357E+02 4.386E+02 1.959E+01 4.346E+02 4.499E+02 2.317E+01 4.465E+02 6.774E+02 9.249E+01 6.917E+02 
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Figure 2.3 : Convergence speed for function f1 with D=60. 

 

Figure 2.4 : Convergence speed for function f6 with D=30. 
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Figure 2.5 : Convergence speed for function f8 with D=100. 

 

Figure 2.6 : Convergence speed for function f10 with D=30. 

 

 



94 
 

 
 

6. conclusion 

In this chapter, two novel variants of the ABC algorithm were proposed. A 

comparative study against several existing variants of the ABC algorithm has 

indicated the good performances of the proposed algorithms.  

Although the EEABC has generated relatively good performances, in some 

situations, some deficiencies has been observed. As such, further future 

improvements should be carried out in order to overcome these deficiencies. 
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CHAPTER3: 

FUZZY MODEL PREDICTIVE CONTROL BASED ON META-HEURISTIC 

ALGORITHMS 

1. Introduction 

After evaluating the proposed optimization algorithms using numerical 

benchmark functions in chapter 2. The next phase would be to implement these 

optimization algorithms within nonlinear control strategies, and evaluate the 

performances of the entire controllers. 

The current chapter starts by formulating the complete fuzzy predictive 

control strategy. TS fuzzy technique, used to construct nonlinear prediction 

models, is initially given. The developed control algorithm around meta-heuristic 

algorithms is then presented along with the adopted techniques used to handle the 

constraints. 

The next section of the chapter contains a detailed description of the 

proposed NMPC control algorithms; two are based on the previously developed 

ABC algorithms while the last one is based on an efficient PSO algorithm. These 

three control algorithms are evaluated and compared to a number of linear and 

non-linear control strategies by considering the control of a simulated CSTR 

process, a model of an industrial boiler and a DSP based experimental setup. 

2. Fuzzy based model predictive control 

2.1. Takagi-Sugeno dynamic fuzzy modelling 

The first step in the fuzzy based nonlinear model predictive control 

(FNMPC) is the construction of the fuzzy nonlinear model of the system. 

Fuzzy Inference Systems (FIS) are capable of approximating any 

continuous function with a certain level of accuracy; they are universal 

approximators [22]. In addition, they have the ability to either extract or incorporate 

human knowledge directly via linguistic data [13, 184]. Takagi-Sugeno (TS) 

models, a subdivision of fuzzy models, are particularly suitable for NMPC 
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algorithms [23]. These models are able to express the dynamic nature of systems 

with characteristics of randomness, large delay time and strong nonlinearity [185, 

186]. 

The Takagi-Sugeno FIS are based on the so called IF-THEN rules that have 

the following form: 

   (3.1) 

where  is the set of  

premise values,  is the set 

of  inputs and  outputs values used in the consequent regressors, 

 is the set of membership functions associated 

with the antecedents of the  rule,  is the 

parameter vector of the  sub-model while  is its output ( ;  is the 

number of fuzzy rules). 

It is clear, from equation (3.1), that the Takagi-Sugeno fuzzy models only 

have fuzzy propositions in their antecedents while their consequences are linear 

functions of the antecedents or their variables. 

Using Input/output data extracted from a nonlinear process, a fuzzy model 

can be constructed to mimic the process behaviour by defining the parameter 

matrix as: 

   (3.2) 

and the normalized membership grade vector as: 

   (3.3) 

The inferred output of the TS fuzzy model is given by: 

   (3.4) 

Using the input/output representation, the TS model given by (3.4) can be 

rewritten as follows: 

:    IF      is        THEN       jj
T

j jR A y  

{ ( ),  ( 1)   ( 1),  ( ),  ( 1)   ( 1)}a ay t y t y t n u t u t u t m          a an m
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   (3.5) 

where ,  and . 

The global output of the fuzzy model can be written as: 

   (3.6) 

where  is the output of the  sub-model and: 

   (3.7) 

Assuming that a set of  input-output data pairs  is available 

and defining , a regression matrix which has the following 

expression can be constructed: 

   (3.8) 

The vector  can be calculated by solving the following least square 

problem: 

   (3.9) 

where . 

The resolution of equation (3.9) which is the last step in TS fuzzy model 

construction deals with the definition of the consequences part of the rules. 

However, the antecedent which involves in part the number, the position, the 

shape and the distribution of the membership functions must be first selected. A lot 
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of techniques for the construction of fuzzy models from Input-Output data are 

described in the literature [184, 187]. 

2.2. Notation 

First, let us define the adopted notation in the formulation of the proposed 

control algorithm. We consider a MIMO system with  inputs and  outputs and 

for which a TS fuzzy model [185] is used as the explicit model of the system. The 

process output at the future instant  is given by: 

   (3.10) 

where ,  is the TS fuzzy model estimated using measured 

and estimated past values of the system output and  is a disturbance 

(model/process mismatch). 

Since  d t j  cannot be measured, an estimate value will be used. The 

predicted disturbance over the future sampling time will be considered equal to 

that of the current sampling time [13, 188]. Therefore: 

   (3.11) 

The optimal control sequence is denoted by 

, where  is the 

system input vector. The cost function  is used to calculate the fitness function 

. 

The position of the  element (gene, particle, artificial bee…etc.) at the 

sampling time , is represented by: 

         , 1 , , 1h uh h hX u t u t u tt N       (3.12) 

where . 

The control structure is shown in figure 3.1. 
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Figure 3.1 : Bloc diagram of the proposed NMPC algorithm. 

2.3. Solving the fuzzy NMPC optimization problem 

Let us consider the following typical NMPC optimal control problem: 

   (3.13) 

 Subject to: 

   (3.14) 

   (3.15) 

   (3.16) 

   (3.17) 

 and  limit the range where the 

outputs are allowed to exist,  and  limit 

the range of the inputs while  and 

 limit the range of the inputs increments. The predictions 

 are obtained using a TS fuzzy model of the system. 

The first step toward solving the OCP (3.13)-(3.17) consists of choosing a 

suitable strategy to handle its constraints. 

2.3.1. Constraints handling 

From chapter 1, we could consider the constraints (3.14)-(3.16) on the 

inputs as hard constraints that cannot be violated whereas the constraint (3.17) on 

the outputs as soft constraint that can be violated. As such, a hybrid approach in 

handling the constraints (3.14)-(3.17) is adopted. The input constraints are 
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handled using a preserving strategy while the output constraints are handled using 

a penalizing strategy. 

a) Outputs constraints 

The easy way to soften the outputs constraints is to add new variables, 

called slack variables, in the cost function to heavily penalize any deviation or 

violation of the constraints. The output-dependent weight function  (Figure 

3.2) was chosen to soften the output constraints. It has the following expression 

[9]: 

   (3.18)  

   

where ,  and  is used to define the 

degree of softening:  indicates hard constraint while  indicates no 

constraint.  

The function  can also be used on the unconstrained outputs  by 

setting  and respectively to  and . 

 
Figure 3.2 : Weight function  y y . 
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By introducing the weight function , the OCP problem (3.13)-(3.17) is 

reformulated to have the following expression:   

   (3.19) 

 Subject to: 

   (3.20) 

   (3.21) 

   (3.22) 

b) Inputs constraints 

The constraints (3.21) and (3.22) on the inputs could be combined into a 

single constraint on the inputs as follow: 

For a given feasible solution  associated with hX  ( 1,..., poph n ), we can 

write from (3.21): 

   (3.23) 

If , then  is the already calculated control action . 

On the other hand, the constraint (3.22) on the inputs magnitudes could also 

be written as: 

   (3.24) 

Hence, (3.23) and (3.24) could be combined into a single constraint as 

follows: 

   (3.25) 
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The inequality (3.25) defines the boundary of the feasible search space of 

the following OCP problem: 

   (3.26) 

  Subject to: 

   (3.27) 

   (3.28) 

2.3.2. Why using the artificial bee colony ? 

Although the no free lunch theorem [154] states that all optimization 

algorithms are somewhat equivalents, restricting their use within the NMPC 

framework clearly changes the circumstances. In fact, huge performance 

differences are observed when using different meta-heuristic algorithms or even 

when using different variants of the same algorithm. 

Regardless of the used modelling approach, several meta-heuristic 

algorithms have been used to find high quality solutions to the NMPC optimization 

problem using as little computing requirements as possible. Among these 

algorithms, genetic algorithms [13, 14, 34, 189-191] and particle swarm 

optimization [46, 58, 186, 192-195] have been extensively used in developing 

NMPC algorithms. Recently, some other meta-heuristic algorithms, such as: ant 

colony optimization (ACO) [47], Bacterial Foraging Optimization (BFO) [48] and 

simulated annealing (SA) [189], were applied in solving the NMPC optimization 

problem.  It is true that this shift to use other optimization algorithms than the GA 

and the PSO algorithm was partially motivated by the limitations of these 

algorithms. Nevertheless, the main reason could be attributed to the huge 

advances made in the optimization field. Indeed, an increasingly large number of 

new and mostly more efficient meta-heuristic optimization algorithms are 

continuously being proposed 
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The ABC, a recently introduced algorithm, has been a distinctive meta-

heuristic algorithm. In fact, many comparative studies [49, 50] between the ABC 

algorithm and several other meta-heuristic algorithms such as GA, PSO and DE 

(Differential Evolution) have shown that the ABC performances are better or at 

least similar to the performances of these algorithms. Moreover, it was found that 

the ABC algorithm is more computing efficient, has better solutions accuracy, and 

is simpler than the other algorithms. A recent survey [51], related to the advances 

to the ABC algorithm and its applications, has indicated that more than 330 

research papers were published within the scope of merely seven years of its 

creation. Given that more scholars adopt this algorithm, this numbers is expected 

to be increasing exponentially in the near future.  

The ABC has been used in many fields; however its presence within the 

control engineering framework is quite limited. In fact, in the above mentioned 

survey, only nine research papers have been classified within the systems control 

field. Moreover, two-thirds of these papers deal solely with the design of the 

proportional integral differential (PID) controller and its parameters tuning. 

Given the good performances of the ABC algorithm and its successful 

implementation in many engineering fields [196-201], and the fact that the control 

community has not yet fully exploited the ABC algorithm to solve the different 

control engineering problems, especially the nonlinear predictive control one, it is 

expected that its use in predictive control will provide good results. 

3. Proposed control algorithms 

Assuming the MPC design parameters  have been 

chosen and the fuzzy prediction model has been obtained, the basic steps of the 

proposed control algorithms are given in the following sub-sections: 

3.1. Efficient PSO based controller 

The proposed algorithm is based on the idea that takes advantage of both 

prior knowledge about the search space landscape and the fact that in most 

practical applications the dynamic optimization problem changes are gradual 

[165]. So it is, in most cases, logical to assume that once a solution was found, it is 

better to track it rather than to look for it every time the optimization problem 

  1 2, , ,   0andu yN N N  
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changes. In the used PSO algorithm, a group of candidate solutions is generated 

using the Gaussian distribution and the fittest one is chosen as the initial global 

best position of the PSO population. Then the quality of this initial solution is 

enhanced by favouring the search within an adaptive immediate neighbourhood 

around this initial global best position. This increases the efficiency of the 

algorithm in regard of the execution time, by using a small population size, and the 

quality of the solutions. It is known that the conventional PSO algorithm involves, 

in order to find satisfactory solutions, the use of a large population size to 

effectively probe the whole search space. The downside, of course, will be the 

huge computing requirement necessary to manage this population. 

The different steps of the algorithm are drawn based on the following points: 

1) The solutions obtained at the sampling time t

      0
1   ,  1  ,  ,     1  uX u t u t u t N      and       0

2   1 ,  2  ,  ,     uX u t u t u t N      

where              1u uu t N u t N     are both evaluated and the best one is chosen as 

the initial global best position         0 0 0 01 ,  1 2 , ,  best utX u t u t u t N      of the 

entire PSO population. 

2) Using the Gaussian distribution, the particles   1,...,h popX h n  are 

distributed  around 0
bestX  within the radius  1

T

d d dmr r r   according to the 

following expression: 

   0         ( 0,..,( ) 1 ; 1,..,  ; 1,..., ) 
u

m
u pop

N
h
i

d

i di j

k
j Nu t j u t j r d

d
n

s
i m h

i t
         (3.29) 

where jd  is a random value from the normal distribution  [0,1]N , mk  is a random 

value from the normal distribution 
1

 [0, ]
3

N  and 2

1

u

j

N

d jdist d


  . 

The value of the radius dr  at the sampling time 1t   is given by: 

     1  dr u t u t     (3.30) 
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To explore the whole search space, the particles positions are updated 

according to (2.4), (2.5) and (2.6). 

Using a Gaussian distribution will ensure that the density of the particles 

gets higher around the chosen initial global best position; thus the optimal solution 

can be reached in few iterations and using  a small number of particles. This is 

very interesting in the cases when the system outputs changes are small, the 

system is operating in the steady state or if we want to fine tune the solution. The 

use of a uniform distribution favours the diversity of the particles and increases the 

probability to find better solutions relatively far from the previous one. Since the 

number of PSO particles and the allowed iterations number should not be large, 

their initial positions carry a lot of influence in the quality of the solution. 

To keep the algorithm from converging toward a local optimum, a minimal 

value  1min min

T

dmin d dmr r r   given by the following expression is imposed to dr : 

    1 2dminr w t y t      (3.31) 

where 1  is an n m  matrix of scaling parameters and 2  ( 1m  ) is used to 

impose a minimum value to dminr  regardless of the tracking error (the value of dminr  

can have a fixed value by setting 1  to zero). 

If the current solution is far from the global optimum, the corresponding 

tracking error will be large and consequently the values of dminr  will also be large. 

When  di mi dn ir r  ( 1, ,i m  ), the particles are distributed around 0
gbestX  within  di minr  

instead of dir . This will allow the algorithm to escape the current local optimum by 

looking for a better solution far from the actual one. 

The resulting control algorithm is summarized in Algorithm 3.1: 

Algorithm 3.1 

   

 Do // start a new sampling period 

  // Increment sampling period identifier 

Specify the desired reference trajectory between  and  

_ 0Sample ID 

_Sample ID  

1t N 2t N
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Make the system measurements 

 // Set the current number of iteration 

  Compute the initial global best position 0
bestX  according to point 1)  

  Compute the value of dr  using (3.30) and the value of mindr  using (3.31) 

If mindi dir r   

    min      1,..., mdi di ir r    

 end if 

  Set 0
Best gbestX X   

 for 1,..., poph n  // Generate initial population 

  Randomly initialize the velocity hv  

  Using (3.29), distribute the particle hX  around BestX  within the radius 

dr  

 end for 

for 1,..., poph n  // Evaluate initial population 

  Compute predictions between 1t N  and 2t N  for solution hX   

  Compute the cost  hF X  associated with the solution  

Set h hP X   // Update personal best solution 

If    h BestF H F X   // Update the global best solution 

   Best hX X  

  end if 

end for 

Repeat // Iterative process of the algorithm 

for 1,..., poph n   

  Update the solution hX  using (2.4), (2.5) and (2.6) 

  Compute the predictions between 1t N  and 2t N  for solution 

hX  

  Compute the cost  hF X  

   If    h hF X F P   // Update personal best solution 

1iter 

hX
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    h hP X     

   If    h BestF P F X   // Update the global best solution 

       Best hX P   

    end if 
   end if 

end for 

 // Update current number of iteration 

until ( ) // Criterion for stopping the optimization 

 // Collect best solution 

Send the first element  of  to the system 

 wait  // Wait for next sampling period 

3.2. The ABCEV based controller 

The predictive controller based on the proposed ABCEV algorithm is 

summarized in Algorithm 3.2. 

Algorithm 3.2 

   

 for   // Initial population 

  Choose an initial solution for  using (2.11) 

 end for 

 Do // start a new sampling period 

  // Increment sampling period identifier 

Specify the desired reference trajectory between  and  

Make the system measurements 

 // Set the current number of iteration 

  Randomly choose one of the initial solutions as the best solution  

for  // Evaluate initial population 

  Compute the predictions between  and  for the solution 

 

iter  

Max_iter Iter

 opt BestU t X

 u t  optU t

_ 0Sample ID 

1:h SN

hX

_Sample ID  

1t N 2t N

1iter 

BestX

1:h SN

1t N 2t N

hX
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  Compute the cost  associated with solution  

if  // Find the best solution in current population 

     

  end if 

    // Number of unsuccessful attempts to enhance a food source 

end for 

Repeat // Iterative process of the ABCEV 

for  // Employed bee phase 

  Generate a new solution  using (2.12) 

  Compute the predictions between  and  for  

  Compute the cost  

   if  // Use greedy selection 

      

      

   if  // Update the best solution 

        

    end if 

   else 

      

   end if 

end for 

for  // Probabilistic selection phase 

  Evaluate the probability  using (2.9) 

end for 

for  // Onlookers bee phase 

  Using , select a food source  to exploit 

using the roulette wheel selection 

 hF X hX

   h BestF X F X

Best hX X

  1Trial h 

1:h SN

hNewX

1t N 2t N hNewX

 hNewF X

   hNew hF X F X

h hNewX X

  1Trial h 

   h BestF X F X

Best hX X

    1Trial h Trial h 

1:h SN

hp

1:h SN

hp   1, ,rX r SN 
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  Generates a new solution  in the neighbourhood of  

using (2.12) 

  Compute predictions between  and  for  

  Compute the cost  

   if  // Use greedy selection 

      

      1Trial r    

   if  // Update the best solution 

        

    end if 

   else 

        1Trial r Trial r    

   end if 

end for 

for  // Scout bee phase 

 if  // Randomly generate a new solution 

    Generate a new solution hX  using (2.7)  

      

   end if 

end for 

 // Update current number of iteration 

until ( ) // Criterion for stopping the optimization 

 // Collect best solution 

Send the first element  of  to the system 

Sort the food sources  according to their cost in ascendant 

manner  

for  // Keep best two food sources for the next sampling period 

  Generate a new solution  using (2.11)  

hV rX

1t N 2t N hV

 hF V

   h rF V F X

r hX V

   r BestF X F X

Best rX X

1:h SN

 Trial h limit

  0Trial h 

iter  

Max_iter Iter

 opt BestU t X

 u t  optU t

 1, , hX h SN 

      1 2i i iSNF xFx xF  

3 :h SN

hNewX
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end for 

 wait  // Wait for next sampling period 

3.3. The EEABC based controller 

The predictive controller based on the proposed EEABC algorithm is 

summarized in Algorithm 3.3. 

Algorithm 3.3 

   

 for   // Initial population 

  Choose an initial solution for  using (2.11) 

 end for 

 Do // start a new sampling period 

  // Increment sampling period identifier 

Specify the desired reference trajectory between  and  

Make the system measurements 

 // Set the current number of iteration 

  Randomly choose one of the initial solutions as the best solution  

for  // Evaluate initial population 

  Compute the predictions between  and  for solution  

  Compute the cost  associated with the solution  

if  // Find the best solution in current population 

     

  end if 

    // Number of unsuccessful attempts to enhance a food source 

    // Exploitation index 

end for 

Repeat // Iterative process of the EEABC 

if   

_ 0Sample ID 

1:h SN

hX

_Sample ID  

1t N 2t N

1iter 

BestX

1:h SN

1t N 2t N hX

 hF X hX

   h BestF X F X

Best hX X

  1Trial h 

  0ExplIn hd 

 mod ,10 0uiter N 
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    Compute  the ratio of successful mutation to all mutations 

  end if 

if  // Update the exploration rate 

    Compute the new exploration rate  using (2.15) 

  end if 

for  // Employed bee phase 

  Generate a new solution  using (2.16) and (2.12) 

    

  Compute the predictions between  and  for  

  Compute the cost  

   if  // Use greedy selection 

      

      

   if  // Update the best solution 

        

    end if 

   else 

      

   end if 

end for 

for  // Probabilistic selection phase 

  Evaluate the probability  using (2.14) 

end for 

for  // Onlookers bee phase 

  Using , select a food source  to exploit 

using the roulette wheel selection 

  Generates a new solution  in the neighbourhood of  

using (2.16) and (2.12) 

      1ExplInd ExplInr d r    



 mod , 0uiter N 



1:h SN

hNewX

    1ExplInd ExplInh d h 

1t N 2t N hNewX

 hNewF X

   hNew hF X F X

h hNewX X

  1Trial h 

   h BestF X F X

Best hX X

    1Trial h Trial h 

1:h SN

hp

1:h SN

hp   1, ,rX r SN 

hV rX
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  Compute the predictions between 1t N  and 2t N  for hV  

  Compute the cost  hF V  

   if    h rF V F X  // Use greedy selection 

    r hX V   

      1Trial r    

   if    r BestF X F X  // Update the best solution 

      Best rX X   

    end if 

   else 

        1Trial r Trial r    

   end if 

end for 

for 1:h SN  // Scout bee phase 

 if  Trial h limit  // Randomly generate a new solution 

    Generate a new solution hX  using (2.7)  

      0Trial h    

          1 ,...,ExplInd ExplInd ExplIh Min Nnd S  

   end if 

end for 

iter    // Update current number of iteration 

until ( Max_iter Iter ) // Criterion for stopping the optimization 

 opt BestU t X  // Collect best solution 

Send the first element  u t  of  optU t  to the system 

Sort the food sources  1, , hX h SN   according to their cost in ascendant 

manner       1 2i i iSNF xFx xF    

for 3 :h SN  // Keep best two food sources for the next sampling period 

  Generate a new solution hNewX  using (2.11)  

end for 
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 wait  // Wait for next sampling period 

4. Applications 

In this section, the proposed control algorithms are implemented and their 

performances are evaluated against several other controllers. To this end, two 

highly nonlinear processes models have been considered: a SISO continuous 

stirred tank reactor (CSTR) and 4x4 MIMO industrial boiler. 

4.1. CSTR 

4.1.1. Process description 

 

Figure 3.3 : Continuous stirred tank reactor (CSTR). 

The process considered is the continuous stirred tank reactor (figure 3.3) 

within it a given product A  will be converted into another product B  via an 

exothermic chemical reaction. A coolant flow cq  (the control input) controls the 

reactor temperature which controls in its turn the concentration of the resulting 

product aC (The process output). The process is described by the following 

equations: 

    
 

( )
0 0( ) ( ) 

E

RT t
a a a a

q
C t C C t k C t e

v



     (3.32) 

            
3  
( )

0 1 2 0( )  1 ( )c

E k

RT t q t
a c c

q
T t T T t k C t e k q t e T T t

v

  
    


 

 


   (3.33) 
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The constant k1, k2 and k3 are given by: 0
1

p

Hk
k

C


 , 2

pccC

p

k
C v




  and 

3
a

c pc

h
k

C
 .  

0aC , 0T  represent respectively the inlet feed concentration and the 

temperature while 0cT  is the coolant temperature and T the mixture temperature.v

, /E R , 0k , 1k , 2k  and 3k  are thermodynamic and chemical constants. The 

numerical values for these constants can be found in [184]. 

4.1.2. Fuzzy identification 

 

Figure 3.4 : Model and process validation for the CSTR. 

A TS fuzzy model of the CSTR process is constructed using a dataset [202] 

containing 7500 input/output samples measurements of the CSTR process taken 

with a 6s interval. The following model structure is considered: 
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           ˆ ˆ ˆ ˆ1 , 1 , 2 , 1a a a a cC t f C t C t C t q t       (3.34) 

where f  represents the fuzzy relationship between the input and the output. 

A two triangular membership functions per input have been adopted to 

construct the TS fuzzy model while a set of 5000 input/output samples are used to 

train it. The model validation is carried out using the remaining 2500 samples. 

Figure 3.4 illustrates the accuracy of the obtained model. It can be seen that the 

process and the model responses are superposed and the prediction error is very 

small. 

4.1.3. Controllers implementation 

The controlled output is the concentration ( )ac t of the desired product and 

the control input is the coolant flow rate ( )cq t . The product concentration ( )ac t  

must follow, as faithfully as possible, the reference trajectory given in figure 3.5. 

 

Figure 3.5 : Reference trajectory for the CSTR. 

A sampling period of 6s and the following values of the design parameters 

are used to determine the control law of each controller: 

 4
1 21, 10, 2, 2 10u

NuN N N R I       

No constraints are imposed on the output, as such, the parameters miny  and 

maxy  are respectively set to   and   while  0
iy  has been set to 1. A 
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limitation on the possible coolant flowrate (mol/l) has imposed the following 

constraint on the computed values of the control signal: 

 89 111cq    

The system evolves starting from the following initial conditions: 

97.227 l/min,   =0.080 mol/l   and   443.339 Kc aq C T   

The following linear and nonlinear controllers are implemented: 

 Efficient PSO based controller (control algorithm given by Algorithm 3.1). 

 Proposed ABCEV based controller (control algorithm given by Algorithm 

3.2). 

 Proposed EEABC based controller (control algorithm given by Algorithm 

3.3). The number of solutions to be updated in each iteration is computed 

using: 

   1 / _updateN D m Max iter     (3.35) 

 Basic ABC based controller (the original version of the ABC algorithm 

proposed in [119] is used). 

 Best-so-far ABC based controller (the enhanced version of the basic 

ABC algorithm in [179] is used). 

 PSO algorithm based controller (the PSO version described in section 

4.2 of chapter 2 is used). 

 GA algorithm based controller (the GA, with a mutation rate of 20%, 

described in section 4.1 of chapter 2 is used). 

 GPC based controller: the control low is carried out using the following 

output error linear model of the considered system [184]: 

  
4 1

1 2 3 4

1.653 10ˆ 1  ( )
1 2.43 2.4 1.189 0.269

a c

z
C k q k

z z z z

 

   


 

   
  (3.36) 

 Analytical nonlinear approach: it is based on the control algorithm found 

in [184]. The idea is to use an approximation of the free and forced 
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responses of the process using a TS fuzzy prediction model in order to 

obtain the control law analytically. 

The population size is fixed to have 16 elements (bees, particles or 

individuals) and a number of 10 iterations is used. In the PSO and the GA based 

controllers, the solution of the previous sampling time is taken as a possible 

solution for the current one, while in the Basic ABC, the best-so-far ABC and the 

proposed ABC based controllers, the best two food sources from the previous 

sampling time are always taken as a possible solution for the current one. 

Figures 3.6 and 3.7 give, respectively, the system output and the control 

signals for the proposed controllers while figures 3.8 and 3.9 give the system 

output for all considered controllers. The obtained results clearly show that the 

proposed controllers provide good control performance. It is shown in figure 3.9 

that the performances of the EEABC based controller are slightly better than those 

of the ABCEV and the efficient PSO based controllers. 

The Mean Cost Value (MCV) given by equation (3.37) is used to further 

compare the performance of the considered algorithms. The MCV is evaluated for 

several values of the population size (number of: bees, particles, individuals) and 

the number of iterations. The design parameters values are the same and each 

control algorithm is executed 10 times using the reference trajectory given in figure 

3.5. The average values of the MCV are depicted in figure 3.10. 

   
1

,   
1

      is the number of samples
N

t

U t NMCV J
N 

    (3.37) 

The three proposed controllers give the smallest average values of the 

MCV. The EEABC based controller has smaller values than the ABCEV and the 

efficient PSO based controller especially for the configurations with a relatively 

small population size. For the same population size, the basic ABC, the best-so-far 

ABC and the PSO based controllers require more iterations to converge toward 

the same MCV average values as in the proposed controllers. GA based controller 

has the poorest performances. 

Another interesting observation is the fact that the MCV values of all ABC 

based controllers are smaller than those of the PSO and GA based controllers. 

The ABC variants based controllers are more efficient than those based on the 
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PSO and the GA algorithms with the exception of the proposed efficient PSO 

based controller. 

 

Figure 3.6 : Control performances of the proposed control algorithms for the 
CSTR. 

 

Figure 3.7 : Control signals of the proposed control algorithms for the CSTR. 
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Figure 3.8 : Control performances of the different control algorithms for the CSTR.
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Figure 3.9 : Control performances of the different control algorithms between 40 
and 50 min for the CSTR. 

The execution time of a control algorithm is a very important parameter to 

evaluate its computing efficiency and real time implementation applicability. Table 

3.1 gives the execution time of the considered NMPC algorithms for several 

configurations (population size x number of iterations); they were executed on an 

Intel Core i5 3.1 GHz (TM) based machine.  

GA based controller appears to be the most computing efficient control 

algorithm. However, a larger population size, thus more computing power is 

required in order to obtain comparable performances with the other control 

algorithms. On the other hand, all the ABC based controllers are more computing 

efficient than those based on the PSO algorithm. The EEABC based controller has 

the lowest computing requirement, with at least 10% less computations compared 

to the other controllers. The proposed efficient PSO based controller and the PSO 

based controller have the same computing requirement. 
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Figure 3.10 : MCV average values for the CSTR. 

Table 3.1 : Execution time of the considered control algorithms for the CSTR. 

Control 
algorithms 

Execution time (ms) 
Computation 

Vs EEABC 
Configuration (Population size x Iterations) 

10x10 10x20 10x30 10x50 30x10 30x20 30x30 30x50 

Basic ABC 15.51 30.38 45.24 75.04 44.92 88.72 132.38 219.93 + 11.69 % 

Best-so-far 
ABC 

15.72 30.76 45.69 75.21 45.49 89.25 133.97 221.95 + 12.71 % 

Proposed 
ABCEV 

16.55 32.30 48.43 80.17 45.98 90.96 136.16 226.08 + 15.89 % 

Proposed 
EEABC 

14.21 27.52 40.99 67.35 40.61 79.33 118.27 195.57 0 % 

PSO 17.73 33.49 49.42 81.15 52.26 99.59 147.68 242.64 + 24.00 % 

Efficient PSO 17.46 33.37 49.34 80.94 51.17 98.76 146.48 241.32 + 23.12 % 

Genetic 
algorithm 

12.4 23.84 35.11 57.62 35.53 68.09 101.48 167.44 - 14.10 % 
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4.2. Industrial Boiler 

4.2.1. Process description 

 

Figure 3.11 : the considered industrial boiler [184]. 

To further evaluate the performance of the proposed constrained nonlinear 

predictive controller, the control of the industrial boiler model given in [203] is 

considered. This model represents a dual fuel (oil and gaz) boiler in the Abott 

Power Plant in Champaign, Illinois, which could be used for both heating and 

electric generation. It is a MIMO process (figure 3.11) with four manipulated inputs 

(fuel flow rate, air flow rate, feed water flow rate and steam demand) and four 

measured outputs (pressure, oxygen level in the flue gas, drum water level and 

steam flow). The control objective is to maintain the pressure, the level of the 

water in the drum and the oxygen level in the flue gas at their desired values 

regardless of the steam flow rate provided by the boiler and any other 

disturbances such as the fluctuations in the heating value of the fuel or the 

variations in the ambient temperature. This boiler is capable of providing an 

industrial quality steam up to 22.096 kg/s. The used mathematical model includes 

perturbations and measurement noises, and is described by the following 

equations: 
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  (3.38) 
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  (3.39) 

where 1x  is the drum pressure state  2/Kgf cm , 1y  is the measured drum 

pressure (PSI), 2y and 2x  are the measured excess oxygen level and its state (%), 

respectively, 3x  is the system fluid density  3/Kg m , 3y  is the drum water level 

(in), 4y  is the steam flow rate  /Kg s , 1u , 2u  and 3u  are, respectively, the fuel, 

air, the feed water flow rates which takes values in the interval [0 1] and 4x  is the 

exogenous variable related to the steam flowrate demand. The variables in  are 

the outputs of the first-order colored noise models driven by zero mean and unit 

variance white noise. They are considered to be unmeasured output disturbances. 

The remaining coefficients values could be found in Pellegrinetti and Bentsman 

[203] or in Espinosa and Vandewalle [204]. 

 1 1 2 2 3 3 4 4

0.75 0.1 0.019 0.001 0.105 0.038 0.01 0.0001
  ;    ;    ;  

0.001 0.024 0.01 0.001

s s s s
n w n w n w n w

s s s s

   
   

   
  

where ,  1,..., 4in i   is a colored noise and ,  1,..., 4iw i   is the unit variance white 

noise. 

The process is supposed to be initially operating around the following 

states: 

 

 

 

 

0

0

0

22.5,  2.5,  621.17,  0.6941

320,  2.5,  0,  9.3053

0.3227,  0.39503,  0.37404,  0

T

T

T

x

y

u







  (3.40) 

The linear representation of the boiler around these operating states is 

described by: 
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 


  (3.41) 

where 

 

0.005508 0  0 -0.15872 0.28 0 0.01348 0

0 -0.20625 0 0 9.374893 7.658411 0 0
    ,      

-0.012156 0 0 0.566887 0 0 0.731706 0
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0 0 0 0
         ,     

62 1.272 0 0.20797 0

0.413307 0 0 19.274175 0 0 0 0
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   
   
   
   
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   

  

There is a direct feedthrough between the output 3y  and the inputs 1u  and 

3u  expressed by a non-zero D  matrix in the state representation. This property will 

create some problems when considering the linear MPC controller [12]. In order to 

have Db = 0, a delay was introduced to the inputs 1u  and 3u  with regards to the 

output 3y
 (see section 4.2.3 for more details). 

This process is inherently unstable. Essentially, a stabilisation scheme of 

the water level must be introduced to make any identification approaches possible 

by incorporating a proportional feedforward action (C2) of 0.0403 and a PI 

controller (C1) with Kp=0.258 and Ti=1.1026e-4, as it is illustrated in figure 3.12. 

 

Figure 3.12 : Stabilization scheme for the industrial boiler. 
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4.2.2. Fuzzy identification 

Four fuzzy multi inputs single output models are constructed to predict the 

future behaviour of the process. Two triangular membership functions per input 

and the models given by the following equations are used. 

  1 1 1 1 4ˆ ˆ ˆ( 1), ( 5), ( 3)y f y k u k x k      (3.42) 

  3 2 3 1 4 4ˆ ˆ ( 1), ( 12), ( 13), ( 10), ( 10)Levely f y k u k r k u k x k        (3.43) 

  4 3 4 1 4 4ˆ ˆ ( 1), ( 4), ( 2), ( 2)y f y k u k u k x k       (3.44) 

  4 4 4 1 4ˆ ˆ ( 1), ( 2), ( 1)x f x k u k u k      (3.45) 

where  , 1,..., 4if i   represent the fuzzy relationships between the inputs and the 

outputs. 

The TS fuzzy models were trained using a custom built dataset generated 

using the mathematical model described by (3.38)-(3.40) and a sampling period of 

3s. The validation results of the obtained models are given by figure 3.13. 

 

Figure 3.13 : TS fuzzy model validation for the industrial boiler (Blue solid line: 
Process output and red solid line: Process model output). 
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4.2.3. Controller implementation 

Pellegrinetti [203] has indicated that the relationship between the fuel/air 

ratio ( 2 1/FAR u u ) and the oxygen level output is nearly linear. Consequently, the 

oxygen level output 2y  can be kept constant at a desired value by maintaining the 

corresponding FAR value constant. Given that 1u  affects all the systems outputs, 

the suitable way to maintain the FAR value constant would be to adjust the input 

2u  depending on the value of 1u . To keep the desired oxygen level in the flue gas 

2y  around 2.5% the FAR must be equal to 1.2241 and 2u  equals 1.2241
 1u . 

The control objective is to force the steam flow rate 4y  to track a desired 

reference trajectory, while fulfilling the following constraints on the manipulated 

inputs: 

 

1 2 

 

4 4 

3

  u 0.1       and     u 0.1     

4 4        and     u 1
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   

    

    

 

  (3.46) 

and the following constraints on the outputs: 

 

1

2

3

320

2.5

0

y

y

y







  (3.47) 

The MPC design parameters have the following values: 2uN   and R  is 

given by  100 0 0 0; 0 0 0 0; 0 0 2 0; 0 0 0 400R  . The values of the other 

parameters are gathered in table 3.2. 

Table 3.2 : Design parameters. 

 
1N  2N  i   0  miny  maxy  

1ŷ  1 10 1 0.0085 318 322 

3ŷ  10 20 0.7 0.0065 -1.5 1.5 

4ŷ  1 10 0 1.006 / / 

4x̂  1 10 0 0 / / 
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The following MPC based controllers are considered: 

 Efficient PSO based controller (control algorithm given by Algorithm 3.1). 

 Proposed ABCEV based controller (control algorithm given by Algorithm 

3.2). 

 Proposed EEABC based controller (control algorithm given by Algorithm 

3.3). The number of solutions to be update in each iteration is computed 

using: 

   1 / _updateN D m Max iter     (3.48) 

 Basic ABC based controller (the original version of the ABC algorithm 

proposed in [119] is used). 

 Gbest-guided ABC based controller (the enhanced version of the basic 

ABC algorithm proposed in [153] is used). 

 The best-so-far ABC based controller (the enhanced version of the basic 

ABC algorithm in [179] is used). 

 PSO algorithm based controller (the PSO version described in section 

4.2 of chapter 2 is used). 

 Linear MPC strategy: to implement the linear MPC, a linear 

representation of the process must be derived. First we have to remove the 

direct feedthrough between the output 3y  and the inputs 1u  and 3u . As 

such, the linear state space representation of (3.41) is slightly modified by 

introducing a unit delay in these inputs (figure 3.14). The obtained system 

is then linearized around the operating state given by (3.40), and 

discretized using a sampling period of 3s. The following discrete state 

space representation is obtained: 

 
( 1)  ( )  ( )

( 1)  ( )

b b

b

x k A x k B u k

y k C x k

  

 


  (3.49) 

where: 
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 

  

Some design parameters have been slightly modified in order to 

accommodate the linear controller. The new values are: 2 15N   for all outputs 

and  0.4 0 0 0; 0 0 0 0; 0 0 0.5 0; 0 0 0 2.006Q  . 

For the linear MPC strategy, the constraints are only considered on the 

inputs variables and their increments. 

 

Figure 3.14 : Stabilization scheme for the boiler without direct feedthrough. 

A population size of 16 elements (artificial bees or particles) and 10 

iterations are used for all these controllers. At the end of each sampling time, the 

best two food sources are always kept as possible solutions for the next sampling 

time while in the case of the PSO based algorithm, only the best solution is kept. 

The EEABC based controller is implemented using 0.05   and the limit 

expression of (2.13). 

The system outputs for the proposed control algorithms and the linear MPC 

are given by figures 3.15 and 3.16 while the corresponding control signals are 

depicted by figure 3.17. It can be seen that the proposed controllers presents good 

performance. 
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Figure 3.15 : Response of the boiler using the proposed control algorithms and 
the linear MPC controller (Blue dashed line: ABCEV based controller; the red 

dashed dotted is the EEABC based controller; brown dotted line is the efficient 
PSO based controller and the green dotted is the linear MPC based controller). 
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Figure 3.16 : Response of the boiler for the different proposed control 
algorithms and the linear MPC controller between the 200th and 400th samples for 
the output 4y (Blue dashed line: ABCEV based controller; the red dashed dotted is 

the EEABC based controller; brown dotted line is the efficient PSO based 
controller and the green dotted is the linear MPC based controller). 

To assess the performances of each proposed control algorithms, the Mean 

Cost Value (MCV) given by (3.37) is used. The MCV is evaluated for several 

values of the population size (number of bees or particles) and the number of 

iterations. The design parameters values are the same and each control algorithm 

is executed 15 times. The average values of the MCV are depicted in figure 3.18. 

It can be seen from figure 3.18 that the proposed ABCEV and EEABC 

control algorithms give the smallest average values of the MCV, although the 

EEABC is slightly better than the ABCEV. For the same population size, the 

remaining control algorithms require more iterations to converge toward the same 

MCV average values as those of the EEABC based controller. 

The proposed efficient PSO based controller gives better result than the 

basic PSO based algorithm; however, the ABC based controllers are better. 
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Figure 3.17 : Control signals for the considered controllers and the linear MPC 
controller (Blue dashed line: ABCEV based controller; the red dashed dotted is the 

EEABC based controller; brown dotted line is the efficient PSO based controller 
and the green dotted is the linear MPC based controller). 
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Figure 3.18 : MCV average values for the industrial boiler. 

Table 3.3 gives the execution time of the considered NMPC controllers 

using several population sizes and number of iterations. These algorithms were 

executed on an Intel Core i5 3.1 GHz (TM) based machine. 

The computing time of the EEABC and the ABCEV based controllers is, 

respectively, around 4% and 10% more important than those of the other ABC 

based controllers. This could be due to the fact that the proposed ABC based 

controllers are generating more scout bees because of the reduced adopted limit 

expression, thus both algorithms have more possible solutions to evaluate 

compared to the other ABC variants. 

On the other hand, all ABC based controllers are more computing efficient 

than those based on the PSO algorithm. 
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Table 3.3 : Execution time of the considered control algorithms for the industrial 
boiler. 

Control 
algorithms 

Execution time (ms) Computation 
Vs EEABC 

10x5 10x10 10x20 10x30 20x5 20x10 20x20 20x30 

Basic ABC 65.04 124.49 242.47 359.58 129.52 247.19 483.07 718.53 - 3.60 % 

GABC 65.22 125.43 243.15 359.74 130.08 248.31 486.09 720.59 - 3.25 % 

Best-so-far 
ABC 

64.5 125.84 238.63 355.22 128.57 245.55 477.91 712.2 - 4.48 % 

Proposed 
ABCEV 

71.63 137.30 268.9 401.46 142.36 275.67 535.8 796.3 + 6.95 % 

Proposed 
EEABC 

66.95 128.05 250.9 374.28 133.11 254.73 500.68 749.75 0 % 

PSO 82.28 151.82 292.61 432.06 164.42 305.2 585.88 863.59 + 17.06 % 

Efficient PSO 77.28 141.57 272.4 402.36 152.36 281.58 541.62 800.81 + 8.60 % 

5. DSP-based implementation 

To experimentally validate the obtained results, a DSP based experimental 

setup has been used to implement several linear and non-linear control strategies 

and then compare their performances. 

5.1. Description of the eZDSP2812 test bench 

Figure 3.19 illustrates the test bench used in this implementation. It contains 

an eZdsp F2812 starter kit based on the Texas Instrument TMS320F2812 DSP, a 

brushed DC motor equipped with an incremental encoder, a power and a 

protection circuits. 

Using Code Composer Studio (CCS), the Internal Development 

Environment (IDE) provided by Texas Instrument, the different considered control 

algorithms are coded, compiled and then sent via a parallel cable to the DSP. The 

control results of the DC motor speed are saved in a file and then plotted using 

plotting software. 
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Figure 3.19 : DSP based test bench. 

5.2. Fuzzy identification and controllers implementation 

To obtain a Takagi-Sugeno FIS model of the free load DC motor, a set of 

input/output data is generated using a normal random input signal. Triangular 

membership function and 16 fuzzy rules were used to construct the model given 

by: 

           Ω̂ 1 Ω , Ω 1 , Ω 2 , t f t t t V t      (3.50) 

Where Ω  (Tr/min) and V (Volts) represent respectively the motor speed (output) 

and supply voltage (input). 

A sampling period of 0.1s and the following values of the design parameters 

are used to determine the control law of each controller: 

4
1 21 , 8 , 2 , 10uN N N      

The supply voltage (control signal) of the DC motor has been limited using 

the following constraint: 

 6 ( )  17 V t    

The control objective is to force the process output (velocity of the DC 

motor) to follow the reference trajectory given in figure 3.20 as faithfully as 

possible, while satisfying any imposed constraints. 
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Figure : 3.20 Reference trajectory for the DSP based implementation. 

5.3. Comparative study 

The following control strategies have been considered: 

 Efficient PSO based controller: The implemented control algorithm is 

described by Algorithm 3.1 with 1 20.001375 and 0.5   . 

 Proposed ABCEV based controller (control algorithm given by Algorithm 

3.2). 

 Proposed EEABC based controller (control algorithm given by Algorithm 

3.3). The number of solutions to be updated in each iteration is computed 

using: 

   1 / _updateN D m Max iter     (3.51) 

 Basic ABC based controller (the original version of the ABC algorithm 

proposed in [119] is used). 

 Best-so-far ABC based controller (the enhanced version of the basic 

ABC algorithm by [179] is used). 
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 GABC based controller (the enhanced version GBest-guided ABC [153] 

is used). 

 MABC based controller (the enhanced ABC version found in [180] is 

used). 

 PSO algorithm based controller (the PSO version described in section 

4.2 of chapter 2 is used). 

 GPC controller the control law is built using the following output error 

linear model of the considered system: 

  
1

1 2

13.6 26.3
Ω̂ 1  ( )

1 0.86 0.1

z
t V t

z z



 


 

 
  (3.52) 

 PID controller (the implemented controller also uses the linear model of 

(3.52)). 

The population based controllers are implemented with a population of 6 

elements (particles or artificial bees) and 5 iterations. In the PSO based controller 

the solution of the previous sampling time is taken as a possible solution for the 

current one while in the ABC controllers, the best two food sources from the 

previous sampling time are always taken as a possible solutions for the current 

one. 

 

Figure 3.21 : Speed of the free load motor for the implemented controllers. 



137 
 

 
 

The control results for some of the implemented controllers are given in 

figure 3.21. A fast response is obtained in the case of the proposed controllers 

with a small tracking error. 

To assess the robustness of each control algorithm, the experimental setup, 

where a metallic disc of 1700g attached directly to the motor’s shaft, is considered. 

The obtained results are given by figures 3.22 and 3.23. Compared to the results 

of figure 3.21, the responses of figure 3.22 are quite slow. This was expected; the 

introduction of the load reduces the motor acceleration. 

A severe degradation of the control performance is observed in the case of 

the PID controller and the GPC, with the appearance of an oscillatory behaviour 

with relatively huge overshoots. The proposed controllers’ responses were also 

affected. However, no overshoot is observed. Figure 3.23, presents the associated 

control signals. 

 

Figure 3.22 : Speed of the motor for the implemented controllers. 
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Figure 3.23 : Control signals for the implemented controllers. 

The computing complexity of all of the implemented control algorithms has 

been evaluated by measuring the DSP computing time required to solve the 

NMPC control problem when considering a single iteration. The results, obtained 

for multiple population sizes, are gathered in table 3.4. 

