
  PEOPELS’S DEMOCRATIC REPUBLIC OF ALGERIA 

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH 

Blida 01 University 

Institute of Aeronautics and Space Studies 

 

 

Manuscript 

In partial fulfillment of the requirements for 

The Degree of Master in Aeronautics 

Specialty: Avionics 

 

UAV Aerial Image-Based Forest Fire 

Detection Using Deep Learning 

 

A Thesis Submitted by 

 

Akila Keddous 

 

 

Under the Supervision of 

 

Prof. Lagha Mohand 

Dr. Choutri Kheireddine 

 

 

Blida 2020-2021



i 
 

Acknowledgments 

 
 This thesis is submitted in partial fulfillment of the requirements for the degree of Master 

at the  University of Saad Dahleb Blida 01. Under the supervision of Prof. Lagha Mohand and 

Dr. Choutri Kheireddine, the presented thesis work is carried out at the laboratory of 

Aeronautical Sciences at the institute of Aeronautics and space studies (IAES). 

My thanks go in the first place to ALLAH Almighty who has illuminated my path with 

the glow of knowledge and science and for the will, the health, and patience that he lavished on 

me during all these years of study. 

Fortunately, I have been given such great opportunities to collaborate with and be 

significantly benefited by many outstanding people during my whole Final year project. In 

particular, my deepest gratitude should go to my supervisors, Dr. Choutri Kheireddine who has 

provided me with these valuable chances and resources allowing me to successfully handle 

various challenges and difficulties in different critical phases of my project. Without his 

consistent support and guidance, I cannot achieve such results. and Prof. Lagha Mohand for 

providing useful feedback, strong support and for his positive attitude to both work and life, it 

is really my great privilege being able to work under the supervision of such passionate people 

with great diligence to research works. 

I am also very grateful to the Drone girls Group:  Yasmine, Nihad, Nouha, Fairouz thank 

you for your great help, from the discussion of challenges in the project and paper writing, 

through experimental and algorithm validation, to the problems that I met in my daily life. It is 

my great pleasure to conduct research works with them, share opinions with them, and learn 

from them.  

 I would like to thank my best friends: Amina, Kaouter, Chaima, Merieme, Rayane, 

Souhila  and Nesrine thank you for always being there for me and encouraging me through the 

tough times you really made my study years more joyful. My good friend Merouane, words 

cannot express how thankful I am for the help that you ‘ve provided. 

Finally, I would like to dedicate this work to my parents Nacir and Cherifa, my two 

brothers Hamza and Mustapha for their continuous support, for always pushing me forward and 

for providing me with everything I need. Thank you for always believing in me, without your 

encouragement, I would not have been here today. 



ii 
 

Abstract 
 

   Forest fires are very dangerous. Once they become widespread, it is very difficult to extinguish. 

In this work, an Unmanned aerial vehicle (UAV) image-based Real-time Forest fire detection 

approach is proposed. Where we took advantage of recent development in computer vision 

systems and the rapid maneuverability of Unmanned Aerial Vehicles to improve the 

performance of the Real time detection, we designed and implemented a YOLOv2 

Convolutional Neural Network Model in MATLAB to train on an aerial dataset, Experimental 

results show that our proposed system has high detection performance, and its detection speed 

reaches 58 Frame Per Second with a mean average precision of 0.87, thereby satisfying the 

requirements of real-time detection (Speed and Accuracy). 

Key Words: Real-Time Fire Detection, Deep Learning, Convolutional Neural Network, 

Computer Vision, Unmanned Aerial Vehicles, Fire Datasets, YOLOv2. 

 

Résumé 

Les feux de forêt sont très dangereux. Une fois qu'ils se sont répandus, il est très difficile de les 

éteindre. Dans ce travail, nous avons proposé une approche de détection des incendies de forêt 

en temps réel basée sur les images obtenues des véhicules aériens sans pilote (UAV). Pour 

améliorer les performances de la détection en temps réel, nous avons profité du développement 

récent des systèmes de vision par ordinateur et de la maniabilité rapide des véhicules aériens 

sans pilote où nous avons conçu et mis en œuvre un modèle de réseau neuronal convolutif basé 

sur YOLOv2 architecture dans MATLAB pour s’entrainer sur une base de données aériennes. 

Les résultats expérimentaux montrent que notre système proposé présente une performance de 

détection élevée et que sa vitesse de détection atteint 58 image par seconde avec une précision 

moyenne de 0,87, satisfaisant ainsi les exigences de détection en temps réel (Vitesse et 

Précision). 

Mots Clés : Détection en temps réel, Apprentissage Profond, Réseaux de Neurones 

Convolutifs, Vision par Ordinateur, Ensemble de Données d’Incendie, Véhicules Aériens sans 

Pilote, YOLOv2. 
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 ملخص 

، من الصعب جداً إخمادها. في هذا العمل ، تم اقتراح نهج  واسعة الإنتشارحرائق الغابات خطيرة للغاية. بمجرد أن تصبح  

.حيث استفدنا من التطورات   للكشف عن حرائق الغابات بشكل آني بواسطة الصورة المقدمة من قبل الطائرات بدون طيار

الكمبيوتر والق لتحسين أداء الكشف الآني ، قمنا  لى المناورة السريعة للطائرات بدون طياردرة عالأخيرة في أنظمة رؤية 

ال هندسة  على  متركزة  التلافيفية  العصبية  الشبكة  نموذج  تنفيذ  و  على    MATLABفي     YOLOv2بتصميم  للتدريب 

  58اكتشافه تصل إلى    رعةوس،  داء كشف عاليأع ب، تظهر النتائج التجريبية أن نظامنا المقترح يتمت  مجموعة بيانات جوية

 .، والتي تلبي متطلبات الكشف الآني 0.87دقة إطارًا في الثانية بمتوسط 

بيانات   الكشف الآني,التعلم العميق,الشبكات العصبية التلافيفية,الرؤية بواسطة الكمبيوتر,مجموعة كلمات مفتاحية:

 .YOLOv2الحرائق,طائرات بدون طيار,
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       Threat to people’s lives and property caused by fires has become increasingly serious in 

particular, the increasing large-scale forest fire events around the world have made the 

development of automatic wildfire detection as an urgent need for fire warning systems. 

Traditionally, forest fires were mainly detected by human observation; however, this approach 

is inefficient, as it is prone to human error and fatigue. On the other hand, conventional sensors 

for the detection of heat, smoke, flame, and gas typically take time for the particles to reach the 

point of sensors and activate them., hence, a large number of sensors need to be installed to 

cover large areas, in order to tackle these disadvantages more advanced automatic forest fire 

detection methods are developed using satellites, ground-based equipment’s, and 

manned/unmanned aerial vehicles (UAVs). In particular, recent advances in aerial monitoring 

systems can provide first responders and operational forces with more accurate data on fire 

behavior for enhanced fire management, the use of unmanned aerial vehicles UAVs for fire 

monitoring is gaining more attraction in recent years. moreover, UAVs offer new features and 

convenience including fast deployment, high maneuverability, wider and adjustable viewpoints, 

and less human intervention. Recent studies investigated the use of UAVs in disaster relief 

scenarios and operations such as wildfires and floods, particularly as a temporary solution when 

terrestrial networks fail due to damaged infrastructures, communication problems, spectrum 

scarcity, or coalition. 

As the technology of fire detection by the camera has been gradually applied with the 

development of computer vision technology and artificial intelligence, deep learning vision-

based detection techniques can supply intuitive and real-time data, detect wide range objects, 

and make record conveniently, it has become a crucial element in the UAV-based forest fire 

detection systems. 

In this project we aim to respond to the following queries:  

How can we build a UAV-based forest fire detector using deep learning technologies? How can 

we balance between the detection performance and real-time requirements? 

In order to provide answers to these questions, we have structured our work in four chapters: 

Chapter1: in this chapter we first introduce the Problem of forest fire detection and its 

statistics, we then expose the different methods and systems that are used for detection and 

discuss the previous conducted work in this field (State of the Art). 
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Chapter2: the second chapter is devoted to present generalities about deep learning 

approach in computer vision, as well as notions about object detection and popular 

convolutional neural networks models and architectures. 

Chapter3: in the third chapter we discussed the conducted process of crafting a deep 

computer vision model, from dataset creation and labeling to YOLOv2 network design and 

training. 

Chapter 4: in this chapter we try to test our built detector and evaluate its performance 

for real-time fire detection. 

We will end this brief with a general conclusion which summarizes the main ideas that we have 

detailed and we will propose recommendations for the continuity of this work (perspectives). 
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1. Introduction: 

 Forest fires can potentially result in a great number of environmental disasters, causing vast 

economic and ecological losses as well as endangering human lives. In order to preserve natural 

resources and protect human safety and properties, forest fire detection and accurate monitoring 

of the disturbance type, size, and impact over large areas is becoming increasingly important 

and attracting an enormous interest around the world.  

Recent advances in computer vision, machine learning and deep learning offer new tools for 

detecting and monitoring forest fires, while the development of new materials and 

microelectronics have allowed sensors to be more efficient in identifying active forest fires. 

In this chapter we will try to cover up some statistics about forest fires, and the utilized methods 

and systems for detection, we will also take an overview of the state of the art to get an idea on 

the work done on this detection problem. 

2. Statistics on Forest Fire  

2.1.Forest fire Worldwide: 

The statitistics presneted by the Center of Fire Statistics (CFS) of the International 

Association of Fire and Rescue Services (CTIF) in its latest report №25, of many CTIF 

countries and their larger cities for 2018 and trends for 2014-2018 where Data from 46 nations 

and 41 cities was used to compile the 2018 fire and loss statistics. Data on calls, fires, and losses 

from 2014 to 2018 comes from 65 nations, each of which provided data for one or more of the 

five years. The number of countries whose data is displayed in each table fluctuates depending 

on the number of countries that supplied data for the given statistics at any point between 2014 

and 2018. Statistics on fire service resources are offered for 59 nations. 

Table I .1 below shows total fire statistics from 1993 to 2018 for 27-57 countries, collectively 

representing 0.9-3.8 billion inhabitants of the Earth, depending on the year of reporting. In these 

countries, 2.5-4.5 million fires and 17-62 thousand fire deaths were reported to fire services, 

depending on the year. [6] 
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Year 
Number 

of 

countries 

Total 
population, 

bln.inh. 

Number 
of 

fires, 

mln. 

Number 
of fire deaths, 

thous. 

Average 

number of fires 
per 1000 inh. 

Average number of 

fire deaths 

per 
100000 inh. 

per 
100 
fires 

1993 39 2,4 3,9 30,2 1,6 1,3 0,8 

1994 27 1,1 4,0 29,5 3,6 2,7 0,7 

1995 42 1,2 4,5 32,5 3,8 2,7 0,7 

1996 43 0,9 4,0 29,1 4,4 3,2 0,7 

1997 48 2,8 3,7 57,7 1,3 2,1 1,6 

1998 47 3,0 3,6 51,7 1,2 1,7 1,4 

1999 52 3,1 3,9 51,8 1,3 1,7 1,3 

2000 57 3,3 4,5 56,2 1,4 1,7 1,2 

2001 46 3,5 3,8 61,9 1,1 1,8 1,6 

2002 41 3,5 4,3 62,3 1,2 1,8 1,4 

2003 39 3,5 4,5 61,1 1,3 1,7 1,4 

2004 44 3,5 4,1 60,1 1,2 1,7 1,5 

2005 45 3,5 4,3 57,4 1,2 1,6 1,3 

2006 37 3,6 4,1 52,2 1,1 1,5 1,3 

2007 40 3,8 4,0 52,5 1,1 1,4 1,3 

2008 31 3,5 3,6 48,3 1,0 1,4 1,3 

2009 31 3,4 3,3 44,7 1,0 1,3 1,4 

2010 33 2,2 3,2 46,1 1,5 2,1 1,4 

2011 34 2,3 3,3 48,2 1,4 2,1 1,5 

2012 35 1,1 3,1 23,7 2,8 2,2 0,8 

2013 31 1,1 2,5 21,7 2,3 2,0 0,9 

2014 32 1,1 2,7 20,7 2,5 1,9 0,8 

2015 31 1,0 3,5 18,4 3,5 1,8 0,5 

2016 39 1,1 3,0 18,0 2,7 1,6 0,6 

2017 34 1,1 3,2 16,9 2,9 1,5 0,5 

2018 46 2,7 4,5 30,8 1,7 1,1 0,7 

 
Avrg             

39 2,4 3,7 41,7 1,5 1,7 1,1 

Total 97,1 1083,7  

 

Table I.1:Total reported fire statistical Data by country, 1993-2018 [6]. 

 

Table I .2 below shows that in 46 countries, representing 2.7 bln inhabitants, 36% of         the 

World’s population, 50 million calls (18.1 calls per 1000 inh.) 4,6 million fires (9.2% of all calls, 

1.7 fires per 1000 inh.) 30.8 thousand civilian fire deaths (1.1 fire deaths per 100 thous inh.) and 

51.3 thousand civilian fire injuries (1.9 fire injuries per 100 thous inh.) reported by fire services 

in 2018 [6]. 
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Table I. 2:Common indicators of fire statistics in the countries of the world in 2018 [6]. 

  

2.2.Forest fire in Algeria: 

Algeria is one of the few countries with statistics on forest fires over a period of more than a 

century. Figure I. 1 represents a 137-year time series of areas covered. 

