UNIVERSITE SAAD DAHLEB DE BLIDA

Faculté de Technologie

Département de Génie civil

# **MEMOIRE DE MAGISTER**

Spécialité : Construction

# APPORT DE L'ESSAI DE PÉNÉTRATION STATIQUE & DES ESSAIS GÉOPHYSIQUES DE FORAGE AU CALCUL DU TASSEMENT DES FONDATIONS SUPERFICIELLES

Par

AOUALI Nawel

Devant le jury composé de :

| Z.ZITOUNI     | Maître de conférence, U. de Blida     | Président   |
|---------------|---------------------------------------|-------------|
| A.HAMMADOUCHE | Maître de conférence, U. de Boumerdès | Examinateur |
| K.GRINE       | Maître de conférence, U. de Blida     | Examinateur |
| A.BOUAFIA     | Professeur, U. de Blida               | Rapporteur  |

## RÉSUMÉ

L'expérience montre que les essais géophysiques de forage et les essais pénétrométriques présentent des avantages indéniables pour la détermination des caractéristiques du sol par rapport aux autres essais géotechniques au laboratoire, tel que l'essai de compressibilité oedométrique, en l'occurrence la rapidité de l'essai, la continuité du profil de rigidité du sol, et l'applicabilité de l'essai à différents types de sols.

Le travail de cette thèse de Magister consiste à proposer trois approches de calcul du tassement de consolidation oedométrique des fondations superficielles dans les sols fins à partir des méthodes basées sur les essais de forage (Down Hole), et l'essai pénétrométrique (CPT).

La première méthode est basée sur la corrélation du module oedométrique au module de cisaillement déduit de l'essai de forage (Down Hole), ce qui permet d'aboutir à un outil de calcul du tassement de consolidation primaire des fondations superficielles dans les argiles à partir des corrélations étudiées.

La deuxième méthode est issue de la corrélation entre la résistance en pointe de l'essai au pénétromètre statique et les paramètres de consolidation oedométrique, afin d'aboutir à une formulation simple de calcul du tassement oedométrique à la base de l'essai de pénétration statique CPT.

La troisième méthode se propose de calculer le tassement instantané des sols fins multicouches, considéré comme élastique linéaire, à la base de la méthode de Steinbrenner pour les fondations de forme rectangulaire, et la méthode de Vesic pour les fondations de forme circulaire. L'approche a été validée par comparaison des tassements prédits par cette méthode avec ceux calculés par la méthode d'intégration par tranches basée sur l'essai de compressibilité oedométrique.

**MOTS-CLÉS:** Fondation superficielle, Tassement, Essai oedométrique, Essai down hole, Essai de pénétration statique, Corrélation.

#### ABSTRACT

This experience shows that the borehole geophysical testing and penetrometric testings undeniable advantages for the determination of the soil characteristics compared it to other geotechnical laboratory testing, such as oedometer compression test, namely the speed of the test, the continuity of the soil stiffness profile, and the applicability of the test in different soil types.

The work of this magister thesis is to provide three approaches for calculating the oedometer consolidation settlement of shallow foundations in fine soils from methods based on drill testing (Down Hole), and the penetrometer test (CPT).

The first method is based on the correlation of the module oedometric shear modulus deduced from the test drilling (Down Hole), which can lead to a tool for calculating primary consolidation settlement of shallow foundations in clays from studied correlations.

The second method is based on the correlation between the tip resistance of the static penetrometer test and the oedometer parameters of consolidation, so as to arrive to a simple formula for calculating the oedometer settlement at the base of the penetration test CPT.

The third method is proposed to calculate the instantaneous fine multilayer soil compaction that is considered as linear elastic, to the base of Steinbrenner method for the foundation of rectangular shape, and Vesic method for the foundation of circular shape. The approach was validated though comparing predicted settlements and by this method with those calculated method of integration and by slices based on oedometer compression test.

**KEYWORDS**: Shallow foundation, Compressing, Oedometric test, down hole test, static Test of penetration, Correlation.

#### ملخص

تبين الخبرة أن للتجارب الجيوفيزيائية الخاصة بالحفر و تجارب الاختراق الثابت ميزة لا يمكن إنكارها في تحديد خصائص التربة بالمقارنة مع غيرها من التجارب الجيوتقنية المخبرية كتجربة الضغط الأودومتري. و ذلك من حيث سرعة الاختبار، استمرارية صلابة التربة، وإمكانية تطبيق الاختبار في أنواع مختلفة من التربة.

عمل أطروحة الماجستير هذه يتمثل في اقتراح ثلاثة مناهج لحساب تراص التوطيد الأودومتري الخاص بالأساسات السطحية للتربة الرقيقة عن طريق طرق تستند على تجارب الحفر (داون هول)، و تجارب الاختراق الثابت (CPT) .

ستند الطريقة الأولى على الربط بين المعامل الأودومتري و معامل القص النتاج عن تجربة الحفر (داون هول)، والذي يمكن أن يؤدي إلى الحصول على أداة لحساب تراص التوطيد الأولي الخاص بالأساسات السطحية للطين باستعمال الارتباطات التي تمت دراستها.

تستند الطريقة الثانية على العلاقة بين مقاومة تجربة الاختراق الثابت و الخصائص الأودومترية ، للتوصل إلى صيغة بسيطة لحساب التراص الأودومتري عن طريق اختبار الاختراق (CPT) .

الطريقة الثالثة نقترح حساب تراص التربة الفوري للأتربة الرقيقة متعددة الطبقات، التي تعتبر كخطية مرنة، للنظر فيها عن طريق طريقة ستينبرنر بالنسبة للأساسات ذات الشكل المستطيل، وطريقة فيزيك بالنسبة للأساسات ذات الشكل الدائري هذا المنهج تم التحقق من صح ته عن طريق مقارنة تم التنبؤ بها مع تلك المحسوبة باستخدام طريقة التكامل بالشرائح المعتمدة على تجربة الضبغط الأودومتري.

ا**لكلمات المفتاحية** : أساسات سطحية ، تراص، تجربة أودومترية، تجربة داون هول ، تجربة الاختراق الثابت، ار تباط

#### REMERCIEMENTS

Un mémoire de magistère est par définition le fruit d'un travail personnel, mais qui n'aurait jamais aboutit sans l'aide et l'assistance de certaines personnes que je souhaite remercier ici.

Avant tout, je remercie Dieu de m'avoir donné la force et la volonté d'avoir mené à terme mon travail.

Je remercie mon directeur de mémoire Mr ALI BOUAFIA de m'avoir proposé un thème aussi intéressant que subtil, pour son encadrement, ses conseils, et d'avoir mis a ma disposition tous les moyens nécessaires pour son aboutissement.

Je tien à remercier les membres de jury pour l'honneur qu'ils m'ont accordée en acceptant de juger mon mémoire.

Je remercie également les enseignants de post-graduation pour tout l'enseignement reçu durant les années d'études. Je remercie aussi Melle M.MIR, pour son encouragement et leur soutien permanent au cours de ces trois années.

Mes remerciements les plus sincères vont vers mon fils Rayane et mon mari Fouad, qui m'a soutenu le long de ce travail et qui a été présent à chaque moment, pour sa patience et sa compréhension avec mes humeurs le long de ma formation magistrale.

Enfin, Je profite de l'occurrence pour exprimer mes profondes remerciements à ma mère, pour son amour et son sacrifice, mon père pour son soutien et ses encouragements, mes frères Bilal et Salah Eddine, ma grande mère et à ma belle famille Djouf, pour leurs aide précieuse, leur support moral et leur compréhension durant les trois années, et voici le fruit de mon travail, à eux je l'offre et à tous mes amis.

# TABLE DES MATIERES

| RES       | UME                                                                                                            | 2  |
|-----------|----------------------------------------------------------------------------------------------------------------|----|
| REN       | 1ERCIEMENT                                                                                                     | 15 |
| TAE       | BLE DES MATIERES                                                                                               | 6  |
| LIST      | TE DES ILLUSTRATIONS, GRAPHIQUES ET TABLEAUX                                                                   | 9  |
| INT       | RODUCTION                                                                                                      | 3  |
| 1. E      | TUDE BIBLIOGRAPHIQUE                                                                                           | 5  |
| 1.1       | Introduction                                                                                                   | 5  |
| 1.2       | Détermination du module de déformation de sol 1                                                                | 6  |
|           | 1.2.1 Essais de laboratoire : (essai oedométrique) 1                                                           | 6  |
|           | 1.2.2 Essais géophysiques                                                                                      | 2  |
|           | 1.2.3 Essais in-situ                                                                                           | 9  |
| 1.3       | Tassement des fondations superficielles    3                                                                   | 3  |
|           | 1.3.1 Composantes du tassement des fondations superficielles                                                   | 4  |
|           | 1.3.2 Calcul du tassement des fondations superficielles    3                                                   | 5  |
| 1.4       | Calcul du tassement dans un sol multicouche                                                                    | 0  |
|           | 1.4.1 Méthode de Steinbrenner   4                                                                              | 0  |
|           | 1.4.2 Méthode de Vesic                                                                                         | .3 |
| 1.5       | Conclusion 4                                                                                                   | 4  |
| 2. C<br>L | CALCUL DU TASSEMENT DES FONDATIONS SUPERFICIELLES DANSES SOLS FINS A PARTIR DES ESSAIS GEOPHYSIQUES DE FORAGE4 | -5 |
| 2.1       | Introduction                                                                                                   | 15 |
| 2.2       | Construction de la base des données                                                                            | 6  |
|           | 2.2.1 Méthodologie de travail de la base de données                                                            | 6  |
|           | 2.2.2 Analyse de la base des données                                                                           | 1  |
| 2.3       | Application de la méthodologie proposée                                                                        | 2  |
| 2.4       | Etude statistique des données                                                                                  | 9  |
| 2.5       | Etude de la corrélation entre l'essai œdométrique et l'essai down-hole                                         | 2  |
| 2.6       | Calcul du tassement oedométrique à partir de l'essai down-hole                                                 | 4  |

2.6.1 Principe du calcul..... 64 66 2.6.2 Hypothèses de calcul 2.7 Application de la méthode des tranches sur un exemple ..... 68 2.8 Etude comparative entre le tassement œdométrique et le tassement œdométrique calculé à partir de l'essai down-hole ..... 73 2.9 Influence des dimensions de la fondation sur le calcul du tassement ..... 74 2.10 Conclusion ..... 78 3. CALCUL DU TASSEMENT DES FONDATIONS SUPERFICIELLES DANS LES SOLS FINS A PARTIR DE L'ESSAI AU PENETROMETRE STATIQUE 79 3.1 79 Introduction ..... Construction de la base de données ..... 3.2 79 3.3 Etude de la corrélation entre l'essai oedométrique et l'essai de pénétration statique ..... 81 3.3.1 Etude de la corrélation entre  $q_c$  et  $E_0$ ..... 81 3.3.2 Etude de la corrélation entre  $q_c$  et  $\sigma_c$  ..... 82 3.4 Calcul du tassement oedométrique à partir de l'essai de pénétration statique .... 83 3.4.1 Estimation du module de déformation oedométrique ..... 83 3.4.2 Estimation du tassement oedométrique à partir de l'essai de pénétration statique ..... 83 3.5 Exemple de calcul ..... 85 3.5.1 Application de la méthodologie de la base des données ..... 85 3.5.2 Application de calcul du tassement ..... 87 3.6 Etude comparative entre le tassement oedométrique et le tassement oedométrique calculé à partir de l'essai de pénétromètre statique ..... 91 3.7 Influence des dimensions des fondations sur le calibrage du tassement..... 92 3.7.1 Résultats de calcul de tassement pour chaque type de fondation ..... 93 3.8 Conclusion ..... 96 4. CALCUL DU TASSEMENT DES FONDATIONS SUPERFICIELLES DANS LES SOLS FINS MULTICOUCHES 97 4.1 97 Introduction ..... 4.2 Hypothèses..... 98 4.3 Calcul du tassement tridimensionnel à partir de la méthode de Steinbrenner..... 98 4.3.1 Construction de la base de données..... 100

7

|     | 4.3.2 Calcul du tassement instantané à partir de la méthode de Steinbrenner                                                         | 101 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | 4.3.3 Exemple de calcul d'un cas d'étude                                                                                            | 103 |
|     | 4.3.4 Etude comparative entre le tassement oedométrique et le tassement oedométrique calculé à partir de la méthode de Steinbrenner | 106 |
|     | 4.3.5 Résultats de calcul de tassement pour chaque type de fondation                                                                | 106 |
| 4.4 | Calcul du tassement instantané à partir de la méthode de Vesic                                                                      | 109 |
|     | 4.4.1 Estimation du tassement instantané à partir de la méthode de Vesic                                                            | 109 |
|     | 4.4.2 Construction de la base de données                                                                                            | 111 |
|     | 4.4.3 Exemple de calcul d'un cas d'étude                                                                                            | 112 |
|     | 4.4.5 Etude comparative entre le tassement oedométrique et le tassement                                                             |     |
|     | oedométrique calculé à partir de la méthode de Vesic                                                                                | 115 |
| 4.5 | Conclusion                                                                                                                          | 117 |
| CON | ICLUSION                                                                                                                            | 118 |
| APP | ENDICE                                                                                                                              |     |
| REF | ERENCES                                                                                                                             |     |

# LISTE DES ILLUSTRATIONS, GRAPHIQUES ET TABLEAUX

| Figure 1.1  | Zone explorée pour la détermination du module de déformation de sol à partir des différents essais |    |
|-------------|----------------------------------------------------------------------------------------------------|----|
|             | sor a partir des anterents essuis                                                                  | 16 |
| Figure 1.2  | Mise en œuvre de l'essai oedométrique                                                              | 17 |
| Figure 1.3  | Coupe schématisée d'un moule oedométrique                                                          | 18 |
| Figure 1.4  | Détermination graphique des caractéristiques de compressibilité oedométrique                       | 19 |
| Figure 1.5  | Classification des sols selon la compressibilité                                                   | 20 |
| Figure 1.6  | Représentation de la transmission des ondes dans le modèle d'une interface plane et horizontale    | 23 |
| Figure 1.7  | Diagramme schématique de la méthode géoradar en surface                                            | 24 |
| Figure 1.8  | Principe de l'essai cross-hole                                                                     | 26 |
| Figure 1.9  | Principe de l'essai Down-hole                                                                      | 27 |
| Figure 1.10 | Enregistrement composite typique de l'essai down hole                                              | 28 |
| Figure 1.11 | Principe de l'essai Up-hole                                                                        | 28 |
| Figure 1.12 | Principe de l'essai de pénétration statique CPT                                                    | 29 |
| Figure 1.13 | Principe de l'essai de pénétration dynamique DPT - type A                                          | 32 |
| Figure 1.14 | Principe de l'essai de pénétration dynamique DPT - type B                                          | 33 |
| Figure 1.15 | Courbe générale de tassement d'un sol quelconque                                                   | 34 |
| Figure 1.16 | Schéma de découpage du sol en des tranches                                                         | 36 |
| Figure 1.17 | Charge rectangulaire en surface d'un massif infiniment épais                                       | 41 |
| Figure 1.18 | Surcharge circulaire en surface du sol                                                             | 43 |
| Figure 2.1  | Ajustement par logiciel HYPER                                                                      | 50 |
|             |                                                                                                    |    |

Figure 2.4 Représentation de la courbe de chargement oedométrique  

$$\Delta \sigma'_{y} = f(\varepsilon_{z})$$
55

Figure 2.5 Représentation de la courbe 
$$\frac{E_{\text{Oed}}}{E_0} = f\left(\frac{\Delta \sigma_V}{\sigma_{V0}}\right)$$
 58

Figure 2.6 Ajustement de 
$$\left(\frac{E_{\text{Oed}}}{E_0}\right)$$
 en fonction de  $\left(\frac{\Delta \sigma_V}{\sigma_{V0}}\right)$  et  $-\cos(\sigma_V < \sigma_C) - 60$ 

Figure 2.7 Ajustement de
$$\left(\frac{E_{\text{Oed}}}{E_0}\right)$$
 en fonction de - cas ( $\sigma_v > \sigma_c$ ) - 61

Figure 2.9 Corrélation entre 
$$\sigma_c$$
 et G

Figure 2.11Etude comparative pour le calcul de tassement 
$$S_c^{Oed}$$
 et  $S_c^G$ 74

Figure 2.12Corrélation entre 
$$S_c^{Oed}$$
 et  $S_c^G$  – cas d'une fondation carrée76

Figure 2.13Corrélation entre 
$$S_c^{Oed}$$
 et  $S_c^G$  – cas d'une fondation isolée76

Figure 2.14Corrélation entre 
$$S_c^{Oed}$$
 et  $S_c^G$  – cas d'une fondation filante77

Figure 3.1Analyse statistique de la corrélation entre 
$$E_0$$
 et  $q_c$ 81

Figure 3.2Analyse statistique de la corrélation entre 
$$\sigma_c$$
 et  $q_c$ 82

Figure 3.5Etude comparative pour le calcul de tassement 
$$s_c^{Oed}$$
 et  $s_c^{CPT}$ 91Figure 3.6Corrélation entre  $S_c^{Oed}$  et  $S_c^{CPT}$  – cas d'une fondation carrée93

Figure 3.7 Corrélation entre 
$$S_c^{Oed}$$
 et  $S_c^{CPT}$  – cas d'une fondation isolée 94

64

| Figure 3.8   | Corrélation entre $S_c^{Oed}$ et $S_c^{CPT}$ – cas d'une fondation filante                                         | 94  |
|--------------|--------------------------------------------------------------------------------------------------------------------|-----|
| Figure 3.10  | Variation du rapport $\left(\frac{s_c^{Oed}}{s_c^{CPT}}\right)$ en fonction de $\left(\frac{L}{B}\right)$          | 95  |
| Figure 4.1   | Principe de la superposition des couches de sol - fondation rectangulaire                                          | 99  |
| Figure 4.2   | Schéma de superposition de sous-rectangles                                                                         | 102 |
| Figure 4.3   | Corrélation entre $S_c^{Oed}$ et $S_c^{Stein}$ – cas d'une fondation carrée                                        | 106 |
| Figure 4.4   | Corrélation entre $S_c^{Oed}$ et $S_c^{Stein}$ – cas d'une fondation isolée                                        | 107 |
| Figure 4.5   | Corrélation entre $S_c^{Oed}$ et $S_c^{Stein}$ – cas d'une fondation filante                                       | 107 |
| Figure 4.6   | Variation du rapport $\left(\frac{s_c^{Oed}}{s_c^{Stein}}\right)$ en fonction de $\left(\frac{L}{B}\right)$        | 108 |
| Figure 4.7   | Principe de la superposition des couches de sol - fondation circulaire                                             | 110 |
| Figure 4.8   | Corrélation entre $S_c^{Oed}$ et $S_c^{Vesic}$ – cas d'une fondation circulaire                                    | 116 |
| Tableau 1.1  | Corrélation de la résistance en pointe et le module oedométrique                                                   | 39  |
| Tableau 2.1  | Résultats d'essai au laboratoire sur un échantillon                                                                | 52  |
| Tableau 2.2  | Résultats après digitalisation de la courbe oedométrique                                                           | 53  |
| Tableau 2.3  | Résultats des déformations $\epsilon_z$ et des contraintes ( $\Delta \sigma'_v$ )                                  | 55  |
| Tableau 2.4  | Résultats de sondage étudié                                                                                        | 58  |
| Tableau 2.5  | Résultats de l'essai down-hole                                                                                     | 59  |
| Tableau 2.6  | Valeurs des paramètres de calcul du tassement                                                                      | 69  |
| Tableau 2.7  | Résultats de calcul du tassement oedométrique                                                                      | 70  |
| Tableau 2.8  | Résultats de tassement oedométrique des différentes pressions appliquées                                           | 71  |
| Tableau 2.9  | Résultats de calcul du tassement oedométrique à partir de l'essai down hole                                        | 72  |
| Tableau 2.10 | Résultats du tassement oedométrique trouvé pour les différentes pressions appliquées à partir de l'essai down hole | 73  |

| Tableau 2.11 | Résultats de l'étude statistique sur l'influence de la forme des fondations                                  | 77  |
|--------------|--------------------------------------------------------------------------------------------------------------|-----|
| Tableau 3.1  | Données récapitulatif des résultats de laboratoire sur un échantillon                                        | 85  |
| Tableau 3.2  | Résultats de sondage étudié - SC 02                                                                          | 86  |
| Tableau 3.3  | Résultats après digitalisation de la courbe de pénétromètre statique                                         | 87  |
| Tableau 3.4  | Valeurs attribuées pour le calcul du tassement oedométrique                                                  | 88  |
| Tableau 3.5  | Résultats de tassement oedométrique des différentes pressions appliquées                                     | 89  |
| Tableau 3.6  | Données de calcul du tassement à partir de l'essai de pénétromètre statique                                  | 89  |
| Tableau 3.7  | Résultats du tassement oedométrique trouvé à partir de l'essai de pénétromètre statique                      | 90  |
| Tableau 3.8  | Résultats du calcul de tassement oedométrique                                                                | 90  |
| Tableau 3.9  | Résultats de l'analyse statistique sur l'influence de la forme des fondations                                | 95  |
| Tableau 4.1  | Résultats de calcul du tassement oedométrique d'une fondation rectangulaire                                  | 104 |
| Tableau 4.2  | Résultats de calcul du tassement à partir de la méthode de Steinbrenner                                      | 105 |
| Tableau 4.3  | Résultats de l'analyse statistique du rapport $\left(r = \frac{S_c^{\text{Oed}}}{S_c^{\text{Stein}}}\right)$ | 108 |
| Tableau 4.4  | Valeurs de $I_z$ en fonction de $\left(\frac{Z_K}{R}\right)$                                                 | 110 |
| Tableau 4.5  | Résultats de calcul du tassement oedométrique d'une fondation circulaire                                     | 113 |
| Tableau 4.6  | Résultats de calcul du tassement à partir de la méthode de Vesic                                             | 114 |
| Tableau 4.7  | Résultat de calcul du tassement oedométrique et tassement calculé par la méthode de Vesic                    | 115 |

#### **INTRODUCTION**

L'un des grands sujets de recherche de la géotechnique est l'étude de la réponse des sols aux sollicitations qu'on leur impose dans le cadre d'un projet de génie civil.

Aujourd'hui, la difficulté de ces recherches réside dans la détermination des paramètres ou des caractéristiques mécaniques des sols, notamment le module de déformation, et la connaissance de leur évolution des petites aux grandes déformations. Ces déformations sont déterminées en laboratoire sur des éprouvettes prélevées sur le terrain, ou directement en place au moyen d'essais in situ, pour permettre de fournir les données nécessaires au calcul des fondations.

L'expérience montre que les essais géophysiques de forage et les essais pénétrométriques présentent des avantages indéniables pour la détermination des caractéristiques du sol par rapport aux autres essais géotechniques au laboratoire, tel que l'essai de compressibilité oedométrique, en l'occurrence la rapidité de l'essai, la continuité du profil de rigidité du sol, et l'applicabilité de l'essai à différents types de sols.

Dans le cadre de cette recherche sur le calcul des ouvrages, l'évaluation du tassement des fondations, a souvent été considérée comme une tâche de grande importance pour passer à la maîtrise directe des déformations de sol.

Notre travail consiste à proposer des approches de calcul du tassement oedométrique des fondations superficielles à partir des méthodes basées sur les essais de forage (down hole), et les essais pénétrométriques (CPT), plus le calcul du tassement instantané des sols fins multicouches en structurant l'étude en quatre chapitres :

Le premier chapitre présente une synthèse bibliographique traitant successivement de la déformabilité des sols à partir des différents essais en laboratoire ou sur place, pour l'estimation du module de déformabilité de sol, et l'évolution des tassements dans un projet de fondations superficielles. Le deuxième chapitre comporte l'analyse de la corrélation du module oedométrique au module de cisaillement déduit de l'essai de forage (down hole), ce qui permet d'aboutir à un outil de calcul du tassement de consolidation primaire des fondations superficielles dans le sol fin saturé à partir des corrélations étudiées. Ce tassement sera corrigé pour tenir compte de la déformation latérale éventuelle du sol.

Le troisième chapitre focalise sur la corrélation entre la résistance statique en pointe de l'essai pénétrométrique et les paramètres de consolidation oedométrique, afin d'aboutir à une formulation simple de calcul du tassement oedométrique à la base de l'essai de pénétration statique CPT.

Le quatrième chapitre consiste à étudier le tassement instantané des sols fins multicouches, considéré comme élastique linéaire, à la base de la méthode de Steinbrenner pour les fondations de forme rectangulaire, et la méthode de Vesic pour les fondations de forme circulaire. L'approche sera validée par comparaison des tassements avec ceux donnés par l'essai de compressibilité oedométrique.

Enfin, le mémoire se termine par une conclusion contenant des recommandations et des perspectives sur les travaux à venir.

## CHAPITRE 1 ETUDE BIBLIOGRAPHIQUE

#### 4.1 Introduction

La détermination des paramètres mécaniques, notamment les modules de déformations et leurs variations suivant les chemins des contraintes, devient un enjeu important pour l'étude du comportement des sols qui demande une évaluation précise de leurs propriétés. Ces propriétés sont actuellement estimées par le développement d'un grand nombre de techniques d'essais en laboratoire et en place.

L'objectif de ces essais est de fournir des données sur des caractéristiques mécaniques de la déformabilité des sols sous l'action des charges appliquées comme elles doivent l'être réellement dans la nature ou sous l'action des ouvrages [12].

À cet effet, chaque essai possède un champ d'application lié aux déformations qu'il génère pour solliciter le sol lors de la réalisation des ouvrages ou au cours de leur vie, donc il est souhaitable dans un premier temps, de définir les différents types de modules de déformation, pour bien entendu la définition du module élastique qui entraîne la définition du domaine élastique et le calcul du coefficient de poisson v sur ce même domaine.

En premier lieu, l'utilisation des techniques d'essais de laboratoire représente la nécessité de reproduire de manière plus réaliste la nature complexe des états de contraintes qui existe en réalité. Ces essais sont considérablement diversifiés au cours de ces dernières années dans le but de reproduire la nature complexe des sollicitations appliquées aux sols.

D'un autre côté, l'utilisation des techniques d'essais in situ devenue systématique pour l'évaluation des déformations au cours du temps des ouvrages à construire. En effet, de plus en plus fréquemment, la reconnaissance géophysique s'attache à déduire, en l'accurance, la rapidité et la continuité du profil de la rigidité de sol une fois des anomalies ou des hétérogénéités repérées grâce aux méthodes géotechniques.

Sur la figure (1.1), la représentation de graphique classique montre que la détermination des modules de déformation des essais de laboratoire et sur place possède des plages de sollicitation qui ne sont pas toujours en correspondance avec celle que les ouvrages appliquent au sol [12].



Figure 1.1: Zone explorée pour la détermination du module de déformation de sol à partir des différents essais [3]

Nous allons présenter par la suite les méthodes et les appareillages permettant de déterminer le module de déformation de sol au cours de son histoire.

#### 4.2 Détermination du module de déformation de sol

#### 1.2.1 Essais de laboratoire : (essai oedométrique)

Le comportement des sols fins, notamment les argiles, a fait l'objet de nombreux travaux de recherches constituent la base de la plupart des connaissances actuelles sur les propriétés mécaniques, de résistance et de déformabilité des sols [2].

Ces recherches sont considérablement diversifiées au cours de ces dernières années dans le but de reproduire la nature complexe des sollicitations appliquées, ou pour l'évolution des caractéristiques mécaniques de la déformabilité de sol.

Parmi les essais de laboratoire les plus classiques, on citera l'essai oedométrique, qui mesure la compressibilité d'un échantillon de sol fin saturé en fonction du temps. Cet essai permis de tracer une courbe de comportement appelé courbe oedométrique sert à déterminer la relation entre les contraintes effectives verticales et les déformations.



Figure 1.2: Mise en œuvre de l'essai oedométrique

#### 1.2.1.1 Principe de l'essai oedométrique

L'essai consiste à placer une éprouvette dans une enceinte cylindrique rigide latéralement pour que les déformations radiales soient nulles, avec une paroi intérieure très lisse et souvent lubrifiée pour que les frottements générés au cours de la consolidation au contact paroi-sol soient négligeables.

La préparation de l'éprouvette et sa mise en place dans l'enceinte oedométrique dépendent de la consistance du sol tel que le choix de la prise d'essai, le découpage de l'éprouvette et leur mise en place dans l'enceinte oedométrique [1].

l'éprouvette est sollicitée, soit par un système de poids par l'intermédiaire d'un levier, soit par un système de chargement pneumatique ou hydraulique qui applique des forces dans l'axe du piston en contact avec l'éprouvette sur sa face supérieure ou inférieure pendant que l'autre face est maintenue fixe.

Le drainage du sol s'effectue sur une seule face (drainage simple) ou sur les deux faces en même temps (drainage double) à travers des pierres poreuses généralement composées de matières céramiques ou métalliques.



Figure 1.3: Coupe schématisée d'un moule oedométrique

On applique sur le piston des charges par paliers constants. La durée des paliers de chargement est fixée à 24 heures, car cette durée pendant laquelle les déformations de l'éprouvette sont enregistrées en fonction du temps, est suffisante pour atteindre la fin de la consolidation primaire dans la plupart des sols naturels.

### 1.2.1.2 Caractéristique obtenues à partir de l'essai oedométrique

L'essai oedométrique permet de déterminer :

- L'indice des vides initial avant la réalisation de l'essai (e<sub>0</sub>) et son évolution au cours de la consolidation ;
- Les principaux paramètres d'identification à savoir : la teneur en eau initiale, le poids volumiques initial et le poids volumique initial du sol sec ;
- La contrainte de préconsolidation.

#### 1.2.1.3 Caractéristique de compressibilité oedométrique

#### a) Courbe de compressibilité

Sur une courbe dans un système semi-logarithmique, les différents paramètres développés à partir de l'essai oedométrique peuvent être déterminés par la représentation de la variation des indices des vides en fonction des contraintes appliquées.

La Figure (1.4) illustre l'allure d'une courbe de compressibilité oedométrique  $e = f(\sigma)$ . Cette courbe proposée par Casagrande (1936) se présente, en général, en trois parties : une partie droite avec une faible pente suivie d'une partie courbée, puis d'une nouvelle droite possédant une pente beaucoup plus accentuée [9].



Figure 1.4: Détermination graphique des caractéristiques de compressibilité oedométrique

#### b) Contrainte de préconsolidation

Lorsqu'un échantillon de sol est prélevé du terrain, il subit une réduction de charge. Il est donc important de déterminer la pression de préconsolidation sous laquelle le sol s'est déjà consolidé sur site à partir de la relation (e -  $\log \sigma$ ) obtenue au laboratoire [1]. Suivant la figure (1.4), cette contrainte correspond approximativement au point d'intersection des droites DL et MN.

Selon la position de la contrainte due au poids des terres par rapport à la contrainte de préconsolidation, le sol peut se classer en trois types suivant leur degré de consolidation :



Figure 1.5: Classification des sols selon la compressibilité

• <u>Sol normalement consolidé</u>  $(\sigma_{v_0} = \sigma_c)$ 

Estimé lorsque la contrainte effective est verticale égale à la contrainte effective de préconsolidation : C'est-à-dire le sol a été tassé uniquement sous son propre poids.

## • <u>Sol sur-consolidé</u> $(\sigma_{v_0} < \sigma_c)$

Lorsque la contrainte effective verticale est inférieure à la contrainte effective de préconsolidation. C'est-à-dire à un moment antérieur de son histoire, le sol a été soumis à une contrainte supérieure au poids des terres actuel.

• <u>Sol sous -consolidé</u>  $(\sigma_{v_0} > \sigma_c)$ 

Lorsque la contrainte effective verticale est supérieure à la contrainte effective de préconsolidation. C'est-à-dire le sol est en cours de consolidation.

#### c) Indice de compression et de gonflement

Par définition, le coefficient de compression, noté ( $C_c$ ), est la pente de la droite (MN) (figure 1.4) de la courbe de compressibilité oedométrique:

$$C_{\rm C} = \frac{-\Delta e}{\Delta \left(\log \sigma'\right)_{\rm MN}} \tag{1.1}$$

Le coefficient de surconsolidation, noté ( $C_s$ ), est la pente de la droite (DL) (figure 1.4) de la courbe de compressibilité oedométrique:

$$C_{s} = \frac{-\Delta e}{\Delta (\log \sigma')}_{DL}$$
(1.2)

Le coefficient de gonflement noté  $(C_g)$ , est la pente de la droite (AB) à la figure (1.4). Il est défini par la formule suivante :

$$C_{g} = \frac{-\Delta e}{\Delta (\log \sigma')}_{AB}$$
(1.3)

# d) Module oedométrique E oed

Le module oedométrique est une grandeur mécanique qui relie les déformations aux contraintes. Il est défini comme suit :

$$E_{\text{Oed}} = \frac{\Delta \sigma'}{\frac{s}{H_0}}$$
(1.4)

Les valeurs de ces paramètres peuvent être influencées par la qualité des éprouvettes d'essais et les méthodes expérimentales utilisées.

#### 1.2.2 Essais géophysiques

Les méthodes géophysiques proposent la mesure de la vitesse de propagation des ondes de cisaillement et de compression dans le domaine de très petites déformations [7].

Pour effectuer ces mesures, on crée une perturbation en un point du site, ce qui donne naissance à des ondes de propagation jusqu'à un autre point du milieu, à une distance connue de la source sismique.

Cette source permet d'obtenir la vitesse de propagation des ondes et déduire le module de déformation dans la mesure où les déformations engendrées restent dans un domaine élastique après la mise en site d'une faible énergie d'écoulement des ondes [19].

Deux catégories d'essai peuvent être distinguées pour ce type d'essai :

- les essais réalisés à partir de la surface du sol
- les essais réalisés à partir de forage.

#### 1.2.2.1 Essai en surface

C'est essais sont réalisés à partir de la surface du sol, dans le but de mesurer la vitesse de propagation des ondes à l'intérieur d'un milieu, elles sont responsable de plusieurs découvertes géophysiques et toujours utilisés surtout pour explorer les structure superficielle du sous-sol, ou comme complément des autres méthodes géophysique.

#### a) Essai de sismique-réfraction

C'est une des méthodes basée sur les propriétés de réfraction des ondes sismique. Elle permet d'identifier des interfaces séparant les zones de différentes vitesses dans le but de mesurer les temps d'arrivée des premières ondes [19]. En pratique, le phénomène de réfraction se produit lorsque l'on passe d'un milieu lent à un milieu rapide. Donc, la méthode sismique réfraction est basée sur la différence de vitesse de propagation entre une couche sous-jacente plus rapide et un recouvrement plus lent [21]. Elle consiste à pointer les premières arrivées sismiques sur les sismogrammes par la création d'une perturbation mécanique à la surface du sol pour qu'elle se propage dans le sous-sol par ondes progressives qui donnent une naissance à des phénomènes de réflexion et de transmission lorsqu'elles parviennent aux limites des couches géologique. Les ondes réfléchies remontent à la surface ou elles sont détectés ou les ondes transmise peuvent se propager horizontalement sur une certaine distance et remonter ensuite vers la surface.

La figure (1.6) montre la transmission des différentes ondes (l'onde directe, l'onde réfléchie, et l'onde réfractée) dans le cas d'un modèle avec une interface plane et horizontale qui sépare deux milieux de différentes célérités. La célérité du second milieu, V2, est supérieure à la célérité V1 [21].



Figure 1.6: Représentation de la transmission des ondes: (1) l'onde directe, (2) l'onde transmise et (3) l'onde réfléchie, dans le modèle d'une interface plane et horizontale.

#### b) Essai Géoradar en surface

La méthode Géoradar en surface est une méthode géophysique qui consiste en une antenne émettrice d'une impulsion électromagnétique de très haute fréquence (entre 10 et 1000 MHz) pour l'acquisition d'information du sous-sol. L'onde électromagnétique se propage au travers du milieu avec une vitesse qui dépend principalement des propriétés électriques du matériel.

Une partie de l'énergie propagée dans le sous-sol, est réfléchie à la surface à cause des interfaces dans le sous sol dues au contraste des propriétés électriques des matériaux, l'autre partie de l'énergie continue à se propager par le milieu. Ces réflexions sont enregistrées sur une antenne réceptrice et puis on obtient un profil graphique des interfaces du sous-sol. La méthode géoradar en surface est comparable à la méthode sismique réflexion [21].

Par rapport à la méthode sismique, l'acquisition des données géoradar en surface est très rapide. Un système typique de géoradar consiste en une unité de contrôle, un transmetteur et un récepteur, qui sont connectés directement à une paire d'antennes accouplées à la surface du sol (figure 1.7). L'antenne émettrice transmet un pulse électromagnétique de haute fréquence, qui ne pénètre pas très profondément dans le soussol, et puis cette onde ou signal est réfléchie, réfractée ou diffractée selon les changements des propriétés électriques (permittivité diélectrique et conductivité électrique) du milieu de transmission.



Figure 1.7. Diagramme schématique de la méthode Géoradar en surface.

Les essais réalisés à partir des forages sont des essais où la source d'émission et le récepteur sont soit placés à la surface soit dans un forage. La perturbation émise se fait par explosion, ou le plus souvent par l'intermédiaire d'un marteau coulissant.

À cet effet, les mesures des ondes sont effectuées à différents niveaux de profondeur, typiquement tous les mètres ou tous les deux ou trois mètres, afin d'obtenir un profil des vitesses des ondes de compression  $V_p$  et de cisaillement  $V_s$  en fonction de la profondeur. Les paramètres géodynamiques sont ensuite calculés en utilisant les relations suivantes :

• Les vitesses de propagation des ondes de compression V<sub>P</sub> et de cisaillement V<sub>S</sub> :

$$V_{P,S} = \frac{L}{\Delta t}$$
(1.5)

• Le coefficient de Poisson (v)

$$v = \frac{V_{\rm P}^2 - 2V_{\rm S}^2}{2(V_{\rm P}^2 - V_{\rm S}^2)}$$
(1.6)

• Le Module d'Young, exprimé en MPa

$$E_{max} = 2(1+\nu)G_{max} = 2(1+\nu)\rho V_s^2$$
(1.7)

• Le module de cisaillement G calculé à partir de la vitesse de propagation d'ondes :

$$G_{max} = \rho V s$$

(1.8)

Avec :

- L : longueur de propagation des ondes ;
- $\Delta t$ : temps de propagation des ondes ;
- $\rho$  : masse volumique de l'éprouvette ou du sol.

#### a) Essai cross-hole

Le principe de l'essai Crosse-Hole est de mesurer le temps de propagation des ondes sismique, de manière à accéder aux caractéristiques du massif à une profondeur donnée, par l'analyse des signaux transmis entre Forages (deux ou trois Forages). Pour ce faire, une source générant des ondes de cisaillement de forte énergie, à propagation horizontale et à polarisation verticale, est placée dans un forage à une profondeur déterminée.



Figure 1.8: Principe de l'essai cross-hole

L'essai consiste à appliquer une source sismique (émetteur), disposée dans le forage, en frappant alternativement vers le haut et vers le bas, de manière à obtenir une onde (S) polarisée vers le haut puis vers le bas en même temps qu'une autre onde non polarisée (P), dans le but de déterminer la différence de temps de parcours de l'onde, rapportée à la distance entre les forages, conduit à la vitesse de l'onde [15].

#### b) Essai down-hole

Dans l'essai down-hole, la mesure des vitesses de propagation des ondes est faite le long d'un forage.

• <u>Mode opératoire</u>

L'émission du signal est générée en surface du sol, par l'application d'une perturbation en un point du site qui donne la naissance à des ondes dont on mesure le temps de propagation jusqu'à un autre point du milieu dont la distance à la source est connue. On réalise la mesure entre des sondes de réception, équipées de trois géophones orientes dans les trois directions (un verticale et deux horizontales disposés à  $90^0$  l'un de l'autre) placées dans des autres forages voisin à la même profondeur.

Il s'agit alors de procéder à l'émission avec une source d'énergie qui donne la naissance à une forte proportion d'ondes de cisaillement (figure 1.9).



Figure 1.9 Principe de l'essai down-hole

• Caractéristique obtenues à partir de down-hole

Pour obtenir les caractéristiques déduit à partir de l'essai down hole, tel que la vitesse des ondes P et S, on détermine pour chaque trace le temps d'arrivée de ces deux types d'onde.

On doit d'abord reconstruire un enregistrement pour toute la longueur du forage, comme s'il s'agissait d'un seul enregistrement à plusieurs canaux. En lisant le signal obtenu pour chaque canal et pour chaque enregistrement et en construisant un enregistrement composite qui montre l'ensemble des enregistrements d'un même canal en fonction de la profondeur de mesure.

A partir de ces mesures, on construit une dromochronique (graphique du temps de parcours en fonction de la distance) pour l'onde P puis pour l'onde S. La vitesse de propagation est ensuite obtenue en mesurant l'inverse de la pente de chacun des segments de droite de la dromochronique [20].



Figure 1.10: Enregistrement composite typique de l'essai down hole

c) Essai up-hole

Similaire à l'essai down hole, l'essai up-hole est une diagraphie sismique qui permet de déterminer les vitesses sismiques  $V_p$  et  $V_s$ , et d'analyser les signaux transmis par une source active au fond du forage émetteur à une profondeur donnée (figure 1.11).



Figure 1.11: Principe de l'essai Up-hole

#### 1.2.3 Essais in-situ

Les essais in-situ deviennent de plus en plus courants dans la plupart des travaux réalisés pour obtenir les différentes caractéristiques du sol sur place.

Nous allons présenter dans ce qui suit, le principe de quelques types d'essais in-situ comme l'essai de pénétration statique CPT et l'essai de pénétration dynamique DPT.

