REPUBLIQUEALGERIENNEDEMOCRATIQUEETPOPULAIREMINISTE REDEL'ENSEIGNEMENTSUPERIEURETDELARECHERCHESCIENTIFIQ UE

UNIVERSITE SAAD DAHLAB -1FACULTEDE TECHNOLOGIE

DEPARTEMENTDESENERGIESRENO UVELABLES

MEMOIRE

POUR L'OBTENTION DU DIPLOME DEMASTERENENERGIESRENOUVELABL

ES

Option: Conversion Photovoltaï que

THEME

Effet De La Couche fenêtre À Base D'un TCO Sur Les Performances D'une Cellule Solaire À Base De CZTSSe

Présenté par :

CHEBLAL Lydia

Soutenudevantle jurycomposé de:

R.BOUKENOUI MCB UniversitédeBlida1 Président

A.BEDIA MCB UniversitédeBlida1 Encadreur

T.DOUMAZ MAA UniversitédeBlida1 Examinateur

Annéeuniversitaire: 2020/2021

Remerciements

Je remercieenpremierlieu**Dieu**, letoutpuissantdenousavoirdonnélavolonté demener àterme cetravail qui représentelefruitdeplusieurs années d'études.

Cemémoiren'auraitjamaisvulejoursanslaprécieusecollaborationd'ungrand

Cemémoiren'auraitjamaisvulejoursanslaprécieusecollaborationd'ungrana nombredepersonnesqui mon tenus chaleureusement :

 \hat{A} exprimermon remerciementleplussincèreetdereconnaissanceàmafamilleaupremierlieu \hat{A} mapromotrice:

Mme **BEDIA ASMA** d'avoiracceptédeparrainercetravail, ainsique pour son Soutiens cientifique et et aussi à ses efforts.

Enfin, nous remercions monsieur R. BOUKNOUI et monsieur T. DOUMAZ qui nous feront l'honneur de juger cetravail

Merciàvoustous

Dédicace

Merci Allah (mon dieu) de m'avoir donné la capacitéd'écrire et de réfléchir, la force d'y croire, la patience d'aller jusqu'au bout du rêve et le bonheur delevermes mains vers le cielet de dire "YaRahman"

Toutes les lettres ne sauraient trouver les mots qu'il faut. Tous les mots nesauraientexprimelagratitude, le respect, l'amour, la reconnaissance...

Je dédie ce travail à ma chère tante 'Leila' sans elle aujourd'hui je ne serai pas au je suis, mon chermari qui m'a encouragé, m'a soutenu durantmesétudes, et matrèschèremère, et aussi mais grands parents.

Le mari de ma tante Mokrane, mais coussin Massi et Mohend, ma sœur Rania, mon frère Malek et aussi mon beau-frère Moh Ouali.

Aussi, c'esttout simplement que je dédiece travailà:

Meschères copines Nadia, Zahira, Sarah, Liza, Naima, Yasmine et mescamaradesdeclasseM2 PV.

Jedédiecetravailàtoutelapromotion 2016

CHEBLAL LYDIA

SOMMAIRE

Remerciement		
Dédicace		
Sommaire		
Liste des figures		
Liste des tableaux		
Résumé		
Introduction générale		1
	PITRE 1 Cellule solaire à base CZTSSe	4
I.2 Principes de fonctionnen	nent physique d'une cellule photovoltaïque	4
I.2.1	Le	spectre
solaire	4	
I.2.2 Principe de fonctionner	ment d'une jonction PN	4
I.2.3 Caractéristiques d'une	cellule photovoltaïque	5
La densité de courant de cou	ırt-circuit	6
La tension de circuit ouvert.		6
Le facteur de forme		6
Le rendement		6
Résistance série (Rs) et résis	stance de court-circuit (Rshunt)	6
I.3 Les cellules photovoltaïq	ues en couche mince	7
I.3.1 Différents matériaux de	éveloppés pour les cellules en couches minces	7
I.3.1.1 Si amorphe		7
I.3.1.2 Tellure de cadmium ((CdTe)	8
I.3.1.3 Matériaux chalcopyri	ites	8
I.4 Cellule solaire à base de	CZT(S, Se)	8
I.4.1 L'histoire de la cellule	solaire CZTSSe	9
I.4.2 Propriétés du CZTSSe.		9
I.4.2.1 Structure cristalline .		10
I.4.2.2 Energie bande de CZ	TSSe	10
I.4.2.3 Défaut de CZTSSe		11
I.4.3 Composants d'une cell	ule solaire à base de CZT(S, Se)	11
I.4.3.1 Substrat		12

I.4.3.2 Contact arrière	12
I.4.3.3 Couche absorbante.	12
I.4.3.4 Couche tampon.	13
I.4.3.5 Couche d'oxyde transparent conducteur (TCO)	13
I.4.3.6 Grilles métalliques.	13
Conclusion	14
Chapitre II : présentation du logiciel et de la structure de la cellule solaire	C7TSS ₀
Chapitre II. presentation du logiciel et de la structure de la cenule solaire	CZISSE
II.1 Introduction	16
II.2 Logiciel de simulation : SCAPS.	16
II.3 Simulation électrique sous SCAPS	17
II.4 Présentation du logiciel SCAPS.	18
II.4. 1 Lancer SCAPS.	18
II.4.2 Définir le problème.	19
II.4.3 Définir le point de fonctionnement	21
II.4.4 Sélection des caractéristiques à simuler.	21
II.4.5 Lancer le calcule	21
II.4.6 Afficher les courbes simulées.	21
II.5 Structure de la cellule solaire CZTSSe.	22
Conclusion.	25
Chapitre III : Résultats et discussion	2.7
III.I Introduction.	
III.2 Énergie de bande	
III.3 Performance de la cellule solaire à base de CZTSSe avec différentsTCOs	
III.4 Effet du coefficient d'absorption de la couche fenêtre (TCO)	
III.5 Effet de l'épaisseur de la couche intrinsèque et la couche TCO	
III.5.1 Effet de la couche intrinsèque (i-ZnO) et la couche AZO	
III.5.2 Effet de la couche intrinsèque (i-ZnO) et de la couche FTO	
III.5.3 Effet de la couche intrinsèque (i-ZnO) et de la couche ITO	
III.5.4 Effet de la couche intrinsèque (i-ZnO) et de la couche TiO2	
III.5.5 Effet de la couche intrinsèque (i-ZnO) et de la couche MgZnO	
III.6 Effet du dopage de la couche fenêtre (TCOs)	
III.7 Effet de la résistance en série	

III.8 L'effet du contact arrière sur les paramètres externes	37
III.9 Conclusion.	39
Conclusion Générale.	.41
Partie bibliographique.	.42

LISTE DES FIGURES

Chapitre I La cellule solaire à base de CZTSSe

: Spectre solaire	es AM0 et AM1.5	5G			4
Représentation	et schéma de ba	ndes d'une jonc	tion p-n		5
: Caractéristiqu	es J(V) d'une ce	llule solaire à b	ase de CZT(S	S,Se) à l'obso	curité et
ment					6
I.3:	Schéma	équivaler	nt d'	une	cellule
que		7			
.4: Les fa	milles de sei	mi-conducteurs	dont le	CZTSSe es	st issu
Le composé Cu	u2ZnSn(S,Se)4 e	et sa structure ke	esterite		10
: Variation	de l'énergie d	e bande inter	dite du CZ	ZTSSe en 1	fonction
11					
I.7: Struc	ture de	la cellule	solaire	à base	de
	12				
	Ch	apitre II			
résentation du	logiciel et de la	structure de la	cellule solair	e CZTSSe	
La fenêtre du p	panneau d'action	du logiciel SCA	.PS		18
La fenêtre de la	définition de la	cellule solaire d	u logiciel SC	APS	19
: La fenêtre de	s propriétés des c	ouches de la cel	llule solaire		19
: La fenêtre de	s propriétés des c	ontacts			20
: Panneau des b	oandes d'énergie.				22
Schéma simplif	ñé d'une cellule s	solaire en couch	es minces en	CZTSSe	23
	Représentation Caractéristiquement I.3: que	Représentation et schéma de band Caractéristiques J(V) d'une ce ment	Représentation et schéma de bandes d'une jonce Caractéristiques J(V) d'une cellule solaire à benent I.3: Schéma équivalent que	Représentation et schéma de bandes d'une jonction p-n Caractéristiques J(V) d'une cellule solaire à base de CZT(sternent	.4: Les familles de semi-conducteurs dont le CZTSSe es

Chapitre III

Résultats et discussion

Figure	e III.1 :	Diagramm	es des bandes	d'énergi	es de la	cellule sola	ire CZT	SSe av	ec diff	érent
TCO:	AZO,	TO, FTO, T	TiO2et MgZnC)						.27
Figure	e III.2	: Caractéris	tiques J(V) de	e la cellu	ıle solaiı	e à base d	e CZTS	SSe ave	e diffé	rents
TCOs.										28
Figure	e III.3	: Variation	du coefficient	d'absor	ption en	fonction d	e la lon	gueur d	'onde	pour
différe	ents TC	Os								29
Figure	e III.4:	Influence	du coefficient	d'absor	ption su	r les paran	nètres e	externes	: (a)	Vco,
(b)Jcc.	,		(c)		FF		et			(d)
η								30		
Figure	e III.5	Influence of	de l'épaisseur	de la cou	uche intr	insèque (i-Z	ZnO) et	de la co	ouche .	AZO
sur	les	paramètres	externes	:(a)	Vco,	(b)Jcc,	(c)	FF	et	(d)
η			31							
Figure	e III.6	Influence of	de l'épaisseur	de la co	uche intr	insèque (i-Z	ZnO) et	de la c	ouche	FTO
sur les	parame	ètres externe	es: (a) Vco, (b)Jcc, (c)	FF et (d)) η				32
Figure	e III.7	Influence of	de l'épaisseur	de la co	uche intr	rinsèque (i-	ZnO) et	t de la c	ouche	ITO
sur	les	paramètres	externes	:(a)	Vco,	(b)Jcc,	(c)	FF	et	(d)
η			3	3						
Figure	e III. 8	: Influence	de l'épaisseur	de la co	uche intr	insèque (i-Z	ZnO) et	de la co	ouche	TiO2
sur les	parame	ètres externe	es: (a) Vco, (b)Jcc, (c)	FF et (d)) η				34
Figure	e III. 9	: Influence	e de l'épaisser	ur de la	couche	intrinsèque	i-ZnC) et de	la co	uche
MgZn	O sur	les par	amètres exte	ernes :	(a) V	Vco, (b)	Jcc,	(c) F	F et	(d)
η			35							
Figure	e III.10	: Influence	du dopage Nd	TCOs d	e la couc	the TCOs s	ur les p	aramètr	es exte	ernes
:(a)		Vco,	(b)Jcc,		(c)	FF		et		(d)
η						36				
		1: Influence	ce de la résis			ur les para		externe	s :(a)	
(b)Jcc,			(c)		FF		et	37		(d)
Figure	e III.12	: l'effet du	travail du sor	tie de co	ontacte a	rrière sur l	es para	mètres o		

LISTE DES TABLEAUX

Chapitre II Présentation du logiciel et de la structure de la cellule solaire CZTSSe

Tableau II.1 : Paramètresde la cellule solaire CZTSSe utilisés dans la simulation	23
TableauII.2 Paramètres desdifférentsmatériauxutilisés dans la simulation	
Chapitre III Résultats et discussion	
Tableau III.1: Paramètres électriques de la cellule solaire à base de CZTSSe avec différentsTCOs.	28
Tableau III.2 :Différents éléments du contacte arrière	38

Nomo-cloture

Liste-des-symboles

AM :Massed'air[Watt. m -2]

E :Energiedesphotons[J]

hConstante de Planck [6.626.10⁻³⁴]

v. Vitesseduphotondanslevide [3.10⁸]

λ.Fréquencedel'ondeélectromagnétiqueassociéeauphoton

α:Coefficientd'absorption

I : Le courant délivré par la cellule photovoltaïque

*Ip*②: Le photo-courant [A]

η : le rendement

Voc : Tension de circuit ouvert d'une cellule [V]

Ice: Courant de court-circuit [A]

Jcc: Densité du courant de court-circuit [mA/cm-2]

Iph:: Photo-courant [A]

