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 ملخص
 
 

 

 معالجة مجال في الشائعة المشاكل من الصدى وإلغاء النبضية الصوتية الاستجابات حديديعد ت

 في التطوراتأھم  و المتكيفة )الفلاتر(المصافي عن  عامة لمحة أولا نقدم ،العمل ھذا في. ةالإشار

 ىلع المنجزة الأعمال شھرأ من بدءا ،  (sparse)مقتصدذات التكيف ال خوارزمياتال مجال

 :PNLMS الإنجليزية، اللغة في( لمربعاتل متوسط لأقل ةتناسبالم القياسية زميةخوارال

Proportionate Normalized Least Mean Square (أحدثب ختاما و ،ھا المختلفةأنواع و 

  .)Compressed Sensing الإنجليزية، باللغة( مضغوطال الاستشعار مبدأ تستخدم التي التقنيات

 التي مقتصدالذات التكيف  لخوارزمياتا وأحدث ھملأ النظرية التفاصيل سردقوم بن ذلكبعد 

 لتصفيةفي ا وتستخدم )NLMS( لمربعاتل متوسط لأقل القياسية خوارزميةالمبدأ  إلى أساسا تستند

 الدراسة ھذه تستھدفھا التي الخوارزميات. ي لكل منھاالحساب تعقيدالدرجة  تحليلب القيام مع ،المتكيفة

 النظامن تناثر ع مسبقا ةالمعلوم تستخدم التي متناسبةالالكلاسيكية  إصداراته أھمو  NLMS  ھي

PNLMS)، IPNLMS  و(MPNLMS لتغير   لتكون مواكبة عليھا أجريت التي الترقيات بالإضافة إلى

 الخوارزميات بعضكذلك  SC-MPNLMS)و  SC-PNLMS)، SC-IPNLMS  النظامتناثر  درجة

 ،ZA-NLMS مثل  (Compressed Sensing) مضغوطال الاستشعار مبدأ على تقومالتي  ةحديثال

RZA-NLMS، VSS-ZA-NLMS  و VSS-RZA-NLMS . 

عدة ل المحاكاة عمليات من سلسلة تنفيذب نقوم ،®MATLAB مساعدة لغة البرمجة ب وأخيرا،

 مستقرة (inputs) لاتادخإ معمختلفة ذات درجات تناثر  وحقيقية صطنعةم نبضية صوتية استجابات

 خوارزمياتال في الضعف و القوة نقاط ومقارنة دراسة ،تحليلوذلك من أجل  ،مستقرة وغير

 .الحسابي والتعقيد تقديرال دقة التقارب، سرعة حيث من دروسةالم

 الاستجابات ، (sparse) مقتصدالذات التكيف  خوارزمياتال ،المتكيفة لتصفيةا :البحث كلمات

 ،)Compressed Sensing( مضغوطال الاستشعار ،ةنظمالأتحديد تعريف و  ،النبضية الصوتية

 تعقيدال درجة ،و التقريب تقديرال دقة ، )NLMS( لمربعاتل متوسط لأقل القياسية خوارزميةال

   .يحسابال



 

 

 

RÉSUMÉ 

 

 

 

L'identification de réponses impulsionnelles acoustiques (RIAs) et 

l'annulation d'écho sont des problèmes communs dans le domaine du traitement 

du signal. Dans ce travail, on présente, premièrement, un aperçu du filtrage 

adaptatif et les principaux développements dans le domaine des algorithmes 

parcimonieux, commençant à partir des célèbres ouvrages sur l’algorithme 

proportionné normalisé de moindres carrés moyens (en anglais, PNLMS : 

Proportionate Normalized Least Mean Square) et ses nombreuses variantes 

jusqu’aux techniques les plus récentes qui utilisent le principe de l’acquisition 

comprimée (en anglais, CS : compressed sensing). 

Ensuite, on présente les détails théoriques des algorithmes parcimonieux 

les plus importants et les plus récents qui sont basés sur l’algorithme NLMS et 

utilisés pour le filtrage adaptatif. De plus, leurs complexités de calcul sont 

analysées. Les algorithmes ciblés par cette étude sont le NLMS, ses versions 

classiques proportionnées qui utilisent l’information, a priori, sur la parcimonie de 

système (PNLMS, IPNLMS et MPNLMS) et leurs mises à jour contrôlés par la 

variation du degré de parcimonie de système (SC-PNLMS, SC-IPNLMS et SC-

MPNLMS) ainsi que certaines algorithmes récentes basés sur le principe de 

l’acquisition comprimée (CS) à savoir le ZA-NLMS, RZA-NLMS, VSS-ZA-NLMS et 

VSS-RZA-NLMS. 

Enfin, en utilisant le logiciel MATLAB®, une série de simulations a été 

effectuée à la fois pour différentes réponses impulsionnelles acoustiques 

synthétiques et réelles avec des entrées stationnaires et des entrées non-

stationnaires afin d'analyser, d’étudier et de comparer les points forts et les points 



faibles des algorithmes concernés en termes de la vitesse de convergence, la 

précision d’estimation et la complexité de calcul.  

 

Mots clés: Filtrage Adaptatif, Algorithmes Parcimonieux, Réponses 

Impulsionnelles Acoustiques, Identification, Acquisition comprimée (en anglais, 

Compressed Sensing), LMS, NLMS, Parole, Performance à l’état d’équilibre, 

Complexité. 



 

 

 

 

ABSTRACT 
 

 

 

Acoustic impulse responses (AIRs) identification and echo cancellation are 

common problems in the field of signal processing. In this work, firstly, we provide 

an overview of adaptive filtering and the major developments in the area of sparse 

algorithms, starting from the celebrated works on proportionate normalized least 

mean square (PNLMS) algorithm and its several variants to more recent 

approaches that use compressed sensing (CS) framework.  

Then, the theoretical details of the most important and recent sparse NLMS-

based adaptive filtering algorithms are presented, and their computational 

complexity is analyzed. The algorithms of interest include NLMS, its classical 

proportionate sparseness-aware (SA) versions (PNLMS, IPNLMS and MPNLMS) 

and their sparseness-controlled (SC) upgrades (SC-PNLMS, SC-IPNLMS and SC-

MPNLMS) as well as some recent CS-based algorithms namely ZA-NLMS, RZA-

NLMS, VSS-ZA-NLMS and VSS-RZA-NLMS. 

Finally, using MATLAB® software, a series of simulations were carried out 

both in synthetic and real different-sparseness acoustic impulse responses with 

stationary and non-stationary inputs in order to analyze, investigate and compare 

the algorithms strengths and weaknesses in terms of convergence speed, 

estimation accuracy and computational complexity. 

 

Keywords: Adaptive Filtering, Sparse Algorithms, Acoustic Impulse Responses, 

System Identification, Compressed Sensing, LMS, NLMS, Speech, Steady-State 

Performance, Complexity. 
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(more sparse). NLMS ( 𝜇 =0.3), PNLMS ( 𝜇 =0.3), SC-

PNLMS ( 𝜇 =0.3, 𝜆 =6.0) and VSS-RZA-NLMS 

(𝜌𝑅𝑍𝐴 =0.003𝜎𝑛
2 , 𝜀𝑅𝑍𝐴 =30, 𝜇𝑚𝑎𝑥 =1.0 and 𝐶 =10−7 ). Output 

with SNR=50dB.  

72 

Figure 3.22a USASI-noise input. Synthetic system with length 𝐿=256, 𝜓 

=160 and 𝜉 =0.3028 (dispersive). NLMS (𝜇=0.3), IPNLMS 

(𝜇 =0.3, 𝛼 =-0.5), SC-IPNLMS (𝜇 =0.3, 𝛼 =-0.5) and VSS-

RZA-NLMS ( 𝜌𝑅𝑍𝐴 =0.003 𝜎𝑛
2 , 𝜀𝑅𝑍𝐴 =30, 𝜇𝑚𝑎𝑥 =1.0 and 

𝐶=10−7). Output with SNR=50dB. 
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Figure 3.22b USASI-noise input. Synthetic system with length  𝐿=256, 𝜓 

=10 and 𝜉 =0.8296 (very sparse). NLMS (𝜇=0.3), IPNLMS 

(𝜇 =0.3, 𝛼 =-0.5), SC-IPNLMS (𝜇 =0.3, 𝛼 =-0.5) and VSS-

RZA-NLMS ( 𝜌𝑅𝑍𝐴 =0.003 𝜎𝑛
2 , 𝜀𝑅𝑍𝐴 =30, 𝜇𝑚𝑎𝑥 =1.0 and 

𝐶=10−7). Output with SNR=50dB. 
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Figure 3.23a WGN-AR(20) input. ACN system with 𝐿 =2048 and 𝜉 

=0.3673 (less sparse). NLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-

0.5), SC-IPNLMS ( 𝜇 =0.3, 𝛼 =-0.5) and VSS-RZA-NLMS 

(𝜌𝑅𝑍𝐴 =0.003𝜎𝑛
2 , 𝜀𝑅𝑍𝐴 =30, 𝜇𝑚𝑎𝑥 =1.0 and 𝐶 =10−7 ). Output 

with SNR=50dB. 
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Figure 3.23b WGN-AR(20) input. ACN system with 𝐿 =8192 and 𝜉 

=0.6199 (more sparse). NLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 

𝛼=-0.5), SC-IPNLMS (𝜇=0.3, 𝛼=-0.5) and VSS-RZA-NLMS 

(𝜌𝑅𝑍𝐴 =0.003𝜎𝑛
2 , 𝜀𝑅𝑍𝐴 =30, 𝜇𝑚𝑎𝑥 =1.0 and 𝐶 =10−7 ). Output 

with SNR=50dB. 
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Figure 3.24a Speech input. ACN system with 𝐿 =2048 and 𝜉  =0.3673 

(less sparse). NLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5), SC-

IPNLMS ( 𝜇 =0.3, 𝛼 =-0.5) and VSS-RZA-NLMS 

(𝜌𝑅𝑍𝐴 =0.003𝜎𝑛
2 , 𝜀𝑅𝑍𝐴 =30, 𝜇𝑚𝑎𝑥 =1.0 and 𝐶 =10−7 ). Output 

with SNR=50dB. 
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Figure 3.24b Speech input. ACN system with 𝐿 =8192 and 𝜉  =0.6199 

(more sparse). NLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5), 

SC-IPNLMS ( 𝜇 =0.3, 𝛼 =-0.5) and VSS-RZA-NLMS 

(𝜌𝑅𝑍𝐴 =0.003𝜎𝑛
2 , 𝜀𝑅𝑍𝐴 =30, 𝜇𝑚𝑎𝑥 =1.0 and 𝐶 =10−7 ). Output 

with SNR=50dB. 
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Figure 3.25a USASI-noise input. Synthetic system with length 𝐿=256, 𝜓 

=160 and 𝜉 =0.3028 (dispersive). NLMS (𝜇=0.3), MPNLMS 

(𝜇=0.3), SC-MPNLMS (𝜇=0.3, 𝜆=6.0) and VSS-RZA-NLMS 

(𝜌𝑅𝑍𝐴 =0.003𝜎𝑛
2 , 𝜀𝑅𝑍𝐴 =30, 𝜇𝑚𝑎𝑥 =1.0 and 𝐶 =10−7 ). Output 

with SNR=50dB. 
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Figure 3.25b USASI-noise input. Synthetic system with length  𝐿=256, 𝜓 

=10 and 𝜉 =0.8296 (very sparse). NLMS (𝜇=0.3), MPNLMS 

(𝜇=0.3), SC-MPNLMS (𝜇=0.3, 𝜆=6.0) and VSS-RZA-NLMS 

(𝜌𝑅𝑍𝐴 =0.003𝜎𝑛
2 , 𝜀𝑅𝑍𝐴 =30, 𝜇𝑚𝑎𝑥 =1.0 and 𝐶 =10−7 ). Output 

with SNR=50dB. 
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Figure 3.26a WGN-AR(20) input. ACN system with 𝐿 =2048 and 𝜉 

=0.3673 (less sparse). NLMS (𝜇=0.3), MPNLMS (𝜇=0.3), 

SC-MPNLMS ( 𝜇 =0.3, 𝜆 =6.0) and VSS-RZA-NLMS 

(𝜌𝑅𝑍𝐴 =0.003𝜎𝑛
2 , 𝜀𝑅𝑍𝐴 =30, 𝜇𝑚𝑎𝑥 =1.0 and 𝐶 =10−7 ). Output 

with SNR=50dB. 
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Figure 3.26b WGN-AR(20) input. ACN system with 𝐿 =8192 and 𝜉 

=0.6199 (more sparse). NLMS (𝜇=0.3), MPNLMS (𝜇=0.3), 

SC-MPNLMS ( 𝜇 =0.3, 𝜆 =6.0) and VSS-RZA-NLMS 

(𝜌𝑅𝑍𝐴 =0.003𝜎𝑛
2 , 𝜀𝑅𝑍𝐴 =30, 𝜇𝑚𝑎𝑥 =1.0 and 𝐶 =10−7 ). Output 

with SNR=50dB. 

78 

Figure 3.27a Speech input. Car system with 𝐿=256 and 𝜉 =0.5138 (less 

sparse). NLMS (𝜇=0.3), MPNLMS (𝜇=0.3), SC-MPNLMS 

( 𝜇 =0.3, 𝜆 =6.0) and VSS-RZA-NLMS ( 𝜌𝑅𝑍𝐴 =0.003 𝜎𝑛
2 , 

𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with SNR=50dB.  
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Figure 3.27b Speech input. Car system with 𝐿 =1024 and 𝜉  =0.7410 

(more sparse). NLMS ( 𝜇 =0.3), MPNLMS ( 𝜇 =0.3), SC-

MPNLMS ( 𝜇 =0.3, 𝜆 =6.0) and VSS-RZA-NLMS 

(𝜌𝑅𝑍𝐴 =0.003𝜎𝑛
2 , 𝜀𝑅𝑍𝐴 =30, 𝜇𝑚𝑎𝑥 =1.0 and 𝐶 =10−7 ). Output 

with SNR=50dB 
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Figure 3.28 Speech input. Car system with 𝐿 =1024 and 𝜉  =0.7410 

(more sparse). NLMS (𝜇=0.3), SC-PNLMS (𝜇=0.3, 𝜆=6.0), 

SC-IPNLMS ( 𝜇 =0.3, 𝛼 =-0.5) and SC-MPNLMS ( 𝜇 =0.3, 

𝜆=6.0). Output with SNR=50dB. An abrupt change of the 

impulse response is applied at n=63744. 

81 

Figure 3.29 Speech input. ACN system with 𝐿 =8192 and 𝜉  =0.6199 

(more sparse). NLMS (𝜇=0.3), SC-PNLMS (𝜇=0.3, 𝜆=6.0), 

SC-IPNLMS ( 𝜇 =0.3, 𝛼 =-0.5) and SC-MPNLMS ( 𝜇 =0.3, 

𝜆=6.0). Output with SNR=50dB. 
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INTRODUCTION 

 

  

 

The term filter is often used to describe the form of a piece of physical 

hardware or software that is applied to a set of noisy data in order to extract 

information about a prescribed quantity of interest. A filter is said to be linear if the 

filtered, smoothed, or predicted quantity at the output of the device is a linear 

function of the observation applied to the filter input. Otherwise, the filter is 

nonlinear [1]. A linear filtering system is called sparse if its impulse response 

contains a small number of active taps (taps with considerably large magnitude) in 

the presence of a large number of non-active taps (taps of magnitudes equal to or 

close to zero). The network echo canceller is one example of such systems [2]-[3].  

Another example is the acoustic echo generated due to coupling between 

microphone and loudspeaker in hands free mobile telephony, where the 

sparseness (or sparsity) of the acoustic channel impulse response varies with the 

loudspeaker-microphone distance [4]. Other well known examples of sparse 

systems include HDTV where clusters of dominant echoes arrive after long 

periods of silence [5], wireless multipath channels which, on most of the 

occasions, have only few clusters of significant paths [6], and underwater acoustic 

channels where the various multipath components caused by reflections off the 

sea surface and sea bed have long intermediate delays [7].  

The LMS algorithm and its different versions used for conventional system 

identification do not use the a priori knowledge of the sparseness of the system. 

Consequently, they perform poorly both in terms of steady state excess mean 

square error (EMSE) and convergence speed. Recently, several alternate 

algorithms have been proposed to exploit the sparse nature of the system impulse 

response and achieve better performance. The most famous amongst them is the 

proportionate normalized LMS (PNLMS) algorithm [8] and its various versions. 
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Each coefficient, in the PNLMS algorithm, is updated independently with a 

step-size that varies proportionally with respect to the magnitude of the particular 

coefficient estimate of the system, resulting in fast initial convergence for sparse 

systems. However, the rate of convergence slows down afterwards considerably, 

sometimes slower than the NLMS algorithm. In [9], an attempt had been made to 

overcome this limitation by proposing an algorithm that switches in alternate cycles 

between NLMS and PNLMS algorithms. After that, in [10], the well-known 

improved PNLMS (IPNLMS) algorithm is proposed where a controlled mixture of 

the PNLMS and the NLMS algorithms is used.  

Independently, certain modifications have been introduced to the gain 

matrix of the PNLMS algorithm in order to maintain its initial high rate of 

convergence, resulting in the so-called the μ-law PNLMS (MPNLMS) algorithm 

[11]. Many other approaches for sparse system identification have been proposed 

separately from the PNLMS family, like partial update LMS which deploys 

statistical detection of active taps [12]-[13] and the exponentiated gradient (EG) 

algorithm [14]-[16] which is shown in [17] that it is equivalent to the IPNLMS 

algorithm [10] under certain conditions. 

Most of the aforementioned algorithms are very sensitive to the degree of 

system sparsity. Although, all of them perform satisfactorily for systems that are 

highly sparse, many of them have a performance that deteriorates as the degree 

of system sparsity reduces and generally, they perform worse than the usual 

sparsity-agnostic adaptive algorithms like LMS, NLMS and RLS for dispersive 

(non-sparse) systems. The IPNLMS algorithm [10] is an exception. It uses a free 

manually-tunable parameter that enables the algorithm to adapt to the existing 

sparsity level of the system. Recently, in [18]-[20], more enhancements have been 

achieved mainly by imposing a sparseness measure on the PNLMS, IPNLMS and 

MPNLMS algorithms resulting in a class of sparseness-controlled (SC) algorithms.  