#### 1.2.3.1 Essai de pénétration statique (CPT)

Le pénétromètre statique (CTP pour cone penetration test) est considéré depuis plusieurs dizaines années comme un outil puissant pour la détermination en place des caractéristiques de résistance des sols fins.

Ce type d'essai a un équipement standard utilisé durant les phases initiales des études géotechniques afin de fournir des informations sur la nature des problèmes à résoudre et l'organisation ultérieure de la reconnaissance géotechnique [12].

L'appareil d'essai se compose d'une sonde insérée dans le sol à une vitesse constante, constituée d'une pointe pénétrometrique, d'une section normalisée de 10 cm<sup>2</sup> (diamètre 36mm). La pointe est la partie la plus importante et elle se compose de :

- Tige de garde ;
- cône en pointe ;



- manchon de frottement situé au dessus du cône d'une superficie latérale de 150cm<sup>2</sup>.

Figure 1.12: Principe de l'essai de pénétration statique CPT

#### • Principe de l'essai de pénétration statique

L'essai de pénétration statique consiste à enfoncer dans le sol, à vitesse lente et constante et à l'aide d'un vérin hydraulique, une pointe terminée par un cône. Un dispositif approprié permet de mesurer la résistance à la pénétration du cône, ainsi qu'éventuellement, le frottement latéral mobilisé sur une longueur donnée.

On distingue deux types de pénétromètres :

- Les pénétromètres à cône mobile, dans lesquels, le cône peut se déplacer librement par rapport aux autres éléments de la pointe ;
- Les pénétromètres à cône fixe, dans lesquels, le cône n'a qu'un mouvement relatif très faible par rapport aux autres éléments de la pointe.
- <u>Caractéristique obtenues à partir de l'essai CPT</u>

Les résultats sont présentés sous forme de graphique appelé pénétrogramme donnant la variation de la résistance au cône  $(q_c)$  appelée couramment résistance de pointe et le frottement latéral mesuré par le manchon  $(f_c)$  en fonction de la profondeur. Ces résultat aide à :

- La classification des sols ;
- L'estimation de certains paramètres du sol notamment la densité relative des sables et de voir leur état (lâche ou dense) et la résistance au cisaillement des argiles ;
- L'étude et l'estimation du risque de liquéfaction des sols sableux ;
- Le calcul de la capacité des pieux battus dans les sols ;
- L'apprécier de la succession des différentes couches de terrain ;
- L'homogénéité d'une couche ou la présence des anomalies.

En tant qu'outil de reconnaissance et de dimensionnement géotechnique, l'essai pénétrométrique devient très populaire et plus utilisé sur la base des paramètres mesurés puisqu'il offre la possibilité d'aborder l'identification des sols en termes de nature, à cause de la rapidité de leur exécution.

#### 1.2.3.2 Essai de pénétration dynamique (DPT)

L'essai de pénétration dynamique des sols a pour but la mesure de la résistance des couches traversées au battage d'une pointe. Cet essai est dans la pratique d'une grande importance car il permet de se faire rapidement une idée assez claire sur la résistance des sols et leur sa portance dans leur état naturel [8].

Deux types de pénétromètres dynamiques ont été normalisés. Ces deux types de permettent d'apprécier la succession et l'homogénéité de différentes couches de terrain.

#### • <u>Principe de l'essai de pénétration dynamique (type A)</u>

L'essai de pénétration dynamique-type A consiste à enfoncer dans le sol, par battage de manière continue, un train de tiges muni, en partie inférieure, d'une pointe débordante, tout en injectant une boue de forage entre la paroi de sondage et les tiges (figure 1.13) et à noter le nombre de coups nécessaires pour faire pénétrer dans le sol la pointe d'une hauteur h de 10 cm [16].

Pour réaliser l'essai de pénétration dynamique d'un sol, il est pratique de procéder par battage des tiges métalliques à l'aide d'un mouton tombant en chute libre d'une hauteur constante (20 cm par exemple), par tranches identiques d'enfoncement.

L'appareil étant disposé bien verticalement, on laisse tomber la charge de 75 Kg d'une hauteur constante, en comptant pour chaque tranche d'enfoncement le nombre de chutes effectuées.

La résistance dynamique de pointe à la pénétration  $(q_d)$  sous l'action du choc du mouton est donnée par l'expression suivante (formule des Hollandais) :

$$q_{d} = \left[\frac{m.g.H}{A.e} \cdot \frac{m}{m+m}\right]$$
(1.9)

Avec :

m : masse du mouton ;

g : accélération de la pesanteur ;

H : hauteur de chute libre du mouton ;

A : aire de la section droite de la pointe ;

- e : enfoncement par coup ;
- m' : masse cumulée, de l'enclume, des tiges, de la pointe.

Les résultats de cet essai sont présentés sous forme de graphiques, avec la courbe de la résistance à la pénétration dynamique en fonction de la profondeur.



Figure 1.13: Principe de l'essai de pénétration dynamique DPT - type A -

#### • <u>Principe de l'essai de pénétration dynamique (type B)</u>

L'essai de pénétration dynamique, type B, consiste à enfoncer dans le sol par battage de manière continue un train de tiges muni en partie inférieure d'une pointe débordante et à noter le nombre de coups nécessaires pour faire pénétrer dans le sol la pointe d'une hauteur h de 20 cm, tout en vérifiant l'importance des efforts de frottement éventuels sur le train de tiges [16].

L'appareillage de cet essai compose d'un dispositif de battage, d'un train de tiges muni d'une pointe débordante, d'un système de détection des efforts de frottement et d'un dispositif de mesures (figure 1.14).



Figure 1.14: Principe de l'essai de pénétration dynamique DPT - type B-

#### 1.3 Tassement des fondations superficielles

Les sols, comme tous les autres matériaux, se déforment lorsqu'on leur applique une charge. Conformément aux principes généraux de la mécanique des sols, le phénomène de tassement sous l'action des charges que lui transmettent les fondations ont été connus de tout temps. Ces déformations correspondent à des diminutions d'épaisseurs des couches soumises à l'effort de compression imposé.

Le tassement est un phénomène d'interaction sol/fondation qui se manifeste soit à cause de l'action de la fondation sur le sol, par le biais des surcharges qui lui sont transmises, soit à cause de l'action du sol sur la fondation [6].

#### Composantes du tassement des fondations superficielles

Le phénomène du tassement de la fondation est en général la résultante des trois composantes :

- Tassement instantané (s<sub>i</sub>);
- Tassement de consolidation primaire (s<sub>c</sub>);
- Tassement de consolidation secondaire ( $s_f$ ).





Figure 1.15: Courbe générale de tassement d'un sol quelconque

#### 1.3.1.1 Tassement instantané

Ce tassement est appelé aussi tassement initial ou compression élastique. Dans les milieux saturés, on peut admettre que ce tassement se produit à volume constant, il correspondant à un premier réarrangement des grains du sol et à la disparition des vides remplis d'air, jusqu'à saturation du sol, lorsque l'eau occupe la totalité des vides.

#### 1.3.1.2 Tassement de consolidation primaire

Une fois le tassement instantané terminé, la surcharge est transmise instantanément à l'eau interstitielle, ce qui implique une augmentation de la pression interstitielle.

(1.10)

Cette pression locale dans l'eau provoque naturellement une expulsion de cette dernière vers des zones de plus basse pression : c'est la consolidation.

La consolidation est donc la réduction graduelle du volume d'un sol complètement saturé, à faible perméabilité, due au drainage de l'eau dans les pores. Cette action se produit jusqu'à ce que l'excès de pression interstitielle ( $\Delta U$ ) dans les pores dû à une augmentation des contraintes totales ( $\Delta \sigma$ ), ait été complètement dissipé.

#### 1.3.1.3 Tassement de consolidation secondaire

Ce phénomène se manifeste une fois la consolidation primaire achevée. Ce tassement est principalement dû à l'arrangement graduel des particules de sol pour une configuration plus stable et à des modifications viscoélastiques des couches d'eau adsorbée. Donc le tassement secondaire, qui dépend du temps, se produit à contrainte effective constante sans qu'il y ait variation des pressions interstitielles.

#### 1.3.2 Calcul du tassement des fondations superficielles

Toutefois, la maîtrise des essais et des méthodes de calcul doit être complétée par quelques connaissances sur les événements existants, sur les ordres de grandeur et sur les relations des calculs de tassements et de stabilité.

Il existe trois classes de méthodes de calcul pour les tassements des massifs de sols :

- Les calculs à partir des essais de laboratoire (essai œdométrique) : généralement appliqués pour les sols argileux saturés et compressibles ;
- Les calculs à partir des essais in-situ (pressiomètre, pénétromètre, SPT...) : utilisés notamment pour les sols grenus (sables et graves).
- Les calculs en élasticité ou élastoplasticité : mis en œuvre par la méthode des éléments finis [11].

#### 1.3.2.1 Calcul du tassement à partir des essais de laboratoire (oedomètre)

Le cas le plus simple pour l'étude de la déformation des sols est celui où le massif de sol a une surface horizontale où la charge appliquée à la surface est une pression uniforme où le sol ne peut se déplacer que verticalement. À cet effet, on peut reproduire en laboratoire le comportement du sol sous les charges qui lui sont appliquées à l'aide d'un essai appelé : oedométrique.

Cet essai a pour objet la détermination des propriétés de consolidation des sols où les principales grandeurs pouvant être déduites sur des échantillons sont : le module oedométrique et les tassements.

• Évaluation du tassement de consolidation primaire (méthode d'intégration par tranches)

La méthode d'intégration du tassement par tranches est utilisée en découpant le sol de fondation en tranches horizontales, chacune faisant l'objet d'un calcul de tassement. Le principal avantage de cette méthode est qu'elle permet de faire une analyse non linéaire du tassement en fonction des contraintes.



Figure 1.16: Schéma de découpage du sol en des tranches

La procédure pour calculer le tassement de consolidation selon cette méthode est comme suit [6]:

a) Découper le sol en N tranches suffisamment minces telles que la contrainte effective  $\sigma'_{v0}$  varie linéairement au sein de la tranche. Ainsi la valeur de la contrainte au milieu de la tranche sera la valeur moyenne représentative de  $\sigma_v$  dans toute la tranche.
- b) Le découpage continue jusqu'à ce que  $\sigma'_{v_0}$  devient négligeable dans un massif semi-infini, ou jusqu'à la base du sol étudié dans le cas d'un sol d'épaisseur finie.
- c) Calculer l'augmentation de la contrainte  $\Delta \sigma_v$  au centre de la tranche i à l'aide des méthodes d'élasticité [6].
- d) Calculer la contrainte effective  $\sigma_{v} = \sigma_{v0} + \Delta \sigma_{v}$ ;

f) Calculer le tassement S(i) de la tranche i sous  $\sigma_v(i)$ . Le calcul du tassement base essentiellement sur l'utilisation de la courbe de compressibilité qui sert à déterminer les différents types de sol selon leur compressibilité. Donc, le calcul du tassement diffère selon que ( $\sigma'_v$ ) est supérieure ou inférieure à ( $\sigma_c$ ):

• Cas  $(\sigma_v > \sigma_c)$ 

$$S_{C}^{Oed}(i) = \frac{H_{i}}{1 + e_{0}} \cdot (C_{S} \cdot Log \frac{\sigma_{C}}{\sigma_{V0}} + C_{C} \cdot Log \frac{\sigma_{V}}{\sigma_{C}})$$
(1.11)

• Cas 
$$(\sigma_v < \sigma_c)$$

$$S_{C}^{Oed}(i) = \frac{H_{i}}{1 + e_{0}} \cdot (C_{S} \cdot Log \frac{\sigma_{V}}{\sigma_{V0}})$$
 (1.12)

Avec :

Hi : épaisseur de la tranche du sol (i).

f) Calculer le tassement total en sommant ceux des tranches 1 à N :

$$S_{\rm C}^{\rm Oed} = S_{\rm i1} + \dots + S_{\rm iN}$$
(1.13)

## <u>Correction de tassement de consolidation primaire</u>

Le tassement obtenu correspond à des déformations latérales nulles. On procède alors à une correction pour tenir compte de la possibilité de déformations latérales accompagnant le tassement, comme il sera vu ci après, conformément à l'équation [4] :

$$s_s = \mu s_s^{Oed} = [\alpha . (1 - A) + A] . s_s^{Oed}$$
 (1.14)

A : Coefficient de pression interstitielle (coefficient de Skempton), à mesurer à partir d'un essai triaxial non drainé avec mesure de pression interstitielle.

 $\alpha$ : Coefficient déduit de la théorie d'élasticité selon la géométrie de la fondation et l'épaisseur de la couche du sol.

#### • Evaluation du tassement de consolidation secondaire

Après la dissipation des pressions interstitielles générées par l'application d'une charge sur un échantillon oedométrique, le sol continu à tasser une fois la consolidation primaire achevée. Cette nouvelle phase de tassement s'appelle la consolidation secondaire. Elle est principalement due à l'arrangement des particules de sol pour une configuration plus stable des couches d'eau adsorbée.

Le tassement secondaire, qui dépend du temps, se produit à contrainte effective constante, sans qu'il y ait variation des pressions interstitielles, il constitue une partie importante du tassement total.

## 1.3.2.2 Calcul du tassement à partir des essais in-situ

#### • Calcul du tassement à partir de l'essai de pénétration dylnamique DPT [6]

Le principe de cet essai est d'estimer par corrélation le module de déformation oedométrique E <sub>Oed</sub> à partir du nombre de coups N<sub>d</sub>, et calculer par la suite le tassement S d'une tranche d'épaisseur H, soumise à une augmentation de contrainte effective  $\Delta \sigma'_{v}$  comme suit :

$$s = H. \frac{\Delta \sigma'_{V}}{E_{Oed}}$$
(1.15)

La formule du module oedométrique  $E_{Oed}$  lors d'un comportement non linéaire du sol est comme suit :

$$E_{\text{Oed}} = \text{m.P}_{\text{a}} \left[ \frac{\sigma_{\text{V0}} + 0.5 \Delta \sigma_{\text{v}}}{P_{\text{a}}} \right]^{\text{n}}$$
(1.16)

Avec :

 $P_a$ : Pression atmosphérique ( $P_a = 100 \text{ kPa}$ );

m : coefficient quantifiant la raideur du sol en fonction de N<sub>d</sub>.

• <u>Calcul du tassement à partir de l'essai de pénétration statique CPT</u>

L'utilisation croissante de l'essai au pénétromètre statique au niveau de la reconnaissance est justifiée par des raisons économiques et de délai.

L'essai CPT permet une estimation pratique des tassements du sol pulvérulents, une analyse fiable de la variabilité spatiale de la résistance du sol, ainsi que l'identification des couches.

# a. <u>Corrélation existant entre l'essai de pénétration statique et le module de</u> <u>déformation</u>

La déformabilité des sols est souvent liée à leur résistance. Depuis longtemps, les recherches ont essayé de relier, soit théoriquement, soit statistiquement, la résistance de pointe aux modules de déformation usuels (oedométrique, pressiométrique, ou élastique d'Young). Le module oedométrique  $E_{oed}$  est lié à la résistance de l'enfoncement du cône  $q_c$  par une relation de type :

$$E_{0ed} = \frac{q_c}{\lambda}$$
(1.17)

Le tableau 1.1 synthétise la corrélation entre la résistance en pointe  $q_c$  (MPa) et les modules de déformation, déterminés à partir des essais oedométrique  $E_{oed}$  réalisés par différents chercheures [13].

Tableau 1.1 : Corrélation de la résistance en pointe et le module oedométrique [13]

| Sols                  | sables | Sables<br>argileux                 | Argiles<br>des<br>Flandres | Argiles<br>compactes               | Argiles<br>molles           | Limons<br>argileux | limons | tourbes   | marnes |
|-----------------------|--------|------------------------------------|----------------------------|------------------------------------|-----------------------------|--------------------|--------|-----------|--------|
| Sanglerat             | λ=1,5  | 2<λ<5<br>1,5 <q<sub>c&lt;3</q<sub> | -                          | 2<λ<5<br>1,5 <q<sub>c&lt;3</q<sub> | 5<λ<10<br>q <sub>c</sub> <1 | -                  | 1<λ<2  | 0,4<λ<1   | 2<λ<6  |
| Bachelier<br>et Parez | 1<λ<2  | 2<λ<4                              | λ=7                        | 3<λ<5                              | -                           | 2,5<λ<4            | -      | 0,7<λ<0,8 | 3<λ<5  |
| Barata                | -      | -                                  | -                          | λ=4,4                              | -                           | λ=2,4              | -      | -         | -      |

# b. <u>Méthode de calcul du tassement à partir de l'essai CPT (méthode de</u> <u>Schmertmann) [6]</u>

La méthode de Schmertmann (1978) calcule la déformation verticale du sol sous une fondation superficielle en fonction d'un facteur d'influence  $I_z$  et à partir des données de l'essai de pénétration statique (CPT).

$$\varepsilon = \frac{\Delta \sigma_{\rm v}}{\rm E} . I_{\rm Z} \tag{1.18}$$

$$I_{Z} = 0.5 + 0.1 \sqrt{\frac{\Delta \sigma_{v}}{\sigma_{vP}}}$$
(1.19)

Avec :

 $\Delta \sigma_v$ : L'augmentation de la contrainte due à une pression q ;

E : Module de déformation de sol à la profondeur étudiée;

 $\sigma_{vp}$ : Contrainte verticale effective due au poids des terres à la profondeur de la déformation maximale.

Le tassement d'une fondation s'obtient par l'intégration de la déformation le long d'une zone utile dont la profondeur est h par rapport à la base de la fondation :

$$s = \int_{0}^{h} \varepsilon_{z} dz = \int_{0}^{h} \frac{\Delta \sigma_{v} I_{z}}{E} dz$$
(1.20)

Cette méthode propose un calcul simple du tassement des fondations dans les sols pulvérulents multicouches.

#### 1.4 Calcul du tassement dans un sol multicouche

#### 1.4.1 méthode de Steinbrenner (1934)

Les déformations verticales en un point d'un massif sont déduites et calculées à partir d'une surcharge  $(\Delta \sigma_v)$ , dans le cas du calcul du tassement sous déformations tridimensionnelles.

La méthode de Steinbrenner consiste à calculer le tassement instantané d'une fondation superficielle rectangulaire de dimensions (LxB) dans les sols multicouches.



Figure 1.17: Charge rectangulaire en surface d'un massif infiniment épais

# • Principes de la méthode de Steinbrenner (1934)

L'hypothèse principale de cette méthode est que la distribution de la surcharge  $\Delta \sigma_v(z)$  est identique à celle de Boussineq dans un sol homogène.

Pour le calcul du tassement, Steinbrenner traite initialement cas d'un sol monocouche reposant sur un substratum [17] :

$$\mathbf{s}_{\mathrm{b}}^{\mathrm{i}} = \frac{\mathrm{q.B}}{\mathrm{E}} \mathbf{I}_{\mathrm{z}} \tag{1.21}$$

$$I_{z} = (1 - v^{2}).F_{1} + (1 - v - 2v^{2}).F_{2}$$
(1.22)

$$F_{1} = \frac{1}{\pi} .m.Ln.\left[\frac{(1+\sqrt{m^{2}+1}).\sqrt{m^{2}+n^{2}}}{m.(1+\sqrt{1+m^{2}+n^{2}})}\right] + \frac{1}{\pi} .Ln.\left[\frac{(m+\sqrt{m^{2}+1}).\sqrt{1+n^{2}}}{(1+\sqrt{1+m^{2}+n^{2}})}\right]$$
(1.23)

$$F_{2} = \frac{n}{2.\pi} . \operatorname{arctg.}\left[\frac{m}{n.\sqrt{1+m^{2}+n^{2}}}\right] = \frac{n}{2.\pi} . \operatorname{arc sin.}\left[\frac{m}{\sqrt{m^{2}+n^{2}}.\sqrt{1+n^{2}}}\right]$$
(1.24)

Avec :

q : Surcharge verticale appliquée à la fondation ;

I<sub>z</sub> : Coefficient d'influence de la surcharge q ;

m = L/B: Elancement horizontal de la fondation ;

n = Z/B: Profondeur relative du point étudié.

Le tassement au centre d'une fondation rectangulaire est la somme des tassements des quatre sous rectangles, donc :

$$\mathbf{s}_{\mathrm{C}}^{\mathrm{i}} = 4.\mathbf{s}_{\mathrm{b}}^{\mathrm{i}} \tag{1.25}$$

Avec :

$$I_z = f(n = \frac{2.Z}{B}, m = \frac{L}{B})$$

En cas d'un sol multicouche, Steinbrenner propose de calculer le tassement en surface au coin du rectangle par la formule suivante :

$$s_{b}^{i} = q.B.\left[\sum_{k=1}^{N-1} \frac{I_{k+1}^{z} - I_{k}^{z}}{E_{k}} + \frac{I_{N}^{z}}{E_{N}}\right]$$
(1.26)

Avec :

- $E_{{}_{k}},\upsilon_{K}\,$  : Caractéristiques élastiques de la couche K ;
- $I_k^{\rho}$  : Facteur d'influence dépendant de  $~\upsilon_K$  et  $Z_K~$  ;
- $Z_{K}$ : Profondeur du toit de la couche K par rapport à la surface du sol.

#### 1.4.2 Méthode de Vesic (1963)

La méthode de Vesic consiste à calculer le tassement instantané d'une fondation superficielle circulaire de diamètre (R) dans les sols multicouches.

Vesic suit les mêmes étapes de calcul du tassement semblables à ceux du Steinbrenner sous une fondation de forme circulaire d'une charge uniformément répartie.



Figure 1.18: Surcharge circulaire en surface du sol

• Principes de la méthode de Vesic (1963)

Vesic a proposé une équation simple pour calculer le tassement d'une fondation de forme circulaire (rigide ou souple) sous le même principe utilisé pour le calcul de tassement suivant la méthode de Steinbrenner.

$$s^{i} = 2.R.q.\sum_{K=1}^{N} \frac{(1 - v_{K}^{2})}{E_{K}}.(I_{z}^{K} - I_{z}^{K-1})$$
(1.27)

 $I_{z}^{K}$ : dépend de  $(v_{K})$  et de  $(\frac{Z_{K}}{R})$ ;

Tel que :  $Z_K$  est la distance de pied de la couche K à la surface du sol.

#### 1.5 Conclusion

Ce chapitre, consacré à une étude bibliographique, souligne l'importance du calcul du tassement des sols sous l'action du chargement des fondations, à partir des essais menés en laboratoire ou sur place.

Dans un premier temps, une brève présentation des essais de laboratoire les plus classiques comme l'essai œdométrique, puis une présentation des essais géophysiques permettant la mesure du module de cisaillement G déduit de la célérité  $V_s$ , ensuite on ce présenté le principe de quelques essais in situ comme l'essai de pénétration statique CPT et l'essai de pénétration dynamique DPT.

Aussi, on a été intéressés dans ce chapitre à étudier l'évaluation du tassement des fondations superficielles, en laboratoire et sur place.

Enfin, on a essayé de déterminer le principe des méthodes de calcul du tassement dans les sols multicouches suivant la méthode de Steinbrener pour des fondations de forme rectangulaire, et la méthode de Vesic pour des fondations de forme circulaire.

Dans les chapitres suivants, on va essayer de trouver des relations existant entre le module de déformation du sol avec les différents paramètres des essais étudiés.

### **CHAPITRE 2**

## CALCUL DU TASSEMENT DES FONDATIONS SUPERFICIELLES DANS LES SOLS FINS A PARTIR DES ESSAIS GEOPHYSIQUES DE FORAGE

3.1 Introduction

La célérité  $V_s$  des ondes de cisaillement est généralement mesurée in situ grâce à des méthodes d'essais géophysiques. Ces méthodes présentent des avantages indéniables par rapport aux autres essais géotechniques, en l'occurrence la rapidité et l'applicabilité de l'essai à tous les types de sols.

Contrairement aux autres essais, il n'existe paradoxalement pas de méthodes pour l'estimation du tassement des fondations à la base des essais géophysiques « Down Hole », bien que ces essais permettent d'estimer le module de déformation, intervenant dans le calcul du tassement avec l'hypothèse d'un comportement élastique linéaire du sol.

Notre objectif dans ce chapitre est de suggérer une approche de calcul du tassement des fondations superficielles à partir des essais géophysiques, à savoir l'essai down-hole. La méthode d'analyse est basée sur la collecte des données dans le but de déterminer des différentes corrélations entre les paramètres de calcul du tassement.

#### 3.2 Détermination de la base des données

#### 2.2.1 Méthodologie de travail de la base de données

Les informations géotechniques sur lesquelles nous allons travailler, ont porté par la collection d'une série des rapports géotechniques établis par des laboratoires de géotechnique sur différents sites en Algérie.

L'idée consiste à développer une corrélation entre le module oedométrique initial  $(E_{Oed})$  et le module de cisaillement  $(E_G)$ , ce dernier étant déduit de la célérité  $(V_s)$  mesurée à partir de l'essai de forage.

Cette corrélation permet d'aboutir à un outil de calcul du tassement de consolidation primaire dans les sols fins saturés, selon une méthode d'intégration par tranches.

Chaque site étudié dans une base de données exige la présence au moins d'un sondage carotté, dans le but de faire une corrélation entre les paramètres de l'essai oedométrique ( $E_{Oed}, \sigma_C$ ) et le module de cisaillement (G) obtenu à partir de l'essai de forage.

Au total, 10 rapports d'étude géotechnique de différents sites, la majorité étant situé dans le nord de l'Algérie et plus précisément dans les wilayas suivantes : Alger, Blida, Boumérdes et Tipaza. (Voir annexe n° 01).

Ces rapports ont été utilisés pour analyser les caractéristiques de 20 sondages carottés. Sur l'ensemble des sondages, on a analysé 40 échantillons à des profondeurs qui varient entre 0 et 20 m, dont le but de déterminer les différents paramètres de sol fin saturé.

Les propriétés initiales ont montré que les échantillons étaient pratiquement saturés atteignaient un degré de saturation compris entre 90% et 100 %.

Notre travail consiste à déterminer une base de données regroupent toutes les informations données par les essais étudiés, suivant une méthodologie qui se décompose en cinq étapes majeures :

- 1. Reconnaissance des sols ;
- 2. Détermination des données oedométriques ;

- 3. Établissement de la Courbe de chargement oedométrique ;
- 4. Détermination du module œdométrique sécant ;
- 5. Détermination des paramètres mécaniques à partir de l'essai forage.

La récapitulation de la base de données sera représentée sous forme des fiches synthétiques en annexe 01.

#### 1. Reconnaissance des sols

L'analyse des données obtenues au laboratoire confirme la classification du sol et l'identification de son état physique.

Parmi les essais de laboratoire utilisés pour cette étude, on citera : les essais d'identification et les essais mécaniques.

## • Les essais d'identification

Ces essais nécessitent évidemment un prélèvement d'échantillons à partir d'un forage ou d'une excavation sur des différentes profondeurs de sols pour la détermination des caractéristiques physiques comme :

- Les limites d'Atterberg de plasticité (w<sub>p</sub>) et de liquidité (w<sub>l</sub>) ;
- La granulométrie des particules,
- La teneur en eau (w) et de degré de saturation  $(S_r)$ ;
- Les poids spécifiques ( $\gamma_{s}$ ,  $\gamma_{d}$ ,  $\gamma'$ ),
- L'indice des vides (e) ...

Ces essais permettent de calculer la contrainte verticale ( $\sigma_{v_0}$ ) induite par les charges dues au poids des terres.

• Les essais mécaniques (essai de compressibilité à l'oedomètre)

Parmi les essais mécaniques les plus utilisés, on cite l'essai oedométrique, qui permet de déterminer les caractéristiques nécessaires au calcul des tassements des sols.

On peut tirer de cette courbe les paramètres suivants :

- La contrainte de préconsolidation ( $\sigma_c$ ) ;
- Les coefficients de compression (C<sub>c</sub>), de surconsolidation (C<sub>s</sub>) et de gonflement (C<sub>g</sub>) qui permettent de déterminer le tassement de consolidation ainsi que le gonflement du sol, au niveau de différentes profondeurs ;
- Le module oedométrique initiale  $E_{oed}$ .
- 2. Détermination des données oedométriques

Le but de cette étape est de construire une courbe de chargement  $\Delta \sigma'_v = f(\varepsilon_z)$ à partir d'une courbe de compressibilité oedométrique (e - Log  $\sigma'_v$ ).

On utilise la numérisation de l'image scannée d'une courbe oedométrique (figure 2.3) à l'aide de (GetData graph digitizer – version 2.24), logiciel de digitalisation des images, en précisant les différents points de la courbe (e -  $\text{Log }\sigma_V$ ), tel que l'axe des abscisses X correspond aux contraintes ( $\text{Log }\sigma_V$ ) et l'axe des cordonnées Y correspondent aux indices des vides (e).

• L'indice des vides est calculé pour chaque incrément de charge ( $\Delta \sigma_v$ ):

$$\varepsilon_{Z}(i) = \frac{s}{H} = \frac{\Delta e}{1+e}$$
(2.1)

Avec :  $\Delta e = e - e_0$ .

s : Tassement final de l'échantillon sous une contrainte  $\sigma_v$  après 24 heures.

#### H : Hauteur initiale de l'échantillon.

L'augmentation des contraintes appliquées correspond aux déformations verticales ( $\varepsilon_z$ ) après le chargement donné, et est donnée par la formule suivante :

$$\Delta \sigma_{\rm V} = \sigma_{\rm V} - \sigma_{\rm V0} \tag{2.2}$$

# 3. Établissement de la Courbe de chargement oedométrique $\Delta \sigma_v = f(\varepsilon_z)$

La courbe de chargement  $\Delta \sigma_v = f(\epsilon_z)$  peut être ajustée par une fonction en utilisant la méthode des moindres carrées.

La courbe de chargement oedométrique a très souvent à une allure hyperbolique définie sous la forme suivante :

$$Y = \frac{X}{a + bX}$$
(2.3)

- les valeurs des (X) correspondent aux contraintes appliquées  $(\varepsilon_{z})$ ;

- les valeurs des (Y) correspondent aux déformations ( $\Delta \sigma_{V}$ ).

Donc :

$$\Delta \sigma_{\rm V} = \frac{\varepsilon_{\rm Z}}{a + b.\varepsilon_{\rm Z}} \tag{2.4}$$

D'après la courbe hyperbolique, on peut déterminer le module oedométrique ( $E_0$ ) qui représente la pente initiale suivant l'équation  $\Delta \sigma'_v = f(\varepsilon_z)$ 

$$E_0 = \frac{1}{a}$$
(2.5)

Pour cela, nous avons choisi HYPER (version 2.0), programme convenable basé sur la méthode des moindres carrés (figure 2.1), pour calculer la pente initiale de l'ajustement, correspond au module oedométrique initial  $(E_0)$  de chaque courbe oedométrique.

Afin de contrôler la qualité d'ajustement par moindres carrés, une valeur numérique du coefficient d'ajustement (R) doit être supérieure ou égale à 85%.



Figure 2.1 : Ajustement par l'utilitaire HYPER

## 4. Détermination du module œdométrique sécant

Le calcul du module oedométrique sécant  $(E_{Oed})$  est défini par la pente de la droite reliant l'origine au point actuel déterminé pour chaque incrément de charge. Ce module est calculé par la formule suivante :

$$E_{\text{Oed}} = \frac{\Delta \sigma_{\text{V}}}{\varepsilon_{\text{z}}}$$
(2.6)



Figure 2.2 : Représentation des déformations et module de chargement oedométrique [18]

On trace pour chaque essai œdométrique une courbe liant le rapport  $\left(\frac{E_{Oed}}{E_0}\right)$  à la

variation relative des contraintes  $\left(\frac{\Delta \sigma_{v}}{\sigma_{v0}}\right)$  pour chaque site étudié, comme suit :

$$\frac{\mathbf{E}_{\text{Oed}}}{\mathbf{E}_{0}} = f\left(\frac{\Delta \sigma_{\text{V}}}{\sigma_{\text{V0}}}\right)$$
(2.7)

#### 5. Détermination des paramètres mécaniques à partir de l'essai de forage

Pour chaque profondeur plusieurs chocs ont été réalisés sur un madrier chargé. Ces chocs génèrent les ondes de cisaillements S et de compression P.

En connaissant la valeur de la célérité de propagation d'ondes S, on peut déduire la valeur du module de cisaillement G comme suit :

$$\mathbf{G} = \mathbf{V}_{\mathrm{s}}^2 \cdot \boldsymbol{\rho} \tag{2.8}$$

## 2.2.2 Analyse de la base des données

Le choix des données élaborées à partir de ces rapports a été fondé sur les critères suivants :

- les données des essais down-hole et de compressibilité oedométrique doivent être étudiées à la même profondeur pour chaque site.
- Les rapports utilisés ont été limités aux sols fins argileux seulement ;
- Toutes les mesures considérées sont prises au-dessus de la nappe phréatique ;
- Pour une meilleure étude statistique, il est nécessaire de prendre plus de 30 points de corrélation.

## 3.3 Application de la méthodologie proposée

Après avoir développé les différentes étapes de notre analyse, on va appliquer la méthodologie d'analyse à un seul cas d'étude.

### 1. <u>Compagne de reconnaissance</u>

Deux sondages carottés ont été réalisés sur notre site qui est situé à la wilaya de Boumérdes, a fin d'utiliser les échantillons pour identifier les paramètres de différents essais de laboratoire.

On se limite en première étape à présenter les résultats des essais sur les échantillons du sondage N° 01 (tableau 2.1).

| N° du rapport |                                | Sondage carotté n°: SC 01 |                  |  |  |  |
|---------------|--------------------------------|---------------------------|------------------|--|--|--|
|               |                                | N° d'éch                  | antillon:        |  |  |  |
|               |                                | 1                         | 2                |  |  |  |
|               | Profondeur                     | $4.00 \div 4,40$          | $8,40 \div 8,80$ |  |  |  |
|               | Epaisseur de la<br>Couche      | 0,40                      | 0,40             |  |  |  |
|               | ω (%)                          | 16,00                     | 12,00            |  |  |  |
|               | $\omega_{l}$ (%)               | 30,00                     | 29,00            |  |  |  |
|               | I <sub>p</sub> (%)             | 15,00                     | 14,00            |  |  |  |
|               | <b>S</b> <sub>r</sub> (%)      | 98,00                     | 100,00           |  |  |  |
|               | $\gamma_{\rm d}({\rm kN/m^3})$ | 18,20                     | 20,40            |  |  |  |
| 07            | $\gamma_{h}(kN/m^{3})$         | 21,30                     | 22,90            |  |  |  |
|               | $\gamma_{s}(kN/m^{3})$         | 26,50                     | 26,50            |  |  |  |
|               | $\gamma' (kN/m^3)$             | 11,11                     | 12,84            |  |  |  |
|               | Symbole LCPC                   | A <sub>p</sub>            | Ap               |  |  |  |
|               | e <sub>0</sub>                 | 0,413                     | 0,353            |  |  |  |
|               | $\sigma_{c}$ (kPa)             | 224                       | 217              |  |  |  |
|               | C <sub>c</sub>                 | 0,093                     | 0,072            |  |  |  |
|               | Cg                             | 0,022                     | 0,034            |  |  |  |

Tableau 2.1 : Résultats d'essai au laboratoire sur un échantillon

### 2. <u>Calcul de la contrainte $(\sigma'_{v0})$ et l'indice des vides $(e_0)$ </u>

Suivant les données du tableau 2.1, on va calculer la contrainte due au poids des terres ( $\sigma'_{v_0}$ ), pour déduire la valeur de l'indice des vides ( $e_0$ ) correspondent à cette contrainte, à partir de la courbe de compressibilité oedométrique.

#### 3. <u>Détermination des données à partir de la digitalisation de la courbe oedométrique</u>

La détermination de ces données, comme nous l'avons expliqué précédemment, va se baser sur la digitalisation d'une l'image scannée de la courbe oedométrique.



Figure 2.3 : Exemple de digitalisation d'une courbe oedométrique

Les résultats de cette digitalisation sont représentés au tableau (2.2) :

|          | Données Digitalisées - SC 01 |        |  |  |  |  |
|----------|------------------------------|--------|--|--|--|--|
| N° point | σv' (kPa)                    | е      |  |  |  |  |
| 1        | 46,87                        | 0,4149 |  |  |  |  |
| 2        | 111,77                       | 0,4045 |  |  |  |  |
| 3        | 199,17                       | 0,3922 |  |  |  |  |
| 4        | 387,50                       | 0,3750 |  |  |  |  |
| 5        | 796,57                       | 0,3482 |  |  |  |  |
| 6        | 1607,93                      | 0,3201 |  |  |  |  |

| Tableau 2.2 : | Résultats | après | digitalisati | on de la | courbe | oedométriqu | e |
|---------------|-----------|-------|--------------|----------|--------|-------------|---|
|               |           |       | ()           |          |        |             |   |

#### 4. Calcul de la déformation oedométrique $\varepsilon_z$ (i)

Dans cette partie, le calcul s'effectue par l'application de la formule (2.1) pour chaque incrément de charge ( $\Delta \sigma_v$ ).

• 
$$\varepsilon_{z}(1) = -\frac{(e_{1} - e_{0})}{(1 + e_{0})} = -\frac{(0,4045 - 0,4149)}{(1 + 0,4149)} = 0,73\%$$

• 
$$\varepsilon_z(2) = -\frac{(e_2 - e_0)}{(1 + e_0)} = -\frac{(0,3922 - 0,4149)}{(1 + 0,4149)} = 1,60\%$$

•  $\varepsilon_z(3) = -\frac{(e_3 - e_0)}{(1 + e_0)} = -\frac{(0,3750 - 0,4149)}{(1 + 0,4149)} = 2,81\%$ 

• 
$$\varepsilon_z(4) = -\frac{(e_4 - e_0)}{(1 + e_0)} = -\frac{(0,3482 - 0,4149)}{(1 + 0,4149)} = 4,71\%$$

• 
$$\varepsilon_z(5) = -\frac{(e_5 - e_0)}{(1 + e_0)} = -\frac{(0,3201 - 0,4149)}{(1 + 0,4149)} = 6,70\%$$

#### 5. <u>Calcul de contraintes appliquées ( $\Delta \sigma' v$ )</u>

Le calcul de la contrainte appliquée de chaque incrément se fait par l'application de la formule (2.2) :

- $\Delta \sigma'_{v}(1) = \sigma'_{v}(1) \sigma_{v_0} = 111,77 46,87 = 64,90 \text{ kPa}$
- $\Delta \sigma_{\rm V}(2) = \sigma_{\rm V}(2) \sigma_{\rm V0} = 199,17 46,87 = 152,30 \, \text{kPa}$
- $\Delta \sigma'_{v}(3) = \sigma'_{v}(3) \sigma_{v_0} = 387,50 46,87 = 340,63$ kPa
- $\Delta \sigma_{v}(4) = \sigma_{v}(4) \sigma_{v0} = 796,57 46,87 = 749,70$  kPa
- $\Delta \sigma'_{v}(5) = \sigma'_{v}(5) \sigma_{v_0} = 1607,93 46,87 = 1561,06 \text{kPa}$

Les valeurs des déformations ( $\epsilon_z$ ) et des contraintes ( $\Delta \sigma'_v$ ) sont regroupe dans le tableau (2.3) :

|          | données pour HYPER       |                |  |  |  |
|----------|--------------------------|----------------|--|--|--|
| N° point | $\Delta \sigma v'$ (kPa) | ε <sub>z</sub> |  |  |  |
| 1        | 0,00                     | 0,0000         |  |  |  |
| 2        | 54,90                    | 0,0073         |  |  |  |
| 3        | 152,30                   | 0,0160         |  |  |  |
| 4        | 340,63                   | 0,0282         |  |  |  |
| 5        | 749,70                   | 0,0471         |  |  |  |
| 6        | 1561,06                  | 0,0670         |  |  |  |

Tableau 2.3 : Résultats des déformations  $\varepsilon_z$  et des contraintes ( $\Delta \sigma' v$ )

#### 6. Courbe de chargement oedométrique

L'utilisation des valeurs des déformations verticales oedométrique  $\varepsilon_z$  (i) et les contraintes appliquées ( $\Delta \sigma$ 'v) nous permet de tracer une courbe contraintes-déformations  $\Delta \sigma'_v = f(\varepsilon_z)$  comme indique le diagramme présenté sur la figure (2.4).



Figure 2.4 : Représentation de la courbe de chargement oedométrique  $\Delta \sigma_v^{'} = f(\epsilon_z)$ 

Dans ce schéma qui représente une courbe hyperbolique de chargement oedométrique, l'axe des X représente les déformations ( $\varepsilon_z$ ) et l'axe des Y représente la variation des contraintes ( $\Delta \sigma_v$ ), sachant que la pente initial de cette courbe représente le module de déformation (E<sub>0</sub>)

Dans notre exemple étudié, l'introduction des paramètres (déformation  $\varepsilon_z$  et contrainte  $\Delta \sigma_v$ ) dans le programme HYPER permet d'avoir :

- Un module oedométrique initial  $E_0 = 7,761$  MPa ;
- Un coefficient de régression R = 98,19 %

On constate que le coefficient de régression  $R \ge 85$  %, ce qui nous mène à dire que la qualité d'ajustement est bonne.

En connaissant le module oedométrique initial  $(E_0)$ , en peut donc déterminer le module oedométrique  $(E_{Oed})$  sécant en fonction de chaque incrément de charge  $(\Delta \sigma_v)$  appliqué.

• 
$$E_{\text{Oed}}(1) = \frac{\Delta \sigma'_{v}(1)}{\varepsilon_{z}(1)} = \frac{0,0649}{0,0074} = 8,770 \text{ MPa}$$

• 
$$E_{\text{Oed}}(2) = \frac{\Delta \sigma'_{v}(2)}{\varepsilon_{z}(2)} = \frac{0.1523}{0.0160} = 9.518 \text{ MPa}$$

• 
$$E_{\text{Oed}}(3) = \frac{\Delta \sigma_v^{'}(3)}{\varepsilon_z(3)} = \frac{0,3406}{0,0282} = 12,079 \text{ MPa}$$

• 
$$E_{\text{Oed}}(4) = \frac{\Delta \sigma'_{v}(4)}{\varepsilon_{z}(4)} = \frac{0,7497}{0,0471} = 15,917 \text{ MPa}$$

• 
$$E_{\text{Oed}}(5) = \frac{\Delta \sigma'_{v}(5)}{\varepsilon_{z}(5)} = \frac{1,5610}{0,0670} = 23,298 \text{ MPa}$$

7. Calcul des rapports 
$$\left(\frac{E_{\text{Oed}}}{E_0}\right)$$
 et  $\left(\frac{\Delta \sigma_v}{\sigma_{v_0}}\right)$ 

- Calcul du rapport : module oedométrique sécant  $E_{oed} \ / \ module \ initial \ E_0$  :

• 
$$\frac{E_{\text{Oed}}}{E_0}(1) = \frac{8,8295}{7,7610} = 1,1377$$

• 
$$\frac{E_{\text{Oed}}}{E_0}(2) = \frac{9,4929}{7,7610} = 1,2232$$

• 
$$\frac{E_{\text{Oed}}}{E_0}(3) = \frac{12,0791}{7,7610} = 1,5564$$

• 
$$\frac{E_{\text{Oed}}}{E_0}(4) = \frac{15,9033}{7,7610} = 2,0491$$

• 
$$\frac{E_{\text{Oed}}}{E_0}(5) = \frac{23,2989}{7,7610} = 3,0021$$

- Calcul du rapport : incrément de contrainte / contrainte initiale :

• 
$$\frac{\Delta \sigma'_{v}}{\sigma'_{v0}}(1) = \frac{64,90}{46,87} = 1,3847$$

• 
$$\frac{\Delta \sigma_{v}}{\sigma_{v0}}(2) = \frac{152,30}{46,87} = 3,2495$$

• 
$$\frac{\Delta \sigma_v}{\sigma_{v0}}(3) = \frac{340,63}{46,87} = 7,2675$$

• 
$$\frac{\Delta \sigma_v}{\sigma_{v0}}(4) = \frac{749,70}{46,87} = 15,9953$$

• 
$$\frac{\Delta \sigma_v}{\sigma_{v0}}(4) = \frac{1561,06}{46,87} = 33,3062$$

8. Représentation de la Courbe 
$$\frac{E_{Oed}}{E_0} = f\left(\frac{\Delta \sigma_V}{\sigma_{V0}}\right)$$

La relation entre le rapport  $\left(\frac{E_{\text{Oed}}}{E_0}\right)$  et  $\left(\frac{\Delta \sigma_v}{\sigma_{v_0}}\right)$  est représentée sur une courbe

 $\frac{E_{\text{Oed}}}{E_0} = f\left(\frac{\Delta \sigma_V}{\sigma_{V0}}\right) \text{ dont l'allure ressemble à une droite comme l'indique la figure (2.5).}$ 



Figure 2.5 : Représentation de la courbe  $\frac{E_{Oed}}{E_0} = f\left(\frac{\Delta \sigma_V}{\sigma_{V0}}\right)$ 

| Tableau 2.4 : Résultats | de | sondage | étudié |
|-------------------------|----|---------|--------|
|-------------------------|----|---------|--------|

|    | SC 01 / (4,00 ÷ 4,40) m |                |        |                                     |                            |        |                    |        |                                |  |  |
|----|-------------------------|----------------|--------|-------------------------------------|----------------------------|--------|--------------------|--------|--------------------------------|--|--|
| _  | Donné                   | es Digita      | lisées | Donnée                              | es pour HY                 | PER    | Résultats de HYPER |        |                                |  |  |
| N° | $\sigma_{v}'$ (kPa)     | e <sub>0</sub> | e      | $\Delta \sigma_{\rm v}'({\rm kPa})$ | σ <sub>v0</sub> '(kPa<br>) | ε z    | E (MPa)            | E/E0   | $\Delta\sigma_v'/\sigma_{v0}'$ |  |  |
| 1  | 46,87                   | (              | 0,4149 | 0,00                                |                            | 0,0000 | 7,7610             | 1,0000 | 0,0000                         |  |  |
| 2  | 111,77                  |                | 0,4045 | 64,90                               |                            | 0,0074 | 8,7702             | 1,1377 | 1,3847                         |  |  |
| 3  | 199,17                  | 0.4140         | 0,3922 | 152,30                              | 16.97                      | 0,0160 | 9,5187             | 1,2232 | 3,2494                         |  |  |
| 4  | 387,50                  | 0,4149         | 0,3750 | 340,63                              | 40,87                      | 0,0282 | 12,0791            | 1,5564 | 7,2675                         |  |  |
| 5  | 796,57                  |                | 0,3482 | 749,70                              |                            | 0,0471 | 15,9171            | 2,0491 | 15,9953                        |  |  |
| 6  | 1607,93                 |                | 0,3201 | 1561,06                             |                            | 0,0670 | 23,2989            | 3,0021 | 33,3062                        |  |  |

### 9. Résultats de l'essai down-hole

La vitesse de l'onde de cisaillement (V<sub>s</sub>) est un paramètre directement relié aux caractéristiques dynamiques des sols.

En utilisant les valeurs de cette vitesse mesurée à partir de l'essai down-hole, on peut calculer les valeurs du module de cisaillement (G) en fonction de la profondeur (Z), comme l'indique le tableau (2.5).

|               |                           | Sondage carotte n°: SC 01 |                  |  |  |  |
|---------------|---------------------------|---------------------------|------------------|--|--|--|
| N° du rapport |                           | N° d'échantillon:         |                  |  |  |  |
|               |                           | 1                         | 2                |  |  |  |
|               | Profondeur                | $4,00 \div 4,40$          | $8,40 \div 8,80$ |  |  |  |
| 07            | Epaisseur de la<br>Couche | 0,40                      | 0,40             |  |  |  |
| 07            | V <sub>p</sub> (m/s)      | 1830,00                   | 2010,00          |  |  |  |
|               | V <sub>s</sub> (m/s)      | 620,00                    | 500,00           |  |  |  |
|               | G (MPa)                   | 811,08                    | 575,00           |  |  |  |

Tableau 2.5 : Résultats de l'essai down-hole

On va généraliser le calcul de  $\left(\frac{E}{E_0}\right)$ ,  $\left(\frac{\Delta \sigma_V}{\sigma_{V0}}\right)$  et (G) pour les différents cas étudiés

à partir des rapports d'étude géotechnique pour permettre l'étude des corrélations.

## 2.4 Etude statistique des données

La courbe 
$$\frac{E}{E_0} = f\left(\frac{\Delta \sigma_v}{\sigma_{v_0}}\right)$$
 ressemble à une droite de la forme suivante :

$$\frac{E}{E_0} = a + b \frac{\Delta \sigma_V}{\sigma_{V0}}$$
(2.9)

Où :

a et b sont des paramètres d'ajustement linéaire par moindre carrés.

#### • Détermination de la valeur de (a)

En absence de la surcharge  $(\Delta \sigma'_v = 0)$ , on doit avoir l'égalité entre le module oedométrique sécant et le module oedométrique initial (E = E<sub>0</sub>), ce qui exige que (a = 1)

• Détermination de la valeur de (b)

b est déterminé par ajustement linéaire par la méthode des moindres carrées.

a) Cas :  $(\sigma_v < \sigma_c)$ 

On obtient pour ce cas (voir figure 2.6) :

- Un coefficient d'ajustement R =  $98,10\% \ge 85\% \Rightarrow$  bon coefficient ;
- Un coefficient : a = 1 (imposé);
- Un coefficient : b = 0,018.



Figure 2.6 : Ajustement de  $\left(\frac{E}{E_0}\right)$  en fonction de  $\left(\frac{\Delta \sigma_V}{\sigma_{V0}}\right)$  et  $-\cos(\sigma_V < \sigma_C)$  -

b) Cas:  $(\sigma_v > \sigma_c)$ 

Selon la même démarche, on obtient :

- Un coefficient d'ajustement :  $R = 94,00\% \ge 85\% \Rightarrow$  bon coefficient ;
- Un coefficient : a = 1 (imposé);
- Un coefficient : b = 0,035.



Figure 2.7 : Ajustement de  $\left(\frac{E}{E_0}\right)$  en fonction de - cas  $(\sigma_V > \sigma_C)$  –

On trouve finalement les relations suivantes:

$$\begin{cases} \text{Pour}: \sigma_{V} \leq \sigma_{C}: \frac{E}{E_{0}} = 1 + 0.018 \frac{\Delta \sigma_{V}}{\sigma_{V0}} \\ \text{Pour}: \sigma_{V} \geq \sigma_{C}: \frac{E}{E_{0}} = 1 + 0.035 \frac{\Delta \sigma_{V}}{\sigma_{V0}} \end{cases}$$
(2.10)

Avec :

- E<sub>0</sub>: Module oedométrique initial ;
- E : Module oedométrique sécant ;
- $\sigma'_{v_0}$ : Contrainte effective verticale ;

 $\Delta \sigma'_{v}$ : Contrainte verticale effective créée par la surcharge provenant de la structure.

#### 2.5 Etude de la corrélation entre l'essai oedométrique et l'essai down-hole

Deux corrélations ont été étudiées entre les différents paramètres :

- Corrélation entre le module oedométrique initial E<sub>0</sub> et le module de cisaillement G ;
- Corrélation entre la contrainte de préconsolidation  $\sigma_c$  et le module de cisaillement G.

#### a) <u>Etude de la corrélation entre G et $E_0$ </u>

L'analyse statistique d'une population de 30 valeurs est réalisée par le logiciel « OriginPro.V8 », en tenant compte des conditions suivantes :

- Les résultats sont exprimés directement par un tableau des fréquences relatives ;
- L'analyse des données s'appuie sur une statistique gaussienne ;
- La représentation graphique doit être sous forme d'un histogramme.

Les résultats de l'analyse statistique nous montrent ce qui suit :

- Un bon coefficient d'ajustement par la fonction de probabilité de Gausse (distribution normale de probabilité) (R = 99,77%);
- Une valeur caractéristique (X<sub>c</sub>) de la loi normale de Gauss du rapport  $\left(\frac{E_0}{G}\right)$  égale à 0,04.
- Une valeur de l'écart type ( $\sigma$ ) égale à 0,012.

$$\frac{\mathrm{E}_{0}}{\mathrm{G}} = 0,04$$



Figure 2.8 : Corrélation entre  $E_0$  et G

# b) Etude de la corrélation entre G et $\sigma_c$

Selon la même démarche, l'analyse statistique d'une population de 32 valeurs donne :

- Un coefficient d'ajustement : R = 99,81 % supérieur à 85 %;

- Une valeur caractéristique (X<sub>c</sub>) du rapport 
$$\left(\frac{\sigma_c}{G}\right)$$
égale à 0,002.

- Une valeur de l'écart type ( $\sigma$ ) égale à 4,76.10<sup>-4</sup>.

$$\frac{\sigma_c}{G} = 0,002 \tag{2.12}$$



Figure 2.9 : Corrélation entre  $\sigma_c$  et G

## 2.6 Calcul du tassement oedométrique à partir de l'essai down-hole

#### 2.6.1 <u>Principe de calcul</u>

L'objectif de cette étape est de proposer une approche de calcul du tassement de consolidation oedométrique (tassement sous déformations latérales) d'une fondation superficielle dans un sol argileux saturé.

La recherche d'une corrélation entre 
$$\left(\frac{E}{E_0}\right)$$
 et  $\left(\frac{\Delta \sigma_v}{\sigma_{v_0}}\right)$  nous a conduites à trouver la

formule (2.10). Cette dernière doit être utilisée pour déterminer le module de déformation oedométrique sécant ( $E_{Oed}$ ) comme suit. :

$$\begin{cases} \sigma_{\rm V}^{'} \leq \sigma_{\rm C} : E = E_0 \left[ 1 + 0.018 \frac{\Delta \sigma_{\rm V}^{'}}{\sigma_{\rm V0}^{'}} \right] \\ \\ \sigma_{\rm V}^{'} \geq \sigma_{\rm C} : E = E_0 \left[ 1 + 0.035 \frac{\Delta \sigma_{\rm V}^{'}}{\sigma_{\rm V0}^{'}} \right] \end{cases}$$
(2.13)

Afin d'avoir une formule en fonction des paramètres de l'essai down hole, on va utiliser les corrélations trouvées précédemment dans les formules (2.11) et (2.12). Ces corrélations donnent les formules suivantes :

$$E_0 = 0.04 \,\mathrm{G}$$
 (2.14)

$$\sigma_{\rm c} = 0,002\,{\rm G}$$
 (2.15)

On remplace les valeurs de  $(E_0)$  et  $(\sigma_{_{\rm C}})\,$  dans la formule (2.13), on trouve :

$$\begin{cases} \sigma_{\rm V} \leq 0,002\,{\rm G}:\,{\rm E} = 0,04\,{\rm G}\left[1+0,018\frac{\Delta\sigma_{\rm V}}{\sigma_{\rm V0}}\right] \\ \\ \sigma_{\rm V} \geq 0,002\,{\rm G}:\,{\rm E} = 0,04\,{\rm G}\left[1+0,035\frac{\Delta\sigma_{\rm V}}{\sigma_{\rm V0}}\right] \end{cases}$$
(2.16)

La détermination du tassement  $(s_c^{Oed})$  se base essentiellement sur la variation de la contrainte et le module de déformation oedométrique sous un comportement non linéaire.

$$s = \frac{\Delta \sigma_v x H}{E}$$
(2.17)

On remplace la valeur de E de la formule (2.16) dans l'expression (2.17), on trouve :

$$\begin{cases} \sigma_{v} \leq (0,002\,\mathrm{G}): \mathrm{s} = \frac{\mathrm{Hx}\Delta\sigma_{v}}{0,04\,\mathrm{G}\,(1+0,018\frac{\Delta\sigma_{v}}{\sigma_{v0}})} \\ \sigma_{v} \geq (0,002\,\mathrm{G}): \mathrm{s} = \frac{\mathrm{Hx}\Delta\sigma_{v}}{0,04\,\mathrm{G}\,(1+0,035\frac{\Delta\sigma_{v}}{\sigma_{v0}})} \end{cases}$$
(2.18)

Avec :

- s : Tassement d'une tranche i ;
- H : Epaisseur de la tranche étudiée ;
- $\Delta \sigma'_{v}$ : Augmentation de la contrainte verticale ;
- $\sigma'_{v_0}$ : Contrainte due au poids des terres ;
- G : Module de cisaillement dans la tranche i.

## 2.6.2 <u>Hypothèses de calcul</u>

## a) Choix de type de fondation

On considère le cas le plus simple d'une semelle carrée (L=B), ancrée à une fiche (D=1,50 m) dans le sol.



Figure 2.10 : Représentation d'une fondation repose sur un massif infini

## b) Choix de la méthode de calcul des contraintes

Le calcul s'effectue en général sur la base de la théorie d'élasticité [5]. Le sol est considéré comme un massif sous une épaisseur infinie suivant la méthode de Newmark.

$$\Delta \sigma_{\rm V} = 4 \, \mathrm{x} \, (\mathrm{q} - \sigma_{\mathrm{V0}}(\mathrm{D})) \, \mathrm{x} \, \mathrm{I}_{\sigma} \tag{2.19}$$

$$\begin{cases} I_{\sigma} = \frac{m.n.(1+m^{2}+2n^{2})}{2\pi\pi(+n^{2})(m^{2}+n^{2})((1+m^{2}+n^{2}))^{\frac{1}{2}}} + \frac{1}{2\pi} \arctan \frac{m}{n.((1+m^{2}+n^{2}))^{\frac{1}{2}}} \\ m = \frac{L}{B} \\ n = \frac{2.Z}{B} \end{cases}$$
(2.20)

Avec :

 $I_{\sigma}$ : Coefficient d'influence de la surcharge (q) ;

m : Elancement horizontal de la fondation ;

n : Profondeur relative du point étudié.

Pour que la charge appliquée à la base soit négligeable, le coefficient d'influence de la surcharge (q) doit être supposé égal à 2,50 %. Au delà de cette valeur la charge n'a pratiquement aucune influence [4].

Puisque m=1 on obtient une valeur de coefficient n = 4,175 (équation 2.20).

$$\begin{cases} I_{\sigma} = 2,50\% \\ m = 1 \\ n = 4,175 \end{cases}$$
(2.21)

## c) <u>La limite de la zone utile</u>

La profondeur utile  $Z_{utile}$  a été adoptée en considérant qu'au delà de cette profondeur l'influence de la pression q à la base de la fondation est inférieure à 10% [6].

Cette zone utile doit être découpée en plusieurs tranches ayant une épaisseur de 0,5m pour chacune.

## d) Les incréments de charge

Le calcul a été fait pour cinq incréments de charges q. Ces valeurs sont : 20, 50, 70, 120, 200 kPa.

#### 2.7 Application de la méthode des tranches sur un exemple

Nous allons continuer le travail sur le même cas d'étude mené selon la méthodologie de création de la base des données (voir 2.3).

#### 1. Calcul du tassement à partir de l'essai oedométrique

Le coefficient d'influence  $(I_{\sigma})$  doit être égal à 2,5 % (formule 2.21) pour que l'augmentation de la surcharge  $(\Delta \sigma_v)$  doive être inférieure ou égale 10 % de la pression à la base.

On remplace cette valeur de  $(I_{\sigma})$  dans la formule (2.19), on trouve :

 $\Delta \sigma'_{\rm V} = 10^{-1} \, \mathrm{x}(q - \sigma'_{\rm V0}(D))$ (2.22)

La zone utile du sondage (S01) de notre exemple, est découpée en des tranches de 0,50 m, donc on obtient :

$$Z_{\text{utile}} = 18,25 \text{m} \Rightarrow \text{i} = 34 \text{ tranches}$$
(2.23)

On peut donc adapter la valeur de (L) et (B), tel que (L=B), suivant la formule (2.21) qui donne la valeur de (n) :

$$n = \frac{2.Z}{B} \Longrightarrow L = B = \frac{2.Z}{n} \Longrightarrow L = B = \frac{2x18,25}{4,175} = 8,74m$$
(2.24)

D'autre part, les différentes données physiques ( $\gamma_d$ ,  $S_r$ , w) et oedométriques ( $C_s$ ,  $C_c$ ,  $\sigma_c$ ) de chaque tranche (i), seront obtenues par interpolation et extrapolation linéaire des données mesurées le long du sondage carotté effectué suivant le tableau présenté ci après :

|    | SC01  |                |                             |                    |       |                      |        |        |  |  |
|----|-------|----------------|-----------------------------|--------------------|-------|----------------------|--------|--------|--|--|
|    | Z     | e <sub>0</sub> | $\frac{\gamma_d}{(kN/m^3)}$ | $\gamma' (kN/m^3)$ | W (%) | σ <sub>c</sub> (Kpa) | Cs     | Cc     |  |  |
| 1  | 1,75  | 0,4502         | 16,99                       | 10,16              | 18,65 | 227,65               | 0,0159 | 0,1055 |  |  |
| 2  | 2,25  | 0,4424         | 17,25                       | 10,36              | 18,01 | 227,01               | 0,0172 | 0,1029 |  |  |
| 3  | 2,75  | 0,4347         | 17,48                       | 10,56              | 17,62 | 226,36               | 0,0185 | 0,1010 |  |  |
| 4  | 3,25  | 0,4270         | 17,77                       | 10,78              | 16,98 | 225,40               | 0,0198 | 0,0977 |  |  |
| 5  | 3,75  | 0,4193         | 17,99                       | 10,95              | 16,46 | 224,75               | 0,0214 | 0,0958 |  |  |
| 6  | 4,25  | 0,4141         | 18,28                       | 11,20              | 15,95 | 223,79               | 0,0229 | 0,0932 |  |  |
| 7  | 4,75  | 0,4064         | 18,50                       | 11,36              | 15,43 | 223,15               | 0,0239 | 0,0907 |  |  |
| 8  | 5,25  | 0,3987         | 18,76                       | 11,56              | 14,92 | 222,18               | 0,0252 | 0,0881 |  |  |
| 9  | 5,75  | 0,3910         | 18,99                       | 11,75              | 14,53 | 221,54               | 0,0265 | 0,0855 |  |  |
| 10 | 6,25  | 0,3833         | 19,24                       | 11,94              | 14,02 | 220,90               | 0,0280 | 0,0830 |  |  |
| 11 | 6,75  | 0,3781         | 19,50                       | 12,16              | 13,63 | 219,93               | 0,0293 | 0,0810 |  |  |
| 12 | 7,25  | 0,3704         | 19,79                       | 12,39              | 13,12 | 219,29               | 0,0309 | 0,0785 |  |  |
| 13 | 7,75  | 0,3653         | 19,98                       | 12,55              | 12,86 | 218,32               | 0,0322 | 0,0759 |  |  |
| 14 | 8,25  | 0,3576         | 18,24                       | 10,49              | 12,35 | 217,68               | 0,0337 | 0,0733 |  |  |
| 15 | 8,75  | 0,3524         | 18,47                       | 9,57               | 5,96  | 216,72               | 0,0350 | 0,0707 |  |  |
| 16 | 9,25  | 0,3447         | 18,72                       | 9,74               | 5,45  | 216,07               | 0,0363 | 0,0682 |  |  |
| 17 | 9,75  | 0,3396         | 18,98                       | 9,94               | 5,06  | 215,11               | 0,0376 | 0,0662 |  |  |
| 18 | 10,25 | 0,3318         | 18,98                       | 10,72              | 9,18  | 214,46               | 0,0391 | 0,0637 |  |  |
| 19 | 10,75 | 0,3241         | 18,98                       | 10,74              | 9,29  | 213,82               | 0,0404 | 0,0611 |  |  |
| 20 | 11,25 | 0,3190         | 18,98                       | 10,84              | 9,77  | 212,86               | 0,0417 | 0,0585 |  |  |
| 21 | 11,75 | 0,3113         | 18,98                       | 10,76              | 9,39  | 212,22               | 0,0430 | 0,0559 |  |  |
| 22 | 12,25 | 0,3035         | 18,98                       | 10,69              | 9,00  | 211,25               | 0,0445 | 0,0534 |  |  |
| 23 | 12,75 | 0,2984         | 18,98                       | 10,62              | 8,62  | 210,61               | 0,0458 | 0,0508 |  |  |
| 24 | 13,25 | 0,2932         | 18,98                       | 10,52              | 8,10  | 209,00               | 0,0471 | 0,0482 |  |  |
| 25 | 13,75 | 0,2855         | 18,98                       | 10,45              | 7,72  | 208,03               | 0,0484 | 0,0463 |  |  |
| 26 | 14,25 | 0,2778         | 18,98                       | 10,37              | 7,33  | 207,39               | 0,0499 | 0,0437 |  |  |
| 27 | 14,75 | 0,2727         | 18,98                       | 10,30              | 6,95  | 206,75               | 0,0509 | 0,0412 |  |  |
| 28 | 15,25 | 0,2650         | 18,98                       | 10,20              | 6,43  | 205,78               | 0,0525 | 0,0386 |  |  |
| 29 | 15,75 | 0,2598         | 18,98                       | 10,13              | 6,05  | 204,82               | 0,0538 | 0,0360 |  |  |
| 30 | 16,25 | 0,2521         | 18,98                       | 10,05              | 5,66  | 204,18               | 0,0553 | 0,0334 |  |  |
| 31 | 16,75 | 0,2444         | 18,98                       | 9,98               | 5,27  | 203,53               | 0,0566 | 0,0315 |  |  |
| 32 | 17,25 | 0,2392         | 18,98                       | 9,88               | 4,76  | 202,89               | 0,0581 | 0,0283 |  |  |
| 33 | 17,75 | 0,2315         | 18,98                       | 9,81               | 4,37  | 202,25               | 0,0594 | 0,0264 |  |  |
| 34 | 18,25 | 0,2264         | 18,98                       | 9,74               | 3,99  | 201,60               | 0,0607 | 0,0264 |  |  |

Tableau 2.6 : Valeurs des paramètres de calcul du tassement

En vue d'automatiser les calculs, un programme écrit en Fortran a été mis au point et utilisé à cette fin.

Ce programme à été utilisé pour calculer le tassement oedométrique noté  $(s_c^{Oed})$  par la méthode des tranches pour différents incréments de charge (q = 20, 50, 70, 120, 200 kPa).

Pour une pression de 20 kPa les résultats de calcul du tassement trouvés à partir de ce programme sont présentés dans le tableau 2.7 :

| N° de | $\sigma_{v_0}(kPa)$ | $\Delta \sigma_{V0}^{'}$ (kPa) | $\sigma'_{v}$ (kPa) | E <sub>Oed</sub> (MPa) | $\sigma_{c}$ (kPa)                                   | $s_{c}^{Oed}$ (mm) | ε(%)    |
|-------|---------------------|--------------------------------|---------------------|------------------------|------------------------------------------------------|--------------------|---------|
| 1     | 20 320              | 2 220                          | 22 540              | <i>4 4</i> 97          | 227.65                                               | 0 2468             | 0.04937 |
| 2     | 25,320              | 2,220                          | 27,662              | 5 125                  | 227,03                                               | 0.2158             | 0.04316 |
| 3     | 30,680              | 2,185                          | 32,865              | 5,671                  | 226.36                                               | 0.1926             | 0.03852 |
| 4     | 36.015              | 2,132                          | 38.147              | 6.152                  | 225,40                                               | 0.1733             | 0.03465 |
| 5     | 41.448              | 2,053                          | 43.500              | 6,485                  | 224.75                                               | 0.1583             | 0.03165 |
| 6     | 46,985              | 1,952                          | 48,937              | 6,818                  | 223,79                                               | 0,1431             | 0,02862 |
| 7     | 52,625              | 1,836                          | 54,461              | 7,254                  | 223,15                                               | 0,1265             | 0,02531 |
| 8     | 58,355              | 1,712                          | 60,067              | 7,567                  | 222,18                                               | 0,1131             | 0,02262 |
| 9     | 64,183              | 1,586                          | 65,768              | 7,853                  | 221,54                                               | 0,1010             | 0,02020 |
| 10    | 70,105              | 1,463                          | 71,568              | 8,058                  | 220,90                                               | 0,0908             | 0,01815 |
| 11    | 76,130              | 1,345                          | 77,475              | 8,318                  | 219,93                                               | 0,0809             | 0,01617 |
| 12    | 82,268              | 1,235                          | 83,502              | 8,464                  | 219,29                                               | 0,0729             | 0,01459 |
| 13    | 88,503              | 1,133                          | 89,635              | 8,696                  | 218,32                                               | 0,0651             | 0,01303 |
| 14    | 94,263              | 1,039                          | 95,302              | 8,792                  | 217,68                                               | 0,0591             | 0,01182 |
| 15    | 99,278              | 0,955                          | 100,232             | 8,875                  | 216,72                                               | 0,0538             | 0,01076 |
| 16    | 104,105             | 0,877                          | 104,982             | 8,917                  | 216,07                                               | 0,0492             | 0,00984 |
| 17    | 109,025             | 0,808                          | 109,833             | 8,977                  | 215,11                                               | 0,0450             | 0,00900 |
| 18    | 114,263             | 0,745                          | 115,007             | 8,991                  | 214,46                                               | 0,0414             | 0,00829 |
| 19    | 119,748             | 0,688                          | 120,436             | 9,063                  | 213,82                                               | 0,0380             | 0,00759 |
| 20    | 125,190             | 0,637                          | 125,827             | 9,141                  | 212,86                                               | 0,0348             | 0,00697 |
| 21    | 130,590             | 0,591                          | 131,181             | 9,191                  | 212,22                                               | 0,0321             | 0,00643 |
| 22    | 135,953             | 0,549                          | 136,501             | 9,188                  | 211,25                                               | 0,0299             | 0,00597 |
| 23    | 141,280             | 0,511                          | 141,791             | 9,239                  | 210,61                                               | 0,0276             | 0,00553 |
| 24    | 146,565             | 0,476                          | 147,041             | 9,281                  | 209,00                                               | 0,0257             | 0,00513 |
| 25    | 151,808             | 0,445                          | 152,252             | 9,298                  | 208,03                                               | 0,0239             | 0,00478 |
| 26    | 157,013             | 0,416                          | 157,429             | 9,270                  | 207,39                                               | 0,0225             | 0,00449 |
| 27    | 162,180             | 0,390                          | 162,570             | 9,349                  | 206,75                                               | 0,0209             | 0,00417 |
| 28    | 167,305             | 0,366                          | 167,671             | 9,292                  | 205,78                                               | 0,0197             | 0,00394 |
| 29    | 172,390             | 0,345                          | 172,735             | 9,304                  | 204,82                                               | 0,0185             | 0,00370 |
| 30    | 177,438             | 0,325                          | 177,762             | 9,259                  | 204,18                                               | 0,0175             | 0,00351 |
| 31    | 182,445             | 0,306                          | 182,751             | 9,244                  | 203,53                                               | 0,0166             | 0,00331 |
| 32    | 187,410             | 0,289                          | 187,699             | 9,211                  | 202,89                                               | 0,0157             | 0,00314 |
| 33    | 192,333             | 0,274                          | 192,606             | 9,188                  | 202,25                                               | 0,0149             | 0,00298 |
| 34    | 197,220             | 0,259                          | 197,479             | 9,181                  | 201,60                                               | 0,0141             | 0,00282 |
|       |                     |                                |                     |                        | $\mathbf{S}_{c}^{Oed} = \sum_{1}^{n} \mathbf{S}_{i}$ | 2,40 mm            |         |

Tableau 2.7 : Résultats de calcul du tassement oedométrique

Pour les autres incréments de charge (q = 50, 70, 120, 200 kPa), les résultats des tassements œdométriques sont affichés dans le tableau (2.8) :

| N°<br>d'incrément | q (kPa) | $\Delta \sigma'_{v}$ (kPa) | S <sub>c</sub> <sup>Oed</sup> (kPa) |
|-------------------|---------|----------------------------|-------------------------------------|
| 1                 | 20,00   | 2,22                       | 0,00240                             |
| 2                 | 50,00   | 32,22                      | 0,02858                             |
| 3                 | 70,00   | 52,22                      | 0,04231                             |
| 4                 | 120,00  | 102,22                     | 0,07016                             |
| 5                 | 200,00  | 182,22                     | 0,10413                             |

Tableau 2.8 : Résultats de tassement oedométrique pour différentes pressions appliquées

# 2. Calcul du tassement à partir de l'essai down hole

Les résultats de calcul du tassement oedométrique trouvé à partir de l'essai down hole calculés de chaque tranche, pour une pression de 20 kPa, sont résumés dans le tableau 2.9 :

| N° de    | $\sigma_{v_0}(kPa)$ | $\Delta \sigma_{v_0}^{'}$ (kPa) | $\sigma'_{v}$ (kPa) | G (kPa)        | $\sigma_{\rm C}$ (kPa)     | s <sub>c</sub> <sup>G</sup> (mm) | ε(%)    |
|----------|---------------------|---------------------------------|---------------------|----------------|----------------------------|----------------------------------|---------|
| tranche  | 20.220              | 2 220                           | 22.540              | 1002.00        | 227.65                     | 0.1451                           | 0.02002 |
| 1        | 20,520              | 2,220                           | 22,340              | 1908,00        | 227,03                     | 0,1431                           | 0,02903 |
| 2        | 20,430              | 2,212                           | 27,002              | 1908,00        | 227,01                     | 0,1447                           | 0,02894 |
| 3        | 26.015              | 2,183                           | 32,803              | 1908,00        | 220,30                     | 0,1450                           | 0,02839 |
| 4        | 30,013              | 2,152                           | 38,147              | 1908,00        | 223,40                     | 0,1393                           | 0,02790 |
| 5        | 41,448              | 2,055                           | 43,500              | 8110,84        | 224,75                     | 0,0310                           | 0,00632 |
| 0        | 40,983              | 1,932                           | 48,937              | <u>8110,84</u> | 223,79                     | 0,0301                           | 0,00001 |
| /        | 58 255              | 1,030                           | 54,401              | 0110,04        | 223,13                     | 0,0265                           | 0,00500 |
| <u> </u> | 50,555              | 1,712                           | 65 769              | 2052.00        | 222,10                     | 0,0204                           | 0,00327 |
| 9        | 70 105              | 1,360                           | 71 569              | 2052,00        | 221,34                     | 0,0900                           | 0,01931 |
| 10       | 76,120              | 1,405                           | 71,308              | 2052,00        | 220,90                     | 0,0891                           | 0,01/81 |
| 11       | /0,150              | 1,343                           | 77,473<br>92,502    | 2052,00        | 219,95                     | 0,0819                           | 0,01038 |
| 12       | 82,208              | 1,235                           | 83,302              | 2052,00        | 219,29                     | 0,0752                           | 0,01504 |
| 13       | 88,505              | 1,133                           | 89,033              | 2052,00        | 218,32                     | 0,0690                           | 0,01380 |
| 14       | 94,203              | 1,039                           | 95,502              | 2032,00        | 217,08                     | 0,0000                           | 0,01200 |
| 15       | 99,278              | 0,933                           | 100,232             | 5750,00        | 210,72                     | 0,0208                           | 0,00413 |
| 10       | 104,103             | 0,877                           | 104,982             | 5750,00        | 210,07                     | 0,0191                           | 0,00382 |
| 1/       | 109,023             | 0,808                           | 109,833             | 5750,00        | 213,11                     | 0,0170                           | 0,00331 |
| 18       | 114,203             | 0,745                           | 115,007             | 5750,00        | 214,40                     | 0,0162                           | 0,00324 |
| 19       | 119,748             | 0,688                           | 120,430             | 5750,00        | 213,82                     | 0,0150                           | 0,00299 |
| 20       | 125,190             | 0,037                           | 125,827             | 5750,00        | 212,80                     | 0,0138                           | 0,00277 |
| 21       | 130,390             | 0,591                           | 131,181             | 5750,00        | 212,22                     | 0,0128                           | 0,00257 |
| 22       | 135,953             | 0,549                           | 130,501             | 5750,00        | 211,25                     | 0,0119                           | 0,00239 |
| 23       | 141,280             | 0,511                           | 141,/91             | 5750,00        | 210,61                     | 0,0111                           | 0,00222 |
| 24       | 146,565             | 0,476                           | 147,041             | 5750,00        | 209,00                     | 0,0104                           | 0,00207 |
| 25       | 151,808             | 0,445                           | 152,252             | 5750,00        | 208,03                     | 0,0097                           | 0,00193 |
| 26       | 157,013             | 0,416                           | 157,429             | 5750,00        | 207,39                     | 0,0091                           | 0,00181 |
| 27       | 162,180             | 0,390                           | 162,570             | 5750,00        | 206,75                     | 0,0085                           | 0,00170 |
| 28       | 167,305             | 0,366                           | 16/,6/1             | 5750,00        | 205,78                     | 0,0080                           | 0,00159 |
| 29       | 172,390             | 0,345                           | 172,735             | 5750,00        | 204,82                     | 0,0075                           | 0,00150 |
| 30       | 177,438             | 0,325                           | 177,762             | 5750,00        | 204,18                     | 0,0071                           | 0,00141 |
| 31       | 182,445             | 0,306                           | 182,751             | 5750,00        | 203,53                     | 0,0067                           | 0,00133 |
| 32       | 187,410             | 0,289                           | 187,699             | 5750,00        | 202,89                     | 0,0063                           | 0,00126 |
| 33       | 192,333             | 0,274                           | 192,606             | 5750,00        | 202,25                     | 0,0060                           | 0,00119 |
| 34       | 197,220             | 0,259                           | 197,479             | 5750,00        | 201,60                     | 0,0056                           | 0,00113 |
|          |                     |                                 |                     |                | $s_c^G = \sum_{i=1}^n s_i$ | 1,38 mm                          |         |

Tableau 2.9 : Résultats de calcul du tassement oedométrique à partir de l'essai down hole

Les résultats du tassement oedométrique calculé à partir de l'essai down hole Pour les autres incréments des charges (q = 50, 70, 120, 200 kPa), sont affichés dans le tableau (2.10) :
| N°<br>d'incrément | q (kPa) | $\Delta \sigma_{v}^{'}$ (kPa) | s <sup>G</sup> <sub>c</sub> (kPa) |
|-------------------|---------|-------------------------------|-----------------------------------|
| 1                 | 20      | 2,22                          | 0,00139                           |
| 2                 | 50      | 32,22                         | 0,01991                           |
| 3                 | 70      | 52,22                         | 0,03205                           |
| 4                 | 120     | 102,22                        | 0,06169                           |
| 5                 | 200     | 182,22                        | 0,10719                           |

Tableau 2.10 : Résultats du tassement oedométrique trouvé pour les différentes pressions appliquées à partir de l'essai down hole

# 2.8 <u>Etude comparative entre le tassement oedométrique et le tassement oedométrique</u> calculé à partir de l'essai down-hole

Dans ce qui suit on va procéder à une étude comparative entre le tassement oedométrique calculé à partir de l'oedomètre  $(s_c^{Oed})$  et le tassement oedométrique calculé à partir de l'essai down hole  $(s_c^G)$  pour les différents incréments de charges.

Cette étude comparative nous permet de faire un calage des valeurs du tassement  $(s_c^G)$  sur les valeurs de  $(s_c^{Oed})$ .

# • <u>Résultats de l'analyse statistique</u>

L'analyse statistique de la population du rapport  $(s_c^{Oed}/s_c^G)$  nous a donné des résultats illustrés à la figure (2.11).

Ces résultats sont les suivants :

- Un coefficient d'ajustement : R = 96,82% ;
- Une valeur caractéristique (X<sub>c</sub>) concernant le rapport  $\left(\frac{s_c^{Oed}}{s_c^G}\right)$  égale à 0,92 ;
- Une valeur de l'écart type ( $\sigma$ ) égale à 0,52.



Figure 2.11 : Etude comparative pour le calcul de tassement  $s_c^{Oed}$  et  $s_c^G$ 

On effectue alors un calage d'un rapport égal à 0,92.

$$\begin{cases} \sigma_{v} \leq (0,002\,\mathrm{G}): s = 0.92 \frac{\mathrm{Hx}\Delta\sigma_{v}}{0.04\,\mathrm{G}\,(1+0.018\frac{\Delta\sigma_{v}}{\sigma_{v0}})} \\ \sigma_{v} \geq (0,002\,\mathrm{G}): s = 0.92 \frac{\mathrm{Hx}\Delta\sigma_{v}}{0.04\,\mathrm{G}\,(1+0.035\frac{\Delta\sigma_{v}}{\sigma_{v0}})} \end{cases}$$
(2.25)

N.B : Les résultats détaillés de cette étude comparative sont regroupés dans un tableau présenté dans l'annexe N° 02

# 2.9 Influence des dimensions de la fondation sur le calcul du tassement

On étudie maintenant l'influence de la forme d'une fondation sur le calcul de tassement suivant la méthode proposée par l'essai down hole.

N.B : Les résultats trouvés sont regroupés dans l'annexe N° 03.

On considère les hypothèses suivantes :

- La profondeur est limitée à l'essai down hole s'arrête ;
- Le calcul à été fait pour un ancrage fixe D = 1.50 m;
- Cinq incréments de charges (q = 20, 50, 70, 120, 200 kPa) sont utilisés pour le calcul de tassement ;
- Trois types de fondations superficielles ont été utilisés pour le calcul de tassement :

Fondation carrée :  $\left(\frac{L}{B} = 1\right)$ ;

Fondation isolée:  $\left(\frac{L}{B} = 2\right)$ ;

Fondation filante :  $\left(\frac{L}{B} = 10\right)$ .

L'analyse statistique des résultats de calcul pour les trois types de fondations superficielles nous a donné les résultats suivants :

- a) Fondation carrée :  $\left(\frac{L}{B} = 1\right)$
- Un coefficient d'ajustement R = 96,82 %;
- Une valeur caractéristique (X<sub>c</sub>) concernant le rapport  $\left(\frac{s_c^{Oed}}{s_c^G}\right)$  égale à 0,9264 ;
- Une valeur de l'écart type ( $\sigma$ ) égale à 0,52.



Figure 2.12 : Corrélation entre  $(s_c^{Oed})$  et  $(s_c^G)$  – cas d'une fondation carrée

b) Fondation isolée :  $\left(\frac{L}{B} = 2\right)$ 

- Un coefficient d'ajustement R = 98,14 %;
- Une valeur caractéristique (X<sub>c</sub>) concernant le rapport  $\left(\frac{s_c^{\text{Oed}}}{s_c^{\text{G}}}\right)$  égale à 0,908 ;
- Une valeur de l'écart type ( $\sigma$ ) égale à 0,69.



Figure 2.13 : Corrélation entre  $(s_c^{Oed})$  et  $(s_c^G)$  – cas d'une fondation isolée

- c) Fondation filante:  $\left(\frac{L}{B} = 10\right)$
- Un coefficient d'ajustement R = 97,58 %;
- Une valeur caractéristique (X<sub>c</sub>) concernant le rapport  $\left(\frac{s_c^{Oed}}{s_c^G}\right)$  égale à 0,92 ;
- Une valeur de l'écart type ( $\sigma$ ) égale à 0,72.



Figure 2.14 : Corrélation entre  $(s_c^{Oed})$  et  $(s_c^G)$  – cas d'une fondation filante

Les résultats trouvés suivant l'analyse statistiques des données sont regroupés dans le tableau 2.11 :

|                   |                                    | Analyse statistique                                                                 |         |  |  |
|-------------------|------------------------------------|-------------------------------------------------------------------------------------|---------|--|--|
| Type de fondation | Rapport $\left(\frac{L}{B}\right)$ | $\left( \begin{array}{c} s_{c}^{Oed} \\ s_{c}^{G} \\ s_{c}^{G} \end{array} \right)$ | R       |  |  |
| Fondation carrée  | $\left(\frac{L}{B}=1\right)$       | 0,926                                                                               | 96,82 % |  |  |
| Fondation isolée  | $\left(\frac{L}{B}=2\right)$       | 0,908                                                                               | 98,14 % |  |  |
| Fondation filante | $\left(\frac{L}{B}=10\right)$      | 0,901                                                                               | 97,58 % |  |  |

Tableau 2.11: Résultats de l'étude statistique sur l'influence de la forme des fondations

On conclut que quelque soit le rapport  $\left(\frac{L}{B}\right)$ , le coefficient (r) de calibration varie faiblement et peut prendre une valeur moyenne égale à 0,91, ce qui donne :

$$\begin{cases} \sigma_{v} \leq (0,002\,\mathrm{G}): s = 0.91. \frac{\mathrm{Hx}\Delta\sigma_{v}}{0.04\,\mathrm{G}\,(1+0.018\frac{\Delta\sigma_{v}}{\sigma_{v0}})} \\ \sigma_{v} \geq (0,002\,\mathrm{G}): s = 0.91. \frac{\mathrm{Hx}\Delta\sigma_{v}}{0.04\,\mathrm{G}\,(1+0.035\frac{\Delta\sigma_{v}}{\sigma_{v0}})} \end{cases}$$
(2.26)

#### 2.10 Conclusion

La caractérisation des sols fins par les méthodes géophysiques de forage notamment l'essai down hole donne la possibilité d'étudier des corrélations entre ces propriétés mesurées, et les caractéristiques de consolidation du sol déterminées par l'essai oedométrique. Ces corrélations peuvent aboutir à une formule de calcul du tassement œdométrique à partir des paramètres de l'essai down hole,

Dans ce chapitre, nous avons proposé une approche de calcul du tassement œdométrique, basé sur les corrélations entre le module de cisaillement G déduit de la célérité  $V_s$  de l'essai down hole et les caractéristiques œdométriques. Ces corrélations donnent une formule de calcul du tassement œdométrique en fonction des paramètres de l'essai down hole

L'étude de l'influence de la forme d'une fondation superficielle sur le calcul du tassement œdométrique calculé à partir de l'essai down hole a contribué à une faible variation des résultats de calcul du tassement.

Au terme de cette recherche, on a proposé une formule préliminaire de calcul du tassement qui constitue le début d'un travail qui doit être complété par la suite d'autres études.

#### **CHAPITRE 3**

# CALCUL DU TASSEMENT DES FONDATIONS SUPERFICIELLES DANS LES SOLS FINS A PARTIR DE L'ESSAI AU PENETROMETRE STATIQUE

## 3.1 Introduction

Dans la pratique de mécanique des sols, les corrélations entre les paramètres sont devenues un moyen essentiel pour le contrôle des résultats des essais géotechniques, et comme moyen d'estimation de valeurs de certains paramètres en fonction des autres mesurées [10].

Dans ce chapitre, on se propose d'étudier des corrélations entre les paramètres de l'essai oedométrique, à savoir le module oedométrique et la contrainte de préconsolidation, et celui de l'essai CPT, c'est-à-dire la résistance pénétrométrique.

Ces corrélations seront par la suite introduites dans les formules de la méthode de calcul du tassement oedométrique (par intégration des tranches), en vue de définir une approche empirique de calcul direct du tassement à partir de l'essai de pénétration statique.

## 3.2 Construction de la base de données

L'idée consiste à suivre les mêmes démarches utilisées dans le chapitre précédent. Pour cela, un nombre important des rapports de sol ont été exploités dans le but de créer une base de données. Ces rapports doivent contenir les résultats d'essai de compression oedométrique et ceux des essais de pénétration statique, en vue d'établir des corrélations.

La création de la base de données doit impérativement passer par :

- 6. Reconnaissance et identification des sols ;
- 7. Détermination des données œdométriques ;
- 8. Établissement de la Courbe de chargement oedométrique  $\Delta \sigma_v = f(\varepsilon_z)$ ;
- 9. Calcul du module œdométrique ;
- 10. détermination des paramètres de l'essai de pénétration statique (CPT).

Cette base de données va nous permettre de faire une étude statistique qui sert à trouver des corrélations entre le module oedométrique  $E_{Oed}$  et la résistance pénétrométrique  $q_c$  ainsi qu'entre la contrainte de préconsolidation  $\sigma_c$  et  $q_c$ , pour arriver par la suite à une formule simple qui calcul le tassement des fondations superficielles à la base de l'essai de pénétration statique.

Afin de déterminer les différents paramètres du sol, six (06) rapports d'étude géotechnique de différents sites (Alger, Boumérdes, Tipaza) ont été disponibles dans notre recherche. Ces rapports contiennent treize (13) sondages carottés regroupent (53) échantillons intacts.

Notre travail de corrélation va reposer sur les critères sont les suivantes :

- La corrélation est faite à la même profondeur pour les deux essais : pénétration statique et compressibilité oedométrique ;
- La corrélation est limitées aux sols fins argileux en dessous de la nappe phréatique ;

• Les corrélations étudié les rapports 
$$\left(\frac{E_0}{q_C}\right)$$
 et  $\left(\frac{\sigma_C}{q_C}\right)$ ;

### 3.3 Etude de la corrélation entre l'essai oedométrique et l'essai de pénétration statique

Cette étape va se baser sur la recherche des corrélations effectuées sur les différents paramètres :

- Corrélation entre la résistance en pointe q<sub>c</sub> et le module oedométrique initial E<sub>0</sub>;
- Corrélation entre la résistance en pointe  $q_c$  et la contrainte de préconsolidation  $\sigma_c$ .

# 3.3.1 <u>Etude de la corrélation entre $q_c$ et $E_0$ </u>

On dispose d'une population ayant une taille de 53 points de corrélation pour effectuer l'analyse statistique comme l'indique la figure (3.1).

L'analyse statistique à mené aux résultats suivants :

- Un coefficient d'ajustement: R = 99,20 %;
- Une valeur caractéristique (X<sub>c</sub>) du rapport  $\left(\frac{E_0}{q_C}\right)$  égale à 2,22 ;
- Une valeur de l'écart type ( $\sigma$ ) égale à 1,24.



Figure 3.1 : Analyse statistique de la corrélation entre  $E_0$  et  $q_c$ 

Donc, on retient :

$$E_0 = 2,22 x q_c$$
(3.01)

# 3.3.2 Etude de la corrélation entre $q_c$ et $\sigma_c$

32 points sont regroupés dans l'histogramme de la figure 3.2 pour trouver la corrélation cherchée.

Les résultats de l'analyse statistique nous montrent les résultats suivant :

- Un coefficient d'ajustement de la fonction de Gauss : R = 98,60% ;

- Une valeur caractéristique (X<sub>c</sub>) du rapport 
$$\left(\frac{\sigma_c}{q_c}\right)$$
 égale à 0,061 ;

- Une valeur de l'écart type ( $\sigma$ ) égale à 0,033.



Figure 3.2 : Analyse statistique de la corrélation entre  $\sigma_c$  et  $q_c$ 

On retient par conséquent la corrélation suivante :

$$\sigma_c = 0.061 \text{ x } q_c$$

### 3.4.1 Estimation du module de déformation oedométrique

L'examen des corrélations trouvées précédemment à partir des relations (3.01) et (3.02) nous montre qu'on peut estimer le calcul du module initial de déformation oedométrique et la contrainte de préconsolidation en fonction de la résistance pénétrométrique, sans avoir recours à l'essai oedométrique.

On remplace les valeurs de  $(E_0)$  et  $(\sigma_c)$  dans l'équation (2.13) trouvée dans le chapitre précédant, ce qui mène à trouver la relation suivante:

$$\begin{cases} \sigma_{\rm V} \leq (0,061 \, {\rm x} \, {\rm q}_{\rm C}) : \, {\rm E} = 2,22 \, {\rm q}_{\rm C} \left[ 1 + 0,018 \frac{\Delta \sigma_{\rm V}}{\sigma_{\rm V0}} \right] \\ \\ \sigma_{\rm V} \geq (0,061 \, {\rm x} \, {\rm q}_{\rm C}) : \, {\rm E} = 2,22 \, {\rm q}_{\rm C} \left[ 1 + 0,035 \frac{\Delta \sigma_{\rm V}}{\sigma_{\rm V0}} \right] \end{cases}$$
(3.03)

## 3.4.2 Estimation du tassement oedométrique à partir de l'essai de pénétration statique

Le tassement  $S_C^{CPT}$  pour une tranche donnée d'épaisseur  $H_0$  est déterminé par la formule suivante :

$$s = \frac{\Delta \sigma_v x H_0}{E}$$
(3.04)

On remplace la valeur de E (formule 3.03) dans la formule (3.04) ; on trouve une formule qui calcul le tassement (s) ce en fonction du module de déformation traité à partir de l'essai de pénétration statique pour les deux cas de préconsolidation du sol.

$$\begin{cases} \text{Pour}: \sigma_{V}^{'} \leq (\sigma_{C} = 0.061 \text{ xq}_{c}): \text{s} = \frac{H_{0} \text{x} \Delta \sigma_{V}^{'}}{2.22 \text{xq}_{c} \text{x}(1+0.018 \frac{\Delta \sigma_{V}}{\sigma_{V0}})} \\ \text{Pour}: \sigma_{V}^{'} \geq (\sigma_{C} = 0.061 \text{ xq}_{c}): \text{s} = \frac{H_{0} \text{x} \Delta \sigma_{V}^{'}}{2.22 \text{xq}_{c} \text{x}(1+0.035 \frac{\Delta \sigma_{V}}{\sigma_{V0}})} \end{cases}$$
(3.05)

Avec :

H<sub>0</sub> : Epaisseur initiale de la tranche ;

 $\Delta \sigma'_{v}$ : Augmentation de la contrainte à la profondeur étudiée ;

 $\sigma_{v_0}$ : Contrainte due au poids des terres ;

q<sub>c</sub>: Résistance statique en pointe au milieu de la tranche i.

• Hypothèses de calcul du tassement

Les hypothèses prises en compte lors du calcul de tassement oedométrique des fondations superficielles sont les suivantes,

- L'ancrage D est pris égal à 1,50 m à partir de terrain naturel ;
- La profondeur de la zone utile du tassement Z<sub>utile</sub> est égale à celle où s'arrête l'essai de pénétration statique afin de ne pas avoir recours à l'estimation de q<sub>c</sub> par extrapolation, ce qui est une source d'incertitude comme indique la figure (3.3);



Figure 3.3 : Exemple d'extrapolation de la résistance de pointe statique (q<sub>c</sub>)

- La profondeur de la zone utile du tassement  $Z_{\text{utile}}$  doit être adoptée pour que l'augmentation de la surcharge ( $\Delta \sigma'_{v}$ ) soit inférieure ou égale à 10% de la pression

de base, on en déduira les dimensions de la fondation correspondante à cette configuration;

- Le calcul du tassement s'effectue pour cinq incréments de charges q = 20, 50, 70, 120, 200 kPa.

## 3.5 Exemple de calcul

### 3.5.1 Application de la méthodologie de la base des données

On va appliquer la même méthodologie utilisée dans l'étude de tassement à partir de l'essai down hole (chapitre 02). Cette dernière va se baser sur un cas d'étude réel tiré de la base de données.

## a) Compagne de reconnaissance

Deux sondages carottés ont été réalisés sur le site, où en a choisi le sondage N° 02 pour déterminer les différents paramètres des essais de notre exemple, comme indique tableau 3.1 :

| N° du rapport |                                   | Sondage carotte n°: SC 02 |                |  |  |
|---------------|-----------------------------------|---------------------------|----------------|--|--|
|               |                                   | N° d'échantillon:         |                |  |  |
|               |                                   | 1                         | 2              |  |  |
|               | Profondeur                        | $8,50 \div 9,00$          | 12,60 ÷ 13,00  |  |  |
|               | Epaisseur de la<br>Couche         | 0,50                      | 0,40           |  |  |
|               | ω (%)                             | 26,00                     | 27,00          |  |  |
|               | $\omega_{l}$ (%)                  | 48,00                     | 46,00          |  |  |
|               | I <sub>p</sub> (%)                | 26,00                     | 25,00          |  |  |
|               | <b>S</b> <sub>r</sub> (%)         | 97,00                     | 100,00         |  |  |
| 00            | $\gamma_{\rm d}  ({\rm kN/m^3})$  | 15,70                     | 15,70          |  |  |
| 09            | $\gamma_{\rm h} ({\rm kN/m}^3)$   | 19,80                     | 20,00          |  |  |
|               | $\gamma_{s}$ (kN/m <sup>3</sup> ) | 26,50                     | 26,50          |  |  |
|               | $\gamma' (kN/m^3)$                | 9,78                      | 9,93           |  |  |
|               | Symbole LCPC                      | $A_p$                     | A <sub>p</sub> |  |  |
|               | e <sub>0</sub>                    | 0,815                     | 0,703          |  |  |
|               | $\sigma_{c}$ (kPa)                | 168                       | 141            |  |  |
|               | C <sub>c</sub>                    | 0,230                     | 0,216          |  |  |
|               | $C_{g}$                           | 0,042                     | 0,038          |  |  |

Tableau 3.1 : Données récapitulatives des résultats de laboratoire sur un échantillon

- b) Détermination des données issues à partir de l'essai oedométrique (chapitre 02)
- Les contraintes  $(\sigma_v)$  correspondent aux indices des vides (e) sont déterminées à partir de la digitalisation des images scannées des courbes oedométriques ;
- Le calcul des déformations ( $\varepsilon_z$ ) et des contraintes ( $\Delta \sigma'_v$ ) sera déterminé par l'application de la formule (2.01) et (2.02) pour chaque incrément de charge ;
- La pente initiale de la courbe de chargement oedométrique  $\Delta \sigma'_v = f(\epsilon_z)$  représente le module de déformation (E<sub>0</sub>) ;
- Le module oedométrique sécant ( $E_{\text{Oed}}$ ) est calculé en fonction de l'incrément de charge ( $\Delta \sigma'_{\text{V}}$ ) est du module œdométrique initial ( $E_0$ ) formule (2.06) ;

- Le rapport 
$$\left(\frac{E_{\text{Oed}}}{E_0}\right)$$
 est calculé en fonction de  $\left(\frac{\Delta \sigma_V}{\sigma_{V0}}\right)$  à l'aide de l'équation (2.07).

Dans notre exemple, Les résultats de sondage étudié (sondage 02) sont regroupés dans le tableau (3.2) ci-après :

|    | SC 02 / (8,50 ÷ 9,00) m |                |        |                      |                                     |                |                         |                    |                  |                                      |  |
|----|-------------------------|----------------|--------|----------------------|-------------------------------------|----------------|-------------------------|--------------------|------------------|--------------------------------------|--|
|    | Données                 | , Digita       | lisées | Donne                | ées pour HY                         | PER            | ]                       | Résultats de HYPER |                  |                                      |  |
| N° | $\sigma_{v}'(kPa)$      | e <sub>0</sub> | е      | $\sigma_{v0}$ '(kPa) | $\Delta \sigma_{\rm v}'({\rm kPa})$ | ε <sub>z</sub> | E <sub>0</sub><br>(MPa) | E (MPa)            | E/E <sub>0</sub> | $\Delta\sigma_v{'}\!/\sigma_{v0}{'}$ |  |
| 1  | 87,40                   |                | 0,815  |                      | 000                                 | 0,0000         |                         | 3,999              | 1,000            | 0,000                                |  |
| 2  | 99,82                   |                | 0,809  |                      | 12,4                                | 0,0032         |                         | 4,076              | 1,019            | 0,142                                |  |
| 3  | 204,65                  | 0,815          | 0,769  | 87,40                | 117,2                               | 0,0256         | 3,999                   | 4,659              | 1,165            | 1,341                                |  |
| 4  | 400,71                  |                | 0,718  |                      | 313,3                               | 0,0537         |                         | 5,884              | 1,471            | 3,585                                |  |
| 5  | 799,64                  |                | 0,649  |                      | 712,1                               | 0,0911         |                         | 7,813              | 1,953            | 8,147                                |  |

Tableau 3.2 : Résultats de sondage étudié - SC 02

# c) Détermination des données issues à partir de l'essai de pénétration statique

Les valeurs de la résistance en pointe saisies à partir de la courbe de pénétromètre statique après la digitalisation de la courbe de pénétromètre statique sont indiquées dans le tableau (3.4).



Figure 3.4 : Courbe de pénétromètre statique digitalisé

| N° du rapport |                           | Sondage carotte n°: SC 02 |               |  |  |  |
|---------------|---------------------------|---------------------------|---------------|--|--|--|
|               |                           | N° d'échantillon:         |               |  |  |  |
|               |                           | 1                         | 2             |  |  |  |
| 09            | Profondeur                | 8,50 ÷ 9,00               | 12,60 ÷ 13,00 |  |  |  |
|               | Epaisseur de la<br>Couche | 0,50                      | 0,40          |  |  |  |
|               | q <sub>c</sub> (MPa)      | 1,749                     | 13,20         |  |  |  |

Tableau 3.3 : Résultats après digitalisation de la courbe de pénétromètre statique

# 3.5.2. Application de calcul du tassement

# a) Calcul du tassement à partir de l'essai oedométrique

La zone utile du sondage (S02) de notre exemple, s'arrête à la profondeur de l'essai de pénétration statique, soit :

$$Z_{\text{utile}} = 14,75 \text{ m} \Longrightarrow i = 27 \text{ tranches de } 0,50 \text{ m}$$
(3.07)

Suivant la formule (2.21) qui donne la valeur de (n) (voir chapitre 02), on peut trouver la valeur de (L) et (B), tel que (L=B) :

$$n = \frac{2.Z}{B} \Rightarrow L = B = \frac{2.Z}{n} \Rightarrow L = B = \frac{2x14,75}{4,175} = 7,06m$$
 (3.08)

Les résultats des différentes données physiques et oedométriques utilisées pour le calcul du tassement de chaque tranche (i), sont regroupés dans le tableau (3.4):

|    | SC02  |                |                                  |                    |       |                      |        |        |  |
|----|-------|----------------|----------------------------------|--------------------|-------|----------------------|--------|--------|--|
|    | Ζ     | e <sub>0</sub> | $\gamma_{\rm d}  ({\rm kN/m^3})$ | $\gamma' (kN/m^3)$ | w (%) | σ <sub>c</sub> (KPa) | Cs     | Cc     |  |
| 1  | 1,75  | 0,6421         | 15,69                            | 9,46               | 24,07 | 215,62               | 0,0081 | 0,2545 |  |
| 2  | 2,25  | 0,6171         | 15,69                            | 9,49               | 24,26 | 212,09               | 0,0081 | 0,2528 |  |
| 3  | 2,75  | 0,5870         | 15,69                            | 9,51               | 24,39 | 208,55               | 0,0081 | 0,2511 |  |
| 4  | 3,25  | 0,5669         | 15,69                            | 9,53               | 24,51 | 205,02               | 0,0081 | 0,2493 |  |
| 5  | 3,75  | 0,5418         | 15,69                            | 9,55               | 24,64 | 202,19               | 0,0081 | 0,2476 |  |
| 6  | 4,25  | 0,5167         | 15,69                            | 9,57               | 24,76 | 198,66               | 0,0081 | 0,2459 |  |
| 7  | 4,75  | 0,4916         | 15,69                            | 9,59               | 24,89 | 195,12               | 0,0081 | 0,2441 |  |
| 8  | 5,25  | 0,4666         | 15,69                            | 9,62               | 25,08 | 191,59               | 0,0081 | 0,2424 |  |
| 9  | 5,75  | 0,4415         | 15,69                            | 9,64               | 25,20 | 188,06               | 0,0081 | 0,2406 |  |
| 10 | 6,25  | 0,4164         | 15,69                            | 9,66               | 25,33 | 185,23               | 0,0081 | 0,2389 |  |
| 11 | 6,75  | 0,3913         | 15,69                            | 9,68               | 25,45 | 181,70               | 0,0081 | 0,2372 |  |
| 12 | 7,25  | 0,3662         | 15,69                            | 9,70               | 25,58 | 178,16               | 0,0081 | 0,2354 |  |
| 13 | 7,75  | 0,3411         | 15,69                            | 9,72               | 25,70 | 175,34               | 0,0081 | 0,2337 |  |
| 14 | 8,25  | 0,3161         | 15,69                            | 9,75               | 25,89 | 171,10               | 0,0081 | 0,2320 |  |
| 15 | 8,75  | 0,2960         | 15,69                            | 9,77               | 26,02 | 168,27               | 0,0081 | 0,2302 |  |
| 16 | 9,25  | 0,2709         | 15,69                            | 9,79               | 26,14 | 164,74               | 0,0092 | 0,2279 |  |
| 17 | 9,75  | 0,2408         | 15,69                            | 9,81               | 26,27 | 161,91               | 0,0104 | 0,2268 |  |
| 18 | 10,25 | 0,2207         | 15,69                            | 9,83               | 26,39 | 157,67               | 0,0116 | 0,2250 |  |
| 19 | 10,75 | 0,1957         | 15,69                            | 9,85               | 26,52 | 154,84               | 0,0128 | 0,2233 |  |
| 20 | 11,25 | 0,1706         | 15,69                            | 9,87               | 26,64 | 151,31               | 0,0140 | 0,2215 |  |
| 21 | 11,75 | 0,1455         | 15,69                            | 9,88               | 26,71 | 148,48               | 0,0151 | 0,2198 |  |
| 22 | 12,25 | 0,1204         | 15,69                            | 9,90               | 26,89 | 144,95               | 0,0163 | 0,2181 |  |
| 23 | 12,75 | 0,1003         | 15,69                            | 9,92               | 27,02 | 141,41               | 0,0176 | 0,2152 |  |
| 24 | 13,25 | 0,0903         | 15,88                            | 10,06              | 26,33 | 156,25               | 0,0161 | 0,2053 |  |
| 25 | 13,75 | 0,0803         | 16,07                            | 10,18              | 25,58 | 173,22               | 0,0144 | 0,1926 |  |
| 26 | 14,25 | 0,0753         | 16,29                            | 10,33              | 24,83 | 190,18               | 0,0126 | 0,1810 |  |
| 27 | 14,75 | 0,0652         | 16,46                            | 10,42              | 24,07 | 205,72               | 0,0111 | 0,1683 |  |

Tableau 3.4 : Valeurs attribuées pour le calcul du tassement oedométrique

Pour les différents incréments de charge utilisés dans cette étude (q = 20, 50, 70, 120, 200 kPa), les résultats des paramètres trouvés à partir de programme SETTL sont affichés dans le tableau 3.5 :

| N°<br>d'incrément | q (kPa) | Q <sub>p</sub> (kPa)) | s <sub>c</sub> <sup>Oed</sup> (m) |
|-------------------|---------|-----------------------|-----------------------------------|
| 1                 | 20,00   | 3,45                  | 0,00120                           |
| 2                 | 50,00   | 33,45                 | 0,00918                           |
| 3                 | 70,00   | 53,45                 | 0,01320                           |
| 4                 | 120,00  | 103,45                | 0,02142                           |
| 5                 | 200,00  | 183,45                | 0,03751                           |

Tableau 3.5 : Résultats de tassement oedométrique des différentes pressions appliquées

# b) <u>Calcul du tassement à partir de l'essai de pénétromètre statique</u>

Les résistances en pointe  $(q_c)$  trouvés pour chaque tranche (i) obtenue à partir de la digitalisation du profil pénétrométrique sont représentées dans le tableau 3.6 :

Tableau 3.6 : Données de calcul du tassement à partir de l'essai de pénétromètre statique

| SC 02            |       |                      |                      |  |  |  |
|------------------|-------|----------------------|----------------------|--|--|--|
| N° de<br>tranche | Ζ     | σ <sub>c</sub> (MPa) | q <sub>c</sub> (MPa) |  |  |  |
| 1                | 1,75  | 0,215                | 5,85                 |  |  |  |
| 2                | 2,25  | 0,212                | 6,01                 |  |  |  |
| 3                | 2,75  | 0,208                | 5,09                 |  |  |  |
| 4                | 3,25  | 0,205                | 2,95                 |  |  |  |
| 5                | 3,75  | 0,202                | 0,96                 |  |  |  |
| 6                | 4,25  | 0,198                | 1,21                 |  |  |  |
| 7                | 4,75  | 0,195                | 1,29                 |  |  |  |
| 8                | 5,25  | 0,191                | 2,08                 |  |  |  |
| 9                | 5,75  | 0,188                | 1,23                 |  |  |  |
| 10               | 6,25  | 0,185                | 1,50                 |  |  |  |
| 11               | 6,75  | 0,181                | 2,39                 |  |  |  |
| 12               | 7,25  | 0,178                | 1,94                 |  |  |  |
| 13               | 7,75  | 0,175                | 1,49                 |  |  |  |
| 14               | 8,25  | 0,171                | 1,43                 |  |  |  |
| 15               | 8,75  | 0,168                | 1,75                 |  |  |  |
| 16               | 9,25  | 0,164                | 6,79                 |  |  |  |
| 17               | 9,75  | 0,161                | 12,66                |  |  |  |
| 18               | 10,25 | 0,157                | 16,01                |  |  |  |
| 19               | 10,75 | 0,154                | 14,57                |  |  |  |
| 20               | 11,25 | 0,151                | 12,04                |  |  |  |
| 21               | 11,75 | 0,148                | 13,76                |  |  |  |
| 22               | 12,25 | 0,144                | 13,97                |  |  |  |
| 23               | 12,75 | 0,141                | 13,20                |  |  |  |
| 24               | 13,25 | 0,156                | 10,79                |  |  |  |
| 25               | 13,75 | 0,173                | 7,75                 |  |  |  |
| 26               | 14,25 | 0,190                | 5,58                 |  |  |  |
| 27               | 14,75 | 0,205                | 14,96                |  |  |  |

Les résultats du tassement oedométrique calculé par la méthode du pénétromètre statique suivant la formule (3.5), pour les différents incréments des charges (q = 20, 50, 70, 120, 200 kPa), sont regroupés dans le tableau (3.7) :

| N°<br>d'incrément | q (kPa) | Q <sub>p</sub> (kPa) | s <sub>c</sub> <sup>CPT</sup> (m) |
|-------------------|---------|----------------------|-----------------------------------|
| 1                 | 20      | 3,45                 | 0,00449                           |
| 2                 | 50      | 33,45                | 0,04304                           |
| 3                 | 70      | 53,45                | 0,06798                           |
| 4                 | 120     | 103,45               | 0,12862                           |
| 5                 | 200     | 183,45               | 0,21877                           |

Tableau 3.7 : Résultats du tassement oedométrique trouvé à partir de l'essai depénétromètre statique

Le rapport trouvés suivant les résultats de l'analyse statistique lors le calcul du tassement oedométrique et celui calculé par la méthode du pénétromètre statique est présenté dans le tableau 3.8 :

Tableau 3.8 : Résultats du calcul de tassement oedométrique

| <b>N</b> ° du<br>rapport | Tassement<br>œdométrique                                                    |        | Tassement<br>partir de | Rapport                |                                                  |
|--------------------------|-----------------------------------------------------------------------------|--------|------------------------|------------------------|--------------------------------------------------|
|                          | $\begin{array}{c c} \text{rt} \\ Q_p (kPa) \\ \text{Total (n)} \end{array}$ |        | Q <sub>p</sub> (kPa)   | Tassement<br>Total (m) | $\begin{pmatrix} s_c \\ s_c^{CPT} \end{pmatrix}$ |
|                          | 3,45                                                                        | 0,0012 | 3,45                   | 0,00449                | 0,2673                                           |
|                          | 33,45                                                                       | 0,0091 | 33,45                  | 0,04304                | 0,2133                                           |
| 09-SC2                   | 53,45                                                                       | 0,0132 | 53,45                  | 0,06798                | 0,1942                                           |
|                          | 103,45                                                                      | 0,0214 | 103,45                 | 0,12862                | 0,1665                                           |
|                          | 183,45                                                                      | 0,0375 | 183,45                 | 0,21877                | 0,1715                                           |

Figure 3.5 : Résultats du calcul de tassement oedométrique

3.6 <u>Etude comparative entre le tassement oedométrique et le tassement oedométrique</u> <u>calculé à partir de l'essai au pénétromètre statique</u>

Dans cette partie, on mène une étude comparative des résultats de calcul du tassement oedométrique calculé à partir de l'oedomètre  $(s_c^{Oed})$  et la méthode proposée pour le calcul du tassement oedométrique à partir de l'essai au pénétromètre statique  $(s_c^{CPT})$ .

Les résultats de l'étude statistique des données nous permet de définir une valeur caractéristique du rapport  $\left(\frac{s_c^{Oed}}{s_c^{CPT}}\right)$  comme l'indique la figure (3.5).

L'analyse statistique nous a donné les résultats suivants :

- Un coefficient d'ajustement: R = 98,83 %;
- Une valeur caractéristique (X<sub>c</sub>) concernant le rapport  $\left(\frac{s_c^{Oed}}{s_c^{OPT}}\right)$  égale à 1,48 ;
- Une valeur de l'écart type ( $\sigma$ ) égale à 1,41.



Figure 3.5 : Etude comparative pour le calcul de tassement  $s_c^{Oed}$  et  $s_c^{CPT}$ 

La valeur moyenne concernant le rapport  $\left(\frac{s_c^{Oed}}{s_c^{CPT}}\right)$  est égale à 1,48 suivant l'analyse statistique. Elle sert pour le calage de  $(s_c^{CPT})$  par rapport à  $(s_c^{Oed})$ .

On retient alors :

$$s_{c}^{Oed} = 1,48 \, x \, s_{c}^{CPT}$$
 (3.09)

Les résultats trouvés suivant cette étude nous ont montré que le tassement oedométrique est égal à 1,48 du tassement calculé à partir de la méthode basé sur l'essai de pénétromètre statique.

Cette démarche nous conduit à procéder à un calage des formules trouvées précédemment suivant l'équation (3.05) afin de permettre un rapprochement entre les résultats du tassement calculé à partir des deux essais, à savoir l'essai oedométrique et l'essai de pénétration statique.

On remplace la valeur caractéristique dans l'équation (3.05), ce qui donne :

$$\begin{cases} \sigma_{v} \leq (\sigma_{c} = 0,061 x q_{c}) : s = 1,48. \frac{H_{0} x \Delta \sigma_{v}}{2,22 q_{c} (1+0,018 \frac{\Delta \sigma_{v}}{\sigma_{v0}})} \\ \sigma_{v} \geq (\sigma_{c} = 0,061 x q_{c}) : s = 1,48. \frac{H_{0} x \Delta \sigma_{v}}{2,22 q_{c} (1+0,035 \frac{\Delta \sigma_{v}}{\sigma_{v0}})} \end{cases}$$
(3.10)

Notons que les résultats de cette étude sont regroupés dans un tableau présenté en annexe N° 04.

### 3.7 Influence des dimensions des fondations sur le calcul du tassement

On va suivre la même démarche entreprise au chapitre précédent pour déterminer l'effet de la forme de la fondation sur le calcul du tassement à partir d'essai de pénétration statique, on utilisant les différents paramètres de notre base de données. L'étude qu'on s'est proposé de faire a pour but de tester l'importance et la sensibilité de la variation de la forme de la fondation sur le calcul du tassement suivant une étude statistique du rapport  $\left(\frac{s_c^{Oed}}{s_c^{CPT}}\right)$ .

Cette étude donne la possibilité de tenir en compte la forme de la fondation par l'introduction d'un coefficient multiplicatif dans la formule (3.10)

Pour cela, trois types de fondations superficielles ont été étudiés :

Fondation carrée : 
$$\left(\frac{L}{B} = 1\right)$$
;

Fondation isolée:  $\left(\frac{L}{B} = 2\right)$ ;

Fondation filante :  $\left(\frac{L}{B} = 10\right)$ .

### 3.7.1 Résultats de calcul de tassement pour chaque type de fondation

c) Fondation carrée :  $\left(\frac{L}{B} = 1\right)$ 



Figure 3.6 : Corrélation entre  $(s_c^{Oed})$  et  $(s_c^{CPT})$  – cas d'une fondation carrée

c) Fondation isolée :  $\left(\frac{L}{B} = 2\right)$ 



Figure 3.8 : Corrélation entre  $(s_c^{Oed})$  et  $(s_c^{CPT})$  – cas d'une fondation isolée

c) Fondation filante:  $\left(\frac{L}{B} = 10\right)$ 



Figure 3.9: Corrélation entre  $(s_c^{\text{Oed}})$  et  $(s_c^{\text{CPT}})$  – cas d'une fondation filante

Les résultats trouvés suivant l'analyse statistique des données sont regroupés dans le tableau 3.9 :

|                   |                                    | Analyse statistique                                                   |         |  |  |
|-------------------|------------------------------------|-----------------------------------------------------------------------|---------|--|--|
| Type de fondation | Rapport $\left(\frac{L}{B}\right)$ | $ \begin{pmatrix} s_c^{Oed} \\ s_c^{CPT} \\ s_c^{CPT} \end{pmatrix} $ | R       |  |  |
| Fondation carrée  | $\left(\frac{L}{B}=1\right)$       | 1,48                                                                  | 98,83 % |  |  |
| Fondation isolée  | $\left(\frac{L}{B}=2\right)$       | 1,32                                                                  | 98,95 % |  |  |
| Fondation filante | $\left(\frac{L}{B}=10\right)$      | 1,24                                                                  | 98,75 % |  |  |

Tableau 3.9 : Résultats de l'analyse statistique sur l'influence de la forme des fondations

Les résultats trouvés sont regroupés en détails dans l'annexe N° 05.

Selon les résultats de l'analyse statistique faite sur la population du rapport  $\left(\frac{s_c^{\text{Oed}}}{s_c^{\text{CPT}}}\right)$ , la forme de la fondation, à travers le paramètre  $\left(\frac{L}{B}\right)$ , a une influence sur le

tassement.





L'ajustement par moindres carrées donne la formule suivante de calage du tassement :

$$r = 1,44 \cdot \left(\frac{L}{B}\right)^{-0.07}$$
 (3.10)

Où le coefficient d'ajustement: R =92,30 %.

Donc la formule proposé pour le calcul du tassement oedométrique d'une fondation superficielle à partir de l'essai de pénétration statique quelque soit le rapport  $\left(\frac{L}{B}\right)$ est présenté comme suite :

$$\begin{cases} \sigma_{\rm V}^{'} \leq \left(\sigma_{\rm C} = 0,061 \, {\rm xq_c}\right) : {\rm s} = 1,44. \left(\frac{\rm L}{\rm B}\right)^{-0.07} \cdot \frac{{\rm Hx}\Delta\sigma_{\rm V}^{'}}{2,22 \, {\rm q_c}\left(1+0,018\frac{\Delta\sigma_{\rm V}}{\sigma_{\rm V0}}\right)} \\ \\ \sigma_{\rm V}^{'} \geq \left(\sigma_{\rm C} = 0,061 \, {\rm xq_c}\right) : {\rm s} = 1,44. \left(\frac{\rm L}{\rm B}\right)^{-0.07} \cdot \frac{{\rm Hx}\Delta\sigma_{\rm V}^{'}}{2,22 \, {\rm q_c}\left(1+0,035\frac{\Delta\sigma_{\rm V}}{\sigma_{\rm V0}}\right)} \end{cases}$$
(3.11)

**Conclusion** 

Ce chapitre est consacré à l'étude du tassement oedométrique à partir des paramètres d'essais de pénétration statique. Cette dernière se base essentiellement sur les corrélations faites à l'aide des études statistiques des différents rapports géotechniques.

On a proposé pour cela, une approche de calcul du tassement des fondations superficielles à l'aide de l'essai de pénétration statique

L'étude de l'effet des dimensions de la fondation superficielle sur le calcul du tassement œdométrique à partir de l'essai CPT a montré l'existence d'une influence dimensionnelle non négligeable sur le calcul du tassement. Ce qui nous a poussés à en tenir compte dans la formule de calcul du tassement.

#### **CHAPITRE 4**

# CALCUL DU TASSEMENT DES FONDATIONS SUPERFICIELLES DANS LES SOLS FINS MULTICOUCHE

### 4.1 Introduction

Dans ce chapitre, cette étude a pour objectif d'étudier les méthodes de calcul de tassement instantané des fondations superficielles dans un sol fin multicouche considéré infiniment épais sous un comportement élastique linéaire.

Nous allons essayer dans ce qui suit d'utiliser les valeurs des modules de cisaillement G mesurés à partir de l'essai down hole, pour déduire les valeurs des modules de déformation [E = 2.(1+v).G] et les inclure dans les formules de Steinbrenner pour le calcul du tassement d'une fondation de forme rectangulaire, et les formules de Vesic pour le calcul du tassement d'une fondation de forme circulaire.

On mènera une comparaison générale entre le tassement calculé à partir de la méthode d'intégration par tranche basée sur l'essai œdométrique d'une part, et d'autre par le tassement calculé à la base des deux méthodes (Steinbrenner et Vesic) en fonction du module de déformation, E déduit de l'essai down hole pour un sol fin multicouche.

#### 4.2 Hypothèses

Le sol est assimilé à un milieu semi-infini élastique à surface horizontale. Le calcul des contraintes dans ce massif chargé et basé sur l'utilisation du principe de superposition. Ce dernier résulte de l'hypothèse sur la loi de comportement du sol élastique linéaire.

La contrainte réelle s'exerçant à une profondeur Z sur une facette horizontale,  $(\sigma_z)$  est égale à la somme de la contrainte naturelle  $(\sigma_{v_0})$ , due au poids des terres qui surmontent un point avant tout chargement, et de la contrainte due aux surcharges  $(\Delta \sigma_v)$ .

$$\sigma_{\rm Z} = \sigma_{\rm V0} + \Delta \sigma_{\rm V} \tag{4.1}$$

D'une façon générale, la contrainte  $(\Delta \sigma_v)$ , s'exerçant sur une facette horizontale, résultant de l'action d'une charge verticale uniformément répartie d'intensité (q) est donnée par la relation :

$$\Delta \sigma_z = \mathbf{I}_z \cdot \mathbf{q} \tag{4.2}$$

 $I_z$ : Est un nombre sans dimension, inférieur à 1, appelé coefficient d'influence. Il est en fonction de :

- La profondeur (Z);
- La forme de la dimension de l'aire chargée ;
- L'écartement d'un point quelconque considéré par rapport au centre de gravité de l'aire chargée.

# 4.3 Calcul du tassement instantané à partir de la méthode de Steinbrenner (1934)

Cette méthode suppose que le massif d'un sol est considéré ayant une épaisseur H. La méthode suppose aussi que le point étudié coïncidant avec un des autres coins du rectangle (LxB).

Steinbrenner a proposé une formule de calcul du tassement dans un sol fin multicouche [17]:

$$S_{b}^{i} = q.B.\left[\sum_{k=1}^{N-1} \frac{I_{k+1}^{\rho} - I_{k}^{\rho}}{E_{k}} + \frac{I_{N}^{\rho}}{E_{N}}\right]$$
(4.3)

La détermination de ce tassement dû à un chargement uniforme q sous un rectangle caractérisé par (LxB), repose suivant Steinbrenner sur le principe de la superposition valable lors le calcul de la variation de la contrainte verticale  $\Delta \sigma_v$  en tout point pour tout chargement admissible [17].

Donc le tassement  $(s_b^i)$  d'une couche comprise entre la couche (k) et une autre (k+1) correspond à la différence de tassement :

$$\mathbf{s}_{\mathrm{b}}^{\mathrm{i}} = \mathbf{S}_{\mathrm{K}}^{\mathrm{Pied}} - \mathbf{S}_{\mathrm{K}}^{\mathrm{Toit}} \tag{4.4}$$

Avec :

 $S_{K}^{Pied}$ : Tassement de pied de la couche K ;

 $S_{K}^{Toit}$ : Tassement du toit de la couche K.



Figure 4.1: Principe de la superposition des couches de sol - fondation rectangulaire -

- Le terme q.B.  $\left[\frac{I_{k+1}^z I_k^z}{E_k}\right]$  représente le tassement de la tranche K épais de  $(Z_{K+1} Z_K)$ ;
- Le terme  $S_b^i = q.B.\left[\frac{I_N^z}{E_N}\right]$  représente le tassement de la dernière tranche reposant sur

le substratum ;

- La méthode repose sur le principe de la superposition valable en élasticité :

$$s_{b}^{i} = \sum_{K=1}^{N} s^{K} = \sum_{K=1}^{N} (s_{K}^{\text{Pied}} - s_{K}^{\text{Toit}}) + s^{N}$$
(4.5)

- Pour évaluer le tassement au centre, on doit écrire :

$$s_{b}^{i} = 2.q.B.\left[\sum_{k=1}^{N-1} \frac{I_{k+1}^{z} - I_{k}^{z}}{E_{k}} + \frac{I_{N}^{z}}{E_{N}}\right]$$
(4.6)

Ce qui résulte de la sommation des tassements des 4 rectangles dont les coins coïncidant avec le centre de la fondation.

- En cas d'une fondation rigide le tassement est calculé en considérant la fondation comme étant souple et on retient par la suite 80% du tassement  $S_{\rm C}^{\rm i}$  calculé :

$$s_{c}^{i} (F.rigide) = 0.80 s_{C}^{i} (F.souple)$$

$$(4.7)$$

### 4.3.1 Construction de la base des données

L'objectif de cette étude est de bâtir une base de données regroupe tous les paramètres des rapports d'étude géotechnique utilisés pour faire une comparaison entre le tassement instantané calculer a partir de l'essai oedométrique, et celui développé par la méthode de Steinbrenner pour un sol multicouche.