Rs: Résistance série Ω

Rsh : Résistance parallèle Ω

FF : Facteur de forme [%]

R_S: Réponse spectrale [cm-3]

 $N_{\text{A}},\,N_{\text{D}}$: Concentration des atomes accepteurs et des atomes donneurs respectivement

[cm-3]

n, p : Concentration des électrons et des trous respectivement [eV]

Et :Energie du niveau proche de la bande interdite

Efi: Leniveau defermi intrinsèque

ni : ladensitéd'électrons(detrous)Concentrationintrinsèque

Nc: Ladensitéd'étatséquivalentedanslaBV,ramenéeenEv

N_D: Ladensitéd'étatséquivalentedanslaBV,ramenéeenEv

μn: mobilités des électrons

μp : mobilités des trous

PV: Photovoltaïque

Eg : L'énergie de bande interdite en eV

CZTS: Cuivre, Zinc, Étain, Soufre (Cu2ZnSnS4)

CZTSe: Cuivre, Zinc, Etain, Sélénium

CZTSSe: Cuivre, Zinc, Etain, Soufre, Sélénium (Cu2ZnSn(S,Se)4)

CdS:SulfuredeCadmium

CIGS: Di-séléniumdegaliumd'indiumdecuivre(Cu(In,Ga)Se2)

CdTe: TelluredeCadmium

GaAs: Arséniure de GalliumOxyde de Zinca-

a-a-Si: Silicium amorphe

ITO: Indium TinOxide

TCO:TransparentConductingOxide

Mo: Molybdénium

Ni: Nickel

AM 1.5 Spectre de la lumière solaire

IBM: International Business Machines

SRH: Shockley-Read-Hall

AZO: oxyde de zinc dopé d'aluminium

FTO :oxyde étain dopé de fer

ITO: oxyde d'indium -étain

TiO2: titanium dioxyde

MgZnO :oxyde de zinc dopé magnésium

تمت دراسة تأثير طبقات النوافذ المختلفة على المعلمات الكهربائية للخلية الشمسية CZTSSe باستخدام برنامج محاكاة جهاز محاكاة سعة الخلايا الشمسية .(SCAPS) تمت دراسة معامل الامتصاص البصري والسماكة وتركيز المنشطات لطبقة النافذة لهيكل الخلية الشمسية / AZO / ITO / TiO2 / ZnMgO / i-ZnO / CdS المنشطات لطبقة النافذة لهيكل الخلية الشمسية .CZTSSe بالإضافة إلى ذلك، تم محاكاة تأثير عمل مخرج التلامس الخلفي المعدني على أداء خلية .CZTSSe يُقترح أن زيادة التمرينات المعدنية هي حل محتمل لتحسين أداء الخلايا الشمسية CZTSSe .تقدم المحاكاة العددية في هذا العمل نهجًا جديدًا لتحسين كفاءة التحويل للخلية الشمسية CZTSSe.

الكلمات المفتاحية: الخلايا الشمسية، 4 (Cu2ZnSn(SSe) طبقات النوافذ، عمل الإخراج المعدني، كفاءة التحويل

Résumé

L'effet de différentes couches fenêtres sur les paramètres électriques de la cellule solaire CZTSSe a été étudié à l'aide du logiciel de simulation des dispositifs SCAPS (SolarCellCapacitance Simulator). Le coefficient d'absorption optique, l'épaisseur, la concentration du dopage de la couche fenêtre ont été étudiés pour la structure de la cellule solaire AZO /ITO /FTO/ TiO2 / ZnMgO / i-ZnO / CdS / CZTSSe / Mo. La présente étude révèle également que l'ITO est un meilleur choix pour la fabrication de la couche fenêtre pour la cellule solaire CZTSSe. De plus, l'effet du travail de sortie de métal du contact arrière sur les performances de la cellule CZTSSe a été simulé. Il est suggéré que l'augmentation du travail de sortie du métal est une solution potentielle pour améliorer les performances des cellules solaires CZTSSe. La simulation numérique dans ce travail présente une nouvelle approche pour améliorer l'efficacité de conversion de la cellule solaire CZTSSe.

Mots clés : Cellule solaire, Cu₂ZnSn(S,Se)₄, Couches fenêtres, Travail de sortie de métal, Efficacité de conversion

Abstract

The effect of different window layers on the electrical parameters of CZTSSe solar cell was investigated using a solar cell capacitance simulator (SCAPS). The optical absorption coefficient, thickness and the doping concentration of the window layer have been examined for the device structure AZO /ITO /FTO/ TiO2 / ZnMgO / i-ZnO / CdS / CZTSSe / Mo the solar cell. The present study also reveals that ITO is a better choice for the manufacturing of window layer in CZTSSe solar cells. Also, the effect of the work function of back contact metal on the performance of the CZTSSe solar cells was simulated. It is suggested that increasing the metal work function is a prospective solution to improve the performance of CZTSSe solar cells. The numerical simulation in this work presents a new approach to enhance the conversion efficiency of the CZTSSe solar cell.

 $\label{eq:Keywords:Solar cell, Cu2ZnSn(S,Se)4,Window layer, Work function metal, conversion efficiency$

Introduction Générale

L'énergie solaire est une énergie qui provient du soleil sous forme de rayonnement. C'est une des énergiesrenouvelables les plus utilisées. Elle consiste à convertir, grâce à l'effet photovoltaïque, lerayonnementélectromagnétique en électricité. Ce processeur de conversion est â la fois accessible,rentable et nonpolluant à l'environnement. Onparlealors d'énergie propre [1].

plusieursmatériaux solaires ontété exploités Actuellement, dans la conversion photovoltaïque à cause de leurspropriétés optiques etélectroniques [2]. La grande majoritédu marché photovoltaïque est à la base du silicium [3]. La filière Silicium dite de première génération, utilise le Silicium cristallin (monocristallin ou poly-Cristallin) comme matériauabsorbeur [4]. A ce jour, le rendement record de ces cellules est de 26.1%. Au cours des dernièresdécennies, les couches minces dites de deuxièmegénération sont des alternatives intéressantes au Silicium, elles sont développées dans le but d'augmenter les rendements et de réduire les coûts de fabrication [6]. Elles ont l'avantage d'avoir desmatériaux à bande interdite directe tunco efficient d'absorption plus élevé [5]. Par conséquent, les composés les plus communs pour faire des cellules solaires en couches minces sont le Tellurure de Cadmium (CdTe) et le Cuivre d'Indium Gallium et Séléniure(CIGS) (le rendement record de 22 %) [3.5]. Actuellement, l'inconvénient majeur estlarareté et le cout élevé d'éléments tel que l'Indium et le Gallium, ainsi que la toxicitéde Cadmium qui ont provoquédes préoccupations au sujet des limites de production descellules photovoltaïques [3,5]. Pour résoudre ces problèmes, il est nécessaire de développerde nouveaux matériaux à base d'éléments plus abondants et non toxiques afin de produire des cellules solaires qui Pour cela, ungrand respectent l'environnement [6]. nombre d'équipes rechercheélaborentd'autresmatériauxtels que l'utilisation de Cuivre-Zinc-Étain Sulfure Sélénium Cu₂ZnSn (S, Se)₄(CZTSSe) est le remplacement le plus approprié. Les métaux composant le CZTSSe sontentre 25 et 400 fois moins chers que l'Indium et le Gallium. L'abondance et les prix peu élevésdes métaux Cuivre, Zinc, Étain constituant le CZTSSe fait un matériau très intéressant pourla conversion photovoltaïque. Les derniers records avec les absorbeurs CZTSSe atteignent12.6% [7], valeurs encourageantes mais encore insuffisante pour envisager un développementindustriel.

L'objectif de ce travail est d'améliorer les performances de la cellule solaire CZTSSe. Cetravail se fera avec des outils de simulation qui permettent d'étudier les différents

Introduction Générale

paramètresinfluant sur le rendement de la cellule solaire à base de CZTSSe. Pourmeneràbien cetravailnous l'avonsstructurécommesuit :

- Le premier chapitre est consacré un étatd'art descellulessolairesàbasedeCZTSSe.
- Ledeuxième chapitreest entièrement consacré à laprésentation du logiciel desimulation SCAPS.
- Le troisièmechapitretraite les résultats de la simulation d'une cellule solairephotovoltaïqueàbasedeCZTSSeet leurs interprétations.
- Enfin, nous terminons ce manuscrit par une conclusion générale qui met l'accent sur les principaux résultats obtenus.

CHAPITRE 1

CELLULESOLAIRE À BASE

DE CZTSSe

I.1 Introduction

L'objectif de ce chapitre est de présenter les caractéristiques des composés en couches minces à base de CZT(S, Se). Il débute par la présentation du fonctionnement d'une cellule photovoltaïque, pour continuer par une synthèse bibliographique qui présente les propriétés structurales et optoélectroniques d'une cellule solaire composée d'un absorbeur CZT(S, Se)

I.2 Principes de fonctionnement physique d'une cellule photovoltaïque

Une cellule PV est un dispositif qui permet de convertir la lumière qu'il reçoit en électricité. Elle doit donc être constituée d'au moins un matériau susceptible d'absorber les photons qui composent le spectre lumineux.

I.2.1 Le spectre solaire

Le spectre solaire est présenté à la figure I.1. La notation AM₀ correspond au spectre solaire hors de l'atmosphère terrestre. Le spectre AM1.5G est le spectre de référence établi pour déterminer le rendement de cellules. Il correspond au spectre AM₀ moins les photons absorbés lors de la traversée de l'atmosphère [8].

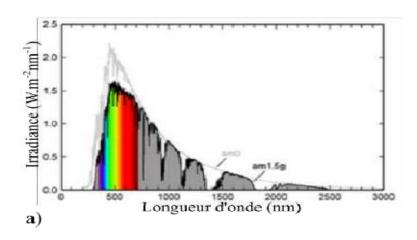


Figure 2-1: Spectre solaires AM0 et AM1.5G [8]

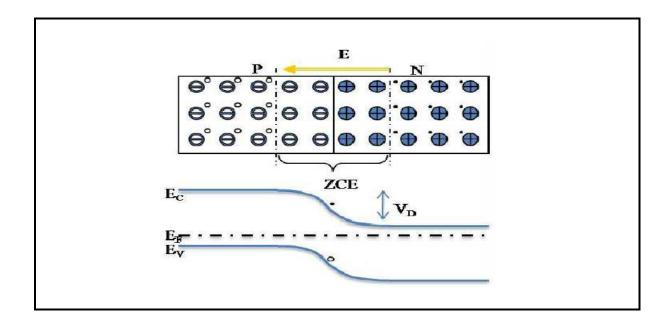
I.2.2 Principe de fonctionnement d'une jonction PN

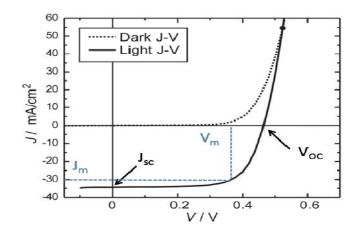
L'une des étapes clefs du fonctionnement d'une cellule solaire est la séparation desélectrons et des trous avant qu'ils ne se recombinent au sein du matériau. Cette séparation électrons/trous peut être obtenue par une différence de potentiel réalisée par la mise en contact

ChapitreI: lacellulesolaire à base de CZTSSe

de 2 SC, un de type p et un de type n, créant une jonction p-n.(Figure I.2)

Sous l'effet du gradient de concentration, les porteurs majoritaires, les trous dans le SC de type p et les électrons dans le SC de type n vont diffuser au travers de l'interface p/n. Ces porteurs vont alors se recombiner. La zone sans porteur mobile (atomes ionisés) ainsi crée est appelée zone de charge d'espace (ZCE) ou zone de déplétion. Il y a ainsi création d'un champ électrique E qui s'oppose à la diffusion des porteurs majoritaires. Ce champ électrique permet la migration des trous vers la zone dopée p dans le sens du champ et les électrons vers la zone dopée n en sens inverse au champ. L'alignement du niveau de Fermi E_F induit une courbure des bandes ainsi qu'une barrière de potentiel $V_D[9]$.




Figure I.2: Représentation et schéma de bandes d'une jonction p-n

Sous éclairement, les électrons générés par des photons vont immédiatement être dirigés vers la zone chargée n et les trous vers la zone p. Des conducteurs métalliques permettent de collecter ces électrons et trous et de récupérer le courant généré par la cellule solaire[9].