It is worthy to state that the subject of sparse adaptive filtering algorithms 

has known a renewed dynamism in the last few years. This was due to the 

emergence of the framework of compressive sensing (CS) [21]-[23], where a linear 

superposition of a small number of stored signals (called atoms) is used to 

construct a sparse representation of the signal. Unlike the usual basis in vector 



19 
 

space, the atoms are drawn from an over-complete dictionary and thus the 

representation of the signal using atoms is not unique [24]. Therefore, numerous 

heuristic iterative methods have been recently developed in order to compute a 

sparse representation of the signal, notably from them being the matching pursuit 

(MP) method [25]-[27] and the basis pursuit (BP) method [28] or least absolute 

shrinkage and selection operator (LASSO) [29]. 

Motivated by LASSO, two sparsity-aware LMS algorithms were proposed in 

[30], namely, the zero-attracting LMS (ZA-LMS) and the reweighted-zero-attracting 

LMS (RZA-LMS). This has been achieved by introducing two different sparsity 

constraints (the ℓ1 -norm and the log sum penalty function) into the convex 

quadratic cost function of the LMS algorithm. The results presented in [30] showed 

that both the ZA-LMS and RZA-LMS algorithms behave better than the standard 

LMS in both transient and steady state performance for highly sparse systems but, 

for less-sparse systems, their performance degrades noting that the RZA-LMS is 

more robust against the degree of system sparsity. Further extension of the above 

philosophy was made on the NLMS algorithm [31]-[32].  

 Recently, the conventional invariable step-size (ISS) ZA-NLMS and RZA-

NLMS have been upgraded to a variable step-size (VSS) version resulting in two 

more improved-performance algorithms named VSS-ZA-NLMS and VSS-RZA-

NLMS [33], [34].  

In a separate side, several RLS-based sparse adaptive filtering algorithms 

have been developed using the LASSO as well [35]-[38] resulting in interesting 

improvements both in terms of transient convergence speed and steady state 

excess MSE. 

It should be addressed that most of the aforementioned studies on sparse 

adaptive filtering algorithms assume white Gaussian inputs and used simple 

impulse responses with relatively small number of taps (8, 16, 64 taps). However, 

in this report, we used different synthetic and real different-sparsity acoustic 

impulse responses (AIRs) that have larger sizes (256, 1024, 2048 & 8192 taps) 

with different-nature inputs (stationary and non-stationary). These relatively long 

AIRs are used in order to approach and simulate more effectively the real acoustic 

applications. 
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Because of the implementation simplicity and low complexity cost of the 

NLMS algorithm and in front of this huge number of new sparse algorithms, we 

focused our study on the most known and recent NLMS-based ones. Accordingly, 

the overall goal of this work is to present, analyze and compare the most important 

sparse adaptive filtering NLMS-based algorithms, in order to outline their 

capabilities and performances in the context of AIRs identification and echo 

cancellation. The report consists of three chapters organized as follows: 

Chapter 1 “State of the Art”: it starts by describing sparse impulse 

responses giving an example of room acoustic system. Then, it provides a review 

of the general principles of adaptive system identification and acoustic echo 

cancellation (AEC) process, as well as brief discussions of Wiener filter, the 

steepest descent method, NLMS and variable step-size NLMS (VSS-NLMS) 

algorithms. It concludes by defining the used performance-measures.  

Chapter 2 “Sparse Adaptive Filtering NLMS-Based Algorithms”: it provides 

the mathematical details about all NLMS-Based algorithms of interest, and then 

gives an analysis of their computational complexity.  

Chapter 3 “Simulation, Results and Discussion”: it starts by explaining the 

simulation details and the obeyed comparison criteria. Then, it presents analyses 

and discussions of the obtained comparison details accompanied with MATLAB® 

simulation figures in order to well demonstrate the performances of the studied 

algorithms. It ends with a summary of the main achieved results. 

The report ends with a conclusion that summarizes the whole work, future 

works for forward researches in the field as well as appendices that list the used 

abbreviations and mathematical symbols and provide brief pseudo-codes of the 

studied algorithms. 
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CHAPTER 1 

STATE OF THE ART 

  

  

 

1.1. Sparse impulse response 

A simple definition of a sparse impulse response is: “an impulse response 

(IR) that has only a small percentage of its components with a significant 

magnitude while the rest are zero or very small”. It could be defined also as: “an 

impulse response is sparse if a large fraction of its energy is concentrated in a 

small fraction of its duration” [39]. For example, in a network impulse response, 

only about 8-12 ms in a 64 or 128 ms time duration are active and the others are 

zeros (or inactive). The inactive part accounts for bulk delay due to network 

loading, encoding … etc.  

Notable amongst the acoustic sparse impulse responses, there are network 

echo paths, marine and land geophysical seismic impulses responses. However, 

an acoustic echo path in a conference or a hands-free communication system is 

not usually considered as sparse as a network echo path impulse response, but 

with the increase of user demand, it was needed to provide an echo canceller of 

as many as 512-2048 taps in order to deal with possible propagation delays of 

sound [40]. 

1.2. Room acoustic impulse response 

In a room system, the first sound to be heard is the one coming via the 

direct path from the source. Then, after a short while, the listener will hear the 

attenuated reflections of the sound (echoes) off the walls, see Figure 1.1. 
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Figure 1.1: A sketch illustrating sound propagation in a room.  

As the sound is reflected again and again off the walls, each reflection will 

be further delayed and attenuated. More inspections of the room impulse response 

gave the observation that the sound decays at an exponential rate [41]. Therefore, 

the impulse response of a room may be as shown in Figure 1.2.  

Figure 1.2: Impulse response for a room as shown in Figure 1.1.  

By having absorbers around the wall, the effects of echoes can be reduced 

resulting in a room impulse response with less active coefficients, as shown in 

Figure 1.3. The latter impulse response is said to be more sparse system than the 

former, due to having a majority of inactive filter taps. 
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Figure 1.3: Sparse impulse response for a room in the presence of echo 

absorbers. 

The identification of different types of system impulse responses is a 

common problem in signal processing. Moreover, there are many practical 

application problems that cannot be successfully solved by using fixed digital filters 

because either we do not have sufficient information to design a digital filter with 

fixed coefficients or the design criteria change during the normal operation of the 

filter. Most of these applications can be successfully solved by using special smart 

filters known as adaptive filters. The distinguishing feature of adaptive filters is that 

they can modify their response to improve performance during operation without 

any intervention from the user [42]. 

The wide range of applications of adaptive filters can be mainly subdivided 

into four classes: (1) system identification, (2) system inversion, (3) signal 

prediction, and (4) multisensor interference cancellation [42]. In this report, the 

classification of interest is system identification especially in the purpose of echo 

cancellation. 

1.3. Concept of adaptive system identification and echo cancellation  

In general the problem of system identification involves the build of an 

approximation of an unknown system given only two signals, the input signal and a 
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reference (or a desired) signal. Typically, the unknown system is modeled linearly 

with a finite impulse response (FIR), and adaptive filtering algorithms are 

employed to iteratively converge upon an estimate of the response [44]. Figure 1.4 

illustrates the concept of adaptive linear system identification process. 

 

Figure 1.4: The concept of adaptive linear system identification. 

1.3.1. Adaptive acoustic echo cancellation 

An echo is the delayed and distorted version of an original signal that 

returns to its source. In some applications (radar, sonar, or ultrasound), the echo is 

the wanted signal; however, in communication applications, the echo is an 

unwanted signal that must be eliminated. There are two types of echoes in 

communication systems: (1) electrical or line echoes, which are generated 

electrically due to impedance mismatches at points along the transmission 

medium, and (2) acoustic echoes, which result from the reflection of sound waves 

and acoustic coupling between a microphone and a loudspeaker (Figure 1.5) [42].   

An acoustic echo may be imperceptibly distinct, depending on the time 

delay involved. If the delay between the speech and the echo is short, the echo is 

not noticeable but perceived as a form of spectral distortion or reverberation. 

Generally speaking, the longer the echo-delay, the more it must be attenuated 

before it becomes noticeable [1], [45]-[47]. 

Several methods to deal with acoustic echoes have been developed. One 

of the best techniques to prevent or control echoes is adaptive echo cancellation. 

Its basic idea is simple: to cancel the echo, a replica or pseudo-echo is generated 
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and then subtracted from the real echo. Figure 1.5 illustrates how to synthesize 

the echo replica by passing the signal at the loudspeaker through a device 

designed to duplicate the reverberation and echo properties of the room (echo 

path). 

 
Figure 1.5: Principle of acoustic echo cancellation using an adaptive echo 

canceller [42]. 

An adaptive acoustic echo canceller is a device that attempts to cancel the 

acoustic echo. Figure 1.6 shows a loudspeaker-room-microphone system (LRMS) 

describing a typical acoustic echo cancellation (AEC) system, with an echo 

canceller employing an adaptive filter. 

 

Figure 1.6: Adaptive system for acoustic echo cancellation in a loudspeaker-room- 

microphone system (LRMS) [43-modified]. 
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1.3.2. Formulations and definitions  

An adaptive acoustic echo canceller assumed with FIR model configuration 

(due its stability characteristics) has the coefficients  

 𝐡  𝑛 = [ℎ̂0 𝑛 , ℎ̂1 𝑛 ,… , ℎ̂𝐿−1 𝑛 ]
𝑻
                                           1.1  

where 𝐿 is the length of the adaptive filter assumed equal to length of the unknown 

room impulse response 𝐡 which is defined by 

𝐡 = [ℎ0, ℎ1, … , ℎ𝐿−1]
𝑻                                                  1.2  

The superscript  𝑻  denotes the transposition operator. 𝑥 𝑛  is the time-

varying far-end signal which is transmitted to the near-end loudspeaker in the 

LRMS. The microphone in the near-end room receives the desired signal (the 

output of the LRMS) that is given by 

𝑦 𝑛 = 𝐡𝑻𝐱 𝑛 + 𝑤 𝑛                                                 1.3  

where 𝐱 𝑛 = [𝑥 𝑛 , 𝑥 𝑛 − 1 ,… , 𝑥 𝑛 − 𝐿 + 1 ]𝑻 is a vector containing 𝐿 samples of 

the input signal and 𝑤 𝑛  is a stationary, zero-mean and independent noise that is 

uncorrelated with any other signal [44].  

The difference of the output of the echo canceller 𝑦  𝑛  and the desired 

signal 𝑦 𝑛  

    𝑒𝑝 𝑛 = 𝑦 𝑛 − 𝑦  𝑛 = [𝐡𝑻 −  𝐡 𝑻 𝑛 ] 𝐱 𝑛 + 𝑤 𝑛                              1.4  

is called a posteriori error signal 𝑒𝑝 𝑛 . Since this latter is computed after the 

adaptive filter coefficients have been updated, the previous estimation of the 

impulse response  𝐡 𝑻 𝑛 − 1 is used to compute the a priori error signal 𝑒 𝑛  at 

each iteration. It is computed as 

𝑒 𝑛 = 𝑦 𝑛 −  𝐡 𝑻 𝑛 − 1 𝐱 𝑛                                              1.5  

Since the objective of an echo canceller is to estimate the unknown system 

𝐡 as closely as possible, 𝑒 𝑛  must come significantly smaller at each iteration, as 

the filter coefficients converge to the unknown true impulse response 𝐡 [43].  
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It is necessary for the echo canceller to be adaptive in order to be capable 

of converging and tracking the time-varying nature of the echo path which may 

arise due to a change in temperature [48] and pressure or to changes in the 

acoustic environment [49], for example movements of people, doors, windows or 

furniture. For these reasons, adaptive algorithms are utilized effectively to track 

and compensate any changes in the LRMS.  

Before getting into the relevant details of adaptive filtering algorithms, we 

start first by reviewing the Wiener filter, the way to get the optimum solution and 

the steepest decent algorithm, the recursive way to reach a sub-optimum solution. 

1.4. Wiener filter  

Figure 1.7 shows a simplified conceptual diagram to illustrate the use of 

Wiener filter for system estimation. 

 

Figure 1.7: Linear conceptual diagram for system estimation. 

The difference between the true system and the estimated system 

represents the quality of the filter estimation which is a function of the error signal. 

This function can be viewed as a cost incurred when the estimation is incorrect. A 

very-common choice for cost function 𝒥 (or criterion of performance) is the mean-

square error (MSE) which is always positive and defined [42] as  

𝒥 𝑛 = 𝐸{𝑒2 𝑛 }                                                      1.6  

where the operator 𝐸{. } denotes the expectation value. 

Assuming that 𝑒2 𝑛 , 𝐱 𝑛  and 𝑦 𝑛  are statistically stationary and that the 

input signal is always a real-valued. Hence, during derivations and calculations, 

𝑥 𝑛  𝑦 𝑛  

𝑦  𝑛  

𝑒(𝑛) 
𝐡 

 𝐡  
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the non-conjugate matrix transpose ( [. ] 𝑻 ) is used instead of the Hermitian 

transposition ([. ] 𝑯). Therefore, the MSE cost function can be written as 

 𝒥 𝑛 = 𝐸{𝑒2 𝑛 } = 𝐸{𝑦2 𝑛 } − 2𝐩𝑻 𝐡 +  𝐡 𝑻𝐑 𝐡                   1.7  

where 𝐩 is the 𝐿-by-1 cross-correlation vector between 𝑦 𝑛  and 𝑥 𝑛  defined as 

follows: 

𝐩 = 𝐸{𝑦 𝑛 𝐱 𝑛 }                                                           1.8  

and 𝐑 is the 𝐿-by-𝐿 auto-correlation matrix of the tap inputs in the FIR filter and 

can be defined as 

𝐑 = 𝐸{𝐱 𝑛 𝐱𝑻 𝑛 }                                                          1.9  

The minimum of the error surface can be obtained by setting the partial 

derivatives of 𝒥, with respect to each filter coefficient, to zero. That is 

∇𝒥 =
𝜕𝒥

𝜕 𝐡 
= 2𝐑 𝐡 − 2𝐩 = 0                                           1.10  

Assuming that the auto-correlation matrix 𝐑  is nonsingular [1] and its 

inverse is 𝐑−𝟏, the unique optimum impulse response  𝐡 𝑜𝑝𝑡 which minimizes the 

MSE is obtained by 

 𝐡 𝑜𝑝𝑡 = 𝐑−𝟏𝐩                                                            1.11  

which is known as Wiener-Hopf solution. This latter can be used to estimate the 

unknown room impulse response. However, this approach is not appropriate in 

dealing with non-stationary signals like speech signals and furthermore, the 

autocorrelation and cross-correlations are unknown. In this case, an alternative 

procedure is to use the method of steepest-descent, which is a gradient type 

iterative technique that has been employed to optimize cost functions [1]. It defines 

the filter coefficient update equation with of the following recursive relation  

 𝐡  𝑛 =  𝐡  𝑛 − 1 + 𝜇
1

2
[−∇𝒥 ( 𝐡  𝑛 − 1 )] 

=  𝐡  𝑛 − 1 + 𝜇[𝐩 − 𝐑 𝐡  𝑛 − 1 ]                                      1.12  

where ∇𝒥 ( 𝐡  𝑛 − 1 ) is the gradient vector of the cost function and 𝜇 is a positive 

real-valued constant known as the step-size parameter or the adaptation constant. 
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It controls the size of the descent in the direction of the negative gradient [42]. The 

rate of convergence of the steepest-descent method is faster for higher step size 

𝜇. For stability it must be lie with the range  

0 < 𝜇 <
2

𝜗𝑚𝑎𝑥
                                                         1.13  

where 𝜗𝑚𝑎𝑥 is the largest eigenvalue of the auto-correlation matrix 𝐑 [1]. 

According to eq. (1.12), the computations using the steepest descent 

method require an explicit knowledge of the input signal statistics [1]. However, in 

reality, this is not always possible. To solve this issue, the least mean square 

(LMS) algorithm can be used. 

1.5. Stochastic gradient-based adaptive algorithms 

Basically, we may identify two distinct major approaches for adaptive 

algorithms. One is the stochastic gradient approach that is attained by the least 

mean square (LMS) algorithm. The other approach minimizes a deterministic sum 

of weighted errors squared. It is known as the recursive least-squares (RLS) 

approach [1]. In this work, we focus on the first approach, more precisely, the 

LMS-based algorithms. 

1.5.1. Least mean square (LMS) algorithm 

The LMS algorithm is by far the most popular member of the family of 

stochastic gradient algorithms. The term ‘stochastic gradient’ is intended to 

distinguish the LMS algorithm from the method of the steepest descent that uses a 

‘deterministic gradient’ in a recursive computation of the Wiener filter for stochastic 

inputs. A significant feature of the LMS algorithm is its simplicity. Moreover, it does 

not require measurements of the pertinent correlation functions, nor does it require 

matrix inversion [1].      

The filter coefficients update equation for LMS substitutes the gradient 

vector in eq. (1.12) with an instantaneous estimate of the gradient vector, as 

 𝐡  𝑛 =  𝐡  𝑛 − 1 + 𝜇
1

2
[−∇ 𝒥 ( 𝐡  𝑛 − 1 )]                                  1.14  
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where ∇ 𝒥 ( 𝐡  𝑛 − 1 ) is defined by using the instantaneous estimates for 𝐑 and 𝐩 

that are based on sample values of 𝐱 𝑛  and 𝑦 𝑛) [1]. This gives 

                                     ∇ 𝒥 ( 𝐡  𝑛 − 1 ) = −2𝐱 𝑛 𝑒 𝑛                                            1.15  

Hence, the filter coefficients update equation for LMS is expressed as 

 𝐡  𝑛 =  𝐡  𝑛 − 1 + 𝜇2𝐱 𝑛 𝑒 𝑛                                        1.16  

The LMS algorithm is convergent in the mean square if its step size 𝜇𝐿𝑀𝑆 

(has the dimensions of the inverse power) satisfies the following condition [42] 

0 < 𝜇𝐿𝑀𝑆 <
2

trace 𝐑 
                                              1.17  

where 𝐑 is the autocorrelation matrix of the input. 

1.5.2. Normalized least mean square (NLMS) algorithm 

The selection of 𝜇𝐿𝑀𝑆  in practical applications is complicated because 

usually the power of the input signal is either unknown or varies with time. In order 

solve this issue, 𝜇𝐿𝑀𝑆 is normalized over the squared Euclidean norm (ℓ2-norm) of 

𝐱 𝑛  resulting in the well-known normalized LMS (or NLMS) algorithm [51] and its 

filter coefficients update equation is given by 

 𝐡  𝑛 =  𝐡  𝑛 − 1 +  𝜇
𝐱 𝑛 𝑒 𝑛 

𝐱𝑇 𝑛 . 𝐱 𝑛 + 𝛿𝑁𝐿𝑀𝑆
                              1.18  

where 𝛿𝑁𝐿𝑀𝑆 is a regularization parameter used to prevent division by zero and 

stabilizes the solution [52]. We take 𝛿𝑁𝐿𝑀𝑆 = 𝑐𝑠𝑡. 𝜎𝑥
2 [10], [39]. 𝜎𝑥

2 is the variance of 

the input signal and 𝑐𝑠𝑡 is a positive constant. The NLMS algorithm is convergent 

in the mean square if its step size 𝜇  (dimensionless) satisfies the following 

condition [1] 

0 < 𝜇 < 2                                                              1.19  

The main drawback of the NLMS (or LMS) algorithm is its low convergence 

rate, especially when operating on highly correlated input signals; its convergence 

depends on spectral dynamic range of the input signal [54]. Consequently, several 

modifications have been proposed in the literature to improve its performance 



31 
 

such as the variable-step-size NLMS (VSS-NLMS) [1], [55], [56]. The NLMS 

algorithm is summarized in Table B.1 (Appendix B). 