 

 

 
 

№ 

 
Country 

Population, 

thous.inh. 

Number of 
Average 
number: 

calls fires 
fire 

deaths 

fire 

injuries 

Per 1000 inh.: fire deaths per: fire injuries per: 

calls fires 
100000 

inh. 
100 fires 100000 inh. 

100 
fires 

1 India 1 359 000 - 1 600 000 12 747 - - 1,2 0,9 0,8 - - 

2 USA 327 167 36 746 500 1 318 500 3 655 15 200 112,3 4,0 1,1 0,3 4,6 1,2 

3 Bangladesh 162 951 - 19 642 130 664 - 0,1 0,1 0,7 0,4 3,4 

4 Russia 146 781 760 653 144 199 7 913 9 650 5,2 1,0 5,4 5,5 6,6 6,7 

5 Philippines 106 700 - 16 675 326 - - 0,2 0,3 2,0 - - 

6 Vietnam 95 990 - 4 182 90 208 - 0,0 0,1 2,2 0,2 5,0 

7 France 66 628 4 942 906 305 500 262 1 282 74,2 4,6 0,4 0,1 1,9 0,4 

8 Great Britain 64 553 695 101 204 525 400 8 944 10,8 3,2 0,6 0,2 13,9 4,4 

9 Italy 61 000 908 887 213 116 - - 14,9 3,5 - - - - 

10 
Republic of 
Korea 

51 629 2 656 700 42 338 369 2 225 51,5 0,8 0,7 0,9 4,3 5,3 

11 Ukraine 42 270 230 952 78 602 1 967 1 516 5,5 1,9 4,7 2,5 3,6 1,9 

12 Poland 38 411 502 200 149 434 527 4 335 13,1 3,9 1,4 0,4 11,3 2,9 

13 Peru 32 000 121 998 13 729 - - 3,8 0,4 - - - - 

14 Kazakhstan 18 611 55 102 14 557 434 412 3,0 0,8 2,3 3,0 2,2 2,8 

15 Netherlands 17 181 148 900 76 020 52 - 8,7 4,4 0,3 0,1 - - 

16 Greece 10 788 65 298 24 459 131 187 6,1 2,3 1,2 0,5 1,7 0,8 

17 
Czech 
Republic 

10 650 - 20 720 100 1 466 - 1,9 0,9 0,5 13,8 7,1 

18 Jordan 10 378 56 326 24 490 24 1 058 5,4 2,4 0,2 0,1 10,2 4,3 

19 Sweden 10 230 133 955 31 376 73 390 6,7 1,9 1,0 0,2 3,8 1,2 

20 Hungary 9 778 68 337 19 355 106 832 7,0 2,0 1,1 0,5 8,5 4,3 

21 Belarus 9 475 52 974 6 435 525 311 5,6 0,7 5,5 8,2 3,3 4,8 

22 Austria 8 837 278 672 43 554 - - 31,5 4,9 - - - - 

23 Switzerland 8 500 77 304 13 178 - - 9,1 1,6 - - - - 

24 Bulgaria 7 050 56 120 29 448 145 285 8,0 4,2 2,1 0,5 4,0 1,0 

25 Denmark 5 786 42 876 15 081 71 - 7,4 2,6 1,2 0,5 - - 

26 Singapore 5 612 191 492 3 885 4 90 34,1 0,7 0,1 0,1 1,6 2,3 

27 Kyrgyzstan 5 522 - 4 808 59 54 - 0,9 1,1 1,2 1,0 1,1 

28 Finland 5 483 113 464 14 264 58 670 20,7 2,6 1,1 0,4 12,2 4,7 

29 Slovakia 5 450 31 326 9 288 49 194 5,7 1,7 0,9 0,5 3,6 2,1 

30 Costa Rica 4 973 41 881 23 862 30 73 8,4 4,8 0,6 0,1 1,5 0,3 

31 Ireland 4 920 242 631 28 534 18 - 49,3 5,8 0,4 0,1 - - 

32 New Zealand 4 748 82 136 18 580 - - 17,3 3,9 - - - - 

33 Oman 4 298 - 4 602 - - - 1,1 - - - - 

34 Croatia 4 087 22 927 9 968 23 117 5,6 2,4 0,6 0,2 2,9 1,2 

35 Mongolia 3 238 - 3 612 64 - - 1,1 2,0 1,8 - - 

36 Lithuania 2 848 22 142 11 848 315 387 7,8 4,2 11,1 2,7 13,6 3,3 

             
37 Qatar 2 839 3 125 1 922 2 115 1,1 0,7 0,1 0,1 4,1 6,0 

38 Slovenia 2 081 153 313 4 119 7 284 73,7 2,0 0,3 0,2 13,6 6,9 

39 Latvia 1 950 - 9 134 81 301 - 4,7 4,2 0,9 15,4 3,3 

40 Estonia 1 317 26 163 5 353 50 100 19,9 4,1 3,8 0,9 7,6 1,9 

41 Mauritius 1 300 12 634 6 664 - - 9,7 5,1 - - - - 

42 Bhutan 817 - 100 3 0 - 0,1 0,4 3,0 0,0 0,0 

43 Luxemburg 602 61 157 2 228 0 - 101,6 3,7 0,0 0,0 - - 

44 Brunei 442 - 1 249 2 1 - 2,8 0,5 0,2 0,2 0,1 

45 Barbados 277 - 1 925 - - - 6,9 - - - - 

46 Liechtenstein 38 - 42 0 0 - 1,1 - - - - 

  Total 2 745 186 49 606 152 4 595 102 30 812 51 351 18,1 1,7 1,1 0,7 1,9 1,1 
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Figure I. 1:Annual evolution in areas covered by fire in Algeria (period 1876 -2012) [20]. 

 

From 1985 to 2012, the annual evolution reveals the variability of forest fires and especially 

the existence of catastrophic years in 1993, 1994, 2000, 2007 and 2012, While a large majority 

of fires (82.1%) are brought under control before the area covered exceeds 10 ha, 3.2% of fires 

affect areas of more than 100 ha, of which 0.6% are greater than 500 ha. This last category 

represents 272 fires (including 109 for 1994 alone) [20]. 

If we go back in time, we see that the colonial period was disastrous: a cumulative area of 

3,506,942 ha was covered by fire, over a period of 87 years (1876-1962), i.e. an average of 

41,258 ha / year. The catastrophic balances, of more than 100,000 ha / year (exceptionally more 

than 150,000, even 200,000 ha), in 1881, 1892, 1894, 1902, 1913, 1919, 1956, 1957 and 1958, 

mark dark years which generally coincide with troubled times [20]. 

After independence, the affected areas declined slightly, with an average of 35,315 ha/year 

over the period 1963-2012. This did not prevent the occurrence of new dark years in 1965, 

1967, 1971, 1977, 1978, 1993, 2000, 2007 and 2012. Three of them were particularly 

catastrophic: 1983, 1994 and 2012 with 221,367 ha respectively. 271,598 ha and 99,061 ha 

covered. These three years alone amount to nearly 600,000 ha of burnt areas, or 34% of the 

total for the period 1963-2012. Such “out of the ordinary” surfaces can of course be favoured, 

at least in large part, by climatic conditions very favourable to the outbreak and propagation of 

fire, but they depend essentially on the human factor: prior disorder, poor management and 

above all instability [20]. 

It has long been known that, in times of political issues, Algerian forests always pay a heavy 

price for fires. Moreover, F. Ramade (1997) stigmatizes the political disorders which, as in 
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Algeria, have been "since 1992 at the origin of several fires which have devastated vast forests, 

in particular in Kabylia" [20]. 

Spatially, we note that the risk of forest fires is mainly concentrated in the coastal wilayas 

of northeast Algeria, from Tizi Ouzou to El Tarf (Figure I .2), corresponding to very wood and 

hilly wilayas, with a high population density and a lack of land for urbanization. 

 

Figure I. 2:Average annual fire risk in Algeria [20].  

   We can say that Algeria is one of the countries where the problem of forest fires is relatively 

unknown by the Scientific community: if in absolute value the areas burned remain remotely 

modest compared to other countries around the Mediterranean, the scarcity of forests and threats 

of desertification mean that these fires have a particularly disastrous. Algeria has 4.1 million 

hectares of forests, or an afforestation rate of 1.76%. However, the close frequency of fires that 

follow one another with a return interval of less than 10 years has a catastrophic ecological 

impact. 

   The analysis of fires during the period 1985-2016, at the level of the 40 wilayas of Algeria 

from North (the most wooded part) shows that 42,555 fires covered a total forest area of more 

than 910,640 hectares [20]. 
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3. Forest Fire Detection Existing Methods: 

3.1. Using Sensors: 

Data Sensors are now used in practically every fire alarm system. The system's improvement is 

determined by the sensor's accuracy, dependability, and spatial distributions. Large numbers of 

sensors are needed in open-air settings for high-accuracy fire detection systems. Sensors also 

require a continuous battery charge, which is impossible to do in a vast open environment. If 

there is a fire nearby, sensors will detect it. As a result, the sensor will be damaged. For fire 

detection, camera surveillance, and wireless sensor networks, two alternative types of sensor 

networks are now available. Different types of detection sensors can be used in terrestrial 

systems. 

− video-camera, responsive to visible spectrum of smoke noticeable during the day and a fire 

recognizable at night. 

− Infrared (IR), thermal imaging cameras based on the detection of heat flow of the fire, 

− IR spectrometers to identify the spectral characteristics of smoke. 

− Light detection and ranging systems— LIDAR (detection of light and range) that compute 

laser rays reflected from the smoke particles [2].  

The several optical systems, which work according to different algorithms devised by the 

builders, all share the same general notion in terms of detecting smoke and fire glow. Simply 

put, the camera creates visual sequences. The processing unit tracks motion in photos and 

checks how many pixels contain smoke or fire light, then passes the results to another algorithm 

to decide whether or not to trigger an alarm for the operator. 

3.2.Using Computer Vision  

These replace conventional fire detection systems, due to the rapid development of digital 

camera technology and video processing. Computer vision-based systems use three stages. 

− Flame pixel classification. 

− Segmentation of moving object. 

− Analysis of the candidate region. 

The fire detection system's performance is determined by the fire pixel classifier, which 

generates main areas on which the rest of the system operates. As a result, a highly accurate fire 

pixel classifier with a low false detection rate is required. A video flame detection system that 

uses background subtraction and color analysis to find probable flame regions on the video 

frame and then uses a collection of fire extraction attributes, including color probability, to 

distinguish between fire and non-fire objects. 
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Although some methods directly deal with fire pixel categorization, there are some that deal 

with spatial variance, temporal variation, and contour variability of candidate blob regions. 

In both greyscale and color video sequences, the fire pixel categorization can be evaluated. 

3.3.Using Deep Learning: 

Deep learning has recently been successfully used to a variety of disciplines, including image 

object detection and classification, audio recognition, and natural language processing. To 

increase performance, researchers have done a number of studies on fire detection using deep 

learning.  

The deep learning approach has several differences from the conventional computer vision-

based Fire detection. The first is that the features are not explored by an expert, but rather are 

automatically captured in the network after training with a large amount of diverse training data. 

Therefore, the effort to find the proper handcrafted features is shifted to designing a proper 

network and preparing the training data [3]. 

Another distinction is that the detector/classifier can be obtained by training features in the same 

neural network at the same time. As a result, with an efficient training method, the right network 

structure becomes even more essential. 

4. Forest Fire Detections Existing Systems 

The forest fire detection systems can be devised into 3 major group of systems: terrestrial 

systems, UAV systems, Satellite systems. 

4.1.Terrestrial Systems 

     Terrestrial-based early detection systems consist of either individual sensors (fixed, PTZ, or 

360_ cameras) or networks of ground sensors [1].to provide adequate visibility, these sensors 

must be carefully placed. As a result, they're generally found in watchtowers, which are 

structures built on high view points to monitor high-risk scenarios and can be utilized not just 

for fire detection but also for verification and localization. There are two types of cameras used 

for early fire detection: optical cameras and infrared cameras, which may gather data with 

resolutions ranging from low to ultra-high for various fire detection scenarios.  

Early detection devices that combine the two types have lately been introduced. Computer-

based solutions can process a large amount of data while retaining a high level of accuracy and 

a low false alarm rate. 

4.2.Unmanned Aerial Vehicles Systems 

     Terrestrial imaging systems can detect both flame and smoke, but in many cases, it is almost 

Impossible to view, in a timely manner, the flames of a wildfire from a ground-based camera 
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or a mounted camera on a forest watchtower. To this aim, autonomous unmanned aerial vehicles 

(UAVs) can provide a larger and more accurate view of the fire from above, even in regions 

that are inaccessible or too risky for firefighting crews to operate in. Fixed or rotary-wing UAVs 

cover a larger area and are more flexible, allowing for changes in monitoring area, although 

they are subject to weather and have a limited flying length. Unmanned aerial vehicles (UAVs) 

devoted to forest fire monitoring and detection are in high demand due to their rapid 

manoeuvrability and improved personnel safety. A typical UAV-based forest fire surveillance 

system is illustrated in Figure I. 2 Which is composed of a team of UAVs, different kinds of 

on-board sensors, and a central ground station, The goal is to use UAVs to identify and track 

flames, predict their spread, and provide real-time fire information to human firefighters, as 

well as to use UAVs to suppress fires. The system may perform fire monitoring (search for a 

prospective fire), detection (identify a potential fire and alert firefighting personnel), diagnosis 

(calculate parameters of the fire position, extent, and evolution), and prognosis (predict the 

outcome of the fire) (predict the fire propagation). 