I.2.3 Caractéristiques d'une cellule photovoltaïque

Un exemple de caractéristique courant-tension J(V) (où J est la densité de courant J = I/S) d'une cellule solaire à base d'un absorbeur CZT(S, Se) est présenté sur la Figure I.3.

ChapitreI :lacellulesolaire à base de CZTSSe

Figure I.3: Caractéristiques J(V) d'une cellule solaire à base de CZT(S,Se) à l'obscurité et sous éclairement [10].

Les différents paramètres caractérisant la cellule solaire, extraits de la caractéristique J(V) sont les suivants :

- La densité de courant de court-circuit(Jcc en mA/cm²), qui est le point d'intersection de la caractéristique J(V) sous éclairement avec l'axe des ordonnées. Elle correspond au photon courant lorsque la diode est courte circuitée
- La tension de circuit ouvert(Voc en V), est la tension maximale que peut générer la cellule. Celle-ci se mesure lorsque le courant est nul.
- Le facteur de formepermet de qualifier la qualité de la cellule PV. C'est le rapport entre la puissance maximale fournie par la cellule sur le produit de $V_{co} \times I_{cc}$. Ce rapport doit avoir une valeur la plus proche possible de 1 :
- Le rendement de la cellule (η en %) qui est le rapport entre la puissance maximale réellement délivrée par la cellule et la puissance lumineuse incidente (illumination normalisée AM 1.5) [11].
- Résistance série (Rs) et résistance de court-circuit (Rsh): Une cellule photovoltaïque n'est jamais parfaite. Pour bien traduire le comportement d'une cellule PV, deux résistances sont ajoutées sur le schéma équivalent (Figure I.3).

ChapitreI :lacellulesolaire à base de CZTSSe

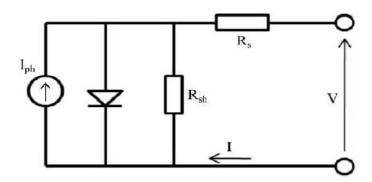


Figure I.3 : Schéma équivalent d'une cellule photovoltaïque [8]

Le premier est la résistance série (Rs) [8] qui traduit la résistance aux interfaces, notamment au contact avant et arrière. Cette résistance doit donc être la plus faible possible. La seconde est la résistance de court-circuit R_{sh} [8] qui s'établit en parallèle de la diode et du générateur de courant. Elle traduit les phénomènes de court-circuit au travers de la cellule. Cette résistance doit donc être le plus grand possible. Ces deux résistances affectent notamment le facteur de forme.

I.3 Les cellules photovoltaïques en couche mince

Pour rappel, la grande majorité (plus de 85% du marché) des cellules actuellement commercialisées sont à base de silicium et dénommées cellules de première génération. Le silicium est un matériau à gap indirect, l'absorbeur possédant une épaisseur de l'ordre de 300 µm. La probabilité d'absorption d'un photon est beaucoup plus forte dans les SC à gap direct que dans les SC à gap indirect car elle ne met en jeu que deux particules, un photon et un électron. Cette propriété des SC à gap direct permet de diminuer fortement les épaisseurs des matériaux absorbeurs, jusqu'à des épaisseurs de l'ordre du micromètre. Les cellules PV à base d'absorbeurs SC à gap direct de faibles épaisseurs ou cellules PV à couches minces sont ainsi dénommées cellules solaires à couches minces [11].

I.3.1 Différents matériaux développés pour les cellules en couches minces

I.3.1.1 Si amorphe

Le silicium amorphe est un matériau dont le comportement peut être assimilé à celui d'un matériau à gap direct contrairement au silicium cristallin des cellules PV de première génération. Les cellules PV à base de silicium amorphe sont les cellules les moins chères du marché mais le rendement de conversion théorique est faible d'environ 25 %. Actuellement, le record est de 10,7 % [12].

ChapitreI: lacellulesolaire à base de CZTSSe

I.3.1.2 Tellure de cadmium (CdTe)

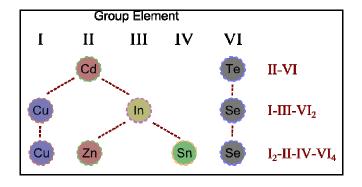
La société FirstSolar est la principale productrice de cellule PV à base de CdTe. Un rendement record de 21,5 % a été obtenu en février 2015 [12]. Cependant, la présence de cadmium, qui est un matériau toxique, et la rareté du tellure risquent de limiter fortement son développement malgré un rendement très intéressant.

I.3.1.3 Matériaux chalcopyrites : CuInSe2 (CIS) et CuInGaSe2 (CIGS)

Le matériau CIS avec une largeur de bande interdite de 1 eV est un matériau très prometteur pour la conversion PV. De plus la substitution partielle d'atomes d'indium par des atomes de gallium permet d'augmenter la largeur de bande interdite jusqu'à 1,7 eV. Le rendement record obtenu avec un matériau de type CIGS est de 21,7 % [13].

I.4 Cellule solaire à base de CZT(S, Se)

Le développement de la recherche sur le CZT(S,Se) est motivé par la pénurie possible en indium dans les prochaines années qui pourrait bloquer le développement de la filière CIGS. De plus, ce matériau possède de nombreux avantages :


- C'est un composé où les défauts intrinsèques conduisent généralement à un semiconducteur de type p ;
- C'est un matériau à gap direct avec un coefficient d'absorption > 10⁴ cm⁻¹ [14,15,16-17]
- Le CZT(S,Se) a un gap compris entre 1,0 eV et 1,5 eV en fonction des teneurs en soufre vis-à-vis du sélénium [18,19,29,21]. Cependant, un gap de 1,76 eV a été mis en évidence par Saravana et al. par synthèse de CZT(S,Se) sous forme de nanoparticules [22];
- Les productions de zinc et d'étain sont respectivement 20000 et 500 fois supérieures à celle de l'indium [12] ;
- L'architecture d'une cellule solaire à base de CZT(S,Se) peut être la même que celle des cellules CIGS. Des rendements de 11,1 % [22] ont été obtenus avec ce type de cellules solaires (couche tampon en CdS et couche fenêtre en ZnO). Cependant, pour atteindre des rendements élevés, un ajustement des couches tampons et fenêtre sera probablement nécessaire.
- Les joints de grains semblent avoir les mêmes propriétés bénéfiques que pour le CIGS, par exemple l'augmentation de la collection des porteurs minoritaires aux joints de grains [23-34].

I.4.1 L'histoire de la cellule solaire CZTSSe

La première cellule solaire CZTSSe a été réalisée en 1997 par Katagiri et al. [19]. Ils ont construit la première cellule solaire CZTS pure d'un rendement quantique égal à 0.66%. Dans cette première cellule, l'absorbeur CZTS avait été placé dans une hétérojonction avec le tampon CdS avec du Mo et ZnO: Al utilisé pour les contacts arrière et avant. En parallèle, en 1997, Friedlmeier et al. ont rapporté un rendement de 0,6% obtenu sur des films analogues de CZTSe de séléniure fabriqués sous vide [20]. En 2009, l'efficacité de la cellule CZTSe était passée à 3,2% grâce aux travaux de Zoppi et al. [21]. Cet enregistrement a été rendu possible car pour la première fois, des chalcogènes mélangés sont introduit dans l'alliage formant le composé CZTSSe. Par la suite, Mitzi et al. chez IBM ont rapporté un rendement de 9,7% de cellules solaires CZTSSe en utilisant une approche de résolution de particules hybrides [22]. En 2010, le groupe Agrawal de l'université Perdue (USA) a introduit pour la première fois du germanium dans l'alliage formant un nouveau matériau CZTSGe et conduisant à un rendement de 8,4% [23]. Dans les deux années qui ont suivi, soit en 2011-2012, Todorov et al. ont poussé le rendement à 10,1% et à 11,1% en utilisant la méthode des particules hybrides [24, 25]. De nos jours, le record mondial d'efficacité pour les cellules solaires CZTSSeatteind 12.6% et a été réalisé par une équipe d'IBM Watson en 2013 [26].

I.4.2 Propriétés du CZTSSe

La formation de composés I₂-II-IV-VI₄ comme CZTSSe peut être obtenue à partir d'un semi-conducteur II-VI par remplacement séquentiel de cations dans lesquels la règle d'octet et la charge totale reste neutre comme il est présenté dans la figure I.4

ChapitreI :lacellulesolaire à base de CZTSSe

Figure I .4: Les familles de semi-conducteurs dont le CZTSSe est issu [27]

I.4.2.1 Structure cristalline

Dans la littérature, Cu2ZnSnS4 et Cu2ZnSnSe4 (également Cu2ZnGe(S,Se)4 [28]) sont décrits à partir de modèles structuraux de deux minéraux naturels : stannite (groupe d'espace I-42m) [29-31] et kesterite (groupe d'espace I-4) [29]. Ces structures cristallines sont très proches, dans chacune les cations sont localisés sur les sites tétraédriques mais leur distribution dans le plan perpendiculaire à l'axe c n'est pas la même.

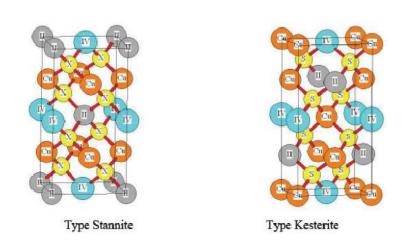
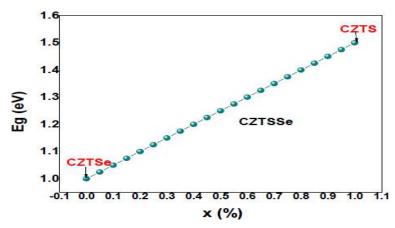


Figure I.5: Le composé Cu2ZnSn(S,Se)4 et sa structure kesterite [26].

De plus, la position des atomes de chalcogène est légèrement différente dans ces structures [29,30,31].


- Kesterite : (Cu+ Sn) / (Cu+ Zn) / (Cu + Sn), et le chalcogène en position (x,y,z), Figure I.5;
- Stannite : Cu / (Zn + Sn) / Cu, et le chalcogène en position (x,x,z).

I.4.2.2 Energie bande de CZTSSe

Une substitution partielle voire totale des atomes de soufre par des atomes de sélénium est souvent mise en œuvre lors de la fabrication de cellules avec obtention d'un alliage de type. La largeur de la bande interdite du CZTS pur est de 1,5 eV, supérieure à celle du CZTSe (1 eV) [32]. La largeur de la bande interdite varie de manière quasi-linéaire avec le taux de sélénium (figure I.6) comme l'ont montré Chen et al. Par calcul DFT. De plus, le calcul des enthalpies de formation théoriques montre que les deux composés sont très miscibles et cristallisent toujours de préférence dans une structure kësterite [33].

ChapitreI :lacellulesolaire à base de CZTSSe

ChapitreI : lacellulesolaire à base de CZTSSe

Figure I.6 : Variation de l'énergie de bande interdite du CZTSSe en fonction de la composition x

Les alliages CZTS_xSe_{(1-x)4} où le taux x de sélénium est très important ont généralement toujours montré de meilleurs rendements que des composés CZTS pur. Duan et al. ont montré que les matériaux avec un fort taux de soufre présentent une plus grande concentration de défauts entrainant de fortes pertes par recombinaison [35]. Ce nombre de défauts plus important expliquerait pourquoi les rendements sont meilleurs sur des composés à fort taux de sélénium.

I.4.2.3 Défaut de CZTSSe

Le CZTSSe est un semi-conducteur de type -p ce qui influe sur la présence et la concentration de défaut dans le matériau. En effet, l'énergie de formation de la majorité des défauts accepteurs est plus faible que celle de la majorité des défauts donneurs. Dans le CZTSSe, le défaut majoritaire responsable de la conductivité de type -p, est Cu_{Zn} [36]. Ce défaut est différent de celui responsable de la conductivité de type p dans le composé CIS où le défaut majoritaire est V_{Cu} .

I.4.3 Composants d'une cellule solaire à base de CZT(S, Se)

Une cellule solaire est constituée d'un ensemble de couches minces semi-conductrices avec une épaisseur totale d'environ 5 µm. La structure de la cellule photovoltaïque à base de CZTSSe synthétisées au laboratoire est représentée dans la figure I. 7

ChapitreI: lacellulesolaire à base de CZTSSe

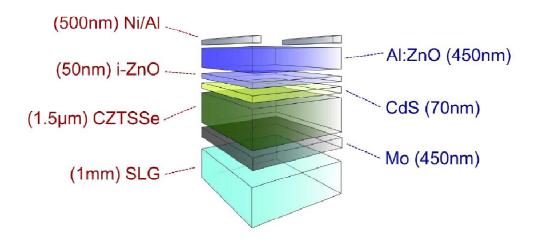


Figure I.7 : Structure de la cellule solaire à base de CZTSSe [37].

I.4.3.1 Substrat

Un support ou repose la couches active, c'est un substrat qui est flexible ou métallique ainsi, d'épaisseur allant de 1 à 3 mm. Généralement on utilise le verre sodo de 1mm [20].

I.4.3.2 Contact arrière

La première étape de la fabrication d'une cellule photovoltaïque est le dépôt d'une couche de molybdène ou d'ITO de 1µm d'épaisseur, généralement par la technique d'évaporation thermique ou par pulvérisation cathodique. Cette couche constitue le contact ohmique arrière de la cellule ; elle assure l'adhésion entre la couche active de la cellule (la couche absorbante) et le substrat [39].

I.4.3.3 Couche absorbante

C'est la couche la plus importante dans la cellule photovolta \ddot{a} que car elle est responsable de l'absorption des rayonnements solaires ainsi que la génération des porteurs de charges (les électrons et les trous). Elle est souvent composé d'un semi-conducteur de type p et d'une épaisseur de 1 à 3 μ m et doit être caractérisée par :

- Un grand coefficient d'absorption dans le domaine du visible
- Une bande interdite directe d'une largeur de l'ordre de 1-1.7 eV
- Une conductivité de l'ordre de 1-10⁻² (Ω. Cm)⁻¹[20].

ChapitreI :lacellulesolaire à base de CZTSSe

I.4.3.4 Couche tampon

Un semi6conducteur de type n située entre la couche absorbante et la couche d'oxyde transparent conducteur (TCO), elle est utilisé pour l'optimisation des performances de la cellule solaire et elle doit être caractérisée par :

- un gap d'une valeur comprise entre 2.4 et 3.2 eV permettant une transition souple entre la bande interdite de la couche absorbante et celle de la couche d'oxyde transparent conducteur.
- une conductivité de type n de l'ordre de 1-10⁻² (Ω. Cm)⁻¹ plus faible que celle de la couche absorbante pour former la jonction avec la couche absorbante.
- une morphologie très homogène afin d'éviter tout effet de court-circuit au niveau des joints de grains.

Parmi les couches tampon qui répond à ces critères nous citons le CdS avec un meilleur rendement [20].

I.4.3.5 Couche d'oxyde transparent conducteur (TCO)

La jonction p-n est finalement recouverte d'une couche d'oxyde de zinc qui sert d'électrode en face avant de la cellule. Une couche d'oxyde de zinc (ZnO) intrinsèque de 50 nm d'épaisseur puis de ZnO dopée avec de l'aluminium de 400 nm d'épaisseur sont déposées sur la couche tampon en CdS. En effet ; la couche de ZnO intrinsèque, non-conductrice, évite toute fuite de courant entre la couche absorbante et le contact supérieur.

Cette couche doit être simultanément transparente et conductrice. Dans le domaine du spectre solaire, la transmission des couches doit être supérieure à 80% et la conductivité doit être supérieure à 10³Ω⁻¹cm⁻¹. A ce jour, les TCOs les plus connus, performants et utilisés sont des composés binaires tels queIn₂O₃, ZnO ou SnO₂, TiO₂et/ou leurs dérivés comme par exemple In₂O₃:Sn, ZnO:AlZnO :Mg ouencore SnO₂:F, qui sont élaborés par des techniques chimiques et physiques [20].

I.4.3.6 Grilles métalliques

La cellule photovoltaïque est complétée par le dépôt de grilles métalliques sur le TCO. Les grilles sont composées d'une couche de nickel (Ni) d'environ 50 nm d'épaisseur puis d'une couche d'aluminium (Al) de 450 nm d'épaisseur. Le Ni sert de couche d'accroche pour l'Al et pour éviter également la formation d'Al₂O₃ à l'interface entre le TCO et l'Al.

ChapitreI :lacellulesolaire à base de CZTSSe

Conclusion

Dans le présent chapitre, Nous avons expliqué le fonctionnement des cellules photovoltaïques et leurs caractéristiques principales après nous avons parlé de l'une des technologies des cellules solaires qui est les cellules solaires de la 2^{eme} génération dite les couches minces. Ensuite nous avons présentéla cellule solaire à base de CZTSSe.

Chapitre II

Présentation du logiciel et de la structure de

la cellule solaire CZTSSe

II.1 Introduction

Acausedescoutsélevésdel'expérimentation(techniquesd'élaboration et de caractérisation), les chercheurs se sont orientés vers lasimulation [39].La simulation numérique est devenue incontournable pour tous les domaines de rechercheet surtout pour les composants bien électroniques ou optoélectronique et notamment danslescellulesphotovoltaïques. Ceslogiciels desimulation nous donnent la possibilité d'étudier et d'interpréter les résultats obtenus, afin d'optimiser la structure et les différentscomposants des cellules pour améliorer leurs performances. Parmi les logiciels disponibles, ils résolvent les équations différentielles qui régissent le fonctionnement des dispositifs électroniques par des méthodesnumériques (éléments finis, moindre carré, méthode monté etc.). Lessimulateursexistantssurlemarché(SCAPS,AMPSde Carlo, 1D,SILVACO,AFORS ...)ontlemêmeprincipedefonctionnement.Notrechoix c'estporté verslesimulateurdes dispositifs SCAPS [39].

Danscechapitre, nous allons présenter le logiciel SCAPS, ainsiqu'une brève description des équations de base de modélisation utilisées par SCAPS. Dans ce travail, les imulateur SCAPS est utilisé pour étudier la cellule solaire à base CZTSSe.

II.2 Logicielde simulation : SCAPS

LeSCAPSacronymede«SolarCellCapacitanceSimulator» estunlogiciel des imulation numérique des cellules solaires unidimensionnelles développé par le département des systèmes électronique et informatique (ELIS) de l'Université de Gent, Belgique. Plus ieurs

chercheursontcontribuéàsondéveloppement:MarcBurgelman,KoenDecock,JohanVerschraegen ,Alex Niemegeers, StefaanDegrave[39].

Celogicielest disponible gratuitement pour la communauté des recherches photovoltaï ques (PV) (Instituts et établissements derecherche). Le SCAPS a été développé à l'origine pour des structures des cellules de CuInSe2 et deCdTe. Cependant, plusieurs version ont amélioré ses capacités de façon à devenir applicable pour des cellules solaires cristallines (SietGaAs) et des cellules amorphes (a-Sietde Simicro-morphe). Avec le SCAPS, il est possible de simuler des structures constituées d'un nombre définis de couches (jusqu'à 7 couches intermédiaires ainsi que les contacts avant et arrière), avec des profils de dopage différents, et avec des distributions énergétiques des

Chapitre II : présentation du logiciel et de la structure de la cellule solaire CZTSSe

niveauxdonneurs ou accepteurs donnés, dans le volume et aux interfaces pour un spectre de lumièrearbitraire [17]. La majorité des paramètres peuvent être introduits avec variations graduées (endépendance de la composition et de la profondeur de la cellule). Par exemple, NC, NV,μn, μp,NA,ND, tous les pièges (défauts).

II.3 Simulation électrique sous SCAPS

La simulation électrique par SCAPS est basée sur la résolution numérique des trois équationsfondamentales de transport de charges dans les semi-conducteurs à une dimension quisont respectivement l'équation de Poisson et l'équation de continuité pour les électrons etles trous. L'équationde Poisson s'exprimepar(II.1)

$$\operatorname{div} \nabla V = -\rho$$
 (II.1)

Où: y représente le potentiel électrostatique.

Elapermittivitéélectriquedumatériau.pest la densité volumique nettedechargeslibres.Le champélectriqueestdonnéparlarelation:

$$E=-grad\psi$$
 (II.2)

Les équations de continuité décrivent la vitesse de variation desconcentrations de porteurs en fonction du temps, s'expriment par: concentration

Pour des électrons
$$\partial n / \partial t = 1/q \operatorname{div} \overline{Jn} + Gn + Rn$$
 (II.3)

et pour les trous $\partial p / \partial t = -1 / q \operatorname{divJp} + \operatorname{Gp} - \operatorname{Rp}(II.4)$

Gnet Gpsont les tauxdegénération pour lesélectronset les trousrespectivement,RnetRpsontrespectivementlestauxderecombinaisonspourlesélectronsetlest rous,JnetJpsont lesdensitésdes courants desélectronsetdes trous respectivement [40].

II.4Présentation du logicielSCAPS

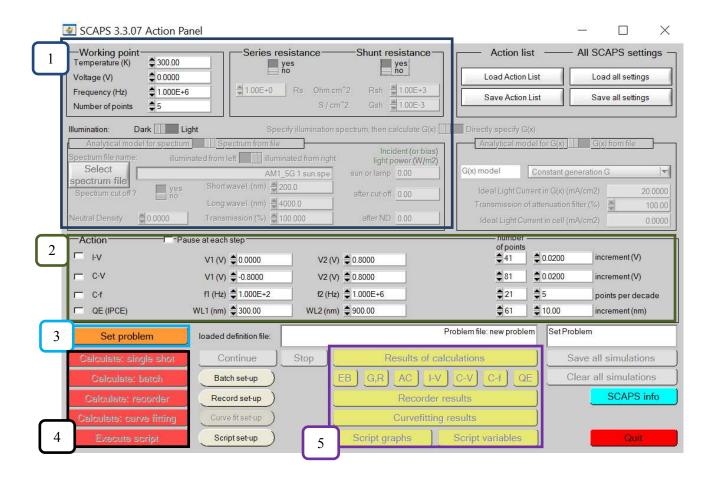
Dans notre étude nous avons modélisé une structure de cellule solaire réalisée à basedecouchesmincesCZTSSe etnousavonssimulésesparamètresphysiqueset électrique le logiciel SCAPS.

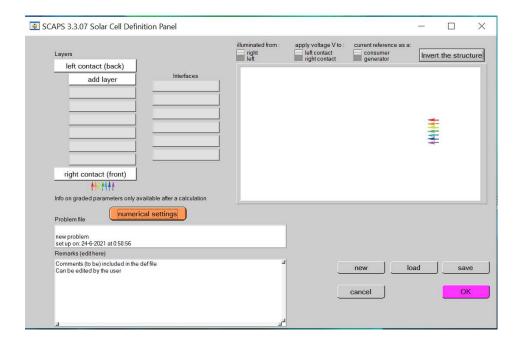
II.4. 1 LancerSCAPS

Après avoir cliqué sur l'icône qui représente le logiciel, la fenêtre si dessous (figureII.1)apparaitet cequ'on appellele panneau d'action.

Chapitre II :présentation du logiciel et de la structure de la cellule solaire CZTSSe

Chapitre II : présentation du logiciel et de la structure de la cellule solaire CZTSSe




Figure.II.1Lafenêtredupanneaud'actiondulogiciel SCAPS

- 1. Indiquerles circonstances et les conditions dans les quelles la simulation est effectuée (te mpérature fréquence, spectre de l'éclairement, irradiation....),
- 2. indiquerlamesure (lacaractéristique)àsimuler,
- définirleproblème, ainsique la géométrie, les matériaux et toutes les propriétés de la cellu les olaire étudiée (Set-problem),
- 4. commencerle(s)calcul(s),
- 5. afficherlescourbesdesimulation.

II.4.2 Définirleproblème

On clique sur le bouton « **Set-problem**» dans le panneau d'action, le panneau « **SolarCellDefinition Panel**» s'affichera (figure II.2). Les propriétés des couches, contacts et del'interfacepeuventêtremodifiéesencliquantsurleboutonapproprié.Delamêmeman ière, descouches peuvent êtrerajoutées en cliquant « **add-layer**».

