
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

Saad Dahleb University of Blida 1

Faculty of Sciences

Computer Science department

MASTER THESIS

In computer science

Option : - Computer Systems and Networks

- Information Systems Security

Detection and mitigation of DDoS attacks
in SDN networks.

Realized by: The jury:

- Amani Alili

- Yasmine Bouidarene

- Dr. Sana Aroussi (President)

- Dr. Afrah Djeddar (Examinator)

- Dr. Zakaria Sahnoune (Promotor)

Promotion : 2020/2021

Acknowledgement

First and foremost, we thank GOD, the Almighty, for assisting us along the path and providing

us with the strength and ability to complete this memory.

Secondly, we would like to thank our promoter, Dr. Zakaria Sahnoune, for the confidence he

has placed in offering us this research theme, and his accompaniment, support, and availability

for the realization of our work.

We sincerely thank our dear parents, families and all our friends for their love and encourage-

ment.

 ملخص

 التحكم. الرأسي التكامل كسر طريق عن التقليدية الشبكات محل ليحل مصمم ناشئ مفهوم هي(SDN) بالبرمجيات المعرفة الشبكات

 قابل غير جعلهت تيال (DDoS) ةالموزع الخدمة حجب اتمخاصة بالنسبة لهجو فشل نقطة ه يمثللكن ، SDN لـنقطة قوة أكبر هو المركزي

 حدتها من والتخفيف DDoS هجمات لكتشاف(ML) الآلي التعلم خوارزميات على يعتمد فعالا حلا طروحةالأ هذه توفر. و غير متاح للوصول

 أن الأطروحة هذه تثبت .Hping3 أداة باستخدام DDoS هجمات محاكاة تمت بينما الشبكة، لمحاكاة Ryu و Mininet تحكم وحدة باستخدام

 خاضعة خوارزميات ست وتقييم اختبار تم. الشبكات هذه مثل في DDoS هجمات لنجاح المئوية النسبة على يؤثر أن ويمكن مهم الهيكل نوع

 الأفضل هما RF و DT أن النتائج أظهرت. تركيبية بيانات مجموعة باستخدام(RF و DT و SVM و NB و K-NN و LR) للإشراف

 المصنف باستخدام حدتها من والتخفيف DDoS هجمات اكتشاف في كفاءته المقترح النظام يظُهر. ٪100 بدقة الأخرى بالخوارزميات مقارنة

RF الضارة المرور حركة لقمع المحول إلى تدفق قاعدة إضافة طريق عن التخفيف توفير تم بينما فقط ميزات وخمس.

 الكلمات المفتاحية :

 (.ML) الآلي التعلم ،(DDoS) الخدمة رفض هجوم ،(SDN) بالبرمجيات المعرفة الشبكات

Abstract

Software-Defined Networking (SDN) is an emerging concept designed to substitute traditional

networking by breaking up vertical integration. Central control is the biggest benefit of SDN, but

a single point of failure is also a failure if a distributed denial of service (DDoS) attack makes

it unattainable. This memory provides an efficient solution based on machine learning (ML) al-

gorithms to detect and mitigate DDoS attacks with the help of Mininet and the Ryu controller

to simulate the network. In contrast, DDoS attacks were simulated using of Hping3 tool. This

memory proves that the type of topology is significant and can affect the percentage of success of

DDoS attacks in such networks. Six supervised ML algorithms (LR, K-NN, NB, SVM, DT, and

RF) were tested and evaluated using a synthetic dataset. The results show that DT and RF are

the best compared to the other algorithms with 100% of accuracy. The proposed system shows its

efficiency in detecting and mitigating DDoS attacks with the RF classifier and only five features.

At the same time, the mitigation was provided by adding a flow rule to the switch to drop the

malicious traffic.

Keywords:

Software-Defined Networking (SDN), Distributed Denial of Service Attack (DDoS), Machine

learning (ML).

Résumé

Le réseau défini par logiciel ou SDN (Software-Defined Networking) est un concept émergent

conçu pour remplacer les réseaux traditionnelles en brisant l’intégration verticale. Le contrôle

central est le plus grand avantage du SDN, mais un point de défaillance unique est également un

échec si une attaque par déni de service distribué (DDoS) le rend inaccessible. Ce mémoire fournit

une solution efficace basée sur des algorithmes d’apprentissage automatique (ML) pour détecter

et mitiger les attaques DDoS à l’aide de Mininet et du contrôleur Ryu pour simuler le réseau,

tandis que les attaques DDoS ont été simulées à l’aide de l’outil Hping3. Ce mémoire prouve

que le type de la topologie est significatif et peut affecter le pourcentage de réussite des attaques

DDoS dans tels réseaux. Six algorithmes supervisés (LR, K-NN, NB, SVM, DT et RF) ont été

testés et évalués à l’aide d’un ensemble de données synthétiques. Les résultats montrent que DT

et RF sont les meilleurs par rapport aux autres algorithmes avec 100% de précision. Le système

proposé montre son efficacité pour détecter et atténuer les attaques DDoS avec le classificateur

RF et cinq critères uniquement tandis que l’atténuation a été fournie en ajoutant une règle de

flux au commutateur pour supprimer le trafic malveillant.

Mots clé:

Mise en réseau définie par logiciel (SDN), Attaque de déni de service (DDoS), Apprentissage

automatique (ML).

Contents

General Introduction 14

I Notions of Network Security, SDN, DDoS 17

I.1 Introduction . 18

I.2 Network security . 18

I.2.1 Definition . 18

I.2.2 Objectives . 18

I.2.3 Network attacks . 19

I.2.4 Network protection . 20

I.3 SDN (Software-Defined Network) . 21

I.3.1 Definition . 21

I.3.2 Comparison between SDN networks and traditional networks 21

I.3.3 The architecture of the SDN . 22

I.3.4 SDN controllers . 24

I.3.5 Benefits of SDN . 25

I.3.6 Challenges of SDN . 26

I.4 OpenFlow fundamentals . 28

I.4.1 Switch Components . 29

I.4.2 Openflow ports . 29

I.4.3 Openflow channel . 31

I.5 Denial of Service . 31

I.5.1 Definition . 31

I.5.2 Distributed denial of service (DDoS) Attacks 32

I.5.3 Botnets . 32

I.5.4 Taxonomy of DDoS attacks . 32

I.6 Conclusion . 35

II DDoS attacks in SDN networks, and ML approach 37

II.1 Introduction . 38

II.2 Machine learning approach . 39

II.2.1 Introduction to machine learning . 39

II.2.2 Types of machine learning algorithms . 40

CONTENTS 6

II.3 Supervised machine learning . 41

II.3.1 k-Nearest Neighbor (k-NN) . 41

II.3.2 Decision Tree . 42

II.3.3 Support Vector Machine . 43

II.3.4 Random Forest . 43

II.3.5 Logistic Regression . 44

II.3.6 Naive Bayes . 44

II.4 Dataset . 45

II.4.1 Types of dataset . 45

II.5 Data Preprocessing . 45

II.5.1 Feature Selection . 45

II.5.2 Feature Selection Procedure . 46

II.5.3 Feature selection methods . 46

II.6 Classifier Evaluation Measures . 47

II.6.1 Accuracy . 48

II.6.2 Confusion matrix . 48

II.7 SDN Security problems . 49

II.7.1 Communication Level . 49

II.7.2 Each Component level . 49

II.7.3 Logging and audit level . 50

II.8 Defeating DDoS attacks in SDN based Networks 50

II.9 Types of DDoS attacks in SDN . 51

II.9.1 Application layer DDoS attacks . 52

II.9.2 Control layer DDoS attacks . 52

II.9.3 Data layer DDoS attacks . 53

II.9.4 Communication links . 54

II.10 Detecting DDoS attacks in SDN network . 54

II.10.1 DDoS attack detection techniques . 54

II.11 Discussion . 57

II.12 Conclusion . 57

III Proposed approach and implementation 58

III.1 Introduction . 59

III.2 Proposed approach . 59

III.3 How the proposed approach works . 61

III.4 Material resources . 62

III.5 Tools selection . 62

III.5.1 Python language . 62

III.5.2 Ryu Controller . 62

CONTENTS 7

III.5.3 Mininet virtual network . 63

III.5.4 Hping the DDoS attack tool . 64

III.6 Files and functions used in the implementation . 64

III.7 Setup the network . 67

III.7.1 Tree topology . 67

III.7.2 Linear topology . 69

III.8 Dataset and ML algorithms . 71

III.8.1 Dataset selection . 71

III.8.2 Comparison between ML algorithms . 73

III.8.3 Features selection . 75

III.8.4 Integration of the model with Ryu controller 78

III.9 Work evaluation . 79

III.10Conclusion . 80

Conclusion and Future Work 81

Bibliography 81

Appendix 89

A Deposit of the source code 90

List of Figures

I.1 The architecture of SDN Vs Traditional Network, adopted from [1] 22

I.2 Architecture of SDN, adopted from [2] . 23

I.3 Probable Attacks on SDN Architecture, adopted from [3] 28

I.4 Out-of-band and in-band control plane, adopted from [4] 28

I.5 Openflow switch components, adopted from [5] 30

I.6 DDoS attack scenario . 33

I.7 DDoS attacks Taxonomy. 34

I.8 TCP SYN flood Scenario, adopted from [6] . 35

II.1 SDN architecture and components, adopted from [7] 39

II.2 Feature selection process, adopted from [8] . 46

II.3 The filter method, adopted from [8] . 47

II.4 The embedded method, adopted from [8] . 47

II.5 The wrapper method, adopted from [8] . 48

II.6 Types of DDoS attacks at different layers of SDN, adopted from [9] 52

II.7 Classification of DDoS attack defence approaches in SDN, adopted from [9]. . . 55

III.1 The proposed approach. 60

III.2 Proposed approach. 61

III.3 Tree topology. 68

III.4 Linear topology. 70

III.5 Executing monitor.py script as Ryu application. 71

III.6 Generating normal traffic. 72

III.7 Comparison between algorithms. 74

III.8 Comparison between algorithms. 75

III.9 Top five feature importance. 76

III.10 Evaluation with full features. 77

III.11 Evaluation with reduced features. 77

III.12 Running the detector mitigator.py application. 78

III.13 Results indicating that the capability of the system to detect and mitigate DDoS

attacks. 79

List of Tables

I.1 The characteristics of SDN & Traditional networks architecture. 22

II.1 Confusion matrix . 48

II.2 DDoS defense solutions in SDN. 56

III.1 Features of Ryu controller . 63

III.2 Description of used files. 65

III.3 Description of the used DDoS functions. 66

III.4 Results of pinging from H3 (switch S2) TO H4, H6, H14, H15 and H1. 68

III.5 Results of pinging from h8 (switch S3) to H15, H3, H12, H21, H1, H7, H9. . . . 68

III.6 Results of pinging from H10 (switch S4) to H4, H8, H12, H15, H17, H16. 69

III.7 Results of pinging from H16 (switch S5) to H2, H17, H15, H20, H19 69

III.8 Results of pinging from H1 (switch S3) (switch S1) to H4 and H5 and H6. 70

III.9 Results of pinging from H6 (switch S3) to H4, H5, H3 and H1. 70

III.10 Features description. 73

III.11 Work summary. 79

Source Code

A.1 monitor.py. 90

A.2 ML.py. 93

A.3 detector mitigator.py. 96

List of Abbreviations

AI Artifical Intelligence

ANN Artificial Neural Network

API Application Programming Interface

ARP Address Resolution Protocol

BGP Border Gateway Protocol

CHARGEN Character Generator Protocol

CLI Command Line Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

CSV Character Separated Values

DoS Denial of Service

DDoS Distributed Denial of Service

DDS Data Distribution Service

DL Deep Learning

DNS Domain Name System

DPID Delivery Point Identifier

DT Decision Tree

EIGRP Enhanced Interior Gateway Routing Protocol

FML Flash Markup Language

FN False Negative

FP False Positive

FS Feature Selection

ForCES Forwarding and Control Element Separation Protocol

LIST OF ABBREVIATIONS 12

HTTP Hypertext Transfert Protocol

ICMP Internet Control Message Protocol

IT Information Technology

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IDPS Intrusion Detection and Prevention System

IoT Internet of Things

IP Internet Protocol

IPS Intrusion Prevention Systems

ISP Internet Service Provider

K-NN k-Nearest Neighbours

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LR Logistic Regression

LSTM Long Short-Term Memory

MAC Media Access Control

ML Machine Learning

MSSQL Microsoft Structured Query Language

NAT Network Address Translation

NB Naive Bayes

NetBIOS Network Basic Input Output System

NFG Network Flow Guard

NOS Network Operating System

NTP Network Time Protocol

ONOS Open Network Operating System

OSI Open Systems Interconnection

OSPF Open Shortest Path First

POF Protocol-Oblivious Forwarding

QoS Quality of Service

LIST OF ABBREVIATIONS 13

RF Random Forest

RNN Random Neural Network

SDN Software-Defined Network

SNMP Simple Network Management Protocol

SOM Self-Organized Mapping

SSDP Simple Service Discovery Protocol

STP Spanning Tree Protocol

SVM Support Vector Machine

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

TCL Tae Command Language

TFTP Trivial File Transfer Protocol

TLS Transport Layer Security

TN True Negative

TP True Positive

TTL Time To Live

TTA Time To acknowledge

UDP User Datagram Protocol

WAN Wide Area Network

General Inroduction

In the existing networks, traffic flows are sent through network devices such as routers and

switches distributed around the world. Network devices are responsible for controlling and propa-

gating traffic. While these traditional networks are widespread, they have some drawbacks. First,

it does not provide the flexibility for researchers to experiment, add new features, and protocol

[10]. Second, existing networks cannot be programmed and therefore cannot accept new com-

mands to enhance functionality. Third, because each device contains both a control plane and

a data plane, the cost of network devices is very high [11]. However, SDN (Software Defined

Networking) solves the problems of existing networks. SDN is a programmable, virtualized net-

work that helps you insert new ideas into your research. SDN removes the control plane from the

data plane. The control plane is responsible for processing information, while the data plane is

responsible for data transfer [3]. SDN can be deployed in many different networks, such as private

networks, enterprise networks, and wide area networks. Unfortunately, SDN has many challenges

that need to be addressed. Scalability, performance, and security are some of the challenges that

face SDN.

The centralized structure of the controller could lead to many security challenges. One of such

critical challenges is the impact of distributed denial of service attacks (DDoS) on SDN networks.

Such attacks can quickly bring down the entire network by bringing down the controller. Since

the attack packets are sent with many spoofed source IPs, the DDoS attack can cause problems

to both switches, and the controller [12]. Furthermore, in the flood of DDoS attacks, attackers

use many different spoofing source IP addresses, making it impossible to stop attacks by blocking

traffic based on the source IP address alone. The practical implementation of DDoS detection

and response methods has been the key to the regular operation of the network. This problem is

more present in SDN networks due to its single point of failure (controller).

GENERAL INTRODUCTION 15

Motivation:

Many companies such as CISCO1, INTEL2, IBM3, HP4, HUAWEI5, JUNIPER6, ORACLE7,

VMware8, Orange9, and so on, Establishes the Open Networking Foundation (ONF)10, develop

the OpenFlow specification, and promote the use of SDN. Other technology companies are also

part of this association, such as Cisco, Juniper, Broadcom11, Dell12, IBM, Riverbed Technology13

”
HP, Citrix14, Netgear15, Force1016, and NTT17 [13]. The market size of SDN is growing day after

day; in 2020, the SDN market reached 8 billion U.S. dollars in size, and it is predicted to reach

43 billion U.S. dollars by 2027 [14]. Although the brain of SDN, which is the controller, is still

vulnerable to DDoS attacks. In 2020, 69 percent of large enterprises experienced an increase in

demand for distributed denial of service (DDoS) attacks. DDoS attacks are a serious threat to

businesses by threatening service performance or shutting down a website completely [15].

In this memory, we aim to study the DDoS attacks in SDN networks, available techniques to

detect and mitigate this attack, study the impact of DDoS on different topologies, and of course,

implement a system that detects and mitigates DDoS in SDN networks.

This work is organized in this way:

Chapter I: gives an overview of the essential concept about network security, SDN networks,

OpenFlow, and DDoS attacks in general.

Chapter II: provides more details about DDoS attacks in SDN networks and the available

works and research that carried this subject.

1 https://www.cisco.com.
2 https://www.intel.com.
3 https://www.ibm.com.
4 https://www.hp.com.
5 https://www.huwaei.com.
6 https://www.jupiner.net.
7 https://www.oracle.com.
8 https://www.vmware.com.
9 https://www.orange.com

10The Open Networking Foundation is a non-profit operator-led consortium. It uses an open source business

model aimed at promoting networking through software-defined networking and standardizing the OpenFlow

protocol and related technologies. https://www.opennetworking.org
11Broadcom is a global technology leader that designs, develops and supplies semiconductor and infrastructure

software solutions. https://www.broadcom.com.
12 https://www.dell.com
13Riverbed Technology is an American information technology company. Its products consist of software and

hardware focused on network performance monitoring, application performance management, and wide area net-

works, including SD-WAN and WAN optimization. https://www.riverbed.com
14 https://www.citrix.com
15 https://www.netgear.com
16 https://www.force10.com
17 https://www.global.ntt

https://www.cisco.com
https://www.intel.com
https://www.ibm.com
https://www.hp.com
https://www.huwaei.com
https://www.jupiner.net
https://www.oracle.com
https://www.vmware.com
https://www.orange.com
https://www.opennetworking.org
https://www.broadcom.com
https://www.dell.com
https://www.riverbed.com
https://www.citrix.com
https://www.netgear.com
https://www.force10.com
https://www.global.ntt

GENERAL INTRODUCTION 16

Chapter III: an overview of the proposed approach to detect and mitigate DDoS attacks in

SDN networks and explain the process of our system to detect and mitigate these attacks.

Chapter IV: represent the implementation of the proposed system, results, and evaluation. In

the end, we provide a general conclusion with future works.

Chapter I

Notions of Network Security, SDN, DDoS

Chapter I. Notions of Network Security, SDN, DDoS 18

I.1 Introduction

This chapter represents an overview of some concepts that we need to go along with this thesis.

It defines network security and attacks. It shows the purpose of network security. It explains

the difference between traditional networks and SDN networks. It also explains the OpenFlow

Fundamentals. Finally, it presents DDoS attacks and countermeasures.

I.2 Network security

I.2.1 Definition

The first question to address is what we mean by ”network security.” Several possible fields of

endeavor come to mind within this broad topic, and each is worthy of a lengthy article. First of

all, network security is a subset of computer security [16].

Security in networks starts with physical protection. In terms of the OSI model, there are

different levels at which encryption can be done. It can be done at the lowest layers, Physical

and Data Link or the higher layers, such as Network (e.g., Internet IP), Transport, Presentation,

Application, or even by the user [17].

The practical networking aspects of security include computer intrusion detection, traffic anal-

ysis, and network monitoring [18].

I.2.2 Objectives

Network security consists of several concepts, namely:

• Confidentiality : This means allowing authorized users to access sensitive and protected

data. Sensitive information and data should be disclosed to authorized users only [19].

• Integrity : Refers to methods of ensuring that the data is real, accurate, and guarded

against unauthorized user modification [18].

• Availability : Availability refers to the ability to access information or resources in a specified

location, and the correct format [19].

• Authenticity : A process that ensures and confirms the identity of the user refers to au-

thentication. The process starts when the user attempts to access information or data. The

user must demonstrate access and identity rights [19].

• Non-repudiation : Refers to a method of guaranteeing message transmission between parties

using digital signature or encryption. Proof of authentic data and data origination can be

obtained by using a data hash [18].

Chapter I. Notions of Network Security, SDN, DDoS 19

• Protection against Traffic analysis : Traffic analysis involves the interception and exami-

nation of messages to deduce information from communication patterns that can be done

even after messages are encrypted.

I.2.3 Network attacks

Network attacks are a collection of malicious activities that disrupt, deny, degrade, or destroy

data and services in computer networks. A network attack targets the Integrity, Confidentiality,

or Availability of computer network systems by exploiting the data stream on networks [17].

There are two main types of network attacks:

• Active : Attackers gain unauthorized access and modify data, deleting, encrypting, or oth-

erwise harming it. Active attacks include: spoofing attack, Wormhole attack, Modification,

Denial of services [17].

1. Spoofing: If a malicious node fails to show its identity, the sender changes its topology

[17].

2. Modification: If the malicious node changes the route, the sender sends the message

through the long route. This attack causes a delay in communication between sender

and receiver [17].

3. Wormhole: This attack can be defined as the tunneling attack. At one point, an

attacker receives the packet and connects it to a malicious node on the network. So a

new user supposes he has found the shortest route in the network [17].

4. Fabrication: The wrong routing message is created by a malicious node. In other

words, the route between devices generates the incorrect information [17].

5. Denial of services: In denial of service attacks, a malicious node sends the message

to other nodes and uses the network’s bandwidth. The main goal of the malicious

node is to make the network busy. If a non-authenticated node message comes, the

receiver will not get that notice because he is busy, and the initiator has to wait for

five warnings for the receiver answer [17].

• Passive : Attackers gain access to a network and monitor or steal sensitive information

without changing the data, leaving it intact. Passive attacks include traffic analysis, Eaves-

dropping, and Monitoring.

1. Traffic analysis: An attacker tries to perceive the communication channel between

the sender and receiver in a traffic analysis attack. An attacker can determine the

quantity of data traveling between the sender and receiver. The traffic analysis makes

no changes to the data [17].

Chapter I. Notions of Network Security, SDN, DDoS 20

2. Eavesdropping : This is a passive attack that took place on a mobile ad-hoc network.

This attack’s main goal is to extract secret or sensitive information through communi-

cation. This confidential information could be a sender’s or receiver’s private or public

key or any other confidential data [17].

3. Monitoring : The attacker can read the confidential data in this attack, but he is

unable to update or modify the data [17].

I.2.4 Network protection

There are many ways to infiltrate a network, so IT professionals can use many different tech-

niques and strategies to secure one. Some of the most common types of network security solutions

include:

• Antivirus Software : Antivirus software can be installed on all network devices to scan them

for malicious programs. It should be updated regularly to fix any issues or vulnerabilities.

• Encryption : Encryption is a good way to protect data when transmitted via a network

or a distributed computer system. The protection provided by encryption is determined

by the encryption method used, its implementation, and the administrative rules governing

its use. Combining encryption technology with network access control mechanisms in a

network security center can meet additional security requirements such as user identity,

access authorization, and security auditing [20].

• Firewalls : In protecting networking and server resource against unauthorized access and

malicious attacks, network firewalls are a primary defense line [21]. Firewalls are generally

used on the network edge or at the private network entry point. Network firewalls are

inspected for incoming and outgoing Internet traffic [21]. Firewalls may permit or block

input or output traffic based on a set of rules. In order to do this, the network firewalls have

a rule-based engine that sequentially checks incoming packets until a match is identified

[21].

• IDS (Intrusion Detection System) : A software or hardware system for monitoring and

analyzing events occurring in a network or computer system for determining if an attack

occurred [22]. In other words, an IDS will always set the alarm when there is an attack,

but it will not if there is no attack. IDSs are always presumed free of errors. However, an

IDS is not error-free; it usually makes two possible types of error: wrong alarms (setting

the alarm when no attack occurs) and missing attacks (not setting the alarm when there is

an attack) [22].

Implementing secure networks requires understanding common vulnerabilities and threats that

make the web the ideal environment for attackers.

Chapter I. Notions of Network Security, SDN, DDoS 21

I.3 SDN (Software-Defined Network)

I.3.1 Definition

Software-Defined Networking, SDN, is the programmable separation of control and forwarding

elements of networking that enables software control of network forwarding that can be logically

or physically separated from physical switches and routers [23]. Control logic is migrated to an

entity called controller, which provides resources and abstractions to simplify the configuration of

the forwarding devices with the programmability of the network through applications running on

the controller [23]. The SDN architecture includes three layers: application layer, control layer,

and infrastructure layer. The applications use the northbound API to communicate with the

control layer, and the control layer uses the southward API to communicate with the data plane.

I.3.2 Comparison between SDN networks and traditional networks

Networks have traditionally been described by their physical topology or connected servers,

switches, and routers. That means that once you have established your network, making modi-

fications is expensive and time-consuming. This networking is incompatible with the concept of

a ”lights-out” datacenter1 or a cloud environment that requires flexibility to meet changing work-

load demands. In addition, navigating hardware switches has become more complex as network

sizes and requirements have grown. For organizations running highly virtual systems alongside

massive networks, manually configuring individual network software switches has been extremely

difficult and time-consuming. This is where SDN enters the scene [3].

Traditional networking uses a distributed approach for the control plane, protocols like ARP,

STP, OSPF, EIGRP, BGP, and others function separately for each network device [3]. Although

these network devices are connected, there is no centralized system that manages or summaries

the entire network [3]. The most crucial difference between traditional networking and SDN is

that traditional networking is hardware-based, while SDN is often software-based. Because SDN

is software-based, it is more adaptable, allowing users to better control and manage resources

remotely in the control plane [3]. Switches, routers, and other physical hardware are used in

traditional networks to create connections and operate the network. SDN controllers employ a

northbound interface to communicate with Application Programming Interfaces (APIs) [3]. Be-

cause of this connectivity, instead of employing the protocols required for traditional networking,

device developers can program the network directly. In traditional networks, all data planes and

control planes are located in one physical unit, which is subsequently shared to increase traffic

load, and the pressure on the CPU and memory in two processes [3]. Separation of control planes

and data planes in SDN can be easily monitored and managed by the controller and network,

1A lights out data center is a server or computer room that is physically or geographically isolated at an

organization’s headquarters, thereby limiting environmental fluctuations and human access.

Chapter I. Notions of Network Security, SDN, DDoS 22

Figure I.1: The architecture of SDN Vs Traditional Network, adopted from [1]

allowing the network to better set up with less traffic load by separating these activities and

having a dedicated server.

SDN is a popular alternative to traditional networks because it enables IT managers to give

additional physical infrastructure services and bandwidths without investing in new hardware.

The traditional network and SDN are depicted in Figure I.1. Table I.1 summarizes the key

differences between traditional networking architecture and SDN architecture.

Characteristics SDN Traditional network

Network Control Centralized Yes No

Programmability Yes No

Flexibility of network Yes No

Complex Control Network No Yes

Performance improved Yes No

Configuration of Error-Prone No Yes

Management Enhanced Yes No

Configuration Efficiency Yes No

Easy to use and implement Yes No

Table I.1: The characteristics of SDN & Traditional networks architecture.

I.3.3 The architecture of the SDN

SDN Architecture shows how SDN works at various levels and assures software stability and

reliability. There are three main layers in software-defined networking: Application plane, Data

plane, and Control plane. As shown in Figure I.2, SDN consists of two interfaces: one between

Chapter I. Notions of Network Security, SDN, DDoS 23

southbound APIs (e.g., OpenFlow) and another between the API’s application layer and the

northbound API’s control layer.

Figure I.2: Architecture of SDN, adopted from [2]

Application plane

In SDN architecture, it is the topmost layer. This layer manages all business and security

applications. Essential software services managed by this layer include metering, routing, QoS,

load balancer, Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), firewall

implementation, and mobility management. In addition, this layer communicates with a lower

layer using the northbound application interfaces [24].

Northbound APIs

It serves as a link between the control and application planes. The NOS makes several APIs

available to application developers. It helps program the network and hides the network’s internal

details. APIs such as FML, Procera2, NetKAT3, and Frenetic 4, among others, are widely utilized

[25].

Control plane

This layer serves as a link between the application layer and the data layer. This layer contains

the Network Operating System (NOS), also called the network controller, which controls the

2Procera Networks is a networking equipment company based in Fremont, California, United States, that

designs and sells Network Intelligence solutions.
3NetKAT is a new network programming language that is based on a solid mathematical foundation and comes

equipped with a sound and complete equational theory.
4Frenetic is a high-level language for programming distributed collections of network switches.

Chapter I. Notions of Network Security, SDN, DDoS 24

network’s overall functionality. A logically centralized controller is in charge of managing the

entire network and making routing, flow forwarding, and packet dropping choices via programming

[26]. This layer communicates with the layer beneath it using southbound APIs such as OpenFlow

and NetConf. The controller is a logically centralized and physically distributed environment that

communicates with each other utilizing westbound and eastbound interfaces [26].

Southbound APIs

SDN southbound APIs are used to communicate with the SDN controller, network switches,

and routers. These are protocols that allow for more efficient data plane control. Although var-

ious protocols exist, including OpenFlow, ForCES, OpFlex5, and Protocol-Oblivious Forwarding

(POF), many organizations are working to standardize OpenFlow, which has become the de facto

protocol [25].

Infrastructure plane

The data layer or data plane is another term for the infrastructure plane. It includes network

components that interact with data flow, such as physical and virtual computers, like the OSI

model’s physical layer. This layer’s primary function is to forward packets based on the controller’s

policies/rules assigned and developed. This layer includes physical network devices like switches,

routers, and access points, as well as virtual switches like OpenvSwitch6, Indigo7, Pica88, Nettle9,

and OpenFlow [27].

I.3.4 SDN controllers

• Beacon: It’s a java-based controller that is also modular, cross-platform, and supports both

threaded and event-based functions. Beacon allows run-time modularity, which means it

can start and stop programs without shutting down the main Beacon process. Beacon has

a high scalability compared to other centralized SDN controllers, however it fails to address

security and reliability issues [28]. Although the slicing architecture (in which each program

has a constrained domain) allows it to resist privilege elevation attacks, it is vulnerable to

spoofing, repudiation, and DoS attacks.

• DISCO: It is a distributed WAN and overlay SDN network controller. It is organized per

domain, with each controller in charge of an SDN domain, and it offers a lightweight and

5Cisco OpFlex is a southbound protocol in a software-defined network (SDN) designed to facilitate the com-

munications between the SDN Controller and the infrastructure (switches and routers).
6OpenvSwitch is an open-source implementation of a distributed virtual multilayer switch.
7 https://www.indigotg.com
8 https://www.pica8.com
9Nettle is a language for configuring routing networks.

https://www.indigotg.com
https://www.pica8.com

Chapter I. Notions of Network Security, SDN, DDoS 25

highly controllable inter-controller channel. Agents can use this channel to share aggregated

network-wide data and hence support end-to-end network services [29].

• ONOS: It is an experimental distributed SDN control framework based on large operator

networks’ performance, scalability, and availability requirements. It gives programs a global

network view that is theoretically centralized and even being physically distributed across

many servers [30].

• Maestro: It is a java-based multi-threaded controller that can manage 600K fow requests

per second (rps), considerably short of the requirements of a large-scale data center (more

than 10M rps) [28]. It is designed for a small domain and includes four primary applications:

discovery, intradomain routing, authentication, and route flow. When it receives an incorrect

OpenFlow header, it crashes and is highly vulnerable to security threats.

• POX: POX is an open-source OpenFlow/Software Defined Networking (SDN) controller

written in Python. POX is used to create and prototype new network applications more

quickly. The mininet virtual machine includes a pre-installed POX controller. The POX

controller transforms OpenFlow devices into hubs, switches, load balancers, and firewalls.

The POX controller makes running OpenFlow/SDN experiments simple [28].

• NOX: Is a first-generation network operating system based on events that can handle 30K

fow requests per second [28]. This controller is designed for small organizations, domestic

networks, and campus networks, but not for environments with a large volume of setup

requests, such as data centers. Nicira Networks developed it to provide better performance.

DoS, repudiation, and information disclosure attacks are all possible with NOX, and POX

[28].

• Floodlight: Floodlight Controller is a software-defined networking (SDN) controller built by

an open community of developers, including many from Big Switch Networks, that leverages

the OpenFlow protocol to manage traffic flows in an SDN environment.

• Ryu: Ryu Controller is a software-defined networking framework based on components.

Ryu provides well-defined APIs for software components, making it simple for developers

to create new network management and control applications. Ryu can manage network

devices using a variety of protocols, including OpenFlow.

I.3.5 Benefits of SDN

The benefits of SDN to organizations are numerous. A list of the major advantages is presented

in the following subsections :

Chapter I. Notions of Network Security, SDN, DDoS 26

Programmability of the network

SDN can manage the entire network programmatically. SDN makes it easier to avoid releasing

customized plans and protocols on every device in a network individually. Programmability is

genuinely possible on the command plane alone, allowing the behavior of a single unit or the entire

network to be changed. As a result, the controller can quickly improve traffic design functionality

while also reducing network congestion [31].

Reduced price

The majority of the SDN products are free to use. Some systems, such as VMware’s NSX
10 and Microsoft’s Hyper V network virtualization 11, required only the license fee for the SDN

service to be paid [31].

Enriched protection

Financing a virtual machine in a virtualized environment is a steep uphill struggle. SDN, on

the other hand, provides sensitive surveillance across all devices [31].

Efficient network management

SDN allows the network manager to change the network’s quality from a remote location. By

changing the network characteristics based on the landing of the task in the network, easy and

reliable network control is possible [31].

I.3.6 Challenges of SDN

Even though SDN has been identified as the primary solution to the increasing network’s

infrastructure’s challenges, it is still in its infancy. Advantages such as increased functionality,

lower cost, and higher efficiency have been highlighted, but different challenges must also be

solved. Some of these challenges are :

Scalability

The main issue with SDN is scalability. It refers to the ability to expand to accommodate net-

work growth. Unfortunately, the controller can become a scalability bottleneck. The introduction

of distributed or peer-to-peer controller infrastructure may share the controller’s communication

burden [11]. However, in order to direct communications between controllers using the east and

10VMware NSX is a range of virtualization software and network security, created from vCloud Networking and

Security (vCNS) VMware and Network Virtualization Platform (NVP) of Nicira.
11Hyper-V Network Virtualization provides ”virtual networks” (called a VM network) to virtual machines similar

to how server virtualization (hypervisor) provides ”virtual machines” to the operating system.

Chapter I. Notions of Network Security, SDN, DDoS 27

westbound APIs, an overall network view is required [11]. Aside from controller scalability, there

are several other scalability issues, such as flow setup overhead and failure resilience [32].

Flexibility and performance

A fundamental issue of SDN is how to deal with high-level packet processing flows competently.

In this case, flexibility and performance are the two most important variables to consider. The

processing speed of a network node, taking into account both throughput and latency, is referred to

as performance [11]. The SDN technique for handling new packets needs to add programmability.

However, at the same time, it causes performance issues. In [33] they demonstrate that current

controllers are incapable of handling a large number of flows in 10Gbps links.

Security

When compared to traditional networks, SDN’s attack surface is increased by separating the

control plane from the data plane [27]. According to security analysis, the SDN framework is

vulnerable to a variety of security vulnerabilities, including [34]:

• Unauthorized access, such as unauthenticated application access or unauthorized controller

access.

• Data leakage, such as flow rule discovery (input buffer side-channel attack) and forwarding

policy discovery (packet processing timing analysis).

• Data modification, such as changing flow rules to change packets.

The following are primary possible danger sources in SDN [35]:

• Faked or fabricated traffic flows.

• Attacks on switch vulnerabilities.

• Denial-of-service attacks on control plane communications.

• Controller attacks and vulnerabilities.

• There are no methods in place to ensure that the controller and management applications

are trusted.

• Attacks on administrative stations and weaknesses therein.

Figure I.3 shows possible SDN architecture attacks :

Chapter I. Notions of Network Security, SDN, DDoS 28

Figure I.3: Probable Attacks on SDN Architecture, adopted from [3]

I.4 OpenFlow fundamentals

The controller in SDN networks communicates with switches using open, standardized proto-

cols. OpenFlow is the most well-known example of such a protocol.

Before getting into the technicalities of OpenFlow, it is important mentioning that there are

two ways to set up physical connections to handle OpenFlow communication between switches

and controllers: out-of-band and in-band [36]. Each switch has a dedicated physical connection to

the controller when using out-of-band communication. Control plane information is sent through

existing data plane connections between switches in in-band communication. Figure I.4 depicts

these circumstances.

Figure I.4: Out-of-band and in-band control plane, adopted from [4]

A switch executes packet forwarding in OpenFlow by reviewing its flow table and choosing

which output port to transmit. The packet header fields to match, the actions to execute on

matched packets, and the related counters to update make up each entry in the flow table (also

Chapter I. Notions of Network Security, SDN, DDoS 29

known as a flow rule or flow entry). A switch can function at layer 2 or layer 3 of the networking

stack in the context of SDN.

When a switch gets a packet that cannot be matched to any installed flow rule, the switch

buffers the packet before sending an OFPT PACKET IN message to the controller to request a

new flow rule. The header fields of the data packet are included in this message. The controller

then sends an OFPT FLOW MOD message, which specifies the action on the data packet and

the length of time the flow rule should be kept in the flow table. A timeout is a term for this

period. Each flow rule has two timeout values: an idle timeout (also known as a soft timeout)

that is triggered while the flow is inactive and a hard timeout that is triggered when the duration

expires [37].

I.4.1 Switch Components

An OpenFlow Logical Switch is made up of one or more flow tables and a group table that

handles packet lookups and forwarding, as well as one or more OpenFlow channels to an external

controller (Figure I.5).

• Using the OpenFlow switch protocol, the switch communicates with the controller and

manages the switch.

• The controller can add, update, and delete flow entries in flow tables both reactively (in

response to packets) and proactively (using the OpenFlow switch protocol).

• Each flow table in the switch has a set of flow entries; each flow entry has match fields,

counters, and a set of instructions to apply to matching packets.

• Matching begins with the first flow table and may progress to other flow tables in the

pipeline.

I.4.2 Openflow ports

The network interfaces that transfer packets between OpenFlow processing and the rest are

defined as OpenFlow ports. Only an output OpenFlow port on the first switch and an input

OpenFlow port on the second switch can pass a packet from one OpenFlow switch to another

OpenFlow switch. Several OpenFlow ports are made available for OpenFlow processing by an

OpenFlow switch. Some network interfaces may be disabled for OpenFlow, and the OpenFlow

switch may specify new OpenFlow ports, so the collection of OpenFlow ports may not be identical

to the number of network interfaces given by the switch hardware [38].

Chapter I. Notions of Network Security, SDN, DDoS 30

Figure I.5: Openflow switch components, adopted from [5]

The OpenFlow pipeline receives OpenFlow packets on an ingress port and processes them before

forwarding them to an output port. The packet ingress port is a characteristic of the packet that

represents the OpenFlow port on which the packet was received into the OpenFlow switch along

the OpenFlow pipeline. When matching packets, the ingress port can be used. The output action,

which determines how the packet returns to the network, can be used by the OpenFlow pipeline

to decide whether to transmit the packet to an output port. Physical ports , logical ports, and

reserved ports are the three types of OpenFlow ports that an OpenFlow switch must assist.

• Physical ports : The OpenFlow physical ports on the switch are switch-defined ports that

match the switch’s hardware interface. An OpenFlow physical port could be viewed as a

virtual slice of the switch’s associated hardware interface [38].

• Logical ports : The OpenFlow logical ports are switch-defined ports that do not immediately

match to a switch’s hardware interface [38]. Non-OpenFlow methods can define logical

ports, higher-level abstractions (e.g., tunnels, loopback interfaces). Packet encapsulation is

possible with logical ports, and they can map to a variety of physical ports. The logical port’s

processing is implementation-dependent and must be transparent to OpenFlow processing;

Chapter I. Notions of Network Security, SDN, DDoS 31

those ports must interact with OpenFlow processing the same way as OpenFlow physical

ports do. A logical port packet may have an extra pipeline field called Tunnel-ID attached

to it. When a packet received on a logical port is submitted to the controller, the logical

and physical ports are reported. Physical ports are not affected.

• Reserved ports : This specification defines the OpenFlow reserved ports. In addition,

they define generic forwarding activities like sending to the controller, flooding, or using

non-OpenFlow methods like ”normal” switch processing [38].

I.4.3 Openflow channel

Each OpenFlow Logical Switch communicates with an OpenFlow controller through the Open-

Flow channel. The controller configures and manages the switch through this interface, receives

events, and sends packets. A single OpenFlow channel with a single controller may be supported

by the switch’s Control Channel or several OpenFlow channels with multiple controllers may be

supported by the switch’s Control Channel. Each OpenFlow Logical Switch is connected to an

OpenFlow controller through an OpenFlow channel. The controller configures and manages the

switch using this interface, receives events from the switch, and sends packets. A single Open-

Flow channel with a single controller may be supported by the switch’s Control Channel or several

OpenFlow channels with multiple controllers may be supported by the switch’s Control Channel.

The OpenFlow channel is normally encrypted with TLS, but it can also be performed via TCP

[38].

I.5 Denial of Service

On Thursday, 6th August 2009, one of the most widely followed social networking and micro-

blogging online services, Twitter 12, was brought down for several hours, silencing its millions of

Tweeters [39]. The incident was a result of what it described as an ”ongoing” denial-of-service

attack. The first official word that came in was a rather terse statement: ’Site is down – We are

determining the cause and will provide an update shortly. However, its co-founder Biz Stone soon

updated this message: ’On this otherwise happy Thursday morning, Twitter is the target of a

denial of service attack.’

I.5.1 Definition

A Denial of Service (DoS) attack is one single attacker against one target. This kind of attack

denies the access of other legitimate users to shared services or resources. DoS attacks accomplish

this by flooding the target with traffic or sending it information that triggers a crash so the server

cannot distinguish between valid and non-valid requests. In both instances, the DoS attack

12 https://twitter.com

https://twitter.com

Chapter I. Notions of Network Security, SDN, DDoS 32

deprives legitimate users (i.e., employees, members, or account holders) of the service or resource

they expected.

There are two general methods of DoS attacks: flooding services or crashing services. Flood

attacks occur when the system receives too much traffic to buffer, causing them to slow down

and eventually stop. Other DoS attacks exploit vulnerabilities that cause the target system or

service to crash. In these attacks, input is sent that takes advantage of bugs in the target that

subsequently crash or severely destabilize the system to be accessed or used.

I.5.2 Distributed denial of service (DDoS) Attacks

Unlike simple DoS attacks, DDoS attacks take advantage of many compromised hosts and aim

to exhaust network resources as fast as possible. Once the network is disrupted, it cannot provide

any services to legitimate users [39].The strategy of DDoS consists of recruiting multiple agent

(slave) machines. These machines are usually used to send the attack packets to flood the target.

The attacker exploits the vulnerable machines automatically using special tools for this, and then

it will use these infected machines to recruit new agents in the future.

I.5.3 Botnets

A Bot, which comes from the term ’robot,’ is an application that can perform a specific task

more quickly than a human being. When a large number of bots spread to multiple computers

and connect via the Public Internet, they form a botnet, which is a bots network [40]. Three

principal elements - bots, C&C 13 servers, and botmasters - make a botnet [40]. A bot is designed

to infect targets (e.g., computers or mobile devices) and to make them part of a botnet under

a person known as the botmaster without their owner’s knowledge. The botmaster commands

and controls the whole botnet through the Internet using C&C servers [41]. Thus, these targets

are being controlled by botmasters, and malicious activities take place. An examination of the

various types of malicious activity committed by botnets shows that they pose a dangerous threat

not only to computers and the Internet but also to other attacks and acts (e.g., DDoS) [42] as

infrastructure.

I.5.4 Taxonomy of DDoS attacks

DDoS attacks have shown several variations in their attacking methods in past years and are still

getting experimented with several possibilities [43]. that was the reason behind the variation of

the proposed survey about the DDoS taxonomies. Mirkovic and Reiher [44] presented taxonomies

for DDoS classification, attacks, and possible defense mechanisms. The attacks were categorized

as: automation, vulnerability, source address validity, attack rate dynamics, characterization, the

13C&C : Command and Control server

Chapter I. Notions of Network Security, SDN, DDoS 33

Figure I.6: DDoS attack scenario

persistence of agents, victim, and impact on the victim. Asosheh and Ramezani [45] proposed

taxonomy based on known potential attacks and categorized attacks based on eight features:

architecture, degree of automation, impact, vulnerability, attack rate dynamics, scanning strategy,

propagation strategy, and packet content.

Bhardwaj et al. [46] proposed the taxonomy for the various potential DDoS attacks. These are

four categories: degree of automation, vulnerability, attack rate dynamics, and attack impact.

It is highly recommended to know the classified nature of attacks to make an effective defense.

That is why we choose the classification of [47], which is categorized into two classes, reflection-

based, and exploitation-based attacks.

• reflection-based DDoS : Reflection occurs when an attacker forges the source address of

request packets, pretending to be the victim. This technique hides the real IP address of

the attacker from both the victim’s system and the abused server. Servers are unable to

distinguish legitimate from spoofed requests. Therefore, they reply directly to the victim.

Specific attacks can be carried out using either TCP or UDP like DNS, LDAP, NET-

BIOS14, and SNMP [47]. In addition, these attacks can be carried out through application

14NETBIOS is a network architecture co-developed by IBM and Sytek in the early 1980s. It is not a network

protocol, but a naming system and a software interface that allows sessions to be established between different

computers.

Chapter I. Notions of Network Security, SDN, DDoS 34

DDoS attacks

Reflection attacks Exploitation attacks

TCP

based

attacks

TCP/UDP

based

attacks

UDP

based

attacks

UDP

based

attacks

TCP

based

attacks

Figure I.7: DDoS attacks Taxonomy.

layer protocols using transport layer protocols, i.e., Transmission control protocol (TCP),

User datagram protocol (UDP), or through a combination of both. In this category, TCP-

based attacks include MSSQL15, SSDP while UDP-based attacks include CharGEN16, NTP,

and TFTP.

• Exploitation-based attacks : These attacks can also be carried out through application

layer protocols using transport layer protocols, e.g., TCP and UDP. TCP based exploitation

attacks include SYN flood, and UDP based attacks include UDP flood and UDP Lag [47]

1. TCP flood attack: TCP flood attacks are DDoS attacks in which an attacker sends a

large number of packets to a victim system in an attempt to deplete its resources or

use bandwidth [48]. Before data transmission, the client and server connections should

be established in a TCP connection. TCP three-way handshake is what it is called

[6]. In this attack, The client must send a SYN message to the server, which will be

confirmed by the server sending a SYN-ACK message to the client, who must then

send an ACK message to the server, and the connection will be opened [6]. When the

attacker uses a fake IP address to transmit repeated SYN packets to a random port on

the targeted server, the standard TCP three-way handshake will change into a TCP

SYN flood [49], as seen in Fig. I.8. The server may face issues such as trouble closing

the connection (connection remains open) and receiving a high number of SYN packets

with no response to legitimate clients, which can cause the server to crash [6].

15MSSQL is a suite of database software published by Microsoft. It includes a relational database engine, which

stores data in tables, columns and rows.
16The Character Generator Protocol (CharGEN), was designed to be used in debugging and measurement

tasks, which are used check the status of network connections, whether the buffer is working properly, and possible

Chapter I. Notions of Network Security, SDN, DDoS 35

Figure I.8: TCP SYN flood Scenario, adopted from [6]

2. UDP flood attack: In this attack, the attacker tries to send UDP packets to random

ports on the target device while remaining anonymous [43]. Therefore, the target

device must check each port for an application to listen to, but it responds with an

ICMP destination unreachable packet because there is no one. Due to busy waiting,

this entire operation renders the target device unavailable [43].

3. HTTP flood attack: The cybercriminal uses real HTTP GET or POST requests to

launch a DDoS attack in this attack [44]. These attacks do not involve spoofing or

reflection techniques. Therefore they take less bandwidth to reach the targeted server

than other attacks [43].

4. ICMP flood attack: ICMP is generally in charge of sending error messages to the

source to alert them of any network or destination failures. An example case could

be when the gateway cannot buffer data or when a packet is not reachable to its

destination. The ping function in ICMP sends out an echo request, which is then

responded with an echo reply. If you do not get a response, that means the other host

is not online or does not have ping capability [43]. In that case, echo requests continue

to be issued without waiting for an echo response, flooding the network and wasting

bandwidth [50]. A smurf attack is another name for it.

I.6 Conclusion

As an emerging network technology, SDN has a bright future, with security being one of the

most urgent issues. Unfortunately, DDoS attacks have become more sophisticated over time,

and each year, large-scale attacks with increasing frequency and size are launched against huge

companies, data centers, and other businesses [9].

electronic limitations.

Chapter I. Notions of Network Security, SDN, DDoS 36

In this chapter, we presented notions of network security, SDN networks, and DDoS attacks.

A definition of the SDN network has been provided, its architecture, controllers, benefits, and

challenges. We also made a brief comparison between traditional networks and SDN networks.

Finally, we discussed DDoS attacks and their effects, botnets, and taxonomy, containing several

DDoS attack types.

Chapter II

DDoS attacks in SDN networks, and ML

approach

Chapter II. DDoS attacks in SDN networks, and ML approach 38

II.1 Introduction

SDN’s key benefit is its ability to decouple the data and controller planes, providing developers

more flexibility and making application maintenance easier in these situations. In addition, it was

able to separate the network infrastructure from its applications to decouple the control plane

and be logically centralized. As a result, the software can build services now implemented in

hardware (IDS, Firewalls, and Routers). This centralization and decoupling of SDN are possible

because the network controller and switches have well-defined programmable interfaces via APIs

that allow them to communicate with one another.

Despite the potential for innovation introduced by SDN, it introduces some new challenges

to network security. The core qualities of a secure communication network, such as secrecy,

integrity, information availability, authentication, and nonrepudiation, can be compromised by

these issues. A significant number of packets are transmitted to a connected host or set of

servers. The gathering of authentic and counterfeit DDoS packets can exhaust the controller’s

processing capacity. This will render the controller unreachable to legitimate newcomer packets,

potentially destroying the SDN architecture. Because intruders might be spread and situated on

multiple switches, DDoS attacks can be challenging to detect. Because switches cannot detect

attacks completely, completing the detection process may not improve the detection process.

DDoS assaults, such as controller-switch communication flooding, can have a significant impact

on an SDN network.

Devices such as controllers, sensors, and communication substrates in critical infrastructures might

exacerbate such issues in IoT scenarios [51]. However, in recent years, some solutions to SDN

security concerns have been offered in the literature [51]. Machine learning algorithms are one

way that can be utilized to address these challenges. In this chapter, we will present a description

of the DDoS attack defensive mechanisms in SDN networks.

The goal of SDN is to provide open interfaces for the development of software that can control

the connectivity provided by a set of network resources and the flow of network traffic through

them, as well as possible traffic inspection and modification in the network.

As shown in Figure II.1, the adopted SDN architecture consists of three levels.

The adoption of this layered architecture offers many advantages but also various security disad-

vantages. In short, security problems with SDN can be found at three levels: the communication

level between different architectural elements, the components level, and the audit and logging

level.

Chapter II. DDoS attacks in SDN networks, and ML approach 39

Figure II.1: SDN architecture and components, adopted from [7]

II.2 Machine learning approach

We apply machine learning approaches to analyze system performance and detect odd occur-

rences that are not compatible with typical network behavior. Abnormal actions are recognized

by mathematical models constructed using machine learning techniques, especially in network sys-

tems where high-density data flows and rapidly applying preventive policies. The characteristics

of the machine learning approaches employed in this work are briefly described in this section.

II.2.1 Introduction to machine learning

Machine learning is a technique of developing computer algorithms that can emulate human in-

telligence. It incorporates concepts from artificial intelligence, probability and statistics, computer

science, information theory, psychology, and control theory, among other areas [52].

Machine learning (ML) is a term that refers to intelligent techniques for optimizing performance

criteria by learning from example data or prior experience(s). More precisely, ML algorithms use

mathematical techniques to create behavior models from large data sets [53]. Learning without

being explicitly programmed is also possible with machine learning. These models are then utilized

to make future predictions based on the newly entered data. Artificial intelligence, optimization

theory, information theory, and cognitive science are just a few of the science and engineering

Chapter II. DDoS attacks in SDN networks, and ML approach 40

fields that have influenced machine learning [54].

II.2.2 Types of machine learning algorithms

There are four types of machine learning algorithms: supervised, unsupervised, semi-supervised,

and reinforcement learning algorithms.

• Supervised Learning: When particular targets are defined to be reached from a collection of

inputs, supervised learning is used. The data is first labeled, then trained with labeled data

(with inputs and desired outputs) for this sort of learning. It attempts to automatically

identify rules from accessible datasets, create various classes, and forecast whether items

(objects, individuals, and criteria) belong to a specific class [54].

• Unsupervised Learning: The environment mainly provides inputs in unsupervised learning,

with no desired targets. It can analyze similarities among unlabeled data and classify them

into distinct groups without requiring labeled data [54].

• Semi-supervised Learning: In the preceding two types, either all of the observations in

the dataset have no labels or all of the observations have labels. Semi-supervised learning

is more in the middle. In many practical instances, the cost of labeling is relatively high

because it necessitates qualified human experts. As a result, semi-supervised algorithms are

the best options for model development when labels are absent in most observations but

present in a few [54].

• Reinforcement Learning: No explicit outcomes are established in Reinforcement Learn-

ing (RL), and the agent learns via the feedback after interacting with the environment.

It takes some acts and makes decisions based on the reward it receives. In addition, hu-

man and animal learning patterns influence it. Such characteristics make it an appealing

technique is highly dynamic robotics applications where the system learns to do specific

tasks without explicit programming. It is also crucial to pick the proper reward function

because the agent’s success or failure is determined by the overall reward accumulated [55].

Reinforcement learning techniques are generally used in the following scenario [54]:

– When historical data and past examples are unavailable for model training

– The overall goal is known, and the environment can be detected to maximize both

short and long-term results.

– when the precise right and wrong values for a particular scenario are unknown a priori

Chapter II. DDoS attacks in SDN networks, and ML approach 41

II.3 Supervised machine learning

II.3.1 k-Nearest Neighbor (k-NN)

One of the most widely used machine learning algorithms is k-NN. It is a supervised, non-

parametric, distance-based approach that was first introduced in 1951 [56]. By using a distance

function, this algorithm calculates the dataset’s similarities. The classification of the test data is

based on the majority votes of its k-nearest neighbors.

X and Y pairs make up a training set. Let X = x1, x2,... xn represent the n-dimension feature

set’s training data, and Y = y1, y2,... yn represent the target labels. The following is a prediction

for a test data x used as input to the k-NN model [57]:

- To determine similarity in the training data, a distance function such as a Euclidean one is

utilized. The distance between two places labeled a and b with Cartesian coordinates (a1, a2)

and (b1, b2) is determined as shown in Equation :

d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2

- The majority votes of its k-nearest neighbors are used to decide the label of test data x.

• Advantages : [54]

1. a straightforward (only two parameters required to implement KNN, i.e., the value of

K and the distance function (e.g., Euclidean or Manhattan, etc.) algorithm that can

be used as an initial assessment of simple classification in small networks.

2. The performance of the algorithm is degraded in large datasets and bigger networks.

This is since the cost of the distance calculation between new points and each existing

point is huge. It is also sensitive to the noisy data.

3. KNN does not work well with high-dimensional data. This is because of the fact, high

computational cost, for distance calculation in each dimension, is associated with a

large number of dimensions.

4. KNN is a high-speed algorithm and does not require any training period (e.g., SVM,

Linear Regression etc.). It stores the training dataset and learns from it only at the

time of making real-time predictions.