As can be observed, one of the most significant parts of the UAV-based forest fire monitoring 

system is the computer vision-based fire detection technique. This is due to its multiple 

advantages, including the ability to monitor a wide range of objects, provide intuitive and real-

time images, and conveniently record information.More specifically, charge-coupled device 

(CCD) Cameras and infrared (IR) cameras are usually mounted on UAVs. Massive efforts have 

been dedicated to the development of more effective image processing scheme for fire 

detection.  

Color and motion aspects in CCD camera visual images are typically used for fire detection. 

However, in some outdoor applications, the use of CCD cameras is commonly considered to be 

insufficiently durable and trustworthy. 

Given highly complex, non-structured forest environments, the possibility of smoke covering 

the fire, or the circumstance for analogues of fire such as reddish leaves swinging in the wind 

and light reflections, the false fire alert rate is typically quite high.Due to the fact that IR images 

can be obtained in either weak or no light situations, or smoke can be seen as transparent in IR 

images, Even though IR cameras are more expensive than CCD cameras, they are extensively 

used to capture monochromatic images in both the day and the night. The use of this successful 

method is predicted to lower the rate of false fire alarms and improve the forest fire detection 

system's adaptive capabilities in various operating conditions. 
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4.3.Space borne (Satellite) Systems 

Satellite detection is the most common detection techniques used by authorities across the 

Globe. 

Recently, mainly due to the large number of satellites launched and the decrease of associated 

Costs, there are many research efforts to detect forest wildfires from satellite images. 

Specifically, a set of satellites were designed for Earth observation (EO, e.g., environmental 

monitoring or meteorology). Satellites are categorised into several kinds based on their orbit, 

each with its own set of benefits and drawbacks. The most important categories are: (a) 

geostationary orbit (GEO), which is a circular orbit with an altitude of 35,786 kilometers and 

zero inclination, so that the satellite does not move at all relative to the ground, providing a 

constant view of the same surface area; (b) low Earth orbit (LEO), which has an altitude of 

2000 km or less, and requires the least amount of energy for satellites placement and provides 

high bandwidth and low communication latency, (c) the polar sun-synchronous orbit (SSO), 

which is a roughly polar orbit that crosses around the equator at the same local time each time. 

Most EO satellites are in low Earth polar SSO orbits, with exact altitude and inclination 

calculations to ensure that the satellite always observes the same scene with the same angle of 

light from the Sun, and that shadows seem the same on each pass. 

Sun-synchronous satellite data has a high spatial resolution but a low temporal resolution, while 

geostationary satellite data has a high temporal resolution but a low spatial resolution. Some 

satellites in the first group, such as Landsat or Sentinel, have a long revisit period (LandSat-7/8 

has an eight-day repeat cycle, while Sentinel 2A/2B has a two-to-three-day repeat cycle at mid-

latitudes). As a result, they are not suited for real-time active forest fire detection, but only for 

tasks that are less time-sensitive, such as burnt area estimation.  

 

 

 

 

 

Figure I. 3:Generalized multispectral imaging systems for early fire detection [1]. 
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Figure I.4:Schematic Illustration of the UAV Based Forest Fire Detection System [4]. 

 

5. State of the Art  

5.1.Computer Vision-Based Traditional Approach 

 With the development of computer vision technology, the technology of fire detection by the 

camera has gradually applied in our life. The original temperature and smoke sensors fall far 

short of some complex environments needs. Most of the researchers sensors detect the fire by 

using the colour characteristics and motion characteristics and the results got disappointing in 

the complex environment. It is significant in studying how to extract the characteristics of the 

weak fire, how to identify the weak fire accurately and how to prevent and control the fire 

alarm. Therefore, the researchers have proposed various methods of fire detection. 

In conventional fire detection, much research has continuously focused on finding out the 

salient Features of fire images. Chen [8] analysed the changes of fire using an RGB and HSI 

colour model based on the difference between consecutive frames and proposed a rule-based 

approach for fire decision. 

 Celik and Demirel [7] proposed a generic rule-based flame pixel classification using the YCbCr 

colour Model to separate chrominance components from luminance ones. In addition, Wang 

[9] extracted the candidate fire area in an image using an HSI colour model and calculated the 

dispersion of the flame colour to determine the fire area. However, colour-based fire detection 

methods are generally vulnerable to a variety of environmental factors such as lighting and 

shadow. 
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Borges and Izquierdo [10] adopted the Bayes classifier to detect fires based on additional 

features Such as the area, surface, and boundary of the fire area to colour. In addition, Foggia 

[11] proposed a multi-expert system which combines the analysis results of a fire’s colour, 

shape, and motion characteristics. Although insufficient, the supplementary features to colour, 

including texture, shape, and optical flow, can reduce the false detections. 

Nevertheless, these approaches require domain knowledge of fires in captured images essential 

to Explore hand-crafted features and cannot reflect the information spatially and temporally 

involved in Fire environments well. In addition, almost all methods using the conventional 

approach only use a Still image or consecutive pairs of frames to detect fire.          Therefore, 

they only consider the short-term Dynamic behaviour of fire, whereas a fire has a longer-term 

dynamic behaviour [3].  

5.2.Computer Vision-Based Deep Learning Approach 

 In recent years, deep learning has been widely used in a myriad of computer vision applications 

because of its high recognition capability. To the best of our knowledge, Gunay et al. [12] is 

the first paper to use deep learning in dynamic texture recognition including wildfires. In early 

deep Learning based forest detection, researchers designed blank convolutional neural networks 

and trained them with collected or synthesized images. for example, Zhao et al [13]. Designed 

a 15-layer Convolutional neural network (CNN) to detect the forest fire. What is more, to locate 

the fire and Smoke in frames [5], Sebastien [14] proposed a fire detection network based on 

CNN where the features are simultaneously learned with a Multilayer Perceptron (MLP)-type 

neural net classifier by training. 

Zhang et al. [15] also proposed a CNN-based fire detection method which is operated in a 

cascaded fashion. In their method, the full image is first tested by the global image-level 

classifier, and if a fire is detected, then a fine-grained patch classifier is used for precisely 

localizing the fire patches. 

Muhammad et al. [16] proposed a fire surveillance system based on a fine-tuned CNN fire 

detector. This architecture is an efficient CNN architecture for fire detection, localization, and 

semantic understanding of the scene of the fire inspired by the Squeeze Net architecture. In the 

deep layer of CNN, a unit has a wide receptive field so that its activation can be treated as A 

feature that contains a large area of context information. This is another advantage of the learned 

Features with CNN for fire detection. Even though CNN showed over whelmingly superior 

classification performance against traditional computer vision methods, locating objects has 

been another problem. [3]    
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Although the CNN-based approaches provide excellent performance, it is hard to capture the 

Dynamic behaviour of fire, which can be obtained by recursive-type neural networks (RNN). 

LSTM Proposed by Hochreiter and Schmidhuber [17] is an RNN model that solves the 

vanishing gradient Problem of RNN. LSTM can accumulate the temporal features for decision 

making through the memory cells which preserve the internal states and the recurrent behaviour. 

However, the number of recursions is usually limited, which makes it difficult to capture the 

long-term dynamic behaviour necessary to make a decision. Therefore, special care must be 

taken to consider the decision based on long-term behaviour with LSTM. 

Recently, Hu et al. [18] used LSTM for fire detection, where the CNN features are extracted 

from Optical flows of consecutive frames, and temporally accumulated in an LSTM network. 

The final Decision is made based on the fusion of successive temporal features. Their approach, 

however, computes the optical flow to prepare the input of CNN rather than directly using RGB 

frames. 

6. Conclusion: 

We have devoted this chapter to the presentation of some generalities on Forest fire detection 

systems and Methods while presenting a literature review on the most important work and 

research papers that was published during the last decade, as we discussed above the use of a 

deep learning method and a UAV based system has been considered as a powerful Approach 

solution in the recent years. In order to detect forest fire with great precision and a decreasing 

rate of false fire alarm, a model of neural networks is trained using a UAV Based Aerial Images 

dataset. The next chapter is dedicated to present generalities about deep learning approach in 

computer vision, as well as notions about object detection and CNNs. 
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1. Introduction 

 Deep Learning is a branch of artificial intelligence and Data Science. This field has undergone 

immense development, especially in recent years. Big companies like Google, Facebook, 

Microsoft and Amazon are working on this topic. 

Our job is to find a solution for the detection of forest fire through the  use of deep learning in 

computer vision on board of a UAV. 

In this chapter we give general information about Artificial Intelligence, Machine Learning and     

Deep Learning technologies, then we present convolutional neurons, computer vision and 

object recognition, finally we get a closer look on the most popular Deep Learning model 

families. 

2. Artificial Intelligence, Machine Learning and Deep Learning 

2.1.Artificial Intelligence 

      2.1.1 Definition : 

  Artificial Intelligence is the science of making computers behave like humans in terms of  making 

decisions, text processing, translation, etc. AI is a big umbrella that has Machine Learning and 

Deep Learning under it [31]. Figure II. 1 below illustrate clearly the correlation between the three.   

 

                           Figure II. 2:Artificial Intelligence, Machine Learning, Deep learning [35].  
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     2.1.2 Artificial Intelligence Approaches: 

     Historically, four approaches to AI have been followed, each by different people with 

different methods. a human-centered approach must in part be an empirical science, involving 

observation and hypothesis about human behavior. A rational approach involves combination 

of mathematics and engineering. The different groups described themselves as follows: 

− Acting humanly:  Turing Machine Approach [34]. 

− Thinking humanly:  The Cognitive Modeling Approach [34]. 

− Thinking rationally: The Laws of Thought Approach [34]. 

− Acting rationally:  The Rational Agent Approach [34]. 

 

2.2.Machine Learning 

2.2.1. Definition : 

Machine learning is a subset of artificial intelligence (AI) that provides systems the ability to 

automatically learn and improve from experience without being explicitly programmed. 

Machine learning focuses on the development of computer programs that can access data and 

use it to learn for themselves [33].  

2.2.2. Different types of Machine Learning : 

 Machine Learning can be divided into 3 categories:  

A. Supervised Learning: we give the algorithm labeled data and the algorithm has to learn 

from it and figure out how to solve future similar problems. It’s like giving the algorithm 

problems and answers, the algorithm has to learn how these problems were solved in 

order to solve future problems in a similar manner. 

B. Unsupervised Learning: we give the algorithm a problem without any labeled data   or 

any prior knowledge of what the answer could be. It’s like giving the algorithm 

problems without any answers, the algorithm has to find the best answer by driving 

insights from the data.           

C. Reinforcement Learning: is the training of machine learning models to make 

a sequence of decisions. The agent learns to achieve a goal in an uncertain, potentially 

complex environment. In reinforcement learning, an artificial intelligence faces 

a game-like situation. The computer employs trial and error to come up with a solution 

to the problem. To get the machine to do what the programmer wants, the artificial 

intelligence gets either rewards or penalties for the actions it performs. Its goal is 

to maximize the total reward. 

 

The three types can be summarized as it is shown in Figure II.3 below. 

https://blog.openai.com/openai-gym-beta/
https://blog.openai.com/openai-gym-beta/
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Figure II.4:Types of Machine Learning [33]. 

 

2.2.3. Elements of Machine Learning : 

         To use machine learning, two elements are essential: Model and Dataset. 

A. Model: 

o Classification Model: classification is a model of ML whose outputs belong to a finite 

set of values (example: good, average, bad). Some of the most common classification 

models: Logistic regression, Support Vector Machine (SVM), K-Nearest Neighbors 

(KNN) and neural networks. 

o Regression model: is a model of ML whose outputs are numbers (example: the 

temperature of tomorrow), some of the most common regression models: Linear 

regression, Decision Tree, Random Forest and neural networks. 

B. Datasets: 

Datasets correspond to one or more database tables, where each column of a table 

represents a particular variable and each row corresponds to a given record in the dataset. 

In question, the dataset lists the values of each of the variables, such as the height and 

weight of an object, for each member of the dataset. The dataset is often separated into 

three parts, namely: 

o Training data: is that which is taken to refine the parameters of the model and thus 

allow it to generalize towards unknown data. 

o Validation data: is used during training to estimate the performance of the model and 
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help to select the hyper-parameters. In addition, it can be used to determine when it is 

most beneficial to stop training (early stopping). 

o Test data: used to obtain the results and to evaluate the generalization capacities of the 

model. 

2.3.Deep Learning : 

2.3.1. Definition : 

Deep learning is a machine learning technique that teaches computers to accomplish things that 

people do naturally. For example, a computer model can learn to execute classification tasks 

directly from images, text, or sound in deep learning. Deep learning models can attain state-of-

the-art accuracy, even surpassing human performance in some cases. Models are trained 

utilizing a huge quantity of labeled data and multilayer neural network topologies. 

2.3.2. Deep Learning VS Machine Learning: 

Deep learning is a type of machine learning that is very specialized. The first step in a machine 

learning workflow is to manually extract useful characteristics from images. The features are 

then utilized to build a classification model for the items in the image. Relevant features are 

automatically retrieved from photos using a deep learning approach. Furthermore, deep learning 

accomplishes “end-to-end learning,” in which a network is given raw data and a task to complete, 

such as classification, and it automatically learns how to do so, Figure II.5 below summaries 

perfectly the feature extraction difference. 