Chapitre II : présentation du logiciel et de la structure de la cellule solaire CZTSSe

FigureII.2Lafenêtre dela définition delacellulesolairedulogiciel SCAPS

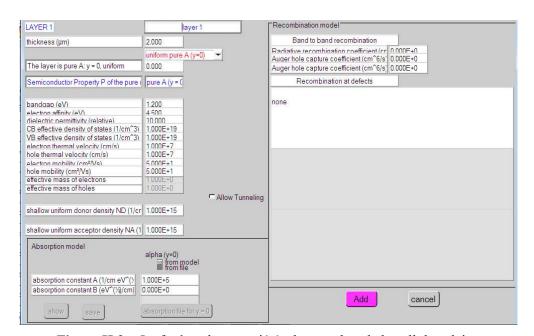


Figure II.3 : La fenêtre des propriétés des couches de la cellule solaire

En cliquant sur le bouton « **add-layer** », une fenêtre (Figure II.3) s'ouvre qui contient les différents paramètres du matériau à introduire :

- ✓ Composition, dimensionnement, dopage, défauts.
- ✓ Propriété des couches tels que la constante diélectrique, paramètres des bandes (band interdite, affinité électronique..) mobilité des porteurs libres, coefficient d'absorption, paramètres de recombinaison, défauts....etc.

Les propriétés des contacts peuvent être introduits soit en cliquant sur le bouton du

contact avant ou celui du contact arrière sur le panneau de définition de la cellule « **Left ou right contact** ». Un panneau des propriétés de contact 'CONTACT PROPERTIES PANEL' s'ouvre (Figure II.4). Les propriétés des contacts, se divisent en propriétés électriques et optiques. Dans les propriétés électriques, on définit :

- Les vitesses de recombinaison surfaciques des électrons et des trous libres.
- > Si le contact a un travail de sortie, ou il est idéal (régime de bande plates).
- La barrière des porteurs majoritaires.
- L'effet tunnel (si on veut en tenir compte).

Pour les propriétés optiques, on peut définir la transmission ou la réflexion, par une valeur ou un fichier de données dans le SCAPS [40].

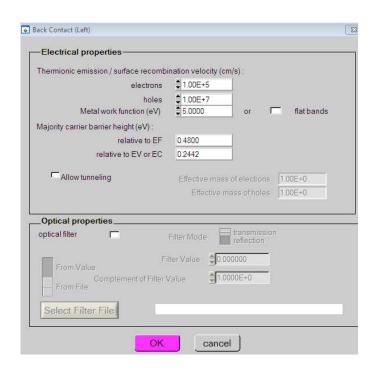


Figure II.4: La fenêtre des propriétés des contacts

II.4.3 Définir le point de fonctionnement

Le point de fonctionnement spécifie les paramètres qui ne sont pas variables dans les mesures de la simulation, et qui sont relatifs à l'opération de mesure. On trouve la température T, le voltage V de la polarisation, la fréquence f et les illuminations (l'obscurité ou la lumière).

II.4.4 Sélectiondes caractéristiques à simuler

Dans la partie « Action » panneau action, on peut choisir un ou plusieurs mesures à simuler : I(V) C(V), C(f) et $QE(\lambda)$. On peut ajuster également, les valeurs initiales et finales de l'argument, ainsi que le nombre des étapes.

II.4.5 Lancer le calcule

En cliquant sur l'icône « CalculatesingIshot »

II.4.6 Afficher les courbes simulées

Après les calculs, SCAPS passe au panneau de bande d'énergie, présenté dans la figure (III.5). Dans ce panneau, on peut voir les diagrammes de bandes, les densités des porteurs libres, la densité du courant ; au dernier point de polarisation. Si on veut afficher les résultats pour des tensions intermédiaires, on utilise le bouton pause dans le panneau d'action. On peut faire apparaître les résultats par les commandes « SAVE GRAPHS, SHOW », et les valeurs s'affichent par la suite à l'écran. Il est possible de faire du Couper & Coller vers, par ex., Excel, ou sauvegarder les valeurs dans un fichier de données. Vous pouvez basculer vers un de vos panneaux personnalisés (si vous avez toutefois simulé au moins une seule opération de mesure).

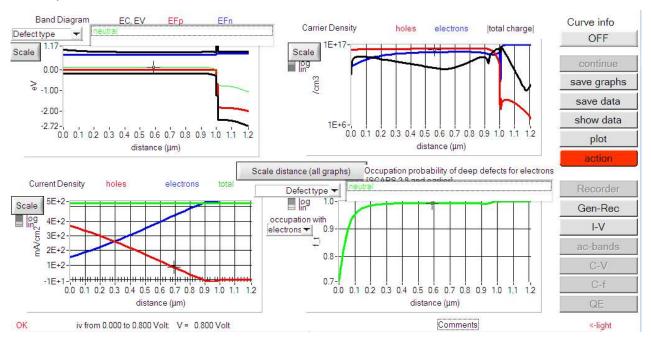


Figure II.5 : Panneau des bandes d'énergie.

II.5Structure de la cellule solaire CZTSSe

Dans notre travail, la structure de la cellule solaire à base de CZTSSe est la suivante : Ni/AZO /ITO /FTO/ TiO2 / ZnMgO / i-ZnO / CdS / CZTSSe / Mo. Le schéma simplifié de l'hétérostructureest représenté sur la figure II.6. Ces couches AZO, ITO, FTO, TiO2 et ZnMgO sont utilisés comme couche fenêtre, tandis que le CZTSSe et le CdS sont utilisés comme couche absorbante et couche tampon, respectivement. Le Molybdène (Mo) et le Nikel (Ni) sont des contacts avant et arrière respectivement

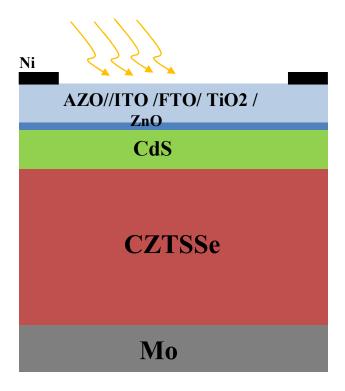


Figure II.6 Schéma simplifié d'une cellule solaire en couches minces en CZTSSe

Paramètres de la cellule			
Température	300 K		
Résistance série Rs	$0.72~\Omega.\mathrm{cm}^2$		
Résistance paralleRp	$621 \Omega.cm^2$		
Contact avant (Ni)			
Travail de sortie de métal	5.1eV		
Vitesse de recombinaison en surface d'électron	10^{7} cm/s		
Vitesse de recombinaison en surface de trous	10^7 cm/s		
Contact arrière (Mo)			
Travail de sortie de métal	5.0eV		
Vitesse de recombinaison en surface d'électron 10 ⁷ cm/s			
Vitesse de recombinaison en surface de trous 10^7 cm/s			

Tableau II.1: Paramètres de la cellule solaire CZTSSe utilisés dans la simulation [43]

Les paramètres de la cellule solaire CZTSSe et des matériaux utilisés dans la simulation qui ont été sélectionnés sur la base des valeurs de la littérature, de la théorie ou, dans certains cas, d'une estimation raisonnable. Le tableau II.1 récapitule les paramètres des contacts et la résistance en série et la résistance en parallèle de la cellule solaire CZTSSe [33, 35]. Les contacts métalliques sont définis par leur travail de sortie et la vitesse de recombinaison en surface. Les paramètres des différents matériaux utilisés dans la simulation sont groupés dansletableauII.2. On mentionne l'épaisseur du matériau (d), l'énergie de gap (E_g) , la permittivité relative (ϵ_r) , l'affinité électronique (χ) , la mobilité des électrons (μ_n) , la mobilité de trous (μ_p) , la densité d'état dans la bande de conduction Nc, la densité d'état dans la bande de valence Nv, la vitesse thermique des électrons (ν_n) , la vitesse thermique des trous

Couches	p-CZTSSe	n-Cds	ZnO	AZO	FTO	ITO	TiO2	MgZnO
Paramètres								
m	2000	25	10	50	50	50	50	50
Eg(eV)	1.13	2.4	4.4	3.3	4.2	3.6	3.2	3.71
εr	8	10	9	9	9	9.4	9	9
χ(eV)	4.4	4.2	4.4	4.6	4.6	4.8	4.6	4.6
μ n/ μ p(cm ² /Vs)	100/ 25	100/25	100/25	100/25	100/25	100/25	100/25	100/25
Nc(cm ⁻³)	2.2×10^{18}	2.2×10^{19}	2.2×10 ¹⁸	2.2×10^{18}	2.2×10^{18}	2.2×10^{18}	2.2×10^{19}	2.2×10^{18}
Nv(cm ⁻³)	1.8×10 ¹⁹	1.8×10^{19}	1.8×10^{19}	1.8×10 ¹⁹				
v _n /v _p (cm/s)	$10^7 / 10^7$	$10^{7}/\ 10^{7}$	$10^{7}/10^{7}$	$10^{7}/10^{7}$	$10^{7}/10^{7}$	$10^{7}/10^{7}$	$10^{7}/10^{7}$	$10^{7}/\ 10^{7}$
ND(cm ⁻³)	10^{-10}	10^{17}			10 18	10 ²⁰	10 17	10 18
NA(cm ⁻³)	6×10^{15}	10 10	10^{-10}	10 10	10 10	10 10	10 10	10 10
$\alpha(\text{cm}^{-1})$	3.5×10^4	Fichedata	Fichedata	Fichedata	Fichedata	10^{5}	10^{7}	1.5×10^7

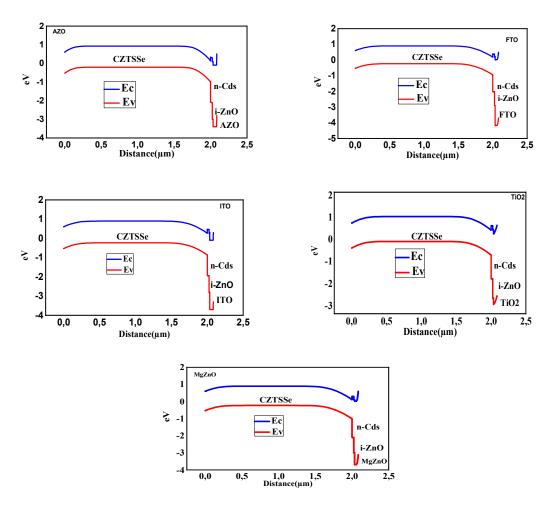
⁽ν_p), la densité du donneur (N_D), la densité de l'accepteur (N_A) et l'absorption optique(α).

TableauII.2 Paramètresdesdifférentsmatériauxutilisésdanslasimulation [44, 45,46]

Le coefficient de recombinaison radiative et les coefficients de recombinaison Auger des électrons/trous pour la couche absorbante CZTSSesont respectivement 5×10^{-9} cm³/s et 10^{-29} cm⁶/s [42].Dans notre étude, la distribution des défauts est de la forme gaussienne. Le tableau (II.3) récapitule les différents paramètres des défauts. $E_{A(D)}$ est l'énergie du pic de la gaussienne, W_d est la largeur de la distribution, N_{th} est la concentration des défauts (eV) et $\sigma_{n(p)}$ est section de capture. Les valeurs de ces paramètres sont extraites de refs. [44, 45,46].

Conclusion

Lelogiciel Scapes est un logicieltrès pratique et très utilisable par la communautéscientifique depuis sa mise en service. Dans ce chapitre nous avonsdécritce logicielce quinous a permis de bien comprendre sonfonctionnement et de l'exploiter par la suite dans notresimulation. Ainsiilestnécessaire pour l'optimisation des structures des dispositifs photovolta que set leur scaractéristiques principales ainsique les paramètres qui influent sur leur scaractéristiques.

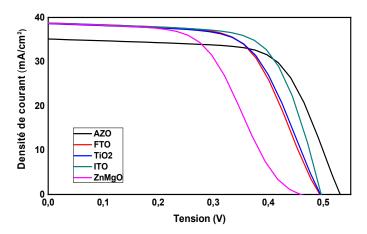

Chapitre III

Résultats et discussion

III.1 Introduction

Dans ce chapitre, nous présentons les résultats de la simulation numérique de la cellule solaire en couche mince à base de CZTSSe. Dans le but d'étudier l'effet de la couche fenêtre (TCO) sur les performances de cette cellule solaire, nous avons étudié l'effet des différents paramètres de cette couche.

