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ABSTRACT

Ensemble methodology combines multiple learning schemes in order to boost the
generalization performance of a single classifier. An ensemble made of a large number
of classifiers entails an increase in the computational cost, memory storage, and even
a reduction in the prediction performance. Ensemble pruning has become an important
task that lives up to these challenges. The thrust consists of constructing a subset that
maintains or improves the accuracy of the original set of classifiers while reducing the
number of its members. There has been a lot of attention given to the development of
pruning techniques; however, most of them underestimate the contribution of learners
which have strong discriminatory power as a group but are weak as individuals. To
address this shortcoming, this thesis introduces an original approach to the ensemble
pruning problem, which is founded on game theory principles.

First, we study the selection task from a Coalitional Game Theory perspective, in
which a player corresponds to an individual learner and the benefits earned by the
coalition members can be defined based on notions that characterize ensembles like
accuracy, diversity, margin distance, or a combination of these metrics. A solution con-
cept evaluates the base learners’ contributions by considering the synergy that em-
anates from their interactions. However, most traditional solution concepts like Shapley
value, Banzhaf index, and Nucleolus are computationally expensive, and hence are not
practical for moderate and large ensemble sizes. To cope with the computational bur-
den, we propose a new representation for simple coalitional games that admits, under
some restrictions, a pseudo-polynomial time algorithm for computing Banzhaf power in-
dex. Moreover, we devise within this representation an optimal selection criterion which
extracts sub-ensembles with moderate diversities.

Then, motivated by the positive role of balancing diversity and accuracy, we intro-
duce an improved framework based on Shapley value that ranks the ensemble mem-
bers according to their marginal contributions in achieving a fair balance between the
individual accuracies and the ensemble diversity.

In order to evaluate the proposed methodologies, we performed extensive experi-
mental comparisons and statistical tests with some major state-of-the-art methods such
as semi-definite programming, genetic algorithm, and orientation ordering, based on a
large set of UCI benchmark datasets. The results demonstrate the effectiveness of our
approaches in terms of accuracy performance, pruning ratio, and computational cost.

Keywords: Ensemble pruning; Diversity; Coalitional game theory; Evolutionary
game theory; Nash equilibrium; Shapley value; Banzhaf index.
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RESUME

Les méthodes d’ensemble combinent plusieurs apprenants afin de produire des
prédictions plus précises. Un ensemble constitué d’'un grand nombre de classifieurs
entraine une augmentation des colts de calcul, de I'espace de stockage et méme une
réduction de la qualité de généralisation. Lélagage de I'ensemble est devenu une tache
tres importante qui répond a ces défis. Ces meéthodes visent a construire un sous-
ensemble qui maintient ou améliore la performance de la collection initial de classifieurs
tout en réduisant le nombre de membres qui le constituent. De nombreuses techniques
d’élagage ont été proposées dans la littérature; cependant, la plupart d’entre eux sous-
estiment la contribution des apprenants qui sont caractérisés par une capacité discrimi-
natoire en tant que groupe, mais ils sont faibles en tant qu’individus. Afin de pallier cette
faiblesse, nous introduisons une nouvelle approche d’élagage fondée sur des principes
de la théorie des jeux.

Dans un premier temps, nous étudions la tache d’élagage dans le contexte de la
théorie des jeux coopératifs: un classifieur de base correspond a un joueur et les gains
acquis par les membres de la coalition sont définis en fonction des notions qui car-
actérisent des ensembles telles que I'erreur, la diversité, ou une combinaison de ces
mesures. Un concept de solution évalue les contributions des apprenants en con-
sidérant toutes les interactions possibles qui existent entre eux. Cependant, la plu-
part de ces solutions traditionnelles comme la valeur Shapley, I'indice Banzhaf et le
Nucleolus sont trés colteux; par conséquent, elles ne sont pas pratiques pour traiter
des ensembles composés d’'un nombre élevé d’apprenants. Pour faire face a cette
problématique, nous proposons une nouvelle représentation des jeux coopératifs qui
admet, sous certaines restrictions, un algorithme pseudo-polynomial pour calculer I'indice
de Banzhaf. En outre, nous concevons un critere d’élagage optimal fondé sur cette
représentation qui extrait des sous-ensembles caractérisés par une diversité modérée.

Ensuite, motivés par le réle positif d’équilibrer la diversité et les performances indi-
viduelles des apprenants, nous introduisons un framework amélioré basé sur la valeur
de Shapley. Le modéle proposé évalue les utilités des classifieurs de base en fonc-
tion de leurs contributions marginales a la réalisation d'un équilibre adéquat entre les
performances individuelles des apprenants et la diversité de 'ensemble.

Afin d’évaluer les modéles proposés, nous avons effectué des comparaisons expérimentales
et des tests statistiques avec plusieurs méthodes d’élagage connues dans la littérature
telles que Semi-Definite Programming, Genetic Algorithm, et Orientation Ordering, sur
un grand nombre des bases d’apprentissage. Les résultats démontrent 'efficacité de



nos approches en termes de performance en généralisation, de pourcentage d’élagage
et de codt de calcul.

Mots clés: Elagage de I'ensemble ; Diversité ; Théorie des jeux coopératifs ; Théorie
des jeux évolutionnaire ; Equilibre de Nash ; Valeur de Shapley ; Indice de Banzhaf.
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CHAPTER 1
INTRODUCTION

In this chapter, we present the topic of ensemble pruning, providing a short intro-
duction to the relevant concepts and explaining the importance of the problem. Then,
we motivate the choice of game theory, and state the research questions which we
will tackle in the remaining chapters. Next, we summarize the primary contributions
achieved during the doctoral research. Finally, we conclude with the outline of this the-

sis and the list of publications which have resulted from our work.

1.1 Context and problem statement

Classification is a fundamental and popular research area in machine learning and
pattern recognition [3]. It is concerned with the development of learning algorithm i.e.
machines that are able to learn from an exemplary set of labeled data and to general-
ize their behavior to new unseen instances. The resulting model, known as classifier
and learner, enables us to predict the class label of an unseen sample. Decision trees,
neural networks, and support vector machines are but a few examples of learning algo-
rithms that have been successfully applied to many real-world classification problems
[4, 5].

The generalization ability of a classifier is perhaps the most fundamental concepts in
machine learning. Classifiers are prone to make errors and might perform poorly when

tested on unseen data [6]. Several reasons can lead to such a behavior:

e Alearner is provided with a finite set of training data which might not represent in

full the classification problem.

e The set of the training samples is affected by noise; hence, the learned model

might be biased toward a wrong representation of the problem.

e The learned model fits the training data perfectly which can sometimes lead to

poor generalization performance. This phenomenon is known as overfitting.
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e The invoked inducer is too simple and could not learn complex decision bound-
aries. As highlighted by no free lunch theorem, there exists no learning algorithm

that is best suited to solve all existing classification problems [5].

An efficient strategy to address the above problems would be to test several classi-
fiers and to select the one which makes fewer mistakes on a separate set of samples.
This procedure, known as model selection, relies mainly on the estimation of the real
generalization ability of a classifier. This estimation is a quite challenging task as it is
affected by many factors such as: the nature of the problem and the size of the training
set [7, 6].

Ensemble learning adopts an alternative strategy to address the above concerns
[8]. A large body of literature has shown that a combination of multiple classifiers is
a powerful decision making tool, and usually generalizes better than a single classifier
[8, 9, 10]. Ensemble learning builds a classification model in two steps. The first step
concerns the generation of the ensemble members (also called team, committee, and
pool). To this end, continuous efforts have been put into the development of effective en-
semble models. Particularly, BAGGING [11] and ADABOOST [12] have received the most
attention from the research community, and many variations have been developed for
different learning scenarios. Other popular methods such as random subspace [13, 14]
and random forest [15] have also been introduced in the literature. In the second step,
the predictions of the individual members are merged together to give the final decision
of the ensemble using a combiner function. Major combining strategies include: majority
voting [8], performance weighting [9], stacking [8], and local within-class accuracies [16].

Ensemble methods have some desirable features that have boosted the rapid growth
of related research. First, every single classifier has limitations and might perform dif-
ferently due to insufficient data. Amalgamating several learners can reduce the risk
of choosing the wrong model and therefore making a poor prediction. Besides, some
classification problems are just too complex and beyond the learning ability of a single
classifier. Second, many learning algorithms adopt a search strategy to train a clas-
sifier. The lack of a large dataset reduces the actual search space and can lead to
overfitting the training set. Under such circumstances, the aggregation of multiple learn-
ers expends the space considered for the problem and hence achieves better prediction
performance than a single classifier. Finally, an ensemble method enables large com-

panies that store data at hundreds of different locations to train learning models locally,
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and then to combine them for future predictions.

With the above advantages, ensemble learning has made great contributions to nu-
merous real-world applications such: remote sensing [17], face recognition [18], intru-
sion detection [19], and information retrieval [20].

It is well-accepted that the generalization performance of an ensemble cannot be
improved by amalgamating multiple identical learning models. However, an ensem-
ble whose members make errors on different samples reaches higher prediction per-
formance [9, 8]. This concept refers to the notion of “diversity” among the individual
classifiers. According to Rokach [21], diversified members induce uncorrelated errors
which boost the group performance globally. Although the benefits of diversity have
been recognized by the ensemble learning community, no consensus on: what diversity
means? and how differences among component learners’ predictions contribute to the
overall classification accuracy? have been established yet [22, 23, 24, 25]. Generally,
diversity can be perceived as the degree of disagreement or complementarity within an
ensemble [26][10]. As suggested by many authors [9, 27, 28], an ensemble composed
of highly diversified members may result in a better or worse performance. In other
words, diversity can be either harmful or beneficial and therefore requires an adequate
quantification. Despite the lack of a formal definition of diversity, the research com-
munity has put continuous efforts on incorporating diversity in the design of ensemble
methods [29, 30, 31, 27, 32]. It can be achieved implicitly by manipulating the training
data or using different parameters for each base learner [33]. For instance, ADABOOST
changes the distribution of the training samples; random subspace trains an ensemble
of learners on different projections of the training data i.e. different feature subsets; and
BAGGING bootstraps different training sets to create diversity.

Despite their remarkable success, ensemble methods can negatively affect both the
predictive performance and the efficiency of the committee. First, several experimental
and theoretical studies have shown that large ensembles do not always guarantee better
predictive performance [31, 34, 35]. Specifically, most techniques for growing ensem-
bles tend to generate an unnecessarily large number of classifiers in order to guarantee
that the training error rate reaches its minimal value. This necessity may result in over-
fitting the training set, which in turn causes a reduction in the generalization ability of
the ensemble. Second, a committee made of a large number of classifiers incurs an in-

crease in memory requirement and computational cost. These costs may appear to be
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trivial for toy datasets; nevertheless, they can become critical for real-world applications
such as learning from data stream.

All the above reasons motivate the appearance of ensemble pruning approaches
(also called ensemble selection). Ensemble pruning aims at finding a compact and
effective subset of component learners. The challenge consists of reducing the num-
ber of base learners that constitute the ensemble while maintaining or even improving
the generalization power of the entire committee. Given an ensemble composed of
n learners, one straightforward and naive strategy consists of searching for a subset
that best optimizes a criterion indicative of its generalization accuracy. This task in-
volves evaluating 2"~2 subsets (excluding the empty set and the entire ensemble set),
which becomes intractable for moderate and large ensemble sizes. This problem has
been demonstrated to be NP-complete [9]. To cope with the computational burden, nu-
merous approaches have been developed in the literature which can be categorized
into two primary classes: search-based and ordering-based methods. A search-based
technique performs a heuristic search in the space of all possible subsets of classifiers
while measuring the importance of a candidate subset, examples of this category in-
clude: genetic algorithm [34] and semi definite programming [31]. An ordering-based
approach assigns a rank to every ensemble member according to a certain criterion;
then, the selection is conducted by aggregating the ensemble members whose ranks
are above a predefined threshold. Kappa pruning [36] and orientation ordering [37]
are two well-known ordering-based techniques. It is widely acknowledged that search-
based methods provide better predictive performance than ordering-based techniques
but usually require higher computational cost and memory storage [29]. Recent studies
have reported that, in spite of their simplicity, ordering-based methods are competitive
with search-based techniques and sometimes generalize very well [10, 38].

The criterion invoked for assessing the generalization ability of an ensemble lies
at the core of any pruning methodology. It expresses either the utility of a candidate
sub-ensemble or the contribution of a classifier to the overall performance. Usually, it
is defined based on typical concepts that characterize ensembles such as accuracy,
diversity, or even a combination of both. For instance, Meynet and Thiran [2] proposed
a utility function designed to balance the ensemble accuracy and diversity based on
information theory concepts. Unfortunately, many evaluation criteria are hand-designed

and might sometimes require computation of large multivariate densities.
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1.2 Pruning by playing a game

This thesis introduces novel selection criteria for classifier ranking, which are distin-
guished from other methodologies in the literature by being founded on game theory.
We have pursued the following line of research:

Many existing selection criteria score the utility of the base learners according to
their individual contributions to the ensemble performance. However, this approach ne-
glects the interactions that might exist among the ensemble members; and it therefore
underestimates the contribution of learners which have strong discriminatory power as
a group but are weak as individuals. We refer to these ensemble members as inter-
active classifiers. The unintentional removal of interactive base learners can yield poor
predictive performance. This consideration gives raise to the following research ques-
tion: can we derive a selection criterion which promotes interactive learners? It is easy
to notice that extracting interactive members is computationally intractable for moderate
and large ensemble sizes. The next quest is therefore: how could we overcome this
intractability issue? Once addressed, we wish to investigate several evaluation mea-
sures for ensembles such as diversity and relevancy. We also intend to examine how
such a selection criterion affects the accuracy performance, the pruning ratio, and the
computational cost?

In our endeavor to provide answers to the above questions, we have found that
coalitional game theory offers an elegant mathematical framework that addresses our
purposes very well. Coalitional game theory [39] models situations that involve interac-
tions among decision-makers, called players. The focus is on the outcomes achieved
by groups rather than by individuals. We call each group of players a coalition. A coali-
tional game associates to each subset of players a payoff which indicates the benefit
earned by the coalition members if they chose to cooperate. The main assumption
made in coalitional game theory is that players bind agreements on how to distribute
the profits of these coalitions. Coalitional game theory further addresses the question
of estimating the players’ contributions by introducing a set of solution concepts such
as: Core [40], Shapley value [41], Banzhaf power index [42], Nucleolus, and Bargaining
set. The notion of a solution concept can be illustrated by the following example [43].

“A professor running a lab has decided to distribute the yearly bonus to his students
in a manner which reflects their actual contributions to the academic success of the

lab. During the year, the professor arranges the students into teams or coalitions;
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a student can join different teams. Each group publishes a paper summarizing

its work. Every published paper is associated with a payoff defined based on the

Journal’s impact factor. Given this annual data of the students’ coalitions and their

associated payoffs, a solution concept, in this case Shapley value, provides a fair

manner to distribute the bonus to the students according to their contribution over
the year.”

Putting these notions into the context of multiple classifier systems, a player in the
game corresponds to an individual learner and the benefits earned by a coalition of
classifiers can be defined based on notions that characterize ensembles like accuracy,
diversity, margin distance, or a combination of these metrics. A solution concept esti-
mates the base learners’ contributions by considering the synergy that emanates from
their interactions. In this way, component learners receive ranks that reflect their real

contributions to the ensemble performance.

1.3 Thesis contributions

This thesis is about developing selection criteria, specifically those which score the
ensemble members by taking into consideration the synergy between them. Our main
contribution is an interpretation of ensemble pruning within the context of game theory.
We present in what follows a summary of the contributions; a thorough description will

be provided in the Conclusion chapter (Chapter 7).

e We propose a new representation for non-monotone simple coalitional games and
provide, under some restrictions, a pseudo-polynomial time algorithm for comput-

ing Banzhaf power index (Chapter 5).

o We derive an optimal selection criterion within the proposed representation, which
extracts sub-ensembles with moderate diversities. We first rank the individual
learners based on Banzhaf index; then, we define the pruned ensemble as the

minimal winning coalition made only of the highly ranked members (Chapter 5).

e A thorough theoretical analysis of successful ensemble methods reveals an area
of improvement: a committee which adequately balances accuracy and diversity
yields better generalization performance. Consequently, we introduce an improved

framework based on Shapley value that assigns to each classifier a rank which
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corresponds to its marginal contribution in achieving a fair balance between the

individual accuracies and the ensemble diversity (Chapter 6).

¢ To test the efficacy of our approaches, we have conducted extensive experiments
on a large number of problem sets. We have supported our analysis with numer-

ous statistical comparisons.

1.4 Thesis structure

Chapter 2 introduces some relevant ensemble learning concepts that are necessary
for understanding the ideas developed in this thesis. We review the supervised clas-
sification problem and present the primary ingredients required for devising successful
ensemble methods.

Chapter 3 presents the literature surrounding ensemble pruning. We motivate this
task and describe some major pruning methodologies introduced in the literature.

Chapter 4 briefly surveys some concepts from coalitional and evolutionary game
theory. We also highlight some well-known applications of game theory to computer
science in general and machine learning in particular.

Chapter 5 presents a novel representation for non-monotone simple games that
admits a pseudo-polynomial time algorithm for computing Banzhaf power index. We
formulate the ensemble selection problem within this framework and map the pruned
ensemble to the notion of the minimal winning coalition.

Chapter 6 introduces an induced subgraph game for devising a selection criterion.
We propose a novel framework that captures two intrinsic properties that affect the en-
semble generalization performance namely diversity and accuracy. We weigh the base
learners according to their contribution in keeping a fair balance between the individual
accuracies and the ensemble overall diversity using Shapley value.

Chapter 7 concludes the thesis by summarizing our contributions and presents lines
of future work.

Appendix A presents some practical guidelines for the design and the analysis of

ensemble learning experiments.

1.5 Publications

The contributions presented in this thesis have resulted in several publications:
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[44] Ykhlef, H., Bouchaffra, D. and Ykhlef, F., “Coalitional game-based adaboost”, IEEE

International Conference on Systems, Man and Cybernetics, (2014), 194-199.

[45] Ykhlef, H. and Bouchaffra, D., “Induced subgraph game for ensemble selection”,
IEEE International Conference on Tools with Artificial Intelligence, (2015), 636-

643. Best Student Paper Award.

[46] Ykhlef, H. and Bouchaffra, D., “An efficient ensemble pruning approach based on

simple coalitional games”, Information Fusion, vol. 34, (2017), 28-42.

[47] Ykhlef, H. and Bouchaffra, D., “An induced subgraph game for ensemble selection”,

International Journal on Artificial Intelligence Tools, vol. 26, no. 1,(2017), 1-20.
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CHAPTER 2
ENSEMBLE LEARNING

2.1 Introduction

In the previous chapter, we briefly discussed the notion of a committee and the prob-
lem of ensemble pruning. We now introduce some relevant ensemble learning concepts
that are necessary for understanding the ideas developed in this thesis. We also present
much of the common notation used throughout this manuscript. We start off with a short
introduction to the classification problem in Section 2.2, providing the formal definitions
and describing several techniques used for model evaluation and comparison. Then, in
Section 2.3, we motivate ensemble learning and give some basic concepts. We finish
by presenting and discussing the main ingredients for devising a successful ensemble
method in Sections 2.4-2.7.