1.5.3. Variable step-size NLMS (VSS-NLMS) algorithm  

In case of the conventional (invariable step-size or ISS) normalized least 

mean square (ISS-NLMS), the step-size governs the rate of convergence and the 

steady-state excess mean-square error. To meet the conflicting requirements of 

fast convergence and low misadjusment (good estimation accuracy), the step-size 

needs to be controlled. In [57], they had proposed a variable step-size NLMS 

(VSS-NLMS) algorithm. The update equation of the VSS-NLMS algorithm is  

 𝐡  𝑛 =  𝐡  𝑛 − 1 +  𝜇 𝑛 
𝐱 𝑛 𝑒 𝑛 

𝐱𝑇 𝑛 𝐱 𝑛 + 𝛿𝑁𝐿𝑀𝑆
                                   1.20  

where  

𝜇 𝑛 = 𝜇𝑚𝑎𝑥

𝒑𝑇 𝑛 𝒑 𝑛 

𝒑𝑇 𝑛 𝒑 𝑛 + 𝐶
                                           1.21  

where 𝐶 is a positive constant parameter satisfying 𝐶~𝒪 1/SNR , where SNR is 

the input signal-to-noise ratio (SNR), and 𝜇𝑚𝑎𝑥 is the maximal step-size [33].  

According to eq. (1.21), the range of VSS is given by 𝜇 𝑛 ∈  0, 𝜇𝑚𝑎𝑥 . To 

ensure the stability of the adaptive algorithm, the maximal step-size 𝜇𝑚𝑎𝑥 is usually 

set to be less than 2 [55]. 𝒑 𝑛  is approximated as follows 

𝒑 𝑛 = 𝛽𝒑 𝑛 − 1 +  1 − 𝛽 
𝐱 𝑛 𝑒 𝑛 

𝐱𝑇 𝑛 𝐱 𝑛 + 𝐶
                              1.22  

where 𝛽 ∈ [0, 1  is the smoothing factor to control the value of the VSS and the 

estimation error [33]. The VSS-NLMS algorithm is given briefly in Table B.2 

(Appendix B). 

1.6. Performance measures 

Some of the most important factors that influence the choice of the  

adaptive algorithms are: the convergence rate, the accuracy of the obtained 

solution, the computational complexity of the algorithm, the robustness to 

numerical errors when implemented in finite-precision arithmetic, and finally, the 

tracking ability, i.e., the performance of the algorithm when operating in a non-
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stationary environment [44]. In the following subsections, the adopted measures 

are reviewed. 

1.6.1. Mean square error 

The mean square error (MSE) is one of the ways to define an objective 

function. It is defined as the expected value of the square of the error (𝐸{𝑒2 𝑛 }). 

But in almost all our simulations in this report, we use the time-average normalized 

MSE (denoted as NMSE) [44] defined as 

NMSE dB = 10 log10 (
〈𝑒2 𝑛 〉

〈𝑦2 𝑛 〉
)                                         1.23  

where 〈 . 〉 the symbol denotes a time averaging (over 256 samples for most of our 

simulations), and 𝑦 𝑛  is the desired signal. For the speech input signal, we prefer 

to use the time-average MSE [44] defined as 

MSE dB =  10 log10 〈𝑒
2 𝑛 〉                                          1.24  

and, as can be seen from equations (1.23) and (1.24), a lower MSE value is 

favorable [43]. 

1.6.2. Learning curves 

Plots of the NMSE or MSE as a function of the number of iterations 𝑛, are 

known as learning curves. They characterize the performance of an adaptive filter 

and are widely used in theoretical and experimental studies [42]. 

 



33 
 

 

 

 

 

CHAPTER 2 

SPARSE ADAPTIVE FILTERING NLMS-BASED ALGORITHMS 

 

  

 

In view of this chapter, we reviewed the basic proportionate-type NLMS 

adaptive algorithms; the classical PNLMS [8], the improved PNLMS (IPNLMS) [10] 

and the μ-law PNLMS (MPNLMS) [11], [61]. Their sparseness-controlled (SC) 

versions are also discussed in order to show how the use of the sparseness 

measure enhances the algorithms robustness against the sparsity variation. 

Finally, some of most recent developments in the field, due to the introduction of 

compressed sensing concept, are presented such as the zero-attracting and 

reweighted zero-attracting NLMS (ZA-NLMS and RZA-NLMS) and their variable 

step-size (VSS) version. 

2.1. Basic sparseness-aware NLMS-based adaptive filtering algorithms 

2.1.1. Proportionate NLMS (PNLMS) algorithm 

One of the first sparse adaptive filtering algorithms considered as a 

milestone for network echo cancellation (NEC) is the so called proportionate 

NLMS (PNLMS) which was proposed a decade ago [8]. The coefficient update 

equation of PNLMS is slightly different from NLMS so that each filter coefficient is 

updated with an independent step-size that is linearly proportional to the 

magnitude of that estimated filter coefficient [41]. More precisely, the PNLMS 

algorithm assigns higher step-sizes for coefficients with higher magnitude using a 

control matrix 𝐐 as shown below [8] and the rest of terms are carried over from 

NLMS. 

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇
𝐐(𝑛 − 1)𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐐(𝑛 − 1)𝐱(𝑛) + 𝛿𝑃𝑁𝐿𝑀𝑆
                         (2.1) 
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where 𝛿𝑃𝑁𝐿𝑀𝑆  is the regularization parameter for PNLMS. It is usually is taken 

as 𝛿𝑃𝑁𝐿𝑀𝑆 = 𝛿𝑁𝐿𝑀𝑆 𝐿⁄ , [18], [39] and the diagonal matrix 

𝐐(𝑛 − 1) = 𝑑𝑖𝑎𝑔{𝑞0(𝑛 − 1) 𝑞1(𝑛 − 1) ⋯ 𝑞𝐿−1(𝑛 − 1)}                       

=  {

𝑞0(𝑛 − 1)
0
⋮
0

0
𝑞1(𝑛 − 1)

⋮
0

…
…
⋱…

0
0
⋮

𝑞𝐿−1(𝑛 − 1)

}                 (2.2) 

The elements of the control matrix can be expressed as 

𝑞𝑙(𝑛 − 1) =
𝜅𝑙(𝑛 − 1)

1
𝐿
∑ 𝜅𝑖(𝑛 − 1)
𝐿−1
𝑖=0

 ,                                              (2.3) 

where    𝜅𝑙(𝑛 − 1) =  𝑚𝑎𝑥{𝜅𝑚𝑖𝑛(𝑛) , |ℎ̂𝑙(𝑛 − 1)| }                                                            (2.4) 

and  𝜅𝑚𝑖𝑛(𝑛 − 1) = 𝜌 ×𝑚𝑎𝑥{ 𝛾, |ℎ̂0(𝑛 − 1)|, |ℎ̂1(𝑛 − 1)|,⋯ , |ℎ̂𝐿−1(𝑛 − 1)| }          (2.5)     

with 0 ≤ 𝑙 ≤ 𝐿 − 1  being the tap-indices. The parameters 𝛾  and 𝜌  are positive 

numbers with typical values 𝛾 = 0.01  and 𝜌 ∈ [1 𝐿⁄ , 5 𝐿⁄ ]  [62]. The parameter 𝛾 

prevents ℎ̂𝑙(𝑛 − 1) from stalling during initialization stage where  �̂�(0) = 𝟎𝐿×1while 

𝜌  prevents individual filter coefficients from stalling when their magnitudes are 

much smaller than the magnitude of the largest coefficient [18], [39], [62].   

It can be seen that for 𝑞𝑙 = 1, ∀𝑙, PNLMS is equivalent to NLMS [18]. The 

PNLMS algorithm is shown in Table B.3 (Appendix B). 

It is worthy to mention here that the PNLMS algorithm was developed in an 

intuitively manner [41], because the equations used to calculate the step-size 

control factors are not based on any optimization criteria but are designed in an 

ad-hoc way. Since, in sparse systems, PNLMS algorithm employs larger step-

sizes for active coefficients (to speed up their convergence rate) than for inactive 

coefficients [18], it achieves a fast-convergence initial phase compared to NLMS, 

however, this is followed by a second phase of slower-convergence rate. 

Moreover, when the impulse response is less sparse or dispersive, the NLMS 

works better than PNLMS [41]. 

2.1.2. Improved proportionate NLMS (IPNLMS) algorithm 

An improvement of PNLMS is the IPNLMS algorithm [10] which was 

originally developed for NEC and was further used for the identification of acoustic 
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room impulse responses [64]. It employs a combination of proportionate (PNLMS) 

and non-proportionate (NLMS) updating techniques, with the relative significance 

of each controlled by a factor 𝛼. Elements of the control matrix 𝐐 for IPNLMS are 

given [43] by 

𝑞𝑙(𝑛 − 1) =
(1 − 𝛼)

2𝐿
+

(1 + 𝛼)|ℎ̂𝑙(𝑛 − 1)|

2‖ �̂�(𝑛 − 1)‖
1
+ 𝛿𝐼𝑃𝑁𝐿𝑀𝑆

 , 0 ≤ 𝑙 ≤ 𝐿 − 1          (2.6) 

where ‖. ‖1 is defined as the ℓ1-norm and the first and second terms are the NLMS 

and the proportionate terms respectively. The most used values for 𝛼 are 0, -0.5 

and -0.75. The latter values are favorable choices for most applications of echo 

cancellation [10], [63]. The regularization parameter for IPNLMS should be taken 

[10], [39] as 

𝛿𝐼𝑃𝑁𝐿𝑀𝑆 =
(1 − 𝛼)

2𝐿
𝛿𝑁𝐿𝑀𝑆                                                 (2.7) 

This choice of regularization is to ensure that the IPNLMS algorithm 

achieves the same steady-state level compared to that of the NLMS algorithm for 

the same step-size [18]. Equation (2.6) is made up of the sum of two terms, where 

the first is a constant and the second term is a function of the weight coefficients. It 

can be noticed that, when 𝛼 = −1 the second term becomes zero and therefore 

the 𝑞𝑙  becomes 1/𝐿 . It means that the same update will be made to all filter 

coefficients regardless of their individual magnitudes. So, for this value of 𝛼 , 

IPNLMS performs as NLMS. For 𝛼 close to unity, the second term dominates the 

equation, and as a result it behaves as PNLMS. The IPNLMS algorithm is 

recapitulated in Table B.4 (Appendix B).  

2.1.3. μ-law proportionate NLMS (MPNLMS) algorithm 

The MPNLMS algorithm was proposed to improve the convergence of 

PNLMS. This is achieved by computing the optimal proportionate step-size during 

the adaptation process. The MPNLMS algorithm was derived such that all 

coefficients attain converged values to within a vicinity 𝜖 of their optimal values in 

the same number of iterations [11]. The definition for 𝜅𝑙(𝑛 − 1) of MPNLMS is 

differed from that of previous PNLMS, as follows 

𝜅𝑙(𝑛 − 1) =  𝑚𝑎𝑥{𝜅𝑚𝑖𝑛(𝑛) , 𝐹(|ℎ̂𝑙(𝑛 − 1)|) } ,        0 ≤ 𝑙 ≤ 𝐿 − 1              (2.8) 
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where  𝜅𝑚𝑖𝑛(𝑛 − 1) = 𝜌 × 𝑚𝑎𝑥{ 𝛾, |ℎ̂0(𝑛 − 1)|, |ℎ̂1(𝑛 − 1)|,⋯ , |ℎ̂𝐿−1(𝑛 − 1)| }     (2.9) 

𝐹(|ℎ̂𝑙(𝑛 − 1)|) = ln(1 + 𝜈. |ℎ̂𝑙(𝑛 − 1)|) , 0 ≤ 𝑙 ≤ 𝐿 − 1                 (2.10) 

with 𝜈 = 1/𝜖 and 𝜖 (vicinity) is a very small positive number chosen as a function 

of the noise level [11]. It has been shown in [11] that 𝜖 = 0.001 is a good choice for 

typical echo cancellation, as the echo below -60 dB is negligible. Therefore, we 

can choose 𝜈 = 1000 . The positive bias of 1 in ln(1 + 𝜈. |ℎ̂𝑙(𝑛 − 1)|) is introduced 

to avoid numerical instability during the initialization stage when |ℎ̂𝑙(0)| = 0, ∀𝑙. 

The MPNLMS algorithm is given in Table B.5 (Appendix B). 

As PNLMS, it has been shown that MPNLMS suffers from a significant 

degradation in convergence performance when the impulse response is dispersive 

such as can occur in AIRs [65]. 

In reality, the acoustic echo in the receiving room does not always follow a 

same response. The path may vary with time influenced by the distance between 

the loudspeaker and the microphone and due to change in room characteristics, 

including temperature [48], pressure and movement of the talker. The acoustic 

characteristics of environment can be evaluated by the reverberation time, which 

is proportional to the volume of the enclosed space and inversely proportional to 

the absorption area [49]. In such a time-varying environment, the impulse 

response may vary over a sufficiently large range that its sparsity could change 

from sparse to dispersive. Therefore, it is needed to have a robust algorithm that 

can cope with sparseness variations of the acoustic path and maintain its good 

performance.  

2.2. Sparseness-controlled NLMS-based adaptive filtering algorithms 

In this section, we present the concept of more flexible approaches 

proposed to improve the convergence of the classical sparseness-aware (SA) 

proportionate adaptive algorithms in dispersive impulse responses estimation [18], 

[19]. These algorithms compute a sparseness measure of the estimated impulse 

response at each iteration of the adaptive process and incorporate it into their 

methods. It is found that the sparseness-controlled (SC) algorithms achieve faster 

convergence for both sparse and dispersive AIRs and are robust to the 

sparseness variation of AIRs. Hence, they are a good effective choice for AEC. 
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Before starting with the SC-algorithms, we present first a very-used 

definition of sparseness measure and its characteristics. 

2.2.1. Sparseness measure 

The degree of sparseness can be qualitatively referred to as a range of 

strongly dispersive to strongly sparse [66].The sparseness of an impulse response 

of length 𝐿 can be quantified by the sparseness measure [67], [68] 

            𝜉(𝐡) =
𝐿

𝐿 − √𝐿
{1 −

‖𝐡‖1

√𝐿 ‖𝐡‖2
},                                   (2.11) 

where ‖𝐡‖1 and ‖𝐡‖2 are the ℓ1-norm and the ℓ2-norm respectively. That is 

‖𝐡‖1 =∑|ℎ𝑖|

𝐿−1

𝑖=0

                                                   (2.12) 

‖𝐡‖2 = √∑ℎ𝑖
2

𝐿−1

𝑖=0

 = √𝐡𝑻𝐡                                      (2.13) 

By considering impulse responses with various degrees of sparseness it 

can be shown that 0 ≤ 𝜉(𝐡) ≤ 1. 

 Spareseness of a delta function 

An impulse of length 𝐿 is defined by 

ℎ𝑖 = {
±𝜐,   𝑖 = 𝑛1                                 
0,   0 ≤ 𝑖 ≤ 𝐿 − 1 , 𝑖 ≠ 𝑛1 

                       (2.14) 

where 𝑛1 defines the location of the impulse. Using equations (2.12) and 

(2.13), we find that ‖𝐡‖1 = 𝜐  and ‖𝐡‖2 = √𝜐2  from which substituting in 

equation (2.11) gives the sparseness 𝜉(𝐡) = 1. 
 

 Sparseness of a signal with constant magnitude 

For 𝐡 of length 𝐿 with a constant magnitude ±𝜐, we have ‖𝐡‖1 = 𝐿|𝜐| and 

‖𝐡‖2 = √𝐿𝜐2. Substituting these results into eq. (2.11), the sparseness for 𝐡 is 

then 𝜉(𝐡) = 0.  
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It is also interesting to note that the measure is independent of the sorting 

order of the impulse response coefficients and not affected by a non-zero scaling 

factor 𝑐 [43], i.e.: 

𝜉(𝑐𝐡) = 𝜉(𝐡)       ∀𝑐 ≠ 0                                           (2.15) 

Direct use 𝜉(𝐡)  is not feasible since 𝐡  is unknown during adaptation. 

Therefore, 𝜉(𝑛) is employed to estimate the sparseness of an impulse response at 

each sample iteration [18], [19]. That is 

𝜉(𝑛) =
𝐿

𝐿 − √𝐿
{1 −

‖ �̂�(𝑛 − 1)‖
1

√𝐿 ‖ �̂�(𝑛 − 1)‖
2

} , 𝑛 ≥ 𝐿              (2.16) 

which uses the estimation of the impulse response at the iteration (  �̂�(𝑛 − 1)), 

instead of the unknown impulse response 𝐡. 

2.2.2. Sparseness-controlled improved PNLMS (SC-IPNLMS) algorithm [18] 

The proposed SC-IPNLMS algorithm further improves the performance of 

IPNLMS by emphasizing the proportionate term if the impulse response is 

significantly sparse. For relatively less sparse impulse responses, SC-IPNLMS 

allocates a higher weighting to the NLMS term. This can be achieved by 

expressing the elements of the update control matrix as  

𝑞𝑙(𝑛 − 1) = [
(1 − 0.5𝜉(𝑛))

𝐿
]
(1 − 𝛼)

2𝐿
+ [
(1 + 0.5𝜉(𝑛))

𝐿
]

(1 + 𝛼)|ℎ̂𝑙(𝑛 − 1)|

2‖ �̂�(𝑛 − 1)‖
1
+ 𝛿𝑆𝐶−𝐼𝑃𝑁𝐿𝑀𝑆

 , 

  0 ≤ 𝑙 ≤ 𝐿 − 1                                                     (2.17) 

The weighting of 0.5 included in eq. (2.17) is chosen empirically in order to 

balance the performance between sparse and dispersive cases, which could be 

further optimized for a specific application [43]. In addition, normalization by 𝐿 is 

introduced to reduce significant coefficient noise when the effective step-size is 

large for sparse AIRs with high 𝜉(𝑛). 