Nous avons tout d'abord défini des cellules solaires à base de CZTSSe avec différents TCOs. Puis nous avons étudié l'influence des différents paramètres en faisant varier les paramètres géométriques et physique afin d'analyse leur effet sur les caractéristiques de sortie de la cellule solaire qui sont, la tension de circuit ouvertVoc, le courant de court-circuit Jcc, le facteur de forme FFet le rendement de conversion η . La simulation est effectuée à l'aide du logiciel SCAPS.


Figure III.1 : Diagrammes des bandes d'énergies de la cellule solaire CZTSSe avec différent TCO : AZO, ITO, FTO, TiO₂et MgZnO

III.2 Énergie de bande

Les diagrammes des bandes d'énergies des hétérojonctions CZTSSe-CdS-ZnO-AZO, CZTSSe-CdS-ZnO-ITO, CZTSSe-CdS-ZnO-FZO,CZTSSe-CdS-ZnO-TiO₂ et CZTSSe-CdS-ZnO-MgZnOsous SCAPS sont illustrées par la Figure III.1.

III.3 Performance de la cellule solaire à base de CZTSSe avec diffèrents TCOs

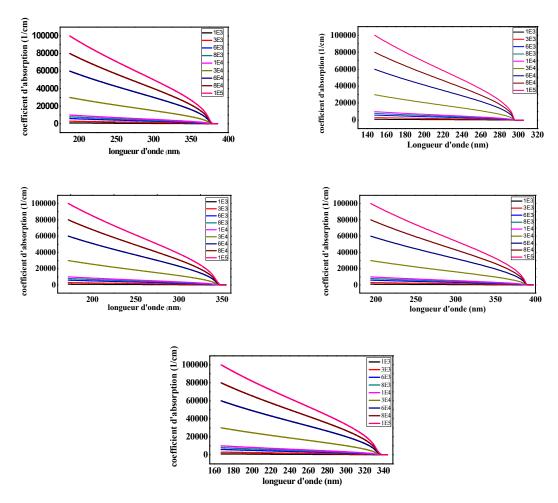
Les paramètres de la cellule solaire à base de CZTSSe sont présentés dans le chapitre précédent. Les caractéristiques J(V)de la cellule solaire à base de CZTSSe avec différentes couche fenêtre (TCOs) sous l'éclairement par le spectre solaire AM 1.5 et de la densité de puissance 1000W/cm²sont présentées parla figure III.2. Cette figure montre l'influence de la nature du TCO sur la caractéristique J(V) de la cellule solaire CZTSSe.

Figure III.2: Caractéristiques J(V) de la cellule solaire à base de CZTSSe avec différents TCOs

TCOs	Vco (V)	Jcc (mA/cm ²)	FF (%)	ŋ (%)
AZO	0.4946	35.13	67.51	12.58
FTO	0.4934	38.76	63.14	12.07
ITO	0.4945	38.77	68.01	13.09
TiO2	0.4591	38.59	63.37	12.10
ZnMgO	0.4966	38.68	53.55	9.49

TableauIII.1: Paramètres électriques de la cellule solaire à base de CZTSSe avec différents TCOs.

Les paramètres externes de ces cellules solaires sont récapitulés dans le tableau III.I.


Il est clair que les structures de la cellule solaire à base de CZTSSe avec ITO ou AZO montrent des performances plus efficaces. On constate que la meilleure performance est obtenue avec ITO en tant que couche TCO avec un rendement de 13.09 %, (Vco = 0.4945V, Jcc = 38.77% et FF = 68.01%).

III.4 Effet du coefficient d'absorption de la couche fenêtre (TCO)

L'absorption fondamentalecorrespond à l'excitation électronique de la bande de valence à la bande de conduction. Le coefficient d'absorptionest une fonction de l'énergie des photons incidents hy et de la bande interdite Eg donné dans SCAPS par relation suivante [1]:

$$\alpha(\lambda) = (A + \frac{B}{h\nu})\sqrt{h\nu - Eg}$$
 (III.1)

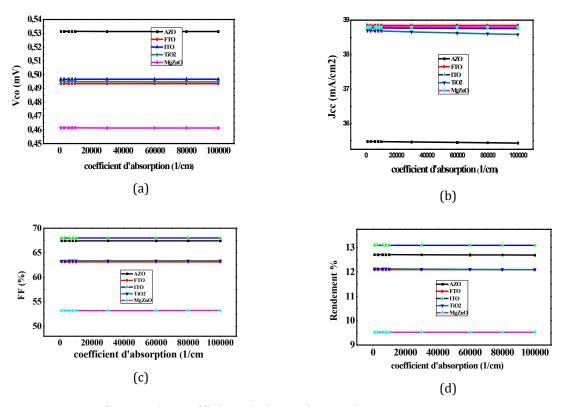
où h :la constante de Planck, v : exprimé par c/λ, et B et A : les constantes d'absorption.

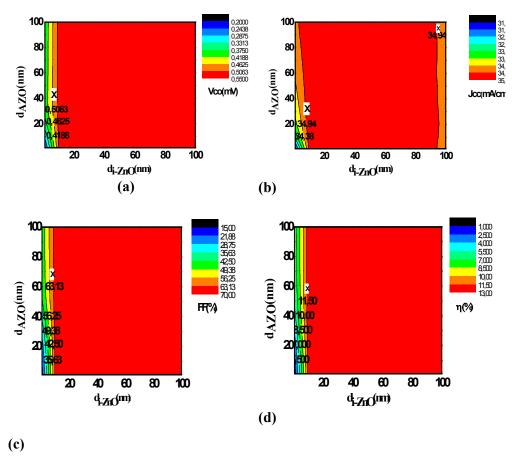
Figure III.3 : Variation du coefficient d'absorption en fonction de la longueur d'onde pour différents TCOs.

Nous avons fait varier la constante d'absorption A entre de 10⁴ cm⁻¹ et 10⁵ cm⁻¹ avec B =0, le coefficient d'absorption des oxydes transparents conducteurs est illustré par la figure

III.3. Nous observons que le coefficient d'absorption augmente quand la constante d'absorption a augmenté.

La figure III.4 (a-d) montre l'effet de la constante d'absorption de la couche fenêtre TCO sur lesparamètres externes de la cellule solaire : la tension de circuit ouvert Vco, le courant de court-circuit Jcc, le facteur de forme FF et le rendement de conversion η. Nous observons que l'augmentation du coefficient d'absorption dans la couche fenêtre entraine une faible décroissance des paramètres externes. Lorsque l'absorption est élevée dans la couche fenêtre, la lumière commence à être absorbée dans ces couches au lieu d'être transmise au cœur même de la cellule solaire, donc on aura moins de porteurs de charge photogénérées ce qui réduit le courant Jcc et donc réduire le rendement photovoltaïque.




Figure III.4: Influence du coefficient d'absorption sur les paramètres externes : (a) Vco, (b) Jcc, (c) FF et (d) η

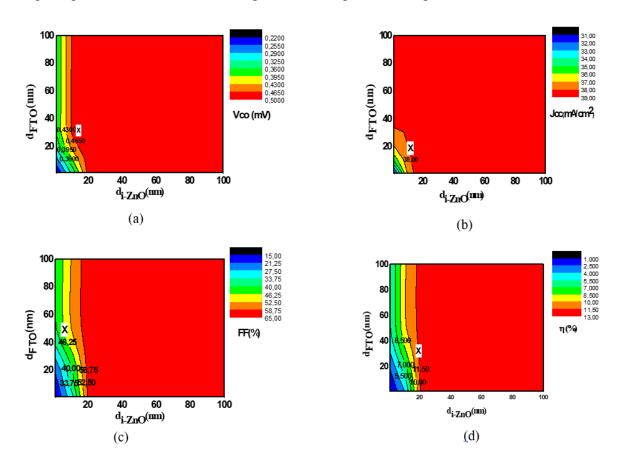
III.5 Effet de l'épaisseur de la couche intrinsèque et la couche TCO

Dans cette partie, on va étudier l'effet de l'épaisseur de la couche intrinsèque (i-ZnO) et couche TCO sur les performances de la cellule solaire CZTSSe. L'étude des graphes de contours fournit une méthode simple d'optimisation l'épaisseur de la couche intrinsèque (i-ZnO) et la couche TCO. La simulation a été réalisée en utilisant les conditions suivantes : l'épaisseur des deux couches varie entre 1 nm et 100 nm.

III.5.1 Effetdelacouche intrinsèque (i-ZnO) et la couche AZO

La figure III.5 montre les tracés de contour des paramètres externes de la cellule solaire pour différentes valeurs de la couche intrinsèque (i-ZnO) et la couche AZO. Dans chaque carte, les conditions du profil $d_{i\text{-}ZnO}$ / d_{AZO} présentant la valeur la plus élevée sont indiquées par « X » : cette valeur est également indiquée sur la figure III.5.

Figure III.5: Influence de l'épaisseur de la couche intrinsèque (i-ZnO) et de la couche AZO sur les paramètres externes :(a) Vco, (b) Jcc, (c) FF et (d) η.


Dans la zone de faible épaisseur de la couche de TCO (d_{AZO} < 10 nm), nous remarquons que les paramètres externes de la cellule solaire CZTSSe augmentent lorsque l'épaisseur de la couche intrinsèque allant de 1 nm jusqu'à 100 nm. La tension du circuit ouvert varie de 0.2375V à 0.3922 V, la densité du courant de court-circuit augmente de 5 mA/cm² et le rendement augmente de 5 %. De plus, l'augmentationdel'épaisseur de lacouche du TCO entre 1 et 10 nm entraine une augmentation des paramètres externes et au-delà de 10 nm les paramètres externes diminuent légèrement mais ils sont constants avec l'augmentation de la

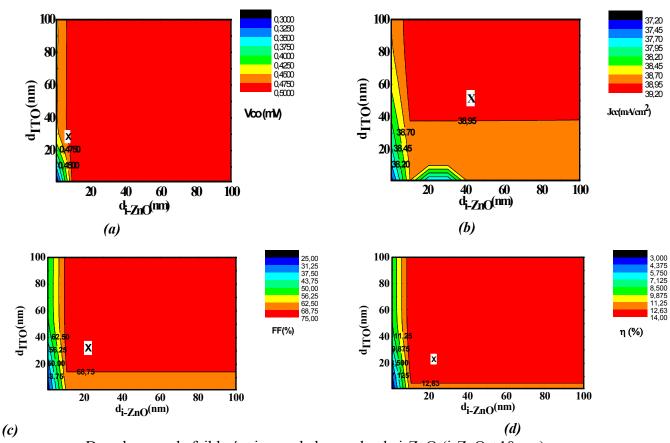
couche intrinsèque.

Le maximum de rendement 12.69 s'obtient avec une épaisseur duAZO autour de 10 nm et une épaisseur dui-ZnO autour de 20 nm. L'augmentation du rendement photovoltaïque dans l'hétérojonctiondû à la transmission de la lumière et l'augmentation des concentrations des porteurs pour des couches épaisses [2]. L'augmentation de l'épaisseur provoque une augmentation de la diffusion, la réflexion et aussi de l'absorption optique sur la surfacede la couche mince.

III.5.2 Effetdelacouche intrinsèque (i-ZnO) et de la couche FTO

La figure III.6 montre les tracés de contour des paramètres externes de la cellule solaire pour différentes valeurs de la couche intrinsèque (i-ZnO) et de la couche FTO. Dans chaque carte, les conditions du profil $d_{i\text{-}ZnO}$ / d_{FTO} présentant la valeur la plus élevée sont indiquées par « X » : cette valeur est également indiquée sur la figure III.6.

Figure III.6: Influence de l'épaisseur de la couche intrinsèque (i-ZnO) et de la couche FTO sur les paramètres externes : (a) Vco, (b)Jcc, (c) FF et (d) η.


Dans la zone de faible épaisseur de la couche de FTO (d_{FTO} < 10 nm), nous remarquons que les paramètres externes de la cellule solaire CZTSSe augmentent lorsque l'épaisseur de la

i-ZnO allant de 1 nm jusqu'à100 nm. La tension du circuit ouvert varie de 0.2209V à 0.3616 V, la densité du courant de court-circuit augmente de 5 mA/cm² et le rendement augmente de 4 %. De plus, l'augmentationde l'épaisseur de lacouche FTO entre 1 et 50 nm entraine une augmentation des paramètres externes et au-delà de 50 nm les paramètres diminuent légèrement par contre ils augmentent lorsque l'épaisseur de la couche i-ZnO augmente.