Another significant distinction is that deep learning algorithms scale as data grows (Figure II.4), 

whereas shallow learning techniques converge. Machine learning algorithms that plateau at a 

given level of performance as more instances and training data are added to the network are 

referred to as shallow learning. Deep learning networks have the advantage of improving as the 

size of your data grows. 

 

Figure II. 6:Comparing a machine learning approach to categorizing with deep learning [29]. 
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     Figure II. 7:the relation between the performance of the algorithms and the amount of input Data 

 

2.3.3. Deep Learning Principal of Operation 

Deep learning models are sometimes referred to as deep neural networks because most deep 

learning approaches use neural network designs. 

The number of hidden layers in a neural network is commonly referred to as "deep." Deep 

neural networks can have many hidden layers, whereas traditional neural networks only have 

2-3. 

Large sets of labeled data and neural network topologies that learn features directly from the 

data without the requirement for manual feature extraction are used to train deep learning 

models. Convolutional neural networks are one of the most popular types of deep neural 

networks (CNN or ConvNet). A CNN uses 2D convolutional layers to combine learnt features 

with input data, making it well suited to processing 2D data like images. 

3. Convolutional Neural Network 

3.1.Definition 

A convolutional neural network (CNN or ConvNet) is a deep learning network design that 

learns from data without the requirement for human feature extraction. CNNs are particularly 

useful for recognizing objects, faces, and settings by looking for patterns in images. They're 

also useful for categorizing non-image data including audio, time series, and signal data. CNNs 

are frequently used in applications that need object recognition and computer vision, such as 

fire detection, self-driving vehicles, and face recognition. 

3.2. CNNs Principal of Operation 

A convolutional neural network can include tens or hundreds of layers, each of which learns to 

recognize distinct picture features. At various resolutions, filters are applied to each training 

image, and the result of each convolved image is utilized as the input to the next layer. 
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The filters can start with very basic qualities like brightness and edges and progress to more 

complicated attributes that describe the object uniquely. 

A. Feature Learning, Layers, and Classification 

 A CNN, like other neural networks, has an input layer, an output layer, and a number of hidden 

layers in between. 

 

                 Figure II. 8:Neural networks, which are organized in layers consisting of a set 

 of interconnected nodes [33].  

These layers perform operations on the data with the goal of learning data-specific 

characteristics. Convolution, activation or ReLU, and pooling are three of the most popular 

layers. 

− Convolution passes the input images through a series of convolutional filters, each of which 

activates different aspects of the images. 

− Rectified linear unit (ReLU) By mapping negative values to zero and keeping positive 

values, it is possible to train faster and more effectively. Because only the activated 

characteristics are carried on into the next layer, this is frequently referred to as activation. 

− Pooling reduces the amount of parameters that the network needs to learn by performing 

nonlinear down sampling on the output. 

Over tens or hundreds of layers, same actions are repeated, with each layer learning to 

recognize distinct features 
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         Figure II. 9:Example of a network with many convolutional layers [32].  

 

B. Shared Weights and Biases 

A CNN has neurons with weights and biases, just like a typical neural network. During the 

training phase, the model learns these values and updates them with each new training 

sample. In the case of CNNs, however, all hidden neurons in a layer have the identical 

weights and bias values. 

This suggests that all hidden neurons are detecting the same feature in different parts of the 

image, such as an edge or a blob. As a result, the network is tolerant of image object 

translation. A network trained to recognize autos, for example, will be able to do so 

regardless of where the car appears in the image  

C. Classification Layers 

The architecture of a CNN turns to categorization after learning features in several layers. 

The layer after that is a fully connected layer that outputs a vector with K dimensions, where 

K is the number of classes that the network can predict. The probabilities for each class of 

every image being classified are contained in this vector. 

The classification output is provided by the final layer of the CNN design, which uses a 

classification layer such as softmax, 

4. Computer vision: 

4.1.Definition 

  Computer vision, abbreviated as CV, is a multidisciplinary field that focuses on replicating 

parts of the complexity of the human vision system and enabling computers to "see" and 

understand the content of digital images. It is a multidisciplinary field that could broadly be 

described as a subfield of artificial intelligence and machine learning (Figure II.10) that focuses 
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on replicating parts of the complexity of the human vision system and enabling computers to 

"see" and understand the content of digital images. The purpose of computer vision is to 

comprehend the content of digital images by extracting a description from the image, which 

could be an object, a text description, or a three-dimensional model, among other things. 

Typically, this entails the creation of techniques that seek to replicate human eyesight figure.  

 

 

                 

 

 

 

 

 

 

 

 

Figure II. 11:Overview of the relationship of AI and CV [32]. 

4.2.The Evolution of Computer Vision 

Early computer vision investigations began in the 1950s, and by the 1970s, it was being used 

commercially to discern between typed and handwritten text. Today, the applications for 

computer vision have developed tremendously. 

The tasks that computer vision could perform before the introduction of deep learning were 

relatively limited, and they needed a lot of manual coding and work from developers and human 

operators. For example, if we wanted to run an object recognition model, we would have to do 

the following: 

− Create a database: Individual images of all the subjects we wish to track must be captured in a 

precise format. 

− Annotate images: Then we'd have to enter numerous critical data points for each individual 

image. 

− Capture new images: Then, whether from photographs or video content, we'd have to 

capture new images. After that, we had to repeat the measurement process, this time noting 

the image's main points. The angle from which the photo was shot has to be considered as 

well. 
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After all of this painstaking labour, the application would eventually be able to compare the 

measures in the new image to those in its database and inform you if it matched any of the 

profiles it was tracking. In actuality, the majority of the job was done manually, with very 

little mechanization. And the margin of error was still significant. 

Artificial intelligence has made enormous strides in recent years, surpassing humans in 

several tasks linked to recognizing and labeling objects, thanks to breakthroughs in artificial 

intelligence and innovations in deep learning, neural networks, and the amount of data we 

generate today. 

4.3.Computer Vision with Machine Learning Approach 

When it came to solving computer vision difficulties, ML offered a fresh perspective. 

Developers no longer have to manually code every rule into their vision applications thanks to 

machine learning. Instead, they created "features," which were mini apps that could detect 

certain patterns in photographs. They then utilized a statistical learning technique to find 

patterns, classify photos, and detect objects in them, such as linear regression, logistic 

regression, decision trees, or support vector machines (SVM). 

 

 

Figure II. 12:an example of a machine learning approach [33]. 

Many challenges that were previously difficult for traditional software development tools and 

methodologies were solved thanks to machine learning. Years ago, for example, machine 

learning programmers were able to develop algorithms that outperformed human specialists in 

predicting breast cancer survival windows. However, developing the software's functionality 
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necessitated the collaboration of dozens of engineers and breast cancer experts and took a long 

period.        

4.4.Computer Vision with Deep Learning Approach 

Machine learning was approached in a fundamentally new way with DL. Deep learning is based 

on neural networks, which are a general-purpose function capable of solving any problem that 

can be represented by instances. When you provide a neural network a large number of labeled 

instances of a certain type of data, it may uncover common patterns between them and turn 

them into a mathematical equation that can be used to categorize future pieces of information. 

DL is an extremely effective computer vision algorithm. Creating a good deep learning system 

usually boils down to accumulating a huge amount of labeled training data and fine-tuning 

parameters like the type and number of layers of n-layers. 

Deep learning is easier and faster to design and deploy than prior types of machine learning. 

Deep learning is used in most contemporary computer vision applications, including fire 

detection, self-driving cars, and facial recognition. 

Deep learning has progressed from a theoretical notion to a practical application because to 

breakthroughs in hardware and cloud computing resources. 

5. Object Recognition 

5.1.Definition 

Object recognition is a broad word that refers to a group of related computer vision tasks that 

entail recognizing things in digital pictures. Object localization entails creating a bounding box 

around one or more objects in an image, whereas image classification entails providing a class 

label to an image. Object detection is a more difficult task that combines the two tasks by 

drawing a bounding box around each object of interest in the image and assigning a class label 

to it. Object recognition is the umbrella term for all of these issues. 

5.2.Object Recognition Computer Vision Tasks  

− Image Classification: Predict an object's type or class from an image. 

Input: A single-object image, such as a photograph. 

 output: A class label (e.g. one or more integers that are mapped to class labels). 

− Object Localization: Detect the existence of items in a picture and use a bounding box to 

denote their location. 

      Input:  an image featuring one or more objects., such as a photograph. 

     Output: One or more bounding boxes (e.g. defined by a point, width, and height). 
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− Object Detection: Locate the existence of things in a picture using a bounding box and the types 

or classes of the objects found. 

− Input: an image featuring one or more objects., such as a photograph. 

− Output: One or more bounding boxes (e.g. defined by a point, width, and height), and a       

class  label for each bounding box. 

− Object segmentation, also known as "object instance segmentation" or "semantic 

segmentation," is a further development of this split of computer vision tasks, in which 

instances of recognized objects are shown by highlighting the exact pixels of the object 

rather than a crude bounding box. 

Object recognition, as we can see from this split, pertains to a group of difficult computer 

vision tasks that can be summarized in Figure II. 13 below. 

                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II. 14:Overview of Object Recognition Computer Vision Tasks [27]. 

With the goal of encouraging autonomous and distinct innovations at each level that can be 

exploited more widely. The three equivalent task kinds, for example, are listed below: 

− Image classification: Algorithms generate a list of object categories that can be found in the image. 

− Single-object localization: Algorithms generate a list of object categories that appear in the 

image, as well as an axis-aligned bounding box that indicates the position and scale of one 

instance of each object category. 

− Object detection: Algorithms provide a list of item categories that appear in the image, as 

well as an axis-aligned bounding box that shows the position and scale of each instance of 

each object type. 
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  Figure II. 15:Overview of Object Recognition Computer Vision Tasks for fire scene example. 

5.3.Comparison between Single Object Localization and Object Detection: 

We can see that "Single-object localization" is a more constrained variant of the more generally 

described "Object Localization," limiting the localization tasks to objects of a single kind within 

an image, which we may infer is a simpler process. 

The distance between the expected and predicted bounding boxes for the expected class is used 

to evaluate a model's performance for single-object localization. The precision and recall of 

each of the best matched bounding boxes for the known objects in the image are used to evaluate 

the performance of an object recognition model. 

Figure II. 16 below summaries the difference between Single object localization and object 

detection. 

 

 

 

 

 

 

 

 

                      

 

 

 

Figure II. 17:Single Object Localisation VS Object Detection [27]. 
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5.4.Popular Families of Object Recognition Deep Learning Models 

5.4.1 R-CNN Model Family 

The R-CNN family of algorithms developed by Ross Girshick et alR-CNN,'s which stands 

for "Regions with CNN Features" or "Region-Based Convolutional Neural Network." This 

contains the R-CNN, Fast R-CNN, and Faster-RCNN object localization and recognition 

algorithms that have been proposed and demonstrated. 

Let's take a deeper look at each of these techniques' highlights one by one. 

a) R-CNN 

The R-CNN was first described in the 2014 publication “Rich feature hierarchies for 

accurate object detection and semantic segmentation” by Ross Girshick et al. from UC 

Berkeley. 

It's possible that it was one of the first large-scale and successful applications of 

convolutional neural networks to the problem of object detection, segmentation, and 

localization. On the VOC-2012 dataset and the 200-class ILSVRC-2013 object detection 

dataset, the technique was shown on benchmark datasets, yielding state-of-the-art results. 

The R-CNN model they propose is made up of three modules: 

− Module 1: Region Proposal. Generate and extract category independent region proposals, 

e.g. candidate bounding boxes. 

− Module 2: Feature Extractor. Extract feature from each candidate region, e.g. using a deep        

convolutional neural network. 

− Module 3: Classifier. Classify features as one of the known classes, e.g. linear SVM 

classifier       model. 

The architecture of the model is summarized in Figure II. 18 below. 

Figure II.12:Summary of the R-CNN architecture 

To propose candidate regions or bounding boxes of prospective objects in the image, a computer 

vision approach known as "selective search" is utilized, while the design flexibility allows for 
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different region proposal techniques to be applied. 

The AlexNet deep CNN feature extractor was utilized by the model. The CNN produced a 

4,096-element vector that characterizes the image's contents and is input into a linear SVM for 

classification, with one SVM trained for each known class.At test time, there were 2,000 

potential regions per image. 

b) Fast R-CNN 

Given the great success of R-CNN, Ross Girshick, then at Microsoft Research, proposed an 

extension to address the speed issues of R-CNN in a 2015 paper titled “Fast R-CNN.” 

We can sit its limitation as follows: 

− Training is a multi-stage pipeline. Involves the preparation and operation of three separate       

models. 

− Training is expensive in space and time. Training a deep CNN on so many region proposals          

per image is very slow. 

− Object detection is slow. Make predictions using a deep CNN on so many region proposals 

is     very slow. 

In the 2014 study “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual 

Recognition,” it was proposed to speed up the approach known as spatial pyramid pooling 

networks, or SPPnets. This did speed up the feature extraction process, but it was effectively a 

forward pass caching approach. 

Fast R-CNN is proposed as a single model that learns and outputs regions and classifications 

without the use of a pipeline.This technique is then done for each region of interest in a given         

image many times. The architecture of the model is summarized in Figure II. 13 below. 