It is found in [18] that, for dispersive AIRs, SC-IPNLMS allocates a uniform 

step-size across  ℎ̂𝑙(𝑛)  while, for sparse AIRs, the algorithm distributes  𝑞𝑙(𝑛) 

proportionally to the magnitude of the coefficients. Consequently, the SC-IPNLMS 

algorithm varies the degree of NLMS and proportionate adaptations according to 

the sparseness nature of the AIRs while, in the standard IPNLMS, the mixing 
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coefficient 𝛼 in eq. (2.6) is fixed a priori. The SC-IPNLMS algorithm is described in 

Table B.6 (Appendix B). 

2.2.3. Effect of the parameter 𝜌 on step-size control matrix 𝐐 for PNLMS [19] 

In subsection 2.1.1, the parameter 𝜌 in eq. (2.5) was originally introduced to 

prevent freezing of the filter coefficients when they are much smaller than the 

largest coefficient.  

Results presented in [19] showed that a higher value of 𝜌 will reduce the 

degree of proportionality due to the 𝐐 matrix meaning that all filter coefficients are 

updated at a more uniform rate. This gives a good convergence performance of 

PNLMS when the AIR is dispersive. On the other hand, a lower value of 𝜌 will 

increase influence of the 𝐐 matrix, hence, giving a good convergence performance 

for a sparse AIR. As a consequence of this important observation, it was proposed 

in [19] to incorporate 𝜉(𝑛) into 𝜌 for both PNLMS and MPNLMS. 

2.2.4. The SC-PNLMS and SC-MPNLMS algorithms  

In order to overcome the problem of slow convergence in dispersive AIRs, 

the PNLMS and MPNLMS algorithms need to have step-size control elements 

𝑞𝑙(𝑛) robust to sparseness variations of the impulse response. In order to achieve 

a high 𝜌 when 𝜉(𝑛) is small (dispersive system), several choices can be employed. 

A very-used choice is the exponential-function form [19] as 

𝜌(𝑛) = 𝑒−𝜆�̂�(𝑛), 𝜆 ∈ ℝ+                                          (2.18) 

Replacing 𝜌 by 𝜌(𝑛) in the PNLMS update equation gives the sparseness-

controlled PNLMS algorithm (SC-PNLMS). Tests discussed in [19] showed that 

𝜆 = 6 gives a good compromise of convergence performance in dispersive and 

sparse systems. Moreover, the range of 4 ≤ 𝜆 ≤ 6 could be considered as a good 

choice for the application of AEC.  

Incorporating 𝜌(𝑛) in a similar manner for the MPNLMS algorithm gives the 

sparseness-controlled MPNLMS algorithm (SC-MPNLMS) which inherits more of 

the MPNLMS properties when the estimated AIR is sparse and distributes uniform 

step-size across  ℎ̂𝑙(𝑛), as in NLMS, when the estimated AIR is dispersive [19]. 
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In addition, it can be noted that when 𝑛 = 0, ‖ �̂�(0)‖
2
= 0 and hence, to 

prevent division by a small number or zero, 𝜉(𝑛) can be computed for 𝑛 ≥ 𝐿 in 

both SC-PNLMS and SC-MPNLMS. When 𝑛 < 𝐿, we can set 𝜌(𝑛) = 𝜌 = 5/𝐿 [10]. 

The SC-PNLMS and SC-MPNLMS algorithms are summed up in Tables B.7 

and B.8 respectively (Appendix B). 

 It should be addressed that most of the mentioned NLMS-algorithm 

improvements result in a significant increase of the computational complexity. In 

the next section, we present some more-recent sparse algorithms that have a little 

bit less computational complexity. These algorithms have been emerged from the 

concept of compressed sensing.     

2.3. Compressed-sensing NLMS-based adaptive filtering algorithms 

First and foremost, compressed sensing (CS) is known also by the names 

of compressive sensing and compressed or compressive sampling or sparse 

sampling [69]. It is a very useful concept when dealing with limited and redundant 

data. It has flourished exceptionally fast over the past few years [24] and has been 

extensively studied and applied in the following domains: medical image 

processing [70], compression [71], coding and machine learning including face 

recognition, detection and tracking of objects in video [72, 73, 74], sensor 

networks [75] and cognitive radio. 

2.3.1. What’s compressed sensing?  

Compressed sensing is an umbrella term for the methodologies and 

concepts involved in reconstructing compressed representations of mathematical 

objects using limited amount of data, typically much less than the objects’ ambient 

dimension (i.e., the object dimension when it is uncompressed). For more details 

about the CS-theory and its applications, see references [24] and [69]. 

Since the computation of a sparse representation for a signal is a non-

deterministic polynomial time (NP)-hard problem [76], [77], the LASSO method 

[29] uses ℓ1-norm minimization to obtain sparse signal reconstruction and provide 

the guarantee for convergence. However, this method suffers from slower 

convergence rate compared to the MP method [25]-[27] which employs a greedy 
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algorithm for faster convergence but it has lesser guarantee of achieving a sparse 

representation. 

2.3.2. Zero-attracting NLMS (ZA-NLMS) algorithm  

The use of LASSO method permitted to introduce two different sparsity 

constraints (the ℓ1 -norm and the log-sum penalty function) into the convex 

quadratic cost function of the LMS algorithm, resulting in two sparsity-aware LMS 

algorithms, namely, the zero-attracting LMS (ZA-LMS) and the reweighted zero-

attracting LMS (RZA-LMS) [30]. These algorithms obey the following [24] updating 

scheme  

{
𝑛𝑒𝑤 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

} = {
𝑜𝑙𝑑

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

} + {𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒} {
𝑛𝑒𝑤 

𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛}
⏟                            

LMS

+ {
𝑧𝑒𝑟𝑜

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
𝑡𝑒𝑟𝑚

}

⏟                                        
Sparse LMS

 

 where the new information term is the error vector between the outputs of the filter 

and the desired signal vector. The Zero-Attraction (ZA) term (or zero attractor) is a 

norm-related regularization function which applies an attraction to zero on small 

parameters [24]. 

In order to exploit the system sparsity in time domain, the cost function of 

ZA-LMS [30] is given by 

𝒥𝑍𝐴−𝐿𝑀𝑆(𝑛) =
1

2
𝑒2(𝑛) + 𝜆𝑍𝐴‖ �̂�(𝑛)‖1                            

(2.19) 

which means that the sparse cost function 𝒥𝑍𝐴−𝐿𝑀𝑆(𝑛) combines the instantaneous 

error 𝑒(𝑛) with a sparseness-inducing penalty term (𝜆𝑍𝐴‖ �̂�(𝑛)‖1) [24]. Where 𝜆𝑍𝐴 

is a regularization parameter to balance the estimation error and sparse penalty of 

 �̂�(𝑛). The corresponding updated equation [24] of ZA-LMS is 

                                     �̂�(𝑛) =  �̂�(𝑛 − 1) + 𝜇[−∇𝒥𝑍𝐴−𝐿𝑀𝑆(𝑛)] 

=  �̂�(𝑛 − 1) +  𝜇. 𝐱(𝑛)𝑒(𝑛) − 𝜌𝑍𝐴. sgn ( �̂�(𝑛 − 1))           (2.20) 

where 𝜌𝑍𝐴 = 𝜇𝜆𝑍𝐴  is referred to as the zero-attraction controller or the 

regularization step-size in the adaptive filtering context. It controls the strength of 

the zero-attractor (−𝜌𝑍𝐴. sgn ( �̂�(𝑛 − 1))) [9]. Usually the regularization step-size is 

fine tuned offline (via exhaustive simulations) or in an ad–hoc manner [24].  
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In [32]-[34], a systematic approach is used. It expresses 𝜌𝑍𝐴 in terms of the 

noise level. In [32], the input signal power 𝐸0 is set equal to unity (i.e. 𝐸0 = 1), 

which makes the noise power 𝜎𝑛
2 = 10−SNR 10⁄ , where SNR (10 log10(𝐸0/𝜎𝑛

2)) is the 

input signal-to-noise ratio. Note that sgn( . ) is a component-wise signum function 

defined as 

sgn( ℎ ) = {
   1  ,         ℎ > 0
   0  ,         ℎ = 0
−1  ,         ℎ < 0

                                                      (2.21) 

Observing the update equation (2.20), its second term attracts small-value 

filter coefficients to zero in high probability. In other words, most of the small-value 

filter coefficients can be replaced by zero. This will speed up the convergence and 

mitigate the noise on zero positions as well. To be more practical and facilitate the 

choice of the step-size, an improved algorithm was proposed (i.e., ZA-NLMS) [32], 

[78]. The update equation of ZA-NLMS [32] was proposed as follows 

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇
𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛) + 𝛿𝑁𝐿𝑀𝑆
− 𝜌𝑍𝐴. sgn ( �̂�(𝑛 − 1))          (2.22) 

The ZA-NLMS algorithm is presented in Table B.9 (Appendix B). 

2.3.3. Reweighted zero-attracting NLMS (RZA-NLMS) algorithm  

It is found in [30] that the shrinkage in the ZA-LMS does not distinguish 

between zero taps and non-zero taps. Since all the taps are forced to zero 

uniformly, its performance would deteriorate for less sparse systems. Therefore, in 

[30], they used the reweighted ℓ1-norm minimization recovery algorithm [79] and 

proposed a heuristic approach to reinforce the zero-attractor. The resultant 

algorithm was termed as the reweighted ZA-LMS (or RZA-LMS). The cost function 

of RZA-LMS is expressed as 

𝒥𝑅𝑍𝐴−𝐿𝑀𝑆(𝑛) =
1

2
𝑒2(𝑛) − 𝜆𝑅𝑍𝐴∑𝑙𝑜𝑔(1 + 휀𝑅𝑍𝐴|ℎ𝑖(𝑛)|)

𝐿

𝑖=1

              (2.23) 

where 𝜆𝑅𝑍𝐴 is the regularization parameter and 휀𝑅𝑍𝐴 > 0 is the positive threshold. 

According to the stochastic gradient approach [24], the resulting filter update 

iteration is 



43 
 

ℎ̂𝑖(𝑛) = ℎ̂𝑖(𝑛 − 1) + 𝜇. 𝑥(𝑛 − 𝑖)𝑒(𝑛) − 𝜌𝑅𝑍𝐴
sgn (ℎ̂𝑖(𝑛 − 1))

1 + 휀𝑅𝑍𝐴|ℎ̂𝑖(𝑛 − 1)|
         (2.24) 

where 0 ≤ 𝑖 ≤ 𝐿 − 1. Equation (2.24) is written also in the vector form [24] as  

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇. 𝐱(𝑛)𝑒(𝑛) − 𝜌𝑅𝑍𝐴
sgn ( �̂�(𝑛 − 1))

1 + 휀𝑅𝑍𝐴| �̂�(𝑛 − 1)|
            (2.25) 

where 𝜌𝑅𝑍𝐴 = 𝜇𝜆𝑅𝑍𝐴휀𝑅𝑍𝐴 and | �̂�(𝑛 − 1)| is an 𝐿 × 1 vector with elements that are 

absolute values of the elements of the vector  �̂�(𝑛 − 1). The term 
sgn( �̂�(𝑛−1))

1+𝜀𝑅𝑍𝐴| �̂�(𝑛−1)|
 is 

obtained by 𝐿 element-by-element divisions. 

The RZA-LMS selectively shrinks taps with large magnitudes and the ones 

with small magnitudes. The reweighted zero-attractor (third term in the update 

equation (2.25)) takes significant effect only on those taps whose magnitudes are 

comparable to 1/휀𝑅𝑍𝐴; and there is a little shrinkage exerted on the taps whose 

|ℎ𝑖(𝑛 − 1)| ≫ 1/휀𝑅𝑍𝐴 [30]. 

 In [32] and [78], the same analogy is applied further to RZA-LMS in order to 

obtain the RZA-NLMS algorithm that has the following update equation  

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇
𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛) + 𝛿𝑁𝐿𝑀𝑆
− 𝜌𝑅𝑍𝐴

sgn ( �̂�(𝑛 − 1))

1 + 휀𝑅𝑍𝐴| �̂�(𝑛 − 1)|
     (2.26) 

Observing equation (2.26), if 휀𝑅𝑍𝐴 is very small, 휀𝑅𝑍𝐴| �̂�(𝑛 − 1)| tends to zero 

and the update equations of the RZA-NLMS and the ZA-NLMS algorithms become 

equivalent [80]. The RZA-NLMS algorithm is given in Table B.10 (Appendix B).   

2.3.4. The effect of 𝜌(𝑅)𝑍𝐴  (𝜌𝑍𝐴 or 𝜌𝑅𝑍𝐴) 

Regularization plays a fundamental role in adaptive filtering. However, the 

better performance is not obtained if the regularization step-size is not chosen 

properly. According to equations (2.22) and (2.26), a large 𝜌(𝑅)𝑍𝐴 results in a faster 

convergence since the intensity of attraction increases as 𝜌(𝑅)𝑍𝐴  increases. 

However, steady-state misalignment increases as 𝜌(𝑅)𝑍𝐴  increases (means that 

the estimation accuracy decreases as 𝜌(𝑅)𝑍𝐴 increases). Therefore, the parameter 

𝜌(𝑅)𝑍𝐴 is determined by the trade-off between adaptation speed and adaptation 
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quality in particular applications [80]. In applications that require high estimation 

accuracy, 𝜌(𝑅)𝑍𝐴 should be chosen small enough and the performance of the RZA-

NLMS approaches to that of the ZA-NLMS.   

2.3.5. The effect of 휀𝑅𝑍𝐴  

Observing equation (2.26), if 휀𝑅𝑍𝐴 is very small, 휀𝑅𝑍𝐴| �̂�(𝑛 − 1)| tends to zero 

and the update equations of the RZA-NLMS and the ZA-NLMS algorithms become 

equivalent [80]. Since 휀𝑅𝑍𝐴 is in the denominator part of the third term of the RZA-

NLMS update equation (2.26), a larger 휀𝑅𝑍𝐴  will make the step-size in the 

reweighted-zero-attractor term smaller. Therefore, the convergence rate becomes 

slower and the steady-state level decreases due to the relatively smaller [80] step-

size. 

The conventional ZA-NLMS and RZA-NLMS algorithms are called also the 

invariable step-size ( 𝜇 ) ZA-NLMS (or ISS-ZA-NLMS) and ISS-RZA-NLMS 

respectively. This nomenclature is to differentiate them from the variable step-size 

ones (VSS-ZA-NLMS and VSS-RZA-NLMS).  

2.3.6. Variable step-size ZA-NLMS (VSS-ZA-NLMS) algorithm  

 Although the variable step-size NLMS (VSS-NLMS) algorithm was 

proposed for AEC to improve the estimation accuracy [57], system sparsity has 

not been considered in the VSS-NLMS algorithm. The VSS-NLMS algorithm is 

adaptive to the estimation error in each iteration, i.e., large step-size is used in the 

case of large estimation error to accelerate the convergence speed, while small 

step-size is used when the estimation error is small to improve the steady-state 

estimation accuracy [34].  

Recently, by jointly taking advantage of system sparsity and VSS-NLMS, 

two improved adaptive sparse channel estimation (ASCE) algorithms have been 

proposed in [33], [34]. They are named as variable step-size zero-attracting NLMS 

(VSS-ZA-NLMS) and VSS reweighted ZA-NLMS (VSS-RZA-NLMS).  

Based on the observation that large step-sizes are preferred to achieve fast 

convergence while small step-sizes are preferred for accurate estimation, the 

proposed VSS-ZA-NLMS and VSS-RZA-NLMS algorithms replace the ISS by VSS 

in conventional NLMS-based algorithms in order to improve the adaptive sparse 
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channel estimation in terms of bit error rate (BER) and mean square error (MSE) 

metrics [34]. The update equation for the VSS-ZA-NLMS algorithm [33] is 

expressed as  

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇(𝑛)
𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛) + 𝛿𝑁𝐿𝑀𝑆
− 𝜌𝑍𝐴. sgn ( �̂�(𝑛 − 1))         (2.27) 

where 𝜇(𝑛) is calculated as explained in subsection 1.5.3.  

In the case of small step-sizes, good estimation accuracy is achieved while 

high convergence speed is obtained for large step-sizes. Analysis presented in 

[33] showed that the value of the VSS 𝜇(𝑛) will increase if the estimation error 

decreases and vice versa. In view of that, as the updating error decreases, VSS-

ZA-NLMS reduces its step-size adaptively to ensure the algorithm stability as well 

as to achieve better steady-state estimation performance [33]. The main steps of 

the VSS-ZA-NLMS algorithm are listed in Table B.11 (Appendix B). 

2.3.7. Variable step-size reweighted ZA-NLMS (VSS-RZA-NLMS) algorithm  

The same philosophy, as in subsection 2.3.6, was extended further to the 

case of RZA-NLMS (see subsection 2.3.3) in order to obtain the VSS-RZA-NLMS 

with the following update equation [34] 

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇(𝑛)
𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛) + 𝛿𝑁𝐿𝑀𝑆
− 𝜌𝑅𝑍𝐴

sgn ( �̂�(𝑛 − 1))

1 + 휀𝑅𝑍𝐴| �̂�(𝑛 − 1)|
         (2.28) 

The algorithm VSS-RZA-NLMS is summarized in Table B.12 (Appendix B). 

In the next chapter, we conduct simulations to test the behavior of the 

discussed algorithms in different-sparsity synthetic and real systems for stationary 

and non-stationary inputs. 

2.5. Computational complexity  

The computational complexity of an algorithm is a very important criterion 

that should be examined since it has a direct relationship with the hardware 

implementation and the operating time of the system. Although many factors 

contribute to the complexity of an algorithm, the relative complexity of NLMS, 

PNLMS, SC-PNLMS, IPNLMS, SC-IPNLMS, MPNLMS, SC-MPNLMS, ZA-NLMS, 
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RZA-NLMS, VSS-ZA-NLMS and VSS-RZA-NLMS in terms of the total number of 

additions, multiplications, divisions and logarithms (Log) per iteration is assessed 

in Table 2.1. 

The followings should be noted: 

 The computation of the ℓ2 -norm ( ‖𝐱(𝑛)‖2
2  = 𝐱𝑻(𝑛)𝐱(𝑛) = 𝑝𝑥(𝑛) , where 

𝐱 (𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 ) can be updated recursively 

using an exponential window [81]. That is;  

𝑝𝑥(𝑛) = 𝜏. 𝑝𝑥(𝑛 − 1) + (1 − 𝜏). 𝐿. 𝑥
2(𝑛)                           (2.29) 

where 𝜏 is a forgetting factor and 𝐿 is the filter length. This method requires 

only four multiplications and two additions.  