• Disadvantages : [58]

1. It is computationally costly.

2. It is susceptible to irrelevant features.

3. It is a lazy algorithm (it takes more time to run).

4. It needs huge memory to store all the training examples.

Chapter II. DDoS attacks in SDN networks, and ML approach 42

II.3.2 Decision Tree

For regression and classification of actual situations, the decision tree machine learning algo-

rithm is applied. This model is based on the structure of a tree. The tree’s base, on the other

hand, is at the very top. The decision tree is also gradually developed, with the branches created

using objective rules based on the dataset’s attributes [59].

The steps listed below can be used to generate a decision tree [60]:

1. The entire dataset is split into two: training and test sets.

2. The training set is used as an input to the tree’s root.

3. Using the information theory presented in the equation, the root is identified

Entropy(P) = −
N∑
i=1

pi log(pi)

4. The prone process is operated.

5. The listed methods are repeated until all nodes have become leaf nodes.

where p denotes the dataset’s probability distribution. Other hyper-parameters to achieve an

efficient decision tree include minimum leaf size, parent size, and maximum splits.

• Strengths : [58]

1. Decision Tree is a self-explanatory tool since it has a simple schematically representa-

tion that can even be followed by the non-professionals.

2. Decision Tree can easily be converted to a set of rules which are often comprehensible

for the reader.

3. Decision Tree is a non-parametric tool. Therefore it does not require any functional

form specification.

4. Decision Tree can easily handle outliers and missing values.

• Limitations : [58]

1. Decision Tree can be computationally expensive.

2. Decision Tree can easily overfit the data, but in practice, there are several tools to

avoid overfittings, such as post-prune and pre-prune.

3. In practice, the decision tree is widely used for classification and less appropriate for

estimation tasks in regression.

Chapter II. DDoS attacks in SDN networks, and ML approach 43

II.3.3 Support Vector Machine

In terms of classification and regression analysis, the SVM method is one of the most efficient

machine learning algorithms. When the space is divided into two or more classes, SVM determines

support vectors that can do so. Whenever possible, a big margin is used, and the support vectors

are the data points that make up this boundary [61]. As part of SVM, a non-linear kernel is

utilized to split the data. The SVM searches for support vectors, weights, and biases to achieve

this goal.

• Advantages :

1. It has the ability to work with binary as well as with multi-class environments [54].

2. Works well with unstructured and semi structured data such as text, images, and trees

[54].

3. SVM algorithm is not suitable for large data sets [54].

4. Avoid the optimum local issue;

5. Strong generalization capability;

6. Can process small samples;

7. Robustness.

• Disadvantages :

1. Classification has limitations;

2. Time consuming;

3. Not sensitive to missing data under lager-size samples

4. the difficulty to interpret unless the features are interpretable. It can be computation-

ally expensive, and it needs a good kernel function. [58]

5. Its lack of transparency in results because it is a non-parametric method. [58]

II.3.4 Random Forest

LEO Breiman and Adele Cutler created the random forest. These classifiers combine various

decision trees to predict new unlabeled data; each decision tree is present in the forest, and its

quality is determined by the number of trees present [62]. Random attributes are applied to each

tree, each number of trees corresponds to a single forest, and each forest serves as a predation class

for new unlabeled data. For each tree, this approach uses a random feature selection method.

The outputs are then classified and predicted using a collection learning algorithm in light of a

specific number of trees. Several classification trees are formed using this method, and each free

tree is constructed using a different component of the overall dataset. Following the classification

Chapter II. DDoS attacks in SDN networks, and ML approach 44

of each tree into an unmarked class, another question will be added under each tree vote in favor

of choice.

• Advantages :

1. Avoid over-fitting;

2. Can handle high dimensional, continuous and discrete data;

3. Strong anti-noise ability, avoid over-fitting, small generalization error;

4. Fast training speed and high accuracy

• Disadvantages :

1. Over-fitting especially in noisy classification or regression problems;

2. Black box model, weak interpretability;

3. Time-consuming under large gain.

II.3.5 Logistic Regression

For binary classification, a common Machine Learning approach is logistic regression. Logistic

regression can be used to solve problems that are binary, ordinal, or multinomial. The binary

logistical regression is used in cases when only one of two possible outcomes for a dependent

variable can be observed: awardee or non-awardee (0 or 1) [63].

II.3.6 Naive Bayes

The Bayes theorem is used to create a collection of classification algorithms known as Naive

Bayes classifiers. Naive Bayes is not a single algorithm but rather a group of algorithms that

share a common principle [64].

• Advantages :[54]

– Used in the binary and multi-class environment.

– Effective in anomaly and intrusion detection problems.

– It works best when used with discrete data, and it can fall into the wrong prediction

if continuous data is used.

• Disadvantages : [65]

– The Näıve Bayes classifier requires large number of records to get good results.

– May be less accurate than other classifiers applied on some datasets.

Chapter II. DDoS attacks in SDN networks, and ML approach 45

II.4 Dataset

Dataset is a collection of related observations organized and formatted for a particular purpose

[66]. Datasets have played a foundational role in the advancement of machine learning research.

They form the basis for the models we design and deploy, as well as our primary medium for

benchmarking and evaluation [67].

II.4.1 Types of dataset

• Real dataset : It represents the data generated from actual world events, which means

data from a production system, vendor, public records, or any other dataset that otherwise

contains operational data. For example, a dataset that is a ten-year-old backup of an

existing system and contains data about real individuals, matters, or cases, would be real

data [68].

• Synthetic dataset : Synthetic data is generated from real data by using the underlying

statistical properties of the real data to produce synthetic datasets which exhibit these same

statistical properties [69]. An excellent synthetic dataset should replace sensitive values and

provide more robust guarantees of privacy and anonymity. Synthetic data can be used in

two ways:

– To increase the size of a dataset, for times when a dataset is unbalanced due to the

limited occurrence of an event.

– To generate a full synthetic dataset representing the original dataset, for times when

data is unavailable due to its sensitive nature.

II.5 Data Preprocessing

This phase is essential to achieve data quality. So, data reduction is made by selecting the most

important attributes without losing quality [65].

II.5.1 Feature Selection

Before using a learning algorithm, feature selection is frequently an essential data processing

step. For example, machine learning algorithms frequently improve their performance by removing

irrelevant and duplicated data [70]. Feature selection is the process by which a data scientist

selects a subset of relevant characteristics to employ in machine learning model development,

either automatically or manually. It is, in fact, one of the essential principles in machine learning

that has a significant impact on the performance of your models since it is the key to developing

dependable machine learning models. The procedure will choose the optimal subset of attributes

from a pool of most important features and have a high contribution at the prediction time.

Chapter II. DDoS attacks in SDN networks, and ML approach 46

II.5.2 Feature Selection Procedure

In the FS method, the full feature set is considered for classification at first. The FS methods

are then used to choose the features. For model evaluation, the selected features are combined

with a classification method. The following are the basic steps in the FS process [8]:

• Generating the subset of features.

• Evaluating the generated feature set.

• Setting a termination criterion.

• Validating the results for the specified subset of features.

Figure II.2: Feature selection process, adopted from [8]

II.5.3 Feature selection methods

Feature selection methods can be classified into three groups in general:

• Filter Methods: Rather than utilizing a machine learning technique, rely on the properties

of the features. It is ideal for a quick ”screen and remove” of unwanted features. The filter

method eliminates aspects that do not add significantly to data analysis [71].

Chapter II. DDoS attacks in SDN networks, and ML approach 47

Figure II.3 depicts a schematic of a filter-based technique. This method creates feature

sets with a larger number of features, and in certain cases, the whole feature set is selected.

Figure II.3: The filter method, adopted from [8]

• Embedded methods: The selection of a group of features is treated as a search problem,

with the optimal feature subset chosen using a predictive machine learning method. These

methods, in essence, train a new model for each feature subset, which is computationally

expensive. However, provide the optimum feature subset for a specific machine learning

algorithm. As illustrated in Fig. II.4, the embedded feature selection method is a com-

bination of wrapper and filter-based selection methods. It makes use of the FS approach,

either implicitly or explicitly, to increase the classifier’s performance [8].

Figure II.4: The embedded method, adopted from [8]

• Wrapper methods: The wrapper-based FS can be divided into two parts: search and eval-

uation [72]: The search process is concerned with parameter initialization, which is required

for feature evaluation using an evaluation function. The wrapper-based FS algorithm in-

teracts with the classifier to infer the importance of features for feature selection because it

is dependent on the classification algorithm. In comparison to filter and embedded based

FS techniques, the wrapper based FS method is slower. For searching the features, it uses

forward selection and backward elimination [72].

II.6 Classifier Evaluation Measures

There are several metrics for evaluating classifier performance. There is no single metric that

can tell us everything about the classifier’s performance [58]. Some specific measures were used

to assess the classifier’s performance.

Chapter II. DDoS attacks in SDN networks, and ML approach 48

Figure II.5: The wrapper method, adopted from [8]

II.6.1 Accuracy

The accuracy of an algorithm is a measure of how well it classifies unseen occurrences, and it

can be calculated using the formula below:

Accuracy =
Number of correctly classified instances

Total number of instances
× 100

II.6.2 Confusion matrix

Accuracy is not the only way to assess performance; sometimes, we need a complete picture of the

classifier’s performance. One such detailed table is the Confusion Matrix. The matrix provided in

table II.1 is commonly used to evaluate performance: The following rules can be extracted from

Predicted

Positive Negative

Positive TP FN

Negative FP TN

Table II.1: Confusion matrix

the table above:

• Accuracy - The percentage of occurrences adequately classified by a classifier :

Accuracy =
TP + TN

TP + FN + FP + TN

• Precision - DDoS attack precision is calculated by dividing the total number of expected

true and false DDoS attacks by the total number of predicted true and false DDoS attacks.

Precision =
TP

TP + FP

• Recall - is calculated by dividing the total number of predicted DDoS attacks by the total

number of actual DDoS attacks.

Recall =
TP

TP + FN

Chapter II. DDoS attacks in SDN networks, and ML approach 49

• Error rate -

Errorrate = 1 − Accuracy =
FN + FP

TN + FN + FP + TP

II.7 SDN Security problems

II.7.1 Communication Level

1. At the northbound communication level, the key security problems are:

• Failure to trust and weak authentication between the applications and the controller

can spoof northbound API messages.

• Inappropriate authorization on the applications can trigger inappropriate or malicious

access.

2. At the southbound communication level:

• The lack of encryption between the controller and the switches allows eavesdropping

and spoofed southbound communications.

• The lack of trust and weak authentication at this level can lead to man-in-the-middle

attacks and spoofing attacks, which makes it easier for an attacker to eavesdrop on the

flow to see the flow in use and the network that allows traffic across that flow

• Improper authorization may lead to unauthorized access. Suppose a user requests

to trigger the controller to create a route and cause a packet to traverse the routed

service. In that case, we must ensure that the user is authorized to do so and that the

environment can resolve the activity.

• Southbound communication is impacted by flow rule attacks, primarily in in-band

deployments.

II.7.2 Each Component level

Every component of the SDN architecture must be protected.

1. The application component

• If the applications are not verified to be from trusted sources, we risk having vulnerable

or malicious applications that create major vulnerabilities and, as a result, compromise

the whole SDN network.

• The API itself may be vulnerable. If the attacker can use the vulnerable API, the

attacker can control the SDN network through the controller. If the controller lacks

any form of security of the northbound API, the attacker may create his SDN strategy

to gain control of the SDN environment.

Chapter II. DDoS attacks in SDN networks, and ML approach 50

• Inconsistent flow rules may result from a lack of application isolation. Flow isolation

uses tags to distinguish packets belonging to different policies, allowing for consistent

network updates and, as a result, consistent flow rules.

2. The Controller component

• The controller is vulnerable to Denial of Service attacks, compromising the entire

network infrastructure. Spoofed packets used in the various types of messages used

by OpenFlow or OpFlex (handshake, hello, and others), as well as bad logic in the

controller’s code, could cause legitimate network devices to be shunned and potentially

cause Denial of Service (DoS) problems.

• The attacker’s implementation of rogue controllers could result in entries in the flow

tables of network elements. As a result, the attacker would have complete command

of the network.

• Controller Hijacking occurs when a hacker takes over the controller and gains complete

control of the SDN network, flows, and defined policies.

3. The Switch component

• On the flow table level, the possibility of a DoS attack on the switches exists; the

attacker can flood the switch with massive flow rules.

• The possibility of various attacks on the agent installed on a switch (e.g., buffer over-

flow, denial of service, etc.).

• Network instability and unavailability can be caused by inconsistencies in flow rules.

• When the switch’s Listener Mode is enabled, it allows a connection from the controller

to the switch with no built-in authentication or access control.

II.7.3 Logging and audit level

The audit and compliance component has been identified as a major security issue in SDN. The

lack of logs and audit trails can result in a loss of control over the SDN network, with no monitoring

or checking for unauthorized changes or malicious attempts by administrators or attackers.

II.8 Defeating DDoS attacks in SDN based Networks

DDoS attacks are growing in size, frequency, severity, and sophistication in the traditional net-

work. It means that DDoS attacks with current IDS are limited to solving the problem. Attackers

have developed more advanced methods for circumventing existing defenses. SDN has certain fea-

tures, instead, that have advantages to some degree in overcoming DDoS attacks.

Chapter II. DDoS attacks in SDN networks, and ML approach 51

• Separation of the Control Plane and Data Plane: The experimentation in traditional

networks is complicated. Moreover, because the control logic is integrated into devices, it is

too difficult to examine newly used algorithms in traditional networks. Every device should

be individually updated. SDN, however, separates two planes below and simplifies the

testing of comprehensive mechanisms. SDN has large dynamic configuration functionality,

which enables experimental environments.

• Global View Network: The controller monitors network traffic and has a global view of

the network. Centralizing of SDN controller makes it easy to isolate the compromised host

from the legitimate host using information obtained by requesting the end hosts [25].

• Traffic Analysis based on Software: To monitor and configure network devices, various

application utilities run in the SDN application plane. Many software and algorithms are

available to analyze the network traffic, which reduces the burden of switches to parsing the

traffic [25].

• Programmability of Network: The application plane contains applications that program

the controller and further control the network’s behavior. The programmability of the SDN

network makes it more flexible because more intelligence can be deployed at any time [73].

Also, because the network is programmable, incoming traffic can be analyzed to identify

malicious traffic or hosts and maintain network performance.

• Dynamic Network Policy Updation: The immediate response in DDoS attack mitigation

is the dynamic adjustment of flow rules on OpenFlow switches. Based on the analysis of

the traffic, new innovative algorithms to block the traffic can be propagated instantly [74].

Adding a new rule to every device is brutal in a traditional network, but updating switches

dynamically is simple with SDN.

II.9 Types of DDoS attacks in SDN

The network SDN architecture is a new concept that decouples the data plane from the control

plane to improve network manageability and security. Separation of Control plane from the data

plane, global view of the network, the programmability of the network, traffic analysis based

on the software, and dynamic updating of network policies are some inherent characteristics of

the SDN to enhance the security of the network [25]. Nonetheless, various attacks infect the

data plane, control plane, and plane-to-plane connections. These attacks are destroying the SDN

architecture and making it a problematic network architecture.

In SDN architecture, Figure II.6 demonstrates which plane is vulnerable to a specific attack. The

following are some examples of such attacks.

Chapter II. DDoS attacks in SDN networks, and ML approach 52

Figure II.6: Types of DDoS attacks at different layers of SDN, adopted from [9]

II.9.1 Application layer DDoS attacks

Application layer attacks maliciously use the software, aiming to exhaust resources to process

any further requests. These attacks are generally harder to detect on the network level as they

show no clear deviation from legitimate traffic [34]. DDoS attacks on one application will impact

other applications because the separation of applications or resources in SDN is not well solved.

Among the attacks of this layer:

• Un-authorized Applications: In the application plane, there are many applications with

access to network resources for providing controller and network services. Some applications

can access network resources with the example of other applications. However, the validity

of applications is not authenticated and approved, and malicious applications may gain

access by instances of other applications and alter network behavior and degrade network

performance

II.9.2 Control layer DDoS attacks

Controllers of SDN and their communications can be subjected to different types of attacks

[75]. Attacks on the control plane and communication between the controller and other network

components, such as northbound API, southbound API, westbound API, or eastbound API,

are examples of threats that can cause significant damage. Furthermore, the controller can be

regarded as a single point of failure and scalability, raising the possibility of performance issues

and control plane unavailability. Among the attacks of this layer:

• Controller Saturation: When multiple packet in requests (because of fake flows generated

by the attacker) come at the controller, the controller makes the queues to handle these all

requests. However, suppose there are numerous fake packets. In that case, the controller

will remain busy handling fake requests, and its performance will eventually degrade, which

is a barrier for the SDN-based networks [76].

Chapter II. DDoS attacks in SDN networks, and ML approach 53

• Packet in flooding: Whenever the switch receives the unmatched flow, it will request (using

packet in message) to the centralized controller to draw a forwarding rule for the new flow

via the southbound interface. The attacker sends numerous packets to the vswitch by

spoofing the IPs and forces the vswitch to send bulk packet in messages to the controller.

Resultantly, this flood overloads the controller and makes it unreachable to the legitimate

users as the controller will be busy handling only fake flow requests [77].

II.9.3 Data layer DDoS attacks

Data layer DDoS attacks could potentially overload through two points: switches or by attack-

ing the southbound API [78]. For example, an attacker may send a large amount of traffic to a

node to launch a DoS attack by establishing several new and unknown flows in the infrastructure

layer. Among the attacks of this layer:

• Flow Table Overflow: When OpenFlow switch requests for the new flow rule from the

controller, the new rule sent by the controller gets store in the flow table of the switch.

Every flow rule has a fixed time out value, and after that time, the old rules are evicted

by the switch from the flow table [4]. TCAM is very limited in capacity to store the flow

table entries because it is very costly and power-hungry [79]. The attacker takes advantage

of this functionality to overwhelm the switch. The attacker sends many new fake flows to

the switch, and as a result, the switch’s flow table runs out of memory quickly and contains

only fake rules. All valid entries are removed from the flow table, resulting in performance

degradation.

• Buffer Saturation: When a switch sends a packet in message to the controller, it sends a

portion of the packet to the controller while storing the remainder in the buffer memory.

The attacker employs this feature to attack the victim; the attacker sends multiple bogus

packets to the switch, quickly depleting the buffer. In addition, when the switch internal

buffering runs out, it must send the entire packet to the controllers as part of the event, yet

another bottleneck for SDN. At this point, legitimate users are having difficulty processing

their flow requests, and as a result, the attacker can reduce performance.