2.2 Fundamentals of classification

Classification is considered as the most common task in machine learning and pat-
tern recognition [3]. It is concerned with the problem of attributing class labels to unseen
objects. An object (also called pattern, sample, and instance) is characterized by a fea-
ture vector x € X and by its class label y € Y = {cy, cs, ..., ;. }. We can formally express
a classification problem as a mapping from the feature space X to the space of class
labels U/ [48]. In supervised learning, the role of any given classification algorithm is to
learn a predictive model from a set of m data samples I" = {(x1, 1), (2. ¥2), -, (T, Ym) }
which have been labeled beforehand, where z; € X and y; € . This thesis takes a sta-
tistical approach to classification by assuming that the data samples are independently
identically distributed (i.i.d) i.e. each training example is drawn independently from the
same underlying distribution. A classification model (also called classifier, learner, and
hypothesis) is the estimated mapping function f which takes in a feature vector = € X,

some parameters T and produces an output 7.

g = f(z, 7). (2.1)

We can distinguish between three main types of outputs [49]:
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e Class label - crisp label: j € /.

o Probability distribution: The classifier returns a probability vector over the &

class labels . = [py, pio, ..., ) ¥ € [0, 1]%.

e Oracle output: It is defined as a Boolean vector Z = [z, ..., z,,|T, where m is the
size of the training set I', with z; = 1 if the learner correctly classifies instance 1,

and 0 otherwise.

For the remainder of this thesis, we will focus only on learning models that outputs
class labels. Usually, a classifier is seen as a two-step algorithm: training phase and
testing phase. The first step concerns the task of learning a hypothesis from the training
data. In the second step, the produced model is used to predict the class label of
unseen objects drawn from a testing set. Neural networks, decision trees, BAGGING,
ADABOOST, random subspaces, and support vector machines are but a few examples
of learning algorithms, and they are all based on different paradigms. The next sections
provide an extended treatment on ensemble learning approaches like ADABOOST and
BAGGING.

The aim of any learning algorithm is to find the model parameters 7 (Equation 2.1)
that give the best predictive performance. We can measure the quality of the predictions
in multiple ways with the most common being the error rate i.e. the ratio between the
number of misclassified samples to the total number of samples. We will discuss model
evaluation and comparison later in subsection 2.2.1.

It is assumed that the training data is representative of the unknown distribution;
hence, a classifier that accurately predicts the training samples is expected to perform
well on testing examples. However, a model that fits the training data perfectly, i.e. a
complex decision rule, can have worse performance than a simple model with higher
training error. This paradox is known as overfitting [48]. According to Occam’s razor
principal, the simplest model that explains most of the data is expected to perform well
on unseen examples [5]. As an illustrative example, Figure 2.1 compares the decision
boundaries produced by k-Nearest Neighbor (kNN) and Linear Discriminant Analysis
(LDA) on a toy dataset. We set the number of nearest neighbors & to 1 and invoked
LDA with the default parameters. We conducted this experiment on Iris dataset (de-
scription is provided in Appendix A) using only two attributes (Sepal width, Petal length)

and two classes (Versicolor, Virginica). The linear boundary has fewer parameters and
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does not perfectly separate the two classes on the training data, whereas the nonlinear
boundary has relatively many parameters and separates all training samples very well.
However, it does perform poorly on unseen patterns, which is consistent with Occam’s

razor principal.

8 8
O  Versicolor O Versicolor
X Virginica X Virginica
7f % 7t =
x x x x x x
-E x x x x 3 E x i x x "
2 6 x § e 2 or g A
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Figure 2.1: Comparison of the decision boundaries from NN (right) and LDA (left) on
Iris dataset.

Choosing the simplest model often alleviates overfitting. However, when the com-
plexity of the classification task is not known a priori, we risk selecting a model that is
too simple that can lead to poor performance i.e. model mismatch. Ensemble learning
adopts an alternative strategy to address overfitting by amalgamating multiple simple
learners. The combination can reduce overfitting, while providing sufficient expressive

power to learn complex hypothesis [49, 9, 8].

2.2.1 Model evaluation and comparison

The goal of classification is to make use of the prior knowledge of a problem to learn
a model that has the best generalization ability. According to the no free lunch theorem
[50], there is no single learning algorithm that induces the most accurate classifier. The
naturel approach is to try many learners and select the one with the best performance
on a separate sample set. This task is known as model selection. For this purpose,
we need to measure the performance of a classifier. Error rate, area under the ROC
curve, precision/recall, and F-measure are examples of performance measures that are
widely invoked in machine learning experiments [6]. Given a set of m labeled samples

I ={(z1,m), (x2,92), ..., (Tm,ym) }, the error rate is defined as:
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T

err(T) = % > (5 = i), (2.2)

Ci=1

where 3; = h(z;) denotes the estimate of instance i’s class label returned by classifier
h. A common approach for model evaluation is to learn a hypothesis from a training set
and to measure its generalization error on a test set. It is worth underscoring that the
training and testing data should not overlap, otherwise the estimated performance can
be overoptimistic. In addition, this approach requires a large amount of data in order
to obtain a reliable estimate of the generalization error, which is rare in most situations.
A possible alternative consists of invoking a resampling technique such as k-fold cross
validation, leave-one-out, 5 x 2 cross validation, and 10 x 10 cross validation. Please
refer to [51, 6] for an extended and comprehensive treatment on the subject.

Given multiple learning algorithms and datasets from various domains, model eval-
uation aims at identifying which algorithm produces the most accurate classifiers when
trained on samples from other domains. This concern is one among the fundamental
issues in machine learning. In order to address it, Dietterich [51], DemSar [52], Garcia
et al. [63, 54], and Japkowicz et al. [6] introduced several statistical tests such as Mc-
Nemar, Friedman, Nemenyi, Bonferroni-Dunn, Wilcoxon, and ANOVA for performance
comparison. In the following subsections, we briefly review the statistical tests we in-

voked in our experiments. Further details can be found in [52, 6].

2.2.2 Friedman test

The Friedman test is useful for comparing several algorithms over multiple domains.
It first ranks the techniques for each dataset separately according to the generalization
accuracy in descending order. The best performing technique gets the rank 1, the sec-

ond best gets rank 2... etc. In case of ties, average ranks are assigned. Let r/ be the

N 1/ denote the

i=1"1

rank attributed to the ;' algorithm on the i** dataset; and let R; = - 5~
average rank of algorithm j € {1,...,t} over N datasets. Under the null hypothesis, it is
assumed that all techniques are equivalent; hence, their average ranks should be equal.

The statistic

12N
tt+1)

2
XF =

k TNE

,  t(t41)?

> Rj—T (2.3)
j=1
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follows chi-squared distribution with ¢ — 1 degrees of freedom for sufficiently large N
and ¢ (usually N > 10 and ¢ > 5). In their study, Iman and Davenport reported that 2. is

conservative and derived a new statistic:

__(N-xE
N - .

which is distributed according to the F-distribution with ¢ — 1 and (¢t — 1)(N — 1) degrees
of freedom.

This test provides only an assessment whether the observed differences in the per-
formances are statistically significant. In order to have a zoomed-in view of what these
differences correspond to precisely i.e. identify pairs of techniques with significant dif-
ferent performances, usually we perform a post hoc test when Friedman test rejects the
null hypothesis. Nemenyi, Bonfferoni-Dunn, and Holm are examples of post hoc tests

that are widely used in conjunction with Friedman test.

2.2.3 Nemenyi test

This test is invoked when all techniques are compared with each other. The per-
formance of two methods is significantly different if their corresponding average ranks
differ by at least the critical difference

t(t+1)

CD =q, 6N

(2.5)

where the critical value ¢, is defined based on the Studentized range statistic divided by

V2.

2.2.4 Bonferroni-Dunn test

Generally, Bonferroni-Dunn test is undesirably conservative and has little power; nev-
ertheless, this test is useful when we are only interested in comparing all techniques with
a control algorithm. In this specific case, Bonferroni-Dunn test is more powerful than Na-
menyi test because this latter adjusts the critical value for making (¢ — 1) comparisons,
whereas when comparing with a control method we make only ¢t — 1 comparisons. This
test is basically defined similarly to Nemenyi test except that we estimate the critical

value for a/(t — 1) significance level.
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2.2.5 Wilcoxon signed-ranks test

Wilcoxon signed-ranks test is a non-parametric alternative to the paired t-test and
is considered the best strategy to compare two algorithms over multiple domains. The
formulation of this test is the following. We designate by d; the differences between
the performance scores of two techniques on N datasets, i € {1,..., N}. We first rank
these differences according to their absolute values; in case of ties average ranks are
attributed. Then, we compute the sum of ranks for the positive and the negative differ-
ences, which are denoted as R* and R, respectively. Their formal definitions are given
by:

Rt = Z rank(d;) + % Z rank(d;) Z ank(d;) + = Z rank(d;). (2.6)

d;>0 d;=0 d;i<0 d =0
Notice that the ranks of d; = 0 are split evenly between R* and R~. Finally, the
statistics 7, is computed as T, = min(R", R~). For small N, the critical values for T,
can be found in any textbook on general statistics [6], whereas for larger N, the statistics

T—IN(N+1
2= NV D 2.7)

VENN + 12N +1)

follows the normal distribution with 1 mean and 0 variance. For instance, the hypoth-

esis which states that two approaches perform equally is rejected if - < —1.96 at a 5%

significance level.

2.3 Ensemble learning

Ensemble methodology imitates our second nature to seek several opinions be-
fore making a crucial decision [55]. It refers to the process of creating a collection
(also called team, committee, ensemble, and pool) of learning models whose predic-
tions are merged together to produce the final decision. It is also known as learning
multiple classifier systems and committee-based learning. Numerous experimental
and theoretical studies have demonstrated that a combination of multiple learning mod-
els reaches higher prediction performance and usually generalizes better than a single
classifier [1, 34, 8]. Instead of looking for the most appropriate learning algorithm, the
aggregation of several classifiers avoids the risk of choosing the wrong model. In this

way, ensemble learning provides a solution to address the model mismatch problem by
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making best use of the strength of the individual learners and making up their weak-
nesses. In the following subsections, we will motivate the ensemble methodology and

will provide an overview of its main concepts.

2.3.1 Motivations

Ensemble learning has grown into an active area of research because of several
theoretical and practical reasons. In the seminar paper [1], Dietterich has set three

theoretical grounds for ensemble methodology (Figure 2.2").

Statistical reason: Suppose that we are given a labeled sample set Z and a number
of different classifiers with identical predictive performance (Figure 2.2 (a)). Al-
though these learners are indistinguishable with respect to their error rates, they
can generalize differently. Without any prior knowledge on the problem, there is
no basis for picking one classifier over another. This scenario occurs when the
experimental data is not sufficient to reach any clear-cut decision. A safer op-
tion would be to aggregate all classifiers predictions instead of selecting just one
learner. Therefore, the combination reduces the risk of choosing an inadequate

single classifier.

Computational reason: Some learning algorithms perform a local search to train a
classifier, which might converge to a local optimum instead of the global optimum
h* (Figure 2.2 (b)). By suitably combining these models, we might escape the local
optima and moreover get a better approximation of h* than any of the individual

learners.

Representational reason: Itis possible that the true function 2* cannot be represented
by an individual learning model (Figure 2.2 (c)). For instance, a single neural net-
work can learn complex boundaries very well. However, the task of tuning its
parameters requires a large set of samples. The lack of a large dataset reduces
the actual search space and can lead to overfitting the training set. Under such cir-
cumstances, the aggregation of simple learners expands the search space consid-
ered for the problem and can achieve a better approximation of the true unknown

function ~* than a single classifier of high complexity.

'The notation in the figures were changed so as to be consistent with the thesis.
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Good classifiers

(a) Statistical reason (b) Computational reason (c) Representational reason

Figure 2.2: Ensemble methodology motivations [1]. # denotes the space of all possible
hypothesis, and h* represents the optimal classifier for the task.

For practical reasons, real-world applications often require learning from large datasets.
A large set of samples can be partitioned into several smaller subsets. An individual
learner is trained for each subset; then, the final decision is given by aggregating the
predictions of these models. Ensemble learning has also been applied to data fusion
problems [56], in which data come from different sources with heterogeneous features.
Each ensemble member is specialized on a portion of the feature space. As a conse-

quence, the combination covers the whole feature space.

2.3.2 Basic notions

In this thesis, we adopt the ensemble architecture depicted by Figure 2.3. An ensem-
ble 2 is composed of a number of classifiers h,, ho, ..., h,, called base learners that are
generated from training data I' = {(z1,y1), (z2,92), ..., (Tm,¥m)} uUsSiNg a learning algo-
rithm. Decision trees have widely been used due to their remarkable success reported
in the literature [57, 33]. Other learning algorithms such as neural network, support
vector machine, and naive bayes have also been investigated [58, 34]. Most techniques
invoke a single learning algorithm for growing ensembles leading to homogenous base
learners; there are also methods that invoke multiple learning algorithms to produce
heterogeneous base learners. \We refer to base learners as component learners, indi-
vidual learners, and weak learners. Given a feature vector x, the ensemble 2 combines
the predictions of its members h,(x), ..., h,(x) following a combination strategy, which is

responsible for turning the classifiers’ private judgments into a collective decision.

2.3.3 Taxonomy of ensemble methods

An ensemble method is usually characterized by four elements [33]:
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Figure 2.3: A common ensemble architecture.

Combination method: This component is responsible for combining the predictions of

the ensemble members.

Ensemble generator: This element specifies the process of training the ensemble mem-

bers.

Diversity: The notion of diversity is deemed to be of paramount importance in ensem-
ble learning. Diverse members induce uncorrelated errors when tested on the
same sample set. According to Dietterich [1], the key success of an ensemble
technique is to construct a committee of individual learners that are diverse and
accurate. However, measuring, defining, and properly incorporating diversity into

the ensemble learning process are still matters of ongoing research [25, 22, 23].

Ensemble size: An important aspect of an ensemble approach is to define the number
of component learners that should be generated. This parameter can be set by
the user, determined during the training process or after the generation of the

ensemble by removing the undesirable members.

The following sections provide additional details on these four elements.

2.4 Combiner method

Many fusion methods have been studied for the purpose of ensemble learning [21].
The choice of a combiner is strongly affected by the level of information provided by
the ensemble members’ predictions [49]. There exist two main methods for combin-
ing classifiers’ outputs: weighting and meta-learning methods. The weighting methods
work well on problems in which all component learners perform the same task and have
comparable predictive accuracy; for instance, simple majority vote, weighted majority

vote, Dempster-Shafer, and naive bayes have been frequently used in the literature
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[33]. Meta-learning methods are best suited for problems in which some members con-
sistently correctly classify or misclassify certain samples. Examples of this strategy
include stacking, grading, and mathematical programming. In our study, we focus on
classifiers that directly estimate the class label of an unseen sample (crisp label) and on
weighting fusion methods.

We now recall the supervised classification scenario. A sample is a pair (z,y) con-
sisting of a feature vector € X’ and the true class label y € Y = {c1, o, ..., c}. We
denote with Q2 = {hy, hs, ..., h,,} a collection of n base learners. Given an unseen sample
x, a fusion rule combines the individual members’ outputs to produce the ensemble joint

decision Q(z).

2.4.1 Majority vote

Majority vote decides for class ¢; € U that obtains the highest number of votes among

the individual learners. It is given by:

Q)(z) = argmax i: I(hj(z) = ¢). (2.8)

cielf j=1

2.4.2 Weighted majority vote

Weighted majority vote rule assigns to each ensemble member /; a weight w;; the
higher the weight, the stronger the classifier's output will affect the ensemble final deci-

sion. It is defined as:

Qzx) = argmaxZu.{}- x I(hj(z) = ¢). (2.9)

a€y 5

In theory, weighted majority vote can be more accurate than simple majority vote [8].
However, its performance relies considerably on the actual weights: a bad choice can
cause a sharp drop in the predictive performance. For example, performance weighting
strategy weighs the base learners according to their individual accuracies estimated on

a separate set of samples [33].

2.5 Ensemble generator

There are two main strategies for building multiple base learners. We can either train
the same classification model on different training sets — homogenous base learners,
or we can train different classification models on the same training set — heterogeneous

base learners.
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The first strategy is the foundation of most successful ensemble methods like BAG-
GING, ADABOOST, and random subspace [49, 8]. These methods can be distinguished
according to which extent each member affects the other members [9]. Some tech-
niques generate a collection of dependent base learners: the outcome of a member
affects the training of the next member. Therefore, it is possible to use the knowledge
acquired in the previous iterations to train the next base learner. Some of established
methods for growing dependent classifiers are ADABOOST and ARC-x4 [49]. Alterna-
tively, in an independent framework, the dataset is partitioned into several subsets from
which multiple base learners are trained. The obtained subsets can be disjointed (re-
sampling without replacement) or overlapping (resampling with replacement). Methods
that implement this methodology include BAGGING [11], random forest [15], and random
subspace [32, 13, 14].

The second strategy can be achieved by amalgamating different types of learning
algorithms, or by changing the parameters of the individual learners. As an illustrative
example, we can combine neural networks, decision trees, support vector machines,
and naive bayes, or simply combine support vector machines with different kernel func-

tions or different cost parameters [58].

2.5.1 ADABOOST

ADABOOST, short for “ADAPTIVE BOOSTING”, was initially proposed by Freund and
Schapire [12] as an ensemble method for improving the performance of a weak learner
i.e. a classifier that performs better than random guessing such as decision trees. AD-
ABOOST is a sequential algorithm in which each new inducer is built by taking into ac-
count the performance of the previously trained ensemble members. At stage ¢, every
training sample z; receives a weight I-'If’,}” that indicates its probability of being selected
to train a new weak classifier. The first classifier is built by setting these weights to 1/m,
where m denotes the number of training samples, i.e. all samples initially have the same
importance. If a training sample is correctly classified, then its chance of being reused in
the next stage is decreased; conversely, if a sample is misclassified, then its chance of
being reselected is increased. In this way, the subsequent classifiers focus on examples
that are difficult to classify. ADABOOST assigns to the new trained classifier a weighting
coefficient «;: accurate members receive higher weights. This process continues until

the desired number of base learners or the overall accuracy has been reached. The
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final classification decision of a test sample is based on the weighted linear combination
of these weak classifiers.

ADABOOST was initially proposed for binary classification problems and then ex-
tended for multiple classes. Figure 2.4 shows ADABOOST.M1, which is the most straight-
forward multiclass extension of ADABOOST [49]. Several other ADABOOST extensions
such as ADABOOST.M2, Real ADABOOST, Float ADABOOST, and SABOOST have been
proposed in the literature. Real ADABOOST combines the class probability estimates
predicted by the weak learners by fitting an additive logistic regression model in a for-
ward stepwise manner [59]. Tsao and Chang considered ADABOOST as a stochastic
approximation procedure —SABOOST [60]. They introduced a new weighting method

for estimating the individual learners’ contributions to the final decision.

2.5.2 BAGGING

The most well-known ensemble method for generating independent classifiers is
BOOTSTRAP AGGREGATING or BAGGING for short [11]. The main idea of BAGGING
is simple yet effective: First, the ensemble members are built on bootstrap replicates
of the training set; then, their predictions are combined following simple majority vote
strategy. Specifically, each component classifier h; is learned from a set of instances S;
taken with replacement from the training set I'. It is worth underscoring that the size of
a bootstrap sample S; is equal to the number of instances of the initial training set I'.
Therefore, some entries of I' may appear more than once or may not be considered at
all during the training process. To make best use of the variations of the training set,
the base learners have to be unstable i.e. small changes in the training samples lead
to large changes in the classifiers’ predictions [49]. Otherwise, the trained ensemble
will be composed of almost identical members. Examples of unstable classifiers are
neural network and decision trees, whereas k-nearest neighbor is an example of stable
learners. One advantage of BAGGING is that it can be easily implemented in a parallel
mode by training the individual members on different processors. Figure 2.5 depicts the

pseudocode of BAGGING.