Figure II. 13:Summary of the Fast R-CNN Model Architecture. 

Although the model is substantially faster to train and forecast, each input image still requires 

a collection of candidate regions to be offered. 

c) Faster R-CNN 

The model architecture was further improved for both speed of training and detection by 

Shaoqing Ren, et al. at Microsoft Research in the 2016 paper titled “Faster R-CNN: Towards 

https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1506.01497
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Real-Time Object Detection with Region Proposal Networks.” [27]. 

The architecture, known as a Region Proposal Network, or RPN, was created to both propose 

and refine region proposals as part of the training process. In a single model architecture, these 

areas are combined with a Fast R-CNN model. These enhancements minimize the number of 

region proposals while also accelerating the model's test-time operation to near real-time, 

resulting in state-of-the-art performance. Although it is a single unified model, the architecture 

is comprised of two modules: 

− Module 1: Region Proposal Network. Convolutional neural network for proposing regions 

and the type of object to consider in the region. 

− Module 2: Fast R-CNN. Convolutional neural network for extracting features from the       

proposed regions and outputting the bounding box and class labels. 

Both modules work with the same deep CNN output. The Fast R-CNN network uses the region 

proposal network as an attention mechanism, directing the second network where to look or pay 

attention. 

The architecture of the model is summarized in Figure II. 14 below. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure II.14:Summary of the Faster R-CNN Model Architecture [27]. 

 
5.4.2 Time Object Detection with Region Proposal Networks 

The RPN works by traversing a tiny network over the feature map with the output of a pre-

trained deep CNN, such as VGG-16, and outputting numerous region proposals and a class 

prediction for each. Region proposals are bounding boxes based on so-called anchor boxes or 

pre-defined forms that are intended to speed up and improve region proposal. The class 

https://arxiv.org/abs/1506.01497
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prediction is binary, indicating the presence of an object, or not, so-called “objectness” of the 

proposed region. 

5.4.3 YOLO Model Family 

Another popular family of object recognition models is referred to collectively as YOLO or “You 

Only Look Once,” develop by Joseph Redmon, et al. 

Although R-CNN models are more accurate in general, the YOLO family of models is far faster, 

achieving real-time object detection. 

a) YOLO: 

 The YOLO model was first described by Joseph Redmon, et al. in the 2015 paper titled “You 

Only Look Once: Unified, Real-Time Object Detection.” Note that Ross Girshick, developer of 

R-CNN, was also an author and contributor to this work, then at Facebook AI Research. 

The approach uses a single end-to-end trained neural network that takes a photograph as input 

and immediately predicts bounding boxes and class labels for each bounding box. Although the 

technique operates at 45 frames per second and up to 155 frames per second for a speed-

optimized version of the model, it has lower prediction accuracy (e.g., more localization errors). 

The model divides the input image into a grid of cells, with each cell responsible for predicting 

a bounding box if the center of a bounding box falls within the cell. Each grid cell generates a 

bounding box based on the x, y coordinates, as well as the width, height, and confidence. Each 

cell also serves as a basis for a class prediction.. 

For instance, an image may be divided into a 77-cell grid, with each cell predicting two 

bounding boxes, yielding 94 recommended bounding box predictions. The bounding boxes with 

confidences and the class probability map are then combined to create a final set of bounding 

boxes and class labels. The model's two outputs are summarized in Figure II. 15. 

Figure II.15: Summary of Predictions made by YOLO Model [27]. 

https://pjreddie.com/
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://research.fb.com/category/facebook-ai-research/
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b) YOLOv2 (YOLO9000) and YOLOv3: 

 The model was updated by Joseph Redmon and Ali Farhadi in an effort to further improve 

model performance in their 2016 paper titled “YOLO9000: Better, Faster, And Stronger.” 

Although this variation of the model is referred to as YOLO v2, an instance of the model is 

described that was trained on two object recognition datasets in parallel, capable of predicting 

9,000 object classes, hence given the name “YOLO9000.” [27] 

The model has undergone a variety of training and architectural improvements, including the 

use of batch normalization and high-resolution input images. 

The YOLOv2 model, like the Faster R-CNN, employs anchor boxes, which are pre-defined 

bounding boxes with relevant shapes and sizes that are customized during training. On the 

training dataset, a k-means analysis is used to select the bounding boxes for the image. 

 Importantly, the bounding box predictions are adjusted to allow tiny changes to have a less 

dramatic influence on the predictions, resulting in a more stable model. Rather of explicitly 

forecasting location and size, offsets for moving and reshaping the pre-defined anchor boxes 

relative to a grid cell are anticipated and dampened by a logistic function. 

 

                                   

 

Figure II.16:Example of the representation chosen when predicting 

Bounding box position and shape [27]. 

Further improvements to the model were proposed by Joseph Redmon and Ali Farhadi in their 

2018 paper titled “YOLOv3: An Incremental Improvement.” The improvements were 

reasonably minor, including a deeper feature detector network and minor representational 

changes [22]. 

 

https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
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6. Conclusion: 

We have devoted this chapter to the presentation of some generalities on Deep Learning 

approaches with computer vision while presenting the Convolutional Neural Network and its   

popular models family, as we discussed above the use of a deep Convolutional Neural Network 

in object recognition has been a popular solution in the recent years due to its impressive results 

and its evolution whether in its various architectures or its models family. and in order to detect 

forest fire with great precision in real time we choose to work with the YOLOv2 Model since 

it is faster and more accurate when it comes to real time detection. The next chapter is dedicated 

to expose and to dive deep in the YOLOv2 Model and the process of constructing the fire 

detection model in MATLAB from the data collection to labelling to training. 
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1. Introduction: 

  Recent advances in artificial intelligence (AI) and Deep learning have made image-based 

modeling and analysis (e.g., classification, real time prediction, and image segmentation) even 

more successful in different applications Also, with the advent of nanotechnology 

semiconductors, a new generation of Tensor Processing Units (TPUs) and Graphical Processing 

Units (GPUs) can provide an extraordinary computation capability for data-driven methods. 

Moreover, modern drones and UAVs can be equipped with tiny edge TPU/GPU platforms to 

perform on-board processing on the fly to facilitate early fire detection before a catastrophic 

event happens.  

And to build such deep learning computer vision system for fire detection we need to have two 

essential elements: The Dataset and the Trained Model. 

 In this chapter, we will discuss the techniques and the approaches we have used to design and 

train the fire Detection model, it will be divided into two main processes: 

First, we will talk about the fire detection Dataset Preparation process, then in the second part 

we will talk about the training process. 

2. Fire Detection Dataset  

Since our project is based on classifying and localizing a fire from an Arial input frame provided 

by a UAV’s camera, the learning approach that we are going to adopt is a supervised deep 

learning approach but the challenge in utilizing such approaches is that they rely on large 

training datasets, without ignoring the fact that successful deep learning models are built on the 

shoulders of a large volumes of high-quality training data, considering these challenging facts 

we had to give more attention to the dataset that we will use and thus so much work has to be 

devoted in the creation and the collection of the necessary high quality data in order to train a 

reasonably accurate model, but before diving into the work process , we will take an overview 

of the popular available Fire Detection Datasets published Papers that are recently and 

frequently used. 

2.1 Popular Fire Detection Datasets: 

 

      2.1.1 THE FLAME DATASET: Aerial Imagery Pile Burn Detection Using Drones 

(UAVS) [23].   

 

This study provides an aerial imagery FLAME (Fire Luminosity Airborne-based Machine 

learning Evaluation) dataset using drones during a prescribed pile burn in Northern Arizona, 
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USA.  

The test was conducted with fire managers from the Flag staff (Arizona) Fire Department who 

carried out a burn of piled slash on city-owned lands in a ponderosa pine forest on Observatory 

Mesa.  

The prescribed fire took place on January 16th, 2020 with the temperature of 43◦F (∼ 6◦C) and 

partly cloudy conditions and no wind. 

This dataset consists of different repositories including raw aerial videos recorded by drones' 

cameras and also raw heatmap footage recorded by an infrared thermal camera. To help 

researchers, two well-known studies; fire classification and fire segmentation are defined based 

on the dataset. For approaches such as Neural Networks (NNs) and fire classification, 39,375 

frames are labeled ("Fire" vs "Non-Fire") for the training phase. Also, another 8,617 frames are 

labeled for the test data. 2,003 frames are considered for the fire segmentation and regarding 

that, 2,003 masks are generated for the purpose of Ground Truth data with pixel-wise 

annotation. 

The FLAME dataset including all images, videos, and data are available on IEEE-Dataport [35].   
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Figure III. 1:Frame samples of the FLAME Dataset [35].                  

   2.1.2 FiSmo Dataset: A Compilation of Datasets from Emergency Situations for Fire and 

Smoke Analysis [24].   

FiSmo, is a compilation of Datasets from emergency situations, composed of images, videos, 

regions of interest (ROIs), annotations, and features. these Datasets were employed in the 

 

  

Table III. 1:Flame Dataset Information Table [23]. 
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context of the RESCUER project (RELIABLE AND SMART CROWDSOURCING 

SOLUTION FOR EMERGENCY AND CRISIS MANAGEMENT); The Databases and 

Images Group (GBDI) from the institute of mathematics and computer science of the university 

of SAO PAULO (ICMC-USP), is responsible for the image and video analysis functionalities 

of the rescuer architecture. 

Considering the high cost of making simulations in emergency scenarios to take pictures and make 

videos, they assume that images and videos gathered from social media website were suitable to 

reflect the real case scenario of emergency situations they divulge a compilation of datasets of 

images and videos that present emergency scenarios called FiSmo.  

the Dataset is composed of images retrieved from the Flickr social media under the creative 

commons license; videos obtained from YouTube; and simulations carried out during the 

RESCUER project. 

These works were focused on the analysis of images and videos regarding the presence of fire, 

smoke, and explosions in emergency situations. the available data is composed of four image 

and two video datasets: fire/smoke detection in images; fire segmentation in images; smoke 

segmentation in images; content-based image retrieval; temporal segmentation of fire segments 

in videos; and fire detection in videos. all datasets were preprocessed according to the involved 

context, including annotation steps carried out by a set of subjects, training images and ROIs. 

furthermore, the extracted feature vectors are also available providing features of color and 

texture. 

These data were labeled according to the presence or absence of fire/smoke. therefore, the 

datasets provide a proper material for the validation of the algorithms developed for emergency 

image and video analysis.  

 

     

     

  

 

 

 

 

 

 

 

 

  

Table III. 2:Summarization of the FiSmo-Images Datasets [24]. 

Dataset Name  Purpose  # images  Features ROIs

 

FiSmo-Images 

 

                     based image retrieval 
 

FireSmoke Fire and Smoke detection  5,556  No No 
 

                                  Flickr-Fire      Global fire detection and content-        2,000          Yes   No 
 

   BoWFire    Fire detection and segmentation          226    No       Yes 

  SmokeBlock    Smoke detection and segmentation        1,666    Yes       Yes 
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Figure III. 2:Frame samples of the FiSmo Datasets [36]. 

 

 2.1.3 Datasets Discussion: 

Doing our researches, we’ve noticed that although the amount of research papers and the work 

done recently in the field of fire detection yet currently there is a scarcity of a diverse fire dataset 

and a huge lack of benchmark Dataset for wildfire detection images thus it’s very difficult to 

come up with one that simulate and counterfeit the nature and the wildfire scenarios in Algeria. 

One of the limitations of the FiSmo datasets [24], is that although it is vast it is not diverse 

enough to be solely utilized for training a network and expecting it to perform well in realistic 

fire detection scenarios. 

Moreover, that dataset was based on terrestrial images of the fire and to the best of our 

knowledge, there exists no aerial imaging dataset for fire analysis besides the FLAME dataset 

[23], Note that aerial imagery exhibits different properties such as low resolutions, and top-

view perspective, substantially different than images taken by ground cameras, but 

unfortunately  this last does not appear to be diverse enough as it contains a large number of 

similar images basically from a restricted scenario that does not counterfeit completely the 

probable Algerian wildfire scenarios (pile burn in Northern Arizona with the temperature of 

43◦F (∼ 6◦C) and partly cloudy conditions and no wind). 

Facing these challenges regarding the dataset we tried to create a diverse one mainly using [23] 

and [24] plus the different online available resources, and our modest means to create a 

personalized dataset that we will rely on in the training phase. 
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2.2 Building our Personalized Dataset: 

 In order to build our personalized dataset, we needed to go through some essential steps that 

we will explore in the section below. 

       2.2.1 Data Collection: 

We collect a fire detection dataset from various online resources. Mainly acquired from the 

FLAME Dataset [35] because our model needs to be trained largely on aerial images but we 

tried to augment it more to overcome the challenges we discussed in the section above and 

maintain the diversity in our dataset, so we mixed it with randomly chosen images from FiSmo 

Datasets [35],  we‘ve also used some common open source Datasets which we found available 

on GitHub [36] and Kaggle [37] they were already augmented by mirroring and adding noise 

so there was no need for more augmentation, we further extracted images from the forest Fire 

videos of Foggia’s Dataset [38] with a sample rate of 5, i.e. sample one image every five frames. 

we also tried to accumulate as many realistic images as possible by searching images of the 

recent forest fires of Tizi Ouzou and Khenchla (on Google and social media); The final dataset 

that we named All New Dataset [41] consists of a total of 6,592 fire images, these images are 

all resized in canonical size of 416 × 416 in order to support evaluation of the YOLOv2 

WorkFrame, more information about the Dataset sources are reported in Table III. 3, while 

some visual examples are shown in Figure III. 3. 