• Spoofing Switch: In this attack, the attacker can spoof the IP address of the switch and

send control messages using the modified address. When a switch creates a connection with

the controller and communicates, a second malicious switch (one with a spoofed IP and

the identical hardware and name) is turned on. It starts a connection with the controller

simultaneously. The controller will terminate the connection with a legitimate switch and

communicates with the malicious one, gradually degrade the performance of the network

[80]. This attack can cause the controller to make fake requests, and some mechanism is

needed to control.

Chapter II. DDoS attacks in SDN networks, and ML approach 54

II.9.4 Communication links

between each two layers there are links which are southbound API and nourthbound API,

among the attacks in these links:

• Congestion of Southbound APIs: When OpenFlow switch sends packet in request to get

new rule from the controller, it sends some part of the packet, and another part is stored

in the buffer. Nevertheless, if the buffer is complete, then the switch is liable to send the

whole packet to the controller. At this point, by sending multiple fake flows to the switch,

an attacker can easily overload the single bandwidth used in southbound APIs and create

congestion in it to make it unavailable to the legitimate users.

II.10 Detecting DDoS attacks in SDN network

Distributed Denial of Service (DDoS) attacks have been a real threat in many aspects of com-

puter networks and distributed applications. The main objective of a DDoS attack is to bring

down the services of a target using multiple sources that are distributed. For example, attackers

can transfer thousands of packets to a victim to overwhelm access bandwidth with illegitimate

traffic, making online services unavailable. There are numerous denials of service (DoS) attack

methods being used to degrade the performance or availability of targeted services on the Internet

[34]. These methods can be categorized as SDN challenges at each layer: application layer, control

layer, and infrastructure layer.

II.10.1 DDoS attack detection techniques

This section provides a thorough examination of current DDoS detection solutions in SDN. De-

pending on the type of detection metric and detection mechanism used, these solutions are clas-

sified into four categories: Information theory-based DDoS defense solutions, Machine learning-

based DDoS defense solutions, Artificial Neural network-based defense solutions, and other defense

solutions (see Fig. II.7). To compare these solutions, we select eight different parameters :

• year of publication

• the scope of solution (Detection or Mitigation)

• detection metric used

• parameters used in the algorithm for detection

• target plane

• controller type

• the dataset used for validation and other key features of the solution.

Chapter II. DDoS attacks in SDN networks, and ML approach 55

Figure II.7: Classification of DDoS attack defence approaches in SDN, adopted from [9].

Information theory-based DDoS defence solutions in SDN

Information theory-based Entropy and divergence metrics are commonly used to detect DDoS

attacks. Entropy represents the randomness in the network features, whereas a divergence met-

ric represents the similarity of two probability distributions [81]. The concept of uncertainty’s

measurement is coined initially by Claude Shannon in 1948 [81]. The information distance or

divergence metric, which is calculated using different probability distributions of traffic flows, is

used to detect network traffic anomalies. Using the entropy measure, it is possible to see how

current network behavior deviates from normal network behavior, resulting in the detection of a

DDoS attack.

Many researchers provided DDoS defense approaches based on the entropy metric, as shown in

Table II.10.1 and discussed briefly below. Because SDN networks are programmable, they allow

for the extraction and analysis of network flow statistics. Giotis et al. [82] extend this feature

by reducing the controller’s load when extracting the information. The proposed method collects

and analyzes data using the entropy method to detect network anomalies. The collector module is

in charge of collecting data regularly and sending it to the anomaly detection module. Following

that, anomaly detection examines all flow entries for each time window to identify malicious flows.

Chapter II. DDoS attacks in SDN networks, and ML approach 56

Following the detection mitigation module, flow rules about malicious flows were implemented to

block them. They test their method by collecting innocuous traffic on the network of the National

Technical University of Athens. the Tcpreplay and Scapy programs are used to produce malicious

traffic.

Machine Learning based DDoS defense solutions in SDN

In several fields, machine learning techniques are utilized to address complicated issues, these

algorithms have also been used to detect DDoS attacks, and they have proven to be more effective

than signature-based detection systems. These machine learning-based classifiers can be trained to

detect aberrant network traffic behavior with greater accuracy. Support Vector Machine (SVM),

Decision Tree (J48), Logistic regression, Advanced Support Vector Machine (SVM), Naive Bayes,

Random Trees, Binary Bat algorithm, Random forest, Hidden Markov Model (HMM), and K-

nearest neighbor (KNN) are some of the most commonly used machine learning classifiers, as

shown and summarized in Table II.10.1.

Approach

reference
Scope Classifier Features Dataset Limitations

[83] Detection SVM 5

Synthetic

+

DARPA1999

Unable to

indicate the

attacker.

[84]
Detection

Mitigation
RF 3

UCLA

+

Synthetic

Not

accurate.

[85] Detection SVM 6 Synthetic

Unable to

indicate the

attacker.

[86] Detection
Advanced

SVM
5 Synthetic

Unable to

indicate the

attacker.

[87]
Detection

Mitigation

J48

RF

SVM

K-NN

24 Synthetic Overhead.

[88]
Detection

Mitigation

SVM

J48

NB

25 NSLKDD Overhead.

Table II.2: DDoS defense solutions in SDN.

Chapter II. DDoS attacks in SDN networks, and ML approach 57

II.11 Discussion

Our comparative study of solutions for detecting DDoS attacks in the SDN networks that we

chose allowed us to create table II.10.1. From that, we were able to select a set of findings.

The above table II.10.1 shows that the approaches have been used differently for the same

purpose. In other words, while Information theory-based mechanisms collect and analyze in-

formation from switches to build a module for DDoS detection, ML-based mechanisms identify

DDoS attacks by capturing the traffic and identifying appropriate features.

From the table shown previously, we could see that the studied works based on information

theory approaches are efficient in estimating the randomness of a data set. Therefore, low en-

tropy levels indicate a more concentrated to identifying probable network anomalies probability

distribution. In contrast, high entropy values indicate a more distributed probability distribution.

However, we argue that the full potential of entropy-based DDoS attacks detection is currently

not being exploited because of its inefficient use. The machine learning approach increases the

accuracy of DDoS detection and provides independence from the hardware. Moreover, it reduces

workload and time. We let the algorithm perform analyzing processes on our behalf by automat-

ing tasks. Similarly, many elements affect the efficiency of machine learning. Data processing is

one of them. It is capable of handling any type of data.

II.12 Conclusion

The emergence of SDN environments has made many researchers and industries look favorably

on this new concept. However, it also brings some new problems to be treated, such as new

kinds of DDoS attacks. For example, the DDoS attack in the SDN environment could attack the

centralized controller and put down all the networks if the controller crashes. As a result, we

provide a comprehensive review of the state-of-the-art DDoS attack detection strategies featured

by SDN technologies. In this work, we propose the ML-Algorithms to detect DDoS attacks.

Chapter III

Proposed approach and implementation

Chapter III. Proposed approach and implementation 59

III.1 Introduction

The previous chapter carried out a comparative study between the approaches to detect DDoS

attacks in SDN networks. This chapter aims to present our approach used for our mechanism,

which detects and mitigates DDoS attacks in SDN networks, and describes the tools used to

implement and simulate the experimentation. The developed module for the detection and the

mitigation is implemented as a Ryu controller application. The simulation of the topology is done

with Mininet virtual network. For the DDoS traffic, we use the Hping3 tool.

III.2 Proposed approach

In our approach, we propose to implement machine-learning algorithms to detect and mitigate

the DDoS traffic, due to its advantages. We can explain our approach with these summarized

steps:

Model Building phase:

The purpose of this phase is to build our model and to ensure that we have taken the best

choices and decisions while building it. Especially when we have many choices regarding dataset

and machine learning algorithms. As the flow chart in figure III.1 shows the first step in this

phase is to collect the data since it plays a principal role in the performance of the machine

learning model. In this step, we need to make research for the available data, which is related

to our problem and compare the data based on the available articles and researchers who used

and talked about it. After the data collecting we need to train this data using one of many ML

algorithms that exist, to do this we need to know which are the most used algorithms in this

case of problems and among these algorithms which one is the best for our case. According to

a study in 2020, we found that The most common ML algorithms used for IDS are Decision

Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN), Support Vector Machine

(SVM), K-Mean Clustering, Fast Learning Network, and Ensemble Methods [89]. So due to this

study, we decided to use six ML algorithms named (LR, KNN, SVM, NB, DT, RF). LR and NB

were selected as one of the most linear ML algorithms used and to examine and compare their

performance with the other algorithms which are the most used in the case of intrusion detection

systems.

The third step in this phase is to select the best algorithm among the sixth algorithms using

evaluation metrics. Once we have the best model now we should use one of the feature selection

techniques that we discussed in the previous chapter in order to reduce the time of prediction and

avoid overfitting if it exists.

Chapter III. Proposed approach and implementation 60

Figure III.1: The proposed approach.

Detection phase:

Once we have, our model all that we need is to integrate it into the controller so we can make

the prediction and detect any anomaly on the network. Then we configure the controller to

request flow table statistics every 5 seconds as used by [90] who determined that that window is

the most suitable to enable detection of attacks earlier enough to protect the controller. So here

the controller make features extraction to predict whether we are under attack or not.

Mitigation phase:

Once the model detects a DDoS attack it saves the information of both attacker and victim so

it saves the IP address of the victim and MAC address and the datapath ID (the switch ID) of

Chapter III. Proposed approach and implementation 61

the attacker. Then we install a new rule to the switch we already saved its ID in order to delete

all the packets coming from the attacker MAC address. In this way, we prevent any traffic coming

from the attacker.

In this approach, we aim to compare between six different supervised algorithms in order to

choose the best one of them. We also focus on the type of topology and how it can affect the

DDoS attack to know if the topology matter and if the success percentage of this attack depend

on the topology or not.

In this approach, we configure the controller to monitor the traffic and analyze it by extracting

the information of each flow then use the model that we trained to make the prediction and inform

as whether we are under attack or it is a legitimate traffic. Once it detect DDoS attack it adds a

new flow rule to the switch that drops all the packets coming from the attacker node to mitigate

and prevent this attack.

III.3 How the proposed approach works

The system works every time the controller requests the switches to send back the statistics of

flow tables every five seconds. Then the switches resend these statistics to the controller. The

controller uses these statistics to predict whether the flows are legitimate or it is DDoS traffic. If

the traffic is predicted as DDoS, the controller indicates the source of the attack and the victim.

Then it starts the mitigation phase by adding a flow entry that matches with the information of

the attacker in order to drop all these packets.

Figure III.2: Proposed approach.

The figure III.2 explain how this mechanism works. It shows how the packet in are sent to the

controller once they arrive to the switch. So here, the controller extract all the features of this

packet and save it. Then before it send it to the model it makes features selection to opt the

Chapter III. Proposed approach and implementation 62

most important features to make the prediction to reduce the time of prediction. In the detection

phase, the controller use the model to make the prediction using the selected features. According

to the result of prediction the controller take the decision by informing as in the two cases and in

the case of attack the controller adds a new flow rule to the switch using the OpenFlow protocol

to exchange this messages so the switch will drop all the packets coming from the attacker to

mitigate and prevent this DDoS traffic.

III.4 Material resources

It is important to mention that this work was emulated using:

• Processor: Intel (R) Core(TM) i3-3217U CPU @ 1.80 GHz 1.80 GHz

• Installed memory (RAM): 4,00 Go

• Type of system: Operating system 64 bits, processor x64

• Windows 10 Professional

III.5 Tools selection

This section presents the tools used in this project and the reasons behind using each tool.

III.5.1 Python language

Python is an interpreted, object-oriented, high-level programming language with dynamic se-

mantics. Its high-level built-in data structures combined with dynamic typing and dynamic

binding; make it very attractive for Rapid Application Development. In addition, python is

simple, easy to learn syntax, emphasizes readability, and therefore reduces the cost of program

maintenance [91].

Since we will work with machine learning and data, we found that python is widely used in this

domain due to its various open-source packages.

III.5.2 Ryu Controller

Ryu is a python-based Open Flow controller with a robust API that enables developers to

create their applications to manage the network. It is open-source and available under the Apache

license. Moreover, it can be used to collect statistical information from switches. Thus it can be

configured as a traffic monitor, a firewall, or a switch [92]. The reason behind opting Ryu from

among a list of controllers to simulate our work is that:

Chapter III. Proposed approach and implementation 63

• We are going to use the Python language to write our algorithms.

• Ryu is well documented unlike most of the other controllers.

• According to [92], [93] and [94] Ryu is very fast as compared to POX and Pyretic.

Proprieties Ryu controller

Language Python

OF version 1.0 , 1.1 , 1.2 , 1.3

Rest API support yes

Platform support Linux

Table III.1: Features of Ryu controller

III.5.3 Mininet virtual network

Mininet is an emulator which uses OpenFlow protocol, runs a collection of end-hosts, switches,

routers, and links on a single Linux kernel by using virtualization. It has many tools to check

the possible bandwidth, the connectivity among nodes and deepest nodes, and the speed of flows.

Developers, teachers, and researchers use Mininet, and this is because of easy interaction with

the network using CLI and API, customizing and sharing features, and also development features

on real hardware [94].

Advantages of Mininet

• It is fast- it takes a few seconds to start a network.

• It is easy to create custom topologies ranging from a single switch to the data center topolo-

gies.

• Can run on a laptop like in this case.

• It is open source

Disadvantages of Mininet

• Supporting just one platform (Linux kernel)

• Mininet hosts share host file systems and process IDs spaces thus need extra care when

running daemons requiring configuration.

The reason behind choosing Mininet among the available simulator/emulator is not just due to

its advantages but also according to a comparison between these tools mentioned in [94].

Chapter III. Proposed approach and implementation 64

III.5.4 Hping the DDoS attack tool

Hping can handle the random packet size and the fragmentations. In addition, hping performs

the firewall rule testing, port scanning, and protocol-based network performance testing. Its

implementation language is TCL and has a command-line interface [95].

The selection of a DDoS attack tool was tough because we found many tools used for this

purpose. A comparison between different DDoS tools is provided in [96] we did not find a huge

difference between them, so we opt for Hping3 randomly since it works well, and since it uses the

ICMP, TCP and UDP flooding attacks which we are using in this work.

III.6 Files and functions used in the implementation

In this section, we provide an overview of the files and the functions used to implement this

system before going into the depth of details. All the information are summarized in Table III.2

and Table III.3.

Chapter III. Proposed approach and implementation 65

Access path Files Description

Desktop/last files/controller

L4 switch.py

Switching applications that

installs the miss entry table

and switches the packet in.

The match field is based on

the l2, l3 and l4 in OSI model

with flow expiry.

monitor.py

This file works as a monitor

and colector of normal traffic.

We used it to collect normal

traffic and put it in a CSV file.

monitor ddos.py

This file is used to monitor

and collect DDoS traffic then

put it in a CSV file.

Dataset.csv

This file represents our

generated dataset, it contains

23 features plus the label to

make the classification.

detector mitigator.py

This is our application for

detecting and mitigating DDoS

attacks using the RF algorithm

for classification and installing

flow rules to the switch to drop

malicious packets.

Desktop/last files/mininet

ddos.py

This file is used to generate

DDoS traffic (ICMP flood, TCP

flood, UDP flood, SYN flood)

with help of the Hping3 tool.

normal.py

This file is used to generate

normal traffic (ping, TCP

and UDP).

mytopo.py
This file represents our first

topology scenario.

project.py
This file represents our second

topology scenario.

Table III.2: Description of used files.

Chapter III. Proposed approach and implementation 66

Files Functions Description

l4 switch.py

init ()

specifies which versions of the

OpenFlow protocol that the

application is compatible with,

and initializes the internal

MAC To Port table.

switch features handler()

the main purpose of this code

is to have it run any time a

switch is added to the

controller and install a table

miss flow entry in the switch,

which allows the switch to

send packets to the controller.

add flow()

This method is defined to

construct and send the final

flow entry.

packet in handler()
called any time a switch sends

a packet to the controller.

def init ()

In parallel with switching

processing, initialize and

define a datapaths dictionary.

Open Dataset.csv file to save

traffic information on it.

monitor.py

state change handler()

Monitor the switch status,

judge whether the switch is

online, and then write the

switch into the dictionary.

monitor()
A method to send information

to the switch periodically.

request stats()

The request method to realize

the controller to request the

switch, including the request

flow table and port information.

flow stats reply handler()

The received port information

and flow table information are

parsed and saved to

Dataset.csv file and label the

information under normal

traffic.

Monitor ddos.py
Uses the same functions of

monitor.py script

The only difference between

them is to save the collected

information under DDoS

information.

Detector mitigator.py init ()

In parallel of switching

processing, initialize and

define a datapaths dictionary.

Train dataset.csv file and display

the information of the model.

monitor()

A method to send information

to the switch periodically.

Predict whether the traffic is

legitimate or DDoS.

flow training()

Read the Dataset.csv file

make some preprocessing on

it and create the model using

the RF classification model.

Table III.3: Description of the used DDoS functions.

Chapter III. Proposed approach and implementation 67

It is important to mention that most of these functions are pre-existing in Ryu applications.

The only thing that we have done is to understand the functionality of these functions, modify

them and add new ones.

III.7 Setup the network

We have already mentioned two types to set up the physical connection: out-of-band and in-

band. However, since we use a mininet emulator, we only limited the out-of-band connection to

handle communication between controllers and switches. However, the question here is: which

topology should we use? Does the type of topology matter?

For this reason, much research was done, but we did not find any research talking about this

particularity. This encourages us to test two different topologies (tree and linear) and see the

effect of a DDoS attack on each topology.

III.7.1 Tree topology

Now we need to run the controller using the switching application l4 switch.py.This application

is required to:

• Install the Table Miss entry to the switch

• When the packet comes to Switch, it matches with Table Miss Entry, then Switch send it

to the Controller(PACKET IN message)

• The controller looks at the source mac of the packet and updates it in its DB. The controller

looks at the destination mac of the packet and decides on the output port.

• The controller sends the packet to switch (PACKET OUT message).

• The controller adds the flow using (FLOW Modification message), match field is based on

layer 2, layer three and layer 4 with time expiry (idle and hard timeout).

Chapter III. Proposed approach and implementation 68

Figure III.3: Tree topology.