 The error update equation 𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1)  requires 𝐿 

additions and 𝐿 multiplications. 

 The comparison between two numbers takes one subtraction. But, in this 

content, comparison is regarded as an operator.  

 The additional complexity of the SC-algorithms, on top of their conventional 

SA method, arises from the computation of the sparseness measure 𝜉(𝑛). 

Given that (𝐿/𝐿 − √𝐿) in eq. (2.16) can be computed offline, the remaining 

ℓ-norms require an additional 2𝐿 additions and 𝐿 multiplications. Therefore, 

the total computation of 𝜉(𝑛), requires 2𝐿 + 1 additions, 𝐿 + 2 multiplications 

and 1 division. 

 The SC-PNLMS and SC-MPNLMS algorithms additionally require 

computations for eq. (2.18). Alternatively, a look-up table with values of 

𝜌(𝑛) defined in eq. (2.18) can be computed for 0 ≤ 𝜉(𝑛) ≤ 1 [43]. 

 Since ‖ �̂�(𝑛)‖
1
 computation is already available from IPNLMS in eq. (2.6), 

SC-IPNLMS only requires an additional 𝐿 + 3  additions, 𝐿 + 6 

multiplications and 1 division.  

 Because of the zero-attractor term (−𝜌𝑍𝐴sgn ( �̂�(𝑛 − 1))), the ZA-NLMS 

algorithm has an additional 𝐿 additions with respect to NLMS.  
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 Because of the reweighted-zero attractor term (−𝜌𝑅𝑍𝐴
sgn(ℎ̂𝑖(𝑛−1))

1+𝜀𝑅𝑍𝐴|ℎ̂𝑖(𝑛−1)|
), the 

RZA-NLMS algorithm requires more additional 𝐿 additions, 𝐿 multiplications 

and 𝐿 divisions with respect to ZA-NLMS. 

 For VSS-algorithms, the increase of computational complexity is due to the 

calculation of the variable step-size 𝜇(𝑛). That is; 

{
 
 

 
 
  𝑝𝑥(𝑛) = 𝜏. 𝑝𝑥(𝑛 − 1) + (1 − 𝜏). 𝐿. 𝑥

2(𝑛) 

𝒑(𝑛) = 𝛽𝒑(𝑛 − 1) + (1 − 𝛽)
𝐱(𝑛)𝑒(𝑛)

𝑝𝑥(𝑛)
    

𝜇(𝑛) = 𝜇𝑚𝑎𝑥
𝒑𝑇(𝑛)𝒑(𝑛)

𝒑𝑇(𝑛)𝒑(𝑛) + 𝐶
                       

 

which requires an additional 2𝐿 + 3 additions, 3𝐿 + 6 multiplications and 2 

divisions more than the ISS-algorithms. 

Table 2.1 gives the computational-complexity values concerning the 

filtering-part of algorithms. For example, for NLMS algorithm, we have: 

{
 
 

 
 

 

𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1)                  

𝑝𝑥(𝑛) = 𝜏. 𝑝𝑥(𝑛 − 1) + (1 − 𝜏). 𝐿. 𝑥
2(𝑛)

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇
𝐱(𝑛)𝑒(𝑛)

𝑝𝑥(𝑛) + 𝛿𝑁𝐿𝑀𝑆
     

 

which requires 2𝐿 + 3 additions, 2𝐿 + 5 multiplications and 1 division. By the same 

analogy, we continue for the other algorithms and the results are summarized in 

Table 2.1. 

Table 2.1: Complexity of algorithms of interest in terms of: addition, multiplication, 

division and logarithm (Log). 

Algorithm Addition Multiplication Division Log 

NLMS 2L+3 2L+5 1 0 

PNLMS 3L+1 6L+4 2 0 

SC-PNLMS 5L+2 7L+6 3 0 

IPNLMS 4L+2 6L+4 2 0 

SC-IPNLMS 5L+5 7L+10 3 0 

MPNLMS 4L+1 7L+4 2 L 

SC-MPNLMS 6L+2 8L+6 3 L 
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ZA-NLMS 3L+3 2L+5 1 0 

VSS-ZA-NLMS 5L+6 5L+11 3 0 

RZR-NLMS 4L+3 3L+5 L+1 0 

VSS-RZA-NLMS 6L+6 6L+11 L+3 0 

 

It can be seen from Table 2.1 that the overall computational complexities of 

the discussed sparse NLMS-based algorithms are increased compared to NLMS. 

To compensate these increased complexities, their convergence performances 

must be efficiently higher. Consequently, the trade-off between complexity and 

performance depend on the design choice for a particular application. 
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CHAPTER 3 

SIMULATION, RESULTS AND DISCUSSION 

 

  

 

3.1. Synthetic generation of sparse acoustic impulse responses  

In this chapter, we presented some simulation results to demonstrate the 

performance of the interested algorithms in our study. They are first tested for 

synthetic systems where the degree of sparseness is controlled more easily, then 

we further for real systems. The method proposed in [18] provides a means of 

generating synthetic impulse responses (Synthetic IRs) with different degrees of 

sparsity using random sequences. This can be achieved by first defining an 𝐿 × 1 

vector 𝐮 (where 𝐿 is the length of the impulse response) as  

𝐮𝐿×1 = [𝟎𝐿𝑝×1   1   𝑒−1 𝜓⁄    𝑒−2 𝜓⁄   …   𝑒−(𝐿𝑢−1) 𝜓⁄ ]
𝑻

                             (3.1) 

where the 𝐿𝑝 leading zeros models the length of the bulk delay and 𝐿𝑢 = 𝐿 − 𝐿𝑝 is 

the length of the decaying window while 𝜓 ∈ ℤ+ is the decay constant. If we define 

an 𝐿𝑢 × 1 vector 𝐛 as a zero-mean white Gaussian noise (WGN) sequence with 

variance 𝜎𝑏
2, we can express an 𝐿 × 1 synthetic impulse response as 

𝐡(𝑛) = [
𝟎𝐿𝑝×𝐿𝑝

𝟎𝐿𝑝×𝐿𝑢

𝟎𝐿𝑢×𝐿𝑝
𝐁𝐿𝑢×𝐿𝑢

] 𝐮 + 𝐩′                                      (3.2) 

where 𝐁𝐿𝑢×𝐿𝑢
= 𝑑𝑖𝑎𝑔{𝐛} and the 𝐿 × 1 vector 𝐩′ ensures elements in the inactive 

region are small but non-zero and is an independent zero-mean WGN sequence 

with variance 𝜎𝑝′
2 . 
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3.2. Computer-simulations setup 

All simulations were performed in floating-point representation using 

MATLAB® software. We used three different types of input signals, sampled at 16 

KHz, and filtered by different-sparsity synthetic and real impulse responses to 

obtain the desired signals. Firstly, we used different-sparsity synthetic acoustic 

impulse responses generated using the approach described in section 3.1 (see 

figures 3.1, 3.2 and 3.3), then we used two acoustic real impulse responses in 

different sparsity levels; one is measured in a car enclosure (see Figure 3.4) 

where the other is measured in a real audio-conference (denoted ACN) room (see 

Figure 3.5).  

In order to use our two real systems in different sparsity levels, the car 

system is used truncated at the first 256 taps to give 𝜉 =0.5138 (less sparse), then 

with all of its 1024 taps which gives 𝜉 =0.7410 (more sparse) where the ‘long’ ACN 

system is used truncated at the first 2048 taps to obtain 𝜉 =0.3673 (less sparse) 

and with all of its 8192 taps which obtains 𝜉 =0.6199 (more sparse).    

 

Figure 3.1: Synthetic impulse response with length 𝐿=256, the bulk delay length 

𝐿𝑝= 30, 𝜓 =160 and 𝜉 =0.3028 (non-sparse or dispersive). 
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Figure 3.2: Synthetic impulse response with length 𝐿=256, the bulk delay length 

𝐿𝑝= 30, 𝜓 =60 and 𝜉 =0.4743 (less sparse). 

 
Figure 3.3: Synthetic impulse response with length 𝐿=256, the bulk delay length 

𝐿𝑝= 30, 𝜓 =10 and 𝜉 =0.8296 (very sparse). 

  

Figure 3.4: (Left) Car impulse response with length 𝐿=256 and 𝜉 =0.5138 (less 

sparse). (Right) Car impulse response with 𝐿=1024 and 𝜉 =0.7410 (more sparse). 
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Figure 3.5: (Left) ACN impulse response with length 𝐿=2048 and 𝜉 =0.3673 (less 

sparse). (Right) ACN impulse response with 𝐿=8192 and 𝜉 =0.6199 (more sparse). 

Concerning inputs, the first one used is a stationary zero-mean correlated 

noise, with a spectrum equivalent to the average spectrum of speech. It is usually 

called USASI (USA Standards Institute, now ANSI) [82] noise in the field of 

acoustic echo cancellation. Its spectral dynamic range is 29 dB. Figure 3.6 shows 

the used USASI noise normalized on its maximum. 

The second used input signal is a simulated auto-regressive (AR) stationary 

process of order 20. This AR(20) model was obtained from a linear prediction 

analysis of the French word “UN” . Its frequency spectrum is represented in Figure 

3.7 where we can see four main peaks. The spectral dynamic range of the AR 

input signal is about 40 dB.  

Thirdly, and since in real situations the input signal is non-stationary, we 

use a long speech signal that was obtained by concatenation of a man voice and a 

woman voice in the same sequence (see Figure 3.8). The estimated spectral 

dynamic range for this signal is 40 dB.  
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Figure 3.6: The used USASI noise (input signal). Its length is 131072 samples. 

 

Figure 3.7: The used WGN AR20-model (input signal): (Left) in the frequency 

domain [44] and (Right) in the time domain. Its length is 256000 samples. 

 

Figure 3.8: The used SPEECH input signal with length of 108208 samples. 
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The followings should be noted: 

 For the sake of uniformity and in order to avoid operations on big numbers, 

the input and output signals are normalized to their maxima during 

simulations.  

 Many parameters that are usually determined via exhaustive-simulations or 

chosen in an ad-hoc manner are chosen in a similar way as used in 

simulations of their relative original published papers.    

 To be more practical, for most cases, we added a white-noise to the desired 

signal with a signal-to-noise ratio (SNR) equals to 50dB as used in [44], 

which gives a good quality of the signal. 

 The step-size was chosen 𝜇=0.3 as in [18], [19], [43]. This value gives a 

good trade-off between convergence speed and estimation accuracy. 

 For IPNLMS, we took 𝛼=-0.5 because it leads IPNLMS to behave better 

than both NLMS and PNLMS in most cases [39].  

 In order to compare the re-convergence behavior, we made an abrupt 

change (a jump) in the impulse response by multiplying the desired signal 

by 1.5 at a chosen instant. 

 As explained in subsection 1.6.1, for stationary-input signals, we used the 

time-average (over blocks of 256 samples for USASI-noise and 1024 

samples for WGN-AR20) normalized MSE (NMSE) learning curve where for 

the speech input signal (non-stationary), we preferred using the time-

average MSE (over blocks of 256 samples). 

 For the sake of clarification, the corresponding simulation details are given 

in the title of each obtained figure. 

3.3. Comparison-criteria setup 

To compare algorithms belonging to the same family, we kept the similarity 

of the main ‘stem’ parameters but we were free in the selection or optimization of 

the additional control parameters because they represent a distinguishing feature 

that should be well exploited for the newer algorithm versions in order to 

compensate their increase in the computational complexity.  

To compare algorithms of different frameworks (e.g. CS-based and 

PNLMS-type versions), a systematic used procedure is designing them to achieve 
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approximately the same final steady-state MSE-level as the NLMS algorithm which 

is taken as reference. Then, we feel free in the selection of their parameters and 

investigate if there is any superiority of one algorithm with respect to the other.  

3.4. Comparison between classical sparsity-aware NLMS-based algorithms 

We have made tests using three synthetic impulse responses of different-

sparsity levels with USASI-noise input (see figures 3.9). Then we used two real car 

impulse responses with USASI-noise input. One with length 𝐿=256 (less sparse), 

and the other with 𝐿=1024 (more sparse), see figures 3.10.  

Investigating these figures, we observe that both PNLMS and MPNLMS 

have faster initial convergence than NLMS but followed by a second phase of 

slower convergence rate and worse steady-state performance with respect to 

NLMS when the impulse response is dispersive. This is because when the 

unknown system is dispersive, 𝜅𝑙(𝑛 − 1) in eq. (2.4) becomes significantly large for 

most 0 ≤ 𝑙 ≤ 𝐿 − 1. As a consequence, the denominator of 𝑞𝑙(𝑛 − 1) in eq. (2.3) is 

large, giving rise to a small step-size for each large coefficient. This causes a 

significant degradation in convergence performance for PNLMS and MPNLMS 

when the impulse response is dispersive.  

It is also observed from simulations that, although the IPNLMS algorithm 

(for 𝛼 =-0.5) has faster convergence than NLMS and PNLMS regardless of the 

impulse-response nature (sparse or dispersive) or the input nature (stationary or 

non-stationary), but it does not outperform the MPNLMS algorithm for highly 

sparse impulse responses. However, MPNLMS is more complex than IPNLMS. 
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Figure 3.9a: USASI-noise input. Synthetic system with  𝐿=256, 𝜓 =160 and 𝜉 

=0.3028 (dispersive). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5) 

and MPNLMS (𝜇=0.3). Output with SNR=50dB. 

 
Figure 3.9b: USASI-noise input. Synthetic system with  𝐿=256, 𝜓 =60 and 𝜉 

=0.4743 (less sparse). NLMS (mu=0.3), PNLMS (mu=0.3), IPNLMS (mu=0.3, 𝛼=-

0.5) and MPNLMS (mu=0.3). Output with SNR=50dB. 
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Figure 3.9c: USASI-noise input. Synthetic system with  𝐿=256, 𝜓 =10 and 𝜉 

=0.8296 (very sparse). NLMS (mu=0.3), PNLMS (mu=0.3), IPNLMS (mu=0.3, 𝛼=-

0.5) and MPNLMS (mu=0.3). Output with SNR=50dB. 

 
Figure 3.10a: USASI-noise input. Real Car system with 𝐿=256 and 𝜉 =0.5138 (less 

sparse). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5) and MPNLMS 

(𝜇=0.3). Output with SNR=50dB.  
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Figure 3.10b: USASI-noise input. Real Car system with 𝐿=1024 and 𝜉 =0.7410 

(more sparse). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5) and 

MPNLMS (𝜇=0.3).  Output with SNR=50dB.  

By making an abrupt change in the real car impulse responses, we obtained 

the same results concerning the re-convergence behavior of algorithms, see 

figures 3.11.  

 
Figure 3.11a: USASI-noise input. Car system with 𝐿=256 and 𝜉 =0.5138 (less 

sparse). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5) and MPNLMS 

(𝜇=0.3).  Output with SNR=50dB. An abrupt change of the impulse response is 

applied at n=63744. 
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Figure 3.11b: USASI-noise input. Car system with 𝐿=1024 and 𝜉 =0.7410 (more 

sparse). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5) and MPNLMS 

(𝜇=0.3).  Output with SNR=50dB. An abrupt change of the impulse response is 

applied at n=63744. 

The same thing is found also when testing with WGN-AR20 input or when 

using real ACN impulse responses (𝐿=2048 for less sparse and 𝐿=8192 for more 

sparse). See figures 3.12. 

 
Figure 3.12a: WGN-AR20 input. Real ACN system with 𝐿=2048 and 𝜉 =0.3673 

(less sparse). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5) and 

MPNLMS (𝜇=0.3). Output with SNR=50dB.  
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Figure 3.12b: WGN-AR20 input. Real ACN system with 𝐿=8192 and 𝜉 =0.6199 

(more sparse). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5) and 

MPNLMS (𝜇=0.3). Output with SNR=50dB.  

Extending to non-stationary input (speech), we made first a test to compare 

noisy and noiseless output cases, see figures 3.13. In the case of noisy output, 

there is only less sharp peaks down and a shift in the final MSE due to the added 

output SNR (50dB) for the compared algorithms. Therefore, simulations using 

noisy-outputs are more practical and better in avoiding zero-division issues during 

calculations that correspond to very small or zero inputs (silences). 
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Figure 3.13a: Speech input. Real car system with 𝐿=256. NLMS (𝜇=0.3), PNLMS 

(𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5) and MPNLMS (𝜇=0.3).  No output noise. 

 Noisy case (SNR=50dB)  

 
Figure 3.13b: Speech input. Real car system with 𝐿=256. NLMS (𝜇=0.3), PNLMS 

(𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5) and MPNLMS (𝜇=0.3). Output with SNR=50dB. 

Figures 3.14 are obtained using two real long ACN systems (less sparse 

with 𝐿=2048 and more sparse with 𝐿=8192) with WGN with speech input. It could 

be noted that the same analogy is still valid for non-stationary case. That is, 

although PNLMS and MPNLMS have good initial convergence, they, later, perform 

worse than NLMS in dispersive systems. They behave significantly better than 
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NLMS in sparse systems. IPNLMS algorithm obtains a good overall performance 

in both sparse and dispersive systems. 

We found the same results when testing with car systems and when using a 

jump in the impulse response.     

 
Figure 3.14a: Speech input. Real ‘long’ ACN system with 𝐿=2048 and 𝜉 =0.3673 

(less sparse). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5) and 
MPNLMS (𝜇=0.3).  Output with SNR=50dB.  

 
Figure 3.14b: Speech input. Real ‘long’ ACN system with 𝐿=8192 and 𝜉 =0.6199 

(more sparse). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5) and 

MPNLMS (𝜇=0.3).  Output with SNR=50dB.  
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3.5. Comparison between CS-based ISS and VSS algorithms 

3.5.1. Choice of regularization step-size 𝜌(𝑅)𝑍𝐴 and threshold parameter 𝜀𝑅𝑍𝐴 

In this subsection, we conduct tests to determine experimentally the values 

of 𝜌(𝑅)𝑍𝐴 and 𝜀𝑅𝑍𝐴 that give a good performance of the (R)ZA-NLMS algorithm for a 

moderate-sparsity real car system (𝜉 =0.5138).  

A). Variation of 𝜌(𝑅)𝑍𝐴 

In order to determine systematically a good value of the regularization step-

size 𝜌(𝑅)𝑍𝐴, the procedure used in [32]-[34] is followed (i.e. 𝜌(𝑅)𝑍𝐴 is expressed in 

terms of 𝜎𝑛
2 ). Initially, we considered 𝜎𝑛

2 = 10−SNR 10⁄  as in [32], where SNR is 

50dB. Then, since the input signal power is not set equal to 1, we continued 

testing experimentally for many values of 𝜌(𝑅)𝑍𝐴 as shown in Figure 3.15a.  

It can be observed from Figure 3.15a that better steady-state performance 

is obtained for the ZA-NLMS algorithm when 𝜌𝑍𝐴  is smaller, and since the 

convergence speed increases with the increase of  𝜌𝑍𝐴 (see subsection 2.3.4), a 

convenient value for our simulations is 𝜌(𝑅)𝑍𝐴=0.003𝜎𝑛
2. 

 

Figure 3.15a: USASI-noise input. Car system with 𝐿=256 and 𝜉 =0.5138. NLMS 

(𝜇=0.3), ZA-NLMS (𝜇=0.3, 𝜌𝑍𝐴=0.3𝜎𝑛
2 / 0.03𝜎𝑛

2 / 0.003𝜎𝑛
2 / 0.0003𝜎𝑛

2). Output with 

SNR=50dB. 
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B). Variation of 𝜀𝑅𝑍𝐴  

From Figure 3.15b, we observe that better steady-state performance is 

obtained for the RZA-NLMS algorithm when 𝜀𝑅𝑍𝐴  is larger and since the 

reweighted zero-attractor (third term in the update equation (2.26)) takes 

significant effect only on those taps whose magnitudes are comparable to 1/𝜀𝑅𝑍𝐴, 

a good choice of 𝜀𝑅𝑍𝐴 for our simulations can be 30 (to zero-attract significantly 

taps of values less than 1/30). 

For the VSS-ZA-NLMS and VSS-RZA-NLMS algorithms, the smoothing 

factor is taken to be 𝛽=0.1, the initialization maximal step-size 𝜇𝑚𝑎𝑥=1.0 and the 

positive threshold parameter 𝐶=10−7. 

 

Figure 3.15b: USASI-noise input. Car system with 𝐿=256 and 𝜉 =0.5138. NLMS 

(𝜇=0.3), RZA-NLMS (𝜇=0.3, 𝜀𝑅𝑍𝐴=0.3 / 3.0 / 30 / 300). Output with SNR=50dB. 

Before starting with comparisons, it is worthy to mention here that most of 

published papers dealing with ZA-NLMS and RZA-NLMS algorithms assumed 

white Gaussian inputs and used impulse responses with relatively small number of 

taps (8, 16, 64 taps) [30]-[34], [83], [84] and they found slight performance 

improvements of the ZA-NLMS and RZA-NLMS algorithms with respect to the 

NLMS algorithm for highly sparse systems where the NLMS was better for less 

sparse and dispersive systems. This is because the ℓ1-constraint for significant 

non-zero tap-weights is useless [85]. 
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In our study, longer systems and more complicated inputs are used. Firstly, 

we use synthetic impulse responses with USASI-noise input, see figures 3.16. 

Then, we extend for ACN systems (figures 3.17) and speech input (figures 3.18). 

 Investigating, we could observe that the performance of ZA-NLMS and 

RZA-NLMS algorithms is similar to the NLMS algorithm and even worse in less 

sparse cases where the VSS-ZA-NLMS and the VSS-RZA-NLMS algorithms 

outperform significantly NLMS (and R/ZA-NLMS) for all cases (stationary and non-

stationary) in terms of convergence speed and estimation accuracy. Furthermore, 

VSS-RZA-NLMS has a little bit better steady-state MSE (better accuracy) than 

VSS-ZA-NLMS but more computational complexity.  

The relatively small value of 𝜌(𝑅)𝑍𝐴  chosen to satisfy the requirement of 

good estimation-accuracy led the reweighted algorithms (RZA-NLMS and VSS-

RZA-NLMS) to behave approximately the same as the non-reweighted ones (ZA-

NLMS and VSS-ZA-NLMS respectively).  

 
Figure 3.16a: USASI-noise input. Synthetic system with length 𝐿=256, 𝜓 =160 and 

𝜉 =0.3028 (dispersive). 𝜇=0.3 for all algorithms, 𝜌(𝑅)𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 

𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7. Output with SNR=50dB. 
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Figure 3.16b: USASI-noise input. Synthetic system with length  𝐿=256, 𝜓 =10 and 

𝜉 =0.8296 (very sparse). 𝜇=0.3 for all algorithms, 𝜌(𝑅)𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 

𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7. Output with SNR=50dB. 

 
Figure 3.17a: WGN-AR20 input. ACN system with 𝐿=2048 and 𝜉 =0.3673 (less 

sparse). 𝜇=0.3 for all algorithms, 𝜌(𝑅)𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7. 

Output with SNR=50dB. 
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Figure 3.17b: WGN-AR20 input. ACN system with 𝐿=8192 and 𝜉 =0.6199 (more 

sparse). 𝜇=0.3 for all algorithms, 𝜌(𝑅)𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7. 

Output with SNR=50dB.  

 
Figure 3.18a: Speech input. Car system with 𝐿=256 and 𝜉 =0.5138 (less sparse). 

𝜇=0.3 for all algorithms, 𝜌(𝑅)𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7. Output 

with SNR=50dB.  
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Figure 3.18b: Speech input. Car system with 𝐿=1024 and 𝜉 =0.7410 (more 

sparse). 𝜇=0.3 for all algorithms, 𝜌(𝑅)𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7. 

Output with SNR=50dB.  

The same results are found for the re-convergence behavior when using an 

abrupt change (jump) in the impulse response and when using WGN-AR20 input. 

3.6. Comparisons between pairs of conventional sparsity-aware & SC-algorithms 

and the VSS-RZA-NLMS algorithm 

In all comparisons figures, the NLMS learning-curve is added as a 

reference. 

In order to reduce graphs crowding and since the VSS-RZA-NLMS attains 

the best performance of the CS-based algorithms compared in the previous 

section, we consider it as the best candidate to represent its family in the following 

comparisons. 

3.6.1. Comparison between PNLMS, SC-PNLMS and VSS-RZA-NLMS 

In figures 3.19, we made our comparisons using USASI-noise input with two 

synthetic impulse responses, then, we tested the re-convergence using two real 

car systems with a jump at n=63744, see figures 3.20. After that, the case of non-

stationary speech input is tested (figures 3.20). 
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From figures 3.19-3.21 (a & b), one can notice that the SC-PNLMS 

algorithm outperforms the PNLMS algorithm especially for less-sparse and 

dispersive systems with a performance very close to NLMS but slightly worse. 

However, for sparse cases, SC-PNLMS and PNLMS become very similar and 

behave better in terms of convergence rate and accuracy than NLMS. 

For stationary inputs, the VSS-RZA-NLMS algorithm has the best overall 

convergence-speed and steady-state performance particularly in less-sparse and 

dispersive systems where PNLMS and SC-PNLMS have, most of the time, faster 

initial convergence (or re-convergence) speed which reduces later to be slower 

than the convergence speed of VSS-RZA-NLMS. In addition, the longer and the 

more-sparse the system is, the closer the learning-curves of PNLMS/SC-PNLMS 

to the learning-curve of VSS-RZA-NLMS and SC-PNLMS can achieve even better 

steady-state level than VSS-RZA-NLMS as found when testing with ACN system. 

For speech input (non-stationary), PNLMS and SC-PNLMS are more 

favorable in highly-sparse systems where VSS-RZA-NLMS has superior 

performance for less-sparse and dispersive systems.  

 
Figure 3.19a: USASI-noise input. Synthetic system with length 𝐿=256, 𝜓 =160 and 

𝜉 =0.3028 (dispersive). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), SC-PNLMS (𝜇=0.3, 𝜆=6.0) 

and VSS-RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with 

SNR=50dB. 
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Figure 3.19b: USASI-noise input. Synthetic system with length  𝐿=256, 𝜓 =10 and 

𝜉 =0.8296 (very sparse). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), SC-PNLMS (𝜇=0.3, 

𝜆=6.0) and VSS-RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). 

Output with SNR=50dB. 

 
Figure 3.20a: USASI-noise input. Car system with 𝐿=256 and 𝜉 =0.5138 (less 

sparse). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), SC-PNLMS (𝜇=0.3, 𝜆=6.0) and VSS-

RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with 

SNR=50dB. An abrupt change of the impulse response is applied at n=63744. 
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Figure 3.20b: USASI-noise input. Car system with 𝐿=1024 and 𝜉 =0.7410 (more 

sparse). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), SC-PNLMS (𝜇=0.3, 𝜆=6.0) and VSS-

RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with 

SNR=50dB. An abrupt change of the impulse response is applied at n=63744. 

 

 
Figure 3.21a: Speech input. Car system with 𝐿=256 and 𝜉 =0.5138 (less sparse). 

NLMS (𝜇=0.3), PNLMS (𝜇=0.3), SC-PNLMS (𝜇=0.3, 𝜆=6.0) and VSS-RZA-NLMS 

(𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with SNR=50dB.  
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Figure 3.21b: Speech input. Car system with 𝐿=1024 and 𝜉 =0.7410 (more 

sparse). NLMS (𝜇=0.3), PNLMS (𝜇=0.3), SC-PNLMS (𝜇=0.3, 𝜆=6.0) and VSS-

RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with 

SNR=50dB. 

3.6.2. Comparison between IPNLMS, SC-IPNLMS and VSS-RZA-NLMS 

As previously, tests are made first for synthetic systems with USASI-noise 

input (figures 3.22) and real ACN systems with WGN-AR20 input (figures 3.23), 

then, for the case of speech input (figures) in real ACN systems. Other tests have 

made using an abrupt change is made at the impulse response. The results were 

as follows 

The SC-IPNLMS algorithm outperforms the IPNLMS algorithm especially for 

more-sparse systems. However, for less sparse and dispersive cases, SC-

IPNLMS and IPNLMS behave similarly and their performances are slightly better 

than NLMS.  

For stationary inputs, it is clear that VSS-RZA-NLMS has better global 

convergence-speed and steady-state performance than IPNLMS and SC-IPNLMS 

when the system is less sparse or dispersive where they have, for most cases, a 

little bit faster initial convergence (or re-convergence) speed which reduces later to 

be slower than the convergence speed of VSS-RZA-NLMS. In addition, the longer 

and the more-sparse the system is, the closer the learning-curves of IPNLMS/SC-

IPNLMS to the learning-curve of VSS-RZA-NLMS and they can achieve even 

better steady-state level than VSS-RZA-NLMS as in Figure 3.23b.  
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For speech input (non-stationary), the SC-IPNLMS algorithm has the best 

global performance in more-sparse systems where in less sparse and dispersive 

systems the VSS-RZA-NLMS algorithm is the most favorable. 

 
Figure 3.22a: USASI-noise input. Synthetic system with length 𝐿=256, 𝜓 =160 and 

𝜉 =0.3028 (dispersive). NLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5), SC-IPNLMS 

(𝜇=0.3, 𝛼=-0.5) and VSS-RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 

𝐶=10−7). Output with SNR=50dB. 

 
Figure 3.22b: USASI-noise input. Synthetic system with length  𝐿=256, 𝜓 =10 and 

𝜉 =0.8296 (very sparse). NLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5), SC-IPNLMS 

(𝜇=0.3, 𝛼=-0.5) and VSS-RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 

𝐶=10−7). Output with SNR=50dB. 
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Figure 3.23a: WGN-AR(20) input. ACN system with 𝐿=2048 and 𝜉 =0.3673 (less 

sparse). NLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5), SC-IPNLMS (𝜇=0.3, 𝛼=-0.5) and 

VSS-RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with 

SNR=50dB. 

 
Figure 3.23b: WGN-AR(20) input. ACN system with 𝐿=8192 and 𝜉 =0.6199 (more 

sparse). NLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5), SC-IPNLMS (𝜇=0.3, 𝛼=-0.5) and 

VSS-RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with 

SNR=50dB.  
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Figure 3.24a: Speech input. ACN system with 𝐿=2048 and 𝜉 =0.3673 (less 

sparse). NLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5), SC-IPNLMS (𝜇=0.3, 𝛼=-0.5) and 

VSS-RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with 

SNR=50dB. 

 
Figure 3.24b: Speech input. ACN system with 𝐿=8192 and 𝜉 =0.6199 (more 

sparse). NLMS (𝜇=0.3), IPNLMS (𝜇=0.3, 𝛼=-0.5), SC-IPNLMS (𝜇=0.3, 𝛼=-0.5) and 

VSS-RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with 

SNR=50dB. 
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3.6.3. Comparison between MPNLMS, SC-MPNLMS and VSS-RZA-NLMS 

The same procedure as in the precedent subsection, we started 

comparisons using synthetic systems with USASI-noise input in figures 3.25, then, 

we used real ACN systems with WGN-AR20 input (figures 3.26) and finally speech 

input is used in real car systems (figures 3.27). Tests for re-convergence behavior 

have also been conducted. 

Observations made at figures 3.25-3.27 (a & b) gave the result that the SC-

MPNLMS algorithm slightly surpasses the MPNLMS algorithm especially for less-

sparse and dispersive systems.  

For stationary inputs, it is clear that the overall performance of VSS-RZA-

NLMS is better than MPNLMS and SC-MPNLMS for most less-sparse and 

dispersive systems where they have faster initial convergence (or re-convergence) 

speed in more-sparse impulse responses. In addition, the longer and the more-

sparse the system is, the closer the learning-curves of MPNLMS/SC-MPNLMS to 

the one of VSS-RZA-NLMS and can achieve even better steady-state level than 

VSS-RZA-NLMS, which is the case in Figure 3.26b.  

    For speech input (non-stationary), the SC-MPNLMS and MPNLMS 

algorithms are better in more-sparse systems where in less-sparse and dispersive 

systems the VSS-RZA-NLMS algorithm behaves the best.  

 
Figure 3.25a: USASI-noise input. Synthetic system with length 𝐿=256, 𝜓 =160 and 

𝜉 =0.3028 (dispersive). NLMS (𝜇=0.3), MPNLMS (𝜇=0.3), SC-MPNLMS (𝜇=0.3, 

𝜆=6.0) and VSS-RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). 

Output with SNR=50dB. 
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Figure 3.25b: USASI-noise input. Synthetic system with length  𝐿=256, 𝜓 =10 and 

𝜉 =0.8296 (very sparse). NLMS (𝜇=0.3), MPNLMS (𝜇=0.3), SC-MPNLMS (𝜇=0.3, 

𝜆=6.0) and VSS-RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). 

Output with SNR=50dB. 

 
Figure 3.26a: WGN-AR(20) input. ACN system with 𝐿=2048 and 𝜉 =0.3673 (less 

sparse). NLMS (𝜇=0.3), MPNLMS (𝜇=0.3), SC-MPNLMS (𝜇=0.3, 𝜆=6.0) and VSS-

RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with 

SNR=50dB. 
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Figure 3.26b: WGN-AR(20) input. ACN system with 𝐿=8192 and 𝜉 =0.6199 (more 

sparse). NLMS (𝜇=0.3), MPNLMS (𝜇=0.3), SC-MPNLMS (𝜇=0.3, 𝜆=6.0) and VSS-

RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with 

SNR=50dB.  

 

 
Figure 3.27a: Speech input. Car system with 𝐿=256 and 𝜉 =0.5138 (less sparse). 

NLMS (𝜇=0.3), MPNLMS (𝜇=0.3), SC-MPNLMS (𝜇=0.3, 𝜆=6.0) and VSS-RZA-

NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with SNR=50dB.  
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Figure 3.27b: Speech input. Car system with 𝐿=1024 and 𝜉 =0.7410 (more 

sparse). NLMS (𝜇=0.3), MPNLMS (𝜇=0.3), SC-MPNLMS (𝜇=0.3, 𝜆=6.0) and VSS-

RZA-NLMS (𝜌𝑅𝑍𝐴=0.003𝜎𝑛
2, 𝜀𝑅𝑍𝐴=30, 𝜇𝑚𝑎𝑥=1.0 and 𝐶=10−7). Output with 

SNR=50dB. 

3.7. Summary 

Each one of the discussed algorithms has its advantages and its drawbacks 

in terms of many criteria such as convergence speed, estimation accuracy and 

computational complexity. Depending on system nature, application requirements 

and user objectives, some algorithms are more favorable than others. There is 

always a trade-off to optimize the quality-to-cost ratio of the chosen algorithm. If 

two algorithms behave similarly for a particular application, then, the one with less 

computational complexity is the most favorable. 

From the previous results, we conclude generally that VSS and SC 

algorithms outperform ISS and conventional SA algorithms respectively but they 

have more computational complexity.  

The main achieved results from the previous simulations in stationary and 

non-stationary cases are summarized in Tables 3.1 and 3.2 respectively. The 

value 5 is given for the best algorithm performance (either fastest convergence 

speed, or the most precise estimation accuracy, or the lowest computational 

complexity) where the value 1 is assigned for the worst (either slowest 
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convergence speed, or the least precise estimation accuracy, or the highest 

computational complexity). The values in between indicate the closeness either to 

the best (e.g. 4) or to the worst (e.g. 2).  

 Stationary-inputs case 

Table 3.1: Recapitulation of the main obtained results (stationary inputs). 

STATIONARY  
Dispersive and less sparse 

IR 
Strongly sparse systems 

IR 
Comput. 

complexity 

Algorithm 
Speed of 

convergence 
Estimation 
accuracy 

Speed of 
convergence 

Estimation 
accuracy 

NLMS 4 5 1 2 5 

PNLMS 1 1 4 4 4 

SC-PNLMS 3 3 4 4 3 

IPNLMS 4 4 4 4 3.5 

SC-IPNLMS 4 4 4.5 4.5 3 

MPNLMS 2 2 5 5 2 

SC-MPNLMS 3 3.5 5 5 1 

ZA-NLMS 4 4 1 1 4.5 

VSS-ZA-NLMS 5 5 3.5 4.5 3.5 

RZR-NLMS 4 4 1 1.5 4 

VSS-RZA-NLMS 5 5 3.5 5 2 

 

 Non-stationary-inputs (speech) case 

Figures 3.28 and 3.29 show the performance of the SC algorithms (SC-

PNLMS, SC-IPNLMS and SC-MPNLMS) for speech input (non-stationary) with 

sparse car system and sparse ACN system respectively. Tests for dispersive 

cases have also been investigated. The comparison results of non-stationary-

inputs case are summarized in Table 3.2.  
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Figure 3.28: Speech input. Car system with 𝐿=1024 and 𝜉 =0.7410 (more sparse). 
NLMS (𝜇=0.3), SC-PNLMS (𝜇=0.3, 𝜆=6.0), SC-IPNLMS (𝜇=0.3, 𝛼=-0.5) and SC-

MPNLMS (𝜇=0.3, 𝜆=6.0). Output with SNR=50dB. An abrupt change of the 
impulse response is applied at n=63744. 