 

     
     
     
     
     

  
 

 
 

   

 

Table III. 3:All-New Dataset sources information. 

 

Dataset Name   # images    

  

All New Dataset 

 

                      
 

    FLAME Dataset [3]    4,911                                                    

5,556                                 FiSmo Dataset (Flickr-Fire) [4]                                     984                  
 

 Gaisaid D-Fire (GitHub) [5]                                      402     

     Fire Dataset [6]                                                                      55     

  Foggia’s Dataset [7]                                                       117     

 
Handpicked Fire Images [8]                                  123     

    TOTAL                                                   6,592 

Dataset                                                     5,556   
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Figure III. 3:Frame samples of the All-New Dataset. 

After collecting the necessary amount of Raw Data, we need to move to the next essential step 

which its success represent 80% of the model’s success. 

     2.2.2 Data Labeling:  

Today, most practical Deep learning models utilize supervised learning, which applies an 

algorithm to map one input to one output. For supervised learning to work, we need a labeled 

set of data that the model can learn from to make correct decisions. Data labeling typically starts 

by asking humans to make judgments about a given piece of unlabeled data.it is considered as 

a central part of the data preprocessing workflow for Deep learning it structures data to make it 

meaningful. This labeled data is then used to train a Deep learning model to find “meaning” in 

new, relevantly similar data. Throughout this process, Deep learning practitioners strive for 

both quality and quantity. More accurately labeled coupled with a larger quantity of labeled 

data creates more useful deep learning models, that uses human-provided labels to learn the 

underlying patterns in a process called "model training." The result is a trained model that can 

be used to make predictions on new data. But, the process to create the training data necessary 

to build these modes is often expensive, complicated, and time-consuming. 

to build our computer vision model that can be used to automatically categorize images whether 
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it contains Fire or not and detect the ROI which is the location of the Fire in the Frame, we first 

need to label images and to do that we utilized two different Methods of labeling: 

− The Manual labeling Method. 

− The Automatic labeling Method. 

 Before diving into the Fire labeling process, we need to clarify 3 main points: 

The Data labeling tool: Since our input Data is all consisted of images, we opted to use the 

image labeler APP from the Computer Vision Toolbox available in MATLAB to do the 

Labeling Task. 

The Label Class: For this project we choose to detect a single region of interest (ROI) which 

means having a single label class that we will annotate “Fire”. 

 The computer vision Data Annotation Type:  since Fire doesn’t have a predefine shape and our 

main aim is to detect and localize the fire in a 2D frame for real time object detection, we will 

use the bounding boxes type of annotation instead of the polygons and cuboids annotation to 

minimize the operation time and maximize the accuracy. 

2.2.2.1 Manual Labeling Method 

We used the Manual labeling Method to annotate FiSmo Datase (Flicker-Fire) [10],  Gaisaid D-

Fire[11],Fire Dataset from Kaggle [12],Foggia’s Dataset [13] and handpicked fire images from 

the internet [14] , that’s because these datasets are very different from each other with different 

fire scenarios so we cannot apply a single automation algorithm to annotate the fire in each 

image Frame, automating the labeling process would be definitely a gain of time but certainly  

with a very low annotation precision which results a low accuracy trained model ,To overcome 

this challenge we need a human intervention, we had to annotate manually a total of 1,681 

image frame , it was a very time-consuming process where a labeling mistake or inaccuracies of 

the input can lead to wrong predictions and a wrong output. 

For this task we need to: 

− open the image labeler App from the Image Processing and Computer Vision tab and load 

the data directly from the App, as shown in Figure III. 4. 

define the labels we intend to draw directly within the app by creating a ROI label that 

corresponds to our region of interest and create a 2D rectangle label named “Fire”, as shown in 

Figure III. 4. 

− use the mouse to draw a rectangular ROI around the Fire spot and we re-apply the process 

for the rest of the datasets images, as shown in Figure III. 5. 
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− After labeling all the frames we export the labeled ground truth to the MATLAB 

workspace. the labeled ground truth is stored as a ground Truth object so we can use this 

object to train our deep-learning-based computer vision algorithm. 

 

Figure III.4:Images loading and Fire label definition in Image Labeler App. 

        

Figure III. 5:Image annotation with green bounding boxes. 

• Manual Labeling Summary Discussion:  

To further evaluate our labels, we can view a visual summary of the labeled ground truth, 

the label summary graphs for the ROI distribution of the manual labeled dataset 

[36],[37],[38],[39] and [40] Datasets are represented in Figure III. 6. 

https://www.mathworks.com/help/vision/ref/groundtruth.html
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We used the graph to examine the occurrence of labels over time and compare the frames, the 

frequency of labels and the distribution of ROIs where: 

− The x-axis of the graph displays the numeric ID of each image in the dataset image 

collection, the total number of images loaded and manually labeled from the dataset is 

1,681 image frame. 

 

Figure III. 6:Lebel Summary Graph of Manual Labeled Datasets. 

− The y-axis displays the number of ROIs for each image in the dataset image collection, 

which means how many fire bounding boxes are in each single image frame.as we can see 

in the Figure III. 5 above, most of the frames are labeled with the average of 1 to 4 bonding 

boxes per frame with an exception in some rare situations where there were frames that 

were labeled with up to 19 Bounding boxes. 

  2.2.2.2 Automatic Labeling Method: 

Since the FLAME dataset [9] consists of Fire images that represent the same scenario plus it is 

the biggest dataset that we have, its manually labeling process will be more time-consuming, 

so we tried to speed it up by using an automation algorithm to label the remainder of images, 

for fire labeling there is no suitable built-in automation algorithm that are provided by 

MATLAB toolstrip for that we need to create our own custom label automation algorithm. 

To create this custom automation algorithm, we first require to create a segmented Fire Mask.  

a) Binary Mask creation: 

The mask is the main variable that we stand in need of for custom automation algorithm, using 

the Color Thresholder APP from the Computer Vision Toolbox available in MATLAB, we 
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created the necessary binary segmentation Fire mask that we used to create the automation 

algorithm for the FLAME dataset labeling. 

In order to crate this mask, we loaded a good quality and net fire image from the Flame dataset 

to the color Thresholder App we choose to segment in the RGB color space because it isolates 

the fire colors better than the rest of the color spaces. 

To separate fire from the rest elements of the image we used the point cloud approach where 

the App converts the 3-D point cloud into a 2-D representation and activates the polygon ROI 

tool, then we Draw a ROI around the Fire we want to segment and fine tune the segmentation 

using the color controls R, G, B. 

 

Figure III. 7:Color Thresholder App interface. 

After checking the binary Fire mask, we export the function which we named “create mask”  

with the code that creates the segmentation so we can use it to create the custom algorithm. 
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b) Custom Algorithm Creation and Automation: 

For the Creation of the custom algorithm, we used two functions: the first is the binary mask 

function that we discussed above and the second is the “object label” function that the algorithm 

needs in order to move from a black and white binary mask input into a 2-D bounding box 

output, we completed coding the custom algorithm and we name It” Fire Detection”. 

To perform the algorithm on the whole FLAME dataset [35] we need to: 

− Open the image labeler App from the Image Processing and Computer Vision tab and load 

all the images directly from the App as shown is Figure III. 10 below. 

− Define the labels we intend to draw directly within the app by creating a ROI label that 

corresponds to our region of interest and create a 2D rectangle label named “Fire”.  

− Import the custom automation algorithm” Fire Detection” from the MAT files, select all 

the images and run the automation on. 

 . Figure III.8:Segmentation Fire Mask Figure III. 4:Binary Fire Mask. 

Figure III.10:Loading dataset to run the automatic custom algorithm. 
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− After labeling all the selected frames we accept the annotation and we export the labeled 

ground truth to the MATLAB workspace. 

 
 
 
 

• Automated Label Summary Discussion: 

We’ve also evaluated our automatically generated labels through the visual summary of the 

labeled ground truth, which is represented in Figure III. 11, by the label summary graphs for 

the ROI distribution of FLAME Dataset [35]. 

We used the graph to examine the occurrence of labels over time and compare the frames, the 

frequency of labels and the distribution of ROIs generated by the fire detection custom 

algorithm where: 

− The x-axis of the graph displays the numeric ID of each image in the dataset image 

collection, the total number of images loaded and manually labeled from the dataset is 

4911 image frame. 

− The y-axis displays the number of ROIs for each image in the dataset image collection, 

which means how many fire bounding boxes are in each single image frame.as we can 

see in the Figure III. 12 most of the frames are labeled with the average of 5 to 10 

bonding boxes per frame with an exception in some rare situations where there were 

frames that were labeled with up to 18 Bounding boxes. 

Figure III. 11:Sample frames of fire bounding boxes automated labeling results. 
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      Figure III. 12:FLAME Dataset Lebel Summary Graph. 

2.2.2.3 Labels Exported Format: 

The Bounding boxes generated from the labeling are exported into the MATLAB workspace 

and specified as an M-by-4 nonsparse numeric matrix of M bounding boxes. Each row, M, of 

the matrix defines a bounding box as an axis-aligned rectangle. 

The format of the bounding boxes defined in pixel coordinates as an M-by-4 numeric matrix 

with rows of the form [x y w h], where [42]: 

M is the number of axis-aligned rectangles. 

x and y specify the upper-left corner of the rectangle. 

w specifies the width of the rectangle, which is its length along the x-axis. 

h specifies the height of the rectangle, which is its length along the y-axis. 

 

 

 

 

 

 

 

 

 

 

 
Figure III.13: Ground Truth bounding boxes coordinates tables. 
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Figure 

III.14:Ground Truth bounding boxes coordinates Sample. 

 

2.2.3 Ground Truth Testing 

In machine learning, a properly labeled dataset that we use as the objective standard to train and 

assess a given model is often called “ground truth.”  

Definition: Ground truth is a term used in statistics and machine learning that means checking 

the results of machine learning for accuracy against the real world. The term is borrowed from 

meteorology, where "ground truth" refers to information obtained on site. 

The accuracy of our trained model will depend on the accuracy of the used ground truth for that 

we need to test it by inputting a raw Image from the dataset and see the annotation output. 

 

 

         Figure III.15:Sample Frames from ALL New Dataset for Ground Truth testing. 
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                                 Figure III.16:Sample Frames from Binary Mask testing results. 

 

                 Figure III.17:Sample Frames from Bounding Box testing results. 

 

“Garbage In Garbage Out” is commonly used phrase in the machine learning community, which 

means that the quality of the training data determines the quality of the model so  

After investing 65% of our time and effort to ensure the quality and the quantity of the Data it is 

time to ensure the success of the Detection Model. 

 

3. Fire Detection Model: 

After the data are collected and annotated, we can proceed to model a computer vision model 

for which we would build, feed, train, test, and deploy and since machine learning algorithms 

are a base over which we enable deep learning and computer vision models, the first step is to 
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have a framework built for the computer vision model for that we will use the YOLOv2 

framework. 

3.1 YOLOv2 Network Architecture: 

YOLOv2 is a classic one-stage object detection algorithm targeted for real-time processing The 

YOLOv2 model runs a deep learning CNN on an input image to produce network predictions. 

The object detector decodes the predictions and generates bounding boxes. 

Compared to traditional two-stage detection algorithms (such as R-CNN, Fast R-CNN, Faster-

RCNN, etc.), YOLOv2 directly converts the problem of bounding box positioning into an end-

to-end regression solution. Since YOLOv2 avoids the process of generating hundreds of 

candidate boxes, the execution speed of the algorithm is significantly improved over the two-

stage detection schemes, which makes YOLOv2 an excellent choice for implementing real-

world applications. The whole detection flow of the YOLOv2 algorithm can be generally 

divided into three basic procedures:  

preprocessing of the input image: It involves resizing images of different input resolutions to 

a uniform size by using bilinear interpolation, and then subtracting the average brightness of all 

the images in the dataset to avoid distortion effect, such as over brightness. 

the main CNN forward computation: in the YOLOv2 algorithm, the input image is divided 

into several grids according to the frame size, e.g., 13 × 13 grids for a 416×416 input image, 

and each grid is responsible for predicting five anchor boxes with different aspect ratio. 