In this scenario, we launch the DDoS attack from host H2 (switch S2) to H15 (switch S5) the

results are summarized in Table III.4, Table III.5 Table III.6 and Table III.7.

switch src host src host dst switch dst Results

S2 H3

H4 S2 Unreachable destination

H6 S3 Unreachable destination

H14 S5 Unreachable destination

H15 S5 Unreachable destination

H1 S6 Unreachable destination

Table III.4: Results of pinging from H3 (switch S2) TO H4, H6, H14, H15 and H1.

switch src host src host dst switch dst Results

S3 H8

H15 S2 Unreachable destination

H3 S3 Unreachable destination

H12 S5 Unreachable destination

H21 S5 Unreachable destination

H1 S6 Unreachable destination

H7 S3 Ping success

H9 S3 Ping success

Table III.5: Results of pinging from h8 (switch S3) to H15, H3, H12, H21, H1, H7, H9.

Chapter III. Proposed approach and implementation 69

switch src host src host dst switch dst Results

S4 H10

H4 S2 Unreachable destination

H8 S3 Unreachable destination

H12 S4 Ping success

H15 S5 Unreachable destination

H17 S5 Unreachable destination

H16 S5 Unreachable destination

Table III.6: Results of pinging from H10 (switch S4) to H4, H8, H12, H15, H17, H16.

switch src host src host dst switch dst Results

S5 H16

H2 S2 Unreachable destination

H17 S3 Ping success

H15 S4 Ping success

H20 S5 Unreachable destination

H19 S5 Unreachable destination

Table III.7: Results of pinging from H16 (switch S5) to H2, H17, H15, H20, H19

From the results shown on the tables Table III.4, Table III.5, Table III.6 and Table III.7, we

conclude the following:

• Reachability (connectivity) between the switches is 0% .

• All the hosts that belong to the same switch can reach each other except those belonging

to the attacker switch.

This could be explained as follow:

• The attacker H2 floods the switch S2 with the malicious packets, so after some time, the

flow table will not handle the received packets so that they would be lost.

• Since all the switches are connected to switch S1, the entire packet will be redirected through

it and flooded with DDoS traffic. Therefore, his flow table expires, and the switches will

not be able to connect.

III.7.2 Linear topology

In this scenario, we launch an attack from H2 (switch1) to H4 (switch2).all the result of the

pinging test are described in tables Table III.8 and Table III.9.

Chapter III. Proposed approach and implementation 70

Figure III.4: Linear topology.

switch src host src host dst switch dst Results

S1 H1

H2 S4 Unreachable destination

H3 S5 Unreachable destination

H3 S6 Unreachable destination

Table III.8: Results of pinging from H1 (switch S3) (switch S1) to H4 and H5 and H6.

switch src host src host dst switch dst Results

S3 H6

H2 S4 Ping success

H3 S5 Ping success

H1 S1 Unreachable destination

Table III.9: Results of pinging from H6 (switch S3) to H4, H5, H3 and H1.

The results in Table III.8 and Table III.9 shows that:

• The connectivity between switches is 66.66

• All the hosts can connect except the hosts that belong to the switch S1.

These results can be explained as follow:

• The switch S1 in this topology becomes isolated, unlike the first topology. This is because

we have multipath choices to redirect the flows.

Chapter III. Proposed approach and implementation 71

To conclude this particularity, it is clear that the linear topology is recommended than the tree

topology. This is because it can be used as the first primary step of mitigating DDoS attacks.

The question answers that the topology matter and can affect the percentage of DDoS attacks’

success.

The topology that we will select is the Tree topology of the first scenario. To improve that, our

system for detection and mitigation of DDoS attacks is efficient regardless of the vulnerability of

the topology.

III.8 Dataset and ML algorithms

This section represents the detection process building. It includes the selection of the dataset

and the machine-learning algorithm for making the prediction.

III.8.1 Dataset selection

The performance of Machine Learning models vastly depends on the selection of features,

quality, and quantity of training data [97].

Using a real dataset looks like a good choice at first sight since the data are collected from

real scenarios in the real world. However, after some research, we found that all the datasets are

retrieved from IDs, which means this data is not dedicated to DDoS, which is our study case.

The second thing is that most of the datasets do not say all, are from traditional networks since

we want to study an SDN network. Due to this reason, we decided to generate our dataset, which

would be only for DDoS traffic and SDN networks.

In order to generate the dataset, we need to configure the Ryu controller to work as a traffic

monitor, so we can gather the information and save it in a Dataset.csv file. The source code for

generating regular traffic is in the python script monitor.py as it was mentioned in the previous

section. (show Annexe chapter to view the source code).

To collect normal traffic we need to run monitor.py with our topology. We open the terminal

and we run the Ryu controller as shown in figure ??.

Figure III.5: Executing monitor.py script as Ryu application.

Chapter III. Proposed approach and implementation 72

In a new terminal, we run our topology, and we launch normal traffic using normal.py script

described in the previous section as follow:

Figure III.6: Generating normal traffic.

We run the normal.py script many times with many hosts to get more rows in our dataset.csv

file. To collect the DDoS traffic we do the same thing except that we run monitor ddos.py and

we launch the ddos.py script instead of monitor.py and normal.py respectively.

In the end, we got our dataset, which contains 3744 entries and 23 features plus the label to

distinguish between normal and abnormal traffic, Our dataset uses 702.1 KB of memory. The

features of the dataset are explained in Table III.10.

Chapter III. Proposed approach and implementation 73

Features Description

timestamp
Get timestamp when Ryu received the

Openflow message.

datapath id The switch ID.

Flow id Flow identifier.

ip src TP source address.

dl src MAC source address.

tp src TCP/UDP source port.

ip dst IP destination address.

dl dst MAC destination address.

tp dst TCP/UDP destination port.

ip proto IP protocol.

icmp code ICMP code.

icmp type ICMP type.

flow duration sec Time flow was alive in seconds.

flow duration nsec Time flow was alive in nano-seconds.

idle timeout

Specifies the validity period of this entry, in seconds, if the entry is not

referenced and the time specified by idle timeout elapses, that entry

is deleted.

hard timeout

Specifies the validity period of this entry, in seconds. Regardless of the

reference of the entry the entry is deleted

when the specified time is elapsed.

flags Specify which operation is to be performed.

packet count
Number of packets that were associated with the

flow.

byte count Number of bytes that was associated with the flow.

packet count per second Number of packets per second.

packet count per nsecond Number od packets per nano-second.

byte count per second Number of bytes per second.

byte count per nsecond Number of bytes per nano-second.

Table III.10: Features description.

For the moment, we will not use feature selection. Moreover, we will keep it to the next steps.

III.8.2 Comparison between ML algorithms

As it was discussed in the previous chapter, it exists a variety of machine learning algorithm

that can be used to make the classification of flows. Therefore, it was essential to compare this

Chapter III. Proposed approach and implementation 74

subset of algorithms (LR, K-NN, SVM, NB, DT, RF) to select the highest accuracy.

For this work, we use the ML.py script (see Annexe I) described in the previous section.

All that we need is to run this script and select the algorithm with the best accuracy only

because we know that the accuracy work well and can be satisfied when using equal number of

samples belonging to each class which is our case. Let us execute the script and see the results:

Figure III.7: Comparison between algorithms.

Chapter III. Proposed approach and implementation 75

Figure III.8: Comparison between algorithms.

The results show that:

• NB gives an accuracy of 56.62%.

• LR and SVM give the same accuracy with 87.61% of success.

• K-NN gives an accuracy of 99.47% of success.

• DT and RF give the best accuracy with 100% of success.

According to the result, we decided to go with the RF algorithm.

III.8.3 Features selection

we use feature selection in order to reduce overfitting, improves accuracy and reduce training

time. We are keeping the feature selection until this part because some feature selection tech-

niques depend on the ML algorithm, which is the case here. Since we use a tree-based model,

we can obtain the best features using the feature importance technique which uses the feature

importance attribute provided by the RF algorithm. This technique is straightforward, simple

to understand, and fast.Feature importance technique gives you a score for each feature of your

Chapter III. Proposed approach and implementation 76

data, the higher the score more important or relevant is the feature towards your output variable.

Feature importance is an inbuilt class that comes with Tree Based Classifiers.

Figure III.9: Top five feature importance.

Chapter III. Proposed approach and implementation 77

The figure III.9 shows the result of the top five most important features related to our target.

The feature with the highest score is the most important feature.

The use of these five top features for training and testing reduced processing time without

affecting the accuracy. The result of using full features(23 features) and the reduced features only

are shown on the figure III.10 and the figure III.11 respectively.

Figure III.10: Evaluation with full features.

Figure III.11: Evaluation with reduced features.

Chapter III. Proposed approach and implementation 78

III.8.4 Integration of the model with Ryu controller

In this part, we integrate our model to the Ryu controller to improve its efficiency to detect

DDoS attacks in real-time. We also install flow rules to the switch to detect abnormal traffic, so

the controller blocks the host attacker by dropping these packets to mitigate the attack.

This is the objective of detector mitigator.py script (see Annexe I).

By running detector mitigator.py as a Ryu application with mytopo.py topology in mininet,

we get that the system is very efficient and works as it was supposed.

Figure III.12: Running the detector mitigator.py application.

In a new terminal, we run the topology, and we launch legitimate traffic and DDoS traffic to

improve the efficiency of our system.

Chapter III. Proposed approach and implementation 79

Figure III.13: Results indicating that the capability of the system to detect and mitigate DDoS

attacks.

III.9 Work evaluation

Many works have detected DDoS attacks in SDN networks using the ML approach due to its

advantages discussed in chapter III. In this section, we compare our work with the existing works

to evaluate the selected dataset, the number of selected futures, the accuracy of the model, and

the proposed mechanisms to mitigate DDoS attacks.

According to [97], most of the studies have used datasets like KDD 99, NSL-KDD, DARPA,

and CAIDA, etc., which excludes recent DDoS attacks. Therefore, in this comparison, we focus

on the works that used one of these datasets or used synthetic datasets (generated) as in our case.

The Table III.11 represents the results summary of our work:

Scope Classifier Features Dataset Accuracy Detect attacker

Our

approach

Detection

Mitigation
RF 5 features Synthetic 100% yes

Table III.11: Work summary.

From Table ?? and Table III.11, it is clear that the proposed work with the use of only five

features can detect the DDoS attack with an accuracy of 100%, which is perfect accuracy. In this

Chapter III. Proposed approach and implementation 80

work, we also care about preventing the attack and we propose two mitigation mechanisms:

• Based on the topology, when we improve that, the linear topology can mitigate the DDoS

attack and isolate the switch attacker from the network.

• Based on adding flow to the switch, the attacker to drop DDoS traffic coming from the

attacker host (it is better to say prevention of the attack).

The prevention of the attack is done even if the attacker spoof its IP address

III.10 Conclusion

This chapter proposed an ML-based mechanism to detect DDoS attacks and demonstrated

that it could detect and mitigate them accurately. Furthermore, we compared the performance of

the various supervised classifier and found the Random Forest Classifier approach gives a better

result.

In this chapter, we improve the capability of the proposed mechanism to detect DDoS attacks

using an RF classifier with an accuracy of 100%. We also demonstrate the importance of the

topology to mitigate these attacks in SDN, which is a new contribution in this domain. The

simulation shows that the mitigation of DDoS attacks is efficient whatever the topology proposed.

Conclusion and Future Work

In this memory, we proposed a mechanism to detect and mitigate DDoS attacks in SDN net-

works. Six ML algorithms (LR, K-NN, NB, SVM, DT, and RF) were tested and evaluated using

the synthetic dataset of 23 features. The results show that NB gives the worst accuracy of 56.62%,

LR and SVM give the same accuracy with 87.61% of success. In the second place, K-NN gives

99.47% of success, while DT and RF give the best accuracy with 100% of success. According to

the results, the RF classifier was selected using five features only. Although this is to avoid the

over-fitting of the model and reduce the time of the process, the results of reducing the features

show that the time was seven times less than using the full features. At the same time, the

accuracy was not affected, and this is due to the quantity of the data used.

This thesis also demonstrates that the type of topology is significant in this kind of attack in

SDN networks. This was provided by using a mininet virtual network to set up two topologies: tree

topology and linear topology. Then we studied the effect of the DDoS attack on both topologies

using the Hping3 tool. The analysis of the results indicates that the connectivity between switches

in linear topology is 66.66%, unlike the tree topology, which gives 0% of connectivity between

switches. Therefore, we conclude that the linear topology can mitigate the effect of DDoS attacks

on SDN, unlike the tree topology, which represents a single point of failure.

While the topology cannot satisfy to mitigate the DDoS attacks, we propose using collected

information from the attacker in the detection phase to add a flow rule that drops all the packets

matching with the MAC address of the attacker. This mechanism proves its efficiency to prevent

the attack even with a tree topology.

As part of future works of this memory, and since the mitigation part has some limitations,

such as the ability of an attacker to spoof its MAC address, which means the flow rule will be

unable to block the attacker. Since the penalty is stringent, the attacker host will not connect

except if the administrator deletes this flow rule. We think to investigate more time to solve these

problems in our system. We have thought of some solutions to solve these issues, but time was

one of the challenges against achieving this, so we keep it for future ameliorations.

Bibliography

[1] A. Maleki, M. Hossain, J.-P. Georges, E. Rondeau, and T. Divoux, “An sdn perspective to

mitigate the energy consumption of core networks – geant2,” 09 2017.

[2] P. byNutaneeer, “Building blocks of sdn network,” Feb 2016.

[3] S. H. Haji, S. R. Zeebaree, R. H. Saeed, S. Y. Ameen, H. M. Shukur, N. Omar, M. A. Sadeeq,

Z. S. Ageed, I. M. Ibrahim, and H. M. Yasin, “Comparison of software defined networking

with traditional networking,” Asian Journal of Research in Computer Science, pp. 1–18,

2021.

[4] R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow sdn networks,” in 2015

IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 1322–

1326, IEEE, 2015.

[5] B. Goswami, “Software defined network, controller comparison,” 10 2017.

[6] M. A. M. Yusof, F. H. M. Ali, and M. Y. Darus, “Detection and defense algorithms of different

types of ddos attacks,” International Journal of Engineering and Technology, vol. 9, no. 5,

p. 410, 2017.

[7] W. Braun and M. Menth, “Software-defined networking using openflow: Protocols, applica-

tions and architectural design choices,” Future Internet, vol. 6, pp. 302–336, 05 2014.

[8] A. Thakkar and R. Lohiya, “Attack classification using feature selection techniques: a com-

parative study,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 1,

pp. 1249–1266, 2021.

[9] M. P. Singh and A. Bhandari, “New-flow based ddos attacks in sdn: Taxonomy, rationales,

and research challenges,” Computer Communications, vol. 154, pp. 509–527, 2020.

[10] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi, and S. Shenker, “Software-

defined internet architecture: decoupling architecture from infrastructure,” in Proceedings of

the 11th ACM Workshop on Hot Topics in Networks, pp. 43–48, 2012.

BIBLIOGRAPHY 83

[11] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen,

M. Miller, and N. Rao, “Are we ready for sdn? implementation challenges for software-

defined networks,” IEEE Communications Magazine, vol. 51, no. 7, pp. 36–43, 2013.

[12] R. Klöti, V. Kotronis, and P. Smith, “Openflow: A security analysis,” in 2013 21st IEEE

International Conference on Network Protocols (ICNP), pp. 1–6, IEEE, 2013.

[13] K. Nagase, “Software defined network application in hospital,” InImpact: The Journal of

Innovation Impact, vol. 6, no. 1, p. 1, 2016.

[14] K. Mlitz, “Software-defined networking market size 2027.” https://www.statista.com/

statistics/468636/global-sdn-market-size/, Jul 2021.

[15] K. Mlitz, “Enterprise ddos protection demand worldwide 2020.” https://www.statista.com/

statistics/1229430/enterprise-ddos-mitigation-service-demand/, May 2021.

[16] I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, “The dual-tree complex wavelet

transform,” IEEE signal processing magazine, vol. 22, no. 6, pp. 123–151, 2005.

[17] M. V. Pawar and J. Anuradha, “Network security and types of attacks in network,” Procedia

Computer Science, vol. 48, pp. 503–506, 2015.

[18] P. W. Dowd and J. T. McHenry, “Network security: it’s time to take it seriously,” Computer,

vol. 31, no. 9, pp. 24–28, 1998.

[19] B. Sotomayor and L. Childers, “Fundamental security concepts,” Globus Ttoolkit 4: Pro-

gramming Java Services, pp. 257–269, 2005.

[20] D. Branstad, “Encryption protection in computer data communications,” in 4th Data Com-

munications Symposium; October 7-9, 1975; Quebec City, Quebec, Canada, pp. 8–1, IEEE,

1975.

[21] K. Salah, K. Elbadawi, and R. Boutaba, “Performance modeling and analysis of network

firewalls,” IEEE Transactions on network and service management, vol. 9, no. 1, pp. 12–21,

2011.

[22] X. Liang and Y. Xiao, “Game theory for network security,” IEEE Communications Surveys

& Tutorials, vol. 15, no. 1, pp. 472–486, 2012.

[23] R. Smeliansky, “Sdn for network security,” in 2014 International Science and Technology

Conference (Modern Networking Technologies)(MoNeTeC), pp. 1–5, IEEE, 2014.

[24] A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-level reactive network

control,” in Proceedings of the first workshop on Hot topics in software defined networks,

pp. 43–48, 2012.

https://www.statista.com/statistics/468636/global-sdn-market-size/
https://www.statista.com/statistics/468636/global-sdn-market-size/
https://www.statista.com/statistics/1229430/enterprise-ddos-mitigation-service-demand/
https://www.statista.com/statistics/1229430/enterprise-ddos-mitigation-service-demand/

BIBLIOGRAPHY 84

[25] T. Ubale and A. K. Jain, “Survey on ddos attack techniques and solutions in software-defined

network,” in Handbook of computer networks and cyber security, pp. 389–419, Springer, 2020.

[26] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “Nox: to-

wards an operating system for networks,” ACM SIGCOMM computer communication review,

vol. 38, no. 3, pp. 105–110, 2008.

[27] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and a layered taxonomy of software-defined

networking,” IEEE communications surveys & tutorials, vol. 16, no. 4, pp. 1955–1980, 2014.

[28] S. Ahmad and A. H. Mir, “Scalability, consistency, reliability and security in sdn controllers:

A survey of diverse sdn controllers,” Journal of Network and Systems Management, vol. 29,

no. 1, pp. 1–59, 2021.

[29] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-domain sdn controllers,”

in 2014 IEEE Network Operations and Management Symposium (NOMS), pp. 1–4, IEEE,

2014.

[30] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,

P. Radoslavov, W. Snow, et al., “Onos: towards an open, distributed sdn os,” in Proceedings

of the third workshop on Hot topics in software defined networking, pp. 1–6, 2014.