 

 
Figure 3.29: Speech input. ACN system with 𝐿=8192 and 𝜉 =0.6199 (more 

sparse). NLMS (𝜇=0.3), SC-PNLMS (𝜇=0.3, 𝜆=6.0), SC-IPNLMS (𝜇=0.3, 𝛼=-0.5) 

and SC-MPNLMS (𝜇=0.3, 𝜆=6.0). Output with SNR=50dB. 
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Table 3.2: Recapitulation of the main obtained results (speech-input). 

SPEECH  
Dispersive and less sparse 

IR 
Strongly sparse systems 

IR 
Comput. 

complexity 

Algorithm 
Speed of 

convergence 
Estimation 
accuracy 

Speed of 
convergence 

Estimation 
accuracy 

NLMS 4 4 2 2 5 

PNLMS 1 1 3.5 3.5 4 

SC-PNLMS 1.5 1.5 3.5 3.5 3 

IPNLMS 2.5 2.5 4 4 3.5 

SC-IPNLMS 3 3 4 4 3 

MPNLMS 2 2 5 5 2 

SC-MPNLMS 2 2 5 5 1 

ZA-NLMS 3 3 1 1 4.5 

VSS-ZA-NLMS 5 5 3 3 3.5 

RZR-NLMS 3 3 1 1 4 

VSS-RZA-NLMS 5 5 3 3 2 
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CONCLUSION 
 

 

 

This report addressed the problem of identifying long acoustic impulse 

responses using sparse adaptive filtering algorithms. Because of the 

implementation easiness and low complexity cost of the NLMS algorithm, this work 

focuses on the study and comparison of the most known and recent adaptive 

filtering NLMS-based algorithms for sparse and non-sparse AIRs, emphasizing on 

the achievement of fast convergence rate and good accuracy with relatively low 

computational complexity.  

The trade-off between convergence speed and the steady state MSE is an 

important issue in the context of system identification and AEC. This issue can be 

balanced by choosing the suitable algorithm with the appropriate parameters for 

the adaptive filtering process. 

A series of simulations were carried out both in synthetic and real different-

sparsity AIRs for NLMS, its classical proportionate SA versions (PNLMS, IPNLMS 

and MPNLMS) and their SC upgrades (SC-PNLMS, SC-IPNLMS and SC-

MPNLMS) as well as some recent CS-based algorithms namely ZA-NLMS, RZA-

NLMS, VSS-ZA-NLMS and VSS-RZA-NLMS. 

These experiments helped to analyze and investigate the algorithms 

strengths and weaknesses in terms of convergence and re-convergence speed, 

estimation accuracy and computational complexity. 

 For classical ISS-algorithms, NLMS gives better performance in non-

sparse systems, whereas MPNLMS performs well in sparse impulse responses. It 

is found also that, generally, VSS-algorithms are better than ISS ones and SC-

algorithms are better than SA ones for most sparseness levels.  
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Moreover, IPNLMS/SC-IPNLMS exhibit an overall better performance in a 

stationary-input variable-sparsity system where VSS-ZA-NLMS/VSS-RZA-NLMS 

perform better for non-stationary inputs (speech) especially in non-sparse 

systems. If many algorithms give approximately the same performance, the one 

with the least computational complexity is the most favorable. 
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FUTURE WORKS 

 

 

 

The work within this report could be further extended in a number of 

directions, as below 

Firstly, it should be addressed that all sparse and non-sparse NLMS-based 

algorithms still suffer from the limitation that the convergence time is determined 

by the ratio of the maximum to the minimum eigenvalues of the correlation matrix 

of the input signal (spectral dynamic range) [54]. This ratio is related to the ratio of 

the maximum to the minimum input power spectrum (commonly called spectral 

dynamic range or the spectral flatness measure [42] of the input signal). 

In another hand, RLS-based algorithms have fast convergence rate that is 

independent to the spectral dynamic range of the input signal [1]. Several recent 

works have been conducted to reduce the complexity of RLS and Fast-RLS 

(FRLS) algorithms while keeping their good performance [82], [86]-[92]. Efficient 

applications of sparse algorithms techniques on these algorithms are worthy topics 

of future studies that may obtain a new family of robust and low-complexity sparse 

algorithms.  

Moreover, a combination of the ZA-NLMS (or RZA-NLMS) and the PNLMS 

algorithms is proposed in [93]. The resultant algorithms are named the (R)ZA-

PNLMS which incorporate the PNLMS control-matrix 𝐐  into the (R)ZA-NLMS 

update equations. Although this combination had not been discussed in this report, 

because it increases the complexity with a negligible improvement in the 

performance of the classical PNLMS algorithm, but it opens a wide range of future 

possibilities to design new improved sparse algorithms that combine CS-based 

and PNLMS-type families. 
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Further developments and more designed algorithms could always be 

obtained by making more combinations of different techniques used in sparse 

adaptive filtering algorithms whether in the time-domain or in the frequency-

domain. Likewise, on the way to yield new possibilities, different frameworks (LMS; 

affine projection algorithms (APA) [45], [46], [57], [83], [94], RLS [35]-[37], [95]; the 

least mean fourth (LMF) adaptive algorithm framework [96]-[101]; compressed 

sensing [6], [21]-[24], [70]-[74]; wavelets [27], [69], [102], [103]; … etc.) may 

possibly be combined using some reciprocity schemes such as the so-called 

cooperative-learning (CL) [104] and different sparseness measures can be 

incorporated [41], and other norms (e.g.: 𝓵𝒑 -norm,…) can be used [32], [105], 

[106].  

Furthermore, the rigorous analysis [85], [107], [108] concerning the 

performance of any new algorithm is a commendable subject of research too. It 

involves many details such as stability conditions and effects of variation of 

different parameters for different input signals (stationary, non-stationary) and 

systems with different sparseness levels. 
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APPENDICES 

APPENDIX A 

LIST OF ABBREVIATIONS AND SYMBOLS 

 

 

 

Abbreviations 

ACN Audio-conference 

AEC Acoustic echo cancellation 

AEC/NEC Acoustic echo cancellation or Network echo cancellation 

AIR(s) Acoustic impulse response(s) 

ANSI American National Standards Institute 

APA Affine projection algorithms 

AR Auto-regressive 

AR(20) Auto-regressive stationary process of order 20 

ASCE Acoustic sparse channel estimation 

BER Bit error rate 

BP Basis pursuit 

CL Cooperative-learning 

COP Criterion of performance 

CS Compressed or compressive sensing or sampling 

dB Decibel 

e.g. ‘exempli gratia’ (Latin) which means for example 

EG Exponentiated gradient 

EM Expectation maximization 

EMSE Excess MSE 

eq. Equation 

Figures x.xx-y.yy(a&b) Means all figures; from Figure ‘x.xx(a)’ to ‘y.yy(b)’ 
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FIR Finite impulse response 

FRLS Fast-RLS 

HDTV High definition television  

i.e. Used for clarification and to show the true meaning  

IPNLMS Improved PNLMS 

IR(s) Impulse response(s) 

ISS Invariable (or invariant)-step-size 

ISS-NLMS Invariable -step-size NLMS 

ISS-RZA-NLMS Invariable-step-size Reweighted zero attracting NLMS 

ISS-ZA-NLMS Invariable-step-size zero attracting NLMS 

KHz Kilo-Hertz 

LASSO Least absolute shrinkage and selection operator 

LMF Least mean fourth  

LMS Least mean square 

Log Logarithm 

LRMS Loudspeaker-room-microphone system 

MATLAB Matrix laboratory 

MP Matching pursuit 

MPNLMS Mu-law (μ-law) PNLMS 

ms Millisecond 

MSE Mean square error 

NEC Network echo cancellation 

NLMS Normalized LMS 

NMSE Normalized MSE (time-average) 

(N)MSE NMSE or MSE 

NP Non-deterministic polynomial 

PNLMS Proportionate NLMS 

R/ZA-NLMS ZA-NLMS and RZA-NLMS 

RIAs Réponses impulsionnelles acoustiques 

RLS Recursive least square 

RZA-LMS Reweighted zero attracting (or attractor) LMS 

RZA-NLMS Reweighted zero attracting (or attractor) NLMS 

RZA-ISS-NLMS Reweighted zero attracting invariable-step-size NLMS 
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RZA-VSS-NLMS Reweighted zero attracting variable-step-size NLMS 

R/ZA-NLMS ZA-NLMS and RZA-NLMS 

(R)ZA-NLMS ZA-NLMS or RZA-NLMS 

SA Sparseness-aware  

SC Sparseness-controlled improved NLMS 

SC-IPNLMS Sparseness-controlled 

SC-MPNLMS Sparseness-controlled μ-law proportionate NLMS 

SC-PNLMS Sparseness-controlled proportionate NLMS 

SNR Signal noise ratio 

SOE Signal operating environment 

USA United States of America 

USASI USA Standards Institute 

VSS Variable-step-size 

VSS-NLMS Variable-step-size NLMS 

VSS-RZA-NLMS Variable-step-size Reweighted zero attracting NLMS 

VSS-ZA-NLMS Variable-step-size zero attracting NLMS 

WGN White Gaussian noise 

ZA-LMS Zero attracting (or attractor) LMS 

ZA-NLMS Zero attracting (or attractor) NLMS 

ZA-ISS-NLMS Zero attracting invariable-step-size NLMS 

ZA-VSS-NLMS Zero attracting variable-step-size NLMS 

[xx]-[yy] Means including all references; from number ‘xx’ up to 

number ‘yy’ 

General Notations 

𝐗  Matrix quantity 

𝐱  or  𝒙 Vector quantity 

𝑥  or  𝑋 Scalar quantity 

𝑥(𝑛)  Function of a discrete variable at time index 𝑛 

 .̂  Estimated quantity 
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Operators 

[. ]𝑯  Hermitian transposition operator 

[. ]𝑻  Non-conjugate matrix transposition operator 

[. ]−𝟏  Matrix inverse operator 

|. |  Absolute operator 

〈 . 〉  Time averaging (over 256 samples in our simulations)  

𝑑𝑖𝑎𝑔{. }  Diagonal operator 

𝐸{. }  Expectation operator 

𝑒(.) Exponential function 

ln(. )  Natural logarithmic function  

log10(. )  Common (base 10) logarithmic function 

𝑚𝑎𝑥{. }  Maximum function 

sgn( . ) Signum function 

‖. ‖1   ℓ1-norm 

‖. ‖2  ℓ2-norm (Euclidean norm) 

‖. ‖𝑝  ℓ𝑝-norm 

∇  Gradient vector 

∇̂  Estimation of gradient vector 

𝜕(. )

𝜕(. )
 

Partial derivative 

Symbols and variables 

[. ]𝑚×𝑛 Matrix of dimension 𝑚 rows and 𝑛 columns 

𝟎𝑚×𝑛 Null matrix of dimension 𝑚 rows and 𝑛 columns 

𝐶 Positive threshold parameter for VSS-NLMS based algorithms 

𝐶~𝒪(1/SNR)  𝐶 is proportional to the order of (1/SNR) 

𝐸0 The input signal power which is set equal to unity in reference [32] 

𝐐(𝑛) Diagonal step-size control matrix 

𝐑 Auto-corellation matrix 

𝑐 Non-zero scalar 

𝑐𝑠𝑡 Constant 

𝑒(𝑛) a priori error 
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𝑒𝑝(𝑛) a posteriori error 

𝐡 True impulse response 

ℎ𝑖  𝑖𝑡ℎ element of 𝐡 

 �̂�(𝑛) Estimated impulse response 

ℎ̂𝑖(𝑛) 𝑖𝑡ℎ element of  �̂�(𝑛) 

 �̂�𝑜𝑝𝑡 Wiener-Hopf optimum estimated solution for the IR 

𝐿 Length of adaptive filter 

𝐿𝑝 Leading zeros models the length of the bulk delay  

𝐿𝑢 𝐿𝑢 = 𝐿 − 𝐿𝑝 , the length of the decaying window 

𝑛 Sample iteration 

𝐛 𝐿𝑢 × 1  vector, defined as a zero-mean white Gaussian noise 

(WGN) sequence with variance 𝜎𝑏
2 

𝒑(𝑛) Update vector used to estimate 𝜇(𝑛)  of VSS-NLMS based 

algorithms 

𝐩 Cross-correlation vector 

𝐩′ 𝐿 × 1 vector, it ensures elements in the ‘inactive’ region are small 

but non-zero and is an independent zero-mean WGN sequence 

with variance 𝜎𝑝′
2  

𝑞𝑙(𝑛) 𝑙𝑡ℎ diagonal element of 𝐐(𝑛) 

𝐮 𝐿 × 1 vector, used to model a synthetic IR  

𝑤(𝑛) Additive noise in LRMS 

𝑦(𝑛) True system output (desired signal) 

�̂�(𝑛) Adaptive filter output 

𝒪(. ) Order of  

𝒥(𝑛) Cost function 

𝒥..X..(𝑛) Cost function of the algorithm ‘ X ’ 

𝛼 Control parameter for the IPNLMS based algorithms 

𝛽 Smoothing factor for VSS-NLMS based algorithms 

𝛾 Parameter to prevent filter coefficients from stalling during 

initialization stage 

𝛿..X.. Regularization parameter of the algorithm ‘ X ’ to avoid division by 

zero 
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휀𝑅𝑍𝐴 Positive threshold for RZA-NLMS based algorithms 

𝜖 Vicinity value for MPNLMS based algorithms 

𝜅𝑙 𝑙𝑡ℎ threshold value for PNLMS based algorithms  

𝜅𝑚𝑖𝑛 Minimum threshold value for PNLMS based algorithms 

𝜆𝑅𝑍𝐴 Regularization parameter for RZA-NLMS based algorithms 

𝜆𝑍𝐴 Regularization parameter for ZA-NLMS based algorithms 

𝜇 Invariable step-size parameter 

𝜇𝑚𝑎𝑥 Maximum step-size for VSS-NLMS based algorithms 

𝜇(𝑛) Variable step-size parameter 

𝜇..X.. Invariable step-size parameter of the algorithm ‘ X ’ 

𝜈 Compensation factor for MPNLMS based algorithms 

𝜉(𝐡) Sparseness measure of the vector 𝐡 

𝜉(𝑛) Sparseness measure of the vector  �̂�(𝑛 − 1) 

𝜌 Parameter to prevent individual filter coefficients from stalling 

when their magnitudes are much smaller than the magnitude of 

the largest coefficient 

𝜌(𝑛) Variable 𝜌 with respect to 𝜉(𝑛) for SC-PNLMS and SC-MPNLMS 

𝜌𝑅𝑍𝐴 Zero-attraction controller (regularization step-size) for RZA-NLMS 

based algorithms 

𝜌𝑍𝐴 Zero-attraction controller (regularization step-size) for ZA-NLMS 

based algorithms 

𝜎𝑏
2 Variance of the vector 𝐛 

𝜎𝑛
2 Variance of the system noise 

𝜎𝑝′
2  Variance of the vector 𝐩′ 

𝜎𝑥
2 Variance of the input signal  

𝜓 ∈ ℤ+, the decay constant 

𝜗𝑚𝑎𝑥 The largest eigen-value of 𝐑 
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APPENDIX B 

ALGORITHMS TABLES  

 

 

This Appendix provides the pseudo-codes of all studied algorithms in this work. 

Table B.1: Pseudo-code of NLMS algorithm [1], [39], [53]. 

Initialization (typical values):            𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟 

0 < 𝜇 < 2 , 𝛿𝑁𝐿𝑀𝑆 =
𝐿

100
 . 𝜎𝑥

2  

 �̂�(0) = [ℎ̂0(0) ℎ̂1(0) ⋯ ℎ̂𝐿−1(0)]𝑇 = 𝟎𝐿×1 

Update, processing and adaptation: 

𝐅𝐨𝐫  𝑛 = 𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 

 

𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1) 

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇
𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛). 𝐱(𝑛) + 𝛿𝑁𝐿𝑀𝑆
 

𝐄𝐧𝐝 

Table B.2: Pseudo-code of VSS-NLMS algorithm [33], [57]. 

Initialization (typical values):            𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟, 𝐶~𝒪(1/SNR) = 10−6 

0 < 𝜇𝑚𝑎𝑥 < 2,            0 < 𝛽 < 1,            𝛿𝑁𝐿𝑀𝑆 =
𝐿

100
 . 𝜎𝑥

2   

 �̂�(0) = [ℎ̂0(0) ℎ̂1(0) ⋯ ℎ̂𝐿−1(0)]𝑇 = 𝟎𝐿×1, 𝒑(0) = 𝟎𝐿×1 

Update, processing and adaptation: 

𝐅𝐨𝐫  𝑛 = 𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 

𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1) 
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𝒑(𝑛) = 𝛽𝒑(𝑛 − 1) + (1 − 𝛽)
𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛) + 𝐶
 

𝜇(𝑛) = 𝜇𝑚𝑎𝑥

𝒑𝑇(𝑛)𝒑(𝑛)

𝒑𝑇(𝑛)𝒑(𝑛) + 𝐶
 

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇(𝑛)
𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛) + 𝛿𝑁𝐿𝑀𝑆
 

𝐄𝐧𝐝 

Table B.3: Pseudo-code of PNLMS algorithm [1], [11], [39], [62].  

Initialization (typical values):            𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟 

0 < 𝜇 < 2 , 𝛿𝑁𝐿𝑀𝑆 =
𝐿

100
 . 𝜎𝑥

2  , 𝛿𝑃𝑁𝐿𝑀𝑆 =
𝛿𝑁𝐿𝑀𝑆

𝐿
, 𝜌 =

5

𝐿
, 𝛾 = 0.01 

 �̂�(0) = [ℎ̂0(0) ℎ̂1(0) ⋯ ℎ̂𝐿−1(0)]𝑇 = 𝟎𝐿×1 

Update, processing and adaptation: 

𝐅𝐨𝐫  𝑛 = 𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 

𝜅𝑚𝑖𝑛(𝑛 − 1) = 𝜌 × 𝑚𝑎𝑥{ 𝛾, |ℎ̂0(𝑛 − 1)|, |ℎ̂1(𝑛 − 1)|, ⋯ , |ℎ̂𝐿−1(𝑛 − 1)| } 

𝜅𝑙(𝑛 − 1) =  𝑚𝑎𝑥{𝜅𝑚𝑖𝑛(𝑛) , |ℎ̂𝑙(𝑛 − 1)| } ,        0 ≤ 𝑙 ≤ 𝐿 − 1    

𝑞𝑙(𝑛 − 1) =
𝜅𝑙(𝑛 − 1)

1
𝐿

∑ 𝜅𝑖(𝑛 − 1)𝐿−1
𝑖=0

 , 0 ≤ 𝑙 ≤ 𝐿 − 1  

𝐐(𝑛 − 1) = 𝑑𝑖𝑎𝑔{𝑞0(𝑛 − 1) 𝑞1(𝑛 − 1) ⋯ 𝑞𝐿−1(𝑛 − 1)} 

 

𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1) 

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇
𝐐(𝑛 − 1)𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐐(𝑛 − 1)𝐱(𝑛) + 𝛿𝑃𝑁𝐿𝑀𝑆
 

𝐄𝐧𝐝 

Table B.4: Pseudo-code of IPNLMS algorithm [1], [11], [39], [43].  