Le maximum de rendement 12.16 s'obtient avec une épaisseur de FTO autour de 50 nm et une épaisseur de i-ZnO autour de 60 nm.

III.5.3 Effetdelacouche intrinsèque (i-ZnO) et de la couche ITO

La figure III.7 montre les tracés de contour des paramètres externes de la cellule solaire pour différentes valeurs de la couche intrinsèque (i-ZnO) et de la couche ITO. Dans chaque carte, les conditions du profil $d_{i\text{-}ZnO}$ / d_{ITO} présentant la valeur la plus élevée sont indiquées par « X » : cette valeur est également indiquée sur la figure III.7.

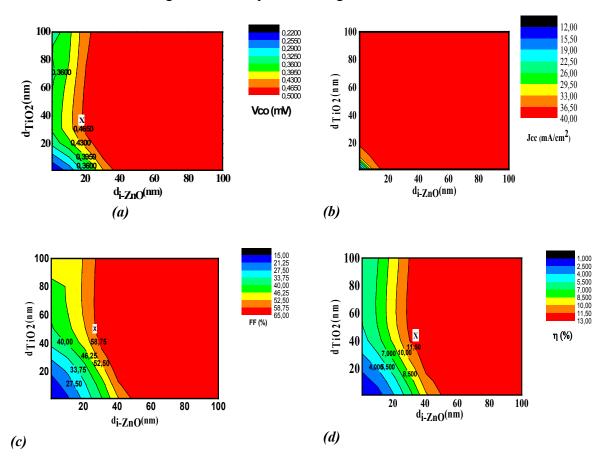

Dans la zone de faible épaisseur de la couche de i-ZnO (i-ZnO< 10 nm), nous

Figure III.7 : Influence de l'épaisseur de la couche intrinsèque (i-ZnO) et de la couche ITO sur les paramètres externes :(a) Vco, (b)Jcc, (c) FF et (d) η.

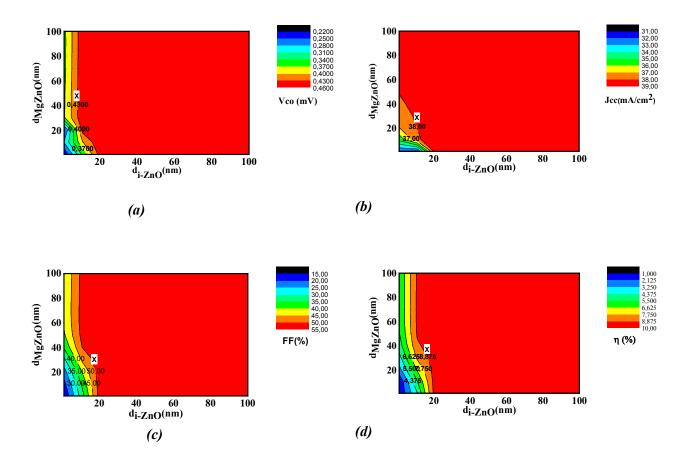
Remarquonsque les paramètres externes de la cellule solaire CZTSSesemblent constant lorsque l'épaisseur de ITO allant de 1 nm jusqu'à100 nm. De plus, l'augmentationde l'épaisseur de lacouchei-ZnO entraine une augmentation des paramètres externes.Le rendement augmente de 12.32 % à 13.83 %.Le maximum de rendement 13.83 %s'obtient avec une épaisseur de ITO autour de 10 nm et une épaisseur de i-ZnO autour de 80 nm.

III.5.4 Effetdelacouche intrinsèque (i-ZnO) et de la couche TiO₂

La figure III.8 montre les tracés de contour des paramètres externes de la cellule solaire pour différentes valeurs de la couche intrinsèque (i-ZnO) et de la couche AZO. Dans chaque carte, les conditions du profil $d_{i\text{-}ZnO}$ / d_{TiO2} présentant la valeur la plus élevée sont indiquées par « X » : cette valeur est également indiquée sur la figure III.8

Figure III. 8 :Influence de l'épaisseur de la couche intrinsèque (i-ZnO) et de la couche TiO2 sur les paramètres externes : (a) Vco, (b)Jcc, (c) FF et (d) η.

Nous remarquons que les paramètres externes de la cellule solaire CZTSSe


augmentent lorsque l'épaisseur de TiO₂ allant de 1 nm jusqu'à100 nm. L'augmentation de l'épaisseur de la couche intrinsèque entraine une augmentation des paramètres extrêmes et au-delà d'une couche de 50 nm les paramètres diminuent légèrement.

Le maximum de rendement 12.46~% s'obtient avec une épaisseur de TiO_2 autour de 50~nm et une épaisseur de i-ZnO autour de 50~nm.

III.5.5 Effetdelacouche intrinsèque (i-ZnO) et de la couche MgZnO

La figure III.9 montre les tracés de contour des paramètres externes de la cellule solaire pour différentes valeurs de la couche intrinsèque (i-ZnO) et la couche MgZnO. Dans chaque carte, les conditions du profil $d_{i\text{-}ZnO}$ /d $_{MgZnO}$ présentant la valeur la plus élevée sont indiquées par « X » : cette valeur est également indiquée sur la figure III.9.

Nous remarquons que l'augmentation de l'épaisseur de la couche MgZnO et de la couche i-ZnO allant de 1 nm jusqu'à 20 nm entraine une augmentation des paramètres externes et semble constants au-delà de 20 nm .

Figure III. 9 : Influence de l'épaisseur de la couche intrinsèque (i-ZnO) et de la coucheMgZnO surlesparamètres externes : (a) Vco, (b) Jcc, (c) FF et (d) η.

Le maximum de rendement 9.5 % s'obtient avec une épaisseur de TiO₂ et de i-ZnO autour de 20 nm.

III.6 Effet du dopage de la couche fenêtre (TCOs)

Nousavonssimulélesparamètres de la cellule solaire pour différent es valeurs de la concentration du dopage de TCOs (AZO,FTO,MgZnO,ITOetTiO₂), allant de 10¹⁶ cm⁻³ à 10²¹ cm⁻³. L'influence du dopage Nd_{TCOs} de la couche TCOs sur les paramètres externes de la cellule solaire CZTSSe estillustrées ur la figure III.10 (a-d). L'augmentation de la concentration du dopage Ndentraine une augmentation des paramètres externes.

Le meilleur rendement 13.64% est obtenu avec l'ITO pour une concentration du dopage égale à 10^{21} cm⁻³.

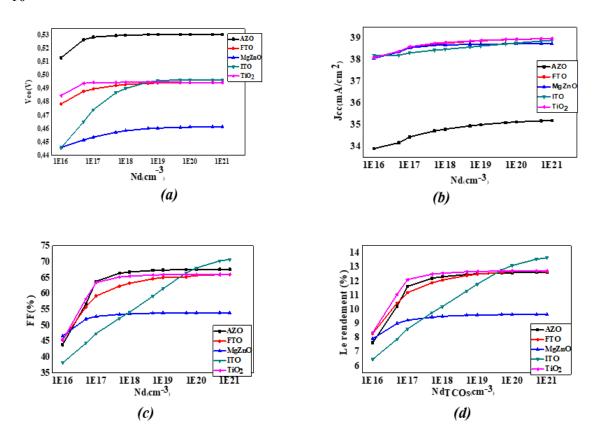


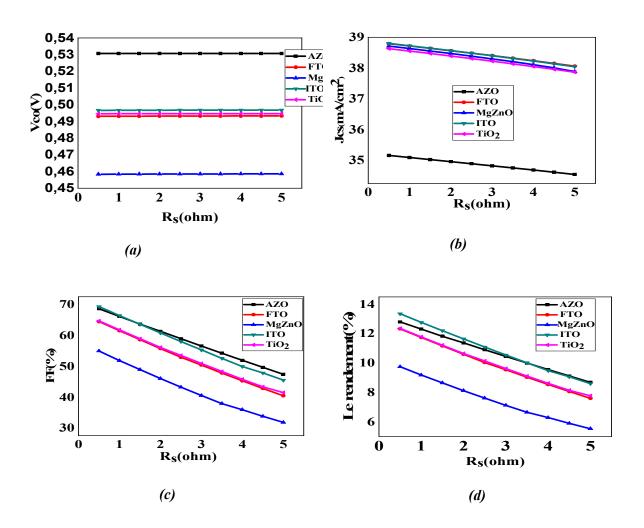
Figure III. 10: Influence du dopage Nd_{TCOs} de la couche TCOs sur les paramètres externes :(a) Vco, (b)Jcc, (c) FF et (d) η .

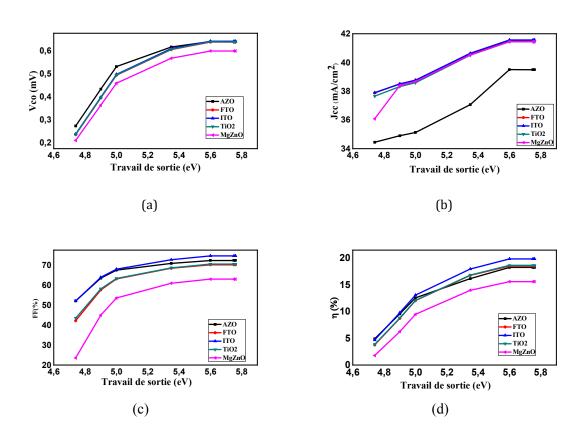
III.7 Effet de la résistance en série

Nous avons fait vérifier l'effet de la résistance série dans la cellule solaire CZTSSe. Afin d'obtenir des cellules solaires à un rendement élevé, il est souhaitable d'obtenir une faible

résistance série (Rs).La tension de seuil et le courant de court-circuit sont encore réduits lorsque la résistance série augmente, ce qui affecte encore le rendement et le facteur de forme dudispositif [15]. Même si l'on suppose que Rs est nul. Les cellules solaires à base de polycristalline ont une résistance série élevée, et typiquement avec des valeurs de Rs = 4.25 Ωcm^2 [8,28]. Ainsi, dans cette étude, les valeurs de résistances série ont été systématiquement variées (Rs = 0.5-5 Ω cm²) pour voir visiblement l'effet de la variation de rendement.

On constate qu'il y a une perte du rendement lorsque la valeur de la résistance augmente. Il est à noter que, pour atteindre des facteurs de forme élevés, il est nécessaire de diminuer Rs à presque à zéro.




Figure III. 11 :Influence de la résistance série Rs sur les paramètres externes :(a) Vco, (b)Jcc, (c) FF et (d) η

III.8 L'effetducontactarrièresurlesparamètresexternes

Pour voir l'influencedu contact arrière sur les paramètres photovoltaïques Vco, Jcc, FF etŋdelacellulesolaireétudiée,nousallonsvarierlemétalducontactarrière(tableau III.2) et en refit la simulation pour chaque TCO. Pour faire cette étude dans le logiciel SCAPS,nous allons varier le travail desortie du contact arrière dans l'intervalle de (4.74-5.76) eV et en fixant celui du contact avant(5.1eV). Nousutilisons les paramètres de la structure optimale obtenus par notre simulation. L'effetdutravail desortie du contactarrière sur les performances de la cellules olaire CZTS Se est illustré dans la figure (III. 12).

Métaux	eV
Ag	4.74
Zn	4.9
Мо	5
Ni	5.35
Pd	5.6
Re	5.75
Ir	5.76

Tableau III.2: Différents éléments du contacte arrière

Figure III. 12: l'effet du travail du sortie de contacte arrière sur les paramètres externe :(a) Vco, (b)Jcc, (c) FF et (d) η.

La figure (III. 12) montre que tous les paramètres externes de la cellule CZTSSe (Vco, Jcc, FF, η) augmentent quand le travail de sortie du contact arrière augmente de 4.74 eV à 5.6 eV. Lorsque le travail de sortie varie entre 4.7 et 5.6 eV, le rendement augmente de 4.90 % à 18.27 % (AZO)%, FTO de 8.75% à 18.53%, ITO de 4.69% a19.87%, TiO2 de 3.88 % à 18.66 %, MgZnO de 1.79 % à 15.61. Le meilleur rendement (19.87%) est obtenu par le métal Pd (Pladium) avec la couche TCO soit le ITO. Le contact arrière a donc un effet sur les performances photovoltaïques de la cellule solaire.

