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Abstract:

Today, the world witnesses a huge advancement in technology, specially in the domain
of virtual (VR) and augmented reality (AR). A lot of the largest companies are interested
in AR and VR, an imaginary world that you feel inside. That kind of project are based
on visualization of 3d objects. It was always considered a difficult task for designers to
build a full 3D environment. Even if it is possible to do it, it could not be achieved
neither in a short time nor with less expensive software

The objective of this work is to generate a 3d shape from a short text description with
the help of the most interesting topic in 1A neural, networks and specifically, the
generative adversarial networks (GAN).

We built and trained a conditional GAN (CGAN) having as input the Bert embeddings
of text descriptions and as output their corresponding 3D shape embeddings. We trained
an Autoencoder to learn the 3D shapes representations. To validate our model, we
trained another CGAN having as output the 3D Shapes. We noticed that there isn’t a big
loss in the obtained 3D forms.

Keywords: Text to 3D shape, Text embeddings, Shape embeddings, CGAN, Bert,
Autoencoder.



Résumé :

Aujourd'hui, le monde est témoin d'un énorme progrés technologique, en particulier
dans le domaine de la réalité virtuelle et augmentée. De nombreuses grandes entreprises
s'intéressent a la realité augmentée et a la réalité virtuelle. Ce genre de projet est basé sur
la visualisation d'objets 3D. Concevoir un environnement 3D a toujours été considéré
comme une tache difficile pour les concepteurs. Et méme si c’est possible de le faire,
cela ne peut étre réalisé ni en peu de temps ni avec des logiciels moins codteux.
L'objectif de ce travail est de générer une forme 3D a partir d'une description textuelle a
l'aide du sujet le plus intéressant en 1A les réseaux de neurones et plus particuliérement
les réseaux antagonistes génératifs (GAN).

Nous avons construit et entrainé un GAN conditionnel (CGAN) ayant en entrée les
représentations Bert des descriptions textuelles et en sortie leurs représentations de
forme 3D correspondantes. Pour apprendre les représentations des formes 3D, nous
avons entrainé un auto encodeur. Pour valider notre modele, nous avons entrainé un
autre CGAN ayant en sortie les Formes 3D. Nous avons remarqué qu'il n'y a pas de
perte significative dans les formes 3D obtenues.

Mots-clés : : Text to 3D shape, Représentation Textuelle, représentation des formes
3D, CGAN, Bert, Autoencoder.
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General introduction:

Context and problematic
Artificial intelligence and machine learning have taken the world by storm in the last
couple of years and the best seems is yet to come, and its bread and butter is the data, a
need for a smooth transition between different types of data haven’t been more
necessary. Although there have been many works on that but the 3d object type of data
didn’t seem to be getting its fair share of interest? In all fairness, it makes all the sense
considering how complex time and hardware (money) consuming they are. Companies
as big as facebook and amazon started to invest in advanced reality(AR) related fields
which we think is due to the advance in computation algorithms, which led into more
people believing it is becoming a good future investment.
Along the way, some issues were raised. Is it possible to learn a 3D shape
representation? Is there a way to automatically generate 3D AR environment from text
descriptions?
Work objectives
Our work is nothing short of those algorithms where we take on the problem of 3D
objects and try to find the most cost-efficient way of using them but on the other hand
also doesn’t affect the results (or affect them in an acceptable way not that big to feel a
difference).
Our mains tasks are:

- Build a neural model to learn 3D shapes representations (embeddings)

- Build a model that associate 3D shapes and text descriptions using only their

representations

- Validate the final model using a real dataset

We will use a labeled dataset of tables and chairs with textual descriptions and try to
develop some deep learning algorithms to train a model on them that will, in the end,
understand and be able to perform cross modal (3D objects or text) tasks like generation

or classification.

We divided our work into a theoretical and a practical part



Chapter 1: where we will be explaining machine learning and showing how magical
their algorithms can be which shows why we chose them to handle our problem.
Chapter 2: in this chapter we will discuss the similar works that are connected in a way
or another to our work

That concludes the theoretical part, and in the practical one we have.

Chapter 3: here we will detail the conceptual part of our work, where we explain our
deep learning models and how they work as well as their architectures and why we
chose every single one of them.