Les critères de notre base de données sont les suivantes :

- L'étude a été choisie pour des sols fins argileux mesurés au-dessous de la nappe phréatique ;
- L'étude sera faite pour un sol multicouche repose sur un substratum ayant une profondeur égale a celle ou s'arrête l'essai down hole ;
- Le calcul du tassement dû à un chargement uniforme q sous une fondation souple de forme rectangulaire caractérisé par (LxB).

### 4.3.2 Calcul du tassement instantané à partir de la méthode de Steinbrenner

• Estimation des facteurs d'influence de la méthode de Steinbrenner

La méthode de Steinbrenner repose essentiellement sur la détermination des deux paramètres importants, qui sont :

- L'élancement horizontal de la fondation : m = L/B;
- La profondeur relative du point étudié : n = 2Z/B.

La détermination de ces deux paramètres donne la possibilité de trouver les différentes valeurs des facteurs :  $F_1$  et  $F_2$  dans le but de déterminer une valeur de coefficient d'influence de la surcharge q ( $I_x$ ), tel que :

$$I_z = f(n = \frac{2.Z}{B}, m = \frac{L}{B})$$
 (4.8)

$$F_{1} = \frac{1}{\pi} .m.Ln.\left[\frac{(1+\sqrt{m^{2}+1}).\sqrt{m^{2}+n^{2}}}{m.(1+\sqrt{1+m^{2}+n^{2}})}\right] + \frac{1}{\pi} .Ln.\left[\frac{(m+\sqrt{m^{2}+1}).\sqrt{1+n^{2}}}{(1+\sqrt{1+m^{2}+n^{2}})}\right]$$
(4.9)

$$F_{2} = \frac{n}{2.\pi} . \operatorname{arctg.}\left[\frac{m}{n.\sqrt{1+m^{2}+n^{2}}}\right] = \frac{n}{2.\pi} . \operatorname{arc\,sin.}\left[\frac{m}{\sqrt{m^{2}+n^{2}}.\sqrt{1+n^{2}}}\right]$$
(4.10)

La contrainte à la verticale d'un point quelconque A s'obtient en définissant, à partir du rectangle effectivement chargée et du point considéré, quatre rectangles ayant chacun un angle à la verticale du point A. Le coefficient d'influencent total, à la verticale de A, est obtenu par application du principe de superposition en faisant a somme algébrique des coefficients d'influence de chacun des rectangle [15].

Si le point A étudié en profondeur ne coïncide pas avec un des cois du rectangle, le principe de superposition des effets est utilisée comme suit [17] :



Figure 4.2: Schéma de superposition de sous-rectangles

- Le point A situé à l'intérieur du rectangle (figure 4.2 -a-) :

$$I_z = I_{z1} + I_{z2} + I_{z3} + I_{z4}$$
(4.11)

Tel que :

 $I_{zi}$ : sont les coefficients d'influence obtenus en décomposant le rectangle chargé en 4 sou-rectangle adjacents, comme le schématise la figure 4.2 :

- Le point A situé à l'extérieur du rectangle (figure 4.2 -b-) :

$$I_z = I_1 + I_2 - I_3 - I_4 \tag{4.12}$$

• Estimation du module de déformation

Le module de déformation E utilisé dans la méthode de Steinbrenner est calculé par la formule (4.13) estimé en fonction de la vitesse des ondes de cisaillement  $V_S$  tiré à partir de l'essai down hole :

$$E_{max} = 2(1+\nu)G_{max} = 2(1+\nu)\rho V_s^2$$
(4.13)

#### • Estimation du tassement à partir de la méthode de Steinbrenner

La méthode de Steinbrenner traite le tassement d'une fondation superficielle pour chaque tranche i par l'introduction des paramètres déterminés à partir de l'estimation des différents facteurs : (n), (m), (F<sub>1</sub>), (F<sub>2</sub>), dans la formule (4.3).

Les hypothèses supposées pour le calcul du tassement oedométrique des fondations superficielles à partir de la méthode de Steinbrenner sont les suivantes,

- Le calcul s'effectue pour des fondations de type réctangulaire ;
- L'ancrage de la fondation D supposé égal à 1,50 m à partir de terrain naturel ;
- La profondeur utile Z<sub>utile</sub> doit être égale à celle où s'arrête l'essai down hole;
- L'augmentation de la surcharge (Δσ<sub>v</sub>) soit inférieure ou égale à 10% de la pression de base, selon la méthode de Newmark ;
- Le calcul du tassement s'effectue pour un seul incrément de charge q = 20 kPa;
- Le tassement sera calculé au centre de la fondation est la somme des tassements des quartes sous rectangles égale à  $s_{\rm C}^{\rm i} = 4.s_{\rm b}^{\rm i}$

# 4.3.3 Exemple de calcul d'un cas d'étude

• Calcul du tassement à partir de l'essai oedométrique

On va appliquer la méthodologie de notre base de données sur le même cas réel utilisé lors de l'étude du tassement oedométrique à partir de l'essai oedométrique, on se basant sur les différentes valeurs d'interpolation attribuées dans le tableau (4.1) pour un seul incrément de charge q = 20 kPa.

| Rapport 07 / SC 01 |                 |                           |                                         |                      |                           |                      |                        |  |
|--------------------|-----------------|---------------------------|-----------------------------------------|----------------------|---------------------------|----------------------|------------------------|--|
| N° de              | $\sigma'$ (kPa) | $\Delta \sigma'$ (kPa)    | $\sigma'(kP_a)$                         | $\sigma$ (kPa)       | E (MPa)                   | s (%)                | s <sup>Oed</sup> (mm)  |  |
| tranche            | $O_{V0}$ (KI a) | $\Delta O_{V0}$ (KI $a$ ) | $O_V(\mathbf{K} \mathbf{I} \mathbf{a})$ | 0 <sub>C</sub> (M d) | L <sub>Oed</sub> (IVII u) | c (70)               | s <sub>c</sub> (IIIII) |  |
| 1                  | 20,320          | 2,220                     | 22,540                                  | 227,65               | 4,497                     | 0,0494               | 0,2468                 |  |
| 2                  | 25,450          | 2,212                     | 27,662                                  | 227,01               | 5,125                     | 0,0432               | 0,2158                 |  |
| 3                  | 30,680          | 2,185                     | 32,865                                  | 226,36               | 5,671                     | 0,0385               | 0,1926                 |  |
| 4                  | 36,015          | 2,132                     | 38,147                                  | 225,40               | 6,152                     | 0,0347               | 0,1733                 |  |
| 5                  | 41,448          | 2,053                     | 43,500                                  | 224,75               | 6,485                     | 0,0317               | 0,1583                 |  |
| 6                  | 46,985          | 1,952                     | 48,937                                  | 223,79               | 6,818                     | 0,0286               | 0,1431                 |  |
| 7                  | 52,625          | 1,836                     | 54,461                                  | 223,15               | 7,254                     | 0,0253               | 0,1265                 |  |
| 8                  | 58,355          | 1,712                     | 60,067                                  | 222,18               | 7,567                     | 0,0226               | 0,1131                 |  |
| 9                  | 64,183          | 1,586                     | 65,768                                  | 221,54               | 7,853                     | 0,0202               | 0,1010                 |  |
| 10                 | 70,105          | 1,463                     | 71,568                                  | 220,90               | 8,058                     | 0,0182               | 0,0908                 |  |
| 11                 | 76,130          | 1,345                     | 77,475                                  | 219,93               | 8,318                     | 0,0162               | 0,0809                 |  |
| 12                 | 82,268          | 1,235                     | 83,502                                  | 219,29               | 8,464                     | 0,0146               | 0,0729                 |  |
| 13                 | 88,503          | 1,133                     | 89,635                                  | 218,32               | 8,696                     | 0,0130               | 0,0651                 |  |
| 14                 | 94,263          | 1,039                     | 95,302                                  | 217,68               | 8,792                     | 0,0118               | 0,0591                 |  |
| 15                 | 99,278          | 0,955                     | 100,232                                 | 216,72               | 8,875                     | 0,0108               | 0,0538                 |  |
| 16                 | 104,105         | 0,877                     | 104,982                                 | 216,07               | 8,917                     | 0,0098               | 0,0492                 |  |
| 17                 | 109,025         | 0,808                     | 109,833                                 | 215,11               | 8,977                     | 0,0090               | 0,0450                 |  |
| 18                 | 114,263         | 0,745                     | 115,007                                 | 214,46               | 8,991                     | 0,0083               | 0,0414                 |  |
| 19                 | 119,748         | 0,688                     | 120,436                                 | 213,82               | 9,063                     | 0,0076               | 0,0380                 |  |
| 20                 | 125,190         | 0,637                     | 125,827                                 | 212,86               | 9,141                     | 0,0070               | 0,0348                 |  |
| 21                 | 130,590         | 0,591                     | 131,181                                 | 212,22               | 9,191                     | 0,0064               | 0,0321                 |  |
| 22                 | 135,953         | 0,549                     | 136,501                                 | 211,25               | 9,188                     | 0,0060               | 0,0299                 |  |
| 23                 | 141,280         | 0,511                     | 141,791                                 | 210,61               | 9,239                     | 0,0055               | 0,0276                 |  |
| 24                 | 146,565         | 0,476                     | 147,041                                 | 209,00               | 9,281                     | 0,0051               | 0,0257                 |  |
| 25                 | 151,808         | 0,445                     | 152,252                                 | 208,03               | 9,298                     | 0,0048               | 0,0239                 |  |
| 26                 | 157,013         | 0,416                     | 157,429                                 | 207,39               | 9,270                     | 0,0045               | 0,0225                 |  |
| 27                 | 162,180         | 0,390                     | 162,570                                 | 206,75               | 9,349                     | 0,0042               | 0,0209                 |  |
| 28                 | 167,305         | 0,366                     | 167,671                                 | 205,78               | 9,292                     | 0,0039               | 0,0197                 |  |
| 29                 | 172,390         | 0,345                     | 172,735                                 | 204,82               | 9,304                     | 0,0037               | 0,0185                 |  |
| 30                 | 177,438         | 0,325                     | 177,762                                 | 204,18               | 9,259                     | 0,0035               | 0,0175                 |  |
| 31                 | 182,445         | 0,306                     | 182,751                                 | 203,53               | 9,244                     | 0,0033               | 0,0166                 |  |
| 32                 | 187,410         | 0,289                     | 187,699                                 | 202,89               | 9,211                     | 0,0031               | 0,0157                 |  |
| 33                 | 192,333         | 0,274                     | 192,606                                 | 202,25               | 9,188                     | 0,0030               | 0,0149                 |  |
| 34                 | 197,220         | 0,259                     | 197,479                                 | 201,60               | 9,181                     | 0,0028               | 0,0141                 |  |
|                    |                 |                           |                                         |                      | $s_c^{Oed} = 2$           | $\sum_{i=1}^{n} s_i$ | 2,40 mm                |  |

Tableau 4.1 : Résultats de calcul du tassement oedométrique d'une fondation rectangulaire

Donc pour chaque tranche i on a trouvé une valeur du tassement oedométrique.

La somme des tassements nous a donnée un tassement oedométrique global égal à  $s_c^{Oed} = \sum_{i=1}^{n} s_i = 2,40$  mm.

# • Calcul du tassement à partir de la méthode de Steinbrenner

| Vp<br>(m/s) | Vs<br>(m/s) | ν     | ρ (Kg/m3) | G (Bar) | Е        | m=L/B | n     | F1    | F2    | Ιρ    | q    | B (m)       | s <sub>c</sub> <sup>Stein</sup> (mm) |
|-------------|-------------|-------|-----------|---------|----------|-------|-------|-------|-------|-------|------|-------------|--------------------------------------|
| 880         | 300         | 0,434 | 2150,00   | 1935,00 | 5550,54  | 1     | 0,458 | 0,017 | 4,065 | 0,781 | 0,20 | 8,74        | 0,06197                              |
| 880         | 300         | 0,434 | 2150,00   | 1935,00 | 5550,54  | 1     | 0,572 | 0,026 | 4,453 | 0,861 | 0,20 | 8,74        | 0,05254                              |
| 880         | 300         | 0,434 | 2150,00   | 1935,00 | 5550,54  | 1     | 0,686 | 0,035 | 4,681 | 0,911 | 0,20 | 8,74        | 0,04541                              |
| 880         | 300         | 0,434 | 2150,00   | 1935,00 | 5550,54  | 1     | 0,801 | 0,044 | 4,787 | 0,938 | 0,20 | 8,74        | 0,03637                              |
| 1830        | 620         | 0,435 | 2150,00   | 8264,60 | 23722,15 | 1     | 0,915 | 0,053 | 4,805 | 0,937 | 0,20 | 8,74        | 0,03670                              |
| 1830        | 620         | 0,435 | 2150,00   | 8264,60 | 23722,15 | 1     | 1,030 | 0,062 | 4,761 | 0,936 | 0,20 | 8,74        | 0,03611                              |
| 1830        | 620         | 0,435 | 2150,00   | 8264,60 | 23722,15 | 1     | 1,144 | 0,070 | 4,675 | 0,927 | 0,20 | 8,74        | 0,03571                              |
| 1830        | 620         | 0,435 | 2150,00   | 8264,60 | 23722,15 | 1     | 1,259 | 0,079 | 4,563 | 0,913 | 0,20 | 8,74        | 0,08384                              |
| 680         | 300         | 0,379 | 2150,00   | 1935,00 | 5337,36  | 1     | 1,373 | 0,086 | 4,434 | 1,552 | 0,20 | 8,74        | 0,02371                              |
| 680         | 300         | 0,379 | 2150,00   | 1935,00 | 5337,36  | 1     | 1,487 | 0,093 | 4,296 | 1,512 | 0,20 | 8,74        | 0,02317                              |
| 680         | 300         | 0,379 | 2150,00   | 1935,00 | 5337,36  | 1     | 1,602 | 0,100 | 4,154 | 1,470 | 0,20 | 8,74        | 0,02303                              |
| 680         | 300         | 0,379 | 2150,00   | 1935,00 | 5337,36  | 1     | 1,716 | 0,106 | 4,012 | 1,428 | 0,20 | 8,74        | 0,02315                              |
| 680         | 300         | 0,379 | 2150,00   | 1935,00 | 5337,36  | 1     | 1,831 | 0,112 | 3,873 | 1,387 | 0,20 | 8,74        | 0,02346                              |
| 680         | 300         | 0,379 | 2150,00   | 1935,00 | 5337,36  | 1     | 1,945 | 0,117 | 3,738 | 1,346 | 0,20 | 8,74        | 0,25851                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 2,059 | 0,122 | 3,607 | 0,445 | 0,20 | 8,74        | 0,03582                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 2,174 | 0,127 | 3,482 | 0,436 | 0,20 | 8,74        | 0,03585                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 2,288 | 0,131 | 3,362 | 0,428 | 0,20 | 8,74        | 0,03589                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 2,403 | 0,135 | 3,248 | 0,420 | 0,20 | 8,74        | 0,03592                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 2,517 | 0,138 | 3,140 | 0,412 | 0,20 | 8,74        | 0,03596                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 2,632 | 0,142 | 3,038 | 0,405 | 0,20 | 8,74        | 0,03600                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 2,746 | 0,145 | 2,940 | 0,398 | 0,20 | 8,74        | 0,03603                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 2,860 | 0,148 | 2,848 | 0,391 | 0,20 | 8,74        | 0,03607                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 2,975 | 0,151 | 2,760 | 0,385 | 0,20 | 8,74        | 0,03610                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 3,089 | 0,153 | 2,677 | 0,379 | 0,20 | 8,74        | 0,03613                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 3,204 | 0,155 | 2,598 | 0,373 | 0,20 | 8,74        | 0,03616                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 3,318 | 0,158 | 2,524 | 0,367 | 0,20 | 8,74        | 0,03619                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 3,432 | 0,160 | 2,453 | 0,362 | 0,20 | 8,74        | 0,03622                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 3,547 | 0,162 | 2,385 | 0,357 | 0,20 | 8,74        | 0,03624                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 3,661 | 0,164 | 2,321 | 0,353 | 0,20 | 8,74        | 0,03626                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 3,776 | 0,165 | 2,260 | 0,348 | 0,20 | 8,74        | 0,03629                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 3,890 | 0,167 | 2,201 | 0,344 | 0,20 | 8,74        | 0,03631                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 4,005 | 0,169 | 2,146 | 0,339 | 0,20 | 8,74        | 0,03633                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 4,119 | 0,170 | 2,093 | 0,336 | 0,20 | 8,74        | 0,03635                              |
| 2010        | 500         | 0,467 | 2150,00   | 5375,00 | 15770,46 | 1     | 4,233 | 0,172 | 2,042 | 0,332 | 0,20 | 8,74        | 0,03677                              |
|             |             |       |           |         |          |       |       |       |       |       | Si   | $=\sum S_i$ | 0,97 mm                              |

Tableau 4.2 : Résultats de calcul du tassement à partir de la méthode de Steinbrenner

Donc pour chaque tranche i on a trouvé une valeur du tassement à l'aide des formules de la méthode de Steinbrenner.

La somme des tassements nous a donnée un tassement global égal à  $s_c^{Stein} = \sum_{i=1}^{n} s_i = 0,97$  mm.

# 4.3.4 <u>Etude comparative entre le tassement oedométrique et le tassement oedométrique</u> calculé à partir de la méthode de Steinbrenner

L'étude comparative pour une charge q supposée égale à 20 kPa nous donne la possibilité de faire un calage entre la méthode oedométrique utilisé pour le calcul du tassement et la méthode de Steinbrenner proposée.

Notre étude a pour but de tester les valeurs des tassements trouvés suivant une étude statistique de la population  $\left(\frac{s_c^{Oed}}{s_c^{Stein}}\right)$  pour trois types de fondations superficielles :

Fondation carrée :  $\left(\frac{L}{B} = 1\right)$ ;

Fondation isolée:  $\left(\frac{L}{B} = 2\right)$ ;

Fondation filante :  $\left(\frac{L}{B} = 10\right)$ .

#### 4.3.5 <u>Résultats de calcul de tassement pour chaque type de fondation</u>

a) Fondation carrée :  $\left(\frac{L}{B} = 1\right)$ 



Figure 4.3 : Corrélation entre  $(s_c^{Oed})$  et  $(S_c^{Stein})$  – cas d'une fondation carrée

b) Fondation isolée :  $\left(\frac{L}{B} = 2\right)$ 



Figure 4.4 : Corrélation entre  $(s_c^{Oed})$  et  $(S_c^{Stein})$  – cas d'une fondation isolée

c) Fondation filante:  $\left(\frac{L}{B} = 10\right)$ 



Figure 4.5: Corrélation entre  $(s_c^{Oed})$  et  $(S_c^{Stein})$  – cas d'une fondation filante

Les résultats de l'analyse statistique des données sont regroupés dans le tableau 4.3 :

|                   |                                    | Analyse statistique                                                              |         |  |  |  |
|-------------------|------------------------------------|----------------------------------------------------------------------------------|---------|--|--|--|
| Type de fondation | Rapport $\left(\frac{L}{B}\right)$ | $ \begin{pmatrix} \mathbf{S}_{c}^{Oed} \\ \mathbf{S}_{c}^{Stein} \end{pmatrix} $ | R       |  |  |  |
| Fondation carrée  | $\left(\frac{L}{B}=1\right)$       | 1,17                                                                             | 96,37 % |  |  |  |
| Fondation isolée  | $\left(\frac{L}{B}=2\right)$       | 0,81                                                                             | 85,15 % |  |  |  |
| Fondation filante | $\left(\frac{L}{B}=10\right)$      | 0,72                                                                             | 85,08 % |  |  |  |

Tableau 4.3 : Résultats de l'analyse statistique du rapport  $\left(r = \frac{s_c^{Oed}}{s_c^{Stein}}\right)$ 

On conclut que le coefficient de calage dépend de la forme de la fondation, comme le montre la figure (4.6).



Figure 4.6: Variation du rapport  $\left(\frac{s_c^{\text{Oed}}}{s_c^{\text{Stein}}}\right)$ en fonction de  $\left(\frac{L}{B}\right)$ 

On trouve après ajustement par moindres carrés :
$$r = 1,10. \left(\frac{L}{B}\right)^{-0.21}$$
(4.14)

Où le coefficient d'ajustement: R = 88,00 %.

A partir des résultats trouvés, on peut conclure que la formule de calcul du tassement instantané suivant la méthode de Steinbrenner, dans un sol multicouche quelque soit le rapport  $\left(\frac{L}{B}\right)$ , est présenté comme suite :

$$s_{c}^{\text{Stein}} = 1,10. \left(\frac{L}{B}\right)^{-0.21} \left[ q.B. \left(\sum_{k=1}^{N-1} \frac{I_{k+1}^{z} - I_{k}^{z}}{E_{k}} + \frac{I_{N}^{z}}{E_{N}}\right) \right]$$
(4.15)

### 4.4 Calcul du tassement instantané à partir de la méthode de Vesic

Vesic a proposé une méthode qui consiste à calculer le tassement d'une fondation superficielle de forme circulaire ayant un rayon R sous un chargement uniforme q. Cette méthode est utilisée pour les massifs de sol d'une épaisseur H.

### 4.4.1 Estimation du tassement instantané à partir de la méthode de Vesic (1963)

Selon le même principe de superposition étudié à partir de la méthode Steinbrenner, Vesic a donné une formule de calcul du tassement  $(s_b^i)$  d'une fondation circulaire souple ou rigide.

$$s_{c}^{i} = 2.R.q.\sum_{K=1}^{N} \frac{(1-v_{K}^{2})}{E_{K}}.(I_{\rho}^{K} - I_{\rho}^{K-1})$$
(4.16)



Figure 4.7: Principe de la superposition du tassement des couches de sol - fondation circulaire -

 $I_z^{\kappa}$ : dépend de ( $\upsilon_{\kappa}$ ) et de ( $\frac{Z_{\kappa}}{R}$ ) (voir tableau 4.4)

Tel que :  $Z_K$  est la distance de pied de la couche K à la surface du sol.

Tableau 4.4 : Valeurs de 
$$I_z$$
 en fonction de  $\left(\frac{Z_K}{R}\right)$ 

a) - cas d'une fondation rigide

| $\frac{Z_{K}}{R}$ | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 15   |
|-------------------|------|------|------|------|------|------|------|------|------|------|------|
| v=0,33            | 0,20 | 0,40 | 0,51 | 0,58 | 0,62 | 0,65 | 0,66 | 0,68 | 0,70 | 0,71 | 0,73 |
| v=0,50            | 0,15 | 0,35 | 0,47 | 0,55 | 0,59 | 0,62 | 0,65 | 0,66 | 0,67 | 0,68 | 0,72 |

b) - cas d'une fondation souple

| $\frac{Z_{K}}{R}$ | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 15   |
|-------------------|------|------|------|------|------|------|------|------|------|------|------|
| v=0,33            | 0,40 | 0,60 | 0,72 | 0,80 | 0,83 | 0,86 | 0,87 | 0,89 | 0,91 | 0,92 | 0,94 |
| v=0,50            | 0,30 | 0,55 | 0,67 | 0,74 | 0,80 | 0,83 | 0,86 | 0,87 | 0,88 | 0,90 | 0,93 |

### 4.4.2 <u>Construction de la base de données</u>

Notre objectif dans cette partie est de regrouper les différentes informations des rapports d'étude géotechnique, pour l'estimation des paramètres de calcul du tassement par la méthode de Vesic et de construire une base de données utilisée pour la comparaison entre le tassement calculé par l'essai oedométrique, et celui calculé par la méthode de Vesic.

### <u>Méthodologie de calcul du tassement œdométrique d'une fondation circulaire</u>

- Détermination des caractéristiques de sol : la teneur en eau (w), le degré de saturation (S<sub>r</sub>), les poids spécifiques (γ<sub>s</sub>, γ<sub>d</sub>, γ'), l'indice des vides (e)...
- Détermination des paramètres de l'essai œdométrique : contrainte de préconsolidation, les coefficients (C<sub>c</sub>, C<sub>s</sub>, C<sub>g</sub>), le module oedométrique initiale E<sub>oed</sub>.
- 3. Le calcul du tassement oedométrique sous une fondation circulaire se fait selon la méthode des tranches en utilisant la méthode de Boussinesq pour trouver l'augmentation des contraintes appliquées  $\Delta \sigma_v$  le long de l'axe de symétrie de la fondation  $(r_R' = 0)$ . Pour déterminer le rayon R de la fondation, il suffit de fixer d'une manière analogue la profondeur d'arrêt de l'essai down hole ( $Z_{utile}$ ) comme correspondant à 10% de la contrainte à la base de la fondation ce qui permet de déduire le rayon R de calcul.

$$R = \frac{Z_{utile}}{5}$$
(4.17)

- Détermination du facteur d'influence (I<sub>z</sub>) de la surcharge circulaire q, on se basant sur le principe d'interpolation, et extrapolation linéaire entre les valeurs de ce facteur à l'aide du tableau (4.4) ;
- 5. calcul du tassement œdométrique selon le cas de consolidation.

- <u>Méthodologie de calcul du tassement selon Vesic</u>
- La méthode tient compte de la rigidité de la fondation circulaire. Pour notre étude le calcul se fait pour une fondation souple ;
- Le module de déformation E intervenant dans la formule de calcul du tassement par la méthode de Vesic, est calculé directement à partir du module de cisaillement G mesuré de l'essai down hole suivant la formule (4.13) ;
- Le calcul du tassement se fait pour une surcharge circulaire en surface égale à q = 20 kPa.

### 4.4.3 Exemple de calcul d'un cas d'étude

• Calcul du tassement à partir de l'essai oedométrique

Dans ce qui suit, on va appliquer la même démarche utilisée par la méthode de Steinbrenner pour calculer le tassement oedométrique sur le même cas réel utilisé. Cette démarche sera faite pour un seul incrément de charge supposant égal q = 20 kPa

|    | Rapport 07 / SC 01 |                       |        |                                |                     |                   |                        |                        |                                    |  |
|----|--------------------|-----------------------|--------|--------------------------------|---------------------|-------------------|------------------------|------------------------|------------------------------------|--|
|    | Z                  | σ <sub>v0</sub> (kPa) | Ic     | $\Delta \sigma_{V0}^{'}$ (kPa) | $\sigma'_{v}$ (kPa) | $\sigma_{c}(kPa)$ | E <sub>Oed</sub> (MPa) | ε(%)                   | s <sup>Oed</sup> <sub>c</sub> (mm) |  |
| 1  | 1,75               | 17,78                 | 0,5654 | 11,31                          | 29,09               | 227,65            | 4,8107                 | 0,02351                | 1,1754                             |  |
| 2  | 2,25               | 23,3                  | 0,3797 | 7,59                           | 30,90               | 227,01            | 5,2160                 | 0,01456                | 0,7280                             |  |
| 3  | 2,75               | 29,03                 | 0,2511 | 5,02                           | 34,05               | 226,36            | 5,6739                 | 0,00885                | 0,4426                             |  |
| 4  | 3,25               | 35,04                 | 0,1688 | 3,38                           | 38,42               | 225,40            | 6,1873                 | 0,00546                | 0,2729                             |  |
| 5  | 3,75               | 41,07                 | 0,1168 | 2,34                           | 43,41               | 224,75            | 6,6042                 | 0,00354                | 0,1768                             |  |
| 6  | 4,25               | 47,58                 | 0,0833 | 1,67                           | 49,24               | 223,79            | 7,0602                 | 0,00236                | 0,1179                             |  |
| 7  | 4,75               | 53,96                 | 0,0611 | 1,22                           | 55,19               | 223,15            | 7,6172                 | 0,00160                | 0,0802                             |  |
| 8  | 5,25               | 60,7                  | 0,0460 | 0,92                           | 61,62               | 222,18            | 8,1005                 | 0,00114                | 0,0568                             |  |
| 9  | 5,75               | 67,54                 | 0,0354 | 0,71                           | 68,25               | 221,54            | 8,5568                 | 0,00083                | 0,0414                             |  |
| 10 | 6,25               | 74,64                 | 0,0278 | 0,56                           | 75,19               | 220,90            | 8,9219                 | 0,00062                | 0,0311                             |  |
| 11 | 6,75               | 82,08                 | 0,0222 | 0,44                           | 82,53               | 219,93            | 9,3717                 | 0,00047                | 0,0237                             |  |
| 12 | 7,25               | 89,81                 | 0,0180 | 0,36                           | 90,17               | 219,29            | 9,7343                 | 0,00037                | 0,0185                             |  |
| 13 | 7,75               | 97,29                 | 0,0148 | 0,30                           | 97,59               | 218,32            | 10,1191                | 0,00029                | 0,0146                             |  |
| 14 | 8,25               | 86,57                 | 0,0123 | 0,25                           | 86,82               | 217,68            | 8,5905                 | 0,00029                | 0,0143                             |  |
| 15 | 8,75               | 83,71                 | 0,0103 | 0,21                           | 83,92               | 216,72            | 7,9999                 | 0,00026                | 0,0129                             |  |
| 16 | 9,25               | 90,13                 | 0,0087 | 0,17                           | 90,30               | 216,07            | 8,3053                 | 0,00021                | 0,0105                             |  |
| 17 | 9,75               | 96,93                 | 0,0075 | 0,15                           | 97,08               | 215,11            | 8,6245                 | 0,00017                | 0,0087                             |  |
| 18 | 10,25              | 109,9                 | 0,0064 | 0,13                           | 110,03              | 214,46            | 9,3912                 | 0,00014                | 0,0069                             |  |
| 19 | 10,75              | 115,5                 | 0,0056 | 0,11                           | 115,61              | 213,82            | 9,5539                 | 0,00012                | 0,0058                             |  |
| 20 | 11,25              | 121,91                | 0,0049 | 0,10                           | 122,00              | 212,86            | 9,7720                 | 0,00010                | 0,0050                             |  |
| 21 | 11,75              | 126,46                | 0,0043 | 0,09                           | 126,55              | 212,22            | 9,8332                 | 0,00009                | 0,0044                             |  |
| 22 | 12,25              | 130,95                | 0,0038 | 0,08                           | 131,02              | 211,25            | 9,8283                 | 0,00008                | 0,0038                             |  |
| 23 | 12,75              | 135,36                | 0,0034 | 0,07                           | 135,43              | 210,61            | 9,8736                 | 0,00007                | 0,0034                             |  |
| 24 | 13,25              | 139,37                | 0,0030 | 0,06                           | 139,43              | 209,00            | 9,8883                 | 0,00006                | 0,0030                             |  |
| 25 | 13,75              | 143,62                | 0,0027 | 0,05                           | 143,68              | 208,03            | 9,9187                 | 0,00005                | 0,0027                             |  |
| 26 | 14,25              | 147,8                 | 0,0024 | 0,05                           | 147,85              | 207,39            | 9,8914                 | 0,00005                | 0,0024                             |  |
| 27 | 14,75              | 151,91                | 0,0022 | 0,04                           | 151,95              | 206,75            | 9,9606                 | 0,00004                | 0,0022                             |  |
| 28 | 15,25              | 155,57                | 0,0020 | 0,04                           | 155,61              | 205,78            | 9,9004                 | 0,00004                | 0,0020                             |  |
| 29 | 15,75              | 159,52                | 0,0018 | 0,04                           | 159,55              | 204,82            | 9,9086                 | 0,00004                | 0,0018                             |  |
| 30 | 16,25              | 163,39                | 0,0016 | 0,03                           | 163,42              | 204,18            | 9,8659                 | 0,00003                | 0,0016                             |  |
| 31 | 16,75              | 167,19                | 0,0015 | 0,03                           | 167,22              | 203,53            | 9,8658                 | 0,00003                | 0,0015                             |  |
| 32 | 17,25              | 170,5                 | 0,0014 | 0,03                           | 170,53              | 202,89            | 9,7937                 | 0,00003                | 0,0014                             |  |
| 33 | 17,75              | 174,14                | 0,0012 | 0,02                           | 174,17              | 202,25            | 9,7864                 | 0,00003                | 0,0013                             |  |
| 34 | 18,25              | 177,71                | 0,0011 | 0,02                           | 177,73              | 201,60            | 9,7753                 | 0,00002                | 0,0012                             |  |
|    |                    |                       |        |                                |                     |                   | $s_{c}^{Oed} = 2$      | $\sum_{i=1}^{n} S_{i}$ | 3,27 mm                            |  |

Tableau 4.5 : Résultats de calcul du tassement oedométrique d'une fondation circulaire

La somme des tassements de l'ensemble du tassement des tranches i, nous a donnée

un tassement oedométrique global égal à  $s_c^{Oed} = \sum_{i}^{n} S_i = 3,27 \text{ mm.}$ 

## • Calcul du tassement à partir de la méthode de Vesic

| Vp<br>(m/s) | Vs<br>(m/s) | υ     | $\rho$<br>(g/m <sup>3</sup> ) | G<br>(MPa) | E (MPa) | R (m) | q (kPa)                        | Iz                         | s <sub>c</sub> <sup>Vesic</sup> (mm) |
|-------------|-------------|-------|-------------------------------|------------|---------|-------|--------------------------------|----------------------------|--------------------------------------|
| 880         | 300         | 0,434 | 2150                          | 193.50     | 555.05  | 3,65  | 20                             | 0,093                      | 0,6190                               |
| 880         | 300         | 0,434 | 2150                          | 193,50     | 555,05  | 3,65  | 20                             | 0,122                      | 0,5976                               |
| 880         | 300         | 0,434 | 2150                          | 193,50     | 555,05  | 3,65  | 20                             | 0,150                      | 0,6190                               |
| 880         | 300         | 0,434 | 2150                          | 193,50     | 555,05  | 3,65  | 20                             | 0,179                      | 0,5763                               |
| 1830        | 620         | 0,435 | 2150                          | 826,46     | 2372,21 | 3,65  | 20                             | 0,206                      | 0,1247                               |
| 1830        | 620         | 0,435 | 2150                          | 826,46     | 2372,21 | 3,65  | 20                             | 0,231                      | 0,1447                               |
| 1830        | 620         | 0,435 | 2150                          | 826,46     | 2372,21 | 3,65  | 20                             | 0,260                      | 0,1347                               |
| 1830        | 620         | 0,435 | 2150                          | 826,46     | 2372,21 | 3,65  | 20                             | 0,287                      | 0,1347                               |
| 680         | 300         | 0,379 | 2150                          | 193,50     | 533,74  | 3,65  | 20                             | 0,314                      | 0,6324                               |
| 680         | 300         | 0,379 | 2150                          | 193,50     | 533,74  | 3,65  | 20                             | 0,341                      | 0,6792                               |
| 680         | 300         | 0,379 | 2150                          | 193,50     | 533,74  | 3,65  | 20                             | 0,370                      | 0,6324                               |
| 680         | 300         | 0,379 | 2150                          | 193,50     | 533,74  | 3,65  | 20                             | 0,397                      | 0,3982                               |
| 680         | 300         | 0,379 | 2150                          | 193,50     | 533,74  | 3,65  | 20                             | 0,414                      | 0,3513                               |
| 680         | 300         | 0,379 | 2150                          | 193,50     | 533,74  | 3,65  | 20                             | 0,429                      | 0,3279                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,443                      | 0,1231                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,460                      | 0,1086                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,475                      | 0,1013                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,489                      | 0,1231                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,506                      | 0,0724                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,516                      | 0,0796                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,527                      | 0,0579                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,535                      | 0,0724                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,545                      | 0,0796                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,556                      | 0,0579                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,564                      | 0,0579                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,572                      | 0,0796                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,583                      | 0,0290                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,587                      | 0,0434                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,593                      | 0,0507                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,600                      | 0,0434                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,606                      | 0,0290                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,610                      | 0,0290                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,614                      | 0,0579                               |
| 2010        | 500         | 0,467 | 2150                          | 537,50     | 1577,05 | 3,65  | 20                             | 0,622                      | 0,0453                               |
|             |             |       |                               |            |         |       | s <sub>c</sub> <sup>Visi</sup> | $c = \sum_{i=1}^{n} S_{i}$ | 5,29 mm                              |

Tableau 4.6 : Résultats de calcul du tassement à partir de la méthode de Vesic

La somme des tassements trouvé à partir de la méthode de Vesic nous a donnée un

tassement global égal à  $s_c^{Visic} = \sum_{i}^{n} S_i = 5,29 \text{ mm.}$ 

# 4.4.4 <u>Etude comparative entre le tassement oedométrique et le tassement oedométrique</u> <u>calculé à partir de la méthode de Vesic</u>

Cette étude permet de faire un calage entre la méthode oedométrique utilisé pour le calcul du tassement et la méthode de Vesic proposée pour le calcul du tassement d'une fondation circulaire.

Les valeurs de calcul de cette étude comparative nous permet de faire un calage des résultats du tassement  $(s_c^{Vesic})$  sur les valeurs de  $(s_c^{Oed})$ .

| N° de<br>rapport | $\left(s_{c}^{\text{Oed}} ight)$ | $\left(s_{c}^{\text{Vesic}}\right)$ | $r = \begin{pmatrix} s_{c}^{Oed} \\ s_{c}^{Vesic} \end{pmatrix}$ |
|------------------|----------------------------------|-------------------------------------|------------------------------------------------------------------|
| 01               | 0,0131                           | 0,1191                              | 0,1097                                                           |
| 02               | 0,0274                           | 0,0195                              | 1,4033                                                           |
| 02               | 0,4323                           | 0,0448                              | 9,6452                                                           |
| 03               | 0,0012                           | 0,0455                              | 0,0273                                                           |
| 04               | 0,0525                           | 0,0446                              | 1,1789                                                           |
|                  | 0,0251                           | 0,0355                              | 0,7068                                                           |
| 05               | 0,0475                           | 0,0252                              | 1,8826                                                           |
|                  | 0,0126                           | 0,0359                              | 0,3497                                                           |
| 06               | 0,0056                           | 0,1745                              | 0,0319                                                           |
| 07               | 0,0033                           | 0,0529                              | 0,0618                                                           |
| 07               | 0,0020                           | 0,0714                              | 0,0273                                                           |
| 08               | 0,0026                           | 0,0119                              | 0,2151                                                           |
|                  | 0,0002                           | 0,0419                              | 0,0042                                                           |
| 09               | 0,0001                           | 0,0414                              | 0,0024                                                           |
|                  | 0,4101                           | 0,0068                              | 60,2158                                                          |
|                  | 0,0080                           | 0,0168                              | 0,4741                                                           |
| 10               | 0,0157                           | 0,0231                              | 0,6791                                                           |
| 10               | 0,0191                           | 0,0216                              | 0,8822                                                           |
|                  | 0,2235                           | 0,0406                              | 5,5016                                                           |

Tableau 4.7 : Résultat de calcul du tassement oedométrique et tassement calculé parla méthode de Vesic

L'analyse statistique de la population du rapport  $(s_c^{\text{Oed}}/s_c^{\text{Vesic}})$  nous a donné des résultats présentés dans la figure (4.8).

Ces résultats sont les suivants :

- Un coefficient d'ajustement : R = 98,80% ;

- Une valeur caractéristique (X<sub>c</sub>) concernant le rapport  $\left(\frac{s_c^{\text{Oed}}}{s_c^{\text{Vesic}}}\right)$  égale à 0,80 ;



- Une valeur de l'écart type ( $\sigma$ ) égale à 0,91.

Figure 4.8 : Corrélation entre  $S_c^{\text{Oed}}$  et  $S_c^{\text{Vesic}}$  – cas d'une fondation circulaire

On effectue alors un calage d'un rapport 
$$\left(\frac{s_c^{Oed}}{s_c^{Vesic}}\right)$$
 égal à 0,80

Donc, quelque soit la valeur de (R), le coefficient (r) de calibration varie et la formule de calcul du tassement instantané suivant la méthode de Vesic est présenté comme suite :

$$s_{c}^{i} = 0,80 \left[ 2.R.q.\sum_{K=1}^{N} \frac{(1-v_{K}^{2})}{E_{K}} . (I_{\rho}^{K} - I_{\rho}^{K-1}) \right]$$
(4.18)

### 4.5 Conclusion

Nous avons présenté à partir de cette étude, deux méthodes de calcul du tassement dans un sol fin assimilé à un massif multicouche élastique considéré infiniment épais.

La première méthode de Steinbrenner calcule le tassement sous une fondation de forme rectangulaire et se base principalement sur le phénomène de superposition des effets. Cette méthode permet d'évaluer le tassement, induit par une ou plusieurs charges rectangulaires, en tout point de la surface d'un multicouche élastique.

La deuxième méthode de Vesic calcule le tassement sous une fondation de forme circulaire. En se basant sur les valeurs de module de déformation E déduit du module de cisaillement G, mesuré à partir de l'essai down hole, les valeurs du module de déformation E sont introduites par la suite dans les formules de calcul du tassement.

La comparaison entre le tassement calculé à partir de ces deux méthodes et le tassement oedométrique nous a mené à effectuer un calage des formules proposées. Dans la méthode de Steinbrenner le calage fait introduire un effet dimensionnel quantifié par l'élancement horizontal  $\begin{pmatrix} L \\ B \end{pmatrix}$  de la fondation, alors que dans la méthode de Vesic, il est évalué par un coefficient égal à 0,80.

### CONCLUSION

Les études menées lors de nos travaux de thèse ont conduit à contribuer au développement des approches pour l'estimation du tassement des fondations superficielles à la base des essais de laboratoire et des essais in situ.

Cette étude s'inscrit dans le cadre de la recherche des corrélations à partir des données obtenues suite au traitement de différents rapports géotechnique réalisé dans la région centre du nord de L'Algérie. Ces corrélations sont faites entre les paramètres d'essais pénétrométriques statiques (CPT) et des essais géophysiques de forage (down hole), avec celles des essais œdométriques, dans le but de trouver des relations entre les différents paramètres de sol fin saturé intervenant dans le calcul du tassement.

L'étude bibliographique a mis en évidences l'importance de prendre en compte les différentes méthodes permettant la détermination du module de déformation de sol au cours de son histoire, en expliquant la procédure de fonctionnement et l'intérêt de chaque essai de laboratoire ou sur place, pour évaluer le tassement des fondations superficielles.

Nous avons procéder par la suite à étudier les corrélations entre les propriétés mesurées à partir de l'essai de forage down hole, et les caractéristiques de consolidation du sol déterminées par l'essai oedométrique, dont on a pu trouver des résultats avec un bon coefficient de corrélation et un coefficient de variation acceptable. Les corrélations trouvées, nous à donner une approche de calcul du tassement des fondations superficielles à partir de l'essai down hole.

Le troisième volet de ce mémoire focalise sur l'étude des corrélations entre les paramètres de l'essai oedométrique, à savoir le module oedométrique et la contrainte de préconsolidation, et celui de l'essai de pénétration statique CPT. Ces corrélations donnent un bon coefficient de corrélation, ce qui nous mène par la suite a validé l'existence d'une

approche de calcul du tassement oedométrique à partir de l'essai de pénétration statique suite à ces corrélations.

Ensuite nous avons proposé une étude de l'effet des dimensions d'une fondation superficielle sur le calcul du tassement œdométrique à partir de l'essai CPT. Cette dernière nous a montré l'existence d'une influence dimensionnelle sur le calcul du tassement.

Dans le quatrième volet de ce travail, nous avons essayé d'étudier les tassements des sols multicouches, considérés comme élastique linéaire, à la base de la méthode de Steinbrenner et la méthode de Vesic, on se basant sur les valeurs de module de déformation E déduit du module de cisaillement G mesuré à partir de l'essai down hole.

À partir de ces deux méthodes, les approches de calcul du tassement pour des fondations de forme rectangulaire ou circulaire nous ont conduits à trouver des résultats acceptables, à partir d'une comparaison faite entre le tassement oedométrique et le tassement calculé par ces deux méthodes.

Nous espérons que les approches trouvées constitueront un premier pas pour faire évaluer le calcul du tassement à partir des corrélations trouvées par les différents essais, cette étude s'inscrit dans le cadre d'amélioré le domaine d'utilisation des corrélations, qui constituent une technique très utile pour le progrès des études géotechniques, tant pour compléter des données que pour contrôler les résultats des essais réalisés en laboratoire ou sur place.

L'ensemble des travaux effectués et les résultats présentés montrent bien que plusieurs questions restent a posées. Bien que ce travail soit une compréhension de la problématique de calcul du tassement des fondations superficielles. On ne prétend pas trouver une relation finale, mais son intérêt principal réside sur le fait qu'elle constitue le début d'un travail qui doit être complété par d'autres études pour avoir des données statistiques représentatives.

### REFERENCES

- ARABET, L. « Modélisation numérique du tassement et de la consolidation des sols sous l'oedomètre » Mémoire de magistère à l'Université 20 Août 1955 de Skikda, Algérie.
- BAKIR, N. (2006) « Caractérisation du fluage des sols fins et de leur interaction avec les ouvrages - Application au dimensionnement des remblais sur sols compressibles », Université Mohamed Boudiaf de M'sila, Algérie.
- BELHANNACHI C. N. (2010) « Caractérisation des formations argileuses de la région de Constantine », Thèse de Doctorat à l'Université Mentouri de Constantine, Algérie.
- 4. BOUAFIA, A. (2000) « Mécanique des sols appliquée problèmes résolus », Édition OPU, 361 pages.
- BOUAFIA, A. et MIR, M (2010) « *Introduction à la mécanique des sols*», Édition copyright Eurl pages bleues internationales, 229pages.
- BOUAFIA, A. (2010) « Génie civil –Conception et calcul des ouvrages géotechniques», Édition copyright Eurl pages bleues internationales, 385 pages.
- BOURGEOIS C. (1997) « Module de cisaillement a petites déformations des argiles », thèse du grade maitre es science à l'université de Laval, France.
- CASSAN, M. (1988) « Les essais in situ en Mécanique des Sols, Tome 1 : Réalisation et interprétation » Revue et complété, Edition Eyrolles.
- CHIKHI, K. (2011) « Etude expérimentale des matériaux non saturés au cisaillement et à l'oedomètre», Mémoire de Magistère à l'Université de Mouloud Mammeri de Tizi-Ouzou, Algérie.
- 10. MAGNAN J.P. « *Corrélations entre les propriétés des sols* », Techniques de l'Ingénieur : Code 219.

- MAGNAN J.P. « Déformabilité des sols Tassements Consolidation», Techniques de l'Ingénieur : Code 214.
- NASREDDINE K. (2004) « Effet de la rotation des contraintes sur le comportement des sols argileux », thèse de doctorat à l'école nationale des ponts et chaussées, France.
- 13. NGUYEN PHAM, P. T. (2008) « Étude en place et au laboratoire du comportement en petites déformations des sols argileux naturels » Thèse de Doctorat à l'École Nationale des Ponts et Chaussées. France.
- 14. OCAT, J. & AUSEJOUR, N. (1987) « Corrélations entre des propriétés mécaniques dynamiques et statiques de sols argileux intacts et traites à la chaux » Article de l'Université de Lavale, Sainte- Foy, Québec.
- 15. PELISSIER, L. (2009) « Etude des corrélations en géotechnique dans le cadre de la géologie Toulousaine » Mémoire de Fin d'Etudes de l'école INSA à Strasbourg, France.
- 16. PLUMELLE, C. (2002) « Génie civil CRAM paris géotechnique», Livre B6 / version du 03/12/2002, France.
- POULOS, H.G. & Davis E. H (2006) « *Elastic solutions for soil and rock mechanics* » Centre for geotechnical research in the University of Sydney, Australia, 423 pages.
- 18. RAHMANI, K. (2012) « Modélisation numérique de l'apport de l'essai DPT a l'étude du comportement des fondations superficielles », Mémoire de Magistère à l'Université de Saad Dahleb de Blida, Algérie.
- 19. REY, E. (2005) « *Caractérisation de sols hétérogènes par des méthodes géophysiques* », thèse de doctorat à l'université joseph Fourier Grenoble 1, France.
- 20. SACI, L. (2011) « Étude de l'évolution des paramètres dynamiques des sols à partir d'essais géophysiques », Mémoire de Magistère à l'Université de Mouloud Mammeri de Tizi-Ouzou, Algérie.
- 21. UBERTI, K. (2002) « Traitement des données géoradar et sismique réfraction pour la reconnaissance des fondations d'un pylône électrique », Rapport final de stage du diplôme d'études approfondies (DEA) en mécanique des milieux géophysiques et environnement, Université Joseph Fourier.

ANNEXES

ANNEXE 01




















































| N° Rapport | N° Sondage | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{c}^{\mathbf{Oed}}\right)\left(\mathbf{m}\right)$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{G}}\right)(\mathbf{m})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{G}} \right)$ |
|------------|------------|----------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|            |            | 4,52                 | 0,01312                                                             | 0,00701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,87161                                                                                                     |
|            |            | 34,52                | 0,08127                                                             | 0,05276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,54037                                                                                                     |
| Rapport 01 | S03        | 54,52                | 0,11757                                                             | 0,08254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,42440                                                                                                     |
|            |            | 104,52               | 0,19170                                                             | 0,14962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,28125                                                                                                     |
|            |            | 184,52               | 0,29622                                                             | 0,24855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,19179                                                                                                     |
|            |            | 1,31                 | 0,00176                                                             | 0,00203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,86700                                                                                                     |
|            |            | 31,31                | 0,03152                                                             | 0,04806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,65585                                                                                                     |
| Rapport 01 | S04        | 51,31                | 0,04573                                                             | 0,07816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,58508                                                                                                     |
|            |            | 101,31               | 0,07278                                                             | 0,14692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,49537                                                                                                     |
|            |            | 181,31               | 0,11451                                                             | 0,24988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,45826                                                                                                     |
|            |            | 3,83                 | 0,02050                                                             | 0,00145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14,13793                                                                                                    |
|            | S02        | 33,83                | 0,14439                                                             | 0,01271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11,36035                                                                                                    |
| Rapport 02 |            | 53,83                | 0,20755                                                             | 0,02011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10,32074                                                                                                    |
|            |            | 103,83               | 0,33320                                                             | 0,03825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8,71111                                                                                                     |
|            |            | 183,83               | 0,48500                                                             | 0,06631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,31413                                                                                                     |
|            | -          | 1,16                 | 0,00548                                                             | 0,00069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,94203                                                                                                     |
|            |            | 31,16                | 0,12085                                                             | 0,01841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,56437                                                                                                     |
| Rapport 02 | S03        | 51,16                | 0,18739                                                             | 0,03010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,22558                                                                                                     |
|            |            | 101,16               | 0,33468                                                             | 0,05888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,68410                                                                                                     |
|            |            | 181,16               | 0,51394                                                             | $s_c^{-}$ $f(m)$ $(S_c^{-})$ $(m)$ $0,01312$ $0,00701$ $0,08127$ $0,05276$ $0,11757$ $0,08254$ $0,19170$ $0,14962$ $0,29622$ $0,24855$ $0,00176$ $0,00203$ $0,03152$ $0,04806$ $0,04573$ $0,07816$ $0,07278$ $0,14692$ $0,14439$ $0,01271$ $0,2050$ $0,00145$ $0,14439$ $0,01271$ $0,20755$ $0,02011$ $0,3320$ $0,03825$ $0,48500$ $0,06631$ $0,00548$ $0,00069$ $0,12085$ $0,01841$ $0,18739$ $0,03010$ $0,33468$ $0,05888$ $0,51394$ $0,10372$ $0,00075$ $0,00070$ $0,01118$ $0,01251$ $0,0288$ $0,01251$ $0,04013$ $0,20815$ $0,0010$ $0,33579$ $0,10311$ $0,64611$ $0,20122$ $1,11113$ | 4,95507                                                                                                     |
|            |            | 1,59                 | 0,00075                                                             | 0,00070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,06828                                                                                                     |
|            |            | 31,59                | 0,01118                                                             | 0,01375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,81309                                                                                                     |
| Rapport 03 | S01        | 51,59                | 0,01608                                                             | 0,02222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,72367                                                                                                     |
|            |            | 101,59               | 0,02525                                                             | 0,04269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,59147                                                                                                     |
|            |            | 181,59               | 0,03549                                                             | 0,06907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,51383                                                                                                     |
|            |            | 1,89                 | 0,00288                                                             | 0,01251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,23022                                                                                                     |
|            |            | 31,89                | 0,04013                                                             | 0,20815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,19279                                                                                                     |
| Rapport 04 | S03        | 51,89                | 0,06010                                                             | 0,33579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,17898                                                                                                     |
|            | Ē          | 101,89               | 0,10311                                                             | 0,64611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,15959                                                                                                     |
|            |            | 181.89               | 0,20122                                                             | 1,11113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.18109                                                                                                     |

Résultat de l'étude comparative entre le tassement oedométrique et le tassement oedométrique calculé à partir de l'essai down-hole

| N° Rapport | N° Sondage | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{c}^{\mathbf{Oed}}\right)$ (m) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{G}}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{G}} \right)$ |
|------------|------------|----------------------|--------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|            |            | 1,05                 | 0,00306                                          | 0,00464                                                 | 0,65948                                                                                                     |
|            |            | 31,05                | 0,06426                                          | 0,13436                                                 | 0,47827                                                                                                     |
| Rapport 05 | S02        | 51,05                | 0,09105                                          | 0,21787                                                 | 0,41791                                                                                                     |
|            |            | 101,05               | 0,15347                                          | 0,41434                                                 | 0,37040                                                                                                     |
|            |            | 181,05               | 0,23697                                          | 0,70404                                                 | 0,33659                                                                                                     |
|            |            | 0,86                 | 0,00562                                          | 0,00399                                                 | 1,40852                                                                                                     |
|            |            | 30,86                | 0,14759                                          | 0,14167                                                 | 1,04179                                                                                                     |
| Rapport 05 | S04        | 50,86                | 0,21165                                          | 0,23030                                                 | 0,91902                                                                                                     |
|            |            | 100,86               | 0,32699                                          | 0,44703                                                 | 0,73147                                                                                                     |
|            |            | 180,86               | 0,44981                                          | 0,77116                                                 | 0,58329                                                                                                     |
|            |            | 3,25                 | 0,01394                                          | 0,01676                                                 | 0,83174                                                                                                     |
|            |            | 33,25                | 0,11710                                          | 0,16828                                                 | 0,69586                                                                                                     |
| Rapport 05 | S08        | 53,25                | 0,17116                                          | 0,26508                                                 | 0,64569                                                                                                     |
|            | ľ          | 103,25               | 0,28033                                          | 0,49905                                                 | 0,56173                                                                                                     |
|            |            | 183,25               | 0,41352                                          | 0,84484                                                 | 0,48947                                                                                                     |
|            |            | 2,07                 | 0,00294                                          | 0,00162                                                 | 1,81481                                                                                                     |
|            |            | 32,07                | 0,03490                                          | 0,02466                                                 | 1,41525                                                                                                     |
| Rapport 06 | S03        | 52,07                | 0,05029                                          | 0,03963                                                 | 1,26899                                                                                                     |
|            |            | 102,07               | 0,07948                                          | 0,07577                                                 | 1,04896                                                                                                     |
|            |            | 182,07               | 0,11242                                          | 0,12365                                                 | 0,90918                                                                                                     |
|            |            | 2,22                 | 0,00240                                          | 0,00139                                                 | 1,72662                                                                                                     |
|            |            | 32,22                | 0,02858                                          | 0,01991                                                 | 1,43546                                                                                                     |
| Rapport 07 | S01        | 52,22                | 0,04231                                          | 0,03205                                                 | 1,32012                                                                                                     |
|            |            | 102,22               | 0,07016                                          | 0,06169                                                 | 1,13730                                                                                                     |
|            |            | 182,22               | 0,10413                                          | 0,10719                                                 | 0,97145                                                                                                     |
|            |            | 2,29                 | 0,00327                                          | 0,00150                                                 | 2,18000                                                                                                     |
|            |            | 32,29                | 0,04005                                          | 0,02096                                                 | 1,91078                                                                                                     |
| Rapport 07 | S03        | 52,29                | 0,06038                                          | 0,03370                                                 | 1,79169                                                                                                     |
|            |            | 102,29               | 0,10272                                          | 0,06483                                                 | 1,58445                                                                                                     |
|            | l l        | 182,29               | 0,15553                                          | 0,11257                                                 | 1,38163                                                                                                     |
|            |            | 1,35                 | 0,00128                                          | 0,00025                                                 | 5,09960                                                                                                     |
|            | Ē          | 31,35                | 0,02225                                          | 0,00575                                                 | 3,86957                                                                                                     |
| Rapport 08 | S01        | 51,35                | 0,03212                                          | 0,00933                                                 | 3,44266                                                                                                     |
|            | F          | 101,35               | 0,05058                                          | 0,01800                                                 | 2,81000                                                                                                     |
|            | l l        | 181,35               | 0,07486                                          | 0,03111                                                 | 2,40630                                                                                                     |

| N° Rapport                                                             | N° Sondage | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)$ (m) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{G}}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{G}} \right)$ |
|------------------------------------------------------------------------|------------|----------------------|-----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                                                        |            | 4,52                 | 0,00068                                                   | 0,00229                                                 | 0,29782                                                                                                     |
|                                                                        |            | 34,52                | 0,00478                                                   | 0,01720                                                 | 0,27791                                                                                                     |
| Rapport 09                                                             | S03        | 54,52                | 0,00725                                                   | 0,02687                                                 | 0,26982                                                                                                     |
|                                                                        |            | 104,52               | 0,01281                                                   | 0,05017                                                 | 0,25533                                                                                                     |
|                                                                        |            | 184,52               | 0,02280                                                   | 0,08038                                                 | 0,28365                                                                                                     |
|                                                                        |            | 2,4                  | 0,00012                                                   | 0,00097                                                 | 0,12320                                                                                                     |
|                                                                        |            | 32,4                 | 0,00140                                                   | 0,01290                                                 | 0,10853                                                                                                     |
| Rapport 09                                                             | S04        | 52,4                 | 0,00212                                                   | 0,02061                                                 | 0,10286                                                                                                     |
|                                                                        |            | 102,4                | 0,00368                                                   | 0,03910                                                 | 0,09412                                                                                                     |
|                                                                        |            | 182,4                | 0,00573                                                   | 0,06179                                                 | 0,09273                                                                                                     |
|                                                                        |            | 3,36                 | 0,00103                                                   | 0,00192                                                 | 0,53646                                                                                                     |
|                                                                        |            | 33,36                | 0,03895                                                   | 0,01874                                                 | 2,07844                                                                                                     |
| Rapport 09                                                             | S06        | 53,36                | 0,17069                                                   | 0,02967                                                 | 5,75295                                                                                                     |
|                                                                        |            | 103,36               | 0,41040                                                   | 0,05602                                                 | 7,32596                                                                                                     |
|                                                                        |            | 183,36               | 0,66916                                                   | 0,09557                                                 | 7,00178                                                                                                     |
|                                                                        |            | 0,33                 | 0,00241                                                   | 0,00008                                                 | 30,50633                                                                                                    |
|                                                                        |            | 30,33                | 0,07931                                                   | 0,00721                                                 | 11,00000                                                                                                    |
| Rapport 10                                                             | S04        | 50,33                | 0,11754                                                   | 0,01187                                                 | 9,90227                                                                                                     |
|                                                                        |            | 100,33               | 0,19112                                                   | 0,02318                                                 | 8,24504                                                                                                     |
|                                                                        |            | 180,33               | 0,27614                                                   | 0,04038                                                 | 6,83853                                                                                                     |
|                                                                        |            | 0,96                 | 0,00400                                                   | 0,00023                                                 | 17,16738                                                                                                    |
|                                                                        |            | 30,96                | 0,10467                                                   | 0,00743                                                 | 14,08748                                                                                                    |
| Rapport 09Rapport 09Rapport 10Rapport 10Rapport 10Rapport 10Rapport 10 | S05        | 50,96                | 0,16197                                                   | 0,01213                                                 | 13,35284                                                                                                    |
|                                                                        |            | 100,96               | 0,30152                                                   | 0,02357                                                 | 12,79253                                                                                                    |
|                                                                        |            | 180,96               | 0,46768                                                   | 0,04101                                                 | 11,40405                                                                                                    |
|                                                                        |            | 0,6                  | 0,00132                                                   | 0,00028                                                 | 4,68085                                                                                                     |
|                                                                        |            | 30,6                 | 0,05976                                                   | 0,01422                                                 | 4,20253                                                                                                     |
| Rapport 10                                                             | S06        | 50,6                 | 0,09660                                                   | 0,02336                                                 | 4,13527                                                                                                     |
|                                                                        |            | 100,6                | 0,18039                                                   | 0,04569                                                 | 3,94813                                                                                                     |
|                                                                        |            | 180,6                | 0,27961                                                   | 0,07999                                                 | 3,49556                                                                                                     |
|                                                                        |            | 2,51                 | 0,00702                                                   | 0,00044                                                 | 16,06407                                                                                                    |
|                                                                        | l l        | 32,51                | 0,08338                                                   | 0,00557                                                 | 14,96948                                                                                                    |
| Rapport 10                                                             | S07        | 52,51                | 0,13977                                                   | 0,00891                                                 | 15,68687                                                                                                    |
|                                                                        | ſ          | 102,51               | 0,30392                                                   | 0,01698                                                 | 17,89870                                                                                                    |
|                                                                        | F          | 182,51               | 0,50595                                                   | 0,02914                                                 | 17,36273                                                                                                    |

<u>Résultat de l'étude d'influence des dimensions des fondations sur le calcul du tassement oedométrique à partir de l'essai down-hole</u> - <u>Cas d'une Fondation carrée (L/B =1) -</u>

| N° Rapport | N° Sondage | D/B  | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)$ (m) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{G}}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{G}} \right)$ |
|------------|------------|------|------|----------------------|-----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|            |            |      |      | 4,52                 | 0,01312                                                   | 0,00701                                                 | 1,8716                                                                                                      |
|            |            |      |      | 34,52                | 0,08127                                                   | 0,05276                                                 | 1,5404                                                                                                      |
| Rapport 01 | S03        | 1,50 | 1,00 | 54,52                | 0,11757                                                   | 0,08254                                                 | 1,4244                                                                                                      |
|            |            |      |      | 104,52               | 0,19170                                                   | 0,14962                                                 | 1,2812                                                                                                      |
|            |            |      |      | 184,52               | 0,29622                                                   | 0,24855                                                 | 1,1918                                                                                                      |
|            |            |      |      | 1,31                 | 0,00176                                                   | 0,00203                                                 | 0,8670                                                                                                      |
|            |            |      |      | 31,31                | 0,03152                                                   | 0,04806                                                 | 0,6558                                                                                                      |
| Rapport 01 | S04        | 1,50 | 1,00 | 51,31                | 0,04573                                                   | 0,07816                                                 | 0,5851                                                                                                      |
|            |            |      |      | 101,31               | 0,07278                                                   | 0,14692                                                 | 0,4954                                                                                                      |
|            |            |      |      | 181,31               | 0,11451                                                   | 0,24988                                                 | 0,4583                                                                                                      |
|            |            |      |      | 3,83                 | 0,02050                                                   | 0,00145                                                 | 14,1379                                                                                                     |
|            | S02        | 1,50 | 1,00 | 33,83                | 0,14439                                                   | 0,01271                                                 | 11,3603                                                                                                     |
| Rapport 02 |            |      |      | 53,83                | 0,20755                                                   | 0,02011                                                 | 10,3207                                                                                                     |
|            |            |      |      | 103,83               | 0,33320                                                   | 0,03825                                                 | 8,7111                                                                                                      |
|            |            |      |      | 183,83               | 0,48500                                                   | 0,06631                                                 | 7,3141                                                                                                      |
|            |            |      |      | 1,16                 | 0,00548                                                   | 0,00069                                                 | 7,9420                                                                                                      |
|            | S03        | 1,50 | 1,00 | 31,16                | 0,12085                                                   | 0,01841                                                 | 6,5644                                                                                                      |
| Rapport 02 |            |      |      | 51,16                | 0,18739                                                   | 0,03010                                                 | 6,2256                                                                                                      |
|            |            |      |      | 101,16               | 0,33468                                                   | 0,05888                                                 | 5,6841                                                                                                      |
|            |            |      |      | 181,16               | 0,51394                                                   | 0,10372                                                 | 4,9551                                                                                                      |
|            |            |      |      | 1,59                 | 0,00075                                                   | 0,00070                                                 | 1,0683                                                                                                      |
|            |            |      |      | 31,59                | 0,01118                                                   | 0,01375                                                 | 0,8131                                                                                                      |
| Rapport 03 | S01        | 1,50 | 1,00 | 51,59                | 0,01608                                                   | 0,02222                                                 | 0,7237                                                                                                      |
|            |            |      |      | 101,59               | 0,02525                                                   | 0,04269                                                 | 0,5915                                                                                                      |
|            |            |      |      | 181,59               | 0,03549                                                   | 0,06907                                                 | 0,5138                                                                                                      |
|            |            |      |      | 1,89                 | 0,00288                                                   | 0,01251                                                 | 0,2302                                                                                                      |
|            |            |      |      | 31,89                | 0,04013                                                   | 0,20815                                                 | 0,1928                                                                                                      |
| Rapport 04 | S03        | 1,50 | 1,00 | 51,89                | 0,06010                                                   | 0,33579                                                 | 0,1790                                                                                                      |
|            |            |      |      | 101,89               | 0,10311                                                   | 0,64611                                                 | 0,1596                                                                                                      |
|            |            |      |      | 181,89               | 0,20122                                                   | 1,11113                                                 | 0,1811                                                                                                      |

| N° Rapport | N° Sondage | D/B  | L/B    | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)(\mathbf{m})$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{G}}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{G}} \right)$ |
|------------|------------|------|--------|----------------------|-------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|            |            |      |        | 1,05                 | 0,00306                                                           | 0,00464                                                 | 0,6595                                                                                                      |
|            |            |      |        | 31,05                | 0,06426                                                           | 0,13436                                                 | 0,4783                                                                                                      |
| Rapport 05 | S02        | 1,50 | 1,00   | 51,05                | 0,09105                                                           | 0,21787                                                 | 0,4179                                                                                                      |
|            |            |      |        | 101,05               | 0,15347                                                           | 0,41434                                                 | 0,3704                                                                                                      |
|            |            |      |        | 181,05               | 0,23697                                                           | 0,70404                                                 | 0,3366                                                                                                      |
|            |            |      |        | 0,86                 | 0,00562                                                           | 0,00399                                                 | 1,4085                                                                                                      |
|            |            |      |        | 30,86                | 0,14759                                                           | 0,14167                                                 | 1,0418                                                                                                      |
| Rapport 05 | S04        | 1,50 | 1,00   | 50,86                | 0,21165                                                           | 0,23030                                                 | 0,9190                                                                                                      |
|            |            |      |        | 100,86               | 0,32699                                                           | 0,44703                                                 | 0,7315                                                                                                      |
|            |            |      |        | 180,86               | 0,44981                                                           | 0,77116                                                 | 0,5833                                                                                                      |
|            |            |      |        | 3,25                 | 0,01394                                                           | 0,01676                                                 | 0,8317                                                                                                      |
|            |            |      |        | 33,25                | 0,11710                                                           | 0,16828                                                 | 0,6959                                                                                                      |
| Rapport 05 | S08        | 1,50 | 1,00   | 53,25                | 0,17116                                                           | 0,26508                                                 | 0,6457                                                                                                      |
|            |            |      |        | 103,25               | 0,28033                                                           | 0,49905                                                 | 0,5617                                                                                                      |
|            |            |      |        | 183,25               | 0,41352                                                           | 0,84484                                                 | 0,4895                                                                                                      |
|            |            |      |        | 2,07                 | 0,00294                                                           | 0,00162                                                 | 1,8148                                                                                                      |
|            |            |      | ) 1,00 | 32,07                | 0,03490                                                           | 0,02466                                                 | 1,4152                                                                                                      |
| Rapport 06 | S03        | 1,50 |        | 52,07                | 0,05029                                                           | 0,03963                                                 | 1,2690                                                                                                      |
|            |            |      |        | 102,07               | 0,07948                                                           | 0,07577                                                 | 1,0490                                                                                                      |
|            |            |      |        | 182,07               | 0,11242                                                           | 0,12365                                                 | 0,9092                                                                                                      |
|            |            |      |        | 2,22                 | 0,00240                                                           | 0,00139                                                 | 1,7266                                                                                                      |
|            |            |      |        | 32,22                | 0,02858                                                           | 0,01991                                                 | 1,4355                                                                                                      |
| Rapport 07 | S01        | 1,50 | 1,00   | 52,22                | 0,04231                                                           | 0,03205                                                 | 1,3201                                                                                                      |
|            |            |      |        | 102,22               | 0,07016                                                           | 0,06169                                                 | 1,1373                                                                                                      |
|            |            |      |        | 182,22               | 0,10413                                                           | 0,10719                                                 | 0,9715                                                                                                      |
|            |            |      |        | 2,29                 | 0,00327                                                           | 0,00150                                                 | 2,1800                                                                                                      |
|            |            |      |        | 32,29                | 0,04005                                                           | 0,02096                                                 | 1,9108                                                                                                      |
| Rapport 07 | S03        | 1,50 | 1,00   | 52,29                | 0,06038                                                           | 0,03370                                                 | 1,7917                                                                                                      |
|            |            |      |        | 102,29               | 0,10272                                                           | 0,06483                                                 | 1,5845                                                                                                      |
|            |            |      |        | 182,29               | 0,15553                                                           | 0,11257                                                 | 1,3816                                                                                                      |
|            |            |      |        | 1,35                 | 0,00128                                                           | 0,00025                                                 | 5,0996                                                                                                      |
|            |            |      |        | 31,35                | 0,02225                                                           | 0,00575                                                 | 3,8696                                                                                                      |
| Rapport 08 | S01        | 1,50 | 1,00   | 51,35                | 0,03212                                                           | 0,00933                                                 | 3,4427                                                                                                      |
|            |            |      |        | 101,35               | 0,05058                                                           | 0,01800                                                 | 2,8100                                                                                                      |
|            |            |      |        | 181,35               | 0,07486                                                           | 0,03111                                                 | 2,4063                                                                                                      |

| N° Rapport | N° Sondage | D/B  | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)(\mathbf{m})$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{G}}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{G}} \right)$ |
|------------|------------|------|------|----------------------|-------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|            |            |      |      | 4,52                 | 0,00068                                                           | 0,00229                                                 | 0,2978                                                                                                      |
|            |            |      |      | 34,52                | 0,00478                                                           | 0,01720                                                 | 0,2779                                                                                                      |
| Rapport 09 | S03        | 1,50 | 1,00 | 54,52                | 0,00725                                                           | 0,02687                                                 | 0,2698                                                                                                      |
|            |            |      |      | 104,52               | 0,01281                                                           | 0,05017                                                 | 0,2553                                                                                                      |
|            |            |      |      | 184,52               | 0,02280                                                           | 0,08038                                                 | 0,2837                                                                                                      |
|            |            |      |      | 2,4                  | 0,00012                                                           | 0,00097                                                 | 0,1232                                                                                                      |
|            |            |      |      | 32,4                 | 0,00140                                                           | 0,01290                                                 | 0,1085                                                                                                      |
| Rapport 09 | S04        | 1,50 | 1,00 | 52,4                 | 0,00212                                                           | 0,02061                                                 | 0,1029                                                                                                      |
|            |            |      |      | 102,4                | 0,00368                                                           | 0,03910                                                 | 0,0941                                                                                                      |
|            |            |      |      | 182,4                | 0,00573                                                           | 0,06179                                                 | 0,0927                                                                                                      |
|            |            |      |      | 3,36                 | 0,00103                                                           | 0,00192                                                 | 0,5365                                                                                                      |
|            |            |      |      | 33,36                | 0,03895                                                           | 0,01874                                                 | 2,0784                                                                                                      |
| Rapport 09 | S06        | 1,50 | 1,00 | 53,36                | 0,17069                                                           | 0,02967                                                 | 5,7529                                                                                                      |
|            |            |      |      | 103,36               | 0,41040                                                           | 0,05602                                                 | 7,3260                                                                                                      |
|            |            |      |      | 183,36               | 0,66916                                                           | 0,09557                                                 | 7,0018                                                                                                      |
|            |            |      |      | 0,33                 | 0,00241                                                           | 0,00008                                                 | 30,5063                                                                                                     |
|            |            |      |      | 30,33                | 0,07931                                                           | 0,00721                                                 | 11,0000                                                                                                     |
| Rapport 10 | S04        | 1,50 | 1,00 | 50,33                | 0,11754                                                           | 0,01187                                                 | 9,9023                                                                                                      |
|            |            |      |      | 100,33               | 0,19112                                                           | 0,02318                                                 | 8,2450                                                                                                      |
|            |            |      |      | 180,33               | 0,27614                                                           | 0,04038                                                 | 6,8385                                                                                                      |
|            |            |      |      | 0,96                 | 0,00400                                                           | 0,00023                                                 | 17,1674                                                                                                     |
|            |            |      |      | 30,96                | 0,10467                                                           | 0,00743                                                 | 14,0875                                                                                                     |
| Rapport 10 | S05        | 1,50 | 1,00 | 50,96                | 0,16197                                                           | 0,01213                                                 | 13,3528                                                                                                     |
|            |            |      |      | 100,96               | 0,30152                                                           | 0,02357                                                 | 12,7925                                                                                                     |
|            |            |      |      | 180,96               | 0,46768                                                           | 0,04101                                                 | 11,4040                                                                                                     |
|            |            |      |      | 0,6                  | 0,00132                                                           | 0,00028                                                 | 4,6809                                                                                                      |
|            |            |      |      | 30,6                 | 0,05976                                                           | 0,01422                                                 | 4,2025                                                                                                      |
| Rapport 10 | S06        | 1,50 | 1,00 | 50,6                 | 0,09660                                                           | 0,02336                                                 | 4,1353                                                                                                      |
|            |            |      |      | 100,6                | 0,18039                                                           | 0,04569                                                 | 3,9481                                                                                                      |
|            |            |      |      | 180,6                | 0,27961                                                           | 0,07999                                                 | 3,4956                                                                                                      |
|            |            |      |      | 2,51                 | 0,00702                                                           | 0,00044                                                 | 16,0641                                                                                                     |
|            |            |      |      | 32,51                | 0,08338                                                           | 0,00557                                                 | 14,9695                                                                                                     |
| Rapport 10 | S07        | 1,50 | 1,00 | 52,51                | 0,13977                                                           | 0,00891                                                 | 15,6869                                                                                                     |
|            |            |      |      | 102,51               | 0,30392                                                           | 0,01698                                                 | 17,8987                                                                                                     |
|            |            |      |      | 182,51               | 0,50595                                                           | 0,02914                                                 | 17,3627                                                                                                     |

| N° Rapport | N° Sondage | D/B  | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{c}^{\mathbf{Oed}}\right)\left(\mathbf{m}\right)$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{G}}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{G}} \right)$ |
|------------|------------|------|------|----------------------|---------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|            |            |      |      | 6,73                 | 0,0247                                                              | 0,0122                                                  | 2,0255                                                                                                      |
|            |            |      |      | 36,73                | 0,1098                                                              | 0,0654                                                  | 1,6778                                                                                                      |
| Rapport 01 | S03        | 1,50 | 2,00 | 56,73                | 0,1545                                                              | 0,1001                                                  | 1,5445                                                                                                      |
|            |            |      |      | 106,73               | 0,2488                                                              | 0,1771                                                  | 1,4052                                                                                                      |
|            |            |      |      | 186,73               | 0,3867                                                              | 0,2903                                                  | 1,3319                                                                                                      |
|            |            |      |      | 3,98                 | 0,0062                                                              | 0,0072                                                  | 0,8585                                                                                                      |
|            |            |      |      | 33,98                | 0,0397                                                              | 0,0608                                                  | 0,6519                                                                                                      |
| Rapport 01 | S04        | 1,50 | 2,00 | 53,98                | 0,0559                                                              | 0,0958                                                  | 0,5836                                                                                                      |
|            |            |      |      | 103,98               | 0,0878                                                              | 0,1756                                                  | 0,5000                                                                                                      |
|            |            |      |      | 183,98               | 0,1513                                                              | 0,2933                                                  | 0,5158                                                                                                      |
|            |            |      |      | 6,14                 | 0,0371                                                              | 0,0028                                                  | 13,4312                                                                                                     |
|            | S02        | 1,50 | 2,00 | 36,14                | 0,1751                                                              | 0,0161                                                  | 10,8770                                                                                                     |
| Rapport 02 |            |      |      | 56,14                | 0,2465                                                              | 0,0249                                                  | 9,9068                                                                                                      |
|            |            |      |      | 106,14               | 0,3903                                                              | 0,0464                                                  | 8,4119                                                                                                      |
|            |            |      |      | 186,14               | 0,5685                                                              | 0,0797                                                  | 7,1311                                                                                                      |
|            |            |      |      | 3,85                 | 0,0207                                                              | 0,0026                                                  | 7,8523                                                                                                      |
|            |            |      |      | 33,85                | 0,1517                                                              | 0,0231                                                  | 6,5739                                                                                                      |
| Rapport 02 | S03        | 1,50 | 2,00 | 53,85                | 0,2285                                                              | 0,0365                                                  | 6,2531                                                                                                      |
|            |            |      |      | 103,85               | 0,3965                                                              | 0,0697                                                  | 5,6877                                                                                                      |
|            |            |      |      | 183,85               | 0,6020                                                              | 0,1214                                                  | 4,9600                                                                                                      |
|            |            |      |      | 4,22                 | 0,0024                                                              | 0,0022                                                  | 1,0683                                                                                                      |
|            |            |      |      | 34,22                | 0,0143                                                              | 0,0172                                                  | 0,8131                                                                                                      |
| Rapport 03 | S01        | 1,50 | 2,00 | 54,22                | 0,0199                                                              | 0,0269                                                  | 0,7237                                                                                                      |
|            |            |      |      | 104,22               | 0,0304                                                              | 0,0504                                                  | 0,5915                                                                                                      |
|            |            |      |      | 184,22               | 0,0419                                                              | 0,0806                                                  | 0,5138                                                                                                      |
|            |            |      |      | 4,48                 | 0,0082                                                              | 0,0380                                                  | 0,2143                                                                                                      |
|            |            |      |      | 34,48                | 0,0526                                                              | 0,2889                                                  | 0,1822                                                                                                      |
| Rapport 04 | S03        | 1,50 | 2,00 | 54,48                | 0,0776                                                              | 0,4530                                                  | 0,1712                                                                                                      |
|            |            |      |      | 104,48               | 0,1353                                                              | 0,8529                                                  | 0,1587                                                                                                      |
|            |            |      |      | 184,48               | 0,2758                                                              | 1,4558                                                  | 0,1894                                                                                                      |

- Cas d'une Fondation rectangulaire (L/B =2) -

Résultat de l'étude d'influence des dimensions des fondations sur le calcul du tassement oedométrique à partir de l'essai down-hole

| N° Rapport | N° Sondage | D/B  | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)$ (m) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{G}}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{G}} \right)$ |
|------------|------------|------|------|----------------------|-----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|            |            |      |      | 3,76                 | 0,0120                                                    | 0,0188                                                  | 0,6376                                                                                                      |
|            |            |      |      | 33,76                | 0,0762                                                    | 0,1650                                                  | 0,4621                                                                                                      |
| Rapport 05 | S02        | 1,50 | 2,00 | 53,76                | 0,1046                                                    | 0,2587                                                  | 0,4043                                                                                                      |
|            |            |      |      | 103,76               | 0,1704                                                    | 0,4795                                                  | 0,3553                                                                                                      |
|            |            |      |      | 183,76               | 0,2569                                                    | 0,8044                                                  | 0,3194                                                                                                      |
|            |            |      |      | 3,59                 | 0,0254                                                    | 0,0210                                                  | 1,2060                                                                                                      |
|            |            |      |      | 33,59                | 0,1728                                                    | 0,1949                                                  | 0,8868                                                                                                      |
| Rapport 05 | S04        | 1,50 | 2,00 | 53,59                | 0,2394                                                    | 0,3069                                                  | 0,7801                                                                                                      |
|            |            |      |      | 103,59               | 0,3594                                                    | 0,5815                                                  | 0,6182                                                                                                      |
|            |            |      |      | 183,59               | 0,4875                                                    | 0,9940                                                  | 0,4904                                                                                                      |
|            |            |      |      | 5,65                 | 0,0289                                                    | 0,0341                                                  | 0,8473                                                                                                      |
|            |            |      |      | 35,65                | 0,1499                                                    | 0,2113                                                  | 0,7094                                                                                                      |
| Rapport 05 | S08        | 1,50 | 2,00 | 55,65                | 0,2136                                                    | 0,3244                                                  | 0,6585                                                                                                      |
|            |            |      |      | 105,65               | 0,3428                                                    | 0,5980                                                  | 0,5732                                                                                                      |
|            |            |      |      | 185,65               | 0,5015                                                    | 1,0023                                                  | 0,5003                                                                                                      |
|            |            |      |      | 4,63                 | 0,0079                                                    | 0,0040                                                  | 1,9899                                                                                                      |
|            |            |      | 2,00 | 34,63                | 0,0453                                                    | 0,0293                                                  | 1,5454                                                                                                      |
| Rapport 06 | S03        | 1,50 |      | 54,63                | 0,0632                                                    | 0,0457                                                  | 1,3826                                                                                                      |
|            |            |      |      | 104,63               | 0,0968                                                    | 0,0852                                                  | 1,1370                                                                                                      |
|            |            |      |      | 184,63               | 0,1350                                                    | 0,1370                                                  | 0,9852                                                                                                      |
|            |            |      |      | 4,76                 | 0,0062                                                    | 0,0035                                                  | 1,8035                                                                                                      |
|            |            |      |      | 34,76                | 0,0376                                                    | 0,0250                                                  | 1,5080                                                                                                      |
| Rapport 07 | S01        | 1,50 | 2,00 | 54,76                | 0,0542                                                    | 0,0391                                                  | 1,3880                                                                                                      |
|            |            |      |      | 104,76               | 0,0876                                                    | 0,0734                                                  | 1,1931                                                                                                      |
|            |            |      |      | 184,76               | 0,1274                                                    | 0,1262                                                  | 1,0097                                                                                                      |
|            |            |      |      | 4,82                 | 0,0085                                                    | 0,0035                                                  | 2,4400                                                                                                      |
|            |            |      |      | 34,82                | 0,0533                                                    | 0,0250                                                  | 2,1278                                                                                                      |
| Rapport 07 | S03        | 1,50 | 2,00 | 54,82                | 0,0779                                                    | 0,0391                                                  | 1,9890                                                                                                      |
|            |            |      |      | 104,82               | 0,1286                                                    | 0,0735                                                  | 1,7489                                                                                                      |
|            |            |      |      | 184,82               | 0,1909                                                    | 0,1261                                                  | 1,5142                                                                                                      |
|            |            |      |      | 4,01                 | 0,0045                                                    | 0,0009                                                  | 5,0788                                                                                                      |
|            |            |      |      | 34,01                | 0,0286                                                    | 0,0074                                                  | 3,8544                                                                                                      |
| Rapport 08 | S01        | 1,50 | 2,00 | 54,01                | 0,0399                                                    | 0,0117                                                  | 3,4199                                                                                                      |
|            |            | -,   | _,   | 104,01               | 0,0609                                                    | 0,0220                                                  | 2,7759                                                                                                      |
|            |            |      |      | 184,01               | 0,0889                                                    | 0,0375                                                  | 2,3717                                                                                                      |

| N° Rapport | N° Sondage | D/B  | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)(\mathbf{m})$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{G}}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{G}} \right)$ |
|------------|------------|------|------|----------------------|-------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|            |            |      |      | 4,91                 | 0,0011                                                            | 0,0028                                                  | 0,3835                                                                                                      |
|            |            |      |      | 34,91                | 0,0070                                                            | 0,0195                                                  | 0,3579                                                                                                      |
| Rapport 09 | S03        | 1,50 | 2,00 | 54,91                | 0,0105                                                            | 0,0304                                                  | 0,3457                                                                                                      |
|            |            |      |      | 104,91               | 0,0183                                                            | 0,0566                                                  | 0,3235                                                                                                      |
|            |            |      |      | 184,91               | 0,0422                                                            | 0,0913                                                  | 0,4619                                                                                                      |
|            |            |      |      | 4,91                 | 0,0003                                                            | 0,0022                                                  | 0,1619                                                                                                      |
|            |            |      |      | 34,91                | 0,0022                                                            | 0,0150                                                  | 0,1431                                                                                                      |
| Rapport 09 | S04        | 1,50 | 2,00 | 54,91                | 0,0032                                                            | 0,0233                                                  | 0,1355                                                                                                      |
|            |            |      |      | 104,91               | 0,0053                                                            | 0,0432                                                  | 0,1231                                                                                                      |
|            |            |      |      | 184,91               | 0,0081                                                            | 0,0672                                                  | 0,1203                                                                                                      |
|            |            |      |      | 5,74                 | 0,0022                                                            | 0,0036                                                  | 0,6028                                                                                                      |
|            |            |      |      | 35,74                | 0,0647                                                            | 0,0220                                                  | 2,9378                                                                                                      |
| Rapport 09 | S06        | 1,50 | 2,00 | 55,74                | 0,2089                                                            | 0,0340                                                  | 6,1507                                                                                                      |
|            |            |      |      | 105,74               | 0,4701                                                            | 0,0627                                                  | 7,4982                                                                                                      |
|            |            |      |      | 185,74               | 0,7496                                                            | 0,1056                                                  | 7,0981                                                                                                      |
|            |            |      | 2,00 | 3,14                 | 0,0133                                                            | 0,0009                                                  | 15,5180                                                                                                     |
|            |            |      |      | 33,14                | 0,0989                                                            | 0,0090                                                  | 11,0447                                                                                                     |
| Rapport 10 | S04        | 1,50 |      | 53,14                | 0,1417                                                            | 0,0142                                                  | 9,9557                                                                                                      |
|            |            |      |      | 103,14               | 0,2244                                                            | 0,0270                                                  | 8,2992                                                                                                      |
|            |            |      |      | 183,14               | 0,3204                                                            | 0,0465                                                  | 6,8844                                                                                                      |
|            |            |      |      | 3,68                 | 0,0173                                                            | 0,0010                                                  | 17,3100                                                                                                     |
|            |            |      |      | 33,68                | 0,1307                                                            | 0,0090                                                  | 14,4740                                                                                                     |
| Rapport 10 | S05        | 1,50 | 2,00 | 53,68                | 0,1959                                                            | 0,0143                                                  | 13,7164                                                                                                     |
|            |            |      |      | 103,68               | 0,3497                                                            | 0,0270                                                  | 12,9356                                                                                                     |
|            |            |      |      | 183,68               | 0,5319                                                            | 0,0465                                                  | 11,4510                                                                                                     |
|            |            |      |      | 3,37                 | 0,0088                                                            | 0,0018                                                  | 4,8297                                                                                                      |
|            |            |      |      | 33,37                | 0,0773                                                            | 0,0178                                                  | 4,3451                                                                                                      |
| Rapport 10 | S06        | 1,50 | 2,00 | 53,37                | 0,1198                                                            | 0,0283                                                  | 4,2391                                                                                                      |
|            |            |      |      | 103,37               | 0,2151                                                            | 0,0539                                                  | 3,9942                                                                                                      |
|            |            |      |      | 183,37               | 0,3280                                                            | 0,0932                                                  | 3,5215                                                                                                      |
|            |            |      |      | 5,18                 | 0,0177                                                            | 0,0010                                                  | 17,7355                                                                                                     |
|            |            |      |      | 35,18                | 0,1139                                                            | 0,0067                                                  | 17,0750                                                                                                     |
| Rapport 10 | S07        | 1,50 | 2,00 | 55,18                | 0,1833                                                            | 0,0104                                                  | 17,7121                                                                                                     |
| **         |            |      |      | 105,18               | 0,3713                                                            | 0,0193                                                  | 19,2878                                                                                                     |
|            |            |      |      | 185,18               | 0,6013                                                            | 0,0326                                                  | 18,4275                                                                                                     |

| N° Rapport | N° Sondage | D/B    | L/B   | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{c}^{\mathbf{Oed}}\right)\left(\mathbf{m}\right)$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{G}}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{G}} \right)$ |
|------------|------------|--------|-------|----------------------|---------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|            |            |        |       | 6,73                 | 0,0271                                                              | 0,0131                                                  | 2,0680                                                                                                      |
|            |            |        |       | 36,73                | 0,1212                                                              | 0,0703                                                  | 1,7233                                                                                                      |
| Rapport 01 | S03        | 1,50   | 10,00 | 56,73                | 0,1703                                                              | 0,1076                                                  | 1,5831                                                                                                      |
|            |            |        |       | 106,73               | 0,2752                                                              | 0,1909                                                  | 1,4417                                                                                                      |
|            |            |        |       | 186,73               | 0,4244                                                              | 0,3130                                                  | 1,3560                                                                                                      |
|            |            |        |       | 3,98                 | 0,0065                                                              | 0,0078                                                  | 0,8335                                                                                                      |
|            |            |        |       | 33,98                | 0,0420                                                              | 0,0654                                                  | 0,6422                                                                                                      |
| Rapport 01 | S04        | 1,50   | 10,00 | 53,98                | 0,0595                                                              | 0,1030                                                  | 0,5778                                                                                                      |
|            |            |        |       | 103,98               | 0,0955                                                              | 0,1892                                                  | 0,5048                                                                                                      |
|            |            |        |       | 183,98               | 0,1701                                                              | 0,3160                                                  | 0,5383                                                                                                      |
|            |            |        |       | 6,14                 | 0,0387                                                              | 0,0030                                                  | 12,7723                                                                                                     |
|            | S02        | 2 1,50 | 10,00 | 36,14                | 0,1844                                                              | 0,0177                                                  | 10,4304                                                                                                     |
| Rapport 02 |            |        |       | 56,14                | 0,2608                                                              | 0,0273                                                  | 9,5454                                                                                                      |
|            |            |        |       | 106,14               | 0,4175                                                              | 0,0510                                                  | 8,1865                                                                                                      |
|            |            |        |       | 186,14               | 0,6193                                                              | 0,0877                                                  | 7,0596                                                                                                      |
|            |            |        |       | 3,85                 | 0,0218                                                              | 0,0028                                                  | 7,7580                                                                                                      |
|            |            |        |       | 33,85                | 0,1609                                                              | 0,0246                                                  | 6,5439                                                                                                      |
| Rapport 02 | S03        | 1,50   | 10,00 | 53,85                | 0,2427                                                              | 0,0389                                                  | 6,2329                                                                                                      |
|            |            |        |       | 103,85               | 0,4216                                                              | 0,0743                                                  | 5,6721                                                                                                      |
|            |            |        |       | 183,85               | 0,6414                                                              | 0,1295                                                  | 4,9537                                                                                                      |
|            |            |        |       | 4,22                 | 0,0025                                                              | 0,0023                                                  | 1,0733                                                                                                      |
|            |            |        |       | 34,22                | 0,0151                                                              | 0,0185                                                  | 0,8154                                                                                                      |
| Rapport 03 | S01        | 1,50   | 10,00 | 54,22                | 0,0211                                                              | 0,0291                                                  | 0,7244                                                                                                      |
|            |            |        |       | 104,22               | 0,0321                                                              | 0,0545                                                  | 0,5885                                                                                                      |
|            |            |        |       | 184,22               | 0,0441                                                              | 0,0878                                                  | 0,5026                                                                                                      |
|            |            |        |       | 4,48                 | 0,0089                                                              | 0,0444                                                  | 0,2014                                                                                                      |
|            |            |        |       | 34,48                | 0,0589                                                              | 0,3377                                                  | 0,1746                                                                                                      |
| Rapport 04 | S03        | 1,50   | 10,00 | 54,48                | 0,0878                                                              | 0,5298                                                  | 0,1657                                                                                                      |
|            |            | y      |       | 104,48               | 0,1573                                                              | 0,9991                                                  | 0,1574                                                                                                      |
|            |            |        |       | 184,48               | 0,3148                                                              | 1,7112                                                  | 0,1840                                                                                                      |

- Cas d'une Fondation filante (L/B =10) -

Résultat de l'étude d'influence des dimensions des fondations sur le calcul du tassement oedométrique à partir de l'essai down-hole

| N° Rapport | N° Sondage | D/B  | L/B   | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)(\mathbf{m})$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{G}}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{G}} \right)$ |
|------------|------------|------|-------|----------------------|-------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|            |            |      |       | 3,76                 | 0,0122                                                            | 0,0198                                                  | 0,6595                                                                                                      |
|            |            |      |       | 33,76                | 0,0779                                                            | 0,1740                                                  | 0,4783                                                                                                      |
| Rapport 05 | S02        | 1,50 | 10,00 | 53,76                | 0,1071                                                            | 0,2729                                                  | 0,4179                                                                                                      |
|            |            |      |       | 103,76               | 0,1745                                                            | 0,5064                                                  | 0,3704                                                                                                      |
|            |            |      |       | 183,76               | 0,2627                                                            | 0,8509                                                  | 0,3366                                                                                                      |
|            |            |      |       | 3,59                 | 0,0256                                                            | 0,0241                                                  | 1,0605                                                                                                      |
|            |            |      |       | 33,59                | 0,1747                                                            | 0,2238                                                  | 0,7807                                                                                                      |
| Rapport 05 | S04        | 1,50 | 10,00 | 53,59                | 0,2422                                                            | 0,3528                                                  | 0,6863                                                                                                      |
|            |            |      |       | 103,59               | 0,3640                                                            | 0,6695                                                  | 0,5437                                                                                                      |
|            |            |      |       | 183,59               | 0,4941                                                            | 1,1474                                                  | 0,4306                                                                                                      |
|            |            |      |       | 5,65                 | 0,0308                                                            | 0,0366                                                  | 0,8413                                                                                                      |
|            |            |      |       | 35,65                | 0,1609                                                            | 0,2272                                                  | 0,7083                                                                                                      |
| Rapport 05 | S08        | 1,50 | 10,00 | 55,65                | 0,2301                                                            | 0,3491                                                  | 0,6590                                                                                                      |
|            |            |      |       | 105,65               | 0,3712                                                            | 0,6443                                                  | 0,5761                                                                                                      |
|            |            |      |       | 185,65               | 0,5473                                                            | 1,0819                                                  | 0,5058                                                                                                      |
|            |            |      | 10,00 | 5,18                 | 0,0196                                                            | 0,0011                                                  | 18,6571                                                                                                     |
|            |            |      |       | 35,18                | 0,1263                                                            | 0,0070                                                  | 17,9644                                                                                                     |
| Rapport 06 | S03        | 1,50 |       | 55,18                | 0,2019                                                            | 0,0109                                                  | 18,5096                                                                                                     |
|            |            |      |       | 105,18               | 0,4025                                                            | 0,0203                                                  | 19,8188                                                                                                     |
|            |            |      |       | 185,18               | 0,6479                                                            | 0,0345                                                  | 18,7963                                                                                                     |
|            |            |      |       | 4,76                 | 0,0068                                                            | 0,0037                                                  | 1,8324                                                                                                      |
|            |            |      |       | 34,76                | 0,0411                                                            | 0,0267                                                  | 1,5359                                                                                                      |
| Rapport 07 | S01        | 1,50 | 10,00 | 54,76                | 0,0592                                                            | 0,0418                                                  | 1,4140                                                                                                      |
|            |            |      |       | 104,76               | 0,0953                                                            | 0,0787                                                  | 1,2097                                                                                                      |
|            |            |      |       | 184,76               | 0,1383                                                            | 0,1354                                                  | 1,0211                                                                                                      |
|            |            |      |       | 4,82                 | 0,0092                                                            | 0,0036                                                  | 2,5344                                                                                                      |
|            |            |      |       | 34,82                | 0,0575                                                            | 0,0260                                                  | 2,2141                                                                                                      |
| Rapport 07 | S03        | 1,50 | 10,00 | 54,82                | 0,0840                                                            | 0,0406                                                  | 2,0705                                                                                                      |
|            |            |      |       | 104,82               | 0,1388                                                            | 0,0763                                                  | 1,8198                                                                                                      |
|            |            |      |       | 184,82               | 0,2058                                                            | 0,1309                                                  | 1,5730                                                                                                      |
|            |            |      |       | 4,01                 | 0,0048                                                            | 0,0010                                                  | 4,8028                                                                                                      |
|            |            |      |       | 34,01                | 0,0302                                                            | 0,0083                                                  | 3,6518                                                                                                      |
| Rapport 08 | S01        | 1,50 | 10,00 | 54,01                | 0,0422                                                            | 0,0130                                                  | 3,2389                                                                                                      |
|            |            |      | - ,   | 104,01               | 0,0644                                                            | 0,0245                                                  | 2,6237                                                                                                      |
|            |            |      |       | 184,01               | 0,0939                                                            | 0,0420                                                  | 2,2370                                                                                                      |

| N° Rapport | N° Sondage | D/B  | L/B   | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)(\mathbf{m})$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{G}}\right)$ (m) | $\mathbf{r} = \left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{G}}\right)$ |
|------------|------------|------|-------|----------------------|-------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|            |            |      |       | 4,91                 | 0,0013                                                            | 0,0030                                                  | 0,4478                                                                                                    |
|            |            |      |       | 34,91                | 0,0086                                                            | 0,0208                                                  | 0,4153                                                                                                    |
| Rapport 09 | S03        | 1,50 | 10,00 | 54,91                | 0,0130                                                            | 0,0324                                                  | 0,4003                                                                                                    |
|            |            |      |       | 104,91               | 0,0224                                                            | 0,0603                                                  | 0,3718                                                                                                    |
|            |            |      |       | 184,91               | 0,0535                                                            | 0,0977                                                  | 0,5476                                                                                                    |
|            |            |      |       | 4,91                 | 0,0004                                                            | 0,0022                                                  | 0,1884                                                                                                    |
|            |            |      |       | 34,91                | 0,0026                                                            | 0,0156                                                  | 0,1674                                                                                                    |
| Rapport 09 | S04        | 1,50 | 10,00 | 54,91                | 0,0038                                                            | 0,0242                                                  | 0,1582                                                                                                    |
|            |            |      |       | 104,91               | 0,0064                                                            | 0,0448                                                  | 0,1430                                                                                                    |
|            |            |      |       | 184,91               | 0,0114                                                            | 0,0701                                                  | 0,1625                                                                                                    |
|            |            |      |       | 5,74                 | 0,0029                                                            | 0,0038                                                  | 0,7660                                                                                                    |
|            |            |      |       | 35,74                | 0,0777                                                            | 0,0230                                                  | 3,3810                                                                                                    |
| Rapport 09 | S06        | 1,50 | 10,00 | 55,74                | 0,2269                                                            | 0,0355                                                  | 6,3976                                                                                                    |
|            |            |      | [     | 105,74               | 0,4968                                                            | 0,0655                                                  | 7,5869                                                                                                    |
|            |            |      |       | 185,74               | 0,7849                                                            | 0,1104                                                  | 7,1101                                                                                                    |
|            |            |      | 10,00 | 3,14                 | 0,0138                                                            | 0,0009                                                  | 14,9837                                                                                                   |
|            |            |      |       | 33,14                | 0,1033                                                            | 0,0096                                                  | 10,7594                                                                                                   |
| Rapport 10 | S04        | 1,50 |       | 53,14                | 0,1484                                                            | 0,0153                                                  | 9,7164                                                                                                    |
|            |            |      |       | 103,14               | 0,2360                                                            | 0,0291                                                  | 8,1198                                                                                                    |
|            |            |      |       | 183,14               | 0,3381                                                            | 0,0501                                                  | 6,7495                                                                                                    |
|            |            |      |       | 3,68                 | 0,0180                                                            | 0,0011                                                  | 17,1714                                                                                                   |
|            |            |      |       | 33,68                | 0,1369                                                            | 0,0095                                                  | 14,3901                                                                                                   |
| Rapport 10 | S05        | 1,50 | 10,00 | 53,68                | 0,2051                                                            | 0,0150                                                  | 13,6487                                                                                                   |
|            |            |      |       | 103,68               | 0,3652                                                            | 0,0285                                                  | 12,8268                                                                                                   |
|            |            |      |       | 183,68               | 0,5549                                                            | 0,0490                                                  | 11,3289                                                                                                   |
|            |            |      |       | 3,37                 | 0,0094                                                            | 0,0019                                                  | 4,8402                                                                                                    |
|            |            |      |       | 33,37                | 0,0829                                                            | 0,0190                                                  | 4,3593                                                                                                    |
| Rapport 10 | S06        | 1,50 | 10,00 | 53,37                | 0,1283                                                            | 0,0302                                                  | 4,2474                                                                                                    |
|            |            |      |       | 103,37               | 0,2296                                                            | 0,0576                                                  | 3,9877                                                                                                    |
|            |            |      |       | 183,37               | 0,3500                                                            | 0,0997                                                  | 3,5112                                                                                                    |
|            |            |      |       | 5,18                 | 0,0196                                                            | 0,0011                                                  | 18,6571                                                                                                   |
|            |            |      |       | 35,18                | 0,1263                                                            | 0,0070                                                  | 17,9644                                                                                                   |
| Rapport 10 | S07        | 1,50 | 10,00 | 55,18                | 0,2019                                                            | 0,0109                                                  | 18,5096                                                                                                   |
|            |            | y    |       | 105,18               | 0,4025                                                            | 0,0203                                                  | 19,8188                                                                                                   |
|            |            |      |       | 185,18               | 0,6479                                                            | 0,0345                                                  | 18,7963                                                                                                   |

| N° Rapport | N° Sondage | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{c}^{\mathbf{Oed}}\right)(\mathbf{m})$ | $\left(\mathbf{S}_{c}^{CPT}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{c}^{Oed} / \mathbf{S}_{c}^{CPT} \right)$ |
|------------|------------|----------------------|----------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|
|            |            | 7,57                 | 0,0143                                                   | 0,0029                                  | 4,9895                                                                    |
|            | S01        | 37,57                | 0,0664                                                   | 0,0183                                  | 3,6364                                                                    |
| Rapport 01 |            | 57,57                | 0,0901                                                   | 0,0284                                  | 3,1774                                                                    |
|            | CPT 09     | 107,57               | 0,1334                                                   | 0,0530                                  | 2,5192                                                                    |
|            |            | 187,57               | 0,1830                                                   | 0,0902                                  | 2,0304                                                                    |
|            |            | 7,57                 | 0,0109                                                   | 0,0010                                  | 10,7255                                                                   |
|            | S01        | 37,57                | 0,0501                                                   | 0,0065                                  | 7,7149                                                                    |
| Rapport 01 |            | 57,57                | 0,0675                                                   | 0,0100                                  | 6,7201                                                                    |
|            | CPT 18     | 107,57               | 0,0987                                                   | 0,0187                                  | 5,2889                                                                    |
|            |            | 187,57               | 0,1324                                                   | 0,0317                                  | 4,1792                                                                    |
|            |            | 7,57                 | 0,0109                                                   | 0,0019                                  | 5,9135                                                                    |
|            | S01        | 37,57                | 0,0501                                                   | 0,0118                                  | 4,2613                                                                    |
| Rapport 01 |            | 57,57                | 0,0675                                                   | 0,0182                                  | 3,7092                                                                    |
|            | CPT 19     | 107,57               | 0,0987                                                   | 0,0338                                  | 2,9198                                                                    |
|            |            | 187,57               | 0,1324                                                   | 0,0574                                  | 2,3069                                                                    |
|            |            | 5,5                  | 0,0082                                                   | 0,0030                                  | 2,7162                                                                    |
|            | S02        | 35,5                 | 0,0681                                                   | 0,0323                                  | 2,1087                                                                    |
| Rapport 01 |            | 55,5                 | 0,0974                                                   | 0,0515                                  | 1,8903                                                                    |
|            | CPT 04     | 105,5                | 0,1548                                                   | 0,0985                                  | 1,5705                                                                    |
|            |            | 185,5                | 0,2231                                                   | 0,1685                                  | 1,3235                                                                    |
|            |            | 5,5                  | 0,0070                                                   | 0,0022                                  | 3,1719                                                                    |
|            | S02        | 35,5                 | 0,0567                                                   | 0,0234                                  | 2,4189                                                                    |
| Rapport 01 |            | 55,5                 | 0,0802                                                   | 0,0373                                  | 2,1498                                                                    |
|            | CPT 05     | 105,5                | 0,1246                                                   | 0,0712                                  | 1,7504                                                                    |
|            |            | 185,5                | 0,1749                                                   | 0,1189                                  | 1,4712                                                                    |
|            |            | 5,5                  | 0,0070                                                   | 0,0025                                  | 2,8153                                                                    |
|            | S02        | 35,5                 | 0,0567                                                   | 0,0265                                  | 2,1437                                                                    |
| Rapport 01 |            | 55,5                 | 0,0802                                                   | 0,0421                                  | 1,9043                                                                    |
|            | CPT 06     | 105,5                | 0,1246                                                   | 0,0804                                  | 1,5502                                                                    |
|            |            | 185,5                | 0,1749                                                   | 0.1323                                  | 1.3226                                                                    |

Résultat de l'étude comparative entre le tassement oedométrique et le tassement oedométrique calculé à partir de l'essai CPT

| N° Rapport | N° Sondage | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)(\mathbf{m})$ | $\left(\mathbf{S}_{c}^{CPT}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}} \right)$ |
|------------|------------|----------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|
|            |            | 5,5                  | 0,0082                                                            | 0,0028                                  | 2,9498                                                                                                        |
|            | S02        | 35,5                 | 0,0681                                                            | 0,0296                                  | 2,2996                                                                                                        |
| Rapport 01 |            | 55,5                 | 0,0974                                                            | 0,0472                                  | 2,0634                                                                                                        |
|            | CPT 11     | 105,5                | 0,1548                                                            | 0,0901                                  | 1,7176                                                                                                        |
|            |            | 185,5                | 0,2231                                                            | 0,1513                                  | 1,4744                                                                                                        |
|            |            | 4,84                 | 0,0046                                                            | 0,0021                                  | 2,2293                                                                                                        |
|            | S03        | 34,84                | 0,0488                                                            | 0,0283                                  | 1,7270                                                                                                        |
| Rapport 01 |            | 54,84                | 0,0702                                                            | 0,0454                                  | 1,5444                                                                                                        |
|            | CPT 16     | 104,84               | 0,1108                                                            | 0,0865                                  | 1,2807                                                                                                        |
|            |            | 184,84               | 0,1571                                                            | 0,1442                                  | 1,0900                                                                                                        |
|            |            | 4,84                 | 0,0028                                                            | 0,0005                                  | 5,4721                                                                                                        |
|            | S03        | 34,84                | 0,0293                                                            | 0,0072                                  | 4,0922                                                                                                        |
| Rapport 01 |            | 54,84                | 0,0415                                                            | 0,0115                                  | 3,6113                                                                                                        |
|            | CPT 17     | 104,84               | 0,0641                                                            | 0,0220                                  | 2,9123                                                                                                        |
|            |            | 184,84               | 0,0889                                                            | 0,0380                                  | 2,3418                                                                                                        |
|            |            | 5,86                 | 0,0073                                                            | 0,0083                                  | 0,8777                                                                                                        |
|            | S01        | 35,86                | 0,0555                                                            | 0,0790                                  | 0,7025                                                                                                        |
| Rapport 02 |            | 55,86                | 0,0806                                                            | 0,1254                                  | 0,6432                                                                                                        |
|            | CPT 02'    | 105,86               | 0,1355                                                            | 0,2383                                  | 0,5685                                                                                                        |
|            |            | 185,86               | 0,2242                                                            | 0,4081                                  | 0,5494                                                                                                        |
|            |            | 4,64                 | 0,0064                                                            | 0,0014                                  | 4,4097                                                                                                        |
|            | S01        | 34,64                | 0,0332                                                            | 0,0105                                  | 3,1627                                                                                                        |
| Rapport 03 |            | 54,64                | 0,0450                                                            | 0,0164                                  | 2,7500                                                                                                        |
|            | CPT 01     | 104,64               | 0,0658                                                            | 0,0303                                  | 2,1681                                                                                                        |
|            |            | 184,64               | 0,0875                                                            | 0,0474                                  | 1,8488                                                                                                        |
|            |            | 4,64                 | 0,0070                                                            | 0,0021                                  | 3,3445                                                                                                        |
|            | S01        | 34,64                | 0,0367                                                            | 0,0153                                  | 2,3983                                                                                                        |
| Rapport 03 |            | 54,64                | 0,0497                                                            | 0,0238                                  | 2,0848                                                                                                        |
|            | CPT 02     | 104,64               | 0,0727                                                            | 0,0424                                  | 1,7144                                                                                                        |
|            |            | 184,64               | 0,0970                                                            | 0,0698                                  | 1,3887                                                                                                        |
|            |            | 4,81                 | 0,0046                                                            | 0,0041                                  | 1,1432                                                                                                        |
|            | S02        | 34,81                | 0,0339                                                            | 0,0288                                  | 1,1777                                                                                                        |
| Rapport 03 | Γ          | 54,81                | 0,0505                                                            | 0,0444                                  | 1,1373                                                                                                        |
|            | CPT 06     | 104,81               | 0,0815                                                            | 0,0800                                  | 1,0193                                                                                                        |
|            |            | 184,81               | 0,1160                                                            | 0,1320                                  | 0,8788                                                                                                        |

| N° Rapport | N° Sondage | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)(\mathbf{m})$ | $\left(\mathbf{S}_{c}^{CPT}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{c}^{\mathbf{Oed}} / \mathbf{S}_{c}^{\mathbf{CPT}} \right)$ |
|------------|------------|----------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|
|            |            | 4,81                 | 0,0049                                                            | 0,0042                                  | 1,1703                                                                                      |
|            | S02        | 34,81                | 0,0357                                                            | 0,0297                                  | 1,2009                                                                                      |
| Rapport 03 | [          | 54,81                | 0,0530                                                            | 0,0458                                  | 1,1571                                                                                      |
|            | CPT 07     | 104,81               | 0,0855                                                            | 0,0825                                  | 1,0355                                                                                      |
|            |            | 184,81               | 0,1216                                                            | 0,1357                                  | 0,8966                                                                                      |
|            |            | 5,44                 | 0,0138                                                            | 0,0020                                  | 6,9146                                                                                      |
|            | S03        | 35,44                | 0,0634                                                            | 0,0128                                  | 4,9679                                                                                      |
| Rapport 03 |            | 55,44                | 0,0854                                                            | 0,0198                                  | 4,3180                                                                                      |
|            | CPT 08     | 105,44               | 0,1246                                                            | 0,0353                                  | 3,5340                                                                                      |
|            |            | 185,44               | 0,1659                                                            | 0,0582                                  | 2,8489                                                                                      |
|            |            | 5,94                 | 0,0040                                                            | 0,0009                                  | 4,3469                                                                                      |
|            | S01        | 33,94                | 0,0292                                                            | 0,0087                                  | 3,3792                                                                                      |
| Rapport 04 |            | 53,94                | 0,0424                                                            | 0,0141                                  | 3,0071                                                                                      |
|            | CPT 02     | 103,94               | 0,0676                                                            | 0,0274                                  | 2,4684                                                                                      |
|            |            | 183,94               | 0,0990                                                            | 0,0464                                  | 2,1318                                                                                      |
|            |            | 5,09                 | 0,0016                                                            | 0,0009                                  | 1,7517                                                                                      |
|            | S02        | 35,09                | 0,0148                                                            | 0,0112                                  | 1,3241                                                                                      |
| Rapport 04 |            | 55,09                | 0,0211                                                            | 0,0179                                  | 1,1781                                                                                      |
|            | CPT 08     | 105,09               | 0,0333                                                            | 0,0345                                  | 0,9657                                                                                      |
|            |            | 185,09               | 0,0510                                                            | 0,0584                                  | 0,8738                                                                                      |
|            |            | 6,07                 | 0,0024                                                            | 0,0007                                  | 3,4393                                                                                      |
|            | S03        | 33,07                | 0,0173                                                            | 0,0064                                  | 2,7074                                                                                      |
| Rapport 04 |            | 53,07                | 0,0254                                                            | 0,0106                                  | 2,4114                                                                                      |
|            | CPT 14     | 103,07               | 0,0410                                                            | 0,0207                                  | 1,9788                                                                                      |
|            |            | 183,07               | 0,0592                                                            | 0,0353                                  | 1,6757                                                                                      |
|            |            | 4,00                 | 0,0043                                                            | 0,0002                                  | 26,0843                                                                                     |
|            | S01        | 34,00                | 0,0576                                                            | 0,0026                                  | 21,9924                                                                                     |
| Rapport 05 |            | 54,00                | 0,0865                                                            | 0,0042                                  | 20,4563                                                                                     |
|            | CPT 01     | 104,00               | 0,1491                                                            | 0,0081                                  | 18,3370                                                                                     |
|            |            | 184,00               | 0,2338                                                            | 0,0141                                  | 16,5780                                                                                     |
|            |            | 3,95                 | 0,0024                                                            | 0,0042                                  | 0,5649                                                                                      |
|            | S03        | 33,95                | 0,0465                                                            | 0,0991                                  | 0,4694                                                                                      |
| Rapport 05 |            | 53,95                | 0,0696                                                            | 0,1606                                  | 0,4332                                                                                      |
| **         | CPT 02     | 103,95               | 0,1163                                                            | 0,3077                                  | 0,3778                                                                                      |
|            |            | 183,95               | 0,1738                                                            | 0,5251                                  | 0,3311                                                                                      |

| N° Rapport | N° Sondage | $\mathbf{Q}_{\mathbf{p}}\left(\mathbf{kPa} ight)$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)$ (m) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}}\right)$ (m) | $\mathbf{r} = \left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}}\right)$ |
|------------|------------|---------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|            |            | 1,57                                              | 0,0013                                                    | 0,0010                                                    | 1,3973                                                                                                      |
|            | S04        | 31,57                                             | 0,0604                                                    | 0,0533                                                    | 1,1341                                                                                                      |
| Rapport 05 |            | 51,57                                             | 0,0925                                                    | 0,0902                                                    | 1,0252                                                                                                      |
|            | CPT 04     | 101,57                                            | 0,1555                                                    | 0,1785                                                    | 0,8708                                                                                                      |
|            |            | 181,57                                            | 0,2390                                                    | 0,3136                                                    | 0,7622                                                                                                      |
|            |            | 3,02                                              | 0,0004                                                    | 0,0006                                                    | 0,6156                                                                                                      |
|            | S05        | 33,02                                             | 0,0409                                                    | 0,0835                                                    | 0,4894                                                                                                      |
| Rapport 05 |            | 53,02                                             | 0,0609                                                    | 0,1378                                                    | 0,4421                                                                                                      |
|            | CPT 05     | 103,02                                            | 0,0998                                                    | 0,2695                                                    | 0,3701                                                                                                      |
|            |            | 183,02                                            | 0,1450                                                    | 0,4676                                                    | 0,3100                                                                                                      |
|            |            | 4,81                                              | 0,0003                                                    | 0,0061                                                    | 0,0472                                                                                                      |
|            | S01        | 34,81                                             | 0,0037                                                    | 0,0856                                                    | 0,0436                                                                                                      |
| Rapport 06 |            | 54,81                                             | 0,0058                                                    | 0,1373                                                    | 0,0421                                                                                                      |
|            | CPT 01     | 104,81                                            | 0,0103                                                    | 0,2620                                                    | 0,0394                                                                                                      |
|            |            | 184,81                                            | 0,0221                                                    | 0,4506                                                    | 0,0491                                                                                                      |
|            |            | 5,81                                              | 0,0012                                                    | 0,0045                                                    | 0,2673                                                                                                      |
|            | S01        | 35,81                                             | 0,0092                                                    | 0,0430                                                    | 0,2133                                                                                                      |
| Rapport 06 |            | 55,81                                             | 0,0132                                                    | 0,0680                                                    | 0,1942                                                                                                      |
|            | CPT 02     | 105,81                                            | 0,0214                                                    | 0,1286                                                    | 0,1665                                                                                                      |
|            |            | 185,81                                            | 0,0375                                                    | 0,2188                                                    | 0,1715                                                                                                      |

Résultat de l'étude d'influence des dimensions des fondations sur le calcul du tassement oedométrique à partir de l'essai CPT

| N° Rapport | N° Sondage | D/B           | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)$ (m) | $\left(\mathbf{S}_{c}^{CPT}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}} \right)$ |
|------------|------------|---------------|------|----------------------|-----------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|
|            |            |               |      | 7,57                 | 0,0143                                                    | 0,0029                                  | 4,9895                                                                                                        |
|            | S01        |               |      | 37,57                | 0,0664                                                    | 0,0183                                  | 3,6364                                                                                                        |
| Rapport 01 |            | 1,50          | 1,00 | 57,57                | 0,0901                                                    | 0,0284                                  | 3,1774                                                                                                        |
|            | CPT 09     |               |      | 107,57               | 0,1334                                                    | 0,0530                                  | 2,5192                                                                                                        |
|            |            |               |      | 187,57               | 0,1830                                                    | 0,0902                                  | 2,0304                                                                                                        |
|            |            |               |      | 7,57                 | 0,0109                                                    | 0,0010                                  | 10,7255                                                                                                       |
|            | S01        |               |      | 37,57                | 0,0501                                                    | 0,0065                                  | 7,7149                                                                                                        |
| Rapport 01 |            | 1,50          | 1,00 | 57,57                | 0,0675                                                    | 0,0100                                  | 6,7201                                                                                                        |
|            | CPT 18     |               |      | 107,57               | 0,0987                                                    | 0,0187                                  | 5,2889                                                                                                        |
|            |            |               |      | 187,57               | 0,1324                                                    | 0,0317                                  | 4,1792                                                                                                        |
|            |            | S01<br>CPT 19 |      | 7,57                 | 0,0109                                                    | 0,0019                                  | 5,9135                                                                                                        |
|            | S01        |               |      | 37,57                | 0,0501                                                    | 0,0118                                  | 4,2613                                                                                                        |
| Rapport 01 |            |               | 1,00 | 57,57                | 0,0675                                                    | 0,0182                                  | 3,7092                                                                                                        |
|            | CPT 19     |               |      | 107,57               | 0,0987                                                    | 0,0338                                  | 2,9198                                                                                                        |
|            |            |               |      | 187,57               | 0,1324                                                    | 0,0574                                  | 2,3069                                                                                                        |
|            |            | 02            |      | 5,5                  | 0,0082                                                    | 0,0030                                  | 2,7162                                                                                                        |
|            | S02        |               |      | 35,5                 | 0,0681                                                    | 0,0323                                  | 2,1087                                                                                                        |
| Rapport 01 |            | 1,50          | 1,00 | 55,5                 | 0,0974                                                    | 0,0515                                  | 1,8903                                                                                                        |
|            | CPT 04     |               |      | 105,5                | 0,1548                                                    | 0,0985                                  | 1,5705                                                                                                        |
|            |            |               |      | 185,5                | 0,2231                                                    | 0,1685                                  | 1,3235                                                                                                        |
|            |            |               |      | 5,5                  | 0,0070                                                    | 0,0022                                  | 3,1719                                                                                                        |
|            | S02        |               |      | 35,5                 | 0,0567                                                    | 0,0234                                  | 2,4189                                                                                                        |
| Rapport 01 |            | 1,50          | 1,00 | 55,5                 | 0,0802                                                    | 0,0373                                  | 2,1498                                                                                                        |
|            | CPT 05     |               |      | 105,5                | 0,1246                                                    | 0,0712                                  | 1,7504                                                                                                        |
|            |            |               |      | 185,5                | 0,1749                                                    | 0,1189                                  | 1,4712                                                                                                        |
|            |            |               |      | 5,5                  | 0,0070                                                    | 0,0025                                  | 2,8153                                                                                                        |
|            | S02        |               |      | 35,5                 | 0,0567                                                    | 0,0265                                  | 2,1437                                                                                                        |
| Rapport 01 |            | 1,50          | 1,00 | 55,5                 | 0,0802                                                    | 0,0421                                  | 1,9043                                                                                                        |
|            | CPT 06     |               |      | 105,5                | 0,1246                                                    | 0,0804                                  | 1,5502                                                                                                        |
|            |            |               |      | 185,5                | 0,1749                                                    | 0,1323                                  | 1,3226                                                                                                        |

- Cas d'une Fondation carrée (L/B =1) -

| N° Rapport | N° Sondage | D/B  | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{c}^{\mathbf{Oed}}\right)\left(\mathbf{m}\right)$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}}\right)\left(\mathbf{m}\right)$ | $\mathbf{r} = \left( \mathbf{S}_{c}^{\mathbf{Oed}} / \mathbf{S}_{c}^{\mathbf{CPT}} \right)$ |
|------------|------------|------|------|----------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|            |            |      |      | 5,5                  | 0,0082                                                              | 0,0028                                                                       | 2,9498                                                                                      |
|            | S02        |      |      | 35,5                 | 0,0681                                                              | 0,0296                                                                       | 2,2996                                                                                      |
| Rapport 01 |            | 1,50 | 1,00 | 55,5                 | 0,0974                                                              | 0,0472                                                                       | 2,0634                                                                                      |
|            | CPT 11     |      |      | 105,5                | 0,1548                                                              | 0,0901                                                                       | 1,7176                                                                                      |
|            |            |      |      | 185,5                | 0,2231                                                              | 0,1513                                                                       | 1,4744                                                                                      |
|            |            |      |      | 4,84                 | 0,0046                                                              | 0,0021                                                                       | 2,2293                                                                                      |
|            | S03        |      |      | 34,84                | 0,0488                                                              | 0,0283                                                                       | 1,7270                                                                                      |
| Rapport 01 |            | 1,50 | 1,00 | 54,84                | 0,0702                                                              | 0,0454                                                                       | 1,5444                                                                                      |
|            | CPT 16     |      |      | 104,84               | 0,1108                                                              | 0,0865                                                                       | 1,2807                                                                                      |
|            |            |      |      | 184,84               | 0,1571                                                              | 0,1442                                                                       | 1,0900                                                                                      |
|            |            |      |      | 4,84                 | 0,0028                                                              | 0,0005                                                                       | 5,4721                                                                                      |
|            | S03        |      |      | 34,84                | 0,0293                                                              | 0,0072                                                                       | 4,0922                                                                                      |
| Rapport 01 |            | 1,50 | 1,00 | 54,84                | 0,0415                                                              | 0,0115                                                                       | 3,6113                                                                                      |
|            | CPT 17     |      |      | 104,84               | 0,0641                                                              | 0,0220                                                                       | 2,9123                                                                                      |
|            |            |      |      | 184,84               | 0,0889                                                              | 0,0380                                                                       | 2,3418                                                                                      |
|            |            |      |      | 5,86                 | 0,0073                                                              | 0,0083                                                                       | 0,8777                                                                                      |
|            | S01        |      |      | 35,86                | 0,0555                                                              | 0,0790                                                                       | 0,7025                                                                                      |
| Rapport 02 |            | 1,50 | 1,00 | 55,86                | 0,0806                                                              | 0,1254                                                                       | 0,6432                                                                                      |
|            | CPT 02'    |      |      | 105,86               | 0,1355                                                              | 0,2383                                                                       | 0,5685                                                                                      |
|            |            |      |      | 185,86               | 0,2242                                                              | 0,4081                                                                       | 0,5494                                                                                      |
|            |            | 1,50 |      | 4,64                 | 0,0064                                                              | 0,0014                                                                       | 4,4097                                                                                      |
|            | S01        |      |      | 34,64                | 0,0332                                                              | 0,0105                                                                       | 3,1627                                                                                      |
| Rapport 03 |            |      | 1,00 | 54,64                | 0,0450                                                              | 0,0164                                                                       | 2,7500                                                                                      |
|            | CPT 01     |      |      | 104,64               | 0,0658                                                              | 0,0303                                                                       | 2,1681                                                                                      |
|            |            |      |      | 184,64               | 0,0875                                                              | 0,0474                                                                       | 1,8488                                                                                      |
|            |            |      |      | 4,64                 | 0,0070                                                              | 0,0021                                                                       | 3,3445                                                                                      |
|            | S01        |      |      | 34,64                | 0,0367                                                              | 0,0153                                                                       | 2,3983                                                                                      |
| Rapport 03 |            | 1,50 | 1,00 | 54,64                | 0,0497                                                              | 0,0238                                                                       | 2,0848                                                                                      |
|            | CPT 02     |      |      | 104,64               | 0,0727                                                              | 0,0424                                                                       | 1,7144                                                                                      |
|            |            |      |      | 184,64               | 0,0970                                                              | 0,0698                                                                       | 1,3887                                                                                      |
|            |            |      |      | 4,81                 | 0,0046                                                              | 0,0041                                                                       | 1,1432                                                                                      |
|            | S02        |      |      | 34,81                | 0,0339                                                              | 0,0288                                                                       | 1,1777                                                                                      |
| Rapport 03 |            | 1,50 | 1,00 | 54,81                | 0,0505                                                              | 0,0444                                                                       | 1,1373                                                                                      |
|            | CPT 06     | 9    |      | 104,81               | 0,0815                                                              | 0,0800                                                                       | 1,0193                                                                                      |
|            |            |      |      | 184,81               | 0,1160                                                              | 0,1320                                                                       | 0,8788                                                                                      |

| N° Rapport | N° Sondage | D/B  | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)$ (m) | $\left(\mathbf{S}_{c}^{CPT}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{c}^{\mathbf{Oed}} / \mathbf{S}_{c}^{\mathbf{CPT}} \right)$ |
|------------|------------|------|------|----------------------|-----------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|
|            |            |      |      | 4,81                 | 0,0049                                                    | 0,0042                                  | 1,1703                                                                                      |
|            | S02        |      |      | 34,81                | 0,0357                                                    | 0,0297                                  | 1,2009                                                                                      |
| Rapport 03 |            | 1,50 | 1,00 | 54,81                | 0,0530                                                    | 0,0458                                  | 1,1571                                                                                      |
|            | CPT 07     |      |      | 104,81               | 0,0855                                                    | 0,0825                                  | 1,0355                                                                                      |
|            |            |      |      | 184,81               | 0,1216                                                    | 0,1357                                  | 0,8966                                                                                      |
|            |            |      |      | 5,44                 | 0,0138                                                    | 0,0020                                  | 6,9146                                                                                      |
|            | S03        |      |      | 35,44                | 0,0634                                                    | 0,0128                                  | 4,9679                                                                                      |
| Rapport 03 |            | 1,50 | 1,00 | 55,44                | 0,0854                                                    | 0,0198                                  | 4,3180                                                                                      |
|            | CPT 08     |      |      | 105,44               | 0,1246                                                    | 0,0353                                  | 3,5340                                                                                      |
|            |            |      |      | 185,44               | 0,1659                                                    | 0,0582                                  | 2,8489                                                                                      |
|            |            |      |      | 5,94                 | 0,0040                                                    | 0,0009                                  | 4,3469                                                                                      |
|            | S01 S01    |      |      | 33,94                | 0,0292                                                    | 0,0087                                  | 3,3792                                                                                      |
| Rapport 04 |            | 1,50 | 1,00 | 53,94                | 0,0424                                                    | 0,0141                                  | 3,0071                                                                                      |
|            | CPT 02     |      |      | 103,94               | 0,0676                                                    | 0,0274                                  | 2,4684                                                                                      |
|            |            |      |      | 183,94               | 0,0990                                                    | 0,0464                                  | 2,1318                                                                                      |
|            |            |      |      | 5,09                 | 0,0016                                                    | 0,0009                                  | 1,7517                                                                                      |
|            | S02        |      | 1,00 | 35,09                | 0,0148                                                    | 0,0112                                  | 1,3241                                                                                      |
| Rapport 04 |            | 1,50 |      | 55,09                | 0,0211                                                    | 0,0179                                  | 1,1781                                                                                      |
|            | CPT 08     |      |      | 105,09               | 0,0333                                                    | 0,0345                                  | 0,9657                                                                                      |
|            |            |      |      | 185,09               | 0,0510                                                    | 0,0584                                  | 0,8738                                                                                      |
|            |            |      |      | 6,07                 | 0,0024                                                    | 0,0007                                  | 3,4393                                                                                      |
|            | S03        |      |      | 33,07                | 0,0173                                                    | 0,0064                                  | 2,7074                                                                                      |
| Rapport 04 |            | 1,50 | 1,00 | 53,07                | 0,0254                                                    | 0,0106                                  | 2,4114                                                                                      |
|            | CPT 14     |      |      | 103,07               | 0,0410                                                    | 0,0207                                  | 1,9788                                                                                      |
|            |            |      |      | 183,07               | 0,0592                                                    | 0,0353                                  | 1,6757                                                                                      |
|            |            |      |      | 4,00                 | 0,0043                                                    | 0,0002                                  | 26,0843                                                                                     |
|            | S01        |      |      | 34,00                | 0,0576                                                    | 0,0026                                  | 21,9924                                                                                     |
| Rapport 05 |            | 1,50 | 1,00 | 54,00                | 0,0865                                                    | 0,0042                                  | 20,4563                                                                                     |
|            | CPT 01     |      |      | 104,00               | 0,1491                                                    | 0,0081                                  | 18,3370                                                                                     |
|            |            |      |      | 184,00               | 0,2338                                                    | 0,0141                                  | 16,5780                                                                                     |
|            |            |      |      | 3,95                 | 0,0024                                                    | 0,0042                                  | 0,5649                                                                                      |
|            | S03        | 1,50 |      | 33,95                | 0,0465                                                    | 0,0991                                  | 0,4694                                                                                      |
| Rapport 05 |            |      | 1,00 | 53,95                | 0,0696                                                    | 0,1606                                  | 0,4332                                                                                      |
|            | CPT 02     |      |      | 103,95               | 0,1163                                                    | 0,3077                                  | 0,3778                                                                                      |
|            |            |      |      | 183,95               | 0,1738                                                    | 0,5251                                  | 0,3311                                                                                      |

| N° Rapport | N° Sondage | D/B  | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{c}^{\mathbf{Oed}}\right)\left(\mathbf{m}\right)$ | $\left(\mathbf{S}_{c}^{CPT}\right)(\mathbf{m})$ | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}} \right)$ |
|------------|------------|------|------|----------------------|---------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|            |            |      |      | 1,57                 | 0,0013                                                              | 0,0010                                          | 1,3973                                                                                                        |
|            | S04        |      |      | 31,57                | 0,0604                                                              | 0,0533                                          | 1,1341                                                                                                        |
| Rapport 05 |            | 1,50 | 1,00 | 51,57                | 0,0925                                                              | 0,0902                                          | 1,0252                                                                                                        |
|            | CPT 04     |      |      | 101,57               | 0,1555                                                              | 0,1785                                          | 0,8708                                                                                                        |
|            |            |      |      | 181,57               | 0,2390                                                              | 0,3136                                          | 0,7622                                                                                                        |
|            |            |      |      | 3,02                 | 0,0004                                                              | 0,0006                                          | 0,6156                                                                                                        |
|            | S05        |      |      | 33,02                | 0,0409                                                              | 0,0835                                          | 0,4894                                                                                                        |
| Rapport 05 |            | 1,50 | 1,00 | 53,02                | 0,0609                                                              | 0,1378                                          | 0,4421                                                                                                        |
|            | CPT 05     |      |      | 103,02               | 0,0998                                                              | 0,2695                                          | 0,3701                                                                                                        |
|            |            |      |      | 183,02               | 0,1450                                                              | 0,4676                                          | 0,3100                                                                                                        |
|            |            |      |      | 4,81                 | 0,0003                                                              | 0,0061                                          | 0,0472                                                                                                        |
|            | S01        |      |      | 34,81                | 0,0037                                                              | 0,0856                                          | 0,0436                                                                                                        |
| Rapport 06 |            | 1,50 | 1,00 | 54,81                | 0,0058                                                              | 0,1373                                          | 0,0421                                                                                                        |
|            | CPT 01     |      |      | 104,81               | 0,0103                                                              | 0,2620                                          | 0,0394                                                                                                        |
|            |            |      |      | 184,81               | 0,0221                                                              | 0,4506                                          | 0,0491                                                                                                        |
|            |            |      |      | 5,81                 | 0,0012                                                              | 0,0045                                          | 0,2673                                                                                                        |
|            | S01        |      |      | 35,81                | 0,0092                                                              | 0,0430                                          | 0,2133                                                                                                        |
| Rapport 06 |            | 1,50 | 1,00 | 55,81                | 0,0132                                                              | 0,0680                                          | 0,1942                                                                                                        |
|            | CPT 02     |      |      | 105,81               | 0,0214                                                              | 0,1286                                          | 0,1665                                                                                                        |
|            |            |      |      | 185,81               | 0,0375                                                              | 0,2188                                          | 0,1715                                                                                                        |

| N° Rapport | N° Sondage | D/B  | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{c}^{\mathbf{Oed}}\right)$ (m) | $\left(\mathbf{S}_{c}^{CPT}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}} \right)$ |
|------------|------------|------|------|----------------------|--------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|
|            |            |      |      | 7,57                 | 0,0219                                           | 0,0047                                  | 4,6356                                                                                                        |
|            | S01        |      |      | 37,57                | 0,0783                                           | 0,0232                                  | 3,3766                                                                                                        |
| Rapport 01 |            | 1,50 | 2,00 | 57,57                | 0,1041                                           | 0,0353                                  | 2,9526                                                                                                        |
|            | CPT 09     |      |      | 107,57               | 0,1515                                           | 0,0647                                  | 2,3419                                                                                                        |
|            |            |      |      | 187,57               | 0,2072                                           | 0,1091                                  | 1,8985                                                                                                        |
|            |            |      |      | 7,57                 | 0,0173                                           | 0,0017                                  | 10,1588                                                                                                       |
|            | S01        |      |      | 37,57                | 0,0603                                           | 0,0083                                  | 7,2539                                                                                                        |
| Rapport 01 |            | 1,50 | 2,00 | 57,57                | 0,0793                                           | 0,0126                                  | 6,2944                                                                                                        |
|            | CPT 18     |      |      | 107,57               | 0,1132                                           | 0,0230                                  | 4,9265                                                                                                        |
|            |            |      |      | 187,57               | 0,1497                                           | 0,0386                                  | 3,8750                                                                                                        |
| Rapport 01 |            |      |      | 7,57                 | 0,0173                                           | 0,0031                                  | 5,6623                                                                                                        |
|            | S01        |      | 2,00 | 37,57                | 0,0603                                           | 0,0149                                  | 4,0402                                                                                                        |
|            |            | 1,50 |      | 57,57                | 0,0793                                           | 0,0226                                  | 3,5046                                                                                                        |
|            | CPT 19     |      |      | 107,57               | 0,1132                                           | 0,0412                                  | 2,7452                                                                                                        |
|            |            |      |      | 187,57               | 0,1497                                           | 0,0693                                  | 2,1607                                                                                                        |
|            |            |      |      | 5,5                  | 0,0169                                           | 0,0066                                  | 2,5445                                                                                                        |
|            | S02        |      |      | 35,5                 | 0,0843                                           | 0,0424                                  | 1,9882                                                                                                        |
| Rapport 01 |            | 1,50 | 2,00 | 55,5                 | 0,1182                                           | 0,0659                                  | 1,7931                                                                                                        |
|            | CPT 04     |      |      | 105,5                | 0,1853                                           | 0,1235                                  | 1,5000                                                                                                        |
|            |            |      |      | 185,5                | 0,2674                                           | 0,2087                                  | 1,2812                                                                                                        |
|            |            |      |      | 5,5                  | 0,0142                                           | 0,0047                                  | 3,0471                                                                                                        |
|            | S02        |      | _    | 35,5                 | 0,0691                                           | 0,0298                                  | 2,3183                                                                                                        |
| Rapport 01 |            | 1,50 | 2,00 | 55,5                 | 0,0952                                           | 0,0462                                  | 2,0593                                                                                                        |
|            | CPT 05     |      |      | 105,5                | 0,1450                                           | 0,0863                                  | 1,6805                                                                                                        |
|            |            |      |      | 185,5                | 0,2020                                           | 0,1431                                  | 1,4117                                                                                                        |
|            |            |      |      | 5,5                  | 0,0142                                           | 0,0052                                  | 2,7261                                                                                                        |
|            | S02        |      |      | 35,5                 | 0,0691                                           | 0,0333                                  | 2,0748                                                                                                        |
| Rapport 01 |            | 1,50 | 2,00 | 55,5                 | 0,0952                                           | 0,0517                                  | 1,8421                                                                                                        |
|            | CPT 06     | 1,00 | _,   | 105,5                | 0,1450                                           | 0,0965                                  | 1,5035                                                                                                        |
|            |            |      |      | 185.5                | 0.2020                                           | 0 1573                                  | 1 2841                                                                                                        |

- Cas d'une Fondation rectangulaire (L/B = 2) –

Résultat de l'étude d'influence des dimensions des fondations sur le calcul du tassement oedométrique à partir de l'essai CPT

| N° Rapport | N° Sondage | D/B  | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{c}^{\mathbf{Oed}}\right)\left(\mathbf{m}\right)$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}}\right)\left(\mathbf{m}\right)$ | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}} \right)$ |
|------------|------------|------|------|----------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|            |            |      |      | 5,5                  | 0,0169                                                              | 0,0058                                                                       | 2,8937                                                                                                        |
|            | S02        |      | 2,00 | 35,5                 | 0,0843                                                              | 0,0372                                                                       | 2,2648                                                                                                        |
| Rapport 01 |            | 1,50 |      | 55,5                 | 0,1182                                                              | 0,0578                                                                       | 2,0443                                                                                                        |
|            | CPT 11     |      |      | 105,5                | 0,1853                                                              | 0,1081                                                                       | 1,7144                                                                                                        |
|            |            |      |      | 185,5                | 0,2674                                                              | 0,1799                                                                       | 1,4862                                                                                                        |
|            |            |      |      | 4,84                 | 0,0110                                                              | 0,0050                                                                       | 2,2283                                                                                                        |
|            | S03        |      |      | 34,84                | 0,0607                                                              | 0,0352                                                                       | 1,7253                                                                                                        |
| Rapport 01 |            | 1,50 | 2,00 | 54,84                | 0,0848                                                              | 0,0549                                                                       | 1,5433                                                                                                        |
|            | CPT 16     |      |      | 104,84               | 0,1307                                                              | 0,1022                                                                       | 1,2793                                                                                                        |
|            |            |      |      | 184,84               | 0,1836                                                              | 0,1685                                                                       | 1,0891                                                                                                        |
|            |            |      |      | 4,84                 | 0,0071                                                              | 0,0013                                                                       | 5,5234                                                                                                        |
|            | S03        |      |      | 34,84                | 0,0373                                                              | 0,0091                                                                       | 4,1068                                                                                                        |
| Rapport 01 |            | 1,50 | 2,00 | 54,84                | 0,0512                                                              | 0,0142                                                                       | 3,6144                                                                                                        |
|            | CPT 17     |      |      | 104,84               | 0,0766                                                              | 0,0265                                                                       | 2,8953                                                                                                        |
|            |            |      |      | 184,84               | 0,1040                                                              | 0,0450                                                                       | 2,3128                                                                                                        |
|            |            |      |      | 5,86                 | 0,0146                                                              | 0,0181                                                                       | 0,8091                                                                                                        |
|            | S01        |      |      | 35,86                | 0,0724                                                              | 0,1094                                                                       | 0,6623                                                                                                        |
| Rapport 02 |            | 1,50 | 2,00 | 55,86                | 0,1034                                                              | 0,1692                                                                       | 0,6110                                                                                                        |
|            | CPT 02'    |      |      | 105,86               | 0,1726                                                              | 0,3147                                                                       | 0,5484                                                                                                        |
|            |            |      |      | 185,86               | 0,2753                                                              | 0,5321                                                                       | 0,5174                                                                                                        |
|            |            | 1,50 |      | 4,64                 | 0,0069                                                              | 0,0016                                                                       | 4,3522                                                                                                        |
|            | S01        |      |      | 34,64                | 0,0361                                                              | 0,0117                                                                       | 3,0943                                                                                                        |
| Rapport 03 |            |      | 2,00 | 54,64                | 0,0488                                                              | 0,0182                                                                       | 2,6861                                                                                                        |
|            | CPT 01     |      |      | 104,64               | 0,0710                                                              | 0,0337                                                                       | 2,1083                                                                                                        |
|            |            |      |      | 184,64               | 0,0941                                                              | 0,0529                                                                       | 1,7775                                                                                                        |
|            |            |      |      | 4,64                 | 0,0075                                                              | 0,0023                                                                       | 3,2361                                                                                                        |
|            | S01        |      |      | 34,64                | 0,0395                                                              | 0,0171                                                                       | 2,3117                                                                                                        |
| Rapport 03 |            | 1,50 | 2,00 | 54,64                | 0,0535                                                              | 0,0266                                                                       | 2,0083                                                                                                        |
|            | CPT 02     |      |      | 104,64               | 0,0782                                                              | 0,0477                                                                       | 1,6399                                                                                                        |
|            |            |      |      | 184,64               | 0,1039                                                              | 0,0787                                                                       | 1,3200                                                                                                        |
|            |            |      |      | 4,81                 | 0,0055                                                              | 0,0046                                                                       | 1,1996                                                                                                        |
|            | S02        |      |      | 34,81                | 0,0398                                                              | 0,0328                                                                       | 1,2135                                                                                                        |
| Rapport 03 |            | 1,50 | 2,00 | 54,81                | 0,0586                                                              | 0,0506                                                                       | 1,1580                                                                                                        |
|            | CPT 06     | ,    |      | 104,81               | 0,0935                                                              | 0,0914                                                                       | 1,0236                                                                                                        |
|            |            |      |      | 184,81               | 0,1319                                                              | 0,1502                                                                       | 0,8783                                                                                                        |

| N° Rapport | N° Sondage | D/B                | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)$ (m) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}} \right)$ |
|------------|------------|--------------------|------|----------------------|-----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|            |            |                    |      | 4,81                 | 0,0058                                                    | 0,0047                                                    | 1,2352                                                                                                        |
|            | S02        | 1,50               |      | 34,81                | 0,0418                                                    | 0,0336                                                    | 1,2415                                                                                                        |
| Rapport 03 |            |                    | 2,00 | 54,81                | 0,0614                                                    | 0,0519                                                    | 1,1830                                                                                                        |
|            | CPT 07     |                    |      | 104,81               | 0,0980                                                    | 0,0938                                                    | 1,0454                                                                                                        |
|            |            |                    |      | 184,81               | 0,1384                                                    | 0,1537                                                    | 0,9003                                                                                                        |
|            |            |                    |      | 5,44                 | 0,0147                                                    | 0,0082                                                    | 1,7995                                                                                                        |
|            | S03        |                    |      | 35,44                | 0,0679                                                    | 0,0524                                                    | 1,2944                                                                                                        |
| Rapport 03 |            | 1,50               | 2,00 | 55,44                | 0,0913                                                    | 0,0802                                                    | 1,1387                                                                                                        |
|            | CPT 08     |                    |      | 105,44               | 0,1328                                                    | 0,1450                                                    | 0,9160                                                                                                        |
|            |            |                    |      | 185,44               | 0,1762                                                    | 0,2400                                                    | 0,7343                                                                                                        |
|            |            |                    |      | 5,94                 | 0,0205                                                    | 0,0080                                                    | 2,5759                                                                                                        |
|            | S01        | 01<br>1,50<br>T 02 |      | 33,94                | 0,0906                                                    | 0,0448                                                    | 2,0216                                                                                                        |
| Rapport 04 |            |                    | 2,00 | 53,94                | 0,1270                                                    | 0,0702                                                    | 1,8087                                                                                                        |
|            | CPT 02     |                    |      | 103,94               | 0,1950                                                    | 0,1312                                                    | 1,4862                                                                                                        |
|            |            |                    |      | 183,94               | 0,2832                                                    | 0,2181                                                    | 1,2986                                                                                                        |
|            |            |                    |      | 5,09                 | 0,0125                                                    | 0,0218                                                    | 0,5726                                                                                                        |
|            | S02        |                    | 2,00 | 35,09                | 0,0664                                                    | 0,1481                                                    | 0,4485                                                                                                        |
| Rapport 04 |            | 1,50               |      | 55,09                | 0,0928                                                    | 0,2302                                                    | 0,4032                                                                                                        |
|            | CPT 08     |                    |      | 105,09               | 0,1445                                                    | 0,4275                                                    | 0,3380                                                                                                        |
|            |            |                    |      | 185,09               | 0,2740                                                    | 0,7184                                                    | 0,3814                                                                                                        |
|            |            | 1,50               |      | 6,07                 | 0,0151                                                    | 0,0118                                                    | 1,2851                                                                                                        |
|            | S03        |                    |      | 33,07                | 0,0658                                                    | 0,0635                                                    | 1,0356                                                                                                        |
| Rapport 04 |            |                    | 2,00 | 53,07                | 0,0941                                                    | 0,1012                                                    | 0,9301                                                                                                        |
|            | CPT 14     |                    |      | 103,07               | 0,1486                                                    | 0,1924                                                    | 0,7725                                                                                                        |
|            |            |                    |      | 183,07               | 0,2115                                                    | 0,3287                                                    | 0,6433                                                                                                        |
|            |            |                    |      | 4,00                 | 0,0109                                                    | 0,0014                                                    | 7,6224                                                                                                        |
|            | S01        |                    |      | 34,00                | 0,0783                                                    | 0,0120                                                    | 6,5430                                                                                                        |
| Rapport 05 |            | 1,50               | 2,00 | 54,00                | 0,1164                                                    | 0,0189                                                    | 6,1664                                                                                                        |
|            | CPT 01     |                    |      | 104,00               | 0,1996                                                    | 0,0357                                                    | 5,5936                                                                                                        |
|            |            |                    |      | 184,00               | 0,3152                                                    | 0,0614                                                    | 5,1347                                                                                                        |
|            |            |                    |      | 3,95                 | 0,0085                                                    | 0,0152                                                    | 0,5608                                                                                                        |
|            | S03        | 1,50               |      | 33,95                | 0,0605                                                    | 0,1284                                                    | 0,4713                                                                                                        |
| Rapport 05 |            |                    | 2,00 | 53,95                | 0,0880                                                    | 0,2018                                                    | 0,4362                                                                                                        |
|            | CPT 02     |                    |      | 103,95               | 0,1442                                                    | 0,3778                                                    | 0,3816                                                                                                        |
|            |            |                    |      | 183,95               | 0,2141                                                    | 0,6385                                                    | 0,3354                                                                                                        |

| N° Rapport | N° Sondage | D/B  | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{c}^{\mathbf{Oed}}\right)\left(\mathbf{m}\right)$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}}\right)\left(\mathbf{m}\right)$ | $\mathbf{r} = \left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}}\right)$ |
|------------|------------|------|------|----------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|            |            |      |      | 1,57                 | 0,0054                                                              | 0,0086                                                                       | 0,6260                                                                                                      |
|            | S04        |      |      | 31,57                | 0,0772                                                              | 0,0756                                                                       | 1,0204                                                                                                      |
| Rapport 05 |            | 1,50 | 2,00 | 51,57                | 0,1138                                                              | 0,1230                                                                       | 0,9253                                                                                                      |
|            | CPT 04     |      |      | 101,57               | 0,1873                                                              | 0,2363                                                                       | 0,7926                                                                                                      |
|            |            |      |      | 181,57               | 0,3050                                                              | 0,4102                                                                       | 0,7437                                                                                                      |
|            |            |      |      | 3,02                 | 0,0060                                                              | 0,0107                                                                       | 0,5560                                                                                                      |
|            | S05        |      |      | 33,02                | 0,0513                                                              | 0,1159                                                                       | 0,4425                                                                                                      |
| Rapport 05 |            | 1,50 | 2,00 | 53,02                | 0,0739                                                              | 0,1848                                                                       | 0,3999                                                                                                      |
|            | CPT 05     |      |      | 103,02               | 0,1179                                                              | 0,3522                                                                       | 0,3347                                                                                                      |
|            |            |      |      | 183,02               | 0,1691                                                              | 0,6047                                                                       | 0,2796                                                                                                      |
|            |            |      |      | 4,81                 | 0,0009                                                              | 0,0160                                                                       | 0,0540                                                                                                      |
|            | S01        |      |      | 34,81                | 0,0057                                                              | 0,1146                                                                       | 0,0496                                                                                                      |
| Rapport 06 |            | 1,50 | 2,00 | 54,81                | 0,0085                                                              | 0,1784                                                                       | 0,0477                                                                                                      |
|            | CPT 01     |      |      | 104,81               | 0,0147                                                              | 0,3327                                                                       | 0,0441                                                                                                      |
|            |            |      |      | 184,81               | 0,0416                                                              | 0,5655                                                                       | 0,0736                                                                                                      |
|            |            |      |      | 5,81                 | 0,0024                                                              | 0,0089                                                                       | 0,2740                                                                                                      |
|            | S01        |      |      | 35,81                | 0,0119                                                              | 0,0540                                                                       | 0,2200                                                                                                      |
| Rapport 06 |            | 1,50 | 2,00 | 55,81                | 0,0167                                                              | 0,0830                                                                       | 0,2010                                                                                                      |
|            | CPT 02     |      |      | 105,81               | 0,0300                                                              | 0,1532                                                                       | 0,1960                                                                                                      |
|            |            |      |      | 185,81               | 0,0814                                                              | 0,2575                                                                       | 0,3160                                                                                                      |

| N° Rapport | N° Sondage    | D/B  | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{c}^{\text{Oed}}\right)\left(\mathbf{m}\right)$ | $\left(\mathbf{S}_{c}^{CPT}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}} \right)$ |
|------------|---------------|------|------|----------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Rapport 01 |               |      | 1,00 | 7,57                 | 0,0225                                                            | 0,0052                                  | 4,3559                                                                                                        |
|            | S01           |      |      | 37,57                | 0,0810                                                            | 0,0254                                  | 3,1927                                                                                                        |
|            |               | 1,50 |      | 57,57                | 0,1080                                                            | 0,0386                                  | 2,7975                                                                                                        |
|            | CPT 09        |      |      | 107,57               | 0,1578                                                            | 0,0709                                  | 2,2252                                                                                                        |
|            |               |      |      | 187,57               | 0,2165                                                            | 0,1198                                  | 1,8074                                                                                                        |
|            |               | 1,50 | 1,00 | 7,57                 | 0,0178                                                            | 0,0019                                  | 9,5645                                                                                                        |
|            | S01           |      |      | 37,57                | 0,0622                                                            | 0,0091                                  | 6,8524                                                                                                        |
| Rapport 01 |               |      |      | 57,57                | 0,0819                                                            | 0,0138                                  | 5,9427                                                                                                        |
|            | CPT 18        |      |      | 107,57               | 0,1169                                                            | 0,0251                                  | 4,6480                                                                                                        |
|            |               |      |      | 187,57               | 0,1544                                                            | 0,0423                                  | 3,6498                                                                                                        |
|            | S01<br>CPT 19 | 1,50 | 1,00 | 7,57                 | 0,0178                                                            | 0,0033                                  | 5,4073                                                                                                        |
|            |               |      |      | 37,57                | 0,0622                                                            | 0,0161                                  | 3,8742                                                                                                        |
| Rapport 01 |               |      |      | 57,57                | 0,0819                                                            | 0,0244                                  | 3,3603                                                                                                        |
|            |               |      |      | 107,57               | 0,1169                                                            | 0,0444                                  | 2,6306                                                                                                        |
|            |               |      |      | 187,57               | 0,1544                                                            | 0,0747                                  | 2,0676                                                                                                        |
|            |               |      | 1,00 | 5,5                  | 0,0178                                                            | 0,0075                                  | 2,3919                                                                                                        |
|            | S02           |      |      | 35,5                 | 0,0901                                                            | 0,0477                                  | 1,8911                                                                                                        |
| Rapport 01 |               | 1,50 |      | 55,5                 | 0,1270                                                            | 0,0741                                  | 1,7151                                                                                                        |
|            | CPT 04        |      |      | 105,5                | 0,2012                                                            | 0,1389                                  | 1,4483                                                                                                        |
|            |               |      |      | 185,5                | 0,2941                                                            | 0,2355                                  | 1,2488                                                                                                        |
|            | S02           |      | 1,00 | 5,5                  | 0,0147                                                            | 0,0051                                  | 2,8826                                                                                                        |
|            |               |      |      | 35,5                 | 0,0718                                                            | 0,0326                                  | 2,2031                                                                                                        |
| Rapport 01 | CPT 05        | 1,50 |      | 55,5                 | 0,0995                                                            | 0,0506                                  | 1,9668                                                                                                        |
|            |               |      |      | 105,5                | 0,1526                                                            | 0,0945                                  | 1,6145                                                                                                        |
|            |               |      |      | 185,5                | 0,2149                                                            | 0,1573                                  | 1,3664                                                                                                        |
|            | S02           |      | 1,00 | 5,5                  | 0,0147                                                            | 0,0057                                  | 2,5979                                                                                                        |
|            |               |      |      | 35,5                 | 0,0718                                                            | 0,0362                                  | 1,9862                                                                                                        |
| Rapport 01 |               | 1,50 |      | 55,5                 | 0,0995                                                            | 0,0561                                  | 1,7727                                                                                                        |
|            | CPT 06        |      |      | 105,5                | 0,1526                                                            | 0,1045                                  | 1,4599                                                                                                        |
|            |               |      |      | 185,5                | 0,2149                                                            | 0,1718                                  | 1,2510                                                                                                        |

- Cas d'une Fondation filante (L/B = 10) –

Résultat de l'étude d'influence des dimensions des fondations sur le calcul du tassement oedométrique à partir de l'essai CPT

| N° Rapport | N° Sondage | D/B  | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}}\right)\left(\mathbf{m}\right)$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}} \right)$ |
|------------|------------|------|------|----------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Rapport 01 |            |      |      | 5,5                  | 0,0178                                                                       | 0,0063                                                    | 2,8196                                                                                                        |
|            | S02        |      |      | 35,5                 | 0,0901                                                                       | 0,0404                                                    | 2,2299                                                                                                        |
|            |            | 1,50 | 1,00 | 55,5                 | 0,1270                                                                       | 0,0628                                                    | 2,0242                                                                                                        |
|            | CPT 11     |      |      | 105,5                | 0,2012                                                                       | 0,1173                                                    | 1,7151                                                                                                        |
|            |            |      |      | 185,5                | 0,2941                                                                       | 0,1961                                                    | 1,4994                                                                                                        |
|            |            |      | 1,00 | 4,84                 | 0,0115                                                                       | 0,0053                                                    | 2,1717                                                                                                        |
|            | S03        |      |      | 34,84                | 0,0637                                                                       | 0,0377                                                    | 1,6921                                                                                                        |
| Rapport 01 |            | 1,50 |      | 54,84                | 0,0892                                                                       | 0,0588                                                    | 1,5161                                                                                                        |
|            | CPT 16     |      |      | 104,84               | 0,1380                                                                       | 0,1096                                                    | 1,2587                                                                                                        |
|            |            |      |      | 184,84               | 0,1958                                                                       | 0,1814                                                    | 1,0795                                                                                                        |
|            |            | 1,50 | 1,00 | 4,84                 | 0,0074                                                                       | 0,0014                                                    | 5,4088                                                                                                        |
|            | S03        |      |      | 34,84                | 0,0392                                                                       | 0,0097                                                    | 4,0267                                                                                                        |
| Rapport 01 |            |      |      | 54,84                | 0,0538                                                                       | 0,0152                                                    | 3,5458                                                                                                        |
|            | CPT 17     |      |      | 104,84               | 0,0804                                                                       | 0,0283                                                    | 2,8383                                                                                                        |
|            |            |      |      | 184,84               | 0,1090                                                                       | 0,0482                                                    | 2,2609                                                                                                        |
|            |            |      |      | 5,86                 | 0,0159                                                                       | 0,0207                                                    | 0,7678                                                                                                        |
| 1          | S01        | 1,50 | 1,00 | 35,86                | 0,0793                                                                       | 0,1252                                                    | 0,6339                                                                                                        |
| Rapport 02 |            |      |      | 55,86                | 0,1138                                                                       | 0,1937                                                    | 0,5876                                                                                                        |
|            | CPT 02'    |      |      | 105,86               | 0,1901                                                                       | 0,3603                                                    | 0,5277                                                                                                        |
|            |            |      |      | 185,86               | 0,3006                                                                       | 0,6103                                                    | 0,4926                                                                                                        |
|            |            |      | 1,00 | 4,64                 | 0,0071                                                                       | 0,0017                                                    | 4,2892                                                                                                        |
|            | S01        | 1,50 |      | 34,64                | 0,0372                                                                       | 0,0122                                                    | 3,0576                                                                                                        |
| Rapport 03 | CPT 01     |      |      | 54,64                | 0,0502                                                                       | 0,0189                                                    | 2,6529                                                                                                        |
|            |            |      |      | 104,64               | 0,0731                                                                       | 0,0351                                                    | 2,0788                                                                                                        |
|            |            |      |      | 184,64               | 0,0966                                                                       | 0,0554                                                    | 1,7448                                                                                                        |
|            | S01        |      |      | 4,64                 | 0,0077                                                                       | 0,0025                                                    | 3,1592                                                                                                        |
|            |            |      |      | 34,64                | 0,0407                                                                       | 0,0179                                                    | 2,2659                                                                                                        |
| Rapport 03 |            | 1,50 | 1,00 | 54,64                | 0,0550                                                                       | 0,0280                                                    | 1,9678                                                                                                        |
|            | CPT 02     |      |      | 104,64               | 0,0805                                                                       | 0,0502                                                    | 1,6039                                                                                                        |
|            |            |      |      | 184,64               | 0,1069                                                                       | 0,0830                                                    | 1,2877                                                                                                        |
|            |            | 1,50 | 1,00 | 4,81                 | 0,0060                                                                       | 0,0049                                                    | 1,2320                                                                                                        |
|            | S02        |      |      | 34,81                | 0,0426                                                                       | 0,0346                                                    | 1,2309                                                                                                        |
| Rapport 03 | CPT 06     |      |      | 54,81                | 0,0626                                                                       | 0,0535                                                    | 1,1697                                                                                                        |
|            |            |      |      | 104,81               | 0,0995                                                                       | 0,0968                                                    | 1,0284                                                                                                        |
|            |            |      |      | 184,81               | 0,1399                                                                       | 0,1589                                                    | 0,8804                                                                                                        |

| N° Rapport | N° Sondage | D/B           | L/B  | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{c}^{\mathbf{Oed}}\right)\left(\mathbf{m}\right)$ | $\left(\mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}}\right)\left(\mathbf{m}\right)$ | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}} \right)$ |
|------------|------------|---------------|------|----------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Rapport 03 |            |               |      | 4,81                 | 0,0063                                                              | 0,0050                                                                       | 1,2742                                                                                                        |
|            | S02        |               |      | 34,81                | 0,0447                                                              | 0,0354                                                                       | 1,2651                                                                                                        |
|            |            | 1,50          | 1,00 | 54,81                | 0,0656                                                              | 0,0546                                                                       | 1,2008                                                                                                        |
|            | CPT 07     |               |      | 104,81               | 0,1043                                                              | 0,0988                                                                       | 1,0562                                                                                                        |
|            |            |               |      | 184,81               | 0,1469                                                              | 0,1622                                                                       | 0,9058                                                                                                        |
|            |            |               | 1,00 | 5,44                 | 0,0150                                                              | 0,0086                                                                       | 1,7384                                                                                                        |
|            | S03        |               |      | 35,44                | 0,0693                                                              | 0,0554                                                                       | 1,2498                                                                                                        |
| Rapport 03 |            | 1,50          |      | 55,44                | 0,0932                                                              | 0,0847                                                                       | 1,1005                                                                                                        |
|            | CPT 08     |               |      | 105,44               | 0,1356                                                              | 0,1536                                                                       | 0,8831                                                                                                        |
|            |            |               |      | 185,44               | 0,1798                                                              | 0,2544                                                                       | 0,7067                                                                                                        |
|            |            |               | 1,00 | 5,94                 | 0,0216                                                              | 0,0085                                                                       | 2,5399                                                                                                        |
|            | S01        |               |      | 33,94                | 0,0958                                                              | 0,0480                                                                       | 1,9977                                                                                                        |
| Rapport 04 |            | 1,50          |      | 53,94                | 0,1344                                                              | 0,0751                                                                       | 1,7887                                                                                                        |
|            | CPT 02     |               |      | 103,94               | 0,2064                                                              | 0,1404                                                                       | 1,4706                                                                                                        |
|            |            |               |      | 183,94               | 0,3016                                                              | 0,2334                                                                       | 1,2923                                                                                                        |
|            |            | 1,50          |      | 5,09                 | 0,0131                                                              | 0,0232                                                                       | 0,5662                                                                                                        |
|            | S02        |               | 1,00 | 35,09                | 0,0702                                                              | 0,1574                                                                       | 0,4457                                                                                                        |
| Rapport 04 | CPT 08     |               |      | 55,09                | 0,0985                                                              | 0,2446                                                                       | 0,4025                                                                                                        |
|            |            |               |      | 105,09               | 0,1583                                                              | 0,4542                                                                       | 0,3484                                                                                                        |
|            |            |               |      | 185,09               | 0,3210                                                              | 0,7637                                                                       | 0,4203                                                                                                        |
|            |            |               | 1,00 | 6,07                 | 0,0160                                                              | 0,0133                                                                       | 1,2036                                                                                                        |
|            | S03        |               |      | 33,07                | 0,0702                                                              | 0,0719                                                                       | 0,9759                                                                                                        |
| Rapport 04 |            | 1,50          |      | 53,07                | 0,1007                                                              | 0,1146                                                                       | 0,8788                                                                                                        |
|            | CPT 14     |               |      | 103,07               | 0,1595                                                              | 0,2179                                                                       | 0,7320                                                                                                        |
|            |            |               |      | 183,07               | 0,2273                                                              | 0,3729                                                                       | 0,6097                                                                                                        |
|            |            | S01<br>CPT 01 | 1,00 | 4,00                 | 0,0124                                                              | 0,0016                                                                       | 7,9615                                                                                                        |
|            | S01        |               |      | 34,00                | 0,0904                                                              | 0,0131                                                                       | 6,8865                                                                                                        |
| Rapport 05 |            |               |      | 54,00                | 0,1356                                                              | 0,0207                                                                       | 6,5498                                                                                                        |
|            | CPT 01     |               |      | 104,00               | 0,2353                                                              | 0,0392                                                                       | 6,0066                                                                                                        |
|            |            |               |      | 184,00               | 0,3729                                                              | 0,0675                                                                       | 5,5233                                                                                                        |
|            |            | S03<br>PT 02  | 1,00 | 3,95                 | 0,0092                                                              | 0,0170                                                                       | 0,5427                                                                                                        |
|            | S03        |               |      | 33,95                | 0,0662                                                              | 0,1436                                                                       | 0,4611                                                                                                        |
| Rapport 05 |            |               |      | 53,95                | 0,0967                                                              | 0,2258                                                                       | 0,4281                                                                                                        |
|            | CPT 02     |               |      | 103,95               | 0,1593                                                              | 0,4237                                                                       | 0,3759                                                                                                        |
|            |            |               |      | 183,95               | 0,2391                                                              | 0,7185                                                                       | 0,3327                                                                                                        |

| N° Rapport | N° Sondage  | D/B  | L/B   | Q <sub>p</sub> (kPa) | $\left(\mathbf{S}_{c}^{\mathbf{Oed}}\right)\left(\mathbf{m}\right)$ | $\left(\mathbf{S}_{c}^{CPT}\right)$ (m) | $\mathbf{r} = \left( \mathbf{S}_{\mathbf{c}}^{\mathbf{Oed}} / \mathbf{S}_{\mathbf{c}}^{\mathbf{CPT}} \right)$ |
|------------|-------------|------|-------|----------------------|---------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Rapport 05 | S04         | 1,50 | 1,00  | 1,57                 | 0,0056                                                              | 0,0101                                  | 0,5559                                                                                                        |
|            |             |      |       | 31,57                | 0,0819                                                              | 0,0889                                  | 0,9212                                                                                                        |
|            |             |      |       | 51,57                | 0,1217                                                              | 0,1445                                  | 0,8421                                                                                                        |
|            | CPT 04      |      |       | 101,57               | 0,2049                                                              | 0,2783                                  | 0,7364                                                                                                        |
|            |             |      |       | 181,57               | 0,3528                                                              | 0,4843                                  | 0,7284                                                                                                        |
|            |             |      | 1,00  | 3,02                 | 0,0062                                                              | 0,0126                                  | 0,4964                                                                                                        |
| Rapport 05 | S05         |      |       | 33,02                | 0,0539                                                              | 0,1359                                  | 0,3965                                                                                                        |
|            | 1,50 CPT 05 | 1,50 |       | 53,02                | 0,0778                                                              | 0,2167                                  | 0,3588                                                                                                        |
|            |             |      |       | 103,02               | 0,1244                                                              | 0,4135                                  | 0,3009                                                                                                        |
|            |             |      |       | 183,02               | 0,1856                                                              | 0,7124                                  | 0,2605                                                                                                        |
| Rapport 06 |             |      |       | 4,81                 | 0,0010                                                              | 0,0175                                  | 0,0583                                                                                                        |
|            | S01         |      |       | 34,81                | 0,0067                                                              | 0,1253                                  | 0,0535                                                                                                        |
|            |             | 1,50 | 1,00  | 54,81                | 0,0100                                                              | 0,1950                                  | 0,0514                                                                                                        |
|            | CPT 01      |      |       | 104,81               | 0,0172                                                              | 0,3642                                  | 0,0473                                                                                                        |
|            |             |      |       | 184,81               | 0,0510                                                              | 0,6194                                  | 0,0824                                                                                                        |
| Rapport 06 | S01         |      |       | 5,81                 | 0,0026                                                              | 0,0094                                  | 0,2807                                                                                                        |
|            |             |      | 35,81 | 0,0129               | 0,0570                                                              | 0,2270                                  |                                                                                                               |
|            |             | 1,50 | 1,00  | 55,81                | 0,0190                                                              | 0,0876                                  | 0,2164                                                                                                        |
|            | CPT 02      |      |       | 105,81               | 0,0430                                                              | 0,1618                                  | 0,2658                                                                                                        |
|            |             |      |       | 185,81               | 0,1390                                                              | 0,2719                                  | 0,5111                                                                                                        |