III.9 Conclusion

Dans ce chapitre, nous avons étudié l'effet des paramètres physiques et géométriques de la couche fenêtre sur les performances de la cellule solaire en couche mince à base CZTSSe. La simulation a été effectuée par logiciel scaps-1D. A travers la caractéristique(J-V) de la cellule nous avons obtenu les différentes caractéristiques photovolta \ddot{q} ques de la cellule solaire à savoir Vco, la tension de circuit ouvert, Jcc, le courant de court-circuit, FF, facteur de forme et η , le rendement.Les paramètres qui ont subi à l'opération sont l'épaisseur, le dopage, le coefficient d'absorptionet le contacte arrière

CONCLUSIONGENER &LE

Conclusion Générale

Le CZTSSe est apparu comme un matériau solaire de nouvelle génération avec un excellent candidat ayant de meilleures performances que les composés étudiés précédemment. Ce matériau est un matériau non toxique disponible sur terre qui présente un bandage acceptable pour montrer des performances éminentes dans le domaine des cellules solaires.

Ce travail de mémoire est axé sur la simulation d'une cellule solaire photovoltaïque en couches minces à base de Cu2ZnSn(S, Se)4 en utilisant le logiciel SCAPS-1D. Ce dernier nous fournis la caractéristique J(V) et les valeurs des paramètres externes (Jsc, Voc, FF, ŋ).

Nous avons étudié la sensibilité des paramètres photovoltaïques de la cellule solaire aux grandeurs (épaisseur, dopage, coefficient d'absorption) de couche fenêtre avec d'effets TCOs et aussi la sensibilisation au travail de sortie du contact arrière.

Les résultats obtenus ont montré que :

- ▶ l'augmentation de l'épaisseur de la couche i-ZnO entraine une augmentation des paramètres externes. Le rendement augmente de 12.32 % à 13.83. Le maximum de rendement 13.83 % s'obtient avec une épaisseur d'ITO autour de 10 nm et une épaisseur d'i-ZnO autour de 80 nm.
- L'augmentation de la concentration du dopage Nd entraine une augmentation des paramètres externes. Le meilleur rendement est obtenu avec l'ITO pour une concentration du dopage 10²¹ cm⁻³
- ➤ Pour améliorer les performances de la cellule la couche ZnO de type n doit être fortement dopée et sa valeur optimale est à l'ordre de 10²⁰ cm⁻³.
- ➤ Le contact arrière a des effets sur les performances photovoltaïques de la cellule solaire. Le meilleur rendement obtenu par le métal Pd (Palladium) avec la couche TCO soit l'ITO
- Aussi il y a une perte de rendement lorsque la valeur de résistance augmente. Il est à noter que, pour atteindre des facteurs de forme élevés, il est nécessaire de diminuer Rs à presque à zéro.

La présente étude révèle également que l'ITO est un meilleur choix pour la fabrication de la couche fenêtre dans les cellules solaires CZTSe.

PARTIE BIBLIOGRAPHIQUE

- [1] Massinissa khelil. Étude comparative de deux stratégie de commande MPPT destinées à la production d'énergie photovoltaïque.2020
- [2] FILLON Raphaël, «Etude des propriétés électroniques de couches minces de CZTSSe », Thèse de doctorat, université de GRENOBLE, 2016.
- [3]HANANOU Fatiha, ROUABAH AICHA «Modélisation et simulation d'un système photovoltaïque », Mémoire MASTER, université KasdiMerbah Ouargla, 2014
 [4]BEN ABDERRAZAK Ghania, «Etude par simulation numérique de la Cellule solaire à base de CZTS par SCAPS », Mémoire de MASTER, Université Med Khider Biskra, 2014
- [5]KROUR Safia, «optimisation des paramètres d'une cellule photovoltaïque par les algorithmes génétiques », Mémoire de Magister, université de FARHAT ABBES STIF1, 2014.
- [6] GRAVIS David, « Synthèse de Cu₂ZnS₄ par pulvérisation magnétron réactive : de la caractérisation du plasma à la conception de cellules solaires » Mémoire de master, université de MONS ,2015
- [7] BENSACI Wafa, «Modélisation et simulation d'un système photovoltaïque adapté par une commande MPPT », Mémoire Master, Université KasdiMerbah–Ouargla, 2012.
- [8] Vincent FONCROSE, Nanocristaux, films et cellules photovoltaïques de Cu₂ZnSn(SSe)₄ par impression d'encres, thèse de doctorat de l'université de Toulouse, 2015.
- [9] H. Katagiri, «Cu₂ZnSnS₄thin film solar cells », *Thin Solid Films*, vol. 480, p. 426, 2005.
- [10] ScienceDaily. New world record efficiency for thin film silicon solar cells. http://www.sciencedaily.com/releases/2013/02/130212111935.htm, 2013.
- [11] Pv Magazine. First Solar raises bar for CdTe with 21.5% efficiency record. http://www.pv-magazine.com/news/details/beitrag/first-solar-raises-bar-forcdte-with-215-efficiency-record100018069/, 2015.
- [12] Pv Magazine. ZSW sets 21.7% thin film efficiencyrecord.http://www.pvmagazine.com/news/details/beitrag/zsw-sets-217-thin-film-efficiencyrecord100016505/, 2015.
- [13] Susan Schorr. The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study. *Solar Energy Materials and Solar Cells*, 95(6):1482–1488, 2011.
- [14] LeoChoubrac Jonathan J. S. Scragg. A low-temperature order-disorder transition in Cu2ZnSnS4 thin films. *Applied Physics Letters*, 104:041911, 2014.
- [15] Aron Walsh, Shiyou Chen, Su-Huai Wei, and Xin-Gao Gong. Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu₂ZnSnS₄. *Advanced Energy Materials*, 2(4):400–409, 2012.

- [16] L. Choubrac, A. Lafond, C. Guillot-Deudon, Y. Moelo, and S. Jobic. Structure flexibility of the Cu2ZnSnS4 absorber in low-cost photovoltaic cells: from the stoichiometric to the copper-poor compounds. *Inorganic Chemistry*, 51(6):3346–3348, 2012.
- [17] Akihiro Nagoya, Ryoji Asahi, Roman Wahl, and Georg Kresse. Defect formation and phase stability of _{Cu2ZnSnS4} photovoltaic material. *Physical Review B*, 81(11):113202, 2010.
- [18] Shiyou Chen, X. G. Gong, AronWalsh, and Su-HuaiWei. Defect physics of the kesterite thin-film solar cell absorber Cu₂ZnSnS₄. *Applied Physics Letters*, 96(2):021902, 2010
- [19]S. Delbos. Kesterite thin films for photovoltaics: a review. *EPJ Photovoltaics*, 3:35004, 2012.
- [20] Shiyou Chen, X. G. Gong, Aron Walsh, and Su-Huai Wei. Crystal and electronic band structure of Cu₂ZnSnX₄. (X=S and Se) photovoltaic absorbers: First-principles insights. *Applied Physics Letters*, 94(4):041903, 2009.
- [21] Shiyou Chen, Aron Walsh, Ji-Hui Yang, X. G. Gong, Lin Sun, Ping-Xiong Yang, Jun-Hao Chu, and Su-Huai Wei. Compositional dependence of structural and electronic properties of Cu2ZnSn(S, Se)4 alloys for thin film solar cells. *Physical Review B*, 83(12), 2011.
- [22] C. P. Chan, H. Lam, and C. Surya. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Solar Energy Materials and Solar Cells, 94(2):207–211, 2010.
- [23] Hsin-Sheng Duan, Wenbing Yang, Brion Bob, Chia-Jung Hsu, Bao Lei, and Yang Yang. The role of sulfur in solution-processed Cu₂ZnSn (S, Se)₄,and its effect on defect properties. *Advanced Functional Materials*, 23(11):1466–1471, 2013.
- [24] Jonathan J. Scragg, Phillip J. Dale, Diego Colombara, and Laurence M. Peter. Thermodynamic aspects of the synthesis of thin-film materials for solar cells. *ChemPhysChem*, 13(12):3035–3046, 2012.
- [25] Jonathan J. Scragg, Tove Ericson, Tomas Kubart, MarikaEdoff, and Charlotte Platzer-Bjorkman. Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing. *Chemistry of Materials*, 23(20):4625–4633, 2011.
- [26] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, « Solar Energy Materials & Solar Cells», article Vol 49 pp. 407-414(1997),
- [27] T. M. Friedlmeier, N. Wieser, T. Walter, H. Dittrich, H. W. Schock, Proceedings of the 14th European Photovoltaic Solar Energy Conference (1997), pp.1242–1245.
- [28] G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, L. M. Peter, Prog. Photovolt.: Res.Appl.17(2009), pp. 315–319.
- [29] D.B. Mitzi, M. Yuan, W. Liu, A.J. Kellock, S.J. Chey, V. Deline, A.G. Schrott, Advanced Materials, 20 (2008), pp. 3657-3662.

- [30] Q. Guo, G.M. Ford, H.W. Hillhouse, R. Agrawal, Proceedings of the 37th IEEE Photovoltaic Specialists Conference, 2011, pp. 003522–003526.
- [31] T. Todorov, O. Gunawan, S.J. Chey, T.G. De Monsabert, A. Prabhakar, D.B. Mitzi, Progress towards marketable earth-abundant chalcogenide solar cells, Thin Solid Films 519 (2011) 7378-7381
- [32] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.C. Hsu, A. Goodrich, R. Noufi, Solar Energy Materials and Solar Cells, 101 (2012), pp. 154-159
 [33] W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi,
- Adv. Mater.
 [34] Giovanni Altamura Développement de cellules solaires à base de films minces CZTSSe

Thèse de docteur de l'université de Grenoble, 2014.

- [35] S. Chen, X. G. Gong, A. Walsh, et S. H. Wei, « Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI 2 compounds », Physical Review B, vol. 79, p. 5211, 2009.
- [36] S. R. Hall, J. T. Szymanski, et J. M. Stewart, « Kesterite, Cu₂(Zn,Fe)SnS₄, and stannite, Cu₂(Fe, Zn)SnS₄) structurally similar but distinct minerals », Canadian Mineralogist, vol. 16, p. 131, 1978.
- [37] L. O. Brockway, « The crystal structure of stannite, Cu2FeSnS4 », ZeitschriftfürKristallographie, vol. 89, p. 434, 1934.
- [38] P. Bonazzi, L. Bindi, G. P. Bernardini, et S. Menchetti, « A model for the mechanism of incorporation of Cu, Fe and Zn in the stannite-kesterite series, Cu₂FeSnS₄-Cu₂ZnSnS₄ »,
- [39] Shiyou Chen, Aron Walsh, Ji-Hui Yang, X. G. Gong, Lin Sun, Ping-Xiong Yang, Jun-Hao Chu, and Su-Huai Wei. Compositional dependence of structural and electronic properties of Cu₂ZnSn(S, Se)₄alloys for thin film solar cells. Physical Review B, 83(12), 2011.
- [40] Hsin-Sheng Duan, Wenbing Yang, Brion Bob, Chia-Jung Hsu, Bao Lei, and Yang Yang. The role of sulfur in solution-processed Cu₂ZnSn(S, Se)₄ and its effect on defect properties. Advanced Functional Materials, 23(11):1466–1471, 2013.
- [41] K. Biswas, S. Lany, and A. Zunger, Appl. Phys. Lett.96 (2010), pp. 201902 [42]www.Scaps.com
- [43] M'rabtikawther, Etude des performances d'une cellule solaire encoucheminceàbasedeCu₂ZnSn(S,Se)₄, USDB1 2020
- [44] Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency Wei Wang et al. Adv. Energy Mater. 2014, 4, 1301465

[45] Numerical Modelling of Kesterite CZTS Solar Cells for Different Transparent Conductive Oxide (TCOs) With SnS as Potential BSF Layer

Auteur: A. R. Zaki et al. IEEE. 2018

[46] Modeling of CZTSSe solar photovoltaic cell for window layer optimization Sadanand, DK Dwivedi ,Optik 222 (2020) 165407.