UNIVERSITY SAAD DAHLEB BLIDA 1

Faculty of Technology

Civil Engineering Department

MASTER'S THESIS

Option: Steel and Composite Constructions

DESIGN OF A STEEL FRAME RESIDENTIAL BUILDING (G+8)

By

Doua Sirine Elbatoul

Supervisor:

Mr. ALLALI Sid Ahmed

Blida, September 2021

ملخص

يهدف مشروع نهاية التخرج هذا الى دراسة بناية متكونة من هياكل معدنية للاستخدام السكني، تقع في ولاية سطيف التي تصنف من ضمن المنطقة الزلز الية IIa وفقا للنسخة RPA99/2003, وتتكون البناية من طابق أرضي و8 طوابق وشرفة لا يمكن الوصول إليها، تم حساب ابعاد العناصر المكونة للبناية وفقا للقواعد والمعابير المعمول بها والمتمثلة في: RPA 99/2003, CCM97, EC3 et BAEL 99.

هذا المشروع يبدأ بمقدمة عامة وينتهى بخلاصة عامة.

الجزء الأول من هذا المشروع هو الوصف الشامل للبناية ثم الدراسة المناخية وأخيرا دراسة العناصر الأساسية والثانوية.

الجزء الثاني يتضمن الدراسة الديناميكية للبناية وبعدها التحقق من عناصر الإطار المعدني. التحليل الزلزالي للهيكل اجري بواسطة برنامج Autodesk Robot 2020.

الجزء الأخير مخصص لدراسة الوصلات المعدنية ثم دراسة الأساسات والتحقق منها.

Abstract

This graduation project consists of studying a steel building of metal frame for residential use in the city of SETIF, which is classified as seismic zone *IIa* according to the RPA99 version 2003. The building consists of a ground floor and 08 floors and an inaccessible roof, braced by triangular V-shaped bracing system, the calculation and verification of all resistant elements were carried out in accordance with the following regulations: **RPA 99/2003, CCM97, EC3 et BAEL 99.**

This project starts with a general introduction and finishes with general conclusion.

The first part of this project is the presentation of the structure after that dimensioning of the climatic loads then sizing of structural and secondary elements.

The second part is the dynamic analysis of the building then the verification of structural elements. The seismic analysis of the structure was carried out using the software Autodesk Robot structural analysis 2020.

The last part is the design of steel connections and the design of foundations.

Résumé

Ce projet de fin d'étude consiste à étudier un bâtiment en charpente métallique à usage d'habitation dans la wilaya De SETIF qui est classée en zone sismique *IIa* selon le RPA99 version 2003. Le bâtiment est constitué d'un RDC et de 08 étages et une terrasse inaccessible, contreventé par des palées triangulaires en V. Le calcul et la vérification de l'ensemble des éléments résistants ont été effectués conformément à la règlementation suivantes: **RPA 99/2003, CCM97, EC3 et BAEL 99.**

Ce projet commence par une introduction générale et se termine par une conclusion générale.

La première partie de ce projet c'est la présentation de l'ouvrage, ensuite, l'étude climatique et enfin le prédimensionnement des éléments structuraux et des éléments secondaires.

La deuxième partie c'est l'étude dynamique du bâtiment, ensuite, la vérification des éléments structuraux. L'analyse sismique de la structure a été réalisée par le logiciel de calcul Autodesk Robot structural analysis 2020.

La dernière partie c'est l'étude des assemblages et le dimensionnement et vérification des fondations.

First and foremost, I thank my god **ALLAH** who gave me the health, strength and patience to finish this work.

I would like to pay my sincere respects and especially heartfelt thanks to my supervisor *Mr*. ALLALI Sid Ahmed for his patience, help, guidance and advice all along the period of this project.

ACKNOWLEDGMENTS

Especially thanks to my examiners Mrs. HAZOUT and Mrs. BADIS.

My deep gratitude goes to my teachers who trained me from Level 1 to Level 5 in university of Blida 1 "SAAD DAHLEB".

A big thanks to:

My dear parents who have supported me during all my years of study and who have always been present for me, and also to my grandmother I pray to God to give her a long life and protect her for us.

My sister Douaa and my brother Safouane for their encouragement.

All my friends especially Hanan and all my family.

Finally, I would like to thank all those who give me a support to complete this final thesis of my study.

Doua Sirine Elbatoul

LIST OF FIGURES

CHAPTER	FIGURES	PAGE
	Figure 1.1: Structural steel fabrication	18
	Figure 1.2: Plan view of the building	19
	Figure 1.3: Elevation view of the building	19
	Figure 1.4: Location of the project (Setif center).	20
	Figure 1.5: Composition of the composite slab	21
	Figure 1.6: Braced frames by triangulated blades V and X.	21
CHAPTER	Figure 1.7: Different types of stairs.	22
-1-	Figure 1.8: Half turn stair.	22
	Figure 1.9: Stress-strain Diagram (ULS)	24
	Figure 1.10: Stress-strain Diagram (SLS)	24
	Figure 1.11: Stress-strain Diagram (ULS)	25
	Figure 1.12: Lechnical data sheet of 1N40.	27
	Figure 1.13: Shear connector- headed studs	27
	Figure 2.1 : Wind direction of the building.	30
	Figure 2.2: Wind in the 4 directions of the building.	31
	Figure 2.3: Reference height ze corresponding to the dynamic pressure.	31
	Figure 2.4: Wind in the walls.	35
	Figure 2.5: Direction of wind V1 in the vertical walls.	35
CHAPTER	Figure 2.6: Distribution of C_{pe} for the vertical wall V1.	36
-2-	Figure 2.7: Direction of wind V2 in the vertical walls.	36
	Figure 2.8: Distribution of C _{pe} for the vertical wall V2.	37
	Figure 2.9: Wind in the flat roof(parapet).	37
	Figure 2.10: Direction of wind V1 in the flat roof	38
	Figure 2.11: Direction of wind V2 in the flat roof	39
	Figure 2.12: Coefficient of internal pressure of building without a dominant	20
	side.	39
	Figure 3.1: Joists position.	44
	Figure 3.2: Most stressed static joist diagram	46
CHAPTER -3-	Figure 3.3: Position of neutral axis	48
	Figure 3.4: Static diagram of the main beam.	51
	Figure 3.5: Coefficient of the determination of L _f	60
	Figure 4.1: Stair composition.	63
CHAPTER	Figure 4.2: Dimension elements stair.	64
-4-	Figure 4.3 : Composants of stairs.	65
	Figure 4.4: Loads on one string.	67

LIST OF FIGURES

	Figure 4.5: Dimensions of parapet.	69
CHAPTER	Figure 4.6 : Renforcement of parapet	
-4-	Figure 4.7: Dimensions of balcony	74
	Figure 5.1: National map of seismic areas.	
	Figure 5.2: Initial model of the building by robot software principal façade.	82
	Figure 5.3: Initial model in side and high view.	82
	Figure 5.4: Mode 1: Translation along the y-axis	83
	Figure 5.5: Mode 2: Rotation around the z-axis	84
	Figure 5.6: Mode 3: Translation along the x-axis	84
CHAPTER	Figure 5.7: Final model of the structure, the building is reinforced by the	85
-5-	bracing system.	
	Figure 5.8: Disposition of the bracing system 2UPN200 V in x direction	86
	Figure 5.9: Disposition of the bracing system 2UPN200 V in y direction	86
	Figure 5.10: Response spectrum along both axis x and y.	86
	Figure 5.11: 1 st mode of the final model (Translation along y-axis)	87
	Figure 5.12: 2 nd mode of the final model (Translation along x-axis)	88
	Figure 5.13: 3 rd mode of the final model (Rotation around z-axis)	88
	Figure 5.14: Distribution of seismic force in the both directions x and y.	89
	Figure 6.1: Buckling phenomena	92
	Figure 6.2: lateral buckling phenomena	92
	Figure 6.3: Results of verification of columns HEA450 from Robot software.	94
	Figure 6.4 : Position of main beams.	96 07
	Figure 0.5: Results of verification of main beams (PE270 from Robot software	97
	Figure 6.6: Bending moment diagram of main beam	9/
CHAPTER -6-	Figure 6.7: Shear force diagram of main beam	98
	Figure 6.8: Position of joists	98
	Figure 6.9: Results of verification of joists IPE200 from Robot software	98
	Figure 6.10: Bending moment diagram of joists	99
	Figure 6.11: Shear force diagram of joists	99
	Figure 6.12: Position of bracing system	100
	Figure 6.13: Results of verification of bracing 2UPN200 from Robot software.	100

LIST OF FIGURES

	Figure 7.1: Connections, with forces and moments in beams	102
	Figure 7.2: BeamIPE270-ColumnHEA450 connection	103
	Figure 7.3: BeamIPE270-JoistIPE200 connection	106
CHAPTER	Figure 7.4: BeamIPE200-ColumnHEA450 connection	108
-7-	Figure 7.5: ColumnHEA450-ColumnHEA450	108
	Figure 7.6: Gusset-bars 2UPN200 connection	110
	Figure 7.7: Column base connection.	112
	Figure 8.1: View plan at level 0.00	116
	Figure 8.2: Dimensions of pad footing.	117
	Figure 8.3: The minimum length between two axes of two columns.	117
	Figure 8.4: Characteristic of strip footing	118
	Figure 8.5: Composant of raft foundation.	119
	Figure 8.6: Dimension of the raft.	120
	Figure 8.7: Raft foundation by robot software.	121
	Figure 8.8: Soil stress at SLS from Robot software.	121
	Figure 8.9: Distribution of soil stress in raft	122
	Figure 8.10: Soil stress at ULS from robot software.	122
CHAPTER	Figure 8.11: Soil stress at $G+Q+E_{x,y}$ combination from robot software.	123
-8-	Figure 8.12: Soil stress at $0.8G \pm E_x$ combination from robot software.	123
	Figure 8.13: Soil stress at $0.8G \pm E_y$ combination from robot software.	124
	Figure 8.14: Shear stress of raft at ULS in both directions x and y.	124
	Figure 8.15: Design flowchart of rectangular section under simple bending at	
	ULS.	127
	Figure 8.16: Design flowchart of rectangular section in simple flexion at SLS.	128
	Figure 8.17: Reinforcement of the slab at span and support level in direction x	129
	and y.	
	Figure 8.18: Moment diagram of most stressed ribbed at ULS in direction x.	130
	Figure 8.19: Moment diagram of most stressed ribbed at ULS in direction y.	130
	Figure 8.20: Moment diagram of most stressed ribbed at SLS in direction x.	131
	Figure 8.21: Diagram moment of most stressed ribbed at SLS in direction y.	131
	Figure 8.22: Reinforcement of the ribs at span and support level in both	
		122

LIST OF TABLES

CHAPTER TABLES		PAGE
	Table 2.1: Data and calculation results of peak dynamic pressure $q_p(ze)$	32
	Table 2.2: The values of coefficient C_{pe} according to the areas of each zone	26
	of vertical walls	30
	Table 2.3: The values of coefficient C_{pe} according to the areas of each zone	
CHAPTER	of the roof	38
-2-	Table 2.4: Values of aerodynamic pressure in the vertical walls (V1 and	40
	V2)	
	Table 2.5: Values of aerodynamic pressure in the roof (V1 and V2)	40
	Table 2.6: Results of external forces and internal forces in vertical walls	41
	Table 2.7: Results of external forces and internal forces in the roof	41
	Table 3.1: Characteristics of profile IPE200	45
	Table 3.2: Results of strength verification of joists in the current floor	
	profile IPE200	50
	Table 3.3: Characteristics of profile IPE270	52
	Table 3.4: Results of strength verification of main beams in the current	
CHAPTER	floor profile IPE270	50
-3-	Table 3.5: Live loads in each floor level by law of degression	58
	Table 3.6: Results of vertical loads and choice profiled of center columns	58
	Table 3.7: Results of vertical loads and choice profiled of Edge columns	59
	Table 3.8: Results of vertical loads and choice profiled of corner columns	59
	Table 3.9: Characteristics of profile HEA300 of center columns of ground Image: Imag	59
	Table 3.10: Result and verification of all profiles of columns.	61
	Table 4.1: Characteristics of leg angle L40×40×4	66
CHAPTER	Table 4.2: Characteristics of profile UPN	67
-4-	Table 4.3: Characteristics of profile IPE180	75
	Table 5.1: The dynamic results of the initial model.	83
	Table 5.2: The profile of columns of finale model.	85
CHAPTER	Table 5.3: The dynamic analysis results of the final model.	87
-5-	Table 5.4: Inter-floor displacements in both directions Δ_k	90
	Table 5.5: Verification of the $P-\Delta$ effect in x direction	91
	Table 5.6: Verification of the P- Δ effect in y direction	91

LIST OF TABLES

	Table 6.1: Characteristics of profile HEA450 of columns of ground level	93
	Table 6.2: Verification of columns for flexural buckling	
CHAPTER	Table 6.3: Verification of the columns for lateral buckling	96
-0-	Table 6.4: Finale profile sections of all columns	96
	Table 6.5: Characteristics of profile UPN200	100
	Table 8.1: Dimensioning and verification of strip footing (SLS)	118
	Table 8.2: Verification of stability of reversing in direction x and y	
	Table 8.3: Maximum values of moment of slab in ULS SLS ACC combinations	126
	Table 8.4: Results of calculation of reinforcement slab in ULS, SLS and ACC	127
CHAPTER	Table 8.5: Results of reinforcement slab in SLS	128
-8-	Table 8.6: Results of verification of stress at SLS	129
	Table 8.7: Determination of section bars at ULS and SLS in direction x and y	132
	Table 8.8: Results of reinforcement ribs in SLS	
	Table 8.9: Verification of section bars of the most stressed ribbed at SLS	133

LIST OF SYMBOLS

- σ_{bu} : The allowable ultimate compressive stress at ultimate limit state (ULS).
- σ_{bc} : The allowable ultimate compressive stress at serviceability limit state (SLS).
- **f**_{c28}: Compressive strength at 28 days.
- **f**_{t28}: Tensile strength at 28 days is estimated.
- v: Poisson's ratio.
- **E:** Young's modulus.
- I: Inertia
- σ_s : Stress of steel.
- γ_s : Steel safety factor.
- G: Shear modulus.
- S_k : Snow loads on the ground.
- S: Snow loads on the roof.
- **q**_p: Peak dynamic pressure.
- *Ce*: Wind exposure coefficient
- Ze: Reference height.
- Cr: Roughness factor.
- **I**_v: Turbulence intensity.
- *Cd:* Dynamic coefficient.
- W: Aerodynamic pressure.
- *C_{pe}*: Coefficient of external pressure.
- *C*_{*pi*}: Coefficient of internal pressure.
- **F**_{we}: External forces.
- **F**_{wi}: Internal forces.
- M_{plrd}: Plastic moment resistance.
- M_{sd}: Soliciting moment.
- V_{plrd}: Plasticizing shear force.
- V_{sd}: Shear force.
- f_{allow} : Allowable deflection.
- f^{max} : Maximum deflection.
- W_{ply} : Plastic resistant modulus.
- Wely: Elastic resistant modulus.

- **R**_s: Force section of steel.
- $\mathbf{R_c}$: Force section of concrete.
- **b***eff*: Effective slab width.
- Nsd: Normal force.
- Nplrd: Plastic normal force.
- A_v: Shearing area.
- V: Seismic force
- A: Zone acceleration coefficient.
- **D:** Medium amplification factor.
- Q: Quality factor.
- W: Total weight of structure.
- **R:** Ratio behavior of the structure.
- **T:** Period.
- Δ_k : Relative displacement.
- δ_k : Horizontal displacement at each level (k).
- δ_{ek}: Displacement of seismic forces F_i.
- **P**_k: Total weight of the structure at level k.
- **k**_y, **k**_z: The interaction factors.
- χ_z , χ_y : The reduction factors due to flexural buckling.
- λ : Slenderness.
- $\overline{\lambda}$: Reduced slenderness.
- Ø: Curve factor.
- χ_{LT} : The reduction factor due to lateral torsional buckling.
- t: The thickness.
- **F**_{pc}: Preloading force.
- **S**_f: The area of all footings.
- S_b : The area of the building.
- Le: Elastic length.
- **K:** Elastic coefficient of soil.
- As: Section of bars.

TABLE OF CONTENTS

ABSTARCT

RESUME

ACKNOWLEDGMENTS

LIST OF FIGURES

LIST OF TABLES

LISTE OF SYMBOL

GENERAL INTRODUCTION

CHAPTER 1: GENERAL INFORMATION

1.1 IN	<i>TRODUCTION</i>
1.2 PI	RESENTATION OF THE PROJECT
1.3 G	EOMETRICAL CHARACTERISTIC OF THE BUILDING
1.3.1	Plan view18
1.3.2	Elevation view
1.4 L	OCATION AND DATA CONCERNING THE SITE
1.5 ST	TRUCTURAL BUILDING SYSTEM
1.5.1	Type of the structure
1.5.2	<i>Flours</i>
1.5.3	Connection21
1.5.4	Bracing system
1.5.5	<i>Stairs</i>
1.5.6	Foundation22
1.6 CI	HARACTERISTIC OF MATERIAL
1.6.1	Adopted and used material23
1.6.2	Concrete
1.6.3	Steel
1.6.4	Connectors27
1.7 TI	ECHNICAL REGULATION USED
1.8 C	28 DNCLUSION
CHAI	PTER 2: CLIMATIC LOADS
2.1 IN	29

2.2 SN	NOW LOADS	29
2.2.1	Site data	29
2.2.2	Characteristic value of snow on the ground Sk	29
2.2.3	Snow load on the roof S	
2.3 WI	IND LOADS	
2.3.1	Site data	30
2.3.2	Peak dynamic pressure q _p (ze)	31
2.3.3	Wind exposure coefficient Ce(z)	31
2.3.4	Reference height ze	31
2.3.5	Roughness factor Cr	32
2.3.6	Turbulence intensity Iv	32
2.3.7	Dynamic coefficient Cd	32
2.3.8	Aerodynamic pressure W(zj	34
2.3.9	Friction forces	41
2.3.10	Calculation of forces using pressure surfaces	41
2.4 CO	ONCLUSION	42

CHAPTER 3: PRE-DIMENSIONING OF STRUCTURAL ELEMENTS

3.1 IN	TRODUCTION	43
3.2 LC	DADS ASSESSMENTS AND OVERLOADS	43
3.2.1	Dead loads	43
3.2.2	Live loads	
3.2.3	Loads combination	
3.3 PI	RE-DIMENSIONING OF STRUCTURAL ELEMENTS	
3.3.1	Joists	44
3.3.2	Beams calculation	51
3.3.3	Calculation of columns	57
3.4 CC	ONCLUSION	62

CHAPTER 4: STUDY OF THE SECONDARY ELEMENTS

4.1 IN	NTRODUCTION	63
4.2 S'	TAIRS	63
4.2.1	Dimensional characteristics of the elements constituent of stair	64
4.2.2	Sizing of load-bearing elements	65

4.3 PA	ARAPET	69
4.3.1	Loads and overloads	69
4.3.2	Calculation of the reinforcement section	70
4.3.3	Condition of non-fragility	
4.3.4	Verification of shear force	71
4.3.5	Verification at SLS	71
4.3.6	Determination of stress	72
4.3.7	Verification at earthquake	73
4.4 B	ALCONIES	74
4.4.1	Loads and overloads	74
4.4.2	Deflection condition	75
4.4.3	Verification of bending strength	75
4.4.4	Shear strength	
4.4.5	Verification of interaction between moment and shear force	76
4.4.6	The deflection	
4.5 C	ONCLUSION	76

CHAPTER 5: DYNAMIC ANALYSIS

5.1 IN	NTRODUCTION	
5.2 C	LASSIFICATION CRITERIA BY RPA99/2003	77
5.2.1	Classification of seismic areas	
5.2.2	Classification of the building's use	
5.2.3	Classification of the site	
5.3 C	HOICE OF METHOD OF CALCULATION	
5.4 SI	EISMIC FORCE V	
5.5 T	HE SPECTRAL MODAL DYNAMIC METHOD	79
5.5.1	Principle	
5.5.2	Calculation response spectrum	79
5.5.3	Number of modes considered	81
5.6 T	HE INITIAL ROBOT MODEL	82
5.6.1	Modal analysis	83
5.7 T	HE FINAL ROBOT MODAL	85
5.7.1	Modal analysis	87
5.7.2	Seismic analysis	88

CHAPTER 6: VERIFICATION OF STRUCTURAL ELEMENTS

6.1 IN	TRODUCTION	92
6.2 ST	TABILITY CHECK	92
6.2.1	Verification of columns	92
6.2.2	Verification of the main beams	96
6.2.3	Verification of joists	98
6.2.4	Verification of bracing system	100
6.3 CC	ONCLUSION	101

CHAPTER 7: DESIGN OF STEEL CONNECTIONS

7.1 IN	NTRODUCTION	
7.2 M	AIN BEAM-COLUMN CONNECTION	
7.2.1	Positioning of hole for bolts	
7.2.2	Verification of weld (plate-beam)	
7.2.3	Verification of bolts (plate-column)	
7.2.4	Verification of resistance pieces	
7.3 BI	EAM-JOIST CONNECTION	
7.3.1	Positioning of hole for bolts	106
7.3.2	Verification of the bolts	
7.4 C	OLUMN-SECONDARY BEAM CONNECTION	
7.5 C	OLUMN-COLUMN CONNECTION	
7.5.1	Flange-cover plate connection	
7.5.2	Web-cover plate connection	109
7.6 B	RACING SYSTEM CONNECTION	
7.6.1	Verification of welding	110
7.6.2	Verification of shear bolts	110
7.6.3	Verification of diametric pressure	
7.7 C	OLUMN BASE CONNECTION	
7.7.1	Verification of compressive stress of concrete	112
7.7.2	Verification of steel plate	112
7.7.3	Verification of shear force	
7.7.4	Verification of slip on flange	

7.7.5	Verification of Stiffener	113
7.7.6	Verification of welding	113
7.8 CC	DNCLUSION	114

CHAPTER 8: FOUNDATIONS

8.1 IN	NTRODUCTION	
8.2 D	IFFRENTS TYPES OF FOUNDATIONS	
8.3 H	YPOTHESIS OF CALCULATION	
8.4 L	OADS COMBINATION	116
8.5 P.	AD FOOTING	
8.5.1	Dimensioning	116
8.5.2	Verification of interference between two footing	117
8.6 SZ	TRIP FOOTING	117
8.7 R	AFT FOUNDATION	
8.7.1	Dimensioning of raft foundation	119
8.7.2	Verification of soil stress	
8.7.3	Verification of shear stress	124
8.7.4	Verification of stability	
8.7.5	Reinforcement of raft	
8.8 C	ONCLUSION	133
GENI	ERAL CONCLUSION	134
REFI	ERENCES	

GENERAL INTRODUCTION

In this thesis we try to apply all the knowledge acquired during our 5 years of study on a real project, the main objective is to comprehend and complete the information that we already have acquired at university. The second objective is to present an accurate and correct work in order to obtain the Master's degree.

The purpose of civil engineering studies is to design and build structures that must be able to resist to multiple phenomenon, including earthquakes, wind and fires. The engineer is therefore to design structures with good strength in order to protect human life and to restrict any potential damage.

Metal frames are generally made of steel. The design of the steel structures is based on the analysis of forces. This type of structures is recommended for all kinds of constructions: whether they are storage, industrial, office or housing and for bridges, towers, reservoir...

For any construction project, there are different design and calculation processes to be used according to standards and codes, which must be respected. Each building project has multiple objectives: **Safety** (The most important which ensure the stability of the structure), **Economy** (to reduce project costs), **Comfort, Artistic.**

This final thesis consists of study of a steel building (G + 8 floors) made of metal frames for residential use, the work will be organized according to the following chapters:

- The First chapter: is a general presentation of the project, it covers information about the building, the geotechnical characteristic, location, used materials and also the technical regulations that are used in this study.
- The Second chapter: is a climatic load analysis which includes the calculation of snow loads and wind loads using the regulations RNV2013.

- **The Third chapter:** is the pre-design of structural elements, which are beams, joists and columns that will be used in chapter 5 for initial model of building, in this chapter the adopted regulations are EC3 EC4 and DTR2.2.
- The Fourth chapter: is the design of secondary elements, which are stairs, parapet and balconies.
- The Fifth chapter: is the dynamic analysis, which covers the modeling of the building using the Robot software 2020 which must be done according to the conditions of modal analysis and seismic analysis to verified the final model, the regulations RPA99/2003 are used in this chapter.
- The Sixth chapter: is the verification of structural elements, the results of chapter 5 are used in this chapter to verified the stability and strength of columns, beams, joists, and bracing system.
- The Seventh chapter: is the design and calculation of steel connection between different elements such as: column-beam, column-column, beam-joist, bracing system and column base.
- The Eighth chapter: is the study and design of the infrastructure of the building.

Finally, the work is completed with a general conclusion.

CHAPTER 1

GENERAL INRORMATION

1.1 INTRODUCTION:

Structural steel is one of the most used construction materials, mostly is a carbon steel that is composed of a mix of ductile ferrite and strong pearlite microstructures. To increase the strength of the material and to have a good weldability, usually 0.2% maximum of carbon is added to the material, also manganese, chromium or copper can be inserted.

Figure 1.1: Structural steel fabrication.

The building of this project has 18 housing, inaccessible roof, two housing for each floor, each housing has: three rooms, kitchen, living room, bathroom, wc, drying room, hallway and two balconies. The openings are balconies, doors and windows.

The building has two facades that are main facade and rear facade; it has a complicated shape, not symmetrical at two axes, symmetrical in opposite direction.

The building constructed with a steel frame, collaborative floors, structural elements of steel, and walls of hollow brick.

1.2 PRESENTATION OF THE PROJECT:

This project consists of design and studying of a steel building composed of 8 floors, for residential use. This project is located in the center of Setif which is a region located at an altitude of 1100 m in eastern Algeria, classified according to the Algerian seismic design code "RPA99/03" as an area of high seismicity (*IIa*). The structure consists of steel beams and columns and a composite floor (Concrete – Steel).