Initialization (typical values):            𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟    

0 < 𝜇 < 2 , −1 ≤ 𝛼 ≤ 1, 𝛿𝑁𝐿𝑀𝑆 =
𝐿

100
 . 𝜎𝑥

2  , 𝛿𝐼𝑃𝑁𝐿𝑀𝑆 =
(1 − 𝛼)

2𝐿
𝛿𝑁𝐿𝑀𝑆,   

 �̂�(0) = [ℎ̂0(0) ℎ̂1(0) ⋯ ℎ̂𝐿−1(0)]𝑇 = 𝟎𝐿×1 
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Update, processing and adaptation: 

𝐅𝐨𝐫  𝑛 = 𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 

𝑞𝑙(𝑛 − 1) =
(1 − 𝛼)

2𝐿
+

(1 + 𝛼)|ℎ̂𝑙(𝑛 − 1)|

2‖ �̂�(𝑛 − 1)‖
1

+ 𝛿𝐼𝑃𝑁𝐿𝑀𝑆

 , 0 ≤ 𝑙 ≤ 𝐿 − 1  

𝐐(𝑛 − 1) = 𝑑𝑖𝑎𝑔{𝑞0(𝑛 − 1) 𝑞1(𝑛 − 1) ⋯ 𝑞𝐿−1(𝑛 − 1)} 

 

𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1) 

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇
𝐐(𝑛 − 1)𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐐(𝑛 − 1)𝐱(𝑛) + 𝛿𝐼𝑃𝑁𝐿𝑀𝑆
 

𝐄𝐧𝐝 

Table B.5: Pseudo-code of MPNLMS algorithm [1], [11], [39], [62].  

Initialization (typical values):            𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟,    𝜈 = 1000, 

0 < 𝜇 < 2 , 𝛿𝑁𝐿𝑀𝑆 =
𝐿

100
 . 𝜎𝑥

2  , 𝛿𝑀𝑃𝑁𝐿𝑀𝑆 =
𝛿𝑁𝐿𝑀𝑆

𝐿
, 𝜌 =

5

𝐿
, 𝛾 = 0.01,   

 �̂�(0) = [ℎ̂0(0) ℎ̂1(0) ⋯ ℎ̂𝐿−1(0)]𝑇 = 𝟎𝐿×1 

Update, processing and adaptation: 

𝐅𝐨𝐫  𝑛 = 𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 

𝐹(|ℎ̂𝑙(𝑛 − 1)|) = ln(1 + 𝜈. |ℎ̂𝑙(𝑛 − 1)|) , 0 ≤ 𝑙 ≤ 𝐿 − 1 

𝜅𝑚𝑖𝑛(𝑛 − 1) = 𝜌 × 𝑚𝑎𝑥{ 𝛾, 𝐹(|ℎ̂0(𝑛 − 1)|), 𝐹(|ℎ̂1(𝑛 − 1)|), ⋯ , 𝐹(|ℎ̂𝐿−1(𝑛 − 1)|) } 

𝜅𝑙(𝑛 − 1) =  𝑚𝑎𝑥{𝜅𝑚𝑖𝑛(𝑛) , 𝐹(|ℎ̂𝑙(𝑛 − 1)|) } ,        0 ≤ 𝑙 ≤ 𝐿 − 1    

𝑞𝑙(𝑛 − 1) =
𝜅𝑙(𝑛 − 1)

1
𝐿

∑ 𝜅𝑖(𝑛 − 1)𝐿−1
𝑖=0

 , 0 ≤ 𝑙 ≤ 𝐿 − 1  

𝐐(𝑛 − 1) = 𝑑𝑖𝑎𝑔{𝑞0(𝑛 − 1) 𝑞1(𝑛 − 1) ⋯ 𝑞𝐿−1(𝑛 − 1)} 

 

𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1) 

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇
𝐐(𝑛 − 1)𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐐(𝑛 − 1)𝐱(𝑛) + 𝛿𝑀𝑃𝑁𝐿𝑀𝑆
 

𝐄𝐧𝐝 
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Table B.6: Pseudo-code of SC-IPNLMS algorithm [19], [43]. 

Initialization (typical values):     𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟  ,   4 ≤ 𝜆 ≤ 6  

0 < 𝜇 ≤ 1 , −1 ≤ 𝛼 ≤ 1, 𝛿𝑁𝐿𝑀𝑆 =
𝐿

100
 . 𝜎𝑥

2  , 𝛿𝑆𝐶−𝐼𝑃𝑁𝐿𝑀𝑆 =
(1 − 𝛼)𝛿𝑁𝐿𝑀𝑆

2𝐿
,   

 �̂�(0) = [ℎ̂0(0) ℎ̂1(0) ⋯ ℎ̂𝐿−1(0)]𝑇 = 𝟎𝐿×1 

Update, processing and adaptation: 

𝐅𝐨𝐫  𝑛 = 𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 

        𝐢𝐟 𝑛 < 𝐿 

               𝑞𝑙(𝑛 − 1) =
(1 − 𝛼)

2𝐿
+

(1 + 𝛼)|ℎ̂𝑙(𝑛 − 1)|

2‖ℎ̂𝑙(𝑛 − 1)‖
1

+ 𝛿𝑆𝐶−𝐼𝑃𝑁𝐿𝑀𝑆

 , 0 ≤ 𝑙 ≤ 𝐿 − 1  

        𝐞𝐥𝐬𝐞 

               𝜉(𝑛) =
𝐿

𝐿 − √𝐿
{1 −

‖ �̂�(𝑛 − 1)‖
1

√𝐿 ‖ �̂�(𝑛 − 1)‖
2

} , 𝑛 ≥ 𝐿 

𝑞𝑙(𝑛 − 1) = [
(1 − 0.5𝜉(𝑛))

𝐿
]

(1 − 𝛼)

2𝐿
+ [

(1 + 0.5𝜉(𝑛))

𝐿
]

(1 + 𝛼)|ℎ̂𝑙(𝑛 − 1)|

2‖ �̂�(𝑛 − 1)‖
1

+ 𝛿𝑆𝐶−𝐼𝑃𝑁𝐿𝑀𝑆

 ,

0 ≤ 𝑙 ≤ 𝐿 − 1  

        𝐞𝐧𝐝 

𝐐(𝑛 − 1) = 𝑑𝑖𝑎𝑔{𝑞0(𝑛 − 1) 𝑞1(𝑛 − 1) ⋯ 𝑞𝐿−1(𝑛 − 1)} 

 

𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1) 

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇
𝐐(𝑛 − 1)𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐐(𝑛 − 1)𝐱(𝑛) + 𝛿𝑆𝐶−𝐼𝑃𝑁𝐿𝑀𝑆
 

𝐄𝐧𝐝 

Table B.7: Pseudo-code of SC-PNLMS algorithm [19], [43]. 

Initialization (typical values):            𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟, 4 ≤ 𝜆 ≤ 6 

0 < 𝜇 ≤ 1 , 𝛿𝑁𝐿𝑀𝑆 =
𝐿

100
 . 𝜎𝑥

2  , 𝛿𝑆𝐶−𝑃𝑁𝐿𝑀𝑆 =
𝛿𝑁𝐿𝑀𝑆

𝐿
,    𝛾 = 0.01 

 �̂�(0) = [ℎ̂0(0) ℎ̂1(0) ⋯ ℎ̂𝐿−1(0)]𝑇 = 𝟎𝐿×1 
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Update, processing and adaptation: 

𝐅𝐨𝐫  𝑛 = 𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 

        𝐢𝐟 𝐧 < 𝐿 

               𝜌(𝑛) =
5

𝐿
 

        𝐞𝐥𝐬𝐞 

               𝜉(𝑛) =
𝐿

𝐿 − √𝐿
{1 −

‖ �̂�(𝑛 − 1)‖
1

√𝐿 ‖ �̂�(𝑛 − 1)‖
2

} , 𝑛 ≥ 𝐿 

               𝜌(𝑛) = 𝑒−𝜆�̂�(𝑛),         𝑛 ≥ 𝐿 

        𝐞𝐧𝐝 

𝜅𝑚𝑖𝑛(𝑛 − 1) = 𝜌(𝑛) × 𝑚𝑎𝑥{ 𝛾, |ℎ̂0(𝑛 − 1)|, |ℎ̂1(𝑛 − 1)|, ⋯ , |ℎ̂𝐿−1(𝑛 − 1)| } 

𝜅𝑙(𝑛 − 1) =  𝑚𝑎𝑥{𝜅𝑚𝑖𝑛(𝑛) , |ℎ̂𝑙(𝑛 − 1)| } ,        0 ≤ 𝑙 ≤ 𝐿 − 1    

𝑞𝑙(𝑛 − 1) =
𝜅𝑙(𝑛 − 1)

1
𝐿

∑ 𝜅𝑖(𝑛 − 1)𝐿−1
𝑖=0

 , 0 ≤ 𝑙 ≤ 𝐿 − 1  

𝐐(𝑛 − 1) = 𝑑𝑖𝑎𝑔{𝑞0(𝑛 − 1) 𝑞1(𝑛 − 1) ⋯ 𝑞𝐿−1(𝑛 − 1)} 

 

𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1) 

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇
𝐐(𝑛 − 1)𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐐(𝑛 − 1)𝐱(𝑛) + 𝛿𝑆𝐶−𝑃𝑁𝐿𝑀𝑆
 

𝐄𝐧𝐝 

Table B.8: Pseudo-code of SC-MPNLMS algorithm [19], [43]. 

Initialization (typical values):       𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟, 4 ≤ 𝜆 ≤ 6, 𝜈 =
1

𝜀
= 1000 

0 < 𝜇 ≤ 1 , 𝛿𝑁𝐿𝑀𝑆 =
𝐿

100
 . 𝜎𝑥

2  , 𝛿𝑆𝐶−𝑀𝑃𝑁𝐿𝑀𝑆 =
𝛿𝑁𝐿𝑀𝑆

𝐿
,    𝛾 = 0.01 

 �̂�(0) = [ℎ̂0(0) ℎ̂1(0) ⋯ ℎ̂𝐿−1(0)]𝑇 = 𝟎𝐿×1 

Update, processing and adaptation: 

𝐅𝐨𝐫  𝑛 = 𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 
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        𝐢𝐟 𝐧 < 𝐿 

               𝜌(𝑛) =
5

𝐿
 

        𝐞𝐥𝐬𝐞 

               𝜉(𝑛) =
𝐿

𝐿 − √𝐿
{1 −

‖ �̂�(𝑛 − 1)‖
1

√𝐿 ‖ �̂�(𝑛 − 1)‖
2

} , 𝑛 ≥ 𝐿 

               𝜌(𝑛) = 𝑒−𝜆�̂�(𝑛),         𝑛 ≥ 𝐿 

        𝐞𝐧𝐝 

𝐹(|ℎ̂𝑙(𝑛 − 1)|) =
ln(1 + 𝜈|ℎ̂𝑙(𝑛 − 1)|)

ln(1 + 𝜈)
, 0 ≤ 𝑙 ≤ 𝐿 − 1 

𝜅𝑚𝑖𝑛(𝑛 − 1) = 𝜌(𝑛) × 𝑚𝑎𝑥{ 𝛾, 𝐹(|ℎ̂0(𝑛 − 1)|), 𝐹(|ℎ̂1(𝑛 − 1)|), ⋯ , 𝐹(|ℎ̂𝐿−1(𝑛 − 1)|) } 

𝜅𝑙(𝑛 − 1) =  𝑚𝑎𝑥{𝜅𝑚𝑖𝑛(𝑛) , 𝐹(|ℎ̂𝑙(𝑛 − 1)|) } ,        0 ≤ 𝑙 ≤ 𝐿 − 1    

𝑞𝑙(𝑛 − 1) =
𝜅𝑙(𝑛 − 1)

1
𝐿

∑ 𝜅𝑖(𝑛 − 1)𝐿−1
𝑖=0

 , 0 ≤ 𝑙 ≤ 𝐿 − 1  

𝐐(𝑛 − 1) = 𝑑𝑖𝑎𝑔{𝑞0(𝑛 − 1) 𝑞1(𝑛 − 1) ⋯ 𝑞𝐿−1(𝑛 − 1)} 

 

𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1) 

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇
𝐐(𝑛 − 1)𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐐(𝑛 − 1)𝐱(𝑛) + 𝛿𝑆𝐶−𝑀𝑃𝑁𝐿𝑀𝑆
 

𝐄𝐧𝐝 

Table B.9: Pseudo-code of ZA-NLMS (or ISS-ZA-NLMS) algorithm [32].  

Initialization (typical values):            𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟,  

0 < 𝜇 < 2, 𝛿𝑁𝐿𝑀𝑆 =
𝐿

100
 . 𝜎𝑥

2  ,   𝜎𝑛
2 = 10−SNR 10⁄ ,   𝜌𝑍𝐴 = 0.003𝜎𝑛

2,   

 �̂�(0) = [ℎ̂0(0) ℎ̂1(0) ⋯ ℎ̂𝐿−1(0)]𝑇 = 𝟎𝐿×1 

Update, processing and adaptation: 

𝐅𝐨𝐫  𝑛 = 𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 

 

𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1) 
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 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇
𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛) + 𝛿𝑁𝐿𝑀𝑆
− 𝜌𝑍𝐴. sgn ( �̂�(𝑛 − 1)) 

𝐄𝐧𝐝 

Table B.10: Pseudo-code of RZA-NLMS (or ISS-RZA-NLMS) algorithm [32].  

Initialization (typical values):            𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟,  

0 < 𝜇 < 2 , 𝛿𝑁𝐿𝑀𝑆 =
𝐿

100
 . 𝜎𝑥

2  ,    𝜎𝑛
2 = 10−SNR 10⁄ ,   𝜌𝑅𝑍𝐴 = 0.003𝜎𝑛

2,    휀𝑅𝑍𝐴 =  30 

 �̂�(0) = [ℎ̂0(0) ℎ̂1(0) ⋯ ℎ̂𝐿−1(0)]𝑇 = 𝟎𝐿×1 

Update, processing and adaptation: 

𝐅𝐨𝐫  𝑛 = 𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 

 

𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1) 

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇
𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛) + 𝛿𝑁𝐿𝑀𝑆
− 𝜌𝑅𝑍𝐴

sgn ( �̂�(𝑛 − 1))

1 + 휀𝑅𝑍𝐴| �̂�(𝑛 − 1)|
 

𝐄𝐧𝐝 

Table B.11: Pseudo-code of VSS-ZA-NLMS (or ZA-VSS-NLMS) algorithm [33].  

Initialization (typical values):            𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟, 𝐶~𝒪(1/SNR) = 10−7 

0 < 𝜇𝑚𝑎𝑥 < 2,   𝛿𝑁𝐿𝑀𝑆 =
𝐿

100
 . 𝜎𝑥

2  ,    𝜎𝑛
2 = 10−SNR 10⁄ ,   𝜌𝑍𝐴 = 0.003𝜎𝑛

2,   

 �̂�(0) = [ℎ̂0(0) ℎ̂1(0) ⋯ ℎ̂𝐿−1(0)]𝑇 = 𝟎𝐿×1, 𝒑(0) = 𝟎𝐿×1, 0 < 𝛽 < 1,    

Update, processing and adaptation: 

𝐅𝐨𝐫  𝑛 = 𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 

𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1) 

𝒑(𝑛) = 𝛽𝒑(𝑛 − 1) + (1 − 𝛽)
𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛) + 𝐶
 

𝜇(𝑛) = 𝜇𝑚𝑎𝑥

𝒑𝑇(𝑛)𝒑(𝑛)

𝒑𝑇(𝑛)𝒑(𝑛) + 𝐶
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 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇(𝑛)
𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛) + 𝛿𝑁𝐿𝑀𝑆
− 𝜌𝑍𝐴. sgn ( �̂�(𝑛 − 1)) 

𝐄𝐧𝐝 

Table B.12: Pseudo-code of VSS-RZA-NLMS (or RZA-VSS-NLMS) algorithm [34].   

Initialization (typical values):          𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟, 𝐶~𝒪(1/SNR) = 10−7 

0 < 𝜇𝑚𝑎𝑥 < 2,     𝛿𝑁𝐿𝑀𝑆 =
𝐿

100
 . 𝜎𝑥

2  ,    𝜎𝑛
2 = 10−SNR 10⁄ ,   𝜌𝑍𝐴 = 0.003𝜎𝑛

2,      휀𝑅𝑍𝐴 =  30 

 �̂�(0) = [ℎ̂0(0) ℎ̂1(0) ⋯ ℎ̂𝐿−1(0)]𝑇 = 𝟎𝐿×1, 𝒑(0) = 𝟎𝐿×1, 0 < 𝛽 < 1, 

Update, processing and adaptation: 

𝐅𝐨𝐫  𝑛 = 𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 

𝐱(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) ⋯ 𝑥(𝑛 − 𝐿 + 1)]𝑇 

𝑒(𝑛) = 𝑦(𝑛) − 𝐱𝑇(𝑛) �̂�(𝑛 − 1) 

 

𝒑(𝑛) = 𝛽𝒑(𝑛 − 1) + (1 − 𝛽)
𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛) + 𝐶
 

𝜇(𝑛) = 𝜇𝑚𝑎𝑥

𝒑𝑇(𝑛)𝒑(𝑛)

𝒑𝑇(𝑛)𝒑(𝑛) + 𝐶
 

 �̂�(𝑛) =  �̂�(𝑛 − 1) +  𝜇(𝑛)
𝐱(𝑛)𝑒(𝑛)

𝐱𝑇(𝑛)𝐱(𝑛) + 𝛿𝑁𝐿𝑀𝑆
− 𝜌𝑅𝑍𝐴

sgn ( �̂�(𝑛 − 1))

1 + 휀𝑅𝑍𝐴| �̂�(𝑛 − 1)|
 

𝐄𝐧𝐝 
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