Corresponding to each anchor box, the CNN outputs a 25- dimensional vector: one number for 

the probability the box contains an object, four numbers to represent the bounding box 

coordinates in relation to the anchor box, and 20-dimensional probability for each of the 

categories in the training dataset. 

post-processing: which extracts the coordinates of the bounding box and the category 

information from the output of the CNN, and then filters them by performing non-maximum 

suppression (NMS) to get the best detection result. The bounding boxes of the objects are finally 

drawn and displayed for the user [26].   
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Figure III.18:The YOLO network architecture [25] 

 

Each frame is divided into a grid of 𝒔𝒙 ∙ 𝒔𝒚 in each grid cell, a maximum number of 𝑩 bounding 

boxes are searched; for every bounding box, a certain confidence score is assigned. The 

𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 score is the probability that inside a bounding box an object is contained and 

how accurate the decision is. This 𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 is expressed as 𝒑(𝑶𝒃𝒋𝒆𝒄𝒕).Thus, each 

bounding box consists in five values: 𝑿, 𝒀, 𝑾, 𝑯 and, 𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆. Furthermore, for each grid 

cell, the probability of the 𝑪 conditional class is computed. In this way, it is possible to obtain 

for the entire image N bounding boxes, divided into grids. This leads to [25]:  

𝒑(𝑪𝒍𝒂𝒔𝒔𝒊|𝑶𝒃𝒋𝒆𝒄𝒕). 𝒑(𝑶𝒃𝒋𝒆𝒄𝒕). 𝑰𝑶𝑼𝒑𝒓𝒆𝒅
𝒕𝒓𝒖𝒕 =   𝒑(𝑪𝒍𝒂𝒔𝒔𝒊). 𝑰𝑶𝑼𝒑𝒓𝒆𝒅

𝒕𝒓𝒖𝒕𝒉    (𝟏) 

for a total of 𝒔𝒙 ∙ 𝒔𝒚 ∙ (𝑩 ∙ 𝟓 + 𝑪) numbers of tensors for iteration, where: 

𝒑(𝑪𝒍𝒂𝒔𝒔𝒊|𝑶𝒃𝒋𝒆𝒄𝒕): Given a grid cell with at least one object, it represents the conditional 

probability for one of them to belong to the 𝒊th class. 

𝒑(𝑶𝒃𝒋𝒆𝒄𝒕). 𝑰𝑶𝑼𝒑𝒓𝒆𝒅
𝒕𝒓𝒖𝒕𝒉: It represents the 𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 of each bounding box inside a cell grid. 

In each cell, only the classes with the highest Confidence are taken [25]. 

We summarize some of the important computational characteristics of the YOLOv2 algorithm 

in Table III. 4 where #Param represents the total number of parameters of the CNN model and 

#FLOP represents the total amount of floating-point operations (each MAC operation contains 

one floating point addition and one multiplication), which changes according to the input 

resolutions. Detection accuracy is measured in terms of mean Average Precision (mAP), and 

the scores shown in Table III. 4 are based on the PASCAL VOC 2007 dataset [26]   
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Input Resolution #Param(𝟏𝟎𝟔) #Flop(𝟏𝟎𝟗) 

 

mAP 

    

Table III. 4:computational characteristics of the YOLOv2 [25]. 

 

3.2 YOLOv2 Proposed Network Design: 

In this work we built using MATLAB20 a YOLOv2 Model layer by layer from scratch based 

on the original YOLOv2 Model, starting with an input layer, followed by the detection 

subnetwork containing a series of Convolutional, Batch normalization, and ReLu layers. These 

layers are then connected by the MATLAB’s inbuilt yolov2TransformLayer and 

yolov2OutputLayer.   

yolov2TransformLayer transforms the raw CNN output into a form required to produce object 

detections. Yolov2OutputLayer defines the anchor box parameters and implements the loss 

function used to train the detector. Using the network analyzer app, we can visualize the layers 

graph of the built Model (Figure III.19). 
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Figure III.19:Network Architecture Layers. 
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.Figure III.20:Network Layers Analysis 

 

Once the network layers are ready and fully built, we moved to the training phase where we 

train our model on precedent-built Dataset. 
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 for the training and testing process we first need to feed our network with the annotated fire 

detection datasets that we split the dataset into 75% Training Set and 25% Testing Set as shown 

in the table below. 

                     

  

 

 

Table III. 5:The dataset distribution Table 

 

3.3 YOLOv2 Network Training Process: 

  3.3.1 Overview: 

a) Network Training Workflow : 

The training stage is the stage where the Deep learning algorithm is trained by feeding datasets, 

that’s where the learning takes place. 

Deep learning neural network models learn to map inputs to outputs given a training dataset of 

examples, it consists of the sample output data and the corresponding sets of input data that 

have an influence on the output. all neurons of a given layer are generating an output, but they 

don’t have the same weight for the next neurons layer. This means that if a neuron on a layer 

observes a given pattern it might mean less for the overall picture and will be partially or 

completely muted. This is what is called Weighting: a big weight means that the Input is 

important and of course a small weight means that we should ignore it. Every Neural 

Connection between neurons will have an associated weight. And this is the magic of neural 

network adaptability: weights will be adjusted over the training to fit the objectives we have set 

(recognizing fire in an image Frame). In simple terms: Training a NN means finding the 

appropriate weights of the neural Connections thanks to a feedback loop called Gradient 

Backward propagation. 

This training process is iterative, meaning that it progresses step by step with small updates to 

the model weights each iteration and, in turn, a change in the performance of the model each 

iteration. This iterative process which is called “model fitting” solves an optimization problem 

 

▪ Training Set 

 

▪ Testing Set  
 

 

 

4,944 

 

#Images          

1,648 



Chapter 4: Real-Time Model Evaluation and Testing 

59 
 

that finds for parameters (model weights) that result in a minimum error or loss when evaluating 

the examples in the training dataset. 

Supervised learning is possible when the training data contains both the input and output values. 

Each set of data that has the inputs and the expected output is called a supervisory signal. The 

training is done based on the deviation of the processed result from the documented result when 

the inputs are fed into the model. 

b) Network Training Options: 

For training a network we always provide the algorithm with some training options. These 

options guide the network through how the network should learn. 

− solver: it orchestrates model optimization by coordinating the network’s forward inference 

and backward gradients to form parameter updates that attempt to improve the loss. The 

responsibilities of learning are divided between the Solver for overseeing the optimization 

and generating parameter updates and the Net for yielding loss and gradients. 

− Batch Size. is the number of examples used to estimate the error gradient before updating 

the model parameters. 

Once an error gradient has been estimated, the derivative of the error can be calculated and used 

to update each parameter. There may be statistical noise in the training dataset and in the 

estimate of the error gradient. Also, the depth of the model (number of layers) and the fact that 

model parameters are updated separately means that it is hard to calculate exactly how much to 

change each model parameter to best move down the whole model down the error gradient. 

Instead, a small portion of the update to the weights is performed each iteration. A 

hyperparameter called the “learning rate” controls how much to update model weights and, in 

turn, controls how fast a model learns on the training dataset. 

− Learning Rate: The amount that each model parameter is updated per cycle of the learning 

algorithm. 

The training process must be repeated many times until a good or good enough set of model 

parameters is discovered. The total number of iterations of the process is bounded by the 

number of complete passes through the training dataset after which the training process is 

terminated. This is referred to as the number of trainings “epochs.” 

https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html?s_tid=doc_ta
https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html?s_tid=doc_ta
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− Epochs: The number of complete passes through the training dataset before the training 

process is terminated. 

There are many extensions to the learning algorithm, although these five hyperparameters 

generally control the learning algorithm for deep learning neural networks. 

3.3.2 Configuration of the YOLOv2 Network Training Options: 

Once we have the Network layers ready, we moved to work on our model’s training options. 

The solver, Learning Rate, mini batch size, and no of epochs that we’ve discussed above are 

some of the important training options to consider in order to decide what should be the learning 

speed of the network and how much data sample the network should train on, in each round of 

training. 

For the YOLOv2 Network Training we set some options based on the size of the dataset where 

we’ve: 

− Set the solver to use Adam (adaptive moment estimation) solver. 

− Set the initial learning rate to 0.001 Here we performed lower learning rate to give more 

time for training considering the size of data. 

− Set the size of mini-batch to use for each training iteration to16, we performed lower size 

of mini-batch to reduce memory usage during training. 

− Set the maximum number of epochs for training to 30. 

− Specify the frequency of verbose printing to 30. 

 

Figure III.21:YOLOv2 Detector Properties 

 

The training was conducted using a system with the following specifications: 

Intel®Xeon®CPU E5-1650 v2 @ 3.50 GHz with 64 GB onboard memory; The required 

environments and tools (MATLAB 2020). The weight in the network is initialized randomly 

and the other training options have been set and discussed above. 
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YOLOv2 training stages are carried out to get the best model which will then be used to 

recognize and detect fire patterns. The training process in this study takes about 2 to 5 minutes 

per epoch. The length of training time is affected by the batch size value, and the number of 

epochs, for 50 epochs the computing took around 3 hours and 33 minutes to complete the model 

training. 

 Figure III.22 and Figure Figure III.23 below show the training progress through each iteration 

with mini batch and base learning rate information. 

 

 

 

 

 

 

 

 

 

 

 

 

            Figure III. 23:Training Progress’s information for the last epochs. 

 

3.4Training Evaluation: 

In order to evaluate the training process an error function must be chosen, often called the 

objective function, cost function, or the loss function. Typically, a specific probabilistic 

Figure III.22:Training Progress’s information for the first 10 epochs. 

 

 

Figure III.23—Training Progress’s information for the last 10 epochs. 
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framework for inference is chosen called Maximum Likelihood. Under this framework, the 

commonly chosen loss functions are cross entropy for classification problems and mean squared 

error for regression problems [43]. 

a) Loss Function: The function used to estimate the performance of a model with a specific 

set of weights on examples from the training dataset. 

The search or optimization process requires a starting point from which to begin model updates. 

The starting point is defined by the initial model parameters or weights. Because the error 

surface is non-convex, the optimization algorithm is sensitive to the initial starting point. As 

such, small random values are chosen as the initial model weights [25]. 

From a very simplified perspective, the loss function (J) can be defined as a function which 

takes in two parameters [43]: 

− Predicted Output. 

− True Output. 

 

 

 

 

 

 

 

 
Figure III.24:Neural Network Loss Visualization [43]. 

 

This function will essentially calculate how poorly our model is performing by comparing what 

the model is predicting with the actual value it is supposed to output which is our ground truth.  

If Y pred is very far off from Y, the Loss value will be very high. However, if both values are 

almost similar, the Loss value will be very low. 

If the loss is very high, this huge value will propagate through the network while it’s training 

and the weights will be changed a little more than usual. If it’s small then the weights won’t 

change that much since the network is already doing a good job. 
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The generated training loss graph is shown in Figure III. 25 below. 

 
               Figure III.25:Training Loss Graph 

b) Training Loss Graph discussion: 

It was inferred from the graph that while the total loss value was 164 at the starting of the 

training it was decreased to level of 0.00 at the end of the training at the steps of 8460. As the 

loss function was lower than the level of 0.02, the inference graph was frozen and exported to 

detect the fire source, which proves that the network is efficiently trained and ready to be tested. 

4. Conclusion: 

 This chapter was devoted to discuss the process of building the fire detection deep learning 

model from collecting and labeling the necessary high quality data to designing the YOLOv2 

Network Layers and training a reasonably accurate model ,after the evaluation of the training 

we need to move to the next step which is the testing phase, The next chapter is dedicated to 

expose this important phase where we will test our trained model on the test set ,evaluate it , 

finally we expose the test and evaluation of the model for Real-Time Detection. 
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Chapter IV:  Real-Time Model 

Evaluation and Testing



Chapter 4: Real-Time Model Evaluation and Testing 

65 
 

     1.Introduction: 

     Fire Classification and localization is a supervised learning approach in which the target 

variable “fire” is discrete (or categorical) for that evaluating a deep learning model is considered 

as important as building and training it, in this chapter we will proceed to the next phase of our 

project which is the Testing phase where we will perform our built in Fire Detection Model on 

new, previously unseen realistic data and try to evaluate the results based on three created model 

scenarios ,finally we will cover up Real-time detection where  the model should be able to sense 

the environment parse the scene to balance between detection performance and real time 

requirements. 

2. Testing the Trained Model: 

Deep learning Model Test is an important and critical step in the detection process that we can 

neither neglect nor over pass, this part of the process enables us to quickly identify any 

shortcomings or edge cases that the model does not perform well on and thus evaluate it based 

on the detection test performance. 

According to this test results we can re-train our model using annotations from images depicting 

these edge cases, or at least be aware of the specific environments in which the model performs 

best. 

therefore, once we have made the YOLOv2 model using the prepared training data, we can test 

it by feeding in new, real wildfire scenarios images (test test) and seeing whether the model 

classifies and localize the fire accurately, while this isn’t an automated or quantified test it was 

conducted using the same environment specifications that we used for the training: 

Intel®Xeon®CPU E5-1650 v2@ 3.50 GHz with 64 GB onboard memory; The required 

environments and tools (MATLAB 2020). 

2.1. Test Set: 

Our test set is composed of 1,648 Aerial Fire and Non Fire images that were extracted from a 

fire video that was filmed in north Florida, these test set highly simulate and counterfeit the 

environment and the fire scenarios that our model will perform on, note that we applied the 

same preprocessing transform (image resizing and labeling) with no augmentation to the test 

data as for the training data which we’ve discussed its process in chapter N°3.  
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The primary reason for feeding an already labeled data to the trained model is to be able to 

evaluate the model later according to the comparison between the exiting ground truth and the 

predicted outputs and other range of different metrics, thus test data should be representative of 

the original data and be left unmodified for unbiased evaluation. 

Figure IV. 1:Project work Methodology 

2.2.  Test Detection Scenarios: 

For the test detection a total of three scenarios are made for experimental validation where we 

ran three different trained Fire Detectors (Models) on the same test set that we discussed above.  

a) Scenario 1: the detector of the first scenario was trained on only aerial images 

obtained from the FLAME Dataset [35] that we discussed in chapter N°3, were we 

fed the model with 1,126 fire annotated images. 

 

b) Scenario 2: the detector of the second scenario was trained on only terrestrial 

images obtained from the FiSmo [36] and Gaisaid [37] Datasets that we discussed 

in chapter N°3, were we fed the model with 850 fire annotated images. 