1.3 GEOMETRICAL CHARACTERISTICS OF THE BUILDING:

1.3.1 Plan view:

- Total length......19.56 m
- Total width......19.56 m

Figure 1.2: Plan view of the building.

1.3.2 Elevation view:

- Floor height......3.4 m.
- Parapet height.....0.6 m.
- Total height.....31.2 m.

Figure 1.3: Elevation view of the building.

1.4 LOCATION AND DATA CONCERNING THE SITE:

The building's location is in the center of Setif which has the following information:

• Allowable soil stress.....2.00 bars.

Figure 1.4: Location of the project (Setif center).

1.5 STRUCTURAL BUILDING SYSTEM:

1.5.1 Type of the structure:

Structure is the sum of assembled elements, designed to ensure the rigidity of the construction. The structure of this study is composed of beams and columns which is a frame structure and by bracing system. The vertical loads of building (dead load and live loads) are taken by the frame structure (beams, columns), and the horizontal loads (seismic force) are taken by the bracing system.

Steel elements have a poor fire resistance due to this; load-bearing structural members are usually protected by thermally insulating materials if fire loads are relevant.

The coating on floors is a series of protective layers composed of: Multilayer waterproofing, slop form, Thermal insulation, Gravel protection.

The external walls and internal walls are constituent of hollow clay brick.

1.5.2 Floors:

The structure includes a composite floor (concrete-steel) which is composed of:

-Slab of concrete-steel.

- Profiled steel decking TN40.

- Beams and joists.
- Connectors (studs).

Figure 1.5: Composition of the composite slab.

1.5.3 Connection:

The connection between the elements of the structure is ensured by :

- Bolted assembly: hight-strength bolts and ordinary bolts.
- Welded connection.

1.5.4 Bracing system:

Bracings system are vertical framework of stability, they are designed to ensure the stability of structure, which are reprend the horizantal effect (wind loads, sismic force). There is a different types of bracing system, in this project the type adopted is: Braced frames by triangulated blades V.

Figure 1.6: Braced frames by triangulated blades V and X.

1.5.5 Stairs:

A stair is an architectural construction consisting of a regular series of steps march between the floors, from one level to another going up and down. Several diffrents types of stairs can be adopted which include :

Figure 1.7 : Different types of stairs.

The staircase used in this building are the half turn stair. It consists of two straight flights with two 90° turns.

Figure 1.8: Half turn stair.

1.5.6 Foundation:

The foundation is the link between the superstructure and the ground, the choice of foundation is adopted according to a geothecnic study and the structral analysis of the building. There are three types of foundation which includes: shallow foundation, semi-deep foundation, deep foundation. The type used in this project is shallow foundation. The shallow foundation diveded on three types: pad footing, strip footing and raft foundation. The raft foundation is adopted for this building.

1.6 CHARACTERISTIC OF MATERIAL:

1.6.1 Adopted and used Materials:

- Steel.
- Concrete.
- Hollow clay brick for masonry.
- Plaster rendering interior.
- Cement rendering exterior.
- Gravel protection.
- Tile.
- Sand.

1.6.2 Concrete:

Concrete is a construction material that is composed of a mixture of mortar and gravel, it has an excellent strength. The compressive strength of concrete increases with time, in order for concrete to be allowed for use in structures according to EC4, the characteristic compressive yield stress must be between 20 and 60 MPa. The tensile strength of concrete is very low and the shear strength is also low.

The following types of concrete are used in this project:

- Reinforced concrete......350kg/m³.
- Blinding concrete.....150 kg/m³.
 - > Concrete strength:

According to BAEL 91:

- Compressive strength at 28 days: $f_{c28} = 25$ MPa
- Tensile strength at 28 days is estimated by: $f_{t28} = 0.6 + 0.06$ fc28, $ft_{28} = 2.1$ MPa
- Shrinkage coefficient: $\varepsilon = 2 \times 10^{-4}$
- Density: $\rho = 25 \text{ kN/m}^3$.

> Ultimate stress:

According to BAEL 91:

The allowable ultimate compressive stress at ultimate limit state (ULS) is estimated by:

$$\sigma_{bu} = \frac{0.85 fc28}{\gamma_{b}}$$

 $\gamma_b=1.5$ in case of persistent and transient actions.

 $\gamma_b = 1.15$ in case of accidental actions.

Figure 1.9: Stress-strain Diagram (ULS).

The allowable ultimate compressive stress at serviceability limit state (SLS) is estimated by:

 $\sigma_{bc} = 0,6.f_{c28} = 15$ MPa (BAEL 91).

Figure 1.10: Stress-strain Diagram (SLS).

Shear stress:

The ultimate shear stress takes the following values according to BAEL 91:

Little damaging cracking: $\overline{\tau}$ = min (0.13. f_{c28}, 4 MPa) = 3.25 MPa.

Damaging or very damaging cracking: $\overline{\tau}$ = min (0.10. f_{c28}, 3MPa) = 2.5 MPa.

> Poisson's ratio:

From BAEL 91, the values of Poisson's ratio are as follows: v=0 at ULS; v=0.2 at SLS.

> Young's modulus:

The Young's modulus is defined under the action of normal stress of long or short duration.

• Instantaneous Young's modulus:

For the load of short duration (less than 24h):

 $E_{ij} = 11000 \sqrt[3]{fcj}$, $E_{i28} = 32164.195 MPa$ (BAEL 91).

• Long-term Young's modulus:

For the load of long duration: $E_{ij} = 3700 \sqrt[3]{fcj}$, $E_{i28} = 10818.865 MPa$ (BAEL 91).

1.6.3 Steel:

A steel is a metal alloy composed of iron and carbon. It is one of the basic materials that are used nowadays in civil engineering. The tensile strength of steel is very high and the compressive strength is low.

In this project, the following types of steel have been used:

> Reinforcing steel:

- Smooth rebar FeE235
- Ribbed bars: FeE400
- Welded fabric: TLE52, $\emptyset = 6$ mm for the slabs

Ultimate limit state ULS:

According to BAEL 91:

- σ_s : stress of steel $\sigma_s = f_e / \gamma_s$
- γ_s : steel safety factor:

 $\gamma_s = 1.15$ in case of persistent and transient actions

 $\gamma_s = 1.00$ in case of accidental actions.

• ε_s : relative elongation of steel $\varepsilon_s = \Delta L/L$

Figure 1.11: Stress-strain Diagram (ULS).

Serviceability limit state SLS:

Little harmful cracking, no verification.

Little damaging cracking: $\sigma_s = \min \left[\frac{2}{3} f_e; 150 \eta\right]$

Damaging or very damaging cracking: $\sigma_s = \min \left[\frac{1}{2} f_e; 110 \eta\right]$

With:

 η : cracking factor:

 $\eta = 1$ for a smooth rebar

 $\eta = 1.6$ for a Ribbed bar

Young's modulus:

Young's modulus of steel is: E=2.1 x 105 MPa (Eurocode 3)

> Construction steel:

The mechanical characteristics of the grades of steel that is used according to Eurocode 3 are as follows:

FeE235(S235) is used:

Yield strength:	$F_y = 235 \text{ N/mm}^2$
Tensile strength:	$F_u \!\!= 360 N/mm^2$
Young's modulus	E= 2.1 E5 Mpa
Poisson's ratio	$\upsilon = 0.3$
Shear modulus	G= 8.1 E4 Mpa
Density of steel	ρ=78.5 kN/m3

> Profiled steel decking:

The profiled steel decking used with concrete and steel work together to create a composite floor system or as structural element to support a built-up. It ensures:

- Efficient and waterproof formwork by eliminating framework-stripping action.
- Building a work platform for the concrete implementation.
- Most of the time it will avoid using props during construction, and save time.

Metal profile sheets can have different profiles, with different heights and different thickness; there are many commercially available profiles for the steel sheets.

The profiled steel decking used is TN40, which has the following characteristics:

Figure 1.12: Technical data sheet of TN40.

1.6.4 Connectors:

Connectors ensure the link between steel and concrete where the connection is designed to resist shear forces. In this project studs connectors are adopted. Height stud h=95 mm, diameter d=19 m, they are assembled by welding.

Figure 1.13: Shear connector- headed studs.

1.7 TECHNICAL REGULATION USED:

- > CCM 97: Calculation rule for steel constructions.
- > RPA2003: Algerian Seismic Regulation version 99/2003.
- > RNV2013: Rules defining the effects of snow and wind.
- ➢ DTR C2.2
- ➢ Eurocode 2
- ➢ Eurocode 3

- ➢ Eurocode 4
- ➢ BAEL91/99

1.8 CONCLUSION:

- ✓ Concrete will continue to be an important construction material.
- ✓ Steel offers many advantages, primarily high strength and ductility.
- \checkmark Steel reinforcement bars are used to resist tension force in the tension region.
- ✓ Steel structures have: less durable, more resistance to disasters, high load carrying capacity.
- \checkmark A V-bracing system is used to ensure the stability of the building.

CLIMATIC LOADS

2.1 INTRODUCTION:

The objective of this chapter is to evaluate the effects of wind and snow action; the calculation will be conducted in accordance with the Snow and Wind Regulations 2013 (**RNV2013**).

2.2 SNOW LOADS:

The snow load depends on the variation of the altitude and the geographical area determined on the snow map.

2.2.1 Site data:

Altitude: H = 1100m

Snow zone: zone A

2.2.2 Characteristic value of snow on the ground S_k:

The value of S_k in kN/m² is determined by the following law:

$$S_k = \frac{0.07H+15}{100}$$
 (zone A) with: H=1100m

$$S_k = \frac{0.07(1100)+15}{100} = 0.92 \text{ kN/m}^2$$

S_k=0.92 kN/m²

2.2.3 Snow load on the roof S:

The minimum snow load S per unit of horizontal roof area is obtained by the following formula: $S=\mu .S_k [kN/m^2].$

 μ : snow load shape coefficient, for this construction it has a terrace ($\alpha=0^{\circ}$) so $\mu=0.8$.

and S_k that is calculated.

S=0.736 kN/m²

2.3 WIND LOADS:

The wind study consists of determining the effect of wind pressure at each level of the building. The calculation shall be carried out separately for each of directions perpendicular to the different walls of the building.

Figure 2.1 : Wind direction of the building.

2.3.1 Site data:

- ✓ Zone of wind: zone II so: $q_{ref} = 435 \text{ N/m}^2$
- ✓ Category of terrain: Ⅲ
- ✓ The terrain factor: K_T =0.215
- ✓ The roughness length: $z_0=0.3m$
- ✓ The minimum height: z_{min} =5
- ✓ Coefficient: ϵ =0.61
- ✓ Topographic coefficient: Flat site: $C_t=1$

Figure 2.2: Wind in the 4 directions of the building.

According to the figure 2.2 there are $V_1=V_2$ and $V_3=V_4$ because it has the same distances at the different directions and the same openings.

2.3.2 Peak dynamic pressure $q_p(ze)$:

Peak dynamic pressure of the reference height ze is given from the RNV2013 chapter 2 (2.3.1) by the following formula: $q_p=q_{ref}\times Ce(ze) [kN/m^2]$.

2.3.3 Wind exposure coefficient Ce(z) :

which is given by the following formula: $Ce(z) = Ct(z)^2 \times Cr(z)^2 \times [1+7.Iv(z)]$.

2.3.4 Reference height ze :

The reference height depends on dimensions h and b of the construction which are given in the figure below (RNV2013, figure 2.1):

h=31.2 m and b=19.56 m so: b < h < 2.b

Figure 2.3: Reference height ze corresponding to the dynamic pressure.

Lower band: ze=b=19.56 m, Upper band: ze=h= 31.2 m

2.3.5 Roughness factor Cr:

The roughness factor is given from 2.4.4 RNV by this expression:

$$Cr(z)=Kt \times ln\left(\frac{z}{z_0}\right)$$
 $z_{min}=5 \text{ m} < z=h=31.2 \text{ m} < 200 \text{ m}$

To determine the peak dynamic pressure $q_p(ze)$ it must be determined the Cr in function ze

There are two different values of ze , Kt=0.215 , $z_0=0.3$ so:

-Cr(ze=19.56m)=
$$0.215 \times ln\left(\frac{19.56}{0.3}\right)=0.898$$

-Cr(ze=31.2 m)= $0.215 \times ln\left(\frac{31.2}{0.3}\right)=0.998$

2.3.6 Turbulence intensity I_v:

The turbulence intensity is given by: $I_v(z) = \frac{1}{Ct(z) \times \ln(\frac{z}{z_0})}$ $z=31.2 \text{ m} > z_{min}=5 \text{ m}$

Iv in function ze:

$$Iv(ze=19.56m) = \frac{1}{1 \times ln(\frac{19.56}{0.3})} = 0.239$$

$$Iv(ze=31.2m) = \frac{1}{1 \times ln(\frac{31.2}{0.3})} = 0.215$$

The values of Cr and Iv is replaced in the formulas of Ce and q_p which is obtain these values in the following table:

Tab	le 2.1	l: Data	and ca	lculation	results	of pea	k dynamic	pressure q	_p (ze)
-----	--------	----------------	--------	-----------	---------	--------	-----------	------------	-------------------

Ze(m)	Ct(ze)	Cr(ze)	Iv(ze)	Ce(ze)	$q_{ref}(N/m^2)$	$q_p(N/m^2)$
19.56	1	0.898	0.239	2.155	435	937.425
31.2	1	0.998	0.215	2.497	435	1086.195

2.3.7 Dynamic coefficient Cd:

The height of this building is 31.2 m greater than 15 m so the dynamic coefficient is determined according to this expression that it's given from 3.1 RNV2013:

$$C_{d} = \frac{1 + 2 \times g \times I \nu(zeq) \times \sqrt{Q^{2} + R^{2}}}{1 + 7 \times I \nu(zeq)}$$

Such as:

z_{eq}: the height equivalent of the construction (Cf fig 3.1 RNV):

 $z_{eq}=0.6 \times h=0.6 \times 31.2 = 18.72 \text{ m} > z_{min}=5 \text{ m}$ (vertical construction such as building).

$$Iv(z_{eq}=18.72m) = \frac{1}{Ct(zeq) \times ln(\frac{zeq}{z0})} = \frac{1}{1 \times ln(\frac{18.72}{0.3})} = 0.242$$

• Quasi-static part Q²:

Given by this formula: $Q^2 = \frac{1}{1+0.9 \times \left(\frac{(b+h)}{Lt(zeq)}\right)^{0.63}}$

such as: b=19.56m, h=31.2m (for all directions)

 $L_t(z_{eq})$: the turbulence length scale: $L_t(z_{eq})=300 \times (\frac{zeq}{200})^{\epsilon}$ $z_{min}=5 \text{ m} < z_{eq}=18.72 \text{ m} < 200 \text{ m}$

$$L_{t}(z_{eq} = 18.72m) = 300 \times \left(\frac{18.72}{200}\right)^{0.61} = 70.73 \text{ so: } Q^{2} = \frac{1}{1 + 0.9 \times \left(\frac{(19.56 + 31.2)}{70.73}\right)^{0.63}} = 0.58$$

• Resonant part R²:

Resonant part is defined as follows: $R^2 = \frac{\pi}{2 \times \delta} \times R_N \times R_h \times R_b$

Such as: R_N: the non-dimensional function of the spectral density of the power given by following expression: R_N= $\frac{6.8 \times Nx}{(1+10.2 \times Nx)^{5/3}}$

And N_x: the non- dimensional frequency: N_x= $\frac{nIx \times Lt(zeq)}{Vm(zeq)}$

n_{lx}: fundamental frequency, according to 3.3.4 RNV2013 is given by:

$$n_{lx} = \frac{0.5}{\sqrt{f}}$$
 (H=31.5m <50m) $f = \frac{H}{100} = 0.312$ so $n_{lx} = 0.895$ Hz

 V_m (z_{eq}): wind mean speed according to Annex 2: $V_m(z_{eq})=Cr(z_{eq})\times Ct(z)\times V_{ref}$

V_{ref}=27 m/s (zone II of wind)

$$Cr(z_{eq}=18.72m) = 0.889$$
, $Ct=1$ so $V_m=0.889 \times 1 \times 27 = 24 \text{ m/s}$

$$N_x = \frac{0.895 \times 70.73}{24} = 2.64$$

$$R_N = \frac{6.8 \times 2.64}{(1+10.2 \times 2.64)^{5/3}} = 0.0698$$
 R_N=0.07
R_h and R_b are the aerodynamic function given by:

$$R_{h} = \frac{1}{\eta h} - \frac{1}{2 \times \eta h^{2}} \times (1 - e^{-2 \times \eta h^{2}}) \quad \text{for } \eta_{h} > 0$$

$$R_{b} = \frac{1}{\eta b} - \frac{1}{2 \times \eta b^{2}} \times (1 - e^{-2 \times \eta b^{2}}) \quad \text{for } \eta_{b} > 0$$

$$\eta_{h} = \frac{4.6 \times Nx \times h}{Li(zeq)} = \frac{4.6 \times 2.64 \times 31.2}{70.73} = 5.36 \quad \text{so:} \quad R_{h} = 0.17$$

$$\eta_{b} = \frac{4.6 \times Nx \times h}{Li(zeq)} = \frac{4.6 \times 2.64 \times 19.56}{70.73} = 3.36 \quad \text{so:} \quad R_{b} = 0.253$$

 δ : logarithmic decrement of vibration damping which is given by : $\delta = \delta_s + \delta_a$

 $\delta_{s:}$ logarithmic decrement of structural damping =0.05 because we have steel building

 δ_a : logarithmic decrement of aerodynamic damping =0

so
$$\delta = 0.05$$
 and $R^2 = \frac{\pi}{2 \times 0.05} \times 0.07 \times 0.17 \times 0.253 = 0.297$

R²=0.297

• Peak factor g:

Peak factor is given by this expression: $g = \sqrt{2 \times \ln(600 \times v)} + \frac{0.6}{\sqrt{2 \times \ln(600 \times v)}} > 3$

V: Mean frequency given by: V= $n_{lx} \times \sqrt{\frac{R^2}{Q^2 + R^2}} \ge 0.08$

$$V=0.895 \times \sqrt{\frac{0.297}{0.58+0.297}} = 0.521 > 0.08$$
$$g=\sqrt{2 \times \ln(600 \times 0.521)} + \frac{0.6}{\sqrt{2 \times \ln(600 \times 0.521)}} = 3.57 > 3 \text{ g}=3.57$$
so:
$$C_{d}=\frac{1+2 \times 3.57 \times 0.242 \times \sqrt{0.58+0.297}}{1+7 \times 0.242} = 0.972$$

So, for all direction of $V_1 V_2 V_3 V_4$ the dynamic coefficient takes this value: Cd=0.972

2.3.8 Aerodynamic pressure W(zj):

Aerodynamic pressure determined by 2.5.2 RNV2013: $W(zj)=q_p(z_e)\times[C_{pe}-C_{pi}]$ [N/m²].

• Coefficient of external pressure C_{pe} :

The coefficient of external pressure given by 5.1.1.2 RNV2013:

-C _{pe} =C _{pe.1}	if: $S \le 1 m^2$
$-C_{pe} = C_{pe.1} + (C_{pe.10} - C_{pe.1}) \times \log_{10}(S)$	if: $1m^2 < S < 10m^2$
$-C_{pe}=C_{pe.10}$	if: $S \ge 10 \text{ m}^2$

Vertical Walls:

From 5.1.2 RNV2013, the division of the walls is obtained According to the figure 2.4 below: d=19.56m, b=19.56m, e=min(b;2h), h=30.6m e=min (19.56m;61.2m) e=19.56m, e=d which means:

Figure 2.4: Wind in the walls.

> Direction 1 of wind (V₁):

Is shown in the figure 2.5 below:

Figure 2.5: Direction of wind V1 in the vertical walls.

From the figures 2.5 and 2.4, the values of coefficient C_{pe} according to the areas of vertical walls zones is in the following table:

zone	h(m)	L(m)	S(m ²)>10m ²	C _{pe} =C _{pe10}
А'	30.6	3.912	119.71	-1
В'	30.6	15.648	478.83	-0.8
D	30.6	19.56	598.536	+0.8
E	30.6	19.56	598.536	-0.3

Table 2.2: The values of coefficient C_{pe} according to the areas of each zone of vertical walls

Figure 2.6: Distribution of C_{pe} for the vertical wall V1.

> Direction 2 of wind (V_2) :

Is shown in the figure 2.7 below:

Figure 2.7: Direction of wind V2 in the vertical walls.

Notice 1: There is the same distance in b, d and e in the direction 1 and 2 that's mean the direction 2 has the same values of the Table 2.2 which is given the distribution of C_{pe} in the following figure:

Figure 2.8: Distribution of C_{pe} for the vertical wall V2.

✤ Flat roof:

The roof should be divided as shown in the following figure:

d=19.56m, b=19.56m, e=min(b;2h), h=30.6m e=min(19.56m;61.2m) e=19.56m

Figure 2.9: Wind in the flat roof(parapet).

> Direction 1 of wind (V_1) :

Is shown in the figure 2.10 below:

Figure 2.10: Direction of wind V1 in the flat roof.

 $h_p/h=0.6/30.6=0.02$ approx to 0.025. (5.1.3 table 5.3 RNV2013).

The result of C_{pe} and areas are in the following table:

Table 2.3: The values of coefficient C_{pe} according to the areas of each zone of the roof

Zone	Area S(m ²) >10m ²	Coefficient C _{pe} = C _{pe10}
F	19.129	-1.6
G	19.129	-1.1
Н	153.03	-0.7
Ι	128.336	± 0.2

\succ Direction 2 of wind (V₂):

Is shown in the figure 2.11 below:

Figure 2.11: Direction of wind V2 in the flat roof.

Notice 2: There are the same distance of b, d and e in the direction 1 and 2 so direction 2 has the same values of the Table 2.3.

• Coefficient of Internal pressure C_{pi}:

To determine the coefficient C_{pi} the following conditions must be checked:

- ✓ The total area of the openings in each face must be less than 30 % of the area of the face. A_{openings}= 119.448 m² and A_{face}=598.536 m²
 ^{119.448}/_{598.536}=19.95 % < 30 % condition verified.</p>
- ✓ The area of the openings in the face is more than three times of the area of the openings in the other faces:

$$A_{openings1} = 119.448 m^2$$
; $A_{openings2} = 17.388 m^2$ condition verified.

The coefficient of internal pressure C_{pi} is determined according to the following expression: $C_{pi}=0.9C_{pe}$

According to RNV2013:

In the vertical walls: $C_{pe}=0.8$; $C_{pi}=0.9 \times 0.8=0.72$

In the roof: Cpe=0.7; Cpi=0.9×0.7=0.63

The results of aerodynamic pressure W(zj) in the direction 1 and 2 of wind V1, V2 are in the following tables:

Zone	Ze(m)	$q_{p(}(zj)[N/m^2]$	Cpe	Срі	W(zj)[N/m ²]
	19.56	937.425	-1	0.72	-1612.371
А'	31.2	1086.195	Cpe Cpi -1 0.72 -1 0.72 -0.8 0.72 -0.8 0.72 +0.8 0.72 +0.8 0.72 -0.3 0.72	-1868.255	
	19.56	937.425	-0.8	0.72	-843.6825
A' B' D E	31.2	1086.195	-0.8	0.72	-1424.886
	19.56	937.425	+0.8	0.72	74.994
D	31.2	1086.195	+0.8	0.72	86.896
	19.56	937.425	-0.3	0.72	-956.174
E	31.2	1086.195	-0.3	0.72	-1107.919

Table 2.4: Values of aerodynamic pressure in the vertical walls (V1 and V2)

Table 2.5: Values of aerodynamic pressure in the roof (V1 and V2)

Zone	Ze(m)	$q_{p(}(zj)[N/m^2]$	Cpe	Cpi	$W(zj)[N/m^2]$
F	19.56	937.425	-1.6	-0.63	-909.3
F	31.2	1086.195	-1.6	6 -0.63 -90 .6 -0.63 -105 .6 -0.63 -105 .1 -0.63 -44 .1 -0.63 -514 .7 -0.63 -65 .7 -0.63 -76 .2 -0.63 403 .2 -0.63 901 .2 -0.63 467	-1053.609
0	19.56	937.425	-1.1	-0.63	-440.59
G	31.2	1086.195	-1.1	-0.63	-510.51
н	19.56	937.425	-0.7	-0.63	-65.62
	31.2	1086.195	-0.7	5-0.63-1053.6091-0.63-440.591-0.63-510.517-0.63-65.627-0.63-76.0342-0.63778.0632-0.63403.092-0.63901.5422-0.63467.064	
	19 56	937 425	+0.2	-0.63	778.063
	17.00	<i>y</i> 371120	-0.2	-0.63	403.09
Ι	31.2	1086,195	+0.2	-0.63	901.542
	01.2	10001170	-0.2	-0.63	467.064

2.3.9 Friction forces:

The friction effect of wind in the area can be neglected if: $2d.h \le 4 \times 2b.h$ (2.6.3 **RNV2013**) $2 \times 19.56 \times 31.2 = 1220.544 \text{m} < 4 \times 2 \times 19.56 \times 31.2 = 4882.176 \text{m}$

The condition is verified for V1 and V2 so the friction forces are neglected.