The proposed EEABC is the most computing efficient control algorithm with 

around 1% less computations than the other ABC based controllers and around 

20% less computations than the PSO algorithms. On the other hand, the proposed 

ABCEV algorithm along with the remaining ABC variants, have similar computing 

requirements. 

The proposed efficient PSO based controller has the largest computing 

requirement with around 22% more computations than the EEABC. In fact both 

PSO algorithms need around 20% more computation than any ABC based 

algorithm. 

These results have further validated the computing efficiency of the ABC 

algorithm in general and the proposed EEABC variant in particular, especially 

against PSO based algorithms. 
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Table 3.4 : Execution time of the considered control algorithms (DSP). 

Control 
algorithms 

Execution time (ms) 
Computation 

Vs EEABC 
Population size 

6 10 16 24 36 48 72 100 

Basic ABC 31.7 51.4 80.8 120.4 179.3 237.7 356.2 493.2 + 1.04 % 

GABC 31.7 51.4 80.4 120.4 178.1 237.6 355.4 491.1 + 0.74 % 

Best-so-far 
ABC 

31.8 51.6 81.4 121.1 180.5 239.9 357.5 496.9 + 1.69 % 

MABC 31.8 51.4 81.4 120.7 179.9 239.2 355.7 493.3 + 1.21 % 

Proposed 
ABCEV 

33.7 53.2 82.7 120.2 179.4 238.1 355.4 493.4 + 1.39 % 

Proposed 
EEABC 

33.7 51.6 81.2 118.6 177.2 234.3 351.8 486.4 0 % 

PSO 37.3 60.2 94.9 141.8 213.1 280.6 420.8 581.3 + 19.23 % 

Efficient 
PSO 

39.4 62.8 98.9 145.4 216.1 286.9 427.6 594 + 21.91 % 

6. conclusion 

Within this chapter, the formulation of constrained fuzzy predictive control 

based on the meta-heuristic algorithms has been presented along with three 

proposed control algorithms. 

The conducted comparative studies on two control problems and a DSP 

based experimental setup have indicated that the proposed algorithms have 

presented good performances. The efficient PSO algorithm has outperformed the 

conventional PSO algorithms in all three considered comparative case studies in 

regard of the quality of the solutions; however, within regard to its computing 

complexity, the lead is less apparent. The proposed ABC algorithms on the other 

hand have outperformed their ABC counterparts, especially the EEABC algorithm, 

which has generated better solutions with less computing complexity compared to 

all considered algorithms. 

We have also confirmed the computing efficiency of the ABC algorithm 

against other conventional algorithm such as the PSO. The obtained results have 

clearly indicated that all ABC based algorithms are more computing efficient than 

those based on the PSO algorithm. 
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CONCLUSION 

The aim of this thesis was to develop simple and efficient nonlinear 

predictive control algorithms. The idea was to use the meta-heuristic approach to 

find, in a reasonable computational time, an accurate suboptimal solution to the 

nonlinear optimization problem. Mainly, particle swarm optimization and artificial 

bee colony approaches were envisaged. Without loss of generalization to other 

models, such as neural networks models, Takagi-Sugeno fuzzy models were used 

in developing these algorithms. 

The MPC is considered as one of the most successful advanced control 

strategies. Its attraction is due to its ability to handle complex control problems 

which involve multivariable process interactions, constraints in the system 

variables, non-minimum phase behaviour, and variable or unknown time delays. 

Despite the large number of advanced linear predictive control algorithms that 

were developed, the need for efficient control algorithms that can efficiently handle 

highly nonlinear systems is still an open research subject. Indeed, using a NMPC 

scheme should result in a substantial increase in the overall control performances. 

This aspect is very desirable. However, fully introducing the nonlinear model in the 

MPC formulation leads to a non-convex optimization problem that cannot be 

resolved using the well-established techniques of convex optimization.  

Solving nonlinear optimization problem using analytical approaches is 

generally unfeasible even when no constraints are present while the deterministic 

numerical approaches are less effective and could easily be trapped in local 

minima. Recently, several works have showed that stochastic meta-heuristic 

algorithms are powerful tools that can efficiently handle complex nonlinear 

optimization problems. These algorithms have known a quick dissemination within 

the academic and industrial society, and several successful implementations to 

solve multiple engineering problems are continuously developed by an 

increasingly active research community. This success could be attributed to the 

fact that the meta-heuristic algorithms are simple, flexible, derivative-free, 

generally able to handle local optima and generate high quality solutions in a 

reasonable amount of time. In fact, due to their heuristic and random nature, these 
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algorithms, that have better searching capability than the classical approaches, 

are unaffected by initial conditions and can handle almost any optimization 

problem, albeit discrete or continuous. Despite their success, the meta-heuristic 

based algorithms, like any other approaches, are not perfect optimization 

techniques. In fact, several factors could heavily influence the performance of any 

such algorithm, if care is not taken. One such important factor is the algorithm 

ability to both explore (global search) the search space looking for regions of 

interest, and to exploit (local search) these regions in order to locate optimum 

solutions. Ideally, an optimization algorithm that has both of these characteristics 

fully integrated should be designed. However, the exploration and the exploitation 

are somewhat exclusive characteristics. 

Although, numerous meta-heuristic variants exist, our interest has been 

directed to the artificial bee colony (ABC) algorithm. This choice was based on the 

result of numerous comparative studies between the ABC algorithm and several 

other meta-heuristic algorithms such as GA, PSO and DE (Differential Evolution). 

The comparative results have clearly indicated that the ABC performances are 

better or at least similar to the performances of these algorithms. Moreover, they 

were found to be more computing efficient, to have better solutions accuracy, and 

to be simpler than the other algorithms. Nevertheless, some deficiencies were also 

observed; the ABC algorithm has poor convergence rate in some situations and 

cannot escape local optimum when solving some of the complex multimodal 

function optimization problems. To overcome these deficiencies and further 

improve the exploration/exploitation equilibrium of the algorithm, we have 

proposed, in the second part of chapter 2, the ABCEV and the EEABC, two 

enhanced versions of the ABC algorithm. In the first version, instead of using the 

conventional random distribution, a chaotic based distribution mechanism was 

used to distribute more efficiently the initial population over the search space. 

Also, the exploitation capability of the algorithm was increased especially around 

the current global best food source by using a modified update equation to focus 

the search in the best food source vicinity. The exploratory behaviour of the 

algorithm was also increased by tuning the limit parameter. This parameter affects 

the generation of the scout bees, which are responsible for exploring the search 

space and maintaining diversity within the population. 
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In the proposed ABCEV algorithm, a new update equation was used. This 

equation allows increasing the exploitation capabilities of the algorithm especially 

around the best ever food source increasing the convergence speed. But on the 

other hand, it makes all the artificial bees within the population converge towards 

the same region of the search space. Consequently, both the diversity within the 

population and the exploratory behaviour of the algorithm will be decreased. This 

will make the algorithm more vulnerable to premature convergence and to get 

trapped in local optima even when the limit parameter value is decreased. To 

address these issues and further enhance the solution quality and the 

convergence speed, without compromising the population diversity and the 

exploratory capability, another version (EEABC) of the ABC algorithm was 

proposed. In this version a new probability equation, that allows the onlookers to 

select the food sources for further exploitation, was introduced. Using this 

probability equation, the onlookers do not just exploit the possible prominent 

regions of the search space (best food sources) but also exploit the less exploited 

food sources. Hence, the diversity within the population is increased and the 

problem of premature convergence can be avoided. To make a good balance 

between the exploration and exploitation capabilities, depending on which of them 

is currently more beneficial, and make the algorithm more immune with respect to 

the premature convergence problem, an adaptive control parameter called ‘the 

exploration rate’ was introduced. Furthermore, to increase the convergence speed 

of the algorithm without compromising its ability to explore and escape local 

optima, an adaptive update strategy, where one or several optimization 

parameters could simultaneously be updated, was developed.  

To assess the performance of the proposed algorithms, two sets of 

benchmark functions encompassing 12 commonly used standard numerical 

benchmark functions and 15 benchmark functions proposed in a CEC2015 special 

session, were used to implement a comparative study against four variants of the 

ABC algorithm. The obtained results have showed the good performance of the 

proposed algorithms.  

It is a known fact that even with an efficient optimization algorithm, the 

NMPC overall performances is still hugely influenced by the quality of the 

nonlinear model. Using Takagi-Sugeno fuzzy modelling, three predictive control 
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algorithms were proposed. The first one is based on an improved version of the 

PSO algorithm while the other algorithms are based on the proposed versions of 

the ABC algorithm. To evaluate the computational efficiency and the control 

performance of the developed algorithms, the control of two benchmark systems 

of different complexity, namely the model of a continuous stirred tank reactor and 

the model of an industrial boiler, was considered. The obtained performances 

were compared to those of several other conventional linear and nonlinear MPC 

strategies. The comparative study and the DSP based experimental setup have 

showed that the proposed algorithms present good performances. Indeed, the 

modified PSO based controller has outperformed the controllers that are based on 

the other PSO algorithms. Also, good performances were obtained in the case of 

the controllers that are based on the proposed versions of the ABC algorithm.  

Especially, the EEABC algorithm which has given accurate solutions with less 

computing complexity compared to all considered algorithms. 

In this dissertation, nonlinear model predictive controllers based on meta-

heuristic algorithms were proposed as viable and practical substitute to the 

conventional NMPC controllers. However, solving the NMPC optimization problem 

using meta-heuristic is relatively a new and a virgin research subject, for which a 

lot of enhancements and improvements opportunities exist.  

Developing computing efficient NMPC based controllers does not only 

depend on the adopted optimization algorithm, the used nonlinear model is of 

capital importance. This aspect has not been assessed in this thesis. A more 

thorough analysis of the impact of the chosen modelling approach on both the 

control performance and the computing requirement is a critical task that should 

be developed. Another important factor that influences both the control 

performances and the computing requirement of NMPC techniques is how to 

select the optimal values of the design parameters, especially the prediction and 

control horizons. As such, adopting a strategy to obtain the optimal values for 

these parameters should also be envisaged. 

Although a DSP based setup was considered, a more in depth experimental 

implementations are still necessary to further evaluate the proposed control 

strategies in a real control environment. 
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The evaluation of the proposed meta-heuristic optimization algorithms at the 

end of chapter 2 has indicated some deficiencies when handling certain numerical 

benchmark functions. A thorough review to identify the sources of these 

deficiencies and then correct the underlying problems should also be investigated. 
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A. LIST OF ABBREVIATIONS 

ABC : Artificial Bee Colony 

ABCEV : ABC Enhanced Version 

ACO : Ant Colony Optimization 

AIS : Artificial Immune Systems 

BFO : Bacterial Foraging Optimization 

BVP : Boundary Value Problem 

CARIMA : Controlled Auto-Regressive Integrated Moving-Average 

CCS : Code Composer Studio 

CEC : Congress on Evolutionary Computation 

CSTR : Continuous Stirred Tank Reactor 

DAE : Differential Algebraic Equation 

DC : Direct Current 

DE : Differential Evolution 

DMC : Dynamic Matrix Control 

DSP : Digital Signal Processor 

EEABC : Equal Exploitation ABC 

FAR : Fuel /Air Ratio 

FIS : Fuzzy Inference System 

FNMPC : Fuzzy based Nonlinear Model Predictive Control 

GA : Genetic Algorithm 

GABC : Global Best ABC 

GPC : Generalized Predictive Control 

GSA : Gravitational Search Algorithm 

GWO : Grey Wolf Optimizer 

HJB : Hamilton-Jacobi-Bellman 

IDE : Internal Development Environment 

IP : Interior Point 

KGMO : Kinetic Gas Molecule Optimization  

KKT : Karush-Kuhn-Tucker 

LMPC : Linear Model Predictive Control 
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MABC : Modified ABC 

MAC : Model Algorithmic Control 

MCV : Mean Cost Value 

MIMO : Multi-Input Multi -Output 

MPC : Model predictive Control 

MPHC : Model Predictive Heuristic Control 

NIP : Nonlinear Interior Point 

NLP : Nonlinear Programing 

NMPC : Nonlinear Model Predictive Control 

NMPC-NO : Nonlinear Model Predictive Control with Nonlinear 

Optimization 

NMPC-NPL : Nonlinear Model Predictive Control with Nonlinear Predictions 

and Linearization 

NMPC-SL : Nonlinear Model Predictive Control with Successive 

Linearization 

NOP : Nonlinear Optimization Problem 

OCP : Optimal Control Problem 

ODE : Ordinary Differential Equation 

OP : Optimization Problem 

PDE : Partial Differential Equation 

PFC : Predictive Functional Control 

PID : Proportional Integral Differential 

PSO : Particle Swarm Optimization 

PSOPC : Passive Congregation PSO 

PWA : PieceWise Affine 

QDMC : Quadratic Dynamic Matrix Control 

QP : Quadratic Programming 

SA : Simulated Annealing 

SD : Standard Deviation 

SISO : Single-Input Single-Output 

SQP : Sequential Quadratic Programming 

TS : Takagi-Sugeno 

 



147 
 

 
 

B. LIST OF SYMBOLS 

ia  Acceleration of particle i  (PSO) 

( )x  Active set at the feasible solution x   

bestx  Best ever food source (ABC) 

BestX  Best solution 

 û tΔ  Computed increment of the control action 

 ˆ 1 |u t t  Control action computed at time t  to be applied at time 1t    

uN  Control horizon 

 J   Cost function of the optimization problem 

d  Dead time of the system 

   Degree of softening 

 d t  Error between measured and predicted process output 

 hExplInd x  Exploitation Index of food source hx  

   exploration rate (ABC) 

 .itnessF  Fitness function 

gP  Global best position (PSO) 

0  Initial working set 

 y t  Measured value of the process output 

_Max iter  Maximal number of iteration 

2N  Maximum of the prediction horizon 

maxu  Maximal value for the control action 

maxu  Maximal value for the increment of the control action 

maxy  Maximal value of the output 

1N  Minimum of the prediction horizon 

dminr  Minimal radius imposed to dr  

minu  Minimal value for the control action 
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minu  Minimal value for the increment of the control action 

miny  Minimal value of the output 

SN  Number of artificial employed bees (ABC) 

updateN  Number of dimensions to update in each iteration (ABC) 

 Number of system inputs 

 Number of system outputs 

PN  Number of total artificial bees (ABC) 

LN   Number of artificial onlooker bees (ABC) 

*( )x  Optimal active set 

 Output-dependent weight function 

hP  Personal best position (PSO) 

hp  Probability attached to the food source h  (ABC) 

jE  Polynomial of the Diophantine equation 

jF  Polynomial of the Diophantine equation 

popn  Population size 

pN  Prediction horizon 

 ˆ |y t j t  Predicted values of the process output at time t j  computed 

at time t   

 mod
ˆ |ely t j t  Predicted values of the process output at time t j  computed 

at time t  using the model 

dr   Radius around which the PSO particle will be distributed 

 w t  Reference trajectory 

V  Supply voltage of the DC motor 

 e t  Tracking errors 

reeF  Vector which contains the free response of the system 

iv  Velocity of particle i  (PSO) 

Ω  Velocity of the DC motor 

   Weighing factor penalizing variations in the control signal within 

predictive control / Lagrange multiplier vector within KKT 

m

n

 y y
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condition 

Q  Weight matrix used to penalize the tracking error 

R  Weight matrix used to penalize the control input increments 

k  Working set at iteration k   

 Ge t  zero mean white noise 
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C. CEC 2015 TECHNICAL REPORT 
(http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2015) 
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