 

 

c) Scenario 3: the last detector is the same detector that we discussed its mixed 

dataset (All New Dataset [41]), training process and training evaluation in chapter 

N°3. 

Note that all the above scenarios were experimented using the same system environment and 

its training dataset was also preprocessed in the same way and have been fed to the same 

YOLOv2 network designed in chapter N°3 
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Table IV. 1:Models trained Dataset information Table 

 

 We adopted this approach of testing to demonstrate the efficacy and simulate the performance 

of each Trained detector once it would be deployed on UAV-based forest fire monitoring and 

detection missions for real situations. 

 

2.3. Test Detection Results: 

After running the three detectors on the same test set, we obtained the below Detection results: 

 

 

 

 

 

 

 

 

 

 

 

 

 Dataset Source Train set 

Scenario 1 FLAME Dataset [35] 1,126 

Scenario 2 FiSmo [36] and Gaisaid [37] Datasets 850 

Scenario 3 All New Dataset [41] 4,944 
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a) Results Detection of Scenario 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV. 2:Sample Frames from Testing the first Detector 
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b) Results detection of Scenario 2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure IV. 3:Sample Frames from Testing the second Detector 
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c) Results detection of Scenario 3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure IV. 4:Sample Frames from Testing the Third Detector 
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3. Model Evaluation: 

An object detection model produces the output in three components: 

1. The bounding boxes — x1, y1, width, height.  

2. The class of the bounding box. 

3. The probability score for that prediction— how certain the model is that the class is 

actually the predicted class [45].  

Evaluating object detection model means that we need to measure if the model found all the 

objects, and also a way to verify if the found objects belong to the correct class. This implies that 

in our case our Fire detection model needs to accomplish two things: 

1. Classification: Identify if a Fire spot is present in the image and its class. 

2. Localization: Predict the coordinates of the bounding box around the Fire when it is 

present in the image. Here we compare the coordinates of ground truth and predicted 

bounding boxes. 

To evaluate our model, we need to evaluate the performance of both classification as well as 

localization of using bounding boxes in the image using evaluation metrics, but before exploring 

the metrics we need to cover an important parameter —IoU. 

− Intersection over Union (IoU): we use the concept of Intersection over Union (IoU) or 

so-called threshold as a similarity measure, it computes intersection (overlap) over the union 

of the two bounding boxes; the bounding box for the ground truth and the predicted bounding 

box as shown in figure where Red represents ground truth bounding box and green represent 

predicted bounding box. 

 

 

 

 

 

 

 

 

Figure IV. 5:Intersection over Union [46]. 
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An IoU of 1 implies that predicted and the ground-truth bounding boxes perfectly overlap. 

Threshold is a key parameter for various evaluation Metrics, changing the value of the threshold 

parameter drastically changes the value of the evaluation metric. We can set a threshold value 

for the IoU to determine if the object detection is valid or not. 

 in our case we set the threshold value to 0.5 which means: 

• if IoU ≥0.5, classify the Fire detection as True Positive (TP). 

• if IoU <0.5 then it is a wrong detection and classify it as False Positive (FP). 

• When a ground truth is present in the image and model failed to detect the Fire, classify 

it as False Negative (FN). 

• True Negative (TN): TN is every part of the image where we did not predict a Fire. This 

last metrics is not useful for object detection in general, hence we ignore TN. 

          3.1 Evaluation Metrics: 

To evaluate our YOLOv2 Fire detector, we will use three main evaluation metrics that we will 

discuss below: 

1) Mean Average Precision (mPA): 

it’s the most used metric to evaluate an object detection model it’s calculated using three 

essential elements: 

o Precision measures how good our model is when the prediction is positive [46]. 

𝑝𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (1)  

o Recall measures how good our model is at correctly predicting positive classes [46]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (2)  

The focus of precision is positive predictions. It indicates how many positive predictions 

are true, while the focus of recall is actual positive classes. It indicates how many of the 

positive classes the model is able to predict correctly. 

o Average precision: for a multiclass detector, the average precision is a vector of 

average precision scores for each object class. 
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we count the accumulated TP and the accumulated FP and compute the precision/recall at each 

line, the Average Precision is computed as the average precision at 11 equally spaced recall 

levels. The Mean Average Precision (mAP) is the averaged AP over all the object categories 

and since in our case we have only one object category which is” Fire” then we can imply that. 

𝑚𝐴𝑃 = 𝐴𝑃  (4) 

2) Log Average Miss-Rate (LAMR): 

             it’s calculated using two essential elements: 

• Miss Rate   — Log miss rate: [46] 

𝑚𝑟(𝑐) =
𝐹𝑁

𝑇𝑃+𝐹𝑁
                 (4)  

• fppi — False Positives Per Image: [46] 

𝑓𝑝𝑝𝑖(𝑐) =
𝐹𝑃

⋕𝑖𝑚𝑔
                   (5)  

 we first plot the miss-rate the number of false positives per image in log-log plots.  all for a 

given confidence value c such that only detections are taken into account with a confidence 

value greater or equal than c. As commonly applied in object detection evaluation the 

confidence threshold c is used as a control variable. By decreasing c, more detections are taken 

into account for evaluation resulting in more possible true or false positives, and possible less 

false negatives. We define the log average miss-rate (LAMR) as shown in (equation (6) [46]. 

𝐿𝐴𝑀𝑅 = 𝑒𝑥𝑝(
1

9
∑ 𝑙𝑜𝑔(𝑚𝑟( armax

𝑓𝑝𝑝𝑖(𝑐)≤𝑓
𝑓𝑝𝑝𝑖 (𝑐))))

𝑓

     (6)  

  3.2 Evaluation Results: 

We applied the evaluation metric discussed above and we’ve obtained these results: 

Note that due to the high non-rigidness of pedestrians we follow the common choice of an IoU 

threshold of 0.5. 
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a) Scenario 1 Results: 

 

  

 

 

 

b) Scenario 2 Results: 

 

 

 

 

 

   

 

Figure IV. 6:Log Average Miss Rate of the 

first scenario 

 

             Figure IV.7:Log Average Miss Rate of 

the first scenario 

Figure IV.8:Log Average Miss Precision of the Seconde scenario/ Log Average 

 Miss Rate of the Seconde scenario 
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c) Scenario 3 Results: 

 

 

 

3.3 Results Discussion: 

the evaluation and the detection results show different values variations between the three 

scenarios: 

a) Scenario 1 Results:  

from Figure IV. 6 and Figure IV. 7 it shows that the first trained model achieved an average 

precision of 0.72 and an average mis rate of 0.49 ,which is considered as a high precision value 

that relates to a low false negative FN rate without neglecting the miss rate value which kinda 

not satisfying comparing to the precision ,and this is due to high false positive rate FP ,we can 

say that the first trained  model has almost fulfil the object detection requirements despite the 

false positive rates FP from the tree spots that were detected as fire  (Figure IV. 2) which the 

train data plays an important factor in that as it is considered as a lower complex scene data. 

b) .Scenario 2 Results:  

from Figure IV. 8 it shows that the  second trained model achieved an average precision of 0.6 

and an average mis rate of 0.52,which is high miss rate that is related to a high false negative 

rate FN ,these values are connected directly to the difference between the test set and the train 

set ,the dataset that we trained our second model on is composed of multiple fire scenes but 

they  are completely terrestrial images, while the dataset that we tested with is composed of 

  

Figure IV.9:Log Average Miss Precision of the Third scenario/ Log Average 

 Miss Rate of the Third scenario 
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purely aerial scenes and that’s was obviously seen in Figure IV. 3 where the detector was 

incapable of detecting the fire spots were the aeras were less large and less clear. 

c) Scenario 3 Results: 

 from Figure IV. 9 it shows that the third trained model achieved an average precision of 0.87 

and an average miss rate of 0.16 which is considered as a high precision and a low miss rate, 

these results are related to the low false positive rate FP and false negative rate FN and that’s 

what we can see clearly in Figure IV. 4 were most all of the spot fire were successfully detected. 

These detection results proves that the personalized dataset that we’ve built has overcame the 

challenges by gathering rich aerial fire senses and its detector satisfied the requirements of an 

object detection Model. 

The table below summaries the Fire Detection test results of the three Detectors. 

               

Table IV. 2:summary of the three secanrios results. 

From these results we can say that we did the right thing by mixing the datasets and training the 

model on our own personalized dataset. 

4. Real Time Detection Testing 

            4.1 Conducted experiment: 

 Real-time object detection models should be able to sense the environment, parse the scene 

and finally react accordingly, for that we must keep a balance between detection performance 

and real-time requirements. 

 To evaluate the detector performance in Real time it was required to do a UAV test where we 

deploy our Detector on a UAV equipped camera and test its detection and robust performance 

while the UAV is flying upon a fire region which is the real scenario that this system was built 

for ,unfortunately due to lack of resources and materials we couldn’t achieve the real test so we 

tried to imitate the scenario as much as possible by replacing the UAV camera by a phone camera 

and try to detect it from a height of approximately 9.5 meters. 

 Average Precision Log Average Miss Rate 

Scenario 1 0.72 0.52 

Scenario 2 0.6 0.49 

Scenario 3 0.87 0.16 
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This Real time test was conducted using an environment of the following specifications: 

• for shooting we used: Redmi Note 8 phone camera with 48MP. 

• for processing we used Intel®Core (TM) i7-4600U CPU @ 2.10GHz ,2.70 GHz with 64 

GB onboard memory. 

• For the tools we used MATLAB20, and IP Webcam Android App. 

         We installed MATLAB Support Package for IP Cameras to bring live captured videos       

from camera phone into MATLAB.  

            4.2 Test Results: 

The Results obtained from the conducted Real-Time detection test are shown in the 

Figure IV. 10 below. 

 

 

 

 

 

 

 

   Figure IV. 6:Screenshot from the shooting phone 



Chapter 4: Real-Time Model Evaluation and Testing 

78 
 

 

 

 

 

 

 

 

 

 

 
   

   

 

 

 

 

 

Figure IV. 8:MATLAB live processing window for detection with 41.08 FPS. 

 

4.3 Results Discussion: 

Figure IV.10,  Figure IV.11 and  Figure IV.12 above show the real-time test results ,in which 

we can clearly notice the detected fire spot with an average score of 0.6 ,besides the accuracy  

the final results has shown a rapid detection that reached out to 58 Frame per Image FPS 

regarding the poor calculation environment that we tested with ,these rapidity is due to the 

Figure IV. 7:MATLAB live processing window for detection with 27.28 FPS. 
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designed YOLOv2 Network model that utilize the predefined anchors that cover spatial 

position, scales, and aspect ratios across an image. Hence, we do not need an extra branch for 

extracting region proposals. Since all computations are in a single network, it likely to run faster 

than the two-stage detectors.  

5 Conclusion 

 In this chapter we tested our built Model on an aerial fire images test set, we did evaluate our 

detector by comparing it to different trained Models using evaluation metrics in which its results 

has shown a mean average precision of 0.87,for further evaluation in real time environment we 

conducted a Real-Time detection test that end up with a very fine results, our detector has shown 

a rapid and robust detection that reached out to 58 FPS ,these parameters satisfy completely the 

requirements of a Real-Time object  detector. 
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    Conclusion and Perspectives 
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        Forest Fires is a major problem, when a fire occurs, it seriously threatens people’s lives 

and causes major losses, a lot of work based on computer vision are made to detect these fires 

by exploiting the use of UAVs for aerial forest monitoring. 

After a definition of the treated problem which concerns the Fire classification and localization, 

we have exposed the state of the art on the work that is already done on the same problem, we 

have chosen to solve this problem by using deep learning, more specifically the YOLOv2 

Convolutional Neural Network Architecture.  

    To build this deep learning computer vision-based fire detector we had to provide two 

essential elements the dataset and the trained model,   In deep learning  dataset is so crucial ,in 

our way to craft this element we encountered several challenges ,the first one was the absence 

of benchmark dataset for forest fire detection ,so we had to surf through various resources to  

collect  the necessary amount of data ,the second challenge is that most of the collected data 

were not labeled or annotated ,its labeling process in MATLAB was very time and energy 

consuming. 

          For model crafting we used a main single approach: building the model "from scratch" 

which requires to design the network architecture and train it. The advantage of the latter 

approach is the possibility of customizing the layers and the training options as we want till the 

validation of the model. we tried to keep a balance between detection performance and real-

time requirements. Generally, if the real-time requirements are met, we see a drop in 

performance and vice versa. So, balancing both the aspects was a big challenge 

           Finally, the obtained results have shown a mean average precision of 0.87 and rapid 

detection that reached out to 58 FPS, these parameters satisfy completely the requirements of a 

Real-time object detector. 

             Perspectives: 

− Future works could consider fire spot localization strategy development which can 

obtain the fire position in real world coordinates. 

− we will look for more effective ways and approaches based on several models to resolve 

existing false positives. 

− we would like to increase the size of the Forest Fire benchmark and make finer grained 

annotations, e.g., using compute graphic engine to create synthetic data and generate 

pixel-wise annotations. 
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− we plan to mount the proposed fire detection system on UAVs for real world forest fire 

detection by realizing an embedded system comprising a camera and a microcontroller 

card such as Raspberry Pi or else base of a GPU such as the NVIDIA Jetson card. 
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