[31] V. Thirupathi, C. Sandeep, N. Kumar, and P. Kumar, “A comprehensive review on sdn archi-

tecture, applications and major benifits of sdn,” International Journal of Advanced Science

and Technology, vol. 28, no. 20, pp. 607–614, 2019.

[32] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of software-defined net-

working,” IEEE Communications Magazine, vol. 51, no. 2, pp. 136–141, 2013.

[33] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia, “Modeling and

performance evaluation of an openflow architecture,” in 2011 23rd International Teletraffic

Congress (ITC), pp. 1–7, IEEE, 2011.

[34] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn security: A survey,” in 2013 IEEE

SDN For Future Networks and Services (SDN4FNS), pp. 1–7, IEEE, 2013.

[35] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and dependable software-defined

networks,” in Proceedings of the second ACM SIGCOMM workshop on Hot topics in software

defined networking, pp. 55–60, 2013.

[36] M. Antikainen, T. Aura, and M. Särelä, “Spook in your network: Attacking an sdn with

a compromised openflow switch,” in Nordic conference on secure IT systems, pp. 229–244,

Springer, 2014.

BIBLIOGRAPHY 85

[37] K. Benton, L. J. Camp, and C. Small, “Openflow vulnerability assessment,” in Proceedings of

the second ACM SIGCOMM workshop on Hot topics in software defined networking, pp. 151–

152, 2013.

[38] O. S. Specification, “Open networking foundation,” Version ONF TS-015, vol. 1, no. 3, pp. 1–

164, 2013.

[39] Y.-W. Chen, J.-P. Sheu, Y.-C. Kuo, and N. Van Cuong, “Design and implementation of iot

ddos attacks detection system based on machine learning,” in 2020 European Conference on

Networks and Communications (EuCNC), pp. 122–127, IEEE, 2020.

[40] M. Eslahi, R. Salleh, and N. B. Anuar, “Bots and botnets: An overview of characteristics,

detection and challenges,” in 2012 IEEE International Conference on Control System, Com-

puting and Engineering, pp. 349–354, IEEE, 2012.

[41] C. Li, W. Jiang, and X. Zou, “Botnet: Survey and case study,” in 2009 Fourth International

Conference on Innovative Computing, Information and Control (ICICIC), pp. 1184–1187,

IEEE, 2009.

[42] J.-S. Lee, H. Jeong, J.-H. Park, M. Kim, and B.-N. Noh, “The activity analysis of malicious

http-based botnets using degree of periodic repeatability,” in 2008 International Conference

on Security Technology, pp. 83–86, IEEE, 2008.

[43] R. Vishwakarma and A. K. Jain, “A survey of ddos attacking techniques and defence mech-

anisms in the iot network,” Telecommunication systems, vol. 73, no. 1, pp. 3–25, 2020.

[44] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense mechanisms,” ACM

SIGCOMM Computer Communication Review, vol. 34, no. 2, pp. 39–53, 2004.

[45] A. Asosheh and N. Ramezani, “A comprehensive taxonomy of ddos attacks and defense

mechanism applying in a smart classification,” WSEAS Transactions on Computers, vol. 7,

no. 4, pp. 281–290, 2008.

[46] A. Bhardwaj, G. Subrahmanyam, V. Avasthi, H. Sastry, and S. Goundar, “Ddos attacks,

new ddos taxonomy and mitigation solutions—a survey,” in 2016 International Conference

on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 793–

798, IEEE, 2016.

[47] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Developing realistic dis-

tributed denial of service (ddos) attack dataset and taxonomy,” in 2019 International Car-

nahan Conference on Security Technology (ICCST), pp. 1–8, IEEE, 2019.

[48] A. Sahi, D. Lai, Y. Li, and M. Diykh, “An efficient ddos tcp flood attack detection and

prevention system in a cloud environment,” IEEE Access, vol. 5, pp. 6036–6048, 2017.

BIBLIOGRAPHY 86

[49] M. Xia, W. Lu, J. Yang, Y. Ma, W. Yao, and Z. Zheng, “A hybrid method based on extreme

learning machine and k-nearest neighbor for cloud classification of ground-based visible cloud

image,” Neurocomputing, vol. 160, pp. 238–249, 2015.

[50] E. Alomari, S. Manickam, B. B. Gupta, S. Karuppayah, and R. Alfaris, “Botnet-based dis-

tributed denial of service (ddos) attacks on web servers: classification and art,” arXiv preprint

arXiv:1208.0403, 2012.

[51] R. Santos, D. Souza, W. Santo, A. Ribeiro, and E. Moreno, “Machine learning algorithms to

detect ddos attacks in sdn,” Concurrency and Computation: Practice and Experience, vol. 32,

no. 16, p. e5402, 2020.

[52] I. El Naqa and M. J. Murphy, “What is machine learning?,” in machine learning in radiation

oncology, pp. 3–11, Springer, 2015.

[53] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine learning for big data

processing,” EURASIP Journal on Advances in Signal Processing, vol. 2016, no. 1, pp. 1–16,

2016.

[54] F. Hussain, R. Hussain, S. A. Hassan, and E. Hossain, “Machine learning in iot security:

Current solutions and future challenges,” IEEE Communications Surveys & Tutorials, vol. 22,

no. 3, pp. 1686–1721, 2020.

[55] C. Wirth, R. Akrour, G. Neumann, J. Fürnkranz, et al., “A survey of preference-based

reinforcement learning methods,” Journal of Machine Learning Research, vol. 18, no. 136,

pp. 1–46, 2017.

[56] E. Fix and J. L. Hodges, “Discriminatory analysis. nonparametric discrimination: Con-

sistency properties,” International Statistical Review/Revue Internationale de Statistique,

vol. 57, no. 3, pp. 238–247, 1989.

[57] Y. Akbulut, A. Sengur, Y. Guo, and F. Smarandache, “Ns-k-nn: Neutrosophic set-based

k-nearest neighbors classifier,” Symmetry, vol. 9, no. 9, p. 179, 2017.

[58] A. E. Mohamed, “Comparative study of four supervised machine learning techniques for

classification,” International Journal of Applied, vol. 7, no. 2, 2017.

[59] Y. Altuntaş, A. F. Kocamaz, Z. CÖMERT, R. Cengiz, and M. Esmeray, “Identification of

haploid maize seeds using gray level co-occurrence matrix and machine learning techniques,”

in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP),

pp. 1–5, IEEE, 2018.

[60] C. Zafer, “Fusing fine-tuned deep features for recognizing different tympanic membranes,”

Biocybernetics and Biomedical Engineering, vol. 40, no. 1, pp. 40–51, 2020.

BIBLIOGRAPHY 87

[61] A. Diker, Z. Cömert, E. Avci, and S. Velappan,“Intelligent system based on genetic algorithm

and support vector machine for detection of myocardial infarction from ecg signals,” in 2018

26th Signal Processing and Communications Applications Conference (SIU), pp. 1–4, IEEE,

2018.

[62] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[63] M. Usman, G. Mustafa, and M. T. Afzal, “Ranking of author assessment parameters using

logistic regression,” Scientometrics, vol. 126, no. 1, pp. 335–353, 2021.

[64] P. S. Saini, S. Behal, and S. Bhatia, “Detection of ddos attacks using machine learning

algorithms,” in 2020 7th International Conference on Computing for Sustainable Global De-

velopment (INDIACom), pp. 16–21, IEEE, 2020.

[65] I. A. A. Amra and A. Y. Maghari, “Students performance prediction using knn and näıve

bayesian,” in 2017 8th International Conference on Information Technology (ICIT), pp. 909–

913, IEEE, 2017.

[66] A. Chapman, E. Simperl, L. Koesten, G. Konstantinidis, L.-D. Ibáñez, E. Kacprzak, and

P. Groth, “Dataset search: a survey,” The VLDB Journal, vol. 29, no. 1, pp. 251–272, 2020.

[67] A. Paullada, I. D. Raji, E. M. Bender, E. Denton, and A. Hanna, “Data and its (dis) con-

tents: A survey of dataset development and use in machine learning research,” arXiv preprint

arXiv:2012.05345, 2020.

[68] “Real data definition.” https://www.lawinsider.com/dictionary/real-data.

[69] R. Heyburn, R. R. Bond, M. Black, M. Mulvenna, J. Wallace, D. Rankin, and B. Cleland,

“Machine learning using synthetic and real data: similarity of evaluation metrics for different

healthcare datasets and for different algorithms,” in Data Science and Knowledge Engineer-

ing for Sensing Decision Support: Proceedings of the 13th International FLINS Conference

(FLINS 2018), pp. 1281–1291, World Scientific, 2018.

[70] M. A. Hall and L. A. Smith, “Feature selection for machine learning: comparing a correlation-

based filter approach to the wrapper.,” in FLAIRS conference, vol. 1999, pp. 235–239, 1999.

[71] A. Thakkar and R. Lohiya, “A review of the advancement in intrusion detection datasets,”

Procedia Computer Science, vol. 167, pp. 636–645, 2020.

[72] V. R. Balasaraswathi, M. Sugumaran, and Y. Hamid, “Feature selection techniques for in-

trusion detection using non-bio-inspired and bio-inspired optimization algorithms,” Journal

of Communications and Information Networks, vol. 2, no. 4, pp. 107–119, 2017.

https://www.lawinsider.com/dictionary/real-data

BIBLIOGRAPHY 88

[73] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking (sdn) and distributed

denial of service (ddos) attacks in cloud computing environments: A survey, some research

issues, and challenges,” IEEE communications surveys & tutorials, vol. 18, no. 1, pp. 602–622,

2015.

[74] T. Ubale and A. K. Jain, “Taxonomy of ddos attacks in software-defined networking envi-

ronment,” in International Conference on Futuristic Trends in Network and Communication

Technologies, pp. 278–291, Springer, 2018.

[75] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, “Ddos attack protection in the era of cloud

computing and software-defined networking,” Computer Networks, vol. 81, pp. 308–319, 2015.

[76] P. Zhang, H. Wang, C. Hu, and C. Lin, “On denial of service attacks in software defined

networks,” IEEE Network, vol. 30, no. 6, pp. 28–33, 2016.

[77] A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M. Imran, and S. Guizani, “Securing

software defined networks: taxonomy, requirements, and open issues,” IEEE Communications

Magazine, vol. 53, no. 4, pp. 36–44, 2015.

[78] Q. Yan and F. R. Yu, “Distributed denial of service attacks in software-defined networking

with cloud computing,” IEEE Communications Magazine, vol. 53, no. 4, pp. 52–59, 2015.

[79] E. S. David, D. Taylor, and J. Turner, “Packet classification using extended tcams,” in in

Proceedings of IEEE International Conference on Network Protocols (ICNP, Citeseer, 2000.

[80] J. M. Dover, “A denial of service attack against the open floodlight sdn controller,” Dover

Networks LCC, Edgewater, MD, USA, 2013.

[81] C. E. Shannon, “A mathematical theory of communication,” The Bell system technical jour-

nal, vol. 27, no. 3, pp. 379–423, 1948.

[82] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris, “Combining

openflow and sflow for an effective and scalable anomaly detection and mitigation mechanism

on sdn environments,” Computer Networks, vol. 62, pp. 122–136, 2014.

[83] D. Li, C. Yu, Q. Zhou, and J. Yu, “Using svm to detect ddos attack in sdn network,” in IOP

Conference Series: Materials Science and Engineering, vol. 466, p. 012003, IOP Publishing,

2018.

[84] M. J. R. Dennis and X. Li, “Machine-learning and statistical methods for ddos attack detec-

tion and defense system in software defined networks,” 2018.

[85] J. Ye, X. Cheng, J. Zhu, L. Feng, and L. Song, “A ddos attack detection method based on

svm in software defined network,” Security and Communication Networks, vol. 2018, 2018.

BIBLIOGRAPHY 89

[86] M. Myint Oo, S. Kamolphiwong, T. Kamolphiwong, and S. Vasupongayya, “Advanced sup-

port vector machine-(asvm-) based detection for distributed denial of service (ddos) attack

on software defined networking (sdn),” Journal of Computer Networks and Communications,

vol. 2019, 2019.

[87] O. Rahman, M. A. G. Quraishi, and C.-H. Lung, “Ddos attacks detection and mitigation

in sdn using machine learning,” in 2019 IEEE World Congress on Services (SERVICES),

vol. 2642, pp. 184–189, IEEE, 2019.

[88] A. Alshamrani, A. Chowdhary, S. Pisharody, D. Lu, and D. Huang, “A defense system for

defeating ddos attacks in sdn based networks,” in Proceedings of the 15th ACM International

Symposium on Mobility Management and Wireless Access, pp. 83–92, 2017.

[89] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad, “Network intrusion

detection system: A systematic study of machine learning and deep learning approaches,”

Transactions on Emerging Telecommunications Technologies, vol. 32, no. 1, p. e4150, 2021.

[90] S. M. Mousavi and M. St-Hilaire, “Early detection of ddos attacks against sdn controllers,”

in 2015 International Conference on Computing, Networking and Communications (ICNC),

pp. 77–81, IEEE, 2015.

[91] S. Raschka, “Python machine learning equation reference.” https://www.python.org/doc/

essays/blurb/.

[92] J. Ali, S. Lee, and B.-h. Roh, “Performance analysis of pox and ryu with different sdn

topologies,” in Proceedings of the 2018 International Conference on Information Science and

System, pp. 244–249, 2018.

[93] K. Kaur, S. Kaur, and V. Gupta, “Performance analysis of python based openflow con-

trollers,” 2016.

[94] S. Rowshanrad, S. Namvarasl, V. Abdi, M. Hajizadeh, and M. Keshtgary, “A survey on sdn,

the future of networking,” Journal of Advanced Computer Science & Technology, vol. 3, no. 2,

pp. 232–248, 2014.

[95] N. Hoque, M. H. Bhuyan, R. C. Baishya, D. K. Bhattacharyya, and J. K. Kalita, “Network

attacks: Taxonomy, tools and systems,” Journal of Network and Computer Applications,

vol. 40, pp. 307–324, 2014.

[96] S. Behal and K. Kumar, “Characterization and comparison of ddos attack tools and traffic

generators: A review.,” Int. J. Netw. Secur., vol. 19, no. 3, pp. 383–393, 2017.

[97] N. Bindra and M. Sood, “Detecting ddos attacks using machine learning techniques and con-

temporary intrusion detection dataset,” Automatic Control and Computer Sciences, vol. 53,

no. 5, pp. 419–428, 2019.

https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/

Appendix A

Deposit of the source code

Code source « monitor.py »

1

2 import l4_switch

3 from ryu.controller import ofp_event

4 from ryu.controller.handler import MAIN_DISPATCHER , DEAD_DISPATCHER

5 from ryu.controller.handler import set_ev_cls

6 from ryu.lib import hub

7 import csv

8 from datetime import datetime

9

10 class SimpleMonitor13(l4_switch.SimpleSwitch13):

11

12 def __init__(self , *args , ** kwargs):

13 super(SimpleMonitor13 , self).__init__ (*args , ** kwargs)

14 self.datapaths = {}

15 self.monitor_thread = hub.spawn(self._monitor)

16

17 file0 = open("Dataset.csv", "w")

18 file0.write(’timestamp , datapath_id , flow_id , ip_src , dl_src , tp_src ,

ip_dst , dl_dst , tp_dst , ip_proto ,icmp_code , icmp_type , flow_duration_sec

, flow_duration_nsec , idle_timeout ,hard_timeout , flags , packet_count ,

byte_count , packet_count_per_second ,packet_count_per_nsecond ,

byte_count_per_second , byte_count_per_nsecond , label\n’)

19 file0.close()

20

21 @set_ev_cls(ofp_event.EventOFPStateChange ,

22 [MAIN_DISPATCHER , DEAD_DISPATCHER])

23 def _state_change_handler(self , ev):

24 datapath = ev.datapath

25 if ev.state == MAIN_DISPATCHER:

26 if datapath.id not in self.datapaths:

Chapter A. Deposit of the source code 91

27 self.logger.debug(’register datapath: %016x’, datapath.id)

28 self.datapaths[datapath.id] = datapath

29 elif ev.state == DEAD_DISPATCHER:

30 if datapath.id in self.datapaths:

31 self.logger.debug(’unregister datapath: %016x’, datapath.id)

32 del self.datapaths[datapath.id]

33

34 def _monitor(self):

35 while True:

36 for dp in self.datapaths.values ():

37 self._request_stats(dp)

38 hub.sleep (10)

39

40 def _request_stats(self , datapath):

41 self.logger.debug(’send stats request: %016x’, datapath.id)

42 parser = datapath.ofproto_parser

43

44 req = parser.OFPFlowStatsRequest(datapath)

45 datapath.send_msg(req)

46 @set_ev_cls(ofp_event.EventOFPFlowStatsReply , MAIN_DISPATCHER)

47 def _flow_stats_reply_handler(self , ev):

48 body = ev.msg.body

49

50 timestamp = datetime.now()

51 timestamp = timestamp.timestamp ()

52 icmp_code = -1

53 icmp_type = -1

54 tp_src = 0

55 tp_dst = 0

56

57 file0 = open("Dataset.csv", "a+")

58

59 body = ev.msg.body

60 for stat in sorted ([flow for flow in body if (flow.priority == 1)],

key=lambda flow:

61 (flow.match[’eth_type ’], flow.match[’ipv4_src ’],

flow.match[’in_port ’],flow.match[’eth_src ’],

62 flow.match[’eth_dst ’], flow.

match[’ipv4_dst ’], flow.match[’ip_proto ’],)):

63

64 ip_src = stat.match[’ipv4_src ’]

65 ip_dst = stat.match[’ipv4_dst ’]

66 ip_proto = stat.match[’ip_proto ’]

67 dl_src= stat.match[’eth_src ’]

68 dl_dst= stat.match[’eth_dst ’]

69 if stat.match[’ip_proto ’] == 1:

70 icmp_code = stat.match[’icmpv4_code ’]

Chapter A. Deposit of the source code 92

71 icmp_type = stat.match[’icmpv4_type ’]

72

73 elif stat.match[’ip_proto ’] == 6:

74 tp_src = stat.match[’tcp_src ’]

75 tp_dst = stat.match[’tcp_dst ’]

76

77 elif stat.match[’ip_proto ’] == 17:

78 tp_src = stat.match[’udp_src ’]

79 tp_dst = stat.match[’udp_dst ’]

80

81 flow_id = str(ip_src) + str(tp_src) + str(ip_dst) + \

82 str(tp_dst) + str(ip_proto)

83

84 try:

85 packet_count_per_second = stat.packet_count/stat.duration_sec

86 packet_count_per_nsecond = stat.packet_count/stat.

duration_nsec

87 except:

88 packet_count_per_second = 0

89 packet_count_per_nsecond = 0

90

91 try:

92 byte_count_per_second = stat.byte_count/stat.duration_sec

93 byte_count_per_nsecond = stat.byte_count/stat.duration_nsec

94 except:

95 byte_count_per_second = 0

96 byte_count_per_nsecond = 0

97

98 file0.write("

{},{},{} ,{},{},{},{},{},{},{},{},{} ,{},{},{},{},{},{},{},{},{} ,{},{},{}\n

"

99 .format(timestamp , ev.msg.datapath.id, flow_id ,

ip_src , dl_src , tp_src , ip_dst , dl_dst , tp_dst ,

100 stat.match[’ip_proto ’], icmp_code , icmp_type ,

101 stat.duration_sec , stat.duration_nsec ,

102 stat.idle_timeout , stat.hard_timeout ,

103 stat.flags , stat.packet_count , stat.

byte_count ,

104 packet_count_per_second ,

packet_count_per_nsecond ,

105 byte_count_per_second , byte_count_per_nsecond

, 0))

106 file0.close()

Source Code A.1: monitor.py.