Chapter 4: lastly we discuss the implementation of those models and what parameters
did we use to get the best out of them, then exploring the non-technical stuff that is just

as important, to finish off with an evaluation to all the deep learning model



Xii

P ConTENnTS

ABSTRACT VII
ACKNOWLEDGEMENT IX
LIST OF FIGURES XV
LIST OF TABLES XVII

CHAPTER 1 A GLOBAL OVERVIEW ON MACHINE LEARNING 1
1.1 introduction 1

1.2 machinelearning 1
1.2.1 Supervised Learning 1
1.2.2 Unsupervised Learning 2
1.2.3 semi-supervised Learning 3
1.2.4 Reinforcement Learning 4

1.3 Deeplearning 6
1.3.1 Activation functions 6
1.3.2 LossFunction 8
1.3.3 GradientDecent 9

1.4 Deep Learning Architectures 10
1.4.1 convolutional neural network 10
1.4.2 Recurrent neural networks 13
143 Transformers 15
1.4.4 Autoencodes 16
1.45 Generative Architecture 17

1.5 Machine Learning Models Performance Testing 20

151 Evaluation Techniques 20

Xi



1.5.2 Evaluation Metrics 21

1.6 Conclusion 24

CHAPTER 2 RELATED WORKS 25
2.1 TextTolmage 25

2.1.1 Conditional-GANs 25
2.1.2 Stack-GAN 27
2.2 ImageTo3D Shapes 30
2.2.1 Multi-view 3D Reconstruction 30
2.2.2 Deep Learningon Sets 30
2.3 TextToShape 32
2.4 Comparing the different related works 33

2.5 Conclusion 34

CHAPTER 3 DESIGN AND CONCEPTION 35
3.1 The global architecture: 36

3.2 Processing the natural language data 37
3.2.1 Wordembedding 37
3.2.2 Common Embedding techniques 38
3.2.3 BERT Embedding 38
3.2.4 Generating our text embeddings: 40
3.3 Processing the3Dshapes 42
3.4 Thegenerationtask 44

3.5 Conclusion 47

CHAPTER 4 THE IMPLEMENTATION OF OUR WORK 49
4.1 UsedTools: 49
41.1 Google Collaboratory 49
412 Python 49
4.1.3 Fronendwe developmenttools 50
414 F3D 50



4.1.5
4.1.6
417
418
4.1.9

Visual studiocode 50

NumPy 50
NRRD 50
Bert 50
Pytorch 51

4.2 Datasets 52

4.3 Ourinterface 55

4.4 Experiments 57

441
442
443
444

Autoencoder: 57
CGAN 58
Comparativestudy: 60
Discussingtheresults: 61

45 Conclusion: 62

GENERAL CONCLUSION 63

BIBLIOGRAPHY 65

CONTENTS

xiii



CHAPTER 1

1.1 supervised learning 2

1.2 unsupervised learning 3

1.3 reinforcementlearning 5

1.4 deeplearning 6

15 linear function 7

1.6 non linear function 8

1.7 catsdogsclassificationexample 9

1.8 the convolutional layer 11

1.9 Rectified Linear unit 11

110  thepoolinglayer 12

1.11  the fullyconnected layer 13

1.12  arecurrentneural network 14

1.13  atransformer handlingan NLPtask 16

1.14  anexample of anautoencoder 17

1.15  Generative Adversarial Network structure 18
116  Acomparison betweenGANand CGAN 19
1.17  Aconfusion matrix ofabinary classification 22
1.18  ClassificationEvaluation 23

CHAPTER 2

2.1 Reed etal. text-to-image GAN model 26

2.2

Stack-GAN 28

XV



2.3 The approach used by kevinchenetal 32

CHAPTER 3

31 Our autoencoderglobal architecture 36

3.2 agraphical representation of the base BERT model 39
3.3 anexample of inputting asentence into BERT 40

3.4 all-MiniLM-L6-v2 model information 41

35 Our autoencoder architecture 42

3.6 Our CGAN’s generator architecture 45

3.7 Our CGAN’s discriminator architecture 46

4.1 The shapenet projecthome page 52

4.2 Example form the shapenet tables and chairs dataset 53
4.3 paired sahpes and descriptions from our dataset 53
4.4 example fromthe primitivesdataset 54

4.5 a screenshot of the input page of our application 55
4.6 ascreenshot of the successful generation page of our application
4.7 some samples generated with our model 56

4.8 the loss function of the autoencoder 57

4.9 the loss function of the discriminator 58

410  theloss function of the generator 59

411  theloss function of the discriminator 59

412 theloss function of the generator 60

413 comparative study of the generator 61

55



11

1.2

1.2.1

CHAPTER 1

A GLoBAL Overview On MACHINE LEARNING

INTRODUCTION

Machine learning is an evolving branch of computational algorithms that are
designed to emulate human intelligence by learning from the surrounding
environment, it helps computers understand brute data and make decisions
or even predictions (which can be even better than humans) based on what
they have learned at first. It is,in other words, the field of study that gives
computers the ability to learn without being explicitly programmed. These
days, techniques based onmachine learninghave beenapplied successfullyin
diverse fields ranging from pattern recognition, computer vision, spacecraft
engineering, finance, entertainment, and computational biology to biomedical
and medical applications.