2.6 Diversity
It is well-accepted that the generalization performance of an ensemble cannot be

improved by amalgamating multiple identical learning models. However, an ensemble
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whose members make errors on different samples reaches higher predictive perfor-
mance [8]. This concept refers to the notion of “diversity” among the individual classi-
fiers. According to Rokach [9], diversified members induce uncorrelated errors which
boost the group performance globally. Although the benefits of diversity have been rec-
ognized by the ensemble learning community, no consensus on: (1)what does diversity
mean? and (2) how differences among component learners’ predictions contribute to

the overall classification accuracy? have been established yet [22, 23, 24, 25].

Training phase

1: Input: [: aweak learner.
T': number of iterations.
I': a set of m labeled training samples.
2: Initialize: t=1,;
Ifﬂ“) =1/m,i=1,..,m;

Q=0
3: Repeat
4. —Learn a hypothesis h; from I" using I;
5: et =Y (argiyer Wi x Wha(x:) # vi);
6: Ifs; > 0.5
7: T=t-—1;
8: Break;
9: End if
10: _.ll.:)'f'=5f/(l_€f.):
11:

I-'V.(L_Fl) _ I"V!-(r) % .Ht :’f h.t (.’I.‘,‘_) =i
' Zy 1 Otherwise

where Z; denotes a normalization constant which enables W(+1) to be a distribution i.e.
Zm. H;(l‘-+l) -1
i=1 i —

12: Q=Qu{h};
13: ap = log1/5y;
14: t=t+1;

15: Untilt > T

16: Output: The ensemble members h,, ..., hr and their voting weights a4, ..., ar.

Classification phase

17: Input: x: a feature vector characterizing a pattern.
18: Output:

.
Q(x) = argmax a; x I(h;(z) = ¢;).
(@) = agmax 3 oy x (hy(2) = )

Figure 2.4: The ADABOOST algorithm.



31

Training phase

1: Input: I aweak learner.
T': number of iterations.
I': a set of m labeled training samples.

2: Initialize: (=1;
Q= 0;
3 Repeat
4 —Take a bootstrap sample S; from I';
5: —Learn a hypothesis h; from S, using I;
6 Q=Qu{h};
7 t=t+1;
8 Untilt > T

9: Output: : BAGGING ensemble.

Classification phase

10: Input: x: a feature vector characterizing a pattern.
11: Output:

-
Qz) = argmaxz I(hj(z) = ;).

ci€lY j=1

Figure 2.5: The BAGGING algorithm.

Despite the lack of a formal definition of diversity, the research community has put
continuous efforts on incorporating diversity in the design of ensemble methods [29,
30, 31, 27, 27]. Rokach identified five different strategies to inject randomness into an

ensemble [33]:

Manipulating the base learner: A simple strategy for creating diversity consists of chang-
ing the learning algorithm’s parameters used for training the ensemble members.
For instance, Islam et al. combined multiple neural networks with different number
of hidden layers [61]; Drucker varied the confidence level parameter of a C4.5 and

examined its impact on the performance of an ADABOOST ensemble [62].

Manipulating the training samples: This approach incorporates diversity by training
each ensemble member on a different sample of the training set. ADABOOST and
BAGGING are two examples that adopt this strategy. ADABOOST changes the dis-
tribution of the training samples, whereas BAGGING bootstraps different training

sets to create diversity.

Manipulating the output’s representation: Techniques that adopt this strategy alter

the representation of the target attribute (class label). For instance, we can divide
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a multiclass problem into a series of binary classification problems, where each
problem considers the discrimination of one class to the other classes; then, we
train multiple inducers to learn these binary classification problems. Sivalingam
et al. transformed a k-class problem into a minimal two-class problem using the

minimal classification method along with error correcting code [63].

Partitioning the feature space: In this method, each ensemble member is provided
with a different projection of the training data. For example, Ho randomly selected

subsets of features to create a forest of decision trees [14].

Multi-base learning algorithms: This strategy generates diversity by aggregating dif-
ferent learning algorithms. Langdon et al. introduced genetic programming to

learn a suitable rule for combining neural networks with decision trees [64].

2.6.1 Diversity measures

The assessment of diversity among the ensemble components is a matter of paramount
importance because it would: (a) improve the understanding of how different base learn-
ers cooperate to reduce the generalization error; and (b) point out practical guidelines
for the design of successful ensemble methods. However, the partial understanding
of diversity in classification problems had led to the proposal of numerous measures
[8, 26, 49]. Kuncheva and Whitaker have studied and analyzed ten statistics that can
be classified into two categories: pairwise and non-pairwise measures [26]. Q-statstics,
Cohen’s kappa, and double fault are examples of pairwise measures. The ensemble
overall diversity is defined as the average over all possible pairwise interactions. A non-
pairwise measure can be defined, for instance, based on the correlation of each base
learner with the averaged output.

In this thesis, we focus only on pairwise diversity measures. For an ensemble made

of n component learners, the total diversity is defined as:

2 mn n
Divgy = —— ids 2.10
Voo = oy 2 2 fios (2.10)
i=1 j=i+l
where f; ; denotes a diversity measure between two classifiers’ outputs i; and h;.
Let N7Y, N, N}, and N}' designate the number of correct/incorrect predictions

made by two ensemble members h; and h; (Table 2.1). In what follows, we define the

metrics that we find useful for the subsequent investigations.
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Table 2.1: The number of correct/incorrect predictions made by a pair of classifiers.

h; correct h; wrong
ril r1o
h; correct N N
ayO1 Ao
h; wrong N;; N

The disagreement measure is defined as the ratio between the number of samples on
which one classifier is correct and its counterpart is incorrect to the total number

of samples [9].
NO! 4 N0

| 2.11
_-N'r?jﬂ + A"\'T;jl + NE?O + Nﬂl | |

D?:Sf_‘_j =

The double fault measure is defined as the proportion of instances that have been
misclassified by the two classifiers h; and h; [26].

00
N

A700 Arll AT10 AJo1 "
_-\?;j 4+ ‘\z-j + J\?;j -+ j\r._j

Mutual information. Brown et al. [65] used mutual information to assess the diversity
between two classifiers. They proposed the following expansion: First, let X;,
X; and Y be three discrete random variables designating the predictions of two
classifiers h; and h; on the training set and the true class label, respectively. Then,

the diversity function is given by:
MI; = I(X; X;|Y) = (X5 X;), (2.13)

where 1(X;; X;|Y) and I(X;; X,) denote the conditional mutual information and the

mutual information, respectively.

We can also use a similarity function to quantify diversity:

Cohen’s kappa is a well-known metric to assess the agreement between two raters in
statistics [66]. It was first used by Margineantu and Dietterich [36] as a measure
of diversity to prune an ensemble trained by ADABOOST. Formally, Cohen’s kappa
between two classifiers i; and ; is defined as:

95_‘_}' - '19;{.‘;'

K J =

where 6, ; is the proportion of samples on which both ; and h; make the same

predictions on the training set, and +J; ; corresponds to the probability that the two
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classifiers agree by chance. In this context, the diversity function can be expressed

as:
1

Kij +€.

Div — k;j = (2.15)

A small positive constant ¢ is introduced to avoid numerical difficulties when kappa

statistic approaches zero.

2.6.2 Accuracy/diversity dilemma

It is a fact that two very accurate ensemble members are correlated (low diversity),
whereas two weak learner, i.e. their accuracies are slightly better than random guess-
ing, are commonly diverse [2, 38]. This phenomenon is known as accuracy/diversity
dilemma, which can be illustrated through the following example [2]. We assume that
the reader is familiar with information theory concepts; for a comprehensive treatment
on this subject please refer to [67]. Let X, X5, and Y be three discrete random variables
designating the predictions of the two ensemble members h; and h; on the training set
and the true class label, respectively. The accuracy/diversity dilemma can be summa-

rized graphically by the Venn diagrams shown in Figure 2.6.

H(Y) H(Y)

(XY I(X2:Y)

1(X1:X2) I(X1:X2)
(a) Maximizing individual accuracies (b) Maximizing diversity

Figure 2.6: Accuracy/diversity dilemma [2].

Figure 2.6 (a) shows that maximizing both individual learners’ accuracies (I(X;;Y)
and I(X3;Y)) expends the intersection between the two marginal entropies; hence, high
similarity between h, and h, (low diversity). Inversely, Figure 2.6 (b) reveals that mini-
mizing similarity between the base learners decreases the individual accuracies. This
paradox indicates that diversity cannot be increased without negatively affecting the en-
semble performance. According to various studies [45, 38, 68, 31], a committee that
adequately balances the individual accuracies and the ensemble diversity can achieve

better generalization performance.



35

2.7 Ensemble size

Setting the number of base learners that compose the ensemble is of great impor-
tance and considerably affects the generalization performance. For instance, Opitz and
Maclin have observed a decrease in the error rate of large ADABOOST ensembles made
of decision trees [69]. Determining the ensemble size depends on many factors such
as the desired accuracy, the computational cost, the nature of the ensemble method,
and the number of available processors. Rokach described three different strategies for

defining the ensemble size [33]:

o Selection by the end user: A straightforward and simple approach considers the
ensemble size as an input parameter provided by the user. Ensemble methods

such as BAGGING implement this strategy.

e Selection while training: Methods that adopt this strategy determine the ensem-
ble size based on a stopping criterion. For instance, ADABOOST iteratively tests
whether the contribution of the last base learner to the group performance is sig-

nificant; if it is not the case, the algorithm stops.

¢ Post selection (ensemble pruning): It is sometimes useful to let the committee
grow freely and then to invoke a pruning approach in order to extract effective and
compact sub-ensembles. Ensemble pruning aims at finding a subset of compo-
nent learners that maintains or improves the accuracy of the entire set of classi-
fiers, while reducing the number of members that constitutes the committee [10].
Numerous experimental studies have demonstrated that large ensembles do not
always guarantee better predictive performance [31, 70, 37]. The investigation
carried out by Zhou et al. revealed that extracting a subset of learners from an en-
semble composed of neural networks could improve the generalization ability [34].
Ensemble pruning task is the main concern of this thesis. In the next chapter, we
will define this problem properly and will discuss some major selection methods

introduced in the literature.

2.8 Summary
We reviewed the background knowledge of classification and ensemble learning that
are relevant to the enquiries perused in this thesis. Four lessons can be learned from

the materials covered in this chapter:
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The difficulty of assessing the generalization ability of a classifier has led to the
introduction of multiple classifier systems, an approach that is based on amalga-

mating many diverse and accurate base learners.

Many factors such as diversity, feature space, the nature and the number of base

learners affect the generalization performance of an ensemble method.

Diversity is deemed to be of paramount importance for the design of successful
ensemble methods. However, there is no consensus on how diverse members

cooperate to increase the generalization accuracy.

A pruning approach extracts sub-ensembles that are compact and effective. It is
used not only for determining the appropriate ensemble size but has other benefits
as well. The literature surrounding ensemble selection will be the subject of the

next chapter.



37

CHAPTER 3
ENSEMBLE PRUNING

3.1 Introduction

In the previous chapter, we presented the main ingredients for devising successful
ensemble methods. We pointed out that the generalization ability of a committee de-
pends on many factors, for instance: diversity, feature space, the nature and the num-
ber of base learners. Several theoretical and experimental studies have shown that the
ensemble size considerably affects the generalization ability of a committee [23, 22, 69].
Furthermore, an ensemble made of a large number of classifiers entails an increase in
memory storage and computational cost [25]. Ensemble pruning addresses these short-
comings by extracting a fraction of individual classifiers that maintains of even improves
the predictive performance of the entire committee.

This chapter is dedicated to review the literature surrounding ensemble pruning.
Section 3.2 provides a short introduction to this topic. Section 3.3 highlights the main
reasons that have led to the introduction of ensemble pruning approaches. Finally, Sec-
tion 3.4 explores the four principal paradigms for selecting effective sub-ensembles and

describes some major state-of-the-art pruning methods.

3.2 What is ensemble pruning?

Given a set of individual learners, rather than combining all of them, ensemble prun-
ing (also called ensemble shrinking, ensemble thinning, and ensemble selection) ex-
tracts a subset of classifiers to comprise the ensemble. The challenge consists of re-
ducing the number of base learners composing the committee while maintaining or even
improving the generalization power of the ensemble. Caruana et al. showed that prun-
ing ensembles made of different types of base learners is more effective than taking the
entire ensemble [71]. Liu et al. conducted an empirical study in order to understand
how accuracy and diversity are affected by the ensemble size [38]. They showed that a
smaller ensemble can be constructed while maintaining the accuracy and the diversity

of the full ensemble.
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Given an ensemble composed of n classifiers, finding a subset that yields the best
generalization performance requires searching the space of 2" — 2 subsets (excluding
the empty set and the entire ensemble set), which is unfeasible for large and moder-
ate ensemble sizes. This problem has been demonstrated to be NP-complete [9], and
therefore it is not practical to produce a globally optimal solution. One straightforward
and naive pruning method is to order the ensemble members according to their indi-
vidual accuracies estimated on a separate sample set, and then pick the best ones [8].
Although this method may sometimes work well, it neglects other desired properties
of ensembles and evaluates the utility of the individual classifiers based solely on their
accuracies. As an illustrative example, Zhang et al. have shown that an ensemble com-
posed of three identical members with 95% accuracy is worse than an ensemble of three
classifiers with 67% accuracy and least pairwise correlated errors [31].

Several evaluation functions (or criteria) have been introduced in the literature in or-
der to score the utility of classifiers. Margineantu and Dietterich ordered the ensemble
members according to a diversity measure estimated based on Cohen’s kappa [36].
Lu et al. [38] and Meynet et al. [2] proposed to measure each classifier's contri-
bution by considering the accuracy/diversity trade-off. Rokach et al. [72], Arbel and
Rokach [73], Quinlan [74] ranked the base learners according to their ROC perfor-
mance. Windeatt and Ardeshir compared several subset evaluation functions namely
Minimum Error Pruning (MEP), Error-based Pruning (EBP), Reduced-Error Pruning
(REP), Critical Value Pruning (CVP) and Cost-Complexity Pruning (CCP) that were ap-
plied to ADABOOST and BAGGING ensembles [75]. The results indicate that on average
EBP outperforms the other criteria.

An important issue concerns the choice of the number of classifiers to include in the
pruned ensemble. Properly setting this parameter is of vital importance and consid-
erably affects the success of a pruning method. This parameter could be determined
based on numerous scoring functions such as error rate, area under ROC curve, or a di-
versity measure evaluated on a separate sample set [45, 76]. In [77, 37, 70, 31, 38, 68],

the pruned ensemble size was considered as an input parameter provided by the user.

3.3 Why ensemble pruning?

Ensemble pruning approaches address two issues:
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Efficiency: It is easy to notice that both the processing time needed to produce a pre-
diction and the memory required for storage increase linearly with the number of
classifiers in the ensemble. These costs may appear to be ftrivial for toy datasets;
nevertheless, they can become critical for real-world applications. In fact, a large
scale implementation of ensemble learning can easily generate a committee made
of thousands of learning models [71]. For example, ensemble-based distributed
data-mining techniques enable large companies that store data at hundreds of dif-
ferent locations to build learning models locally and then combine them for future
prediction and knowledge discovery. Under such circumstances, the memory and

computation costs are no longer trivial.

Predictive performance: Several experimental and theoretical studies have shown that
large ensembles do not always guarantee better predictive performance [31, 34,
78]. Zhou et al. proved the many-could-do-better-than-all theorem which states
that aggregating a subset of classifiers could achieve better generalization perfor-
mance than the entire committee [8]. Additionally, most techniques for growing
ensembles tend to generate an unnecessarily large number of classifiers in order
to guarantee that the training error rate reaches its minimal value. This necessity
may result in overfitting the training set, which in turn causes a reduction in the
generalization performance of the ensemble. For instance, boosting-based tech-
nique iteratively trains base learners until the error rate becomes close to zero.
In noisy settings, the generated ensemble usually overfits the training set, hence

poor generalization ability.

3.4 Categorization of pruning approaches

To cope with the computational burden discussed in the previous section, numerous
approaches have been introduced in the literature. The existing efforts fall into four

categories [76]:

3.4.1 Ordering-based pruning

Methods of this category first assign a rank to every classifier according to an eval-
uation measure (or criterion); then, the selection is conducted by aggregating the en-
semble members whose ranks are above a predefined threshold. The main challenge

an ordering-based method faces, consists of adequately setting the criterion used for
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scoring every member’s contribution to the ensemble performance.

Margineantu and Dietterich were the first to address the ensemble pruning problem
[36]. They evaluated the utility of a classifier based on a diversity measure. Specifi-
cally, their approach first estimates the agreement between all pairs of classifiers using
kappa statistic; then, it selects the pairs of classifiers starting with the one which has the
lowest kappa statistic (high diversity), and it considers them in ascending order of their
agreement until the desired number of classifiers is reached.

Accuracy ordering ranks classifiers based on their individual accuracies on a sep-
arate sample set and chooses the first N members, where N is an input parameter
provided by the end user [9].

Martinez-Munoz et al. introduced the concepts of signature vector associated to an
individual member and the ensemble signature vector [77, 77]. Given a sample set 7,

the signature vector ¢ € {1, 1}/4l of classifier ; is defined as:

c:ﬁ” =2 x I(hi(z;) = y;) — 1, (3.1)

where (z;,y;) € Z. The j™* component of ¢} equals 1 if h; correctly classifies the in-

stance z;, and —1 otherwise. The average ensemble signature vector ¢ is given by:

o1 > e (3.2)

A sample z; is correctly classified by the ensemble if ¢; is positive. Consequently, a
sub-ensemble whose average ensemble signature vector lies in the first quadrant of the
|Z|-dimensional hyperspace, correctly classifies all the instances in Z. Margin distance
pruning approach extracts a subset of classifiers which minimizes the distance between
its average signature vector and an objective position p placed in the first quadrant [77].
It is easy to notice that the success of this method depends on setting the value of the
vector p. Exploratory experiments indicated that low values are preferable (p; ~ 0.075,
foralli e {1,....|Z]}).

Another technique that uses similar ideas as margin distance pruning is orienta-
tion ordering [37]. This method ranks the individual members according to the angle
between their signature vectors and a reference vector c,.;. The reference vector is de-
fined as the projection of the first quadrant onto the hyperplane defined by the average

ensemble signature vector, which corresponds to the direction of a perfect classification
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performance estimated based on the sample set Z. Only classifiers whose angles are

less than /2 are chosen to compose the pruned ensemble.

3.4.2 Search-based pruning

A technique which belongs to this category performs a heuristic search in the space
of all possible subsets of classifiers while optimizing an evaluation function. This func-
tion expresses the utility of a candidate sub-ensemble, and it is usually defined based on
typical criteria in machine learning such as accuracy, diversity, or a combination of both.
A well-known search-based pruning approach is GENETIC ALGORITHM BASED SELEC-
TIVE ENSEMBLE (GASEN) [34]. This technique assigns a weight to each classifier: a
low value indicates that the associated individual member should be excluded. Given
an ensemble made of n base learners, these weights are organized as a n-dimensional
vector, which corresponds to a subset in the solution space. A weight vector is initial-
ized randomly, and then evolved toward an optimal solution following genetic algorithm.
The fitness function is computed based on the corresponding ensemble performance
on a separate sample set. Finally, pruning is conducted by discarding members whose
weights are below a predefined threshold. A revised version of GASEN, called GASEN-B
has been introduced by Zhou and Tang [79]. Instead of assigning a weight to each clas-
sifier, GASEN-B uses a bit coding scheme which directly takes 0 — 1 weights and avoids
the problem of setting the pruning threshold.

Zhang et al. formulated ensemble pruning as a quadratic integer programming prob-
lem that considers both diversity and accuracy [31]. Their approach is defined in terms
of a matrix G, whose element G;; represents the number of common errors between
classifier h; and classifier #;. The diagonal term G;; corresponds to the number of errors

made by h;. Normalization is applied so that the elements of the matrix are on the same

scale:
éii = %
G, =L (Gi, Gii .
ijiF#j — 2 G?'.,j GH :

where m is the number of training instances. Thus, G, is the error rate of classifier h;,
and G;; measures the pairwise diversity between h; and ;. Consequently, ensemble

pruning can be formulated as a quadratic integer programming problem:
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min e'Gr, st Z v, =k, x;€{0,1}. (3.4)
T P

The binary variable z; indicates whether classifier h; should be selected, and % de-
notes the size of the pruned ensemble. Equation 3.4 is a standard binary optimization
problem, which is NP-hard. In spite of the computational difficulty, Zhang et al. proposed

the following relaxation: let v; = 2z; — 1 € {—1,1},

. 17G1 117G n 17
V=w", H= 5 3 , and D = : (3.5)
G1 G 1 I

where 1 is all-one column vector of size n and I denotes a n x n-identity matrix, then

Equation 3.4 can be rewritten as:

m;n HxV
v . (3.6)
st. DRV =4k, diag(V) =1,V =0

The new formulation corresponds to a convex Semi Definite Programming (SDP)
problem which can be solved to any preset precision in polynomial time. However, this
technique is still costly. Furthermore, its success considerably depends on setting the
appropriate size of the pruned ensemble k.

In the same context as SDP, Xu et al. formulated ensemble selection as a combi-
natorial optimization problem with the goal of maximizing both accuracy and diversity
[68]. Despite the fact that the original problem is computationally expensive, they de-
rived a relaxation of the original problem into constrained eigen-optimization, which can
be solved efficiently. Although eigen-optimization technique yields better computational
costs than SDP, it still requires setting the size of the pruned ensemble, which can affect
both the classification accuracy and the running time.

Rokach introduced Collective Agreement-based ensemble Pruning (CAP), a crite-
rion for measuring the goodness of a candidate ensemble [29]. CAP is defined based
on two terms: member-class and member-member agreement. The first term indicates
how much a classifier's predictions agree with the true class label, whereas the sec-
ond term measures the agreement level between two ensemble members. This metric
promotes sub-ensembles whose members highly agree with the class and have low
inter-agreement among each other. Note that CAP provides only a criterion for measur-

ing the goodness of a candidate ensemble in the solution space, and hence requires
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defining a search strategy like best-first or directed hill climbing [76, 8].

3.4.3 Clustering-based pruning

The key idea behind this category consists of invoking a clustering technique, which
allows identifying a set of representative prototype classifiers that compose the pruned
ensemble. A clustering-based method involves two main steps. In the first step, the en-
semble is partitioned into clusters, where individual members in the same cluster make
similar predictions (strong correlation), while classifiers from different clusters have large
diversity. For this purpose, several clustering techniques such as k-means [80], hierar-
chical agglomerative clustering [81], and deterministic annealing [82] have been pro-
posed. In the second step, each cluster is separately pruned in order to increase the
diversity of the ensemble. For example, Bakker and Heskes selected the individual
members at the centroid of each cluster to compose the pruned ensemble [82].

An important issue concerns the choice of the number of clusters. A straightforward
way consists of setting this parameter based on the classification performance of the
method evaluated on a separate sample set [83]. Lazarevic and Obradovic increased
the number of clusters until the disagreement among the centroids began to deteriorate

[80].

3.4.4 Other methods

This category comprises the pruning approaches that do not belong to any of the
above categories. Martinez-Munoz et al. used ADABOOST to prune an ensemble trained
by BAGGING [70]. Similarly to ADABOOST, boosting-based pruning is a multistage tech-
nique. At each iteration, instead of training a base learner, it selects from the pool of
classifiers the member with the lowest weighted training error. If no individual learner
has a weighted error less than 0.5, this approach restarts the boosting process and re-
sets all instances’ weights. Note that the weights associated to the training samples are
initialized and updated similarly to the ADABOOST algorithm.

Tsoumakas et al. proposed statistical tests to prune an ensemble made of hetero-
geneous members [84]. First, their approach uses statistical procedures like Turkey and
Hsu tests with the goal of identifying pairs of classifiers with significant differences; then,
only the individual learners that achieve significantly better performance constitute the

pruned ensemble.
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Partlas et al. considered the ensemble pruning problem from a reinforcement learn-
ing perspective [35]. They first defined an episodic task in which an agent takes T’
sequential actions, each one corresponds to either the exclusion or the inclusion of an
individual learner. Then, they invoked Q-learning algorithm to approximate the optimal

policy for the ensemble selection task.

3.5 Summary
In this chapter, we introduced the literature surrounding ensemble pruning. In sum-

mary:

¢ We presented the main reasons that have motivated the appearance of pruning

approaches: predictive performance, storage and computational costs.

e We reviewed the main categories of pruning techniques: ordering-based, search-
based, and clustering-based. We pointed out that in spite of their simplicity, ordering-
based techniques are competitive with search-based methods that are known to

be effective but have high computational cost.
e We described some major state-of-the-art pruning approaches.

The main objective of this thesis is to provide a game theory-based framework for the
design of powerful evaluation criteria that can be embedded into the pruning process.
Before we proceed to this, we will review in the next chapter the notions from coali-
tional and evolutionary game theory that are necessary to understand the contributions

provided in the remainder of this manuscript.
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CHAPTER 4
GAME THEORY

4.1 Introduction

In the previous chapter, we reviewed several ensemble pruning approaches. Some
methods invoke complex mathematical paradigms like semi-definite programming and
eigen optimization, whereas others are defined based on simple concepts like Cohen’s
kappa. This thesis undertakes a game theory perspective for pruning a committee of
learners. Game theory provides a flexible mathematical framework that can elegantly
capture key criteria of the pruning task. In this chapter, we describe some game theory
principles that are required for understanding the contributions discussed in the remain-
der of this thesis. We begin by introducing some basic notions from game theory in
Section 4.2. Then, we provide a brief review of the literature surrounding coalitional
and evolutionary game theory in Sections 4.3 and 4.4, respectively. Finally, we high-
light in Section 4.5 some well-known applications of game theory to computer science

in general and machine learning in particular.

4.2 Preliminaries

Game theory is concerned with the theory of decision making in situations of conflict
and cooperation among several parties also known as players or decision makers [85].
It provides mathematical models (formally games) in order to capture key attributes of
scenarios in which two or more rational individuals make decisions that influence one
another’s welfare either negatively or positively. A rational player has her own description
of which outcomes or states of the world she prefers (it can include positive and/or
negative impact on the other players), and she acts in attempt to maximize her benefits.
It is worth underscoring that the term “game” is used in a technical sense of game
theory: it does not refer to games like poker or chess; nevertheless, the term and some
of the associated theory originate from recreational games.

A key concern in game theory consists of understanding what counts as a rational

outcome. For this purpose, numerous solution concepts have been introduced in the
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literature [41, 42, 86]. A solution concept identifies a subset of possible outcomes of a
given game while capturing some notion of rationality. Generally, solution concepts do
not guarantee the existence or the uniqueness of a rational outcome. Such problems
have led to the development of different solution concepts, which define distinct notions
of rationality.

Game theory can be divided into two broad classes: cooperative and non-cooperative.
The term “non-cooperative” could be misleading, since it suggests that the theory ap-
plies only to situations of competition between the involved parties, which is not the case.
The main difference between these two classes is that in non-cooperative game theory
the basic modeling unit is the individual player and there is no way to bind agreements
prior to decision-making, whereas in cooperative game theory the modeling unit is the
group (or coalition) and binding agreements are possible. To illustrate this difference, let

us consider the Prisoner’s Dilemma game described as follows [86]:

“Two men A and B are arrested for a crime and held in separate cells to prevent
them from communicating or binding any sort of agreement. The police lack suf-
ficient evidence to convict either suspect and consequently require them to testify

against each other. The police tell the suspects that:

e [/f one confesses and the other does not, then the confessor will be released

and the other will be sentenced for three years in prison.
e If both confess, then each one will be jailed for two years.
e If neither confesses, then each one will go to jail for one year.”

The suspects have to decide whether to cooperate (not confess) or not to cooperate
with each other (confess). Although the Prisoner’s Dilemma is an example from non-
cooperative game theory, it seems like it should be cooperative.

Consider the following line of reasoning from suspect A’s point of view: Suppose that
suspect B testifies against A; if A does not confess, then his prison term would be three
years, but if he confesses, it would be only two years. Therefore, the best choice in this
case is to confess. Conversely, suppose that suspect B does not testify against A; if
A does not confess, then he would spend one year in prison; otherwise, he would walk
free. Again, the best choice is to confess. Therefore, no matter what B chooses, the
best choice is to confess.

Since the roles of players A and B are interchangeable, suspect B will reason in
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the same way about A and concludes that the best play is also to confess. In this
way, the rational outcome is that both suspects are sentenced to two years in prison.
However, this outcome is not the best that could be done. If both players cooperated by
not confessing against each other, then they would serve one year in jail as opposed to
two years. Consequently, mutual cooperation (not confessing) is strictly preferred over
mutual confession by both suspects. In this case, the rational outcome is suboptimal for
both suspects.

Following the above line of reasoning, why do not both suspects cooperate by keep-
ing quiet i.e. not confessing? The cooperation cannot occur in the Prisoner’'s Dilemma
because we assumed that binding agreements are not possible; hence, the suspects
cannot trust each other, and they must choose the strategy that maximizes their own
benefits (minimize the amount of time spent in prison) based solely on the information

they have about the game.

4.3 Coalitional game theory

4 .3.1 Definitions

Coalitional Game Theory (CGT) [39] models situations that involve interactions among
decision-makers, called players. The focus is on the outcomes achieved by groups
rather than by individuals. We call each group of players a coalition, where () corre-
sponds to the empty coalition, and the set of all the players is the grand coalition. A
coalitional game associates to each subset of players a payoff which indicates the ben-
efit earned by the coalition members if they chose to cooperate. The main assumptions
made in CGT are that players form coalitions and bind agreements on how to distribute
the profits of these coalitions. Furthermore, players receive more benefit by working

together than by working individually.

Definition 4.1. A coalitional n-player game with transferable utility (TU-game) G is a pair
(N, v) consisting of a finite set of players N = {1,2,...,n}, and a characteristic function
(a.k.a payoff function) v : 2% — R, where 2"V denotes the set of all possible coalitions
that can be formed i.e. power set #(N). Given a coalition S C N, v(S) indicates its

worth or the benefit that can be distributed among the coalition members.

Definition 4.2. A simple game [85] is a coalitional game where the characteristic func-

tion only assigns the values 0 or 1, i.e. v: 2" — {0,1}. We say that a coalition S C N
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wins if v(S) = 1 and loses if v(S) = 0. If in a simple game v(7") =1 = v(S) = 1 for all
T C S C N, then the characteristic function v is said to be monotone [87]. In the litera-
ture, some authors refer to simple games as being strictly monotone; however, we use

the term “simple games” to designate both monotone and non-monotone games.

4.3.2 Solution concepts

An outcome of a coalitional game [88] is a pair (CS, z) consisting of: (i) a coalition

structure €S = {S*, S?, ..., S}, such that U§:1 Si=NandS' NS’ =(foralli,je{1,2,..

i # j; and (ii) a payoff vector = = (z;),cn, Where x; measures the total utility assigned to
player i. A solution concept defines for each coalitional game a set of feasible outcomes.
It aims at capturing two appealing properties: fairness and stability. A payoff allocation
x satisfies the fairness criteria if every player receives a value that corresponds to her
real contribution in the game, while stability guarantees that no subset of players has
an incentive to deviate from the current coalition structure and form a coalition on their
own. Famous solution concepts for characteristic function games include: Core, Shap-
ley value, Banzhaf power index, Nucleolus, and Bargaining set. In this work, we assume
that the grand coalition will form C§ = { N} and focus on solution concepts that divide

its total worth among its members such as Shapley value and Banzhaf index.

Shapley value

Shapley value, which was axiomatically established by Lloyd Shapley, is a well-
known solution concept that defines a fair way of dividing the grand coalition’s payoff
among its members [41]. It assigns to each player her average marginal contribution
in the game, such that players who have important contributions receive greater payoff

allocations.

Definition 4.3. Given a coalitional game G = (N, v), Shapley value of player i, denoted

vi(G), is formulated as:

wi@)= > BHEZA= s u i - v
SCN\{i} '

The payoff allocated to player i corresponds to her average marginal contribution
in the game. Specifically, suppose that a coalition S is formed, starting with an empty
set and adding one player at a time. Within any such sequence of additions, we first

compute player i's marginal contribution (v(SU{i})—v(S)); then, we multiply this quantity

0,
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by |S|! (the number of different ways the coalition S could have been assembled) and
by (|N| —|S| — 1)! (the number of different ways the remaining players could join S).
Finally, we calculate the average of these marginal contributions by summing over all
possible coalitions and by dividing by |N|! i.e. the number of all possible permutations

of n players.

Core

The core is the best-known solution concept for addressing the stability criterion.
An outcome is stable if no coalition can obtain a payoff that exceeds the sum of its
members’ current payoffs [40]. As an illustrative example, let us consider a characteristic
function game G = (N,v) and an outcome (CS, z) of this game, where CS = {5, S}. In
addition, suppose that > . _s x; < v(S). In this case, the players in S could do better by
abandoning the current coalition structure C& and forming other coalitions of their own.
Therefore, the outcome (CS, x) is unstable. The set of payoff allocations in which no
group of players can jointly deviate to improve their payoffs, i.e. stable outcomes, forms
the core of a coalitional game. Note that Shapley value assigns to every characteristic

function game a unique payoff allocation, whereas the core can be an empty set [88].

Definition 4.4. The core of a coalitional game G = (N, v) consists of all outcomes

(CS,z) such that: > ._x; > v(S) for every coalition S C N.

i€S -

Banzhaf power index

Another solution concept that is motivated by the fairness consideration is Banzhaf
power index [42]. Unlike Shapley value, Banzhaf index was primarily introduced for the
purpose of measuring a player’s power in a voting system i.e. the probability that she
can influence the outcome of the game. In spite of this, it has also been applied to any

simple coalitional game.

Definition 4.5. Given a simple coalitional game G = (N, v), player i's Banzhaf index,

denoted Bz;(G), is defined as:

Bz(G) = 2?11_1 Z [v(SU{i}) —v(9)].

SCN\{i}

Banzhaf index of non-monotone simple games has an interesting interpretation, but

before analyzing it, we need to introduce two concepts: positive and negative swings.
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Definition 4.6. A coalition S C N is a positive swing for player i if S U {i} wins (v(S U {i}) = 1)
and S loses (v(S) = 0). Conversely, the coalition S is considered as a negative swing for
player i if v(S U {i}) = 0 and v(S) = 1. Let swing; (G) and swing; (G) denote, respec-
tively, the set of positive and negative swing coalitions for player i. They are defined

as:

swing (G) ={S C N\ {i}Jv(SU{i}) =1 Av(S) =0}.
swing; (G) ={S C N\ {i}|v(SU{i}) =0Av(S)=1}.

Since the characteristic function of a simple game is Boolean, the computation of
Banzhaf power index is reduced to a counting problem. It suffices to identify all pos-
sible values of the formula v(S U {i}) — v(S), count and sum them. Due to the non-
monotonicity property, v(S U {i}) — v(S) has three possible values: —1,+1, and 0. We
are only interested in counting the number of ones #, and negative ones _,. Notice that
6, and 6_, correspond to the number of positive and negative swing coalitions, respec-
tively. Therefore, Banzhaf power index is proportional to the difference between
the number of positive and negative swing coalitions. Formally, Banzhaf index of

player i can be given by:

1

Bz.i (G) = 2?i—l

X (|swing; (G)| — |swing; (G)|). (4.1)

i

4.3.3 Representations of coalitional games

A straightforward representation of a coalitional game consists of enumerating the
payoffs for all coalitions S C N. However, this naive representation requires space ex-
ponential in the number of players |N| = n, which is impractical for most problems. To
alleviate this tractability issue, several representation schemes for coalitional games
such as marginal contribution nets [89], network flow games [90], Induced Subgraph
Games (ISGs) [91], synergy coalition groups [92], and Weighted Voting Games (WVGs)
[88] have been proposed in the literature. In this thesis, we consider only WVG and ISG

representations.

Induced subgraph games

This representation considers a coalitional game to be played on an undirected

weighted graph ¢ = (NN, E), in which every edge (i, j) € E is associated with a weight
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pi.j» We write p = (p; ;)i jee- In the induced subgraph game G = (¢, p), anode i € N

corresponds to a player and the worth of a coalition S C N is defined as:

v(S) = > pij. (4.2)

(i.4)€E

{i.j}Cs
This formulation is concise because it is sufficient to use a |N| x |N| matrix to rep-
resent a coalitional game. Interestingly, induced subgraph games admit an efficient
algorithm for computing Shapley value. Formally, given an induced subgraph game

G = (@, p), player i's Shapley value is defined as:

1
©0i(G) = pigi + 2 X Z Pij- (4.3)
(i.g)eE
i#]
The proof of the above formulation can be found in [88]. In addition, when all edge
weights are positive p;; > 0 V(i,5) € E, induced subgraph games are guaranteed to
have a non-empty core, and moreover, Shapley value belongs to the core [91]; hence,

in this particular case, Shapley value satisfies both the fairness and the stability criteria.

Weighted voting games

Weighted voting games form one of the simplest useful representations of simple
coalitional games. These games can be used to model settings in which each player
has a certain amount of a given resource, for instance time, money, or manpower; and
there is a goal that can be reached by a coalition that possesses a sufficient amount of

this resource.

Definition 4.7. A weighted voting game G is defined by a set of players N = {1,...,n},
a list of weights w = (w;, ws, ..., w,) € R", and a threshold ¢ € R also known as quota;

we write G = (N, [w, ¢]). The payoff function v is given by:

Loif Yieswi > q

0 otherwise

v(S) =

Usually, we assume that all the weights are positive integers. In addition, we suppose
that 0 < ¢ < ..y w; , in this way the empty coalition loses and the grand coalition

always wins.
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Several techniques have been proposed for computing power indices for WVGs.
The main three methods are: generating functions [93, 94], binary decision diagrams
[95, 96, 97], and dynamic programming [98, 99]. This thesis is only concerned with the
problem of estimating Banzhaf indices; however, the aforementioned approaches can
be adapted to address other solution concepts like Shapley-Shubik and Deegan-Packel
indices. The generating function technique formulates Banzhaf index in terms of the
coefficients of a polynomial. Binary decision diagrams provide a powerful formalism for
representing and analyzing the characteristic function of a WVG. For instance, S. Bolus
suggested building a quasi-reduced and ordered binary decision diagram (QOBDD) of
the set of winning coalitions, and devised algorithms for computing Banzhaf, Shapley-
Shubik, Holler-Packel and Deegan-Packel indices of the players [95]. The dynamic pro-
gramming approach computes the number of size-k coalitions that have weight w, and
stores these values in a n x ¢ matrix. Then, it uses this matrix’s entries to exactly calcu-

late a player's Banzhaf index.

4.4 Evolutionary game theory

Evolutionary Game Theory (EGT) originated from the work of the biologists Maynard
Smith and Price [100, 101]. Initially, it was introduced to explain the evolutionary pro-
cess related to competition over resources in nature. It deals with a large population of
individuals hardwired (programmed) to play a certain type of behavior (formally a strat-
egy in the game). First, pairs of individuals are repeatedly drawn at random from this
population to initiate a two-player game; then, these individuals update their behavior
according to the fitness that emanates from their repeated pairwise interactions. Strate-
gies with high fitness values spread quickly within the population, which can be achieved
either by learning, copying, inheriting, or even by infection. EGT provides a paradigmatic
framework to: (1) simulate how the frequencies of strategies evolve over time, (2) deter-
mine the nature of the long-run aggregate behavior, and (3) establish connections with
dynamical systems and with game theory concepts such as Nash equilibrium. In the
next section, we will briefly describe the main ingredient of an evolutionary game that
is symmetric two-player games. For an extended and comprehensive treatment on the

subject, please refer to [39, 86].
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4.4.1 Symmetric two-player game

A symmetric two-player game [86] consists of two elements: a set of n pure strate-
gies S = {1, ...,n} available to both players, and a payoff matrix A4 € R"*", where each
entry a;; corresponds to the utility obtained when one player chooses strategy i and the
other plays strategy j. For instance, the payoff matrix of the Prisoner’'s Dilemma game

discussed earlier (Section 4.2) can be described by Figure 4.1.

NC C
NC -1 -3
cC O -2

Figure 4.1: Prisoner’s Dilemma game.

In this game, player | and Il have two pure strategies each: NC, C denote Not
Confess and Confess, respectively. Each entry in this matrix a;; specifies the payoff
of a player when she chooses the row strategy ¢ and her opponent picks the column
strategy j (the opponent obtains the payoff a ;).

A mixed strategy w = [wy, wo, ..., w,|T is a probability distribution over the set S. The
vector w belongs to the standard simplex A in n-space, definedas A = {w € R? : Y0 w; = 1}
We denote with ¢’ : i € S the vertices of the simplex A, where ¢’ assigns probability 1 to
the i'" pure strategy and 0 elsewhere. The expected payoff from playing strategy w € A

against y € A is given by:

E(w,y) = w! Ay = Z Zwiaijyj- (4.4)

i=1 j=1
The strategy w € A is said to be a best response to y € A if 37 Ay < ! Ay for all
5 € A. One of the cornerstones of non-cooperative game theory is Nash Equilibrium

[86] (NE). A strategy is a symmetric NE if it is a best reply to itself.
Definition 4.8. A strategy w € A is a symmetric NE if and only if:
E(w,w) > E(e’, w),Vi € S. (4.5)

Consequently, if her opponent chooses a symmetric NE strategy w, a player does not
have an incentive to deviate so to improve her benefits i.e. she cannot do better than to

choose w herself. When w € S then w is known as symmetric NE in pure strategies.
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Consider again the Prisoner’s Dilemma game (Figure 4.1): Observe that ac ye > avene
and acc > anc,c; hence playing strategy C is strictly preferred than playing NC regard-
less of the opponent’s strategy. We say that C is best reply to NC. In this case, both
players cannot improve their payoffs by deviating from C and playing NC. As a result,

strategy C is a symmetric NE.

4.4.2 Evolutionary stable strategies and replicator dynamics

By undertaking the evolutionary settings, we consider a large population of individu-
als hardwired (programmed) to play a certain strategy. Pairs of individuals are randomly
engaged in repeated strategic interactions modeled as a symmetric two-player game.
The payoffs under the evolutionary settings represent the Darwinian fitness or the re-
productive value (the number of offspring) that results from the pairwise interactions.
This matching takes place continuously over time until the population reaches an equi-
librium. Let w® = [wﬁ”, wé”_._ wr?[f)]T € A denote the population state at time ¢, where
each component wi” corresponds to the frequency of individuals programmed to play
the pure strategy ¢ € S. It is noteworthy that the concept of mixed strategy is formally
identical to the population state.

The two fundamental notions of EGT are the Evolutionary Stable Strategies (ESS)
and the replicator dynamics. A strategy (or state) w* € A is ESS if it has resistance
against any small mutant invasion. Specifically, suppose that a population at state w*
is invaded by a small fraction ¢ of mutant, whose distribution of strategies is y € A.
The new population state is given by 3 = cy + (1 — )w* € A. The strategy w* is ESS
if the average fitness of the mutants y in the new population 3 is lower than that of the
incumbents w*. Since an incumbent w* will meet another incumbent with probability
1 — ¢ and it will meet a mutant y with probability ¢, we can calculate the expected fitness
of an incumbent, which is simply (1 — 2)E(w*, w*) + cE(w*, ). Similarly, the expected
fitness of a mutant is (1 — ¢)E(y, w*) + cE(y, y). Therefore, the formal definition of ESS

is given by:
Definition 4.9. A strategy «* is an ESS if there exists ¢, € (0,1) forall y € A, y # w™:

(1 —¢)E(w*, w*) +cE(w",y) > (1 —)E(y, w*) + cE(y,y), Ve € (0,2,).
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The ESSs are those where the incumbents reproduce more frequently than the mu-
tants. Consequently, the mutants will have fewer offspring, and the fraction of the mu-
tants in the population will eventually vanish over time (the new state 3 will get back to

the initial state w*).

On the other hand, the replicator dynamics provides a simple yet efficient framework
for simulating how the frequencies of strategies evolve over time, as they are involved
in strategic interactions. Most importantly, these dynamics are used to demonstrate the

convergence toward a stable or an equilibrium state.

Definition 4.10. The discrete-time replicator equations are defined as follows:

oD +E(ef, w®) o0
1 ’7+E(w(”w“)) i 1

(4.6)

where v > (0 denotes the birthrate. This parameter regulates the rate of change along a
solution trajectory: high values imply slower convergence, while low rates lead to faster

convergence but less stable outcomes.
Definition 4.11. A population state w* € A is stationary in Equation 4.6 if and only if:
E(e', w*) = E(w*, w*) for all i such that w; > 0.

The notion of ESS has a stronger condition than the one of NE. It was demonstrated
that any ESS is a refinement of NE [100]. In addition, a NE satisfies the stationary
state condition. Thus, we come to the following propositions (the proofs can be found in
[102]).

Proposition 4.1. Let AP AVE and A’ denote the set of ESS, NE, and stationary

states, respectively. We have AP55 C ANE C AL,

Proposition 4.2. (convergence) The fundamental theorem of natural selection states:
every non-stationary solution trajectory to Equation 4.6 in any symmetric game with

positive payoff matrix converges to:

¢ a stationary state w* € A°.
e aNEw* € ANEifforallie {1,...n}:w” > 0.

i

e an ESS w* € AF55 if w* is a local maximizer of E(w®, w®).
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4.5 Game theory in machine learning

The audience for game theory has known a dramatic increase in recent years, inspir-
ing many applications in myriad disciplines like communication networks [103], social
networks [104], electricity grid [105], smart grid [106], neuroscience [107], and indeed
machine learning [108, 109] among many others. Game theory provides a promising
new paradigm that can elegantly capture key features for addressing machine learning
tasks like feature selection [109, 43, 110]), clustering [108, 111], and ensemble pruning
[46]. The research community has put a great deal of effort into the development of novel
approaches within CGT and EGT. Cohen et al. were the first to address feature selection
from a CGT perspective [43]. They ranked the features according to their contributions
to the overall accuracy performance using Shapley value. Similarly, Sun et al. viewed
the problem of feature selection as a voting game [109]. They proposed a framework
to assess the power of each feature by considering Banzhaf index in conjunction with
well-known evaluation criteria such as and minimum-Redundancy Maximum-Relevance
(mRMR) [112]. Their technique selects the features starting with one which has the
highest power, and it considers them in descending order of their importance until the
desired number of features is reached. Garg et al. formulated clustering as a coalitional
game with transferable utility among the data points [111]. Their methodology is defined
based on two crucial properties for clustering: potential (distance between a data point
to its closest centroid) and scatter (intra-cluster point-to-point distance). Moreover, they
demonstrated that Shapley value satisfies these properties, and hence captures key
criteria of the clustering task. Bulo et al. derived a new formulation of the hypergraph
clustering problem [108]. They showed that the notion of a cluster is equivalent to an
ESS, which can incorporate both the internal coherency and the external incoherency

of a cluster.

4.6 Summary

This chapter provided a short survey on game theory. We presented two powerful
paradigms: CGT and EGT. We also described several well-known solution concepts like
Banzhaf power index, Shapley value, and evolutionary stable strategies.

In this thesis, we introduce novel frameworks for addressing the ensemble pruning
problem, which are distinguished from the other approaches in the literature by being

founded on game theory. Our work provides new insights toward the understanding, the
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analysis, and the design of novel classifier evaluation and ordering criteria from CGT
and EGT perspectives. The next chapter presents the key idea behind this work, a

derivation of a diversity-based selection criterion in the context of simple games.
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CHAPTER 5
SELECTION OF OF SUB-ENSEMBLES WITH MODERATE DIVERSITIES
THROUGH SIMPLE GAMES

5.1 Introduction

We reviewed in Chapter 2 the main elements that characterize an ensemble method.
The reader may recall that diversity is recognized to play a key role in constructing a
successful ensemble methodology. However, its impact on the ensemble generalization
power has not been established yet. As a matter of fact, it has been demonstrated that
an ensemble composed of highly diversified members may result in a better or worse
performance [28, 9, 27]. In other words, diversity can be either harmful or beneficial and
therefore requires an adequate quantification. Based on these insights, we propose a
powerful criterion that scores the utility of a base learner according to its contribution
to the overall ensemble diversity based on Banzhaf index. It is worth underscoring
that the original definition of this solution concept is intractable for moderate and large
ensembles. To overcome the computational burden, we introduce a new formulation
of Banzhaf power index and show that its time complexity is pseudo-polynomial in the

number of classifiers (size of the initial committee).

5.2 Extraction of sub-ensembles with moderate diversities

The concept of “diversity” is considered as the key success in constructing a com-
mittee of classifiers [8]. According to Rokach [9], the action of creating an ensemble
of diversified learners leads to uncorrelated errors that boost the group performance
globally. Unfortunately, efficiently measuring diversity and understanding its relationship
with the classification generalization power of the committee remains an open problem
[24, 65, 22]. Several experimental studies have shown that large diversity within an
ensemble causes a sharp drop in its performance [27]. Furthermore, it is well-known
that an ensemble composed of identical classifiers does not generalize well. To seek a
tradeoff between these two extreme effects, we propose a methodology that focuses on

extracting a set of classifiers with average diversity. Specifically, we cast the problem
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of ensemble pruning as a simple game played among the component learners. The
devised model captures several levels of classifiers’ disagreement and promotes aver-
age diversity over the other two extreme scenarios (correlation and high diversity). The
various steps of Simple Coalitional Game-based Pruning (SCG-Pruning) are depicted
by Figure 5.1.

Ensemble ul’l:C lassifiers Q

Build SCG-Pruning Game

Find the Minimal Winning Coalition

Init w=E

Find the classifier fie£2 with the highest Banzhaf index
Add it to w: w=wi{h}

Update Q: Q- Q\{h} |

End

Ad
Pruned Ensemble o

Figure 5.1: The SCG-Pruning process.

5.2.1 Ensemble pruning game

Let Q = {hy, ho,...,h,} be an ensemble of n classifiers. Each learner is provided
with the same ftraining set I' = {(z;,y;),7i = 1...m}, where z; € X is a feature vector
characterizing the i*" instance, and y; € Y denotes its true class label. We assume that
every ensemble member is trained separately using the same training set I" by invoking
a learning algorithm. The final decision of the committee (2 combines the predictions of
all members following majority vote.

We define a simple game G built on the initial ensemble of classifiers €2, where a
classifier h; is considered as a player and is associated with a weight w;, i € {1,....,n}.
These weights are computed as follows. We define the diversity contribution of a clas-
sifier h;, with respect to the entire ensemble (2, as the average diversity between h; and
the rest of classifiers, which we denote by Divg(h;). In order to approximate high-order-
diversity induced by a candidate classifier, we consider that the ensemble members

exhibit only pairwise interactions.



60

Definition 5.1. The diversity contribution of a classifier ; € 2 is defined as:

D?:-z_:Q(h,.,-):ﬁ > fun

h;eN\{h;}

where f : Q x  — IR assigns to a pair of classifiers (h;, h;) a real number that corre-

sponds to the diversity between the decisions of i; and h;, with f;; = 0and f; ; = f;..

Definition 5.2. The weight w; assigned to a classifier h; € Q) is given by:

wi= Y I(Divg(h) > Diva(hy)).
fijEQ\{hg}

It is noteworthy that each voting weight w; can be thought as a level of diversity
induced by h;, in which highly diversified members receive higher weights. In addition
to the list of weights, we introduce two thresholds ¢, and ¢ in order to define the payoff

function of the pruning game, such that ¢, — ¢; > max;, w; and ¢; > maxy, w;.

Definition 5.3. Given two thresholds ¢; and ¢, the payoff function of the proposed

game, denoted G = (2, [w, q1, ¢2]), is defined as:

(S) = { Lif <) ,esi < qo |

0 otherwise

Under this payoff function, a coalition S of classifiers wins if the sum of its members’
weights falls between ¢; and ¢,. The term nes Wi measures the amount of diversity
present in S: a low value corresponds to strong correlations between the ensemble
members, whereas a large value indicates that the coalition is composed mainly of
diversified classifiers. Furthermore, the interval [¢;, ¢,| corresponds to the width of per-
mitted diversity, in which the lower bound ¢, controls the degree of correlation present in
S, and the upper bound ¢, serves as barrier for highly diverse ensembles. Both extreme
cases can decrease the generalization performance of the group [24]. When ¢, and
q» are set properly, this payoff function ignores coalitions made of correlated classifiers
(lower bound) and those highly diverse (upper bound). As a result, the focus will only be
on groups with moderate diversities that can lead to better generalization performance
[27].

Correctly setting the values of ¢; and ¢ is of vital importance for the success of the
proposed methodology. We can distinguish two extreme cases: (i) low values for ¢, and

¢2: in this case, the proposed technique focuses mainly on correlated ensembles; and
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(if) high values for q; and g,: this choice considers only ensembles composed of the
most diverse members. One should avoid the configurations indicated by (i) and (ii),
and set the values of ¢; and ¢, between these two extreme cases. The choice of ¢, and

¢2 Will be further discussed in the experiments section (Section 5.3.2).

5.2.2 Classifier evaluation based on Banzhaf power index

The next step consists of ranking each classifier according to Banzhaf power index.
Under the SCG-Pruning game, the formulation of this solution concept (provided by
Equation 4.1) has an interesting interpretation that is summarized as follows. Let us
consider a coalition made of correlated classifiers S, where v(S) = 0. If a classifier h;
induces the proper amount of diversity into a losing coalition S and turns it into a winning
coalition (v(S U {h;}) = 1), then h; is pivotal for S and the coalition S is a positive swing
for h;. Conversely, the set of negative swing for a classifier h; is defined as the ones in
which h; introduces large diversity into winning coalitions and changes their status into
losing coalitions. Therefore, Banzhaf power index assigns high ranks to members that
induce diversity into correlated ensembles while penalizing members that exhibit strong

disagreement with the group.

Computational complexity reduction

It is commonly acknowledged that the exact and direct computation of Banzhaf in-
dex (Definition 4.5) for non-monotone simple games requires summing over all possible
coalitions, which is exponential in the size of the initial committee, and is therefore in-
tractable for large ensembles [88]. To cope with the computational burden, we have
investigated the relationship between the proposed game and other representations of
simple games. As a result, we have expressed Banzhaf power index within the pro-
posed framework in terms of Banzhaf indices of two weighted voting games (Theorem

5.2).

Theorem 5.1. Consider the weighted voting game G, = (2, [w.q:|), Bz;(G1) player h;’s
Banzhaf power index of Gy, and |swing; (G)| the number of positive swing coalitions for

h; under the SCG-Pruning game G, then:

|swing;' (G)| = 2" ! x Bz(Gy), Vie{l,..,n}.
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Proof. Banzhaf power index of weighted voting games can be written as [98]:

Ba(Gy) = % < 1S C O\ {hHun(S U {hi}) = 1 Avy(S) = 0}].

= a1 X {S CQ\{h}W(S) +w; = q AW(S) < ¢}

where W(S) = >_, cswj.

Since all weights are positive integers, we can write:

Bz(Gy) = % x {S CQ\{hi}|gn —w; <W(S) <q}] (5.1)

On the other hand, the set of positive swing coalitions for player h; under G is given

by:

swing (G) = {S C Q\ {h;}v(SU{h;}) =1 Av(S) = 0}.
={SC O\ {h}|lgs <W(S)+w; < g AW(S) < q1}.
= {5 C O\ {hi}|gs —w; SW(S) < g2 —w; ANW(S) <}

Recall that ¢; — q1 > max),,w;. This consideration implies ¢, < ¢» — w; for all i €

{1,...,n}. Consequently, swing; (G) can be further simplified as:
swing; (G) = {S € Q\ {hi}|q — wi <W(S) < q}.

Using Banzhaf power index formulation given by Equation 5.1, one can write:
|swing; (G)| = 2" x Bz (G,)0.

Corollary 5.1.1. Given the weighted voting game G, = (X0, [w, ¢, + 1]) and player h;’s
Banzhaf index Bz;(Gs), then the number of negative swing coalitions for h; under the

SCG-Pruning game G can be expressed as:
|swing; (G)| = 2"' x Bz(Gs), Vie{l,..,n}.

Theorem 5.2. Consider the two weighted voting games G, = (Q,[w.q|) and G, =
(Q, [w, g2 + 1]), then Bz;(G), player h;’s Banzhaf power index of the SCG-Pruning game

G, can be simplified as:

Bzi(G) = Bzi(G1) — Bzi(G2), Vie{l,..,n}.
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Proof. From Equation 4.1, we have:

Bz(G) =

1 X (|swing (G)| — |swing; (G)]).
Using Theorem 5.1 and Corollary 5.1.1, one obtains:

BZ;_(G) = Bzi((?]) — BZT(GQ)D

5.2.3 A general ensemble pruning scheme

The last step of the SCG-Pruning methodology is to determine the pruned ensemble
size L. For this purpose, we propose to map the pruned ensemble to the minimal
winning coalition composed only of highly ranked classifiers. In CGT, the definition of
the minimal winning coalition is outlined by Riker [113]:

“If a coalition is large enough to win, then it should avoid taking in any superfluous
members, because the new members will demand a share in the payoffs. Therefore,
one of the minimal winning coalitions should form. The ejection of the superfluous
members allows the payoff to be divided among fewer players, and this is bound to
be advantage of the remaining coalition members”.

Notice that this concept does not predict the coalition structure of the game, but it
provides strong evidence that one of the minimal winning coalitions will form. Putting
this notion into the context of SCG-Pruning, the minimal winning coalition corresponds
to the smallest sub-ensemble of classifiers that together exhibit moderate diversity.

The pseudocode of the proposed approach is depicted by Figure 5.2. The SCG-
Pruning method takes as input an initial ensemble of classifiers (2, two thresholds (¢, ¢2)
, and a training set I'. In addition, SCG-Pruning requires defining a function for estimat-
ing the classifiers’ voting weights. For instance, pairwise diversity can be estimated us-
ing statistical measures [9, 36] like: Cohen’s kappa, disagreement measure, Q-statistic,
etc., or even information theory concepts [65, 22, 2]. The algorithm first computes the
classifiers’ predictions of every training sample (lines [3-7]), and uses them to estimate
the voting weights of the ensemble members (lines [8-10]). Then, it ranks every indi-
vidual learner based on Banzhaf power index (lines [11-13]). Finally, it sets the pruned
ensemble as the minimal winning coalition made of the top ranked learners (lines [14-
18]). More specifically, the algorithm iteratively chooses, from among the classifiers not
yet selected, the classifier with the highest rank, and adds it to the selected set w until w

wins.
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1: Input: I': Training set.
Q2: Ensemble of classifiers.
q1, q2: Two thresholds.
2: Initialize: w=10;
/*Getting classifiers’ predictions™/
3 Foreach h; €
4 For each (z;,y;) €T
5: I’r'(ﬂdsj = hi(x;);
6 End for each (z;,y;)
7 End for each h;
/*Estimating classifiers’ weights using Preds®/

54

For each h; € Q2
9: Compute w; provided by Definition 5.2;
10: End for each h;
/*Computing classifiers’ Banzhaf indices®/
11: For each h; € Q2
12: BZE(G) = BZ-@(Gl) — BZ%‘(GQ);
13: End for each h;
/*Searching for the minimal winning coalition®/

14: Repeat

15: h = argmaxy, Bz;(G);
16: w=wU{h};

17: Q =0\ {h};

18: Until v(w) =1

19: Output: w: Pruned ensemble.

Figure 5.2: The SCG-Pruning algorithm.

5.3 Experimental analysis

5.3.1 Experimental setup

To demonstrate the validity and the effectiveness of the proposed methodology, we
carried out extensive experiments on 58 datasets selected from the UCI Machine Learn-
ing Repository [114]. An overview of the datasets properties is shown in Appendix B,
Table B.1.

We resampled each dataset following Dietterich’s 5 x 2 cross validation (cv) to pro-
duce ten training and ten testing folds, denoted train;, test;, i =1, ..., 10, respectively.
The ensemble members were trained using train; and tested on test;. We obtained ten
trained committees and ten performance estimates of each ensemble technique. We

reported only the mean of these ten measurements. It is noteworthy that we estimated



the base learners’ weights on the training fold.

As indicated in the previous section (Definition 5.2), the weights assigned to the
ensemble members are computed based on a pairwise diversity measure. In our exper-
iments, we used the three metrics: disagreement measure (SCG-DIS), Cohen’s kappa
(ScaG-x), and mutual information (ScG-mi) defined by Equations 2.11, 2.15, and 2.13,

respectively. We invoked MITooLBOX [115] to compute the information theory concepts.

5.3.2 First set of experiments

We used 20 classifiers taken from WEKA 3.6 [4], PRTooLs 5.0.2 [116], and LIBSVM

3.18 [117] to generate the initial ensemble. A summary of these learning algorithms is

given in Table 5.1. Additional description is provided in Appendix B.

Table 5.1: List of classifiers used in the experiments.

No. Algorithm Platform Description

1 J48 WEKA C4.5 decision tree.

2 CART WEKA Decision tree learner using CART’s minimal cost complexity prun-
ing.

3 Logistic WEKA Multinomial logistic regression.

4-6 IBk WEKA K-nearest neighbors classifier using linear search with the Eu-
clidean distance, and 3 values for k = 1, 3, 5.

7 OneR WEKA 1R rule-based learning algorithm.

8 NaiveBayes WEKA Standard probabilistic naive Bayes classifier.

9 Multilayer WEKA Multilayer perceptron classifier.

Perceptron
10-11  Decision WEKA Simple decision table majority classifier using (10) BestFirst and
Table (11) Genetic search methods.

12 JRip WEKA RIPPER (Repeated Incremental Pruning to Produce Error Reduc-
tion) algorithm for rule induction.

13 PART WEKA PART decision list built using J48.

14 Fisherc PRTooLs Fisher’s least square linear classifier.

15 Ldc PRTooLs Linear Bayes normal classifier.

16 Qdc PRTooLs Quadratic Bayes normal classifier.

17 Parzendc PRTooLs Parzen density based classifier.

18-20 SVM LIBSVM  Support vector machines using (18) a radial (Gaussian) kernel;

(19) a polynomial kernel; and (20) a linear kernel.

Influence of the thresholds ¢; and ¢»

In this experiment, we study the impact of the thresholds ¢, and ¢, on the perfor-

mance of our approach. We present a 3D plot which displays the relationship between
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Figure 5.3: The impact of (¢;, ¢») on the performance of SCG-MI, SCG-DIS, and SCG-x
for the “Audiology” dataset.

these thresholds and the accuracy of the produced ensemble by each of the SCG-
Pruning variants. Figure 5.3 shows 3D plots of the SCG-Pruning variants on the Audi-
ology dataset. Given a point (z,y, z),  and y coordinates correspond to the values of
¢, and ¢», respectively. The z-coordinate indicates the performance of SCG-Pruning on
the training set. The subplots (d), (e), and (f) show 2D plots from the top view of (a), (b),
and (c), respectively.

Examining Figure 5.3 (d), we can identify four main regions: The lower right half of
the plot “blue surface” represents the set of impossible configurations of SCG-Pruning
game. In this case, the values of ¢; and ¢, violate our initial condition, which states that
¢ — maxy, w; > q, and therefore the game can’t be defined. The points laying close
to the right upper corner of the plot “yellow triangle” (large ¢; and ¢,) correspond to the
configurations where the pruned ensemble exhibits very large diversity. On the left upper
region “green triangle”, we observe a very low performance by the three SCG-Pruning
variants. We believe that this behavior occurs because the proposed game is not well-
defined and fails to deliver an appropriate ranking of the ensemble members. More
specifically, let consider the two extreme values of the thresholds ¢, = 20 and ¢, = 190.
In this case, the interval that defines if a coalition wins (width of permitted diversity)
is extremely large, and hence almost any coalition wins. In addition, the number of
negative swings for every player is 0 since no coalition has a weight that exceeds 190.

Finally, the last region “red triangle” yields the best performance and corresponds to the
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set of preferable game settings. We refer to it as (R. Under these settings, SCG-pruning
variants produce ensembles with moderate diversities.

Based on these observations, we set the values for these thresholds as follows.
For small-sized ensembles, we picked the pair (¢, ¢2) from R that yields the best per-
formance on the training set; whereas for larger ensembles, we selected their values

randomly from the search region R.

Kappa error diagrams

This section presents kappa error diagrams to gain some insight into the accu-
racy/diversity tradeoff. These diagrams depict an ensemble of classifiers as a scat-
terplot. Every pair of classifiers is represented as a point on the plot, where the z-
coordinate corresponds to the value of Cohen’s kappa « between the pair, and the y-
coordinate is the averaged individual error rate of the two classifiers. Following Garcia-
Pedrajas et al. [27], we estimated the error rate of every classifier on the test set. The
aim of this experiment is to investigate whether the proposed methodology extracts sub-
ensembles with moderate diversities.

We compared the proposed variants with: Kappa pruning, greedy, and exhaustive
search strategies. For the greedy search [8], we implemented two variants: Forward
Selection (Fs) and Backward Elimination (BE). Forward selection starts with an empty
set; then, it chooses from among the classifiers not yet selected the classifier which best
improves a specific evaluation criterion until the preset size of the pruned ensemble is
met. Conversely, in backward elimination, the pruned ensemble is initialized as the en-
tire ensemble; next, the algorithm proceeds by iteratively eliminating classifiers based
on an evaluation criterion until the desired number of classifiers is reached. Exhaustive
search (EXH) tests all possible subsets of size L classifiers (there are (i‘f) subsets), and
selects the ensemble with the best predefined criterion. Both exhaustive and greedy
search approaches require defining a criterion that indicates the ensemble generaliza-
tion performance. To this end, we implemented the Mutual Information-based Diversity
(MID) criterion introduced in [2]. In addition, we reported kappa error diagrams for the
entire ensemble which we denote by ALL. Note that we set the size of the pruned en-
semble to L = 9 for all compared techniques. In this case, our approach selects the top
L classifiers based on their Banzhaf indices. Table 5.2 gives a summary of the com-

pared ensemble selection techniques. Figures 5.4-5.5 show kappa error diagrams for
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Table 5.2: Legend for Tables and Figures presented in the first set of experiments.

rer::rll?c?ue Description

SceG-k SCG-Ranking with Cohen’s kappa (Equation 2.15) as the diversity measure.

ScaG-DIs SCG-Ranking with disagreement measure (Equation 2.11) as the diversity metric.
ScG-Mmi SCG-Ranking with mutual information (Equation 2.13) as the diversity measure.

Fs-MID Forward selection using the MID evaluation criterion.

BE-MID Backward elimination with MID as the search criterion.

KAPPA Kappa pruning.

EXH-MID Exhaustive search that uses the MID criterion.

ALL This technique combines the decisions of the ensemble members, without selection, us-

ing majority vote.
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(e) EXH-MID (f) Sca-mi (g) Sca-DIs (h) ScG-x

Figure 5.4: Kappa error diagrams for the dataset “Glass identification”.

numerous pruning approaches on two datasets: Glass identification and Lymphography.

The analysis Figures 5.4-5.5 is summarized as follows. First, the diagrams asso-
ciated with the diversity-based pruning techniques (subplots 5.4b-5.4e) are skewed to
the left side of the plot, which indicates large diversity. This behavior is expected since
these techniques construct ensembles that are made of the most diverse members. On
the other hand, SCG-Pruning variants provide less diversity than the aforementioned
approaches. Additionally, when compared to ALL, the proposed approach does not se-
lect strongly correlated classifiers. This behavior is consistent with our initial idea, that

is, the proposed methodology extracts sub-ensembles with moderate diversities.
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Figure 5.5: Kappa error diagrams for the dataset “Lymphography”.

5.3.3 Second set of experiments

In this experiment, we trained an ensemble made of 100 Decision Stump trees using
BAGGING. We compared ScG-MI and ScG-x with Reduce Error (RE) [36], Comple-
mentarity Measure (CC) [77], Margin Distance Minimization (MDsQ) [77] with a moving
reference point p set to 2v/2 x i/n at the i*" iteration, Orientation Ordering (OO) [37],
Boosting-Based (BB) [70], Genetic algorithm (GASEN), and Kappa pruning (KAPPA).
We set the parameters of GASEN to the following values: crossover probability= 0.6,
mutation rate= 0.05, number of generations= 100, and population size= 100. It is note-
worthy that the pruning approaches RE, CC, MbsQ, OO, BB, and KAPPA require setting
the size of the pruned ensemble L. In order to make a fair comparison, we set L to the

same size obtained by SCcG-mI.

Accuracy performance

Table 5.3 gives the average accuracy results of the second experiment. The last row
specifies the mean rank of each method over all datasets. We statistically compared the
performances of these pruning schemes using Friedman test. Under the null hypothesis,
we assumed that all techniques are equivalent and the observed differences are due to
chance. Friedman test rejects this hypothesis with with Fr = 20.77 > F(9,513) = 11.62
for = 1 x 10716 (F is distributed according to the F' distribution with 10 — 1 = 9 and

(10 — 1) x (58 — 1) = 513 degrees of freedom), and therefore confirms the existence of at
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least one pair of ensemble pruning techniques with significantly different performances.
Because we are only interested in testing whether the pruning approaches significantly
improve the initial ensemble BAGGING. Consequently, we conducted a Bonferroni-Dunn
test at a 10% significance level with the critical value ¢,,0 = 2.54 and the critical differ-
ence C'D = 1.43. The results of this test are depicted by Figure 5.6. On the horizontal
axis, we represent the averaged rank of every pruning technique given in the last row
of Table 5.3, and mark using a thick line an interval of 2 x C'D one on the right and the

other to the left of BAGGING’S mean rank.

9 8 7 6 5 4
1

| | & | |
cc

3
|
I_ SCG-x

KAPPA | BAGGING L SCG-MI
00 RE
BB MDSQ GASEN

Figure 5.6: Comparison of BAGGING with 9 pruning techniques using Bonferroni-Dunn
test.

The analysis of Bonferroni-Dunn test (Figure 5.6) reveals that the performances of
ScG-k and ScG-Mi are in the lead followed by RE, GASEN, and MDsQ. Most importantly,
we notice that both ScG-x and ScG-mi fall outside the marked interval. Therefore,
we can conclude that the proposed variants perform significantly better than BAGGING,
while the experimental data cannot detect any improvement of the initial ensemble using
RE, GASEN, BB, OO, or MDsQ.

Pruning time

We compared in Table 5.4 the average running time (in seconds) required by every
pruning technique over all datasets.

Orientation ordering is the fastest technique followed by MDsQ, BB, and CC. Both
ScG-x and ScG-MI converge to similar pruning times. The results also indicate that
GASEN and Fs-MID approaches are slower than the other alternatives. The reported
behavior is expected since search-based pruning methods generally tend to have high

computational costs.

5.4 Summary
In this chapter, we developed a novel approach to address ensemble pruning based

on non-monotone simple games. Our idea is to: (1) Devise a criterion that estimates
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Table 5.3: Summary of mean accuracy results of the second experiment.

Datasets ScG-k ScG-ml GASEN MbDsaQ RE 00 Kappa CC BB BAGGING
Anneal 83.54 8354 8278 8278 8278 7911 7833 82.34 7835 82.78
Audiology 47147 47.08 4646 4646 4646 46.46 4646 4646 46.46 46.46
Australian 85.51 8551 8551 8551 8551 8551 8551 8551 8551 85.51
Balance 80.16 78.82 8013 7872 7917 7923 7449 7446 77.47 72.38
Balloons1 87.00 87.00 8400 87.00 81.00 81.00 7500 72.00 94.00 74.00
Balloons2 8100 76.00 7500 76.00 72.00 71.00 82.00 82.00 80.00 72.00
Balloons3 75.00 75.00 67.00 69.00 68.00 60.00 69.00 64.00 69.00 68.00
Balloons4 6750 67.50 6875 6500 6500 70.00 6625 66.25 6500 62.50
BCW 9557 9511 9459 9491 9439 9456 9539 9345 9270 93.39
BC 7371 7392 7273 7434 7371 7392 7049 7161 7259 71.89
Car 70.02 70.02 70.02 70.02 70.02 70.02 70.02 70.02 70.02 70.02
Chess 66.05 66.05 66.05 66.05 66.05 66.05 66.05 66.05 66.05 66.05
CVR 9563 95.63 9563 9563 95.63 0494 0494 9494 9503 95.63
Credit 8551 8551 8551 8551 8551 8551 8551 8551 8551 85.51
Cylinder 70.04 69.04 7052 6944 7033 6819 67.11 6452 69.04 70.56
Dermatology 59.13 56.01  53.11 5169 53.06 50.08 52.08 50.11 5011 51.37
Ecoli 67.44 67.44 6464 6464 6464 6470 6381 6458 64.58 64.64
Glass 53.83 57.38 5252 5505 56.54 51.04 50.16 50.64 50.55 51.25
Hayes-Roth  60.75 59.50  60.75 56.00 59.38 5438 5438 50.08 50.13 56.25
Hepatitis 81.80 81.80 81.03 83.22 8167 8283 7948 79.75 80.50 81.03
lonosphere 8331 8279 8296 83.13 8279 8216 83.02 81.48 8325 83.37
Iris 9533 9533 9507 9427 9520 87.60 8247 80.00 9467 9453
Labor 8507 8520 8317 88.40 8177 8419 8839 7895 8839 82.41
Lenses 76.67 70.00 75.83 7250 76.67 7167 6417 61.67 67.50 64.17
Letter 7078 7129 68.03 6897 6991 67.98 67.63 67.08 67.58 71.94
LRS 51.49 50.06 4972 4968 5010 47.38 4897 4972 4972 4968
Lymph 7622 76.08 76.35 77.30 7541 7581 7297 72.03 70.81 74.46
Monks1 7464 7464 7464 7464 7464 7464 7464 7464 7464 74.64
Monks2 6519 6519 6516 6539 6552 6503 6539 6443 6539 65.72
Monks3 7881 78.81 7881 7881 7881 77.65 77.83 7848 7881 89.89
MFF 68.41 67.70 6590 6163 6826 6212 6367 60.68 60.53 62.64
MFKL 6504 65.00 6217 6112 6343 60.63 6320 6050 6058 64.30
MFPC 7499 7329 7204 6770 77.89 6584 6077 61.77 62.85 77.88
MFZ 66.62 67.26 64.40 6438 66.60 6371 6329 63.39 6343 66.02
Mushroom  88.68 88.68 88.68 88.68 88.68 88.68 88.68 88.68 88.68 88.68
Musk1 7227 7172 7218 7126 7218 70.76 69.79 7055 71.89 71.47
Musk2 84.59 84.59 84.59 8459 84.59 84.59 84.59 84.50 84.59 84.59
Nursery 66.25 66.25 66.25 66.25 66.25 66.08 66.08 66.08 66.25 66.25
Optical 65.40 6435 6349 6296 63.38 6267 6262 61.79 61.79 64.12
Pageblocks 93.17 9318 9313  93.13 93.13 93.06 93.06 93.13 93.06 93.13
Pen 60.66 6056 6059 6051 6063 60.05 6001 6046 6049 6057
Pima 7497 7466 7477 7461 7458 73.85 71.85 7159 72.76 74.11
POP 6422 6244 6800 6533 7067 6289 6578 6111 6422 70.89
SoybeanL 6826 6849 6838 6841 6843 6638 6621 67.44 67.47 67.50
SoybeanS  97.83 9580 97.39 90.62 8149 7654 7145 7284 7409 96.21
Spambase  83.31 8315 8173 8126 8153 81.04 7997 79.06 79.95 79.07
SPECT 7940 79.40 79.40 79.40 79.40 79.40 79.40 79.40 79.40 79.40
SPECTF 78.05 77.75 77.83 7813 7835 7820 7925 7647 77.30 79.40
TAE 4739 4671 4739 46.46 4991 4927 4508 4455 4496 46.72
Thyroid D 9524 9524 9524 9524 9524 9524 9524 9524 9524 95.24
Thyroid G 82.69 8278 8158 8093 8260 8112 7954 8047 80.37 79.72
Tic-Tac-Toe  70.02 69.79 6948 69.94 69.94 69.06 68.85 67.16 68.81 69.94
Waveform1 6090 60.18 6022 6028 59.93 6021 60.08 57.47 5811 61.46
Wine 9270 9202 9135 9213 90.79 9146 8371 80.85 94.94 8944
WDBC 92.83 92.94 91.81 9272 9244 9272 9265 91.21 92.83 90.97
WPBC 7232 7424 7444 7384 7556 7273 76.06 70.71 73.54 76.36
Yeast 5058 50.67 50.61 5050 50.61 47.78 49.02 50.61 50.70 50.54
Zoo 73.62 6437 6195 6255 6058 5920 6590 5940 56.07 61.57
Average 314  3.86 4.69 494 458 666 7.03 815 6.62 5.34

ranks
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Table 5.4: Average pruning times (in seconds) of several pruning approaches.
ScG-x  Sce-MI GASEN MDsQ RE 00 KAPPA CcC BB Fs-MID
0.320 0401 36.86 0.015 0.793 0.003 0.174 0.032 0.016 3.075

the importance of each member’s contribution to the overall diversity based on Banzhaf
power index. (2) Map the pruned ensemble to the minimal wining coalition made of
the members that together exhibit moderate diversity. Experimental comparisons with
various pruning methods on 58 Benchmark datasets substantiate the efficacy of the
proposed approach.

We have noticed that the thresholds ¢, and ¢, are of paramount importance to the
success of our methodology. Consequently, it would be interesting to investigate the
relationship between these thresholds and the generalization performance of SCG-
Pruning so that they can be properly set for real world applications.

The proposed scoring function measures the power of a base learner based solely
on the notion of diversity. In the next chapter, we will explore balancing diversity and

accuracy in order to devise a better indicator of the ensemble performance.
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CHAPTER 6
INDUCED SUBGRAPH GAME FOR CLASSIFIER ORDERING

6.1 Introduction

In the previous chapter, we presented a new criterion that evaluates the decision
power of a component learner based on Banzhaf index. The proposed game promotes
sub-ensembles with moderate diversities, which can yield better accuracy performance.

It is widely acknowledged that the ensemble diversity decreases with the increase in
the individual accuracies i.e. “accuracy/diversity dilemma” [33]. This new consideration
has gained a widespread attention from the ensemble learning community. As a matter
of fact, numerous evaluation criteria that balance accuracy with diversity have been
introduced in the literature [38, 2], but very few attempts addressed this problem from
a CGT perspective. Motivated by the success of this principle, in the present chapter,
we present an improved framework that handles the accuracy/diversity tradeoff using
Shapley value. We first introduce an induced subgraph game which is defined in terms
of the individual accuracies and the ensemble diversity. Then, we rank a component
learner according to its contribution in keeping a proper tradeoff between these two

crucial concepts.

6.2 Notation and problem statement

We use similar notation to Chapter 5 that we summarize here for clarity, with ex-
tensions to include oracle outputs. We denote an ensemble made of n classifiers with
Q = {hy, ha, ..., h, }, where every component learner is trained separately using the same
training set I' = {(z;,v;),7 = 1...m}. Given a feature vector z, the ensemble 2 combines
the predictions of its members h,(z), ..., h,(x) using majority vote. We represent the or-
acle outputs of the ensemble members as a Boolean matrix Z = (z,),:", with z; = 1
if h; is correct on the k" sample, and 0 otherwise. The number of correct/incorrect
predictions made by two classifiers i; and h; on the training set I is defined as:

T

N = Z I(2¢; =a and z;=0), a,be {0,1}. (6.1)

k=1
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6.3 Induced Subgraph Game for Classifier Ordering (ISGCO)

Classifier ordering first assigns a rank , to every classifier h; according to an eval-
uation measure (or criterion); then, the selection is conducted by aggregating the en-
semble members whose ranks are above a predefined threshold. The main challenge
consists of adequately setting the criterion used for scoring every member’s contribution
to the ensemble performance.

It is almost always the case that two accurate classifiers have low diversity, while
two weak learners (their accuracies are slightly better than random guessing) often dis-
agree with each other. This phenomenon is known as accuracy/diversity dilemma (for
additional details, please refer to Section 2.6.2). Several studies have shown that ex-
tracting a sub-ensemble which properly balances diversity and accuracy achieves better
generalization performance than the entire committee [58, 68].

Motivated by the positive role of balancing diversity with accuracy, we propose an
ordering-based pruning technique that addresses this dilemma through CGT. Our ap-

proach (ISGCO) operates in three steps:

Step 1. We formulate classifier ranking as an induced subgraph game played among
the individual learners. The proposed game is defined based on two measures

namely accuracy and diversity:

Definition 6.1. The accuracy of classifier h;, denoted Acc;, is given by:

N
Acc; = ————.
N2 + N}

Definition 6.2. The diversity between two ensemble members h; and h; is defined

1 ‘."\-" J. .0 N !]'l
Div;j = = X [ =—Le + —— 2 — )
J 9 (\ﬂ“ + N0 NY 4+ N

and N’ denote the number of correct/incorrect predic-

as:

Recall that N}, N!!, N},
tions made by two ensemble members h; and h; on the training set. In the first term
N /(N + N), the nominator corresponds to the number samples on which ;
is correct and its counterpart h; is incorrect, whereas the denominator measures
the total number of errors made by ;. Therefore, the quotient expresses the con-
ditional probability that h; correctly classifies a sample given that /; does not. We
can derive the same observation regarding the other term. In order to keep the

diversity term on the same scale as the accuracy, we take the average of these
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two probability estimates. This definition elegantly captures the notion of diversity:

pairs of individuals that make uncorrelated errors yield higher diversity.

Definition 6.3. Let G = (@, p) be an induced subgraph game, where each node
corresponds to an ensemble member ©; and the weights p = (p; ;) are defined as:

Ace; if i=
Pij =

Div; ; otherwise

The weight assigned to a self-loop corresponds to the accuracy of h;, while the
weight of an edge linking two ensemble members %; and h; expresses the diversity

between them.

Step 2. We rank the component learners using Shapley value. Under our framework,
this solution concept measures the contribution of each member by considering its
accuracy and the ensemble diversity. Formally, the rank assigned to a classifier h;
is given by:

1 :
pY; = ACCI' + 5 X Z D?'.-T,-'i.j. (62)
hi e\ {h;}

Since all edge weights are non-negative, the payoff allocation (rank) provided by
Equation 6.2 belongs to the core, and hence in addition to fairness, Shapley value
guarantees stability. Equation 6.2 consists of two terms: the individual accuracy
Ace; and the diversity contribution § x 2o eanny Divij. The analysis of this equa-
tion can be summarized by two important observations: first, when two ensemble
members are similarly accurate, Shapley value promotes the individual classifier
that induces higher diversity; second, when two ensemble members have equal di-
versity terms, the one that performs better receives higher payoff allocation (rank).
Therefore, the focus is on accurate members that contribute considerably to the

overall ensemble diversity i.e. a fair balance between accuracy and diversity.

Step 3. The pruned ensemble is made of the individual classifiers whose Shapley val-
ues ¢; exceed a preset selection threshold o. Exploratory experiments indicate

that a value o = 3", ¢;/n is appropriate.

6.4 ISGCO algorithm

The pseudocode of ISGCO is depicted by Figure 6.1. The algorithm takes as an input

a training set I', an ensemble of classifiers (2, and a selection threshold o. It begins with
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—

: Input: TI': Training set.
Q2: Ensemble of classifiers.
o: Selection threshold.

2: Initialize: w = 0;
/*Getting classifiers’ predictions®/
3: Foreach h; € Q)
4: For each (z;,y;) €T
5: Preds’ = hi(x;):
6: End for each (z;,y;)
7: End for each h;
/*Constructing the adjacency matrix using Preds®/
8: Foreach h; € Q
9: pii = Acey;
10: Foreach h; € Q\ {h;}
11: Pij = D't"-'l.-‘t'__j;
12: End for each 7

13: End for each i;
/*Computing classifiers’ Shapley values®/
14:  Foreach h; € Q

15: wi = pii+ % x ZhJese\{h,} Pij
16: End for each i;

17: Foreach h; € Q)

18: ifp, >0
19: w=wU{h;};
20: End if

21: End for each h;

22: OQutput: w: Pruned ensemble.

Figure 6.1: The IsGco algorithm.

computing the ensemble members’ predictions Preds of the training samples (lines [3-
71), and uses them to build the adjacency matrix p (lines [8-13]). Then, it estimates the
individual contribution of every classifier using the definition provided by Equation 6.2
(lines [14-16]). Finally, selection is conducted by aggregating the ensemble members

whose ranks are above the threshold o (lines [17-21]).

6.5 Experiments

6.5.1 Experimental setup

To evaluate the performance of ISGCO, we conducted experiments using 35 datasets

selected from the UCI benchmark Repository of Machine Learning Databases [114]. A
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summary of the datasets properties is provided in Appendix B, Table B.1.

We invoked the same resampling technique as Chapter 5 that we recall here for
clarity. A detailed description of our experimental environment is provided in Appendix
B. We resampled each dataset following Dietterich’s 5 x 2 cross-validation to generate
ten training and ten testing folds, denoted train;, test;, 1 =1, ..., 10, respectively. We
trained the classifiers and computed the adjacency matrix p using train;, whereas the
other fold test; was employed to measure the classification accuracy, the running time,
and the pruning ratio. Note that we reported only the mean of these ten measurements.

In order to generate the initial ensemble, we used BAGGING with CART trees as a
base learner to train a set of 100 classifiers. We set the selection threshold ¢ of ISGCO
to Y1, ¢i/n, where ¢; denotes the rank assigned to h;, and n is the number of clas-
sifiers (n = 100). We compared ISGCO with eight state-of-the-art techniques: Accuracy
ordering (BESTN), Semi Definite Programming (SpP) [31], Genetic Algorithm (GASEN)
[34], Orientation Ordering (OO) [37], Margin Distance Minimization (MDsQ) [77] with a
moving reference point p set to /i at the i*" iteration, Boosting-Based (BB) [70], Com-
plementarity Measure (CC) [77], and Reduce Error (RE) [36]. Note that BESTN, SDP,
MDsQ, BB, CC, and RE methods prune the initial ensemble to a preset size L. There-

fore, in order to make a fair comparison, we set L to the same size obtained by ISGCO.

6.5.2 Accuracy performance

Table 6.1 displays the classification accuracy results obtained by the different ap-
proaches on each dataset. The last row specifies the averaged rank of each method.

The results given in Table 6.1 indicate that ISGCO outperforms the other methods
in most cases. In order to confirm the significance of the observed differences, we
compared the performances of these pruning techniques using the average ranks over
35 datasets. Friedman test rejects the null hypothesis which states that all methods
have similar performances with Fr = 20.49 > F(9,306) = 8.06 for a =1 x 107'%(Fy is
distributed according to the F' distribution with 10 — 1 =9 and (10 — 1) x (35 — 1) = 306
degrees of freedom). Because we are only interested in comparing ISGco with the other
alternatives, we then proceeded with a Bonferroni-Dunn test while considering ISGCO
as the control algorithm. Figure 6.2 shows the results of a Bonferroni-Dunn test at a 5%

significance level with the critical value ¢ s = 2.77 and the critical difference C'D = 2.01.
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Figure 6.2: Comparison of ISGCcO with the other pruning approaches using Bonferroni-
Dunn test.

The analysis of Bonferroni-Dunn test results illustrated by Figure 6.2 can be summa-
rized by two main observations: (1) We notice that IsGco has the lowest rank and all
the other pruning techniques fall outside the marked interval. Therefore, we can con-
clude that IsGco significantly improves the original ensemble and outperforms the other
alternatives, which is consistent with our initial observations. (2) The technique GASEN
exhibits very poor performance, which is not expected since search-based approaches
are slow but generally very effective and accurate than ranking-based methods. A pos-
sible cause of this behavior might be related to the size of the ensemble found by GASEN

that will be investigated in Section 6.5.3.

6.5.3 Pruning ratio

Table 6.2 reports the pruning ratios obtained by GASEN, OO and ISGCO on each
dataset. We specify in the last row the average pruning ratios over all datasets. We
excluded BB, BESTN, CC, MDsQ, RE, and Spp from this comparison because these
approaches yield the same pruning ratio results as ISGCO.

Table 6.2 indicates that GASEN achieves the best pruning ratio followed by ISGCO
and OO. In addition, the reported results support our previous claim with regard to the
behavior of GASEN (refer to Section 6.5.2). The analysis of both Tables 6.1 and 6.2
reveals that GASEN fails to extract the appropriate number of classifiers, which causes

a drop in its performance.

6.5.4 Pruning time

Table 6.3 presents the average pruning time (in milliseconds) required by each en-
semble technique over all datasets.

The ensemble techniques BESTN and OO yield the lowest pruning times, whereas
the second-best result is attributed to IsGco, BB, and MDsQ. Although ISGCO does not

achieve the best running time, it succeeds in extracting very accurate sub-ensembles,
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Datasets GASEN 00 Iscco
Arrhythmia 69.60+10.08 44.90+3.93 47.40+2.63
Australian 76.90+14.26 46.70+4.16 50.50+3.92
BCW 80.50+11.40 49.70+4.40 55.50+4.06
Car 69.00+10.68 47.10+£2.77 48.20+2.15
Glass 78.40+10.73 47.8042.74 50.50-+2.07
Hayes-Roth 64.00+15.64 48.90+2.69 54.50+3.47
HDC 64.80+15.82 48.30+3.80 52.00+3.13
HDH 80.20+14.09 47.004+2.67 50.60+4.38
HDS 60.70+10.34 46.00+2.26 48.10+3.73
Hepatitis 79.70+10.56 48.2043.52 54.50+6.62
lonosphere 83.30+8.33 52.10+3.31 54.70+3.06
Labor 75.10+10.66 48.30+8.19 53.50+6.33
Lenses 77.30+12.43 58.30+11.83 64.10+4.79
Letter 51.00+3.53 45.70+2.67 48.70+3.62
Lymphography 72.00+15.30 49.0042.62 52.50+3.72
MFF 54.90+7.98 43.104+2.33 46.50+2.95
MFKL 61.90+12.16 42.00+4.22 46.00+3.23
MFM 58.90+11.47 45.90+3.38 48.10+2.85
MFPC 56.60+9.75 45.40+3.20 47.70+3.09
MFZ 48.00+3.53 45.40+2.50 47.10+3.35
Musk 1 66.90+12.69 48.30+3.68 48.80+3.08
Musk2 77.00+7.36 50.40+3.53 53.80+3.22
Nursery 70.60+10.29 47.704+2.58 50.80+2.62
Optical 54.00+8.00 50.60+2.07 50.50+4.14
Pen 56.00+10.97 50.70+2.21 51.70+5.33
Soybean L 71.50+11.57 49.90+2.85 50.20+3.74
Soybean S 83.70+8.38 46.20+5.20 59.30+4.40
Spambase 76.00+11.09 51.70+2.87 53.40+3.44
Thyroid D 81.60+15.03 49.30+4.64 55.40+2.22
Waveform1 54.20+7.07 43.60+3.24 45.70+3.62
Waveform2 52.20+4.13 43.9042.02 49.00+1.83
Wine 73.40+£9.13 49.104+3.54 52.00+5.16
WDBC 79.90+14.00 50.50+3.92 51.80+4.29
WPBC 76.60+10.01 46.60+4.81 50.50+3.10
Yeast 56.40+8.63 46.00+3.83 46.10+3.07
Mean 68.371+10.49 47.84+3.66 51.13+3.61
Table 6.3: Average pruning times (in milliseconds).
GASEN BB OO BESTN CC Mpsa RE SppP IsGco

56560 33.8 3.08 1.70 106 37.2 6420 223 19.5

requiring relatively low computational costs. Furthermore, as one should expect, search-

based schemes GASEN and SDP deliver the worst pruning times.

6.5.5 Effect of the ensemble size on the classification accuracy

This section is devoted to investigate how the size of the pruned ensemble L in-

fluences the performance of Iscco, OO, BB, and RE. We carried out the following
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experiment: We varied L from 5 to 100, and plotted the error curves for six datasets:
Heart disease cleveland, Musk2, Multi-feature karhunen-love, Optical recognition, Nurs-
ery, and Wisconsin diagnostic breast cancer. We also reported the error curves of BAG-
GING. To this end, we aggregated the individual classifiers in the same order as they
were included in the initial ensemble. We generated the ensemble members using the
training fold and estimated the error rates on the test fold. The reported results are av-
eraged measurements of 10 partitions of the six datasets. The results of this experiment
are illustrated by Figure 6.3.

The curves shown by Figure 6.3 indicate that, in case of unordered BAGGING, the
test error decreases as the number of selected classifiers increases, then it settles at a
certain rate and keeps it with little variations, whereas the error obtained by the pruning
techniques drops rapidly and attains lower rates than BAGGING; after that, it increases
until reaching the error rate of the entire ensemble. Particularly, as reported by Figure
6.3 (c)-(e), we notice that Iscco and OO exhibit comparable performance. Furthermore,

overall, ISGCO achieves better error rates than the other alternatives.

6.5.6 Comparison with SCG-Pruning

In order to determine which approach performs better SCG-Pruning or ISGCO, we
carried out the following experiment. We generated an ensemble composed of 100 J48
trees using BAGGING. We set ¢, and ¢, to the values that maximize the accuracy rate on
the training fold. We compared ISGCc0O with the SCG-Pruning variant SCcG-mi. It is worth
underscoring that we skipped step 3 of ISGCO and set the size of the final ensemble
to the same value obtained by ScG-MI. The results of this experiment are given in
Table 6.4. Columns 2 and 3 represent the accuracy rates scored by ISGCO and SCG-MI,
respectively. Column 4 specifies the ranks for the difference in performances between
these two pruning techniques. Column 5 shows the pruning ratio results obtained by
SCG-Pruning.

The next step consists of testing weather the observed differences are statically
significant or are merely random using Wilcoxon signed-ranks test. We have found: the
sum for ranks for positive and negative differences Rt = 342.5, R~ = 287.5, and the
statistics = = —0.45 > —1.97 for a significance level o = 0.05. The value of z provides
a strong evidence that the observed differences are not significant; hence, SCG-MI and

ISGcO perform similarly.
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Table 6.4: Comparison of ISGco with SCG-Pruning.

Datasets Iscco Sce-mi Rank Pruning ratio (%)
Arrhythmia 70.22 72.04 32.00 71.40
Australian 85.57 85.19 -19.00 87.20
BCW 95.85 95.99 10.00 83.20
Car 95.42 95.65 14.50 76.00
Glass 69.63 71.40 30.00 71.20
Hayes-Roth 73.75 81.50 34.00 82.00
HDC 80.66 79.87 -22.00 71.80
HDH 80.95 79.32 -28.00 78.20
HDS 41.47 39.69 -31.00 61.40
Hepatitis 81.80 78.83 -33.00 76.60
lonosphere 90.77 91.34 21.00 76.80
Labor 82.75 84.51 29.00 77.20
Lenses 77.50 78.33 24.00 68.00
Letter 91.50 91.52 4.00 18.00
Lymphography 78.24 77.30 -26.00 74.60
MFF 79.19 79.36 11.00 39.40
MFKL 89.56 89.17 -20.00 38.80
MFM 71.03 71.28 16.00 65.20
MFPC 93.98 93.85 -9.00 60.80
MFZ 76.07 75.86 -13.00 25.00
Musk1 81.22 82.27 27.00 71.60
Musk2 96.11 96.34 14.50 64.20
Nursery 99.09 99.10 3.00 57.20
Optical 95.45 95.56 8.00 37.00
Pen 97.61 97.54 -6.00 55.20
Soybean L 91.48 91.48 1.50 73.20
Soybean S 88.53 99.13 35.00 85.00
Spambase 92.92 92.85 -7.00 73.20
Thyroid D 99.55 99.58 5.00 86.80
Waveform1 83.63 83.27 -18.00 36.20
Waveform2 82.88 82.70 -12.00 39.40
Wine 93.93 93.93 1.50 78.00
WDBC 93.08 93.88 23.00 84.40
WPBC 76.16 75.25 -25.00 77.00
Yeast 59.34 59.04 -17.00 54.20

Combining the above results and those reported in Chapter 5, we can derive two

important conclusions:

e Generally the average pruning ratio of SCG-Pruning (=~ 65.01%) is higher than
that of Iscco. Consequently, the notion of the minimal winning coalition provides
a more powerful and better criterion for determining the pruned ensemble size

than IsGco.

e The technique ISGCO is 10 times faster and has lower computational complexity
than SCG-Pruning.



84

6.6 Summary

This chapter introduced an induced subgraph game for classifier ordering. We have
devised a selection criterion that measures the contributions of the ensemble members
by considering the tradeoff between the individual accuracies and the diversity of the
group based on Shapley value. The experimental results indicate that ISGCO provides
a reliable ranking, succeeds in improving the initial ensemble performance, and outper-
forms some major state-of-the art pruning approaches.

The comparison between ISGCO and SCG-Pruning reveals that ISGCO achieves
comparable accuracy rates to SCG-Pruning, with slightly lower pruning ratio and bet-

ter computational costs.
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CHAPTER 7
CONCLUSION

The primary research questions that motivated this thesis are: can we derive a se-
lection criterion which promotes interactive base learner?, and at what cost? These
concerns are of paramount importance because of two reasons: First, most scoring
functions assess the utility of the base learners according to their individual contribu-
tions to the ensemble performance, but neglect the interactions that might exist among
the different component classifiers. Consequently, these approaches underestimate the
efficacy of members that have strong discriminatory power as a group but are weak as
individuals, which often yields poor generalization performance. Second, many evalu-
ation criteria are hand-designed and sometimes involve the computation of large mul-
tivariate densities. As a result, it became of urgent importance to develop selection
criteria within a powerful mathematical framework like game theory.

In the present chapter, we first summarize the contributions of this thesis, providing

answers to the above questions. Then, we present several areas for improvement.

7.1 Contributions and novelty of this thesis

This thesis introduced original ensemble selection criteria which have been founded
upon game theory principles. The idea of modeling the pruning task in terms of games
constitutes the novelty of our work in the field of ensemble learning.

In Chapter 5, we proposed a simple coalitional game-based framework that extracts
sub-ensembles with moderate diversities. First, we considered a player as an individual
learner and defined the worth of a coalition based on the notion of diversity. Then, we
ordered the component learners according to their Banzhaf power indices. It is worth
mentioning that the computation of this solution concept is intractable for moderate and
large ensemble sizes. Nevertheless, we were able to derive a new formulation and
showed that its time complexity is pseudo-polynomial. Finally, we mapped the pruned
ensemble to the minimal winning coalition, a well-known concept in CGT and political

science, of the proposed game.
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In Chapter 6, we perused an area of improvement: instead of considering diversity
as the sole indicator of the predictive performance, we explored balancing accuracy with
diversity to acquire a better approximation of the ensemble generalization ability. We for-
mulated classifier ranking as an induced subgraph game played among the ensemble
members. The weights assigned to a self-loop measures the corresponding classifier
accuracy, whereas the weight of an edge that links two members is defined based on
a pairwise diversity function. We evaluated the utility of the base learners according to
their marginal contribution in achieving a proper balance between accuracy and diver-
sity using Shapley value. Specifically, given two ensemble members h; and h., if they
contribute similar diversity, then Shapley value promotes the one which yields better
predictive performance estimated on a separate set of samples; otherwise, if h; and
hy are similarly accurate, then the one that increases the ensemble diversity receives
a higher rank. Finally, we conducted the pruning by discarding the individual learners

whose ranks are below a preset selection threshold.

7.2 Strengths and limitations

We introduced throughout this thesis new theoretical frameworks to address ensem-
ble pruning. These frameworks were developed within the context of game theory, which
allowed us to provide a strong characterization of the pruning task in terms of solution
concepts. To the extent of our knowledge, this work is one of the very few attempts that
addressed an ensemble learning problem from a game theory perspective. This direc-
tion of research distinguishes this thesis from others in the literature and can inspire the
machine learning community to conduct more studies guided by game theory principles.

The proposed games were defined based on several measures such as mutual infor-
mation, double fault, or Cohen’s kappa, and could operate with other metrics as well. We
demonstrated the efficacy of our methodologies through extensive experimental investi-
gations using a large set of benchmark datasets which cover a wide range of application
domains. We also supported our analysis based on powerful statistical tests.

In the previous section, we summarized the main contributions of this thesis. How-
ever, it is of paramount importance to specify the limitations of our work. Some of these
cases will be revisited in the next section as potential future lines of research.

The underlying game presented in Chapter 5 is defined in terms of two quotas ¢,

and ¢,. The success of this approach relies considerably on determining their values. In
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our experiments, we only conducted a cross-validation strategy to set these parameters.
However, this approach adjusts the thresholds for each task and can therefore be less
efficient computationally. Another matter that this thesis did not explore is that, the
experimental analysis was conducted only on ADABOOST and BAGGING ensembles and

did not perform comparisons with other ensemble techniques such as random forest.

7.3 Future work

This thesis has revealed several interesting areas for improvement. The first area
is based upon the insights gained from Chapter 5. In that chapter, we evaluated the
contribution o an ensemble member based on Banzhaf power index. The selection
mechanism is considerably affected by the two thresholds ¢, and ¢.. A natural extension
of this work would be to exploit the findings reported in Section 5.3.2 so that they can
be properly set for real world applications.

Another appealing work direction would be to study in depth the impact of pruning
on the performance of other committee generators such as random subspace, random
forest, or even simulating artificial ensemble predictions (high vs. low correlation of
the base learners, etc.) . This study will provide practical guidelines for incorporating
ensemble methods in real world applications.

Finally, with the increasing interests in Big data problems, it has become of paramount
importance to fully make sense of the challenges and develop new ways of thinking to
address them. For instance, an ensemble can be trained to learn from data that come
from numerous sources and have different representations. Each ensemble member is
built locally; hence, it is specialized on a portion of the feature space. The aggregation
of all the component learners covers the whole representation of the problem. In this

context, an ensemble can therefore improve the predictive performance.



CGT

EGT

NE

ESS
SCG-Pruning
IsGco

Y

APPENDIX A
NOTATION AND ACRONYMS

: Coalitional Game Theory

. Evolutionary Game Theory

- Nash Equilibrium

. Evolutionary Stable Strategies

: SIMPLE COALITIONAL GAME-BASED PRUNING (Chapter 5)

- INDUCED SUBGRAPH GAME FOR CLASSIFIER ORDERING (Chapter 6)

. feature space

. set of class labels

: a set made of m labeled samples I = {(z1,v1), ..., (T, Ym) }
. a feature vector

. a class label

. hypothesis (learner)

. hypothesis space

. optimal hypothesis

: an ensemble composed of n classifiers 2 = {hy, ..., h,}

: pruned ensemble

. indicator function which returns 1 if the condition ¢ is met, 0 otherwise
: size of a set

: column vector

. row vector

. set

: mutual information between two random variables

: conditional mutual information



APPENDIX B
GUIDELINES FOR THE DESIGN OF ENSEMBLE LEARNING EXPERIMENTS

B.1 Datasets

We conducted the experimental analysis based on a large set of UCI benchmark
datasets [114]. The collected datasets cover a wide range of application domains. The
dimensions of these databases vary from 4 to 262, and the number of samples ranges
from 16 to 20000. Some datasets contain missing values due to several factors such
as: inaccurate measurements, defective equipment, and human errors. Table B.1 sum-

marizes the properties of these datasets.

B.2 Ensemble generation

In order to create the initial committee, we invoked numerous classification models
chosen from WEKA 3.6 [4], PRTooLs 5.0.2 [116], and LIBSVM 3.18 [117]. Some clas-
sifiers do not support missing values. To overcome this problem, we replaced every
missing entry with the mean and the mode for numeric and nominal features, respec-
tively. Table B.2 gives a summary of these learning algorithms and their settings. We

set the rest of the parameters to their default values.

B.3 Model evaluation and comparison

B.3.1 Performance evaluation

We resampled every dataset following Dietterich’s 5 x 2 cross validation (cv), where
stratified 2-fold cv was performed five times. Specifically, 2-fold cv divides the sample set
into two equal-sized folds denoted train and test. We trained the ensemble members on
train, whereas the other fold test was employed to measure some performance metrics
(refer to Section B.3.2). Then, the roles of these two folds were swapped in order to
obtain another estimate of the evaluation metric. Repeating these steps five times, we
obtained at the end ten trained ensembles and evaluation measures. It is noteworthy

that we report only the average of these ten measurements.



Table B.1: Properties of all datasets used in the experiments.

Datasets Abbreviations Samples Features Missing values Classes
Anneal Anneal 898 38 Yes 6
Arrhythmia Arrhythmia 452 262 Yes 13
Audiology Audiology 226 69 Yes 24
Australian credit approval Australian 690 14 No 2
Balance Balance 526 4 No 3
Balloons adult+stretch Balloons1 20 4 No 3
Balloons adult-stretch Balloons2 20 4 No 3
Balloons small-yellow Balloons3 20 4 No 3
Balloons small-yellow+adult-stretch Balloons4 16 4 No 3
Breast cancer wisconsin BCW 699 9 Yes 3
Breast cancer BC 286 9 Yes 2
Car evaluation Car 1728 6 No 4
Chess King-Rook vs King-Pawn Chess 3196 36 No 2
Congressional voting records CVR 435 16 Yes 2
Credit approval Credit 690 15 Yes 2
Cylinder bands Cylinder 540 39 Yes 2
Dermatology Dermatology 366 34 Yes 6
Ecoli Ecoli 336 8 No 8
Glass identification Glass 214 10 No 6
Hayes-Roth Hayes-Roth 160 5 No 4
Heart disease cleveland HDC 303 13 Yes 5
Heart disease hungarian HDH 294 13 Yes 5
Heart disease switzerland HDS 123 13 Yes 5
Hepatitis Hepatitis 155 19 Yes 2
lonosphere lonosphere 351 34 No 2
Iris Iris 150 4 No 3
Labor Labor 57 16 Yes 2
Lenses Lenses 24 4 No 3
Letter recognition Letter 20000 16 No 26
Low resolution spectrometer LRS 531 102 No 48
Lymphography Lymph 148 18 No 4
Monks1 Monks1 556 6 No 2
Monks2 Monks2 601 6 No 2
Monks3 Monks3 554 6 No 2
Multi-feature fourier MFF 2000 76 No 10
Multi-feature karhunen-love MFKL 2000 64 No 10
Multi-feature morphological MFM 2000 6 No 10
Multi-feature profile correlations MFPC 2000 216 No 10
Multi-feature zernike MFZ 2000 47 No 10
Mushroom Mushroom 8124 22 Yes 2
Musk1 Musk1 476 166 No 2
Musk2 Musk2 6598 166 No 2
Nursery Nursery 12960 8 No 5
Optical recognition of handwritten digits Optical 5620 64 No 10
Page blocks Page blocks 5473 10 No 5
Pen-based recognition of handwritten digits  Pen 10992 16 No 10
Pima indians diabetes Pima 768 8 No 2
Post-operative patient POP 0 8 Yes 3
Soybean large Soybean L 683 35 Yes 19
Soybean small Soybean S 47 35 No 4
Spambase Spambase 4601 57 No 2
SPECT heart SPECT 267 22 No 2
SPECTF heart SPECTF 267 44 No 2
Teaching assistant evaluation TAE 151 5 No 3
Thyroid domain Thyroid D 7200 21 No 3
Thyroid gland Thyroid G 215 5 No 3
Tic-Tac-Toe endgame Tic-Tac-Toe 958 9 No 2
Waveform (version 1) Waveform1 5000 21 No 3
Waveform (version 2) Waveform1 5000 40 No 3
Wine Wine 178 13 No 3
Wisconsin diagnostic breast cancer WDBC 569 30 No 2
Wisconsin prognostic breast cancer WPBC 198 32 Yes 2
Yeast Yeast 1484 8 No 10
Zoo Zoo 101 16 No 7

B.3.2 Performance comparison

We compared our approaches with numerous pruning techniques such as: Semi
Definite Programming (SDP) [31], Genetic Algorithm (GASEN) [34], Orientation Order-
ing (O0) [37], Margin Distance Minimization (MDsQ) [77], and Kappa pruning (KAPPA)



Table B.2: List of all learning algorithms used in the experiments.

Algorithm Platform Description

ADABOOST WEKA ADAPTIVE BOOSTING.

BAGGING WEKA BooTsTRAP AGGREGATING. The size of a bootstrap sample is set to
the number of training instances.

J48 WEKA C4.5 decision tree with the confidence factor set to 0.25. 2/3 of the
training data were used for growing the tree, and 1/3 for pruning it.

CART WEKA Decision tree learner using CART’s minimal cost complexity pruning.

Decision Stump WEKA This learning algorithm builds one-level decision trees.

Logistic WEKA Multinomial logistic regression.

IBk WEKA K-nearest neighbors classifier using linear search with the Euclidean
distance, and 3 values for k = 1, 3, 5.

OneR WEKA 1R rule-based learning algorithm.

NaiveBayes WEKA Standard probabilistic naive Bayes classifier using supervised dis-
cretization.

E;rlglea;;?orn WEKA Multilayer pergeptrqn classifier using backpropggatign algorithm run for
500 epochs with (f + 1 + k)/2 layers, where, f designates the number
of features and k is the number of classes of a dataset. The learning
rate was set to 0.3, and the momentum coefficient to 0.2.

_?ae;:mn WEKA Simple decision tz_able majority classifier us_ing BestFirst or Genetic
search methods with accuracy as the evaluation measure.

JRip WEKA RIPPER (Repeated Incremental Pruning to Produce Error Reduction)
algorithm for rule induction. 2/3 of the training data were used for grow-
ing rules, and 1/3 for pruning them.

PART WEKA PART decision list built using J48 with the confidence factor set to 0.25.
2/3 of the training data were used for growing rules, and 1/3 for pruning
them.

Fisherc PRTooLs Fisher's least square linear classifier.

Ldc PRTooLs Linear Bayes normal classifier. No regularization was performed.

Qdc PRTooLs Quadratic Bayes normal classifier. No regularization was performed.

Parzendc PRTooLs Parzen density based classifier. The smoothing parameters were esti-
mated from the training data for each class.

SVM LIBSVM  Support vector machines using a radial (Gaussian) kernel with v = 1/ f

where f is the number of features, a polynomial kernel of degree 3, or
a linear kernel. The cost parameter C' was set to 1.0.

[36]. A summary of these pruning algorithms and their settings are given in Table B.3.

It is worth noting that we invoked MITooLBOX library [115] in order to compute the

information theory concepts.

In our experiments, we measured the following metrics:

Accuracy performance: is the ratio between the number of correctly classified sam-

ples to the total number of samples estimated on a separate set of instances.



Table B.3: Summary of all invoked pruning techniques and their settings.

Pruning Description Configurations

technique

ALL No pruning. ALL combines all classifiers predictions using majority vote.

BESTN Accuracy ordering [9].  The size of the pruned ensemble L was set to same values
obtained by our approaches.

BEST Accuracy ordering with  The size of the pruned ensemble L was set to 1.

L =1 [8].

KAPPA Kappa pruning [36]. The size of the pruned ensemble was either set to 9 or to
the same values found by our approaches.

Fs-miD Forward Selection [76]. We have implemented the MiD criterion proposed by
Meynet [2] to measure the goodness of a candidate en-
semble. The size of the pruned ensemble was set 9.

Backward . .
BE-MID Elimination [76] We have implemented the MID criterion proposed by
’ Meynet [2] to measure the goodness of a candidate en-
semble. The size of the pruned ensemble was set to 9.

EXH-MID Exhaustive search [8]. We have implemented the MID criterion proposed by
Meynet [2] to measure the goodness of a candidate en-
semble. The size of the pruned ensemble was set to 9.

RE Reduce Error [36] The size of the pruned ensemble was set to same values
obtained by our approaches.

CC Complementarity The size of the pruned ensemble was set to same values

Measure [77] ;
obtained by our approaches.

Mbsa Margin Distance Mini- We have used a moving reference point set to either

mization [37]. 2\/2 % i/n or \/i at iteration i, or 0.075, where n is the size
of the initial committee. The size of the pruned ensemble
was set to same values obtained by our approaches.

00 Orientation Order- The size of the pruned ensemble was set to same values
ing [37] obtained by our approaches.

BB Boosting-Based [70] The original implementation does not have relevant param-
eters. The size of the pruned ensemble was set to same
values obtained by our approaches.

Sop Semi Definite Program-  This technique invokes the SDPA library version 7.3.6 [118]

ming [31] to solve the semi definite programming problem.

GASEN Genetic Algorithm  We have evolved a population made of 100 individuals over
based Selective EN- 100 generations. The mutation and the crossover probabil-
semble [34]. ities were set to 0.05 and 0.6, respectively.

SCG-MI, Simple Coalitional We have implemented SCG-Pruning with three pairwise di-

ScG-k, Game -Pruning [46]. versity functions: disagreement measure (SCG-DIs), Co-

ScG-DIs hen's kappa (ScG-k), and mutual information (ScG-mi) de-
fined by Equations 2.11, 2.15, and 2.13, respectively. The
size of the pruned ensemble was determined automatically
(the size of the minimal winning coalition). The parameters
q1 and ¢2 were set following a cross-validation strategy.

Isgco Induced Subgraph We set the selection threshold o to "1 | ¢:/n, where
Game for Classifier ¢; denotes the rank assigned to h;, and n is the initial

Ordering [47].

committee.

Given a testing set I'y.s; = {(x1,11), ..., (z¢, ¥:)} and a trained committee 2, the ac-

curacy rate is formulated as:

acc(l") = %Z]I(Q(:m) =),

(B.1)



where Q(x;) denotes the estimate of instance i’s class label produced by the en-

semble (.

In order to determine which technique performs best over multiple datasets, we
followed Demsar’s strategy [52]. We conducted a Friedman test. This latter first
ranks the techniques for each dataset separately according to the generalization
accuracy in descending order. More specifically, the best performing technique
gets rank 1, the second best gets rank 2,....Then, it compares the average ranks
of these algorithms. Under the null hypothesis, we assume that all the techniques
perform similarly; hence their ranks should be equal. The rejection of this hy-
pothesis confirms the existence of at least one pair of algorithms with significantly
different performances. If this confirmation is obtained, we proceed with either a
Nemenyi test or a Bonferroni-Dunn test. Nemenyi test is performed when all meth-
ods are compared with each other, whereas Bonferroni-Dunn test is useful when

we are only interested in comparing all techniques with a control algorithm.

Pruning ratio: let 2 and w denote, respectively, the initial committee and the pruned
ensemble. The pruning ratio § is defined as:

_ 19 = |wi

6= g X 100. (B.2)

Pruning time: the experiments were conducted on a 3.6 GHz Intel Core i7 — 4790 pro-

cessor with 8 GB of system memory.
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