Chapter A. Deposit of the source code 93

Code source « ML.py »

1 from datetime import datetime

2 from matplotlib import pyplot as plt

3 import numpy as np

4 import pandas as pd

5 from sklearn.model_selection import train_test_split

6 from sklearn.linear_model import LogisticRegression

7 from sklearn.neighbors import KNeighborsClassifier

8 from sklearn.svm import SVC

9 from sklearn.naive_bayes import GaussianNB

10 from sklearn.tree import DecisionTreeClassifier

11 from sklearn.ensemble import RandomForestClassifier

12 from sklearn.metrics import confusion_matrix

13 from sklearn.metrics import accuracy_score

14 import time

15 from sklearn.preprocessing import StandardScaler

16

17 class MachineLearning ():

18

19 def __init__(self):

20

21 print("Loading dataset ...")

22

23 self.counter = 0

24

25 self.flow_dataset = pd.read_csv(’Dataset.csv’)

26

27 self.flow_dataset.iloc[:, 2] = self.flow_dataset.iloc[:, 2].str.

replace(’.’, ’’,regex=True)

28 self.flow_dataset.iloc[:, 3] = self.flow_dataset.iloc[:, 3].str.

replace(’.’, ’’,regex=True)

29 self.flow_dataset.iloc[:, 4] = self.flow_dataset.iloc[:, 4].str.

replace(’:’, ’’,regex=True).apply(lambda x: int(x, 16))

30 self.flow_dataset.iloc[:, 6] = self.flow_dataset.iloc[:, 6].str.

replace(’.’, ’’,regex=True)

31 self.flow_dataset.iloc[:, 7] = self.flow_dataset.iloc[:, 7].str.

replace(’:’, ’’,regex=True).apply(lambda x: int(x, 16))

32

33 self.X_flow = self.flow_dataset.iloc[:, :-1]. values

34 self.X_flow = self.X_flow.astype(’float64 ’)

35

36 self.y_flow = self.flow_dataset.iloc[:, -1]. values

37

38 self.X_flow_train , self.X_flow_test , self.y_flow_train , self.

y_flow_test = train_test_split(

39 self.X_flow , self.y_flow , test_size =0.25, random_state =0)

Chapter A. Deposit of the source code 94

40

41 def LR(self):

42

43 print(

44 "---------------------")

45 print("Logistic Regression ...")

46

47 self.classifier = LogisticRegression(

48 solver=’liblinear ’, random_state =0)

49 self.Confusion_matrix ()

50

51 def KNN(self):

52

53 print(

54 "---------------------")

55 print("K-NEAREST NEIGHBORS ...")

56

57 self.classifier = KNeighborsClassifier(

58 n_neighbors =5, metric=’minkowski ’, p=2)

59 self.Confusion_matrix ()

60

61 def SVM(self):

62

63 print(

64 "---------------------")

65 print("SUPPORT -VECTOR MACHINE ...")

66

67 self.classifier = SVC(kernel=’rbf’, random_state =0)

68 self.Confusion_matrix ()

69

70 def NB(self):

71

72 print(

73 "---------------------")

74 print("NAIVE -BAYES ...")

75

76 self.classifier = GaussianNB ()

77 self.Confusion_matrix ()

78

79 def DT(self):

80

81 print(

82 "------------------------")

83 print("DECISION TREE ...")

84

85 self.classifier = DecisionTreeClassifier(

86 criterion=’entropy ’, random_state =0)

Chapter A. Deposit of the source code 95

87 self.Confusion_matrix ()

88

89 def RF(self):

90

91 print(

92 "------------------------")

93 print("RANDOM FOREST ...")

94

95 self.classifier = RandomForestClassifier(

96 n_estimators =10, criterion="entropy", random_state =0)

97 self.Confusion_matrix ()

98

99 def Confusion_matrix(self):

100 self.counter += 1

101

102 self.flow_model = self.classifier.fit(

103 self.X_flow_train , self.y_flow_train)

104

105 self.y_flow_pred = self.flow_model.predict(self.X_flow_test)

106

107 print(

108 "-------------------------")

109

110 print("confusion matrix")

111 cm = confusion_matrix(self.y_flow_test , self.y_flow_pred)

112 print(cm)

113

114 acc = accuracy_score(self.y_flow_test , self.y_flow_pred)

115

116 print("succes accuracy = {0:.2f} %".format(acc *100))

117 fail = 1.0 - acc

118 print("fail accuracy = {0:.2f} %".format(fail *100))

119 print(

120 "-------------------------")

121

122

123

124 def main():

125

126 start_script = datetime.now()

127

128 ml = MachineLearning ()

129

130 start = datetime.now()

131 ml.LR()

132 end = datetime.now()

133 print("LEARNING and PREDICTING Time: ", (end -start))

Chapter A. Deposit of the source code 96

134

135 start = datetime.now()

136 ml.KNN()

137 end = datetime.now()

138 print("LEARNING and PREDICTING Time: ", (end -start))

139

140 start = datetime.now()

141 ml.SVM()

142 end = datetime.now()

143 print("LEARNING and PREDICTING Time: ", (end -start))

144

145 start = datetime.now()

146 ml.NB()

147 end = datetime.now()

148 print("LEARNING and PREDICTING Time: ", (end -start))

149

150 start = datetime.now()

151 ml.DT()

152 end = datetime.now()

153 print("LEARNING and PREDICTING Time: ", (end -start))

154 start = time.process_time ()

155 #start = datetime.now()

156 ml.RF()

157 print(time.process_time () - start)

158 #end = datetime.now()

159 #print(" LEARNING and PREDICTING Time: ", (end -start))

160

161 end_script = datetime.now()

162 print("Script Time: ", (end_script -start_script))

163

164

165 if __name__ == "__main__":

166 main()

Source Code A.2: ML.py.

Code source « detector mitigator.py »

1 from ryu.controller import ofp_event

2 from ryu.controller.handler import MAIN_DISPATCHER , DEAD_DISPATCHER

3 from ryu.controller.handler import set_ev_cls

4 from ryu.lib import hub

5

6 import l4_switch

7 from DateTime import DateTime

8 import os

Chapter A. Deposit of the source code 97

9 import sys

10 import pandas as pd

11 from sklearn.model_selection import train_test_split

12 from sklearn.ensemble import RandomForestClassifier

13 from sklearn.metrics import confusion_matrix

14 from sklearn.metrics import accuracy_score

15

16 class SimpleMonitor13(l4_switch.SimpleSwitch13):

17

18 def __init__(self , *args , ** kwargs):

19

20 super(SimpleMonitor13 , self).__init__ (*args , ** kwargs)

21 self.datapaths = {}

22 self.monitor_thread = hub.spawn(self._monitor)

23

24 start = datetime.now()

25

26 self.flow_training ()

27

28 end = datetime.now()

29 print("Training time: ", (end -start))

30

31 @set_ev_cls(ofp_event.EventOFPStateChange ,

32 [MAIN_DISPATCHER , DEAD_DISPATCHER])

33 def _state_change_handler(self , ev):

34 datapath = ev.datapath

35 if ev.state == MAIN_DISPATCHER:

36 if datapath.id not in self.datapaths:

37 self.logger.debug(’register datapath: %016x’, datapath.id)

38 self.datapaths[datapath.id] = datapath

39 elif ev.state == DEAD_DISPATCHER:

40 if datapath.id in self.datapaths:

41 self.logger.debug(’unregister datapath: %016x’, datapath.id)

42 del self.datapaths[datapath.id]

43

44 def _monitor(self):

45 while True:

46 for dp in self.datapaths.values ():

47 self._request_stats(dp)

48 hub.sleep (4)

49

50 self.flow_predict ()

51

52 def _request_stats(self , datapath):

53 self.logger.debug(’send stats request: %016x’, datapath.id)

54 parser = datapath.ofproto_parser

55

Chapter A. Deposit of the source code 98

56 req = parser.OFPFlowStatsRequest(datapath)

57 datapath.send_msg(req)

58

59 @set_ev_cls(ofp_event.EventOFPFlowStatsReply , MAIN_DISPATCHER)

60 def _flow_stats_reply_handler(self , ev):

61

62 timestamp = datetime.now()

63 timestamp = timestamp.timestamp ()

64

65 file0 = open("Prediction.csv","w")

66 file0.write(’timestamp ,datapath_id ,flow_id ,ip_src ,dl_src ,tp_src ,

ip_dst , dl_dst ,tp_dst ,ip_proto ,icmp_code ,icmp_type ,flow_duration_sec ,

flow_duration_nsec ,idle_timeout ,hard_timeout ,flags ,packet_count ,

byte_count ,packet_count_per_second ,packet_count_per_nsecond ,

byte_count_per_second ,byte_count_per_nsecond\n’)

67 body = ev.msg.body

68 icmp_code = -1

69 icmp_type = -1

70 tp_src = 0

71 tp_dst = 0

72

73 for stat in sorted ([flow for flow in body if (flow.priority == 1)],

key=lambda flow:

74 (flow.match[’eth_type ’],flow.match[’ipv4_src ’],flow.match[’

in_port ’],flow.match[’eth_src ’],

75 flow.match[’eth_dst ’],flow.match

[’ipv4_dst ’],flow.match[’ip_proto ’])):

76

77 ip_src = stat.match[’ipv4_src ’]

78 ip_dst = stat.match[’ipv4_dst ’]

79 ip_proto = stat.match[’ip_proto ’]

80 dl_src= stat.match[’eth_src ’]

81 dl_dst= stat.match[’eth_dst ’]

82

83 if stat.match[’ip_proto ’] == 1:

84 icmp_code = stat.match[’icmpv4_code ’]

85 icmp_type = stat.match[’icmpv4_type ’]

86

87 elif stat.match[’ip_proto ’] == 6:

88 tp_src = stat.match[’tcp_src ’]

89 tp_dst = stat.match[’tcp_dst ’]

90

91 elif stat.match[’ip_proto ’] == 17:

92 tp_src = stat.match[’udp_src ’]

93 tp_dst = stat.match[’udp_dst ’]

94

95 flow_id = str(ip_src) + str(tp_src) + str(ip_dst) + str(tp_dst) +

Chapter A. Deposit of the source code 99

str(ip_proto)

96

97 try:

98 packet_count_per_second = stat.packet_count/stat.duration_sec

99 packet_count_per_nsecond = stat.packet_count/stat.

duration_nsec

100 except:

101 packet_count_per_second = 0

102 packet_count_per_nsecond = 0

103

104 try:

105 byte_count_per_second = stat.byte_count/stat.duration_sec

106 byte_count_per_nsecond = stat.byte_count/stat.duration_nsec

107 except:

108 byte_count_per_second = 0

109 byte_count_per_nsecond = 0

110

111 file0.write("

{},{},{} ,{},{},{},{},{},{},{},{},{} ,{},{},{},{},{},{},{},{},{} ,{},{}\n"

112 .format(timestamp , ev.msg.datapath.id, flow_id , ip_src ,

dl_src , tp_src ,ip_dst , dl_dst , tp_dst ,

113 stat.match[’ip_proto ’],icmp_code ,icmp_type ,

114 stat.duration_sec , stat.duration_nsec ,

115 stat.idle_timeout , stat.hard_timeout ,

116 stat.flags , stat.packet_count ,stat.byte_count ,

117 packet_count_per_second ,packet_count_per_nsecond ,

118 byte_count_per_second ,byte_count_per_nsecond))

119

120 file0.close()

121

122 def flow_training(self):

123

124 self.logger.info("Flow Training ...")

125

126 flow_dataset = pd.read_csv(’Dataset.csv’)

127

128

129 X_flow = flow_dataset.iloc[:, [19 ,22 ,0 ,20 ,17]]. values

130 X_flow = X_flow.astype(’float64 ’)

131

132 y_flow = flow_dataset.iloc[:, -1]. values

133

134 X_flow_train , X_flow_test , y_flow_train , y_flow_test =

train_test_split(X_flow , y_flow , test_size =0.25, random_state =0)

135

136 classifier = RandomForestClassifier(n_estimators =10, criterion="

entropy", random_state =0)

Chapter A. Deposit of the source code 100

137 self.flow_model = classifier.fit(X_flow_train , y_flow_train)

138

139 y_flow_pred = self.flow_model.predict(X_flow_test)

140

141 self.logger.info("-------------------")

142

143 self.logger.info("confusion matrix")

144 cm = confusion_matrix(y_flow_test , y_flow_pred)

145 self.logger.info(cm)

146

147 acc = accuracy_score(y_flow_test , y_flow_pred)

148

149 self.logger.info("succes accuracy = {0:.2f} %".format(acc *100))

150 fail = 1.0 - acc

151 self.logger.info("fail accuracy = {0:.2f} %".format(fail *100))

152 self.logger.info("-------------------")

153

154 def flow_predict(self):

155 try:

156

157 predict_flow_dataset = pd.read_csv(’Prediction.csv’)

158 predict_flow_dataset1 = pd.read_csv(’Prediction.csv’)

159

160 predict_flow_dataset1.iloc[:, 6] = predict_flow_dataset1.iloc[:,

6].str.replace(’.’, ’’,regex=True)

161

162 X_predict_flow= predict_flow_dataset.iloc[:, [19 ,22 ,0 ,20 ,17]].

values

163 X_predict_flow = X_predict_flow.astype(’float64 ’)

164

165 y_flow_pred = self.flow_model.predict(X_predict_flow)

166

167 legitimate_trafic = 0

168 ddos_trafic = 0

169

170 for i in y_flow_pred:

171 if i == 0:

172 legitimate_trafic = legitimate_trafic + 1

173 else:

174 ddos_trafic = ddos_trafic + 1

175 victim = int(predict_flow_dataset1.iloc[i, 6])%20

176 mac = str(predict_flow_dataset1.iloc[i, 4])

177 dpid= str(predict_flow_dataset1.iloc[i, 1])

178

179

180

181 self.logger.info("----------------------")

Chapter A. Deposit of the source code 101

182 if (legitimate_trafic/len(y_flow_pred)*100) > 80:

183 self.logger.info("legitimate trafic ...")

184 else:

185 self.logger.info("ddos trafic ...")

186 self.logger.info("victim is host: h{}".format(victim))

187 self.logger.info("starting mitigation ...")

188

189 print("switch attacker is S"+dpid)

190 cmd=’ovs -ofctl add -flow s’+dpid+’ dl_src=’+mac+’,actions=drop

’

191 passw=’user’

192 os.system(’echo %s|sudo -S %s’ % (passw ,cmd))

193

194 self.logger.info("all the packets from this mac address "+mac

+" has been dropped from switch S" +dpid)

195

196

197 self.logger.info("-----------------------")

198

199 file0 = open("Prediction.csv","w")

200

201 file0.write(’timestamp ,datapath_id ,flow_id ,ip_src ,dl_src ,tp_src ,

ip_dst ,dl_dst , tp_dst ,ip_proto ,icmp_code ,icmp_type ,flow_duration_sec ,

flow_duration_nsec ,idle_timeout ,hard_timeout ,flags ,packet_count ,

byte_count ,packet_count_per_second ,packet_count_per_nsecond ,

byte_count_per_second ,byte_count_per_nsecond\n’)

202 file0.close()

203 except:

204 pass

Source Code A.3: detector mitigator.py.

	الكلمات المفتاحية :
	General Introduction
	Notions of Network Security, SDN, DDoS
	Introduction
	Network security
	Definition
	Objectives
	Network attacks
	Network protection

	SDN (Software-Defined Network)
	Definition
	Comparison between SDN networks and traditional networks
	The architecture of the SDN
	SDN controllers
	Benefits of SDN
	Challenges of SDN

	OpenFlow fundamentals
	Switch Components
	Openflow ports
	Openflow channel

	Denial of Service
	Definition
	Distributed denial of service (DDoS) Attacks
	Botnets
	Taxonomy of DDoS attacks

	Conclusion

	DDoS attacks in SDN networks, and ML approach
	Introduction
	Machine learning approach
	Introduction to machine learning
	Types of machine learning algorithms

	Supervised machine learning
	k-Nearest Neighbor (k-NN)
	Decision Tree
	Support Vector Machine
	Random Forest
	Logistic Regression
	Naive Bayes

	Dataset
	Types of dataset

	Data Preprocessing
	Feature Selection
	Feature Selection Procedure
	Feature selection methods

	Classifier Evaluation Measures
	Accuracy
	Confusion matrix

	SDN Security problems
	Communication Level
	Each Component level
	Logging and audit level

	Defeating DDoS attacks in SDN based Networks
	Types of DDoS attacks in SDN
	Application layer DDoS attacks
	Control layer DDoS attacks
	Data layer DDoS attacks
	Communication links

	Detecting DDoS attacks in SDN network
	DDoS attack detection techniques

	Discussion
	Conclusion

	Proposed approach and implementation
	Introduction
	Proposed approach
	How the proposed approach works
	Material resources
	Tools selection
	Python language
	Ryu Controller
	Mininet virtual network
	Hping the DDoS attack tool

	Files and functions used in the implementation
	Setup the network
	Tree topology
	Linear topology

	Dataset and ML algorithms
	Dataset selection
	Comparison between ML algorithms
	Features selection
	Integration of the model with Ryu controller

	Work evaluation
	Conclusion

	Conclusion and Future Work
	Bibliography
	Appendix
	Deposit of the source code