MACHINE LEARNING

Atits most basic, machine learning uses programmed algorithms that receive
and analyse input datato predict output values withinanacceptable range. As
new data is fed to these algorithms, they learn and optimise their operations to
improve performance, developing ‘intelligence’ over time.

There are four types of machine learning algorithms: supervised, semi-
supervised, unsupervised and reinforcement.

Supervised LEARNING

Supervised learning is the type of machine learning in which machinesare
trained usingwell "labelled" training data, and on basis of that data, machines
predict[1]. Thelabelled datameanssomeinputdataisalready tagged withthe
correctoutput. Supervised learning is where you have input variables (x) and
anoutputvariable (YY) and you use analgorithmto learn the mapping function
between the input and the output. Y=F(X). The goal is to approximate the
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mapping function so well that when you have new input data (x) that you can
predicttheoutputvariables (YY) forthatdatalnsupervisedlearning, thetraining
dataprovided tothe machinesworkasthe supervisor thatteachesthe machines
to predict the output correctly. It applies the same concept as a student learns
inthe supervision of the teacher. Inthe real-world, supervised learning can be
used for Risk Assessment, Image classification, Fraud Detection, spam filtering,
etc. Theworkingof Supervised learning canbeeasily understood by the below
example and diagram:

Labeled Data

O l:’ Prediction

I:l Square
OA S =)~
[ ] AA ! _l_}A Triangle

Model Training

Lables
<:> I:I Test Data
Hexagon Square
Triangle
FiGURE 1.1. supervised learning [54]

Supervised learning can be further divided into two types of problems [2]:

* Regression, used for the prediction of continuous variables, such as
Weather forecasting, Market Trends.

+ Classification, used when the output variable is categorical, which means
there are two classes such as Yes-No, Male-Female, True-false.

Unsupervised LEARNING

Unsupervised learning is a machine learning technique in which models are
not supervised using training dataset. Instead, models itself find the hidden
patternsand insightsfromthe givendata. Itcan be comparedtolearningwhich
takes place in the human brain while learning new things. It can be defined as
machine learning in which models are trained using unlabeled dataset and are
allowed to act on that data without any supervision. Unsupervised learning
cannot be directly applied to a regression or classification problem because
unlikesupervisedlearning, wehavetheinputdatabutnocorrespondingoutput
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data. The goal of unsupervised learning is to find the underlying structure of
dataset, group that data according to similarities, and represent that dataset in
acompressed format. Inreal-world, we do not always have input data with the
corresponding output so to solve such cases, we need unsupervised learning.
Rewards of unsupervised learning can be understood by the below diagram:

INPUT RAW DATA

a > (0> (5 —>Q°~|:: |

Processmg

Unlabeled data

FIGURE1.2. unsupervised learning [55]

The unsupervised learning algorithm can be further categorized into two
types of problems:

¢ Clustering, itisa method of grouping the objects into clusters such that
objects with most similarities remains into a group and has less or no
similarities with the objects of another group.

* Association, it used for finding the relationships between variables in the
large database. It determines the set of items that occurs together in the
dataset. Association rule makes marketing strategy more effective. Such
aspeople who buy X item (suppose a bread) are also tend to purchase Y
(Butter/Jam) item.

1.2.3 semi-supervised LEARNING

Semi-Supervised learning isa type of Machine Learning algorithm that repre-
sentsthe intermediate ground between Supervisedand Unsupervised learning
algorithms. It uses the combination of labeled and unlabeled datasets during
the training period. The basic disadvantage of supervised learning is that it
requireshand-labelingby ML specialistsordatascientists,anditalsorequiresa
highcosttoprocess. Furtherunsupervisedlearningalso hasalimited spectrum
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foritsapplications. Toovercome these drawbacks of supervised learning and
unsupervised learningalgorithms, the concept of Semi-supervised learningis
introduced. In this algorithm, training data is a combination of both labeled
and unlabeled data. However, labeled data exists with a very smallamount
while it consists of a huge amount of unlabeled data. Initially, similar data is
clustered along with an unsupervised learning algorithm, and further, it helps
to label the unlabeled data into labeled data uses pseudo labeling to train the
model with less labeled training data than supervised learning Semi-supervised
learningmodelsarebecomingmore popularintheindustries,some ofthemain
applications are: Speech Analysis, Web content classification, Protein sequence
classification.[2]