2.3.10 Calculation of forces using pressure surfaces:

Can be determined F_w by summation F_{ew} and F_{wi} by the following expressions according to 2.6.2 RNV2013:

-external forces: $F_{ew}=C_d \times \sum W_e \times A_{ref}$

Such as: W_e : external pressure given by: $W_e=q_p(z_e)\times C_{pe}$

-internal forces: $F_{wi}=\sum W_i \times A_{ref}$

Such as W_i : internal pressure given by: $W_i=q_p(z_i)\times C_{pi}$

The results are in the following tables for the vertical walls and roof according to directions V1 and V2:

Table 2.6: Results of external forces and internal forces in vertical walls

Ze(m)	Zone	q _p (z)	C _{pe}	C _{pi}	W _e [N/m ²]	$\mathbf{W}_{\mathbf{i}}$	S (m ²)	Cd	F _{ew} (kN)	F _{wi} (kN)
	A'	937.425	-1	0.72	-937.425	674.946	119.71			
	В'	937.425	-0.8	0.72	-749.94	674.946	478.83			
19.56	D	937.425	+0.8	0.72	749.94	674.946	598.536			
	E	937.425	-0.3	0.72	-281.228	674.946	598.536	0.972	-185.430	1178
	A'	1086.195	-1	0.72	-1086.195	782.06	119.71			
31.2	В'	1086.195	-0.8	0.72	-868.956	782.06	478.83	0.972	-221.047	1364.96
	D	1086.195	+0.8	0.72	868.956	782.06	598.536			
	E	1086.195	-0.3	0.72	-325.859	782.06	598.536			

Table 2.7: Results of external forces and internal forces in the roof

Ze(m)	zone	q _p (z)	C _{pe}	C _{pi}	W _e [N/m ²]	Wi	S (m ²)	C _d	F _{ew} (kN)	F _{wi} (kN)
	F	1086.195	-1.6	0.63	-1737.912	684.3	19.129			
21.2	G	1086.195	66.195 -1.1 0.63 -1194.814 684.3 19.129 0.972	-167.626	310.67					
31.2	Η	1086.195	-0.7	0.63	-760.337	684.3 153.03		510.07		
	Ι	1086.195	+0.2	0.63	217.239 -217.239	684.3	128.336			

2.4 CONCLUSION:

- ✓ The results of snow loads are used in chapter 3 to calculate the element's profiles of the roof.
- ✓ The wind loads can be neglected in the dynamic study because the building is heavy and therefore it is not necessary to consider winds loads.

CHAPTER 3

PRE-DIMENSIONING OF THE

STRUCTURAL ELEMENTS

3.1 INTRODUCTION:

The purpose of the pre-dimensioning is to define the dimensions of the structure's different elements (beams, columns...). These dimensions are chosen according to the regulations EC3, EC4 and DTR2.2. The application of these rules leads to the optimal compromise between cost and safety.

Each element is pre-dimensioned according to two conditions:

-The deflection condition to determine the appropriate profile type;

-The verification according to the strength condition.

3.2 LOAD ASSESSMENTS AND OVERLOADS:

3.2.1 Dead loads:

- Inaccessible roof:
 - ✓ Gravel protection (thickness=4cm): $17 \times 0.04 = 0.68 \text{ kN/m}^2$
 - ✓ Thermal insulation (4cm): 0.16 kN/m^2
 - ✓ Multilayer waterproofing: 0.12 kN/m²
 - ✓ Plaster ceiling (3cm): $10 \times 0.03 = 0.30 \text{ kN/m}^2$
 - ✓ Slop form $(1.5\%) = 2.2 \text{ kN/m}^2$
 - ✓ Profiled steel decking TN40: 0.12 kN/m^2
 - ✓ Reinforced concrete slab (12cm): $25 \times 0.12 = 3.00 \text{ kN/m}^2$

Therefore, the total dead loads of inaccessible roof are: $G = 6.58 \text{kN/m}^2$

- Current floor:
 - ✓ Laying bricks: 0.40 kN/m^2
 - ✓ Tile: 0.40 kN/m²
 - ✓ Sand bed: 0.54 kN/m^2
 - ✓ Inner wall: 1.00 kN/m^2
 - ✓ Plaster ceiling (3cm): 0.30 kN/m^2
 - ✓ Profiled steel decking TN40: 0.12 kN/m^2
 - ✓ Reinforced concrete slab (12cm): 3.00 kN/m^2

Therefore, the total dead loads of current floor are: $G = 5.76 \text{ kN/m}^2$

3.2.2 Live loads:

- Inaccessible roof: $Q = 1 \text{ kN/m}^2$
- *Current floor:* residential use: $Q = 1.5 \text{ kN/m}^2$
- 3.2.3 Loads combination:
- Inaccessible roof :
 - ✓ Ultimate limit state ULS : q_u=1.35G+1.5Q=1.35×6.58+1.5×1=10.38kN/m²
 - ✓ Serviceability limit state SLS: q_s=G+Q=6.58+1=7.58kN/m²
- Current floor:
 - ✓ Ultimate limit state ULS : q_u=1.35G+1.5Q=1.35×5.76+1.5×1.5=10.026kN/m²
 - ✓ Serviceability limit state SLS: $q_s=G+Q=5.76+1.5=7.26$ kN/m²

3.3 PRE-DOMENSIONING OF STRUCTURAL ELEMENTS:

3.3.1 Joists:

The joists are beams made of IPE or IPN that work under simple bending. Their spacing is practically determined by the following expression: $0.7m \le e \le 1.5m$,

Length of main beams: L=5.1m so the spacing between joists are: e=1.275m.

The most stressed joists have the length L = 5m.

Figure 3.1: joists position.

• The profile of joists:

The profile of joists adopted by the following expression: $\frac{L}{25} \le h \le \frac{L}{15}$ such as:

h: is the height of the profile of joists.

L=5m: is the span of the joists.

 $200 \le h \le 333.33$ h=200 the profile of joists adopted is IPE200.

Table 3.1: characteristics of profile IPE200

profile	Weight	Area	h(mm)	b(mm)	t _f (mm)	t _w (mm)	r(mm)	W _{ply} (cm ³)	W _{plz} (cm ³)	I _y (cm ⁴)	I _z (cm ⁴)
	G(Kg/m)	A(cm ²)									
IPE200	22.4	28.5	200	100	8.5	5.6	12	220.6	44.61	1943	142.4

• Section classification:

Part subject to bending (web):

$$c/t \le 72\epsilon$$
 such as: $\epsilon = \sqrt{\frac{235}{fy}}$ and fy=235MPa so $\epsilon = 1$

c/t= (200-2×8.5)/5.6=32.68<72 so web of class 1

Part subject to compression (flange):

 $c/t \leq 9\epsilon = (100\text{-}5.6)/2\text{-}12 = 35.2/8.5 = 4.14 \text{<} 10$ so flange of class 1

So, profile IPE200 is classified in class 1.

• Construction phase:

The construction phase corresponds to the concreting phase of the slab, when the concrete has not yet hardened, strength is then ensured by the steel profile. The loads during the construction phase are the same in inaccessible roof and current floor which are in the following:

-Self-weight of the steel profile (IPE200): G_p=0.224 kN/m

-Dead weight of fresh concrete: $G_c= 3.00 \text{ kN/m}^2$

-Self-weight of profiled steel decking: $G_{sd} = 0.12 \text{ kN/m}^2$

-Construction overload of worker: $Q_w=0.75 \text{ kN/m}^2$

Loads combinations:

✓ **ULS:** q_u =1.35G+1.5Q=1.35(G_p+e×(G_{c+}G_{sd})) +1.5×e×Q_w

 $q_u = 1.35(0.224 + 1.275 \times (3 + 0.12)) + 1.5 \times 1.275 \times 0.75$

qu =7.11 kN/m

✓ **SLS:** $q_s=G+Q=G_p+e\times(G_{c+}G_{sd}) + e\times Q_{w=}0.224+1.275\times(3+0.12) +1.275\times0.75$

q_s =5.16 kN/m

Figure 3.2 : Most stressed static joist diagram

> Verification of profile:

✓ Bending strength:

The condition following should be verified: $M_{sd} \le M_{plrd} = \frac{Wply \times fy}{Mo}$ such as:

 $M_{sd:}$ the moment applied to the joist which is the maximum moment: $M_{max} = \frac{qu \times L^2}{8}$ M_{plrd} : plastic moment resistance. Such as: $V_{Mo} = 1$

 $M_{sd}=M_{max}=\frac{7.11\times5^2}{8}=22.22 \text{ kN.m}$ and: $M_{plrd}=\frac{220.6\times235}{1}\times10^{-3}=51.84 \text{ kN.m}$

M_{sd} =22.22 kN.m< M_{plrd}=51.84 kN.m Condition verified

The bending strength is verified

✓ Shear strength:

The condition following should be verified: $V_{sd} \le V_{plrd} = \frac{Av \times fy}{\sqrt{3} \times yMo}$ such as:

 V_{sd} : shear force that is calculated in the joist. $V_{sd} = \frac{quL}{2}$

V_{plrd}: plasticizing shear force of the section.

A_v: area of shear which is given by: $A_v=A-2.b.t_f+(t_w+2.r).t_f$

$$A_v = 2850 - 2 \times 100 \times 8.5 + (5.6 + 2 \times 12) \times 8.5 = 1401.6 \text{ mm}^2$$

 $V_{sd} = \frac{7.11 \times 5}{2} = 17.78 \text{ kN and: } V_{plrd} = \frac{1401.6 \times 235}{\sqrt{3} \times 10^{-3}} = 190.165 \text{ kN}$

Vsd=17.78 kN<Vplrd=190.165 kN Condition verified

Shear strength is verified

✓ Verification of interaction between moment and shear force:

If: $V_{sd} \le 0.5 V_{plrd}$ that's mean there is no interaction between moment and shear force.

 V_{sd} =17.78 kN< V_{plrd} =0.5×190.165=95.083 kN No interaction

✓ *The deflection:*

The condition following should be verified: $f^{\max} = \frac{5 \ qs.L^4}{384.E.Iy} \le f_{\text{allow}}$

Such as:
$$f_{\text{allow}} = \frac{L}{250} = \frac{5000}{250} = 20 \text{mm}, f^{\text{max}} = \frac{5 \times 5.16 \times 5000^4}{384 \times 2.1 \times 10^5 \times 1943 \times 10^4} = 10.29 \text{mm}$$

$$f^{max}=10.29mm < f_{allow}=20mm$$

✓ Lateral buckling:

The condition following should be verified: $M_{sd} \le M_{brd} = X_{lt} \times \beta_w \times W_{ply} \times \frac{fy}{\chi_{M1}}$ with:

$$X_{\rm lt} = \frac{1}{\emptyset lt + \sqrt{\emptyset lt^2 - \lambda lt^2}} \text{ such as: } \emptyset_{\rm lt} = 0.5[1 + \alpha_{\rm lt}(\lambda_{\rm lt} - 0.2) + \lambda_{\rm lt}^2] \text{ and } -\lambda_{\rm LT} = \sqrt{\frac{\beta w.Wply.fy}{Mcr}} = \frac{\lambda LT}{\lambda 1} \sqrt{\beta w}$$

The following expression can be used: $\lambda_{LT} = \frac{\frac{kl}{iz}}{\sqrt{C1} \times \left[\left(\frac{k}{kw}\right)^2 + \frac{1}{20} \left(\frac{kl}{\frac{h}{tf}}\right)^2 \right]^{\frac{1}{4}}}$

With: *YM*1=1.1

k=1 no lateral support, k_w=1, C₁=1.132, β_w =1 section of class 1, α_{lt} =0.21 rolled profile

$$\lambda_{\rm LT} = \frac{\frac{5000}{22.4}}{\sqrt{1.132} \times \left[\left(\frac{1}{1}\right)^2 + \frac{1}{20} \left(\frac{\frac{5000}{22.4}}{\frac{200}{8.5}}\right)^2 \right]^{\frac{1}{4}}} = 136.997 \quad , \ \lambda_1 = 93,9 \ \varepsilon = 93,9 \sqrt{\frac{235}{f_y}} = 93,9$$

 $\bar{\lambda}_{LT} = \frac{136.997}{93.9} \sqrt{1} = 1.46 > 0.4$ There is a risk of lateral buckling.

 $Ø_{lt}=0.5[1+0.21(1.46-0.2)+1.46^2]=1.698$

$$X_{\rm lt} = \frac{1}{1.698 + \sqrt{1.698^2 - 1.46^2}} = 0.4$$

 $M_{brd}\!\!=\!\!0.4\!\!\times\!\!1\!\!\times\!\!220.6\!\!\times\!\!10^3\!\!\times\!\!\frac{235}{1.1}\!\!\times\!\!10^{\text{-}6}\!\!=\!\!18.85 \text{ kN.m}$

M_{sd}=17.97 kN.m < M_{brd}=18.85 kN.m Condition verified

• Final phase:

The concrete gets hardened, steel decking and slab (mixed section) are working together.

> Calculated of the position plastic neutral axis:

- ✓ Effective slab width: $b_{eff} = \inf \{\frac{2L}{8}, b\} = \{\frac{2*5}{8} = 1.25, 1.275m\}$ **b**_{eff} =**1250mm**
- ✓ force section of steel: $R_s=0.95 \times A_s \times f_y=0.95 \times 2850 \times 235 \times 10^{-3}$ R_s=636.263kN
- ✓ force section of concrete: $R_c=0.57 \times f_{ck} \times b_{eff} \times h_c$

$$R_c = 0.57 \times 25 \times 1250 \times 65 \times 10^{-3}$$
 $R_c = 1157.81 \text{ kN}$

$R_c=1157.81$ kN > $R_s=636.263$ kN the situation of neutral axis is in the concrete slab

Figure 3.3: Position of neutral axis.

• Inaccessible roof:

-Self-weight of the steel profile (IPE200): Gp=0.224 kN/m

-Dead loads: G=6.58 kN/m²

-Live loads: Q=1 kN/m²

> Loads combinations:

✓ **ULS**: q_u =1.35G+1.5Q=1.35(G_p+e×G) +1.5×e×Q

 $q_u = 1.35(0.224+1.275\times6.58) + 1.5\times1.275\times1$ $q_u = 13.54$ kN/m

✓ **SLS:**
$$q_s=G+Q=G_p+e×G+e×Q=0.224+1.275×6.58+1.275×1$$

q_s =9.89 kN/m

> Verification of profile:

✓ Bending strength:

The condition following should be verified: $M_{sd} \le M_{plrd}$ such as:

$$M_{sd} = \frac{qu.l^2}{8} = \frac{13.54 \times 5^2}{8} = 42.31 \text{ kN.m}, M_{plrd} = R_s \times [\frac{ha}{2} + hc + hp - (\frac{Rs}{Rc} \times \frac{hc}{2})]$$
$$M_{plrd} = 636.263 \times [\frac{200}{2} + 65 + 55 - (\frac{636.263}{1157.81} \times \frac{65}{2})] \times 10^{-3} = 128.61 \text{ kN.m}$$

M_{sd}=42.31 kN.m < M_{plrd}=128.61 kN.m Condition verified Bending strength is verified

✓ Shear strength:

The condition following should be verified: $V_{sd} \le V_{plrd} = \frac{A\nu \times fy}{\sqrt{3} \times \chi_{Mo}}$ such as:

$$V_{sd} = \frac{qu.L}{2} = \frac{13.54 \times 5}{2} = 33.85 \text{kN}$$
, and: $V_{plrd} = 190.165 \text{ kN}$

Vsd=33.85 kN<Vplrd=190.165 kN Condition verified

Shear strength is verified

✓ Verification of interaction between moment and shear force:

V_{sd}=33.85kN< V_{plrd}=0.5×190.165 =95.08 kN No interaction

✓ The deflection:

The condition following should be verified: $f^{\text{total}} = f_1 + f_2 = \frac{5 \text{ qs.}L^4}{384 \text{ E.Ic}} \leq f_{\text{allow}}$

Such as:
$$f_2 = \frac{5 \ qs.L^4}{384.E.Ic}$$
 and $I_c = \frac{A_a.(h_c+2.h_p+h_a)^2}{4.(1+mv)} + \frac{b_{eff}.h_c^3}{12.m} + I_a$ and $V = \frac{A_a}{A_b} = \frac{2850}{1250\times55} = 0.04$
 $m = \frac{E_a}{E_b} = 15$, $Ic = \frac{2850\times(65+2\times55+200)^2}{4(1+15\times0.04)} + \frac{1250\times65^{3}}{12\times15} + 1943 \times 10^4 = 8.396 \times 10^7 mm^4$
 $f^{\text{total}} = \frac{5\times9.89\times5000^4}{384\times2.1\times10^5\times8.396\times10^7} = 4.564 \text{mm}$ $f^{\text{total}} = 10.29 + 4.56 = 14.85 \text{mm} < f^{\text{allow}} = 20 \text{mm}$ C.V

✓ Lateral buckling:

The lateral buckling should not be checked because the upper flange of joist is held laterally by the concrete slab.

All the conditions of resistance are verified in the inaccessible roof, so the profile IPE200 is adopted.

The same steps are followed for the current floor using the same profile IPE200, all the conditions are verified, so the profile IPE200 is adopted for the inaccessible roof and for the current floor. The results are in the following table:

Table 3.2:	Results	of strength	verification	of joists	in the	current	floor in	the t	final	phase
profile IPE2	200									

Current floor (Final phase)									
qu=13.09	M _{sd} =40.91 kN.m	M _{plrd} =128.61 kN.m	Condition verified						
kN/m	Vsd=32.73 kN	V _{plrd} =190.165kN	Condition verified						
qs=9.48kN/m	<i>f</i> ^{total=} =14.67 mm	f ^{allow} =20mm	Condition verified						

• Connectors:

The connectors are elements that work as a link between the concrete slab and the structural steel element. Headed stud shear connectors are used in this structure, which have the following characteristics: height h=95mm and diameter d=19mm.

The design shear resistance of a headed stud automatically welded in accordance with

EN14555 should be determined from:
$$P_{rd} = K_T \times min[\frac{0.8fu \times \pi \times \frac{d^2}{4}}{\gamma v}; \frac{0.29.\alpha.d^2 \times \sqrt{fck Ecm}}{\gamma v}]$$

 $f_u = 360 MPa; f_{ck} = 25 MPa; E_{cm} = 30500 MPa; \gamma_v = 1.25; \alpha = 1 \text{ for } \frac{h}{d} = 5 > 4$

 $P_{rd} = K_T \times min [73.13; 65.33] = K_T \times 65.33$

Profiled steel decking influence:

The reducing coefficient K_T must be inferior of 1 and determined by the following formula:

$$K_{T} = \frac{0.7}{\sqrt{Nr}} \times \frac{bo}{hp} \times [\frac{h}{hp} - 1] \quad N_{r} = 1: \text{ number of connectors per rib, } b_{o} = 88.5 \text{ mm; } h_{p} = 55 \text{ mm}$$
$$K_{T} = \frac{0.7}{\sqrt{1}} \times \frac{88.5}{55} \times [\frac{65}{55} - 1] = 0.25 < 1 \quad ; P_{rd} = 65.33 \text{ kN}$$

Shear force taken up by the connectors:

R_L=inf (R_{concrete}; R_{steel}) RL= (1157.81kN;636.263kN) =636.263kN

Connectors Number in half-span:

 $N_{br} = \frac{RL}{Prd} = \frac{636.263}{65.33} = 9.74 N_{br} = 10$ in half-span which means 20 in all the beam

Connector spacing:

 E_{min} >5×d=5×19=95mm

Emax <6×95=750mm

 $E_{sp} = \frac{L}{Nbr-1} = \frac{5000}{20-1} = 263.16 \text{mm}$ $E_{min} < 263.16 \text{mm} < E_{max}$ so: $E_{sp} = 260 \text{mm}$

3.3.2 Beams calculation:

• Main beams:

The main beams are structural elements, they support the floor loads and transmit them to columns. They are stressed mainly under bending moment.

The most stressed beam has a length of 5.1m; it supports four concentrated loads (R_{joist}) which represent the reaction of the joists, a uniformly distributed load (Own weight of beam) and the weight of the concrete slab over the width of the flange.

Figure 3.4: static diagram of the main beam.

• The profile of main beams:

The profile of main beam adopted by the following expression: $\frac{L}{25} \le h \le \frac{L}{15}$ such as: h: is the height of the profile of main beam.

L=5.1m: is the span of the main beam.

 $204 \le h \le 340$ h=270 the profile of main beams is IPE270.

Table 3.3:	characteristics	of profile	e IPE270
	•	01 010111	

profile	Weight	Area	h(mm)	b(mm)	t _f (mm)	t _w (mm)	r(mm)	W _{ply} (cm ³)	W _{plz} (cm ³)	I _y (cm ⁴)	I _z (cm ⁴)
	G(Kg/m)	A(cm ²)									
IPE270	36.1	45.94	270	135	10.2	6.6	15	484	96.95	5790	419.9

• Section classification:

Part subject to bending (web):

$$c/t \le 72\varepsilon$$
 such as: $\varepsilon = \sqrt{\frac{235}{fy}}$ and fy=235MPa so $\varepsilon = 1$

c/t= (270-2×10.2)/6.6=37.82<72 so web of class 1

Part subject to compression (flange):

 $c/t \le 9\epsilon = (135-6.6)/2-15 = 49.2/10.2 = 4.82 < 10$ so flange of class 1

So, profile IPE270 is classified in class 1.

• Construction phase:

The loads on the construction phase are the same in inaccessible roof and current floor which are in the following:

-Self-weight of the steel profile (IPE270): G_p=0.361 kN/m

-Dead weight of fresh concrete: $G_c= 3.00 \text{ kN/m}^2$

-Self-weight of profiled steel decking: Gsd =0.12 kN/m²

-Construction overload of worker: $Q_w=0.75 \text{ kN/m}^2$

Loads combinations:

✓ **ULS:** q_u =1.35G+1.5Q=1.35(G_p+b_b×(G_{c+}G_{sd}))+1.5×b_b×Q_w

 $q_u = 1.35(0.361 + 0.135 \times (3+0.12)) + 1.5 \times 0.135 \times 0.75$

qu =1.21 kN/m

✓ **SLS:** $q_s = G + Q = G_p + b_b \times (G_{c+} G_{sd}) + b_b \times Q_{w=} 0.361 + 0.135 \times (3 + 0.12) + 0.135 \times 0.75$ $q_s = 0.883 \text{ kN/m}$

Calculation of joists reactions:

For each phase (construction phase and final phase) the joists reactions are calculated using the following formula: $R_{joist} = \frac{qu.L}{2}$

- ✓ ULS:
 - -Joists of span 5m: $R_{u1} = \frac{7.11 \times 5}{2} = 17.775 \text{kN}$ - Joists of span 3.5m: $R_{u2} = \frac{7.11 \times 3.5}{2} = 12.44 \text{ kN}$ $Ru1 + R_{u2} = 17.775 + 12.44$ $R_u = 30.22 \text{ kN}$
- ✓ SLS:

-Joists of span 5m: $R_{s1} = \frac{5.16 \times 5}{2} = 12.9 \text{ kN}$ -Joists of span 3.5m: $R_{s2} = \frac{5.16 \times 3.5}{2} = 9.03 \text{ kN}$ $R_{s1} + R_{s2} = 12.9 + 9.03$ $R_s = 21.93 \text{ kN}$

- > Verification of profile:
 - ✓ Bending strength:

The condition following should be verified: $M_{sd} \le M_{plrd} = \frac{Wply \times fy}{\chi Mo}$

 $M_{sd} = \frac{qu \times L^2}{8} + \frac{Ru.L}{2} = \frac{1.21 \times 5.1^2}{8} + \frac{30.22 \times 5.1}{2} = 81 \text{ kN.m and: } M_{plrd} = \frac{484 \times 235}{1} \times 10^{-3} = 113.74 \text{ kN.m}$

M_{sd} =81 kN.m< M_{plrd}=113.74 kN.m the bending strength is verified.

✓ Shear strength:

The condition following should be verified: $V_{sd} \le V_{plrd} = \frac{Av \times fy}{\sqrt{3} \times \chi_{Mo}}$ such as:

 $V_{sd} = \frac{qu.L}{2} + \frac{3Ru}{2} = \frac{1.21 \times 5.1}{2} + \frac{3 \times 30.22}{2} = 48.42 \text{ kN}$ $A_v = 4594 + 2 \times 135 \times 10.2 + (6.6 + 2 \times 15) \times 10.2 = 2213.32 \text{ mm}^2$

$$V_{plrd} = \frac{2213.32 \times 235}{\sqrt{3} \times 1} \times 10^{-3} = 300.3 \text{ kN}$$

Vsd=48.42 kN<Vplrd=300.3 kN Condition verified

Shear strength is verified

✓ Verification of interaction between moment and shear force:

 V_{sd} =48.42kN< V_{plrd} =0.5×300.3=150.15 kN No interaction

✓ The deflection:

The condition following should be verified: $f^{\text{max}} = \frac{5 \ qs.L^4}{384.E.Iy} + \frac{19.Rs.L^3}{384.E.Iy} \leq f_{\text{allow}}$

Such as: $f_{\text{allow}} = \frac{L}{250} = \frac{5100}{250} = 20.4 \text{mm},$

 $f^{\max} = \frac{5 \times 0.883 \times 5100^4}{384 \times 2.1 \times 10^5 \times 5790 \times 10^4} + \frac{19 \times 21.93 \times 10^3 \times 5100^3}{384 \times 2.1 \times 10^5 \times 5790 \times 10^4} = 11.84$

$$f^{max} = 11.84mm < f_{allow} = 20.4mm$$

• Final phase:

The concrete gets hardened, the mixed section (steel decking and slab) working together.

> calculated the position of plastic neutral axis:

- ✓ Effective slab width: $b_{eff} = \inf \{\frac{2L}{8}, b\} = \{\frac{2*5.1}{8} = 1.275, 5m\}$ **b**_{eff} =1275mm
- ✓ force section of steel: $R_s=0.95 \times A_s \times f_y=0.95 \times 4594 \times 235 \times 10^{-3}$ R_s=1025.61kN
- ✓ force section of concrete: $R_c=0.57 \times f_{ck} \times b_{eff} \times h_c=0.57 \times 25 \times 1275 \times 65 \times 10^{-3}$

Rc=1180.97kN

$R_c=1180.97$ kN > $R_s=1025.61$ kN the situation of neutral axis is in the concrete slab

• Inaccessible roof:

-Self-weight of the steel profile (IPE270): Gp=0.361 kN/m

-Dead loads: G=6.58 kN/m²

-Live loads: Q=1 kN/m²

- Snow loads: S=0.736 kN/m²

Loads combinations:

✓ **ULS:** q_u =1.35G+1.5Q+0.8S=1.35(G_p+b_b×G) +1.5×b_b×(Q+S)

 $q_u = 1.35(0.361 + 0.135 \times 6.58) + 1.5 \times 0.135 \times 1 + 1.5 \times 0.135 \times (1 + 0.736) \qquad q_u = 2.24 \text{ kN/m}$

✓ **SLS:** $q_s=G+Q+S=G_p+b_b×G+b_b×(Q+S)$

 $q_s = 0.361 + 0.135 \times 6.58 + 0.135 \times (1+0.736)$ $q_s = 1.48 \text{ kN/m}$

Calculation of joists reactions:

For each phase (construction phase and final phase) the joists reactions are calculated using the following formula: $R_{joist} = \frac{qu.L}{2}$

✓ ULS:

-Joists of span 5m: $R_{u1} = \frac{13.54 \times 5}{2} = 33.85 \text{ kN}$ -Joists of span 3.5m: $R_{u2} = \frac{13.54 \times 3.5}{2} = 23.695 \text{ kN}$ $R_{u1} + R_{u2} = 33.85 + 23.695 \text{ Ru} = 57.545 \text{ kN}$

 \checkmark SLS:

-Joists of span 5m:
$$R_{s1} = \frac{9.89 \times 5}{2} = 24.725 \text{ kN}$$

-Joists of span 3.5m: $R_{s2} = \frac{9.89 \times 3.5}{2} = 17.31 \text{ kN}$
 $R_{s1} + R_{s2} = 24.725 + 17.31$ $R_s = 42.03 \text{ kN}$

Verification of profile:

✓ Bending strength:

The condition following should be verified: $M_{sd} \le M_{plrd}$ such as:

$$M_{sd} = \frac{qu \times L^{2}}{8} + \frac{Ru.L}{2} = \frac{2.24 \times 5.1^{2}}{8} + \frac{57.545 \times 5.1}{2} = 154.02 \text{ kN.m},$$

$$M_{plrd} = R_{s} \times \left[\frac{ha}{2} + hc + hp - \left(\frac{Rs}{Rc} \times \frac{hc}{2}\right)\right]$$

$$M_{plrd} = 1025.61 \times \left[\frac{270}{2} + 65 + 55 - \left(\frac{1025.61}{1180.97} \times \frac{65}{2}\right)\right] \times 10^{-3} = 232.58 \text{ kN.m}$$

 $M_{sd}{=}154.02 \ kN.m < M_{plrd}{=}232.58 \ kN.m \quad Condition \ verified$

Bending strength is verified

✓ Shear strength:

The condition following should be verified: $V_{sd} \le V_{plrd} = \frac{Av \times fy}{\sqrt{3} \times yMo}$ such as:

$$V_{sd} = \frac{qu.L}{2} + \frac{3Ru}{2} = \frac{2.24 \times 5.1}{2} + \frac{3 \times 57.545}{2} = 92.03 \text{kN}$$
, $V_{plrd} = 300.3 \text{ kN}$

Vsd=92.03 kN<Vplrd=300.3 kN Condition verified

✓ Verification of interaction between moment and shear force:

 V_{sd} =92.03kN< V_{plrd} =0.5×300.3 =150.15 kN No interaction

✓ The deflection:

The condition following should be verified: $f^{\text{total}} = f_1 + f_2 = \frac{5 \ qs.L^4}{384 \cdot E.Ic} + \frac{19 \cdot Rs.L^3}{384 \cdot E.Ic} \leq f_{\text{allow}}$

With: I_c = $\frac{A_a \cdot (h_c + 2.h_p + h_a)^2}{4.(1+m\nu)} + \frac{b_{eff} \cdot h_c^3}{12.m} + I_a$ and $-V = \frac{A_a}{A_b} = \frac{4594}{1275 \times 55} = 0.066$

$$m = \frac{E_a}{E_b} = 15, Ic = \frac{4594 \times (65+2\times55+270)^2}{4(1+15\times0.066)} + \frac{1275\times65^{3}}{12\times15} + 5790 \times 10^4 = 17.41 \times 10^7 mm^4$$
$$f_1 = \frac{5\times1.48\times5100^4}{384\times2.1\times10^5\times17.41\times10^7} = 0.36 \text{mm}, f_2 = \frac{19\times42.03\times10^3\times5100^3}{384\times2.1\times10^5\times17.41\times10^7} = 7.55 \text{mm}$$

 $f^{total} = 0.36 + 7.55 = 7.91 mm < f_{allow} = 20.4 mm C.V$

✓ Lateral buckling:

The lateral buckling should not be checked because the upper flange of beams is held laterally by the concrete slab.

All the conditions of resistance are verified in inaccessible roof, therefore the profile IPE270 is adopted.

The same steps are followed for the current floor using the same profile IPE270, all the conditions are verified, so the profile IPE270 is adopted for the inaccessible roof and for the current floor. The results are in the following table:

Table 3.4: Results of strength verification of main beams in the current floor in the final phase profile IPE270

Current floor (Final phase)								
Ru=44.75 kN	qu=1.84kN/m	Msd=120.1 kN.m	Mplrd=232.58 kN.m	Condition verified				
		V _{sd} =94.192 kN	V _{plrd} =300.3kN	Condition verified				
Rs=32.43 kN	qs=1.34kN/m	$f^{\text{total}=}=6.39 \text{ mm}$	$f^{\text{allow}}=20.4$ mm	Condition verified				

• Secondary beams:

The secondary beams are stressed in the same way as the joists, and have the same span 5m, which means that the same section (IPE200) are adopted.

• Connectors of main beams:

$$P_{rd} = K_T \times 65.33$$

 $K_T = 0.6 \times \frac{bo}{hp} \times [\frac{h}{hp} - 1]$ N_r=1: number of connectors per rib, b₀=88.5mm; h_p=55mm

$$K_T = 0.6 \times \frac{88.5}{55} \times [\frac{65}{55} - 1] = 0.17 < 1$$

 $P_{rd} = 65.33 kN$

Shear force taken up by the connectors:

R_L=inf (R_{concrete}; R_{steel}) RL= (1180.97kN;1025.61kN) =1025.61kN

Connectors Number in half-span:

 $N_{br} = \frac{RL}{Prd} = \frac{1025.61}{65.33} = 15.7$ Nbr=16 in half-span which means 32 in all the beam

Connector spacing:

 E_{min} >95mm , E_{max} <750mm

 $E_{sp} = \frac{L}{Nbr-1} = \frac{5000}{32-1} = 161.29 \text{ mm}$ $E_{min} < 161.29 \text{ mm} < E_{max}$ so: $E_{sp} = 160 \text{ mm}$

the foundation. The building of this project includes only steel columns.

3.3.3 Calculation of columns:

Column are vertical elements that resist axial compression loads. Generally, steel columns of HEA or HEB are used. They support different loads on the floor (self-weight, dead loads, snow loads and live loads) and transmit them to

• Center columns:

The most stressed columns take for the calculation and pre-dimensioning are **b-3** and **E-6** according to the following area: $S=4.25\times5.05=21.463 \text{ m}^2$

> Inaccessible roof:

-Dead loads of the inaccessible roof: 6.58×21.463=141.22 kN

-Weight of main beams (IPE270): 0.361×5.1=1.841kN

-Weight of secondary beams (IPE200): 0.224×5=1.12 kN

-Weight of joists (IPE200): 0.224×5×4=4.48 kN

Total dead loads: Gt=148.661 kN

Live loads: Qt=1×21.463 Qt=21.463 kN

Section of class 1: $N_{sd} \le N_{crd} = N_{plrd} = \frac{A \times fy}{\gamma mo}$ so : $A \ge \frac{Nsd \times \gamma mo}{fy}$ and $\gamma_{mo} = 1$

 $N_{sd}=1.35G_t+1.5Q_t=1.35\times 148.661+1.5\times 21.463=232.89 \text{ kN}$

A
$$\ge \frac{232.89 \times 10^3 \times 1}{235} = 991.02 \text{ mm}^2 \text{ A} \ge 9.91 \text{ cm}^2 \text{ the profiled used is HEA240}$$

> Current floor:

The same loads of inaccessible roof the different in dead loads of the current floor: $5.76 \times 21.463 = 123.63$ kN

Total dead loads: Gc=131.071 kN

Level	Overloads (kN/m ²)	∑overloads
Roof	Q _o =1	1
8 th	Q ₁ =1.5	$Q_0 + Q_1 = 2.5$
7 th	Q ₂ =1.5	$Q_0+0.9(2\times1.5)=3.7$
6 th	Q ₃ =1.5	Q _o +0.8(3×1.5) =4.6
5 th	Q ₄ =1.5	$Q_0+0.7(4\times1.5)=5.2$
4 th	Q ₅ =1.5	$Q_0 + 0.6(5 \times 1.5) = 5.5$
3 rd	Q ₆ =1.5	$Q_0 + \frac{3+6}{2\times 6} \times (6 \times 1.5) = 7.75$
2^{nd}	Q ₇ =1.5	$Q_0 + \frac{3+7}{2 \times 7} \times (7 \times 1.5) = 8.5$
1 st	Q ₈ =1.5	$Q_0 + \frac{3+8}{2\times8} \times (8 \times 1.5) = 9.25$

Table 3.5: live loads in each floor level by law of degression

The results are in the following table:

Table 3.6: results of vertical loads and choice profiled of center columns

Level	G(kN)	Q(kN)	N _{sd} (kN)	A(cm ²)	profile
Roof	148.661	21.463	232.89	9.91	HEA240
8 th	279.732	53.66	458.13	19.49	HEA240
7^{th}	410.803	79.41	673.7	28.67	HEA240
6 th	541.874	98.73	879.62	37.43	HEA260
5 th	672.945	111.61	1075.89	45.78	HEA260
4 th	804.016	118.047	1262.49	53.72	HEA260
3 rd	935.087	166.34	1511.88	64.34	HEA300
2^{nd}	1066.158	182.44	1712.97	72.89	HEA300
1 st	1197.23	198.53	1914.06	81.45	HEA300

• Edge columns:

The most stressed columns take for the calculation and pre-dimensioning are A-3 and E-7 according to the following area:

Total dead loads and live loads of roof: G_t =78.751 kN , Q_t =10.837 kN

Total dead loads of current: Gc=62.42 kN

Table 3.7: Results of vertical loads and choice profiled of Edge columns

Level	G(kN)	Q(kN)	N _{sd} (kN)	A(cm ²)	profile
Roof	78.751	10.837	122.57	5.22	HEA180
8 th	141.171	27.09	231.22	9.83	HEA180
$7^{ ext{th}}$	203.591	40.1	335	14.26	HEA180
6 th	266.011	49.85	433.89	18.46	HEA200
5 th	328.431	56.35	527.91	22.46	HEA200
4 th	390.851	59.6	617.05	26.26	HEA200
3 rd	453.271	83.99	737.9	31.4	HEA220
2^{nd}	515.691	92.11	834.35	35.5	HEA220
1 st	578.111	100.24	930.81	39.61	HEA220

• Corner columns:

The most stressed columns take for the calculation and pre-dimensioning are A-5 and C-7 according to the following area: $S=2.5\times2.55=6.375 \text{ m}^{2}$; $G_t=6.58\times6.375$, $G_c=5.76\times6.375$ Total dead loads and live loads of roof: $G_t=41.95 \text{ kN}$, $Q_t=6.375 \text{ kN}$

Total dead loads of current: $G_c=36.72 \text{ kN}$

Table 3.8: Results of vertical loads and choice profiled of corner columns

Level	G(kN)	Q(kN)	N _{sd} (kN)	$A(cm^2)$	profile
Roof	41.95	6.375	66.195	2.82	HEA120
8 th	78.67	15.94	130.11	5.54	HEA120
$7^{ ext{th}}$	115.39	23.59	191.16	8.13	HEA120
6 th	152.11	29.325	249.34	10.61	HEA120
$5^{ ext{th}}$	188.83	33.15	304.65	12.96	HEA120
4 th	225.55	35.06	357.08	15.195	HEA120
3 rd	262.27	49.41	428.18	18.22	HEA160
2^{nd}	298.99	54.19	484.92	20.63	HEA160
1 st	335.71	58.97	541.66	23.05	HEA160

Verification of buckling resistance:

The condition following should be verified:
$$N_{sd} \leq N_{brd}$$
 with: $N_{brd} = \frac{\chi \beta_A A f_y}{\gamma_{M_q}}$

CHAPTER 3: PRE-DIMENSIONING OF STRUCTURAL ELEMENTS

profile	Weight G(Kg/m)	Area A(cm ²)	h(mm)	b(mm)	t _f (mm)	t _w (mm)	r(mm)	W _{ply} (cm ³)	W _{plz} (cm ³)	iy(cm)	iz(cm)
HEA300	88.3	112.5	290	300	14	8.5	27	1383	641.2	12.74	7.49

Table 3.9: Characteristics of profile HEA300 of center columns of ground level

• Section classification:

Part subject to bending (web):

$$c/t \le 72\epsilon$$
 such as: $\epsilon = \sqrt{\frac{235}{fy}}$ and fy=235MPa so $\epsilon = 1$

 $c/t=(290-2\times14)/8.5=30.82<72$ so web of class 1

Part subject to compression (flange):

 $c/t \le 9\epsilon = (300-8.5)/2-27 = 118.75/14 = 8.48 < 9$ so flange of class 1

So, profile HEA300 is classified in class 1.

$$\beta_{A=1} \text{ (class 1) }, \ \forall_{M_0}=1.1 \ , \ \lambda_1 = 93,9 \ \varepsilon = 93,9 \sqrt{\frac{235}{f_y}} = 93,9$$
$$\lambda = \frac{Lf}{i} \text{ such as }: L_f = \frac{1+0.145 \times (\eta 1+\eta 2) - 0.265 \times (\eta 1\times \eta 2)}{2-0.364 \times (\eta 1+\eta 2) - 0.247 \times (\eta 1\times \eta 2)} \times H$$

H: height of ground level =3.4m

$$\eta_1 = \frac{Kc + Kc1}{Kc + Kc1 + Kb11 + Kb12} \quad ; \quad \eta_2 = \frac{Kc + Kc2}{Kc + Kc2 + Kb21 + Kb22}$$

Figure 3.5: Coefficient of the determination of L_f

According to axis y-y:

$$K_{c}(HEA300) = \frac{I}{H} = \frac{18260 \times 10^{4}}{3400} = 53705.88 \text{mm}^{3}; K_{B}(IPE270) = \frac{I}{L} = \frac{5790 \times 10^{4}}{5100} = 11352.94 \text{mm}^{3}$$

K_{c2} = 0 ; K_{b21} = K_{b22} = 0 η₁ = $\frac{53705.88+53705.88}{53705.88+53705.88+11352.94+11352.9}$ =0.825 η₂=0 (Fixed support) L_f = $\frac{1+0.145 \times (0.825+0)}{2-0.364 \times (0.825+0)} \times 3.4 = 0.66 \times 3.4 = 2.244 \text{m} = 2244 \text{mm}$ According to axis z-z: K_c(HEA300) = $\frac{l}{H} = \frac{6310 \times 10^4}{3400} = 18558.82 \text{mm}^3$; K_B = $\frac{l}{L} = \frac{5790 \times 10^4}{5100} = 11352.94 \text{mm}^3$ K_{c2} = 0 ; K_{b21} = K_{b22} = 0 η₁ = $\frac{18558.82+18558.82}{18558.82+11352.94+11352.94} = 0.62$ η₂=0 (Fixed support) L_f = $\frac{1+0.145 \times (0.62+0)}{2-0.364 \times (0.62+0)} \times 3.4 = 0.61 \times 3.4 = 2.074 \text{m} = 2074 \text{mm}$ \succ Maximum slenderness: $\lambda_y = \frac{Lfy}{ly} = \frac{2074}{127.4} = 16.28$ and $\lambda_z = \frac{Lfz}{lz} = \frac{2074}{74.9} = 27.69$ $\lambda_y = 16.28 < \lambda_z = 27.69$ so buckling around y-y axis. \checkmark Reduced slenderness: $\overline{\lambda} = \frac{\lambda}{\lambda_1} \sqrt{\beta_A} = \frac{27.69}{93.9} = 0.29 > 0.2$ there is a risk of buckling \checkmark Choice of curve: $\frac{h}{b} = \frac{290}{300} = 0.96 < 1.2 \text{ t}_f = 14 < 100$ and axis y-y so curve b α=0.34

✓ Reduction factor: Ø=0.5[1+ $\alpha(\bar{\lambda}$ -0.2)+ $\bar{\lambda}^2$]=0.55 $\chi = \frac{1}{\emptyset + \sqrt{\emptyset^2 - \lambda^2}} = 0.945 < 1$

$$N_{brd} = \frac{0.945 \times 1 \times 11250 \times 235}{1.1} \times 10^{-3}$$
, $N_{sd} = 1914.06 \text{ kN} < N_{brd} = 2278.431 \text{ kN}$ C.V

The profile HEA300 resist in buckling.

All levels have the same height 3.4m the result of calculation of buckling resistance of all profiles are in the following table:

Column	level	profile	χ	N _{brd} (kN)	N _{sd} (kN)	Verification
Corner	4 to roof	HEA120	0.69	378.6612	357.08	C.V
	1,2,3	HEA160	0.82	676.264	541.66	C.V
Edge	7,8, roof	HEA180	0.86	828.11	335	C.V
	4,5,6	HEA200	0.88	1011.44	617.05	C.V
	1,2,3	HEA220	0.90	1239.171	930.81	C.V
Center	7,8, roof	HEA240	0.91	1493.06	673.7	C.V
	4,5,6	HEA260	0.93	1724.96	1262.49	C.V
	1,2,3	HEA300	0.945	2278.431	1914.06	C.V

Table 3.10: Result and verification of all profiles of columns

3.4 CONCLUSION:

- ✓ In this chapter, different sections of the resistant elements of the structure are determined according to the resistance and stability conditions.
- ✓ According to the results, the building does not carry important loads, therefore the profiles are not important, the most stressed columns (ground level) require a profile of HEA300, and the main beams is a IPE270.
- ✓ The results are used for the modeling of the building's structure using Robot Structural Analysis software.
- ✓ The profile adopted of the main beams is a IPE270, for the secondary beams is a IPE200, and for the joists is IPE200, and the profiles of all types of columns are in the following table:

 Table 3.11: The profiles adopted of Center, Corner and Edge columns

level	Center columns	Corner columns	Edge columns
Roof	HEA240	HEA180	HEA120
8	HEA240	HEA180	HEA120
7	HEA240	HEA180	HEA120
6	HEA260	HEA200	HEA120
5	HEA260	HEA200	HEA120
4	HEA260	HEA200	HEA120
3	HEA300	HEA220	HEA160
2	HEA300	HEA220	HEA160
1	HEA300	HEA220	HEA160

CHAPTER 4

STUDY OF THE SECONDARY

ELEMENTS

4.1 INTRODUCTION:

The main objective of this chapter is the calculation of the secondary elements of the building that are the balconies, the stairs and the parapet. The calculation of these elements is generally depends on the dead loads and live loads.

4.2 STAIRS:

Stairs are structures that allow access to different building levels, they are constructed of steel and they are composed of:

Landing: is a flat space that marks a floor after a series of walks, whose function is to allow rest during the climb.

Stolen: a straight (or curved) part of a stair between two landing successive.

Tread: they may be embedded between two strings or resting on one or two strings.

String: inclined element supporting tread and riser

Handrail: it's used to ensure safety.

Figure 4.1: Stair composition.

The proportions of the successful stairs respect Blondel formula: $59 \text{cm} \le g+2h \le 66 \text{cm}$

4.2.1 Dimensional characteristics of the elements constituent of stair:

H: height of level.....3.4m

h: height of tread (varying between 14cm and 20cm) h=17cm

g: width of tread (varying between 22cm and 30cm) g=30cm

The condition 59<g+2h=30+2×17=64cm<66 condition verified

Number of risers: $n = \frac{H/2}{h} = \frac{3.4/2}{0.17} = 10$

Number of treads: m=n-1=10-1=9 treads per stolen

The length of the stride line: $L=g(n-1)=30(10-1)=30\times9=270cm=2.7m$

The inclination of the bench: $tanga = \frac{n \times h}{L} = \frac{10 \times 17}{270} = 0.629 \ \alpha = 32.2^{\circ}$

The length of the bench: $l = \frac{n \times h}{sin\alpha} = \frac{10 \times 17}{sin32.2} = 319 \text{ cm} = 3.19 \text{ m}$

2.66m

Figure 4.2: Dimension elements stair.

4.2.2 Sizing of load-bearing elements:

• Treads support:

The length of treads 1.18m

The width of treads 0.3m

Figure 4.3 : Composants of stairs.

✓ Loads and overloads:

Dead loads:

-Treads support: 0.08 kN/m

-Tile: 0.40 kN/m²

-Laying bricks: 0.40 kN/m²

-Sheet-metal: $e_p = 1 \text{ cm } 0.785 \text{ kN/m}^2$

Total dead loads: G=0.08+(0.4+0.4+0.785) ×0.3=0.56kN/m

Live loads: Q=2.5×0.3=0.75 kN/m

Loads combination:

ULS: $\dot{q_u}=1.35G+1.5Q=1.35\times0.56+1.5\times0.75=1.881$ kN/m

SLS: q's=G+Q=0.56+0.75=1.31 kN/m

✓ Deflection condition :

 $f^{\max} = \frac{5 \ qs.L^4}{384.E.Iy} \le f_{allow} = \frac{L}{300} \ , I_y \ge \frac{5 \ qs.L^3 \times 300}{384.E.Iy} = \frac{5 \times 1.31 \times 1180^3 \times 300}{384 \times 2.1 \times 10^5} = 4 \text{ cm}^4$

choice of Leg angle it's L40×40×4 class 1

Leg angle	Weight	Area	h=b(mm)	t(mm)	r ₁ (mm)	r ₂ (mm)	$W_{ply=}W_{plz}(cm^3)$	$I_y(cm^4)$		
	G(Kg/m)	A(cm ²)								
L40×40×4	2.42	3.68	40	4	6	3	1.55	4.47		

 Table 4.1: Characteristics of leg angle L40×40×4

ULS: $q_u = q_u + 1.35G_L = 1.881 + 1.35 \times 0.0242 = 1.91 \text{kN/m}$

SLS: $q_s = q'_s + G_L = 1.31 + 0.0242 = 1.334 \text{ kN/m}$

✓ Strength condition:

Bending strength:

The following condition should be verified: $M_{sd} \le M_{plyrd}$

 $M_{sd} = \frac{qu.l^2}{8} = \frac{1.91 \times 1.18^2}{8} = 0.333 \text{ kN.m}; M_{plyrd} = \frac{Wply \times fy}{\chi mo} = \frac{1.55 \times 10^3 \times 235}{1} \times 10^{-6} = 0.364 \text{ kN.m}$

$M_{sd}{=}0.333 \ kN.m < M_{plyrd}{=}0.364 \ kN.m \qquad \textit{condition verified}$

Shear strength:

The following condition should be verified: $V_{sd} \le V_{plyrd}$

 $V_{sd} = \frac{q.l}{2} = \frac{1.91 \times 1.18}{2} = 1.13 \text{ kN}; V_{plyrd} = \frac{A \times fy}{\sqrt{3} \times VMo} = \frac{8.73 \times 10^2 \times 235}{\sqrt{3} \times 1} \times 10^{-3} = 49.93 \text{ kN}$

V_{sd} =1.13 kN \leq V_{plyrd} =49.93kN condition verified

The deflection:

The following condition should be verified: $f^{\max} \leq f_{\text{allow}}$

 $f^{\max} = \frac{5 \ qs.L^4}{384.E.ly} = \frac{5 \ \times 1.334 \times (1180)^4}{384 \times 2.1 \times 10^5 \times 4.47 \times 10^4} = 3.59 \text{mm}; f_{\text{allow}} = \frac{L}{300} = \frac{1180}{300} = 3.93 \text{mm}$

$f^{\text{max}} = 3.59 \text{mm} \le f_{\text{allow}} = 3.93 \text{mm}$ condition verified

- String:
- ✓ Loads and overloads:

Stolen:

Dead loads:

-Leg angle: 0.0242 kN/m

- Handrail: 1 kN/m

-Laying bricks: 0.40 kN/m²

-Tile: 0.40 kN/m²

-Sheet-metal: $e_p = 1 \text{ cm } 0.785 \text{ kN/m}^2$

Total dead loads: G=0.0242+1+(0.4+0.4+0.785) $\times 1.18=2.8945$ kN/m

Dead loads for 1 string: G1string=G/2=2.8945/2=1.45 kN/m

Live loads: Q=2.5×1.18=2.95 kN/m

Live loads for 1 string: Q1string=Q/2=2.95/2=1.48kN/m

Figure 4.4: Loads on one string.

Loads combination:

ULS: $\dot{q_u}=1.35G+1.5Q=1.35\times1.45+1.5\times1.48=4.18$ kN/m

SLS: $q_s = G + Q = 1.45 + 1.48 = 2.93 \text{ kN/m}$

✓ Deflection condition :

$$I_{y} \geq \frac{5 \ qs.L^{3} \times 300}{384.E.Iy} = \frac{5 \times 2.93 \times 3190^{3} \times 300}{384 \times 2.1 \times 10^{5}} = 176.92 \text{cm}^{4}$$

Limon of profile UPN100 class 1

Table 4.2: Characteristics of profile UPN

profile	Weight	Area	h(mm)	b(mm)	t _f (mm)	t _w (mm)	W _{ply} (cm ³)	$I_y(cm^4)$
	G(Kg/m)	A(cm ²)						
UPN100	10.6	13.5	100	50	8.5	6	49	206

ULS : q_u =4.32kN/m, **SLS :** q_s = 3.036 kN/m
✓ Strength condition:

Bending strength:

M_{sd}=5.5 kN.m; M_{plyrd}=11.515 kN.m

M_{sd}=5.5 kN.m < M_{plyrd}=11. 515kN.m condition verified

Shear strength:

V_{sd}=6.67 kN; V_{plyrd}=183.16kN

V_{sd} =6.67 kN \leq V_{plyrd} =183.16kN condition verified

The deflection:

The following condition should be verified: $f^{\max} \leq f_{\text{allow}}$

 $f^{\text{max}}=9.46$ mm; $f_{\text{allow}}=10.63$ mm

 $f^{\max} = 9.46 \text{mm} \le f_{\text{allow}} = 10.63 \text{mm}$ condition verified

The UPN100 is adopted for the string

• Landing:

Dead loads:

-Reinforced concrete slab (12cm): $25 \times 0.12 = 3.00 \text{ kN/m}^2$

-Profiled steel decking TN40: 0.12 kN/m²

-Laying bricks: 0.40 kN/m²

-Tile: 0.40 kN/m²

Dead loads for one string: G= ((3+0.12+0.4+0.4) ×1.18)/2=2.31kN/m

Live loads for one string: Q=2.5×1.18/2=1.48kN/m

Equivalent loads:

Dead loads: $G_{eq} = \frac{2.31(2.16+2.24)+3.19\times4.32}{2.66} = 9 \text{ kN/m}$

Live loads: $Q_{eq} = \frac{1.48(2.16+2.24)+3.036\times3.19}{2.66} = 6.09 \text{ kN/m}$

4.3 PARAPET:

The parapet is not a structural element, it's calculated as an embedded cantilever at the roof level, it's stressed by compound bending which support the following loads:

Own weight as a normal vertical force.

A horizontal force of handrail Q=1kN/ml.

The calculation of parapet it's for a band of 1m width whose dimensions as the following:

Height: H=60cm

Width: b=100cm

Thickness: e=10cm

Figure 4.5: Dimensions of parapet.

4.3.1 Loads and overloads:

Dead loads: G=S×Yconcrete

 $S = [\frac{0.1+0.03}{2} \times 0.1 \times 0.07 + (0.6 \times 0.1)] = 0.0685 \text{ m}^2$

G=0.0685×25=1.712 kN/m

Live loads: Q=1 kN/m

Solicitation:

Normal force N :

ULS : $N_u = 1,35G = 1,35 \times (1.712) = 2.311 \text{ kN}$

SLS: $N_s = G = 1,712 \text{ kN}$

Embedding moment M:

ULS : $M_u = 1.5.Q.H = 1.5 \times 1 \times 0.6 = 0.9 \text{ kN.m}$

SLS: $M_s = Q.H = 1 \times 0,6 = 0,6 \text{ kN.m}$

Transverse shear force :

ULS : $V_u = 1.5 \times Q = 1.5 \times 1 = 1.5 \text{ kN}$

SLS: $V_s = Q = 1 \text{ kN}$

4.3.2 Calculation of the reinforcement section:

Data: f_{c28} = 25 MPa; f_{t28} = 2.1 MPa; h=10cm; H=60cm; b =100 cm; C=2 cm

d=8 cm h=10cm,
$$\sigma s$$
= fe/ γs =400/1.15=348MPa; σ_{bc} =0.6f_{c28}=0.6×25=15MPa

Calculation of eccentricity:

 $e_0 = \frac{Mu}{Nu} = \frac{0.9}{2.311} = 0.389 \text{m} e_0 = 389 \text{cm}$

 $e_0 = 389 \text{ cm} > \frac{h}{2} - c = \frac{10}{2} - 2 = 3 \text{ cm}$ the pressure center is outside the section compressed

The calculation will be in simple bending then in compound bending

$$M_1 = M_u + N_u (d - \frac{h}{2}) = 0.9692$$
kN.m

 $\mu = \frac{M1}{hd^2\sigma hc} = 0.01 < \mu_R = 0.392$ A's=0 Compressed reinforcements not necessary.

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu}) = 0.0126$$

 $Z=d(1-0.4\alpha) = 79.6$ cm

$$A_{s1} = \frac{M1}{Z.\sigma s} = 0.35 \text{ cm}^{2}; \text{ A'}_{s} = 0; \text{ As}_{2} = A_{s1} - \frac{Nu}{b \times \sigma s} = 0.283 \text{ cm}^{2}$$

4.3.3 Condition of non-fragility:

$$A^{\min}_{s} \ge Max (A_{s2}; 0.23b.d \frac{ft^{28}}{fe}) = Max (0.283 \text{ cm}^{2}; 0.966 \text{ cm}^{2}) = 0.966 \text{ cm}^{2}$$

 $A^{\min}_{s} \ge 0.966 \text{ cm}^{2}$ so are: 4T6 A=1.13 cm²

Spacing:

From B.A.E.L 99 e = min(3h; 33cm) = 30 cm; e = 25 cm.

Distribution bars:

 $A_r \ge \frac{A}{4} = 1,13/4 = 0.282 \text{ cm}^2 \text{ so are: } 4T6 \quad A_r = 1,13 \text{ cm}^2$

Spacing:

 $e \le min(4.h; 45 cm) = 40 cm; e = 20 cm$

4.3.4 Verification of shear force:

From BAEL99 the condition following should be verified: $\tau_u \leq \overline{\tau}_u$

Such as: $\tau_u = \frac{Vu}{b.d} = \frac{1.5 \times 10^3}{1000 \times 80} = 0.018$ MPa

 $\overline{\tau}_{u}=\min \{\frac{fc^{28}}{10}; 3MPa\}=\min \{2.5MPa; 3MPa\}=2.5MPa$

τ_u =0.018 MPa < $\overline{\tau}_u$ =2.5 MPa condition verified

Transversal bars:

For the thin elements if the condition following is verified the transversal bars are not necessary:

 $\tau_u \!\!<\!\! 0.05 f_{c28} \quad 0.018 \text{ MPa} < 1.25 \text{MPa} \textit{ condition verified}$

4.3.5 Verification at SLS:

Eccentricity :

 $e_a = \frac{Mser}{Nser} + (d - \frac{h}{2}) = 38.04cm > 8cm$

The pressure center is located outside the calculated section

 $C = d - e_a = 8 - 38,04 = -30,04 cm$

 $y_{ser}+y_c=C$

yc: distance between neutral axis and center of pressure

C: distance between center of pressure and the most compressed fiber

The following expression must be determined:

$$y_{c}^{3} + Py_{c} + q = 0$$

$$p = -3C^{2} - (c-d)^{2} \times \frac{6 \times \eta \times A's}{b} + (c-d) \times \frac{6 \times \eta \times A's}{b} \qquad \eta = 15$$

$$p = -2668.52 \text{ cm}^{2}$$

$$q = -2C^{3} - (c-d)^{2} \times \frac{6 \times A's}{b} - (c-d)^{2} \times \frac{6 \times \eta \times A's}{b}$$

$$q = 52744.64$$

$$y_{c}^{3} - 2668.52 \text{ y}_{c} + 52744.64 = 0$$
Calculation of Δ :
$$\Delta = q^{2} + 4(\frac{p^{3}}{27}) = -33192318.06 < 0$$

$$\Phi = \text{Arc } \cos(\frac{3q}{2p}\sqrt{\frac{-3}{p}}) = 173.76^{\circ}$$

$$A = 2\sqrt{\frac{-p}{3}} = 59.65 \text{ cm}$$

There are three solutions:

$$y_1 = a \times \cos(\frac{\varphi}{3}) = 31.68 \text{ cm}$$
; $y_2 = a \times \cos(\frac{\varphi}{3} + \frac{2 \times \varphi}{3}) = -59.61 \text{ cm}$; $y_3 = a \times \cos(\frac{\varphi}{3} + \frac{4 \times \varphi}{3}) = 27.93 \text{ cm}$
 $y_{\text{serl}} = y_1 + \text{C} = 1.64 \text{ cm}$

$$y_{ser3} = y_3 + C = -2.11 cm$$

 y_{ser} must be >0 so: $y_{ser} = y_{ser1} = 1.64$ cm and $y_1 = 31.68$ cm

4.3.6 Determination of stress:

Condition following should be verified: $\sigma_s \leq \overline{\sigma}_s$

Moment of inertia:

From BAEL99:

$$I = \frac{b \times Yser^3}{3} + 15 \times [A_s(d-y_{ser})^2 + A_s'(y_{ser} - d)^2] A_s' = 0$$
$$I = \frac{b \times Yser^3}{3} + 15 \times A_s(d-y_{ser})^2 = \frac{100 \times 1.64^3}{3} + 15 \times 1.13(8 - 1.64)^2 = 832.65 \text{ cm}^4$$

Coefficient K of stress:

$$K = \frac{Nser}{I} \times y_c = \frac{1.712 \times 10^3}{832.65} \times 31.68 \times 10^{-3} = 0.065 \text{ N/mm}^3$$

Limit state of concrete compression:

Damaging cracking:

 $\sigma_s = 15K(d-y_{ser}) = 15 \times 0.065(80-16.4) = 62.01 \text{ MPa}$

 $\overline{\sigma}_{s}=\min \left\{\frac{2}{3}f_{e}; \max \left(0.5 f_{e}; 110\sqrt{\eta \times ft28}\right)\right\}$ such as: $\eta=1.6$

 $\overline{\sigma}_{s}$ =min { $\frac{2}{3}$ 400; max (0.5×400; 110 $\sqrt{1.6 \times 2.1}$ }= min {266.66 MPa; max (200 MPa; 201.63 MPa)}

 $\overline{\sigma}_s=201.63$ MPa

$\sigma_s = 62.01 \text{ MPa} < \overline{\sigma}_s = 201.63 \text{ MPa}$ Condition verified

4.3.7 Verification at earthquake:

Action of horizontal forces:

The condition should be verified: $F_p \le 1.5Q$ such as:

From RPA2003: $F_p=4.A \times C_p \times W_p$

A=0.15 group 2, zone IIa from the table4.1

C_p=0.8 from table 6.1

W_p=1.712 kN/m weight of element for a band of 1m

 $F_p=4 \times 0.15 \times 0.8 \times 1.712=0.82 \text{ kN/m}$

$F_p{=}0.82 \ kN/m{<}1.5{\times}1{=}1.5kN/m \ \ condition \ verified$

The seismic calculation is not necessary, parapet resist at this force.

Figure 4.6: Reinforcement of parapet.

4.4 BALCONIES:

The balcony is a platform outside the building. It is stressed by simple bending, supports the dead loads and live loads.

Handrail had: height: 1m and thickness: 0.1m

Figure 4.7: Dimensions of balcony.

4.4.1 Loads and overloads:

Dead loads:

-concrete slab: 3.00 kN/m²

-Tile: 0.40 kN/m²

-Laying bricks: 0.40 kN/m²

-Inner wall: 1.00 kN/m²

-Plaster ceiling (3cm): 0.30 kN/m²

-Profiled steel decking TN40: 0.12 kN/m²

Total dead loads: G= (3+0.4+0.4+1+0.3+0.12) ×6.7/2=17.49kN/m

Live loads: Q=3.5×6.7/2=11.73 kN/m

-Handrail: 1.3×0.1×1=0.13 kN

Loads combination:

ULS: $q_u=1.35G+1.5Q=1.35\times17.49+1.5\times11.73=41.21$ kN/m;

 $P_u = 1.35 \times G_{handrail} = 1.35 \times 0.13 = 0.18 \text{ kN}$

SLS : $q_s=G+Q=17.49+11.73=29.22 \text{ kN/m}$; $P_s=G_{handrail}=0.13 \text{ kN}$

4.4.2 Deflection condition :

$$f^{\max} = \frac{5 \, qs.L^4}{384.E.Iy} + \frac{19.Rs.L^3}{384.E.Iy} = \frac{L}{250} , I_y \ge \frac{(5 \, qs.L^3 + 19 \, Ps.L^2) \times 250}{384.E.Iy}$$

 $I_{y} \ge \frac{(5 \times 29.22 \times 1220^{3} + 19 \times 0.13 \times 10^{3} \times 1220^{2}) \times 250}{384 \times 2.1 \times 10^{5}} = 83.39 \text{ cm}^{4}$

IPE180 class 1

Table 4.3: Characteristics of profile IPE180

profile	Weight	Area	h(mm)	b(mm)	t _f (mm)	t _w (mm)	W _{ply} (cm ³)	W _{plz} (cm ³)	$I_y(cm^4)$	I _z (cm ⁴)
	G(Kg/m)	A(cm ²)								
IPE180	18.8	23.9	180	91	8	5.3	166.4	34.6	1317	100.9

4.4.3 Verification of Bending strength:

The condition following should be verified: $M_{sd} \le M_{plrd} = \frac{Wply \times fy}{Mo}$

$$M_{sd} = \frac{qu \times L^2}{2} + Pu.L = \frac{41.21 \times 1.22^2}{2} + 0.18 \times 1.22 = 30.89 \text{ kN.m};$$

 $M_{plrd} = \frac{166.4 \times 235}{1} \times 10^{-3} = 39.104 \text{ kN.m}$

M_{sd} =30.89 kN.m< M_{plrd}=39.104 kN.m the bending strength is verified

4.4.4 Shear strength:

The condition following should be verified: $V_{sd} \le V_{plrd} = \frac{Av \times fy}{\sqrt{3} \times \chi_{Mo}}$ such as:

 $V_{sd}=q_u \times L + P_u = 41.21 \times 1.22 + 0.18 = 50.46 \text{ kN}$

 $A_v = 2390 - 2 \times 91 \times 8 + (5.3 + 2 \times 9) \times 8 = 747.6 \text{ mm}^2$

 $V_{plrd} = \frac{747.6 \times 235}{\sqrt{3} \times 1} \times 10^{-3} = 101.43 \text{kN}$

Vsd=50.46 kN<Vplrd=101.43 kN Condition verified

Shear strength is verified

4.4.5 Verification of interaction between moment and shear force:

 V_{sd} =50.46kN< V_{plrd} =0.5×101.43=50.72 kN No interaction

4.4.6 The deflection:

The condition following should be verified: $f^{\max} = \frac{5 \ qs.L^4}{384.E.Iy} + \frac{19.Ps.L^3}{384.E.Iy} \le f_{\text{allow}}$

Such as:
$$f_{\text{allow}} = \frac{L}{250} = \frac{1220}{250} = 4.88 \text{mm},$$

 $f^{\max} = \frac{5 \times 29.22 \times 1220^4}{384 \times 2.1 \times 10^5 \times 1317 \times 10^4} + \frac{19 \times 0.13 \times 10^3 \times 1220^3}{384 \times 2.1 \times 10^5 \times 1317 \times 10^4} = 3.24 \text{mm}$

 $f^{max}=3.24mm < f_{allow}=4.88mm$

4.5 CONCLUSION:

- ✓ Stair components are made of steel.
- \checkmark The balcony is also made of steel.
- \checkmark All strength conditions of balconies and stairs are checked.
- \checkmark The parapet is an element that constitutes of reinforced concrete.
- ✓ Parapets are used as guard rails, to reduce wind loads on the roof, and to prevent the spread of fires.

DYNAMIC ANALYSIS

5.1 INTRODUCTION:

Earthquakes have always presented one of the most serious disasters for humanity. Earthquakes are a brutal release of the potential energy accumulated in rocks due to relative movements of different parts of the earth's crust. Earthquakes are caused mostly by ruptures of geological faults. Algeria is a country where seismic activities are very important especially in the northern part.

The purpose of this chapter is to define a structure model that respect the conditions and safety criteria imposed by Algerian Seismic Regulation version 99/2003. The structural modelling was carried out using the software Robot Structural Analysis which is an automatic structural calculation software.

According to the Algerian Seismic Regulation version 99/2003, the design and analysis of a structure can be done using one of the following three methods of analysis:

- ✓ Equivalent static method.
- ✓ Dynamic spectral analysis method.
- ✓ Accelerograms dynamic analysis method.

5.2 CLASSIFICATION CRITERIA BY RPA99/2003:

5.2.1 Classification of seismic areas:

According to the map and the table from RPA99/2003, **Setif** is located in an area of medium seismicity Zone *IIa*.

Figure 5.1: National map of seismic areas.

5.2.2 Classification of the building's use:

The classification of the building's use is based on the criteria of the importance of the building in terms of safety, economic and social. The building's use is residential; it has 31.2 m of height, which is less than 48m so it's considered to be a common or medium importance "*Group 2*".

5.2.3 Classification of the site:

According to the geotechnical report for this project, the soil of category is S3 (loose soil).

5.3 CHOICE OF METHOD OF CALCULATION:

To be able to use the equivalent static method it's necessary that:

The conditions of regularity in plan and elevation must be checked with the building's height is less than 65m in the seismic zone *IIa*, in this case the equivalent static method is not applicable (according to RPA99/03; zone IIa, Group 2, height over than 23m and more than 7 levels condition not checked) so the seismic analysis will be done using the spectral dynamic method.

5.4 SEISMIC FORCE V:

The total seismic force applied to the base of the structure, shall be calculated successively in two orthogonal directions according to the formula: $V = \frac{A.D.Q}{R} \times W$

A: Zone acceleration coefficient (table 4.1 of RPA2003).

D: Medium amplification factor determined from 4.2 of RPA2003.

Q: Quality factor (table 4.4 of RPA2003).

W: Total weight of structure determined by the formula of 4.5 from RPA2003.

R: Ratio behavior of the structure (table 4.3 of RPA2003).

5.5 THE SPECTRAL MODAL DYNAMIC METHOD:

5.5.1 Principle:

By this method, it's sought for each mode of vibration the maximum of effects generated in the structure by the seismic forces represented by a computational response spectrum. These effects are combined to obtain the structure response.

5.5.2 Calculation response spectrum:

Seismic forces are represented using the following computing spectrum:

$$\frac{S_{a}}{g} = \begin{cases} 1.25A \left(1 + \frac{T}{T_{1}} \left(2.5\eta \frac{Q}{R} - 1 \right) \right) & 0 \le T \le T_{1} \\ 2.5\eta (1.25A) \left(\frac{Q}{R} \right) & T_{1} \le T \le T_{2} \\ 2.5\eta (1.25A) \left(\frac{Q}{R} \right) \left(\frac{T_{2}}{T} \right)^{2/3} & T_{2} \le T \le 3.0s \\ 2.5\eta (1.25A) \left(\frac{T_{2}}{3} \right)^{2/3} \left(\frac{3}{T} \right)^{5/3} \left(\frac{Q}{R} \right) & T > 3.0s \end{cases}$$

Where:

 η : Damping correction factor (when the damping is different than 5%).

ξ: Critical damping percentage (table 4.2 of RPA2003).

T₁, T₂: Characteristic period associated with the site category (table 4.7 of RPA2003).

• Zone acceleration coefficient A:

According to the table 4.1 of RPA2003 the seismic area is zone IIa and group 2 so A = 0.15

• Critical damping percentage ζ:

According to the table 4.2: steel frames, heavy filling, $\xi = 5\%$

• Damping correction factor η:

$$\eta = \sqrt{\frac{7}{2+\xi}} \ge 0.7$$
 such as: $\xi = 5\%$ so $\eta = 1 > 0.7$

• Characteristic period associated with the site category T_1 , T_2 :

According to the table 4.7 of RPA2003 the site of the building is S3 (loose soil) so:

 $T_1 = 0.15 \text{ sec}$ and $T_2 = 0.50 \text{ sec}$

• Ratio behavior R:

According to the table 4.7 of RPA2003: Braced frames by triangulated blades V, so R = 3

• Quality factor Q:

According to the RPA2003, the factor Q is determined by the following formula:

$$Q = 1 + \sum_{1}^{5} P_q$$

 P_q : depend of the conditions of the table 4.4 of RPA

✓ Minimum conditions in bracing system lines:

Frames system: each line of frame must have minimum of 3 spans this condition not verified because there is a line of frames that have 2 spans.

According to the table 4.4 of RPA: $q_{p1} = 0.05$ for both axis x and y.

✓ *Redundancy in plan:*

Each level must have minimum of 4 lines frames, each level of this building has 6 lines frames so the condition is verified for the axis x and y.

The rapport of the maximum spacing between the files and the minimum spacing must be less than 1.5, this condition is not verified because the minimum spacing is 2.07m and the maximum is 5.1 so 5.1/2.07=2.46 > 1.5 for the both of axis x and y.

According to the table 4.4 of RPA2003: $q_{p2}=0.05$

✓ Regularity in plan:

The building is not symmetrical in the axis x and axis y condition not verified

3.5/12.37 = 0.28 > 0.25 condition not verified

According to the table 4.4 of RPA2003: q_{p3} =0.05.

✓ *Regularity in elevation:*

The levels of the building have the same dimensioning so the condition is verified in the both axes.

According to the table 4.4 of RPA2003: $q_{p4}=0$

✓ Quality control of materials:

Is verified according to the table 4.4 of RPA2003: $q_{p5}=0$

✓ Execution quality control:

Is not verified according to the table 4.4 of RPA2003: $q_{p6}=0.10$

So $Q_x = Q_y = 1 + 0.05 + 0.05 + 0.05 + 0.1 = 1.25$

✓ Period:

 $T = C_T \cdot h_N^{3/4}$; $T = 0.09 \times h_N / \sqrt{D}$

C_T=0.05 "auto-stable" steel frame with masonry filling.

 $h_N = 30.6m$: height of building.

 $D_X = D_Y = 19.56 \text{ m}$ the length of building along the axis x and y.

 $T = 0.05 \times 30.6^{3/4} = 0.65 \text{ sec}$; $T = 0.09 \times 30.6 / \sqrt{19.56} = 0.62 \text{ sec}$, So $T_{emp} = 0.62 \text{ sec}$

 $1.3T_{emp} = 1.3 \times 0.62 = 0.81$ sec

✓ Medium amplification factor D:

 $T_2=0.50s < T=0.65<3.0s$ So : D=2.5 η (T₂/T)^{2/3}= 2.5×1(0.50/0.65)^{2/3} D = 2.1

5.5.3 Number of modes considered:

For structures represented by plane models in two orthogonal directions, the number of vibration modes in each of the two directions the excitation must be such as:

The sum of effective modal masses for the modes selected is equal to at least 90% of the total mass of the structure.

Where all modes with an effective modal mass greater than 5% of the total structural mass are used for determining the total structural response.

The minimum of mode that be obtained is three in each direction considered.

5.6 THE INITIAL ROBOT MODEL:

Figure 5.2: Initial model of the building by robot software principal façade.

Figure 5.3: Initial model in side and high view.

5.6.1 Modal analysis:

The results of modal analysis are in the following table:

Table 5.1: The dynamic results of the initial model	odel
--	------

Cas/I	Node	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masse Modale UX [%]	Masse Modale UY [%]	Tot.mas.UX [kg]	Tot.mas.UY [kg]
4/	1	2,24	0,01	78,68	0,01	78,68	1699938,33	1699938,33
4/	2	1,77	0,03	78,69	0,02	0,01	1699938,33	1699938,33
4/	3	1,36	77,75	78,71	77,72	0,02	1699938,33	1699938,33
4/	4	0,82	77,75	91,61	0,01	12,90	1699938,33	1699938,33
4/	5	0,65	77,76	91,61	0,00	0,00	1699938,33	1699938,33
4/	6	0,51	77,76	95,72	0,00	4,11	1699938,33	1699938,33
4/	7	0,49	91,41	95,72	13,64	0,00	1699938,33	1699938,33
4/	8	0,41	91,41	95,72	0,00	0,00	1699938,33	1699938,33
4/	9	0,37	91,41	97,38	0,00	1,66	1699938,33	1699938,33
5/	1	2,24	0,01	78,68	0,01	78,68	1699938,33	1699938,33
5/	2	1,77	0,03	78,69	0,02	0,01	1699938,33	1699938,33
5/	3	1,36	77,75	78,71	77,72	0,02	1699938,33	1699938,33
5/	4	0,82	77,75	91,61	0,01	12,90	1699938,33	1699938,33
5/	5	0,65	77,76	91,61	0,00	0,00	1699938,33	1699938,33
5/	6	0,51	77,76	95,72	0,00	4,11	1699938,33	1699938,33
5/	7	0,49	91,41	95,72	13,64	0,00	1699938,33	1699938,33
5/	8	0,41	91,41	95,72	0,00	0,00	1699938,33	1699938,33
5/	9	0,37	91,41	97,38	0,00	1,66	1699938,33	1699938,33
6/	1	2,24	0,01	78,68	0,01	78,68	1699938,33	1699938,33
6/	2	1,77	0,03	78,69	0,02	0,01	1699938,33	1699938,33
6/	3	1,36	77,75	78,71	77,72	0,02	1699938,33	1699938,33
6/	4	0,82	77,75	91,61	0,01	12,90	1699938,33	1699938,33
6/	5	0,65	77,76	91,61	0,00	0,00	1699938,33	1699938,33
6/	6	0,51	77,76	95,72	0,00	4,11	1699938,33	1699938,33
6/	7	0,49	91,41	95,72	13,64	0,00	1699938,33	1699938,33
6/	8	0,41	91,41	95,72	0,00	0,00	1699938,33	1699938,33
6/	9	0,37	91,41	97,38	0,00	1,66	1699938,33	1699938,33

The following figures 5.4, 5.5 and 5.6 represent the three first modes of the initial model:

Figure 5.4: Mode 1: Translation along the y-axis.

Figure 5.5: Mode 2: Rotation around the z-axis

Figure 5.6: Mode 3: Translation along the x-axis

According to the table 5.1 and the figures 5.4, 5.5 and 5.6:

- Period T=2.24 sec > $1.3T_{emp}$ =0.81 sec \rightarrow *condition not verified* T must be between T_{emp} and $1.3T_{emp}$
- The first mode is a translation along the y-axis.
- The second mode is a rotation around the z-axis.
- The third mode is a translation along the x-axis
- Mass participation exceeds 90 % starting from the 7th mode along the x-axis and from the 4th mode along the y-axis, so the condition is checked.
- The initial model is not verified, and it must be reinforced using an appropriate bracing system and check all the RPA99/03 conditions.

5.7 THE FINAL ROBOT MODEL:

The final model is reinforced by the bracing system of \mathbf{V} , the profiles of columns are changing as following:

- Bracing system 2UPN200 in the both directions.

The following table represent the different adopted profiles of columns:

level	Profile of columns
Roof	HEA360
8	HEA360
7	HEA400
6	HEA400
5	HEA400
4	HEA450
3	HEA450
2	HEA450
1	HEA450

Table 5.2: The profile of columns of finale model.

Figure 5.7: Final model of the structure, the building is reinforced by the bracing system.

Figure 5.8: Disposition of the bracing system 2UPN200 V in x direction.

Figure 5.9: Disposition of the bracing system 2UPN200 V in y direction.

According to x

According to y

Figure 5.10: Response spectrum along both axis x and y.

5.7.1 Modal analysis:

The results of modal analysis are in the following table:

Cas	/Mode	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masse Modale UX [%]	Masse Modale UY [%]	Tot.mas.UX [kg]	Tot.mas.UY [kg]	Masse Modale RZ [%]	Masses Cumulées RZ [%]
4/	1	0,69	2,03	80,16	2,03	80,16	1773709,56	1773709,56	0,00	0,00
4/	2	0,50	78,48	82,67	76,45	2,51	1773709,56	1773709,56	0,00	0,00
4/	3	0,36	78,50	82,69	0,02	0,02	1773709,56	1773709,56	0,01	0,01
4/	4	0,23	79,15	93,42	0,65	10,73	1773709,56	1773709,56	0,00	0,01
4/	5	0,17	92,45	93,67	13,30	0,25	1773709,56	1773709,56	0,00	0,01
4/	6	0,14	92,59	96,69	0,14	3,02	1773709,56	1773709,56	0,00	0,01
4/	7	0,12	92,62	96,70	0,03	0,01	1773709,56	1773709,56	0,00	0,01
4/	8	0,12	92,64	96,70	0,03	0,00	1773709,56	1773709,56	0,00	0,01
4/	9	0,12	92,64	96,70	0,00	0,00	1773709,56	1773709,56	0,00	0,01

Table 5.3: The dynamic analysis results of the final model.

- Period of 1^{st} mode: $T = 0.69 \text{ sec} \le 1.3 T_{emp} = 0.81 \text{ sec} \rightarrow condition verified$
- Mass participation exceeds 90 % starting from the 5th mode along x-axis x and from the 4th mode along y-axis \rightarrow *condition checked*.

The following figures 5.11, 5.12 and 5.13 represent the three first modes of final model:

Figure 5.11: 1st mode of the final model (Translation along y-axis)

Figure 5.12: 2nd mode of the final model (Translation along x-axis)

Figure 5.13: 3rd mode of the final model (Rotation around z-axis)

According to the table 5.3 the period is verified and in the three first modes there is two translations (along y and x-axes) and rotation around z-axe (in the 3^{rd} mode) so the disposition of the bracing system is accepted.

5.7.2 seismic analysis:

✓ Verification of seismic force V:

According to RPA2003 the resultant of the seismic forces at the base obtained by combining the modal values must not be less than 80 % of the resultant of the seismic forces that is determined by the equivalent static method V: $V_{dynamic} > 0.8 \times V$

A = 0.15, D=2.1; Q = 1.25; W = 17737.1 kN (from Robot software) kN;

R = 3 (bracing system V)

$$V = \frac{A.D.Q}{R} \times W; V_X = V_Y = V = \frac{0.15 \times 2.1 \times 1.25}{3} \times 17737.1 = 2328 \text{ kN}$$

0.8×V=1862.4 kN

The results of $V_{dynamic}$ are adopted from the Robot software after the application of the spectrum calculation in both directions x and y:

Seismic force in the x direction: V_{xdyn}= 2644,63kN

Seismic force in the y direction: Vydyn=2234,61kN

 $V_{xdyn} = 2644, 63kN > 0.8V = 1862.4kN \rightarrow condition verified$

 $V_{ydyn} = 2234,61kN > 0.8V = 1862.4kN \rightarrow condition verified$

Figure 5.14: Distribution of seismic force in the both directions x and y.

✓ Verification of inter floor displacement:

The horizontal displacement at each level (k) is calculated under the seismic actions (E_x and E_y) as follow: $\delta_k = R.\delta_{ek}$ such as:

R = ratio behavior: R = 3 bracing system of V.

 δ_{ek} = displacement of seismic forces F_i ; Δ_k : relative displacement $\Delta k = \delta_k - \delta_{k-1}$.;

The relative lateral displacements of a floor that is in relation to the next adjacent floor shall not exceed 1% of the floor's height, which means that the relative displacement must be less than 3.4 cm. The inter-floor displacements do not exceed allowable displacements; therefore, the condition is verified. The results of calculation are in the following table:

		Direc	ction x		Dire	ction y	Condition
Level	h _{level} (m)	$\delta_k(\mathbf{cm})$	Δ_k (cm)	$\Delta_k < 1\% h_{\acute{e}tage}$	$\delta_k(\mathbf{cm})$	$\Delta_k(\mathbf{cm})$	$\Delta k < 1\% h_{\acute{e}tage}$
Ground-	3.4	0,5	0,5	Verified	1,0	1,0	Verified
floor							
1	3.4	1,1	0,5	Verified	2,0	1,0	Verified
2	3.4	1,6	0,6	Verified	3,0	1,0	Verified
3	3.4	2,2	0,6	Verified	4,0	1,0	Verified
4	3.4	2,9	0,6	Verified	4,9	0,9	Verified
5	3.4	3,4	0,6	Verified	5,7	0,8	Verified
6	3.4	3,9	0,5	Verified	6,3	0,7	Verified
7	3.4	4,4	0,5	Verified	6,8	0,5	Verified
8	3.4	4,7	0,3	Verified	7,2	0,4	Verified

Table 5.4: Inter-floor displacements in both directions Δ_k

✓ The P- δ effect:

The eccentricity of vertical loads resulting from relative floor displacements causes additional axial forces on the structure components. This phenomenon is known as the P- Δ effect, this effect can be neglected in the building if the following condition is checked at all levels:

$$\theta = \mathbf{P}_{\mathbf{k}} \times \Delta_{\mathbf{k}} / \mathbf{V}_{\mathbf{k}} \times \mathbf{h}_{\mathbf{k}} < 0,10$$

Where:

P_k: Total weight of the structure at level k;

V_k: Shear force at level k, given by V_k= \sum Fi;

h_k: Height of level k.

The following tables 5.5 and 5.6 represent the verification of P- Δ in both directions x and y:

			Direction x			condition
Level	h _{level} (cm)	P _k (kN)	V _x (kN)	Δ_k cm	θ	$\theta < 0,10$
Ground-floor	340	17394,10	2644,68	0,5	0,010	Verified
1	340	15390,06	2578,76	0,5	0,009	Verified
2	340	13456,86	2450,41	0,6	0,010	Verified
3	340	11552,19	2271,31	0,6	0,009	Verified
4	340	9603,07	2037,04	0,6	0,008	Verified
5	340	7684,99	1753,09	0,6	0,008	Verified
6	340	5764,77	1411,67	0,5	0.006	Verified
7	340	3895,47	1018,29	0,5	0.0056	Verified
8	340	1940,22	536,17	0,3	0.0032	Verified

Table 5.5: Verification of the P- Δ effect in x direction

Table 5.6: Verification of the P- Δ effect in y direction

			Direction y			condition
Level	h _{level} (cm)	P _k (kN)	Vy(kN)	$\Delta_k \operatorname{cm}$	θ	$\theta < 0,10$
Ground-floor	340	17394,10	2234,68	1,0	0,023	Verified
1	340	15390,06	2166,81	1,0	0,021	Verified
2	340	13456,86	2043,27	1,0	0,019	Verified
3	340	11552,19	1879,20	1,0	0,018	Verified
4	340	9603,07	1671,17	0,9	0,015	Verified
5	340	7684,99	1426,20	0,8	0,013	Verified
6	340	5764,77	1140,81	0,7	0,010	Verified
7	340	3895,47	819,16	0,5	0,007	Verified
8	340	1940,22	430,33	0,4	0,005	Verified

According to the obtained results in both directions, the P- Δ effect can be neglected.

5.8 CONCLUSION:

- ✓ The initial model did not verify the RPA99/03 requirements and therefore a bracing system was added to the final model.
- ✓ All conditions of modal analysis (modes, period, mass participation) are checked.
- ✓ All required verifications by the RPA99/03 are checked.
- \checkmark The inter floor displacements are verified.
- ✓ The effect of the second order (or the effect P- Δ) can be neglected.
- \checkmark This implies that the final reinforced model is acceptable.

VERIFICATION OF

STRUCTURAL ELEMENTS

6.1 INTRODUCTION:

The purpose of any structural calculations is to check all the resistant elements and to ensure the stability of the structure's frames.

Static stability is ensured at the level of the structure and at the level of each element. Therefore, two types of instability phenomena must be checked which are:

✓ *Buckling:* A bending of a long element under a compressive effort (simple buckling) or a compressive effort and a bending moment (bending buckling).

✓ *Lateral buckling:* A type of buckling that creates a horizontal displacement, a vertical displacement and a rotation of the compressed sole.

Figure 6.1: Buckling phenomena

Figure 6.2: Lateral buckling phenomena

6.2 STABILITY CHECK:

6.2.1 Verification of columns:

The efforts are extracted considering the following combinations:

- ULS=1.35G+1.5Q
- G+Q+E
- 0.8G±E
- G+Q+1.25E
- 0.8G±1.25E

• Verification of buckling:

Members which are subjected to combined bending and axial compression should satisfy:

$$\frac{Nsd}{Xmin \times A \times fy/\gamma m1} + \frac{ky \times My.sd}{Wply \times fy/\gamma m1} + \frac{kz \times Mz.sd}{Wplz \times fy/\gamma m1} \le 1 \quad \text{from CCM97 (5.5.1)}$$

Where N_{sd} , $M_{y,sd}$ and M_{zsd} are the design values of the compression force and the maximum moments about the y-y and z-z axis along the member, respectively.

k_y, k_z: are the interaction factors where:

$$\mu_{y} = \lambda_{y} \times (2\beta_{M.y}-4) + \frac{(Wply-Wely)}{Wely} \le 0.90$$

$$k_{y} = 1 - \frac{\mu y \times Nsd}{Xy \times A \times fy} \le 1.50$$

$$\mu_{z} = \lambda_{z} \times (2\beta_{M.z}-4) + \frac{(Wplz-Welz)}{Welz} \le 0.90$$

$$k_{z} = 1 - \frac{\mu z \times Nsd}{Xz \times A \times fy} \le 1.50$$

 \Box_z , \Box_y : are the reduction factors due to flexural buckling from 5.5.1

 $\beta_{M.y}$, $\beta_{M.z}$: are the equivalent uniform moment factors for flexural buckling.

 \square_{\min} : minimum of \square_y and \square_z

Determined of buckling length:

Determined of buckling length using the fixed nodes method:

$$L_{f} \!=\! \frac{1\!+\!0.145\!\times\!(\eta 1\!+\!\eta 2)\!-\!0.265\!\times\!(\eta 1\!\times\!\eta 2)}{2\!-\!0.364\!\times\!(\eta 1\!+\!\eta 2)\!-\!0.247\!\times\!(\eta 1\!\times\!\eta 2)}\!\!\times\!H$$

$$\eta_1 = \frac{Kc + Kc1}{Kc + Kc1 + Kb11 + Kb12} \quad ; \quad \eta_2 = \frac{Kc + Kc2}{Kc + Kc2 + Kb21 + Kb22}$$

Table 6.1: Characteristics of profile HEA450 of columns of ground level

Profile	Weight G(Kg/m)	Area A(cm ²)	h(mm)	b(mm)	I _y cm ⁴	I _z cm ⁴	W _{ply} (cm ³)	W _{plz} (cm ³)	iy(cm)	iz(cm)
HEA450	140	178	440	300	63720	9465	3216	965.5	18.92	7.29

According to axis y-y:

$$\text{Kc}(\text{HEA450}) = \frac{I}{H} = \frac{63720 \times 10^4}{12000} = 53100 \text{mm}^3; \text{ K}_{\text{b}}(\text{IPE270}) = \frac{I}{L} = \frac{5790 \times 10^4}{5100} = 11352.94 \text{ mm}^3$$

$$K_{c2} = 0 ; K_b 21 = K_b 22 = 0$$

$$\eta_1 = \frac{53100 + 53100}{53100 + 53100 + 11352.94 + 11352.94} = 0.824$$

$$\eta_2 = 0 \text{ (Fixed support)}$$

$$L_f = \frac{1 + 0.145 \times (0.824 + 0)}{2 - 0.364 \times (0.824 + 0)} \times 3.4 = 0.66 \times 3.4 = 2.244 \text{ mm} = 2244 \text{ mm}$$

According to axis z-z:

 $K_{c}(\text{HEA450}) = \frac{l}{H} = \frac{9465 \times 10^{4}}{12000} = 7887.5 \text{mm}^{3}; K_{b}(\text{IPE270}) = \frac{l}{L} = \frac{5790 \times 10^{4}}{5100} = 11352.94 \text{ mm}^{3}$ $K_{c2} = 0 ; K_{b21} = K_{b22} = 0$ $\eta_{1} = \frac{7887.5 + 7887.5}{7887.5 + 7887.5 + 11352.94 + 11352.94} = 0.41$ $\eta_{2} = 0 \text{ (Fixed support)}$ $L_{f} = \frac{1 + 0.145 \times (0.41 + 0)}{2 - 0.364 \times (0.41 + 0)} \times 3.4 = 0.57 \times 3.4 = 1.938 \text{ m} = 1938 \text{ mm}$

Maximum slenderness: $\lambda_y = \frac{Lfy}{iy} = \frac{2244}{189.2} = 11.86$ and $\lambda_z = \frac{Lfz}{iz} = \frac{1938}{72.9} = 26.58$

 $\lambda_y \!=\! 11.86 \!<\! \lambda_z \!=\! 26.58$ so buckling along y-y axis.

- Reduced slenderness: $\overline{\lambda} = \frac{\lambda}{\lambda_{\perp}} \sqrt{\beta_{\scriptscriptstyle A}} = \frac{26.58}{93.9} = 0.283 > 0.2$ there is a risk of buckling.
- Choice of curve: $\frac{h}{b} = \frac{440}{300} = 1.46 > 1.2$ t_f = 21 < 40 so: buckling along axis y-y so curve a $\alpha = 0.21$
- Reduction factor: $\emptyset = 0.5[1 + \alpha(\bar{\lambda} 0.2) + \bar{\lambda}^2] = 0.5487 \ \chi = \frac{1}{\emptyset + \sqrt{\emptyset^2 \lambda^2}} = 0.97 < 1$

$$N_{brd} = \frac{\chi \beta_A A f_y}{\gamma_{Max}}, N_{brd} = \frac{0.97 \times 1 \times 17800 \times 235}{1.1} \times 10^{-3}$$

ł	🎜 NF EN 1993-1-	-1:2	005/NA:2013/	A1:2014 - Vérifi	cation des	pièces (E	LU) 2A9 1	2A26 28A30 174A1	99 300	A325 — 🗆 🗙
[Résultats Messag	jes]							Note de calcul Fermer
U	Pièce		Profil	Matériau	Lay	Laz	Ratio	Cas	\sim	Aide
l	2 Poteau_2	ок	HEA 450	ACIER	17.97	46.63	0.29	10 G+Q+Vy		Tour de bourd
U	3 Poteau_3	ок	HEA 450	ACIER	17.97	46.63	0.34	10 G+Q+Vy		Taux de travail
l	4 Poteau_4	OK	HEA 450	ACIER	17.97	46.63	0.38	11 G+Q-Vy		Analyse Cartographie
U	5 Poteau_5	OK.	HEA 450	ACIER	17.97	46.63	0.43	11 G+Q-Vy	7	Pointe de calcul
U	6 Poteau_6	OK	HEA 450	ACIER	17.97	46.63	0.42	11 G+Q-Vy		division: n = 7
U	7 Poteau_7	OK	HEA 450	ACIER	17.97	46.63	0.41	10 G+Q+Vy		extrêmes: aucun
ļ	8 Poteau_8	СК	HEA 450	ACIER	17.97	46.63	0.44	10 G+Q+Vy	\sim	additionnels: aucun

$$N_{sd} = 1899.14 \text{kN} < N_{brd} = 3705.74 \text{ kN} \dots \text{C.V}$$

Figure 6.3: Results of verification of columns HEA450 from Robot software.

The same steps are followed for checking the other columns, the results are in the following table:

Level	Profile		N _{sd} (kN)	N _{bd} (kN)	$\mathbf{M}_{sd,y}$	$\mathbf{M}_{\mathrm{sd,z}}$	□mi n	N _{sd} /N _{brd}	k y	kz	r	r≤1
Roof		G+Q+Ey	225.65	2852.25	14.05	8.65	0.85	0.08	0.51	0.97	0.15	CV
8	HEA360	G+Q+Ey	485.6	2852.25	16.29	9.46	0.85	0.17	0.51	0.95	0.20	CV
7		G+Q+Ey	979.3	2852.25	16.59	9.84	0.85	0.34	0.51	0.93	0.25	CV
6		G+Q+Ey	1225.69	3314.54	21.13	11.64	0.89	0.37	0.51	0.91	0.29	CV
5	HEA400	G+Q+Ey	1450.63	3314.54	23.61	12.57	0.89	0.44	0.51	0.89	0.34	CV
4		G+Q+Ey	1618.87	3314.54	25.83	13.89	0.89	0.49	0.51	0.85	0.39	CV
3		G+Q+Ey	1963.12	3705.74	24.56	13.36	0.89	0.53	0.30	0.46	0.40	CV
2	HEA450	G+Q+Ey	2089.5	3705.74	33.6	10.93	0.89	0.56	0.52	0.84	0.46	CV
1		G+Q+Ey	2215.9	3705.74	47.53	10.88	0.89	0.598	0.52	0.86	0.56	CV

Table 6.2: Verification of columns for flexural buckling

Verification of lateral buckling:

If there is a risk of lateral buckling it must be checked using the following expression:

$$\frac{Nsd}{Xz \times A \times fy/\gamma m1} + \frac{ky \times My.sd}{Xlt \times Wply \times fy/\gamma m1} + \frac{kz \times Mz.sd}{Wplz \times fy/\gamma m1} \leq 1$$

Where:

$$k_{\text{LT}} = 1 - \frac{\mu lt \times Nsd}{Xz \times A \times fy} \le 1.50$$

 $\mu_{LT} = 0.15 \times \overleftarrow{\lambda}_{LT} \times \beta_{M.LT} \text{--} 0.15 \leq 0.90$

 \Box_{LT} : is the reduction factor due to lateral torsional buckling.

 $\lambda_{\rm LT} = \sqrt{\frac{\beta w \times W p ly \times fy}{M cr}} = \frac{\lambda_{\rm LT}}{\lambda_1} \sqrt{\beta w} < 0.4 \text{ if this condition checked means that there is no risk of}$

lateral buckling, so not necessary to check the expression above.

 λ_{LT} determined according to CCM97 Annex" B" as following:

$$\lambda_{\rm LT} = \frac{k \times L \times (\frac{wpl^2}{lw \times Iz})^{\circ} 0.25}{\sqrt{c} \{\frac{k}{kw} \times 2 + \frac{kl \times 2 \times G \times Lt}{\pi \times 2 \times E \times Iw}\}^{\circ} 0.25}$$

Profile	iz(cm)	K	Kw	C1	λ_{LT}	βw(class1)	$\lambda_{ m LT}$
HEA360	7.43	0.5	1	3.149	24.21	1	0.258
HEA400	7.34	0.5	1	3.149	28.19	1	0.3
HEA450	7.29	0.5	1	3.149	32.5	1	0.342

Table 6.3: Verification of the columns for lateral buckling

Table 6.4: Finale profile sections of all columns

	Profile columns
Roof	HEA360
8	HEA360
7	HEA400
6	HEA400
5	HEA400
4	HEA450
3	HEA450
2	HEA450
1	HEA450

6.2.2 Verification of the main beams:

The profiles of main beams are IPE270, which are obtained from chapter 3.

Figure 6.4: Position of main beams.

1	NF EN 1993-1-	1:2	005/NA:2013/	A1:2014 - Vérifi	cation des	pièces (E	LU) 102A1	07 118A123 183A18	8 116	iA638P — 🗆 🗙
R	ésultats Messag	jes								Note de calcul Fermer
	Pièce		Profil	Matériau	Lay	Laz	Ratio	Cas	^	Aide
Г	1	0K	IPE 270	ACIER	20.39	82.55	0.55	11 Gp+G+Q+Ey		
Г	26	0K	IPE 270	ACIER	20.80	84.21	0.13	11 Gp+G+Q+Ey		Taux de traval
	102 Poutre_102	0K	IPE 270	ACIER	14.71	59.54	0.47	11 Gp+G+Q+Ey		Analyse Cartographie
	103 Poutre_103	0K	IPE 270	ACIER	11.19	45.30	0.44	9 Gp+G+Q+Ex		Deinte de cala i
	104 Poutre_104	OK	IPE 270		17.65	71.45	0.37	11 Gp+G+Q+Ey		division: n = 7
IE.	105 Poutre_105	0K	IPE 270	ACIER	14.71	59.54	0.47	9 Gp+G+Q+Ex		extrêmes: aucun
	106 Poutre_106	0K	IPE 270	ACIER	11.19	45.30	0.43	11 Gp+G+Q+Ey	~	additionnels: aucun

Figure 6.5: Results of verification of main beams IPE270 from robot software.

• Verification of bending strength:

The value of plastic resistance moment of IPE270 from chapter 3 is $M_{pl,rd} = 232.58$ kN.m

The maximum value of the bending moment of IPE270 from robot software obtained by the combination 1.35G+1.5Q is: $M_{sd}=-156.7$ kN.m

```
M_{sd} = 156.7 \text{ kN.m} < M_{pl,rd} = 232.58 \text{ kN.m} \qquad \textit{condition verified}
```


Figure 6.6: Bending moment Diagram of main beam.

• Verification of shear strength:

The value of plastic resistance shear force of IPE270 from chapter 3 is $V_{plrd} = 300.3 \text{ kN}$

The maximum value of the shear force of IPE270 from robot software obtained by the combination 1.35G+1.5Q is: $V_{sd} = 77.45$ kN

$$V_{sd} = 77.45 \text{ kN} < V_{plrd} = 300.3 \text{ kN}$$
 condition verified

Figure 6.7: Shear force diagram of main beam.

• Verification of interaction between moment and shear force:

 $0.5 \times V_{plrd} = 150.15 \text{ kN} > V_{sd} = 77.45 \text{ kN} \rightarrow There is no interaction}$

6.2.3 Verification of joists:

The profile of joists are IPE200, which are obtained from chapter 3.

Figure 6.8: Position of joists.

ł	NF EN 1993-1	-1:	2005/NA:2013//	41:2014 - Vérifie	cation des	pièces (E	LU) 85A92	94A97 139A173 17	5A178	226A2 — 🗆 🗙
	Résultats Messa	ge	5							Note de calcul Fermer
	Pièce	Γ	Profil	Matériau	Lay	Laz	Ratio	Cas	^	Aide
I	142	Þ	soliveIPE 200	ACIER	42.37	156.54	0.42	9 Gp+G+Q+Ex		Town do bound
I	143		soliveIPE 200	ACIER	15.44	57.03	0.03	9 Gp+G+Q+Ex		Taux de travail
I	144	뒘	soliveIPE 200	ACIER	30.87	114.05	0.16	9 Gp+G+Q+Ex	1	Analyse Cartographie
I	145	0	soliveIPE 200	ACIER	15.44	57.03	0.03	9 Gp+G+Q+Ex	1	Pointe de calcul
I	146	1	soliveIPE 200	ACIER	42.37	156.54	0.42	9 Gp+G+Q+Ex	1	division: n = 7
I	147		soliveIPE 200	ACIER	60.53	223.63	0.97	9 Gp+G+Q+Ex	1	extrêmes: aucun
Ľ	148		soliveIPE 200	ACIER	42.37	156.54	0.43	11 Gp+G+Q+Ey	1 ~	additionnels: aucun

Figure 6.9: Results of verification of joists IPE200 from Robot software.

• Verification of bending strength:

The value of plastic resistance moment of IPE200 from chapter 3 is $M_{plrd} = 128.61$ kN.m

The maximum value of the bending moment of IPE200 from robot software obtained by the combination 1.35G+1.5Q is: $M_{sd} = 72.15$ kN.m

 $M_{sd} = 72.15$ kN.m $< M_{plrd} = 128.61$ kN.m Condition verified

Figure 6.10: Bending moment diagram of joists.

• Verification of shear strength:

The value of plastic resistance shear force of IPE200 from chapter 3 is:

Vplrd = 190.165 kN

The maximum value of the shear force of IPE200 from robot software obtained by the combination 1.35G+1.5Q is $V_{sd} = 48.27 \text{kN}$

Figure 6.11: Shear force diagram of joists.

• Verification of interaction between moment and shear force:

 $0.5{\times}V_{plrd}{\,=\,}95.08~kN>V_{sd}{\,=\,}48.27kN$ \rightarrow There is no interaction

6.2.4 Verification of bracing system:

The types of bracing system that are used in this study are the bracing system of inverted V, the profile used are 2UPN200.

Figure 6.12: Position of bracing system.

🌌 NF EN 1993-1-1:2005/NA:2013/A1:2014 - Vérification des pièces (ELU) 967 968 1054 1056A1076 1092A1116P – 🛛 🗙										
Résultats Messag	es							Note de calcul Fermer		
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas	^	Aide		
1062 Barre_1062	🛯 2 UPN 200	ACIER	48.06	125.96	0.76	11 Gp+G+Q+Ey		Touru de trouvil		
1063 Barre_1063	2 UPN 200	ACIER	48.06	125.96	0.58	9 Gp+G+Q+Ex		Taux de travail		
1064 Barre_1064	2 UPN 200	ACIER	48.06	125.96	0.63	11 Gp+G+Q+Ey		Analyse Cartographie		
1065 Barre_1065	🛚 2 UPN 200	ACIER	48.06	125.96	0.45	9 Gp+G+Q+Ex		Points de calcul		
1066 Barre_1066	🛯 2 UPN 200	ACIER	48.06	125.96	0.48	11 Gp+G+Q+Ey		division: n = 7		
1067 Barre_1067	2 UPN 200	ACIER	48.06	125.96	0.33	9 Gp+G+Q+Ex		extrêmes: aucun		
1068 Barre_1068	C UPN 200	ACIER	48.06	125.96	0.34	11 Gp+G+Q+Ey	 ¥	additionnels: aucun		

Figure 6.13: Results of verification of bracing 2UPN200 from Robot software.

Table 6.5: Characteristics of profile UPN200

profile	Area A(cm ²)	h(mm)	b(mm)	$W_{ply}(cm^3)$	W _{plz} (cm ³)	I _y (cm ⁴)	I _z (cm ⁴)
2UPN200	32.2	200	75	228	51.8	1910	148

• Verification at tension:

The most stressed bar has the maximum tension force $N_{sd} = 584.35$ kN, the following condition must be checked:

$$N_{sd} = 584.35 \text{ kN} \le 2 \times N_{trd}$$

Where:

 N_{sd} : Maximum normal force obtained from robot software by the combination G+Q+1.25E

N_{trd}: Plastic normal force given by the following expression:

 $N_{trd} = \frac{A \times fy}{\gamma m0} = \frac{3220 \times 235}{1.1} \times 10^{-3} = 687.91 \text{ kN}$

 $N_{sd} = 584.35 \text{kN} < 2 \times N_{trd} = 1375.82 \text{ kN}$ Condition verified

• Verification at compression:

The value of compression force $N_{sd} = 609.6$ kN at each cross section shall satisfy:

 $N_{sd}\!\leq\!2{\times}N_{crd}$

N_{sd}= 609.6kN< 2×N_{crd}= 1375.82 kN Condition verified

• Verification of Buckling:

The condition N_{sd} =612.6kN $\leq N_{brd}$ must be checked:

$$N_{brd} = \Box \times \beta_A \times A \times \frac{fy}{\gamma m 1}$$

$$\lambda_y = \frac{lfy}{2 \times iy} = \frac{4250}{2 \times 77} = 27.597 ; \lambda_z = \frac{lfz}{2 \times iz} = \frac{4250}{2 \times 21.4} = 99.3 \qquad \lambda_y < \lambda_z \text{ buckling is around y-y}$$

 $\overline{\lambda_y} = \frac{99.3}{93.91} = 1.06 \le 0.02$ there is a risk of buckling; curve a: $\alpha = 0.21$; $\emptyset_y = 1.15$; $\Box_y = 0.62$

 $N_{plrd}=2\times0.62\times1\times3220\times\frac{235}{1.1}=853$ kN; $N_{sd}=609.6$ kN

N_{sd} =609.6 kN \leq N_{brd}=853 kN *Condition verified*

6.3 CONCLUSION:

- \checkmark All condition of resistance and stability are verified.
- ✓ The obtained profiles for main beams are IPE270, for joists are IPE200, and for bracing system 2UPN200.
- ✓ The obtained profiles for columns are HEA360, HEA400 and HEA450.
- ✓ The results are used in the calculation of steel connections "Chapter 7" and also in the design of the infrastructure in the last chapter.

DESIGN OF

STEEL CONNECTIONS

7.1 INTRODUCTION:

In steel buildings' frames, the structural elements are connected by steel connections; steel connections are used to join different elements together, ensuring the transmission and distribution of stresses.

The types of such links are: column-column, column-beam, beam-joist, base of column, bracing system connections...

The types of connections used in this project are welded connections, bolted connections (by ordinary bolts, and HR bolts).

7.2 MAIN BEAM - COLUMN CONNECTION:

To model the deformational behavior of a joint, shear deformation of the web panel and rotational deformation of the connections should be taken into account.

Joint configurations should be designed to resist the internal bending moments, normal forces and shear forces.

Figure 7.1: Connections, with forces and moments in beams.

The type of connection: BeamIPE270-ColumnHEA450

The results of the most stressed joint from Robot software are:

Bendig moment: M_{sd}=156.7 kN.m

Shear force: V_{sd} = 77.45 kN

Axial force: N_{sd}=0

Bolts used 10 high strength bolts HR of M20 class 10.9.

Dimension of steel plate: h_p=480mm; b_p=150mm; t_p=20mm

According to CCM97 class 10.9 M20: f_{yb}=900 MPa; f_{ub}=1000 MPa;

d=20mm; d_o=d+2=22mm.

7.2.1 Positioning of holes for bolts:

The positioning of holes for bolts, determined according to CCM97 as follows:

t: is the thickness of the thinner outer connected part. t_p=20mm

$$1.2d_0 \le e_1 \le max (12t; 150mm)$$
 $26.4mm \le e_1 \le 240mm$ $e_1=60mm$ $2.2d_0 \le p_1 \le min (14t; 200mm)$ $48.4mm \le p_1 \le 200mm$ $p_1=80mm$ $1.5d_0 \le e_2 \le max (12t; 150mm)$ $33mm \le e_2 \le 240mm$ $e_2=80mm$ $3d_0 \le p_1 \le min (14t; 200mm)$ $66mm \le p_1 \le 200mm$ $p_2=90mm$

Figure 7.2 : BeamIPE270-ColumnHEA450 connection.

7.2.2 Verification of weld: (plate-beam)

• Effect N and V:

The following condition must be checked:

$$\sqrt{2(\frac{Nsd}{\sum liai})^2 + 3\left(\frac{Vsd}{2l3a}\right)^2} \leq \frac{fu}{\gamma Mw \times \beta w}$$

According to CCM97: FeE360 so Fu=360Mpa; β_w =0.8; γ_{Mw} =1.25 $\sum liai$ =(l₁+2l₃+4l₂) a

 $N_{sd}=0$; $V_{sd}=77.45$ kN; a=10mm $l_1=135$ mm; $l_2=(b_b-t_w)/2=64.2$ mm;

 $l_3=h_b-2t_f=270-2\times 10.2=249.6mm$

 $\sum liai = l_1 + 2l_3 + 4l_2 = (135 + 2 \times 249.6 + 4 \times 64.2) \times 10 = 8910 \text{ mm}^2$

$$\sqrt{3\left(\frac{77.45}{2\times0.2496\times0.01}\right)^2} \times 10^{-3} = 26.87 \text{MPa} < \frac{360}{1.25\times0.8} = 360 \text{ MPa}$$
 condition verified

• Effect N and M:

The following condition must be checked:

$$\sqrt{2}(\frac{\text{Nsd}}{\sum \text{liai}} + \frac{\text{Msd}}{\text{Iys}} \times \text{Vmax}) \leq \frac{fu}{\gamma Mw \times \beta w}$$

N_{sd}=0; M_{sd}=156.7 kN.m; V_{max}= $\frac{h}{2}$ + *a*; I_{y/s}=(l₁×a) ×d'₁²+4×l₂×a×d'₂² where: d'₁= $\frac{h}{2}$ + $\frac{a}{2}$ = $\frac{270}{2}$ + $\frac{10}{2}$ = 140mm; d'₂= $\frac{h}{2}$ - tf - $\frac{a}{2}$ = $\frac{270}{2}$ - 10.2 - $\frac{10}{2}$ = 119.8mm I_{y/s}=(135×10) ×140²+4×64.2×10×119.8²=6.33×10⁷ mm⁴

$$\sqrt{2} \times \frac{156.7 \times 10^6}{6.33 \times 10^7} \times 145 = 357.9$$
 MPa < 360 MPa condition verified

7.2.3 Verification of bolts: (plate-column)

• Shear force:

The following condition must be checked:

$$\mathbf{F}_{vsd} \leq \mathbf{F}_{s, rd}$$

Where:

$$F_{vsd} = \frac{Vsd}{np.nb} = \frac{77.45}{1 \times 10} = 7.75 \text{ kN; } \mathbf{F_{s, rd}} = \frac{Ks \times \mu \times n.Fp}{\gamma Ms}$$

 F_{pc} : preloading force F_{pc} = 0, 7. f_{ub} .As=0.7×1000×245=171.5 kN

n: the number of the friction surfaces=1

K_s=1,0 Bolts in normal holes

 μ : Slip factor depend on Class of friction surfaces = 0.3 (class c)

$$\mathbf{F}_{s,rd} = \frac{1 \times 0.3 \times 1 \times 171.5}{1.25} = 41.16 \text{ kN}$$

 F_{vsd} =7.75 kN \leq $F_{s,rd}$ =41.16 kN condition verified

• Tension effect:

Shear force of the most stressed bolt:

$$F_{M1} = \frac{Msd.d1}{nf\Sigma di^2}$$

 n_f :: number of bolts in line= 2

 $d_1 = 80 + 90 + 90 + 80 + 60 - 10.2/2 = 394.9 \text{mm};$

d₂=314.9mm; d₃=224.9 mm; d₄=134.9mm; d₅=54.9mm

 $\sum di^2 = d_1^2 + d_2^2 + d_3^2 + d_4^{2+} d_5^2$; $\sum di^2 = 326.9 \times 10^3 \text{mm}^2$

 $F_{M1} = \frac{156.7 \times 394.9 \times 10^{-3}}{2 \times 326.9 \times 10^{-3}} = 94.65 \text{ kN}$

The following condition must be verified: $F_{ts.d} \leq F_{trd}$;

 $\gamma_{Ms}=1.5$; $F_{ts,d}=F_{M1}=94.65$ kN; $F_{trd}=0.7 \times A_s \times F_{ub}=0.7 \times 245 \times 1000 \times 10^{-3}=171.5$ kN

$$F_{ts.d} = 94.65 \text{ kN} \leq F_{trd} = 171.5 \text{ kN} \rightarrow Condition verified$$

• Verification of tension and shear force:

The following condition must be checked:

$$\mathbf{F}_{vsd} \le \mathbf{F}_{s,rd} = \frac{Ks \times \mu \times n.(Fp - 0.8Ftsd)}{\gamma Ms}$$
$$\mathbf{F}_{s,rd} = \frac{1 \times 0.3 \times 1(171.5 - 0.8 \times 87.94)}{1.25} = 24.28 \text{ kN}$$

 F_{vsd} =7.75 kN < $F_{s, rd}$ =24.28 kN \rightarrow condition verified

7.2.4 Verification of resistance pieces:

• Tension zone:

The following expression must be checked:

$$\mathbf{N}_{\mathbf{t}} \leq \mathbf{F}_{\mathbf{t}} = \frac{f y.twc.beff}{\gamma Mo}$$

 $N_t=M/d$, M=156.7 kN.m; d=h_b-t_{fb}=270-10.2 = 259.8mm so: N = 603.16 kN;

twc=11.5mm (thickness web of column);

 $beff = t_{fb} + 2t_p + 5(t_{fc} + r_c) = 10.2 + 2 \times 20 + 5(21 + 27) = 290.2 \text{mm}$

$$\mathbf{F}_{\mathbf{t}} = \frac{235 \times 11.5 \times 290.2}{1.1} \times 10^{-3} = 712.97 \text{ kN}$$

N_t =603.16 kN \leq F_t =712.97 kN \rightarrow condition checked

• Compression zone:

No verification is necessary because the web has stiffener of thickness = 8mm

7.3 BEAM-JOIST CONNECTION:

In this project there is one type of connection between beam and joist which is:

BeamIPE270-JoistIPE200

Shear force: V_{sd}=48.27 kN;

Bolts used from Robot software: 4 ordinary bolts of M16 class 4.8.

and legs angles $100 \times 100 \times 10$.

According to CCM97 class 4.8 M16:

fyb=320 MPa; fub=400 MPa; d=16mm; do=d+2=18mm

7.3.1 Positioning of holes for bolts:

The positioning of holes for bolts determined according to CCM97 as follows:

t: is the thickness of the thinner outer connected part. twjoist=5.6mm

$$1.2d_0 \le e_1 \le max \ (12t; \ 150mm) \ 21.6mm \le e_1 \le 150mm \ e_1 = 35mm$$

 $2.2d_{o} \le p_{1} \le min \ (14t; \ 200mm) \qquad 39.6 \ mm \le p_{1} \le 78.4mm \quad p_{1} = 60mm$

 $1.5d_0 \le e_2 \le max (12t; 150mm)$ $27mm \le e_2 \le 150mm$ $e_2 = 50mm$

Figure 7.3: BeamIPE270-JoistIPE200 connection.

7.3.2 Verification of the bolts:

✓ Verification of shear:

The shear plane passes through the not threaded part of the bolt, according to CCM97 category of connection is bearing type "A" the following condition must be checked:

$$\mathbf{F}_{vsd} \leq \mathbf{F}_{vrd}$$

Where:

$$F_{vrd} = \frac{0.6fub.As}{\gamma Mb} ; \gamma_{Mb} = 1.25 (bolts stressed at tension) F_{vsd} = 32.43 \text{ kN} (from Robot)$$
$$F_{vrd} = \frac{0.6 \times 400 \times 157}{1.25} = 30.144 \text{ kN}$$

There are 2 bolts so: F_{vrd}=2×F_{vrd}=2×30.144=60.29 kN

F_{vsd} =32.43 kN \leq F_{vrd} =60.29 kN \rightarrow condition verified

✓ Verification of diametric pressure:

The following condition must be verified:

$$\mathbf{F}_{\mathbf{v.sd}} \leq \mathbf{F}_{\mathbf{b,rd}}$$

 $F_{brd} = \frac{2.5 \times \alpha \times fu \times d \times t}{\gamma M b}; \gamma_{Mb} = 1.25; \text{ fu} = 360 \text{ MPa}; \text{ d} = 16 \text{ mm}; \text{ t} = 10 \text{ mm} \text{ (thickness of leg angle)}$ $\alpha = \min \left\{ \frac{e1}{3do}; \frac{p1}{3do} - \frac{1}{4}; \frac{fub}{fu}; 1 \right\}$ $\alpha = \min \left\{ \frac{35}{54} = 0.65; \frac{60}{54} - \frac{1}{4} = 0.86; \frac{400}{360} = 1.11; 1 \right\} \quad \alpha = 0.65$ $F_{brd} = \frac{2.5 \times 0.65 \times 360 \times 16 \times 10}{1.25} = 74.88 \text{ kN}$

 $F_{v.sd} = 32.43 kN \leq F_{b,rd} = 74.88 \ kN \rightarrow \textit{condition verified}$

7.4 COLUMN-SECONDARY BEAM CONNECTION:

The same stapes are followed to determine the connection between column and secondary beam, the connection is done by Robot software as following:

Type of connection is: **BeamPE200-ColumnHEA450** is done by using the legs angle of 100×10 and 4 ordinary bolts M16 of class 4.8

Figure 7.4: BeamIPE200-ColumnHEA450 connection.

7.5 COLUMN-COLUMN CONNECTION:

The most stressed connection between column and column determined by Robot, type of connection is flange-flange and web-web connected with bolted plates.

The values obtained from robot software as following:

Type of connection: ColumnHEA450-ColumnHEA450

Figure 7.5: ColumnHEA450-ColumnHEA450.

7.5.1 Flange-cover plate connection:

The Bolts used of high strength 8 M20 class 8.8 and Steel plate of (350×240×15)

fyb=600 MPa; fub=800 MPa; d=20mm; do=22mm

The shear plan passes through the filtered part, joint of category C

 $A_s=2.45 \text{ cm}^2$; $A_v=3.14 \text{ cm}^2$; Ks=1,0; $\mu=0.3$; $n_b=2$;

e₁=60mm; p₁=50mm; e₂=70mm

- bolts resistance:
 - ✓ diametric pressure:

 $F_{v.sd}{=}21.27kN \leq F_{b,rd}{=} 147,31kN \quad \textit{CV}$

✓ shear force of bolts:

 $F_{v,sd} = 21.27 \text{ kN} < F_{s,Rd} = 37,42 \text{ kN}$ CV

✓ Tension resistance:

 $F_{Ed}\text{=-80.65 kN} \leq N_{net,Rd}\text{=-535.8 kN} \ \textit{CV}$

7.5.2 Web cover plate connection:

The Bolts used of high strength 8 M20 class 8.8 and Steel plate of (350×260×20)

 f_{yb} =600 MPa; f_{ub} =800 MPa; d=20mm; d_0=22mm

The shear plan passes through the filtered part, joint of category C

 $A_s=2.45 \text{ cm}^2$; $A_v=3.14 \text{ cm}^2$; Ks=1,0; $\mu=0.3$; $n_b=2$; $e_1=40\text{mm}$; $p_1=70\text{mm}$; $e_2=60\text{mm}$

✓ diametric pressure:

 $F_{v.sd}$ =43.24kN $\leq F_{b,rd}$ =113.16kN *CV*

✓ shear force of bolts:

 F_{sd} =43.24 kN< $F_{s,rd}$ =74.84 kN CV

7.6 BRACING SYSTEM CONNECTION:

The most stressed connection of bracing system determined by robot software, the connection between column and bracing, beam and bracing make by gusset, the values obtained from robot software as following:

4 Ordinary bolt of M20 class 6.8, Gusset of 660×660×20, fub=600 MPa; fyb=480 MPa

 $\begin{array}{lll} 26.4mm \leq e_1 \leq 150mm & e_1{=}40mm \\ \\ 48.4\ mm \leq p_1 \leq 78.4mm & p_1{=}65mm \\ \\ 33mm \leq e_2 \leq 150mm & e_2{=}140mm \end{array}$

The bars of 2UPN200 are connected in gusset by ordinary bolts and the gusset is connected with the beam by welding of thickness of 5 mm.

Figure 7.6: Gusset-bars 2UPN200 connection.

7.6.1 Verification of welding:

The following expression must be checked:

$$N_{sd1,2} \leq F_w, rd$$

Thickness of welding is 5mm, N_{sd} = 609.6 kN

 $N_{sd1}=N_{sd2}=N_{sd}\times sin45=609.6\times sin45=431.05$ kN

 $F_{wrd} = \frac{a \times Fu \times 2L}{\sqrt{3 - \sin^2 a} \times \beta w \times \gamma M w} = \frac{5 \times 360 \times 2 \times 660}{\sqrt{3 - \sin^2 45} \times 0.8 \times 1.25} = 1234.04 \text{ kN}$

$$N_{sd1,2}$$
=431.05 kN \leq F_w, rd = 1234.04 kN \rightarrow Condition verified

7.6.2 Verification of shear bolts:

The following condition must be checked:

$$\mathbf{F}_{vsd} \leq \mathbf{F}_{vrd}$$

Where:

 $F_{vsd} = \frac{Nsd}{nb} = \frac{609.6}{4} = 152.4 \text{ kN}; F_{vrd} = \frac{0.6 \times 600 \times 245}{1.25} = 705.6 \text{ kN}$

 $F_{vsd} = 152.4 \text{ kN} \le F_{v rd} = 705.6 \text{ kN} \rightarrow Condition verified$

7.6.3 Verification of diametric pressure:

The following condition must be checked:

 $\mathbf{F}_{vsd} \leq \mathbf{F}_{b rd}$

 $\alpha = \min \left\{ \frac{40}{66}; \frac{65}{66} - \frac{1}{4}; \frac{600}{360}; 1 \right\} = \min \left\{ 0.61; 0.73; 1.66; 1 \right\} = 0.61$ $F_{\text{brd}} = \frac{2.5 \times 0.61 \times 600 \times 20 \times 20}{1.25} = 292.8 \text{ kN} > F_{\text{vsd}} = 152.4 \text{ kN} \rightarrow condition verified$

7.7 COLUMN BASE CONNECTION:

Column bases should be of sufficient size, stiffness and strength to transmit the axial forces, bending moments and shear forces in columns to their foundations or other supports without exceeding the load carrying capacity of these supports.

The values obtained from robot software as following:

Solicitations: $N_{sd} = -2215.9$ kN; $M_{sd} = 47.53$ kN.m; $V_{sd} = 23.4$ kN

Concrete: $F_{ck} = 25$ MPa concrete class 25/30

Spread footing: L = 1700 mm; B = 1700 mm; H = 900 mm

Anchor: 8 Bolt of high strength HR class 8.8 M20; e_h=660mm, e_v=150mm;

L₁=60 mm; L₂=640 mm; L₃= 120mm; L₄=140 mm

Steel plate: L_p=750mm; b_p=550mm; t_p=15mm; F_y=235 MPa; F_u=360MPa

Stiffeners: l_s=750mm; W_s=550mm; h_s=440mm; t_s=25mm;

Dimensions of column base are in the following figure:

Figure 7.7: Column base connection.

7.7.1 Verification of compressive stress of concrete:

The following condition must be checked: $\sigma_b \leq f_j$

Where:

$$\sigma_{b} = \frac{Nsd}{Aeff}; f_{j} = \beta_{j} \times K_{j} \times f_{c}; \beta_{j} = 0.67; f_{j} = 33.33 \text{MPa}$$

$$A_{eff} = (2 \times C + t_{fc})(2 \times C + b_{fc}) \text{ and } C = t_{p} \times \sqrt{\frac{Fyp}{3fj \times \gamma mo}} = 26 \text{mm}; A_{eff} = 2260.33 \text{cm}^{2}$$

 $\sigma_b = \frac{2215.9 \times 10^3}{2260.33 \times 10^2} = 9.8 MPa < 33.33 MPa \rightarrow \textit{condition verified}$

7.7.2 Verification of steel plate:

The following condition must be checked: $M_{sd}^{max} \leq M_{crd}$

Where:

$$M_{crd} = \frac{wel \times fy}{\gamma mo}; w_{el} = \frac{bp \times tp^2}{6} = \frac{550 \times 15^2}{6} = 20625 \text{mm}^3$$

$$M_{crd} = 4.847 \text{ kN.m}; M_{sd}^{max} = \frac{15^2}{2} \times \sigma_b = \frac{15^2}{2} \times 9.8 = 1.103 \times 10^{-3} \text{ kN.m}$$

$M_{sd}^{max} = 1.103 \times 10^{-3} \text{ kN.m} < M_{crd} = 4.847 \text{ kN.m} \rightarrow \textit{Condition verified}$

7.7.3 Verification of shear force:

Verification of anchor bolt:

The following condition must be checked:

$$V_{sd} \leq F_{vb,Rd}$$

Where:

 $F_{vb,Rd} = a_b \times f_{ub} \times A_{sb} / \gamma_{M2} = 43.12 \text{ kN}$

$V_{sd} = 23.4 \text{ kN} \le F_{vb,Rd} = 43.12 \text{ kN} \rightarrow Condition verified$

7.7.4 Verification of slip on flange:

The following condition must be checked:

Vsd≤Ff,Rd

Where:

 $F_{f.Rd} = C_{f.d} \times N_{sd}^{C}$; $C_{f,d} = 0.3$

 $F_{f.Rd}$ =0.3×2215.9=664.77 kN

 $V_{sd}=23.4 \text{ kN} \le F_{f,Rd}=664.77 \text{ kN}$

7.7.5 Verification of Stiffener:

The following condition must be checked:

max (
$$\sigma_{\rm g}; \frac{\tau}{0.58}; \sigma_z$$
)/(f_{yp}/\gamma_{\rm M_0}) ≤ 1.0

 $M_1 = 20.56$ kN.m (bending moment of stiffener); $Q_1 = 265.36$ kN (Shear force of stiffener)

Zs=194mm (position of neutral axis); τ =24.12 MPa; σ_g =19.14 MPa; σ_z =43.79 MPa

$$\sigma_z/(f_{yp}/\gamma_{Mo})$$
=0.19<1 $ightarrow$ Condition verified

7.7.6 Verification of welding:

Welding between the column and seat plate:

The following conditions must be checked:

 $\frac{\sigma^{\scriptscriptstyle \perp}}{0.9 \times fu/\gamma M2}$ =0.14≤ 1.0 \rightarrow Condition verified

 $\frac{\sigma^{\perp^2+3}\left(\tau y l l^2+\tau^{\perp^2}\right)\right)}{f u/(\beta w \times \gamma M2)} \leq 1.0 \rightarrow \textit{Condition verified}$

 $\frac{\sigma^{\perp^2+\;3\;(\tau z I I^2\;+\;\tau^{\perp^2}))}{f u/(\beta w \times \gamma M 2)} = 0.20 \leq 1.0 \rightarrow \textit{Condition verified}$

Where:

 $\sigma \perp = 36.48$ MPa (normal stress in the welding); $\tau \perp = 36.48$ MPa (tangential stress)

 $\beta_w = 0.85$; $\tau_{yII} = 1.33$ MPa (tangential stress parallel to V_{sdy});

 $\tau_{zII} = 0.19 MPa$ (tangential stress parallel to V_{sdz});

According to robot software results, all the conditions of resistance are checked and the highest R factor is : R = 0.97 < 1.

7.8 CONCLUSION:

- ✓ In this chapter, all calculations and verifications are performed according the EC3 using the Robot software and checked with manual calculations.
- \checkmark The results of column base will be used in chapter 8.

FOUNDATIONS

8.1 INTRODUCTION:

The foundations of a structure are those parts that are in contact with the ground which transmit the loads of the superstructure to the ground. The design and calculation of the foundations are based on different criteria, including to the superstructure's loads and the characteristics of the soil.

8.2 DIFFRENTS TYPE OF FOUNDATIONS:

Foundations can be classified according to soil in 03 types:

- ✓ Shallow foundations.
- ✓ Semi-deep foundations.
- ✓ Deep foundations.

The shallow foundations are used in this project which are foundations with a depth less than 3m, divided on three types:

- The functional foundations: formed by continuous footing or pad footing.
- The linear foundations: formed by strip footing.
- The surface foundations: formed by raft.

8.3 HYPOTHESIS OF CALCULATION:

The calculations are based on the following hypothesis:

- The footings are very rigid, therefore, the stress have linear distribution.
- The dimensioning of the footings is calculated in SLS.
- Batching of concrete:
 - Blinding concrete : 150 kg/m³
 - Reinforced concrete : 350kg/m³
- Allowable soil stress : 2.00 bars

Figure 8.1: view plan at level 0.00.

8.4 LOADS COMBINNATION:

According to BAEL91V99, there are two combinations:

- SLS: G+Q
- ULS: 1.35G+1.5Q

According to RPA99/2003, the surface foundations are designed considering the combinations:

- G+Q+E
- 0.8G±E

8.5 PAD FOOTING:

8.5.1 Dimensioning:

According to Robot software the most stressed column of ground level has an effect of:

N=1885,61 kN Combination used: SLS=G+Q

$$\sigma = \frac{N}{S} \le \sigma_{\text{soil}}$$
 S: area of footing (square) = B×A

such as B=A; σ_{soil} =2 bar allowable soil stress.

$$S \ge_{\sigma}^{N} = \frac{1885.61}{0.2} \times 10^{3} = 9428050 \text{ mm}^{2} = 9.43 \text{m}^{2}$$
$$B = \sqrt{S} = \sqrt{9.43} = 3.07 \text{m}; B = 3.5m$$
$$h \ge \frac{B-b}{4} - 0.05 \text{m such as: } b = 70 \text{cm}$$

 $h \ge \frac{3.5 - 0.70}{4} - 0.05 = 0.65 \text{m so } h = 65 \text{ cm}$

Figure 8.2: Dimensions of pad footing.

8.5.2 Verification of interference between two footing:

The condition following must be verified: $L_{min} \ge 1.5 \times B$

 $L_{min} = 2.07m$ the minimum length between axis of two columns

Figure 8.3: The minimum length between two axes of two columns.

L_{min} = 2.07m < 1.5 \times 3.5 = 5.25 m condition not verified

There is an overlap between footings, the next type should be considered "strip footings".

8.6 STRIP FOOTING:

The normal force supported by the strip footing is the sum of the normal forces of all the columns that are located in the same line.

Figure 8.4: Characteristic of strip footing.

The condition following must be checked: $\sigma = \frac{N}{s} \le \sigma_{soil}$ such as:

 $S = B \times L$ B: width of footing; L: length of file; $N = \sum Ni$ (for each file)

$$B \ge \frac{N}{L \times \sigma soil} = \frac{2075.22}{10100 \times 0.2} \times 10^3 = 1027.34 \text{ mm} = 1.027 \text{ m} \rightarrow B = 1.5 \text{ m}$$

The obtained results are presented in the following table:

Table 8.1:	Dimensioning a	and verification	of strip footi	ng (SLS)
------------	----------------	------------------	----------------	----------

File	Effect N(kN)	L(m)	B(m)	B(choice)	S (m ²)	σ(MPa)	$\sigma \leq \sigma_{soil}$	$L_{min} \ge 1.5 \times B$
1	2075.22	10.1	1.027	1.5	15.15	1.37	CV	CV
3	3840.91	10.1	1.9	2	20.2	1.9	CV	CNV
4	2849.28	7	2.03	2.1	14.7	1.93	CV	CNV
5	2806.9	9.11	1.54	1.6	14.576	1.92	CV	CNV
7	3508.47	12	1.46	1.5	18	1.94	CV	CNV
В	3847.41	10.1	1.9	2	20.2	1.9	CV	CNV
F	5794.03	12	2.41	2.5	30	1.93	CV	CNV

 $L_{min} = 2.07 \text{ m} < 1.5 \times 2.5 = 3.75 \text{ m} \rightarrow Condition not verified.$

There is another condition that should be considered, which is:

The area of all footings must be less than 50% of the area of the building: $\frac{Sf}{Sb} < 50\%$

 S_f : Area of all footings $S_f = 132.826 \text{ m}^2$

 S_b : Area under the building $S_b = 261.725m^2$

 $\frac{132.826}{261.725} = 0.51 = 51\% > 50\%$ Condition not checked.

The verification of interference between two footing is not checked, which means that there is an overlapping of footings. Also, the area of all footings more than 50 % of the area under the building, in such cases a *raft foundation* is more suitable and economical.

8.7 RAFT FOUNDATION:

The raft is a solid slab made under the total surface of the construction, this slab can be massive (high thickness), or ribbed (the slab is thin but it is stiffened by ribs), in this case the type adopted is a ribbed raft because it is more economical.

The normal force supported by the raft is the sum of the normal forces of all columns.

Figure 8.5: Composant of raft foundation.

8.7.1 Dimensioning of raft foundation:

• Determine the height of the ribs:

$$h_r \ge \frac{Lmax}{10} = \frac{5100}{10} = 510 \text{ mm},$$

Height of the ribs: $h_r = 60 \text{ cm}$

• Determine the width of the ribs:

Width of the ribs must be more or equal the width of anchor that is determined in chapter 7:

 $b_{Anchor} = 55 cm;$

Width of the ribs obtained is $b_r = 70$ cm

• Determine the thickness of slab:

$$e \ge \frac{Lmax}{20} = \frac{5100}{20} = 255 \text{ mm}; \text{ So, } e = 40 \text{ cm}$$

• Rigidity condition:

For a rigid raft it must: $L \leq \frac{\pi}{2} \times L_e$

L_e: Elastic length given by: L_e= $\sqrt[4]{\frac{4 \times E \times I}{K \times b}}$

K: Elastic coefficient of soil (from soil report) K=2.1347 kg/cm³

E: Modulus of elasticity of concrete E = 32164.195MPa

I: Inertia of the raft

b: band of 1 meter b = 1m

$$h_{t} \ge \sqrt[3]{\frac{3K(\frac{2 \times b}{\pi})^{4}}{E}} \quad h_{t} \ge \sqrt[3]{\frac{3 \times 21.347(\frac{2 \times 1}{\pi})^{4}}{3.2164195 \times 10^{4}}} \quad h_{t} \ge 0.06m$$

so, height of raft adopted: ht=100cm

The results of dimension are as following:

- Thickness of slab $h_t = 40 \text{ cm}$
- Height of the ribs $h_r = 60$ cm; width of the ribs $b_r = 70$ cm
- Total height of raft $h_t = 100$ cm
- The area of the raft equals the area of the building plus + 50 cm in each side:

 $S_r = (20.17 \times 20.17) - (9.07 \times 9.07) - (\frac{7.67 \times 7.67}{2}) = 295.15 \text{ m}^2$

The area of the raft is: $S_r=295.15m^2$

Figure 8.6: Dimensions of the raft.

Figure 8.7: Raft foundation by robot software.

- 8.7.2 Verification of soil stress:
- Verification at SLS:
- Manual calculation:

$$\sigma_{ser} = \frac{Nmaxser}{Sr} = \frac{35317.65}{295.15} = 119.66 \text{ MPa} = 1.2 \text{ bar} < \sigma_{soil} = 2 \text{ bar} \rightarrow Condition \text{ verified}$$

The following condition must be checked:

$$\sigma_{\rm m} = \frac{3\sigma 1 + \sigma 2}{4} \le \sigma_{\rm soil}$$

From robot: σ_1 =119.66kN/m²; σ_2 =80.71kN/m² \rightarrow Distribution of the stress is trapezoidal

 $\sigma_m = \frac{3 \times 119.66 + 80.71}{4} = 1.1 \text{ bar} \le \sigma_{soil} = 2 \text{ bar} \rightarrow \textit{Condition verified}$

Figure 8.8: Soil stress at SLS from Robot software.

• Verification at ULS:

According to RPA99/2003 the following condition must be checked:

$$\sigma_m = \frac{3\sigma 1 + \sigma 2}{4} \le 1.5 \times \sigma_{soil}$$

Where:

$$\sigma_1 = \frac{N}{S} + \frac{Mx}{Ix} \times V_y \quad \sigma_2 = \frac{N}{S} - \frac{Mx}{Ix} \times V_y$$

 σ_1 : Maximum soil stress; σ_2 : Minimum soil stress

From robot: $\sigma_1 = 164.11 \text{ kN/m}^2$;

 $\sigma_2 = 109.37 \text{kN/m}^2 \rightarrow \text{Distribution of the stress is trapezoidal}$

 $\sigma_m = \frac{3 \times 164.11 + 109.37}{4} = 1.5 \text{ bar} \le \sigma_{soil} = 1.5 \times 2 = 3 \text{ bar} \rightarrow \textit{Condition verified}$

Figure 8.9: Distribution of soil stress in raft.

Figure 8.10: Soil stress at ULS from robot software.

• Verification at the seismic combination G+Q+E:

The following condition must be checked:

$$\sigma_{m} = \frac{3\sigma 1 + \sigma 2}{4} \le 1.5 \times \sigma_{soil}$$

 $\sigma_{1x}\,{=}\,305.72~kN/m^2$; $\sigma_{2x}\,{=}\,84.37kN/m^2$; $\sigma_{1y}\,{=}\,325.39~kN/m^2$; $\sigma_{2y}\,{=}\,84.17kN/m^2$

 $\sigma_{my} = \frac{3 \times 325.39 + 84.17}{4} = 2.65 \text{ bar} \le \sigma_{soil} = 3 \text{ bar} \rightarrow \textit{Condition verified}$

 $\sigma_{mx} = 2.5 \text{ bar} \le \sigma_{soil} = 3 \text{ bar} \rightarrow \textit{Condition verified}$

Figure 8.11: Soil stress at G+Q+E_{x,y} combination from robot software.

- Verification at the seismic combination 0.8G±E:
- \blacktriangleright Direction x: 0.8G±E_X

0.8G+E_X: $\sigma_{1+} = 275.13 \text{ kN/m}^2$; $\sigma_{2+} = 59.13 \text{ kN/m}^2 \rightarrow \text{Distribution of the stress trapezoidal}$ $\sigma_m = 2.21 \text{ bar} \le \sigma_{\text{soil}} = 3 \text{ bar} \rightarrow \text{Condition$ *verified* $}$

0.8G-Ex: σ_{1-} = 66.91 kN/m²; σ_{2-} = -136.60 kN/m² \rightarrow Distribution of the stress triangular

0.8G+Ex

0.8G-Ex

\blacktriangleright Direction y: 0.8G±E_y

0.8G+E_y: $\sigma_{1+} = 291.63 \text{ kN/m}^2$; $\sigma_{2+} = 58.94 \text{kN/m}^2 \rightarrow \text{Distribution of the stress trapezoidal.}$ $\sigma_m = 2.33 \text{ bar} \le \sigma_{soil} = 3 \text{ bar} \rightarrow \textbf{Condition verified}$ $\textbf{0.8G-E_y:} \ \sigma_{1\text{-}} = 66.05 \ kN/m^2 \ ; \ \sigma_{2\text{-}} = -151.96 \ kN/m^2 \rightarrow \text{Distribution of the stress triangular}$

 $\sigma_m = \frac{3 \times 66.05}{4} = 0.495 \text{ bar} \le \sigma_{soil} = 3 \text{ bar} \rightarrow \textit{Condition verified}$

Figure 8.13: Soil stress at $0.8G \pm E_y$ combination from robot software.

All conditions of stress are verified in both axes, so there isn't a heaving

8.7.3 Verification of shear stress:

The following condition must be checked:

$$\tau_u \! < \! 0.05 f_{c28} \! = \! 0.05 \! \times \! 25 \! = \! 1.25 MPa$$

The shear stress of raft determined from robot software at ULS:

Direction x: $\tau_u^{max} = 0.74 \text{MPa} \tau_u^{max} = 0.74 \text{MPa} < 1.25 \text{MPa} \rightarrow Condition verified$

Direction y: $\tau_u^{max} = 0.97 MPa \tau_u^{max} = 0.97 MPa < 1.25 MPa \rightarrow Condition verified$

Direction x

Direction y

Figure 8.14: Shear stress of raft at ULS in both directions x and y.

8.7.4 Verification of stability:

According to RPA99/2003, whatever the type of foundation, it is necessary to verify that the eccentricity of the resultant of gravitational vertical forces and seismic forces remains inside the middle half of the base of the foundation elements. $e = \frac{M}{N} \leq \frac{B}{4}$

e: Highest value of eccentricity due to seismic loads.

M: Reversing moment of seismic force.

N: Normal effect of structure by the combination G+0.2Q.

B: Width of raft.

The results are in the following table:

Table 8.2: Verification of stability of reversing in direction x and y

	N(kN)	M(kN.m)	B(m)	e(m)	B/4	Condition
Direction x	21626,04	25420,97	9.07	1.175	2.27	V
Direction y	21626,04	24414,70	9.07	1.129	2.27	V

The conditions are verified; therefore, the building is stable.

8.7.5 Reinforcement of raft:

> The slab:

The calculation will be done for 1 linear meter in the most stressed combination of: ULS, SLS, ACC, under damaging cracking.

• Determination of moments:

The moment at span and at the support of the raft should be determined as following:

 $L_x/L_y=1$ the slab work in both directions.

M'_x= $\mu_x \times q \times L_x^2$; M'_y= $\mu_y \times M'_x$; At ULS: $q_u = \frac{Nu}{Sr} \times b$; At SLS: $q_s = \frac{Ns}{Sr} \times b$; At ACC: $q_a = \frac{Na}{Sr} \times b$

b: band of one meter; S_r : area of the raft;

Nu: normal effect from robot at ULS;

Ns: normal effect from robot at SLS;

Na: normal effect from robot at the seismic combination ACC.

Continuous panel:

At span: $M_x=0.75M'_{x;}M_y=0.75M'_{y}$

At support: $M_x = -0.5M'_x$; $M_y = -0.5M'_y$

Edge panel:

At span: M_x=0.85M'_x; M_y=0.85 M'_y

The extreme edge: M_x =-0.3M'_x; M_y =-0.3M'_y

The continuous edge: M_x=-0.5M'_x; M_y=-0.5 M'_y

The values of moment are obtained from robot software as the following table:

Table 8.3: Maximum values of moment of slab in ULS SLS ACC combinations

combination	UL	S	2	SLS	ACC		
	At span	At the support	At span	At the support	At span	At the support	
M _x (kN.m)	132.85	-198.48	96.59	-144	131.06	-82.93	
$M_y(kN.m)$	126.81	-193.58	92.14	-140.44	120.04	-74.91	

• Calculation of As and choice of bars:

The calculation of reinforcement is done considering the maximum moment at span and at the support. According to table 8.3, in all combinations ULS, SLS and ACC.

The design flowchart in figure 8.15 can be followed to determine the section of bars:

b = 1m; h = 0.4m; $f_{c28} = 25MPa$; $f_{t28} = 2.1$ MPa; fe = 400MPa;

 f_{bc} = 14.17MPa (durable situation); f_{bc} =18.48MPa (acc.situation);

d = 0.36m; d' = 0.04 m; $\gamma_b = 1.5$; $\gamma_s = 1.15$; $\mu_R = 0.391$; $\sigma_s(ULS) = 348MPa$;

 $\sigma_{\text{st}}(\text{SLS}) = \min\{\frac{2}{3}Fe; \max(0.5Fe; 110\sqrt{\frac{n}{5}Ftj}\} = 201.63\text{MPa}.$

Figure 8.15: Design flowchart of rectangular section under simple bending at ULS.

Condition of non-fragility: As^{min}=0. 23b.d ft28/fe

 $A_s^{min} = 4.347 \text{ cm}^2$ is verified according to table 8.4

Spacing: $S_t < h$; $S_t = min (20 cm; 15 \varphi_l) = 20 cm; \rightarrow St = 20 cm$.

Table 8.4: Results	of calculation	of reinforcemen	t slab in ULS,	, SLS and ACC
--------------------	----------------	-----------------	----------------	---------------

		M(kN.m)	μ_{u}	$\mu_{u} \leq \mu_{R}$	a	Z(mm)	$A(cm^2)$	A>A _{min}	Bars	$As(cm^2)$	$S_t(cm)$
									choice		
	At	132.85	0.072	CV(A's=0)	0.094	346.464	11.02	CV	9HA16	18.1	20
ULS	span										
	At	-198.48	0.108	CV(A's=0)	0.143	339.41	16.8	CV	6HA20	18.85	20
	support										
	At	96.59	0.052	CV(A's=0)	0.066	350.496	13.67	CV	6HA20	18.85	20
SLS	span										
	At	-144	0.078	CV(A's=0)	0.102	345.312	20.68	CV	5HA25	24.54	20
	support										
	At	131.06	0.055	CV(A's=0)	0.071	349.776	10.77	CV	6HA16	12.06	20
ACC	span										
	At	-82.93	0.034	CV(A's=0)	0.043	353.808	6.74	CV	4HA16	8.04	20
	support										

The most unfavorable combination is the SLS combination, therefore the reinforcement bars of slab to be adopted are according to SLS.

• Distribution bars:

At span: $4.7125 \text{ cm}^2 \leq \text{A'}_s \leq 9.425 \text{ cm}^2 \rightarrow 6\text{HA14 of A'}_s=9.24 \text{ cm}^2$

At support: 6.135 cm² \leq $\dot{A_s} \leq$ 12.27 cm² \rightarrow 5HA16 of $\dot{A_s}$ =10.05 cm²

Table 8.5: Results	of reinforcement	slab in	I SLS
--------------------	------------------	---------	-------

Combination		M(kN.m)	Bars	$A_s(cm^2)$	Dist.bars	$A'_{s}(cm^{2})$	S(cm)
	At span	96.59	6HA20	18.85	6HA14	9.24	20
SLS	At the support	-144	5HA25	24.54	5HA16	10.05	20

• Verification of stress at SLS:

According to table 8.3 the maximum moment at SLS in direction x:

At span: M_s = 96.59 kN.m

At the support: $M_s = -144 \text{ kN.m}$

The design flowchart in figure 8.16 can be followed to verified the section bars at SLS combination: $\sigma_{bc}=15$ MPa; damaging cracking; $\eta = 1.6$; $\overline{\sigma}_{st}=201.63$ MPa; n=15.

Figure 8.16: Design flowchart of rectangular section in simple flexion at SLS.

	M _s (kN.m)	Y(cm)	I(cm ⁴)	$\sigma_{bc}(MPa)$	σ _{st} (MPa)	$\sigma_{bc} \leq \overline{\sigma}_{bc}$	$\sigma_{st} \leq \sigma_{st}$
At span	96.59	11.03	22.79×10 ⁴	4.67	158.74	CV	CV
At support	-144	12.24	53.52×10 ⁴	3.29	95.89	CV	CV

Table 8.6: Results of verification of stress at SLS

Figure 8.17: Reinforcement of the slab at *span* and *support* level in direction x and y.

> The ribs:

To determine the moment in the span and in the support of the ribs, it must calculates the percentage of the distribution of loads to find the load in each rib.

At span: $M_{span} = 0.85 M_{0}$;

At support:
$$M_{sup} = 0.5M_0$$
 such as: $M_0 = \frac{q.L^2}{8}$ and $q = \frac{N}{L}$

From robot the most stressed ribs are:

Direction x: ribbed in file F which has a length of 14.07 meters.

Direction y: ribbed in file 6 which has a length of 14.07 meters.

• Moment of ribbed at ULS:

The following figures represent the maximum moment of ribbed in both direction x and y

Figure 8.18: Moment diagram of most stressed ribbed at ULS in direction x.

Direction x:

At span: M_{span} = -223.23 kN.m;

At support: M_{sup}=387.3 kN.m

Direction y:

At span: M_{span}= -217.28 kN.m;

At support: M_{sup}=371.29 kN.m

• Moment of ribbed at SLS:

Figure 8.20: Moment diagram of most stressed ribbed at SLS in direction x.

Direction x:

At span: M_{span} = -161.92 kN.m;

At support: M_{sup}=280.99 kN.m

Figure 8.21: Diagram moment of most stressed ribbed at SLS in direction y.

Direction y:

At span: M_{span}= -157.59 kN.m;

At support: M_{sup}=269.39 kN.m

• Determination of bars (ULS):

The same steps of reinforcement of slab will be follows to determine the reinforcement of the ribs, the results are in the following table: Such as: b = 70 cm; h = 60 cm; d = 54 cm; d'= 6 cm;

C.N.F: $A_s^{min} = 0.23b.d f_{t28}/f_e = 0.23 \times 700 \times 540 \times 2.1/400 = 4.56cm^2$

									2	
			Μ	μ	$A_s^{cal}(cm^2)$	Choice bars	$A_s(cm^2)$	Distb	$A'_{s}(cm^{2})$	C.N.F
			(kN.m)					Bars		
	Direc x	At span	223.23	0.07	12.33	5HA20	15.71	5HA14	7.70	CV
	Directa	At supp	387.3	0.133	22.20	5HA25	24.54	5HA16	10.05	CV
ULS	Direc v	At span	217.28	0.075	12.03	5HA20	15.71	5HA14	7.70	CV
	Directy	At supp	371.29	0.128	21.22	5HA25	24.54	5HA16	10.05	CV
	Direc y	At span	161.92	0.056	15.31	6HA20	18.85	3HA20	9.42	CV
	Director	At supp	280.99	0.097	27.20	6HA25	29.45	3HA20	9.42	CV
SLS	Direc y	At span	157.59	0.054	14.88	5HA20	15.71	5HA14	7.70	CV
	Direc.y	At supp	269.39	0.093	26.01	6HA25	29.45	3HA20	9.42	CV

Table 8.7: Determination of section bars at ULS and SLS in direction x and y

The most unfavorable combination is the combination SLS, therefore the reinforcement bars to be adopted are according to SLS, the same reinforcement bars are adopted in both direction xx and yy.

Table 8.8: Results of reinforcement ribs in SLS

Combination		M(kN.m)	Bars	$A_s(cm^2)$	Dist.bars	A's(cm ²)
	At span	161.92	6HA20	18.85	3HA20	9.42
SLS	At support	280.99	6HA25	29.45	3HA20	9.42

Verification of spacing:

 $e_{th} = max\{1.5C_g; \phi_l\} = 3.75cm \ e_h = (70-2 \times 2-3 \times 2.5-3 \times 2)/4 = 13.125cm > 3.75 \ cm \rightarrow CV$

 $e_{th} = max\{1.5C_g; \phi_l\} = 3.75cm \ e_h = (70-2 \times 2-3 \times 2-3 \times 2)/4 = 13.5cm > 3.75cm \rightarrow CV$

Transversal bars: $\phi_t \ge \frac{1}{3} \phi_l$ and $\phi_t < 12 \text{mm}$

- At span: $\varphi_t \ge \frac{1}{3}(20) = 6.67 \text{mm} \rightarrow \text{so: } \varphi_t = 8 \text{mm}$
- At support: $\varphi_t \ge \frac{1}{3}(25) = 8.33 \text{mm} \rightarrow \text{so } \varphi_t = 10 \text{mm}$
- Verification of section bars (SLS):

The results of verification are in the following table:

 $\overline{\sigma}_{bc}$ =15 MPa; damaging cracking; η = 1.6; $\overline{\sigma}_{st}$ =201.63 MPa; n=15

	M _s (kN.m)	Y(cm)	I(cm ⁴)	$\sigma_{bc}(MPa)$	$\sigma_{st}(MPa)$	$\sigma_{bc} \leq \overline{\sigma}_{bc}$	$\sigma_{st} \leq \sigma_{st}$
At span	161.92	16.24	79.69×10 ⁴	3.29	115.085	CV	CV
at support	280.99	19.51	72.46×10 ⁴	7.57	200.62	CV	CV

 Table 8.9: Verification of section bars of the most stressed ribbed at SLS

Skin reinforcements:

To determine the skin reinforcements, the following expression must be checked:

h >2(80-
$$\frac{Fe}{10}$$
)

$$h = 60 \text{cm} < 2(80 \text{-} \frac{400}{10}) = 80 \text{ cm} \rightarrow Condition \text{ not verified}$$

No need to use the skin reinforcements.

The figures below presents the reinforcement of the ribs at span and support:

8.8 CONCLUSION:

- ✓ The adopted foundation type is raft foundation, slab stiffened by ribs which is more economical.
- \checkmark The reinforcement at SLS is more than the reinforcement at ULS.
- \checkmark The modeling of the raft foundation is done using the Robot software.

GENERAL CONCLUSION

The study of this project is our first real test before entering the professional life. This thesis allowed us to realize and practice the theoretical work of engineers and specially to learn different techniques of calculation and to be trained to use different software and to follow the adopted design regulations and standards of buildings.

The purpose of this work is to design a steel residential building that must be both economical and stable, the use of Robot software 2020 allowed us to choose the right concept, the conclusions obtained in this work are summarized in the following points:

- The structure was designed and verified according to EUROCODE 3.
- The dynamic study in the seismic zone was carried out using the spectral method analysis according to the seismic regulation RPA99/2003.
- The calculation of the steel connections is done manually and by using the software Robot.

• The choice of foundation type depends on the type of the soil and the loads from the superstructure, the adopted type in this project is raft foundation.

One of the encountered problems in this work was during the dynamic analysis of the structure. Many of the required conditions of modal analysis were not verified due to the irregularity of the building where the positioning of the bracing system was not simple. Several layouts have been tested until the appropriate one were selected to ensure the stability of the building.

Finally, we can say that this work has enabled us to apply our knowledge of civil engineering, and to develop it, which will help us later in professional life.

REFERENCES

- **Reference 01:** The CCM97, Calculation rule for steel constructions.
- **Reference 02:** The RPA2003, Algerian Seismic Regulation version 99/2003.
- **Reference 03:** The RNV2013, Rules defining the effects of snow and wind.
- **Reference 04:** The BAEL99, Reinforced concrete to limit states 91 modified to 99.
- **Reference 06:** Eurocode 3, Design of steel structures.
- **Reference 07:** Eurocode 4, Design of composite steel and concrete structures.
- **Reference 08:** D.T.R 2.2, Dead loads and live loads.
- **Reference 09:** Steel frame course (4th year) of Mr. MENNADI.