Reinforcement LEARNING

Reinforcement Learning is a feedback-based Machine learning technique in
which an agent learns to behave in an environment by performing the actions
and seeing the results of actions. For each good action, the agent gets positive
feedback, andfor each bad action, the agent gets negative feedback or penalty.
The agent learns automatically using feedbacks without any labeled data, and
since there is no labeled data, so the agent is bound to learn by its experience
only and interacts with the environment and explores it by itself. The primary
goal of an agent in reinforcement learning is to improve the performance by
getting the maximum positive rewards Reinforcement Learning solves a specific
typeofproblemwheredecisionmakingissequential,andthegoalislong-term,
such as game-playing, robotics, etc. Rewards and reinforcement learning can
be understood by the below diagram:
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environment

» A

agent
f >

rewards
\ﬁ € /' \
(observahons ‘ a

FiGURE1.3. reinforcement learning [56]

actions
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DEEP LEARNING

Deep learningisasubsetof machine learning, whichisessentially aneural net-
workwiththree or more layers. Neural networks are just one of many toolsand
approaches used in machine learning algorithms. Anartificial neural network
is usually a computational network based on biological neural networks that
construct the structure of the human brain. Artificial neural networks have
neurons that are linked to each other in various layers of the networks. These
neurons are known as nodes. Every neural network must have at least three
layers of neurons which are the input, the output and the hidden layer where
everyneuroninagiven layer is fully connected with the layer that precedes (to
pass from a neuron of the input layer to a neuron from the hidden layer you
must pass by the arc that is associated with aweightand every layer has its own
activation function Y = F(x*w) where Y is the output X is the input, w is the
weightofthe arcand Fistheactivation function) thisstep is called the forward
propagation.[3]

Input Layer
Hidden Layer 1
Hidden Layer 2

Output Layer

FIGURE 1.4. deep learning [57]

1.3.1 ACTIVATION functions

Neural networks are specifically designed based on the inner workings of
biological brains. These models imitate the functions of interconnected neurons
by passing input features through several layers of what are referred to as
perceptrons (neurons), each transforming the input using a set of functions.
This section will tackles the different modules that make this possible. The
activation function refers to the set of transfer functions used to achieve the
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desired output. We can classify activation functions in two categories :

(@) linear function

In the linear activation function, the output of functions is not
restrictedinbetweenanyrange. Itsrangeisspecifiedfrom-infinity to
infinity. For each individual neuron, the inputs get multiplied with
the weight of each respective neuron, which in turn leads to the
creation of output signal proportional to the input. If all the input
layers are linear in nature, then the final activation of the last
layer will actually be the linear function of the initial layer’s

input.[4]
8
6 | &
4 - £
2| i
X0
©
g
= -2
B B RGRGRRRt SERREREE
B |y
-8
-8 6 -4 -2 0 2 4 6 8
FiIGURE1.5. linear function [58]

() Non-Linear Function

Theseare one ofthe most widely used activation function. Ithelps
the model in generalizing and adapting any sort of data in order
to perform correct differentiation among the output. It solves the
following problems faced by linear activation functions which is
problems related to backpropagation and stacking up of several
layersoftheneurons. Thenon-linearactivationfunctionisfurther
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divided into: Sigmoid or Logistic Activation Function, Tanhor
Hyperbolic Tangent Activation Function, ReLU (Rectified Linear
Unit) Activation Function and Softmax Function.[4]

FiGURE1.6. nonlinear function [59]

1.3.2 Loss Function

The loss function is attempting to minimize by continuously updating the
weightsinthe model duringtraining. Duringthe training process, atthe end of
eachepoch, the loss will be calculated on the models predictions. So basically
whatishappeningisthatthemodel calculatestheerroroneachinputbylooking
at what output it predicted for that input, and taking the difference of that
outputvalue andthe correct label for thatinput. Forexample, if our model was
classifying images of cats and dogs, then say the label for a cat is zero, and the
label for adogis one. If we pass animage of a cat to our model, and our model
outputs 0.25 for this image, then the error between the models output versus
the true label for the image would be 0.25 minus zero, the label for cat which is
equal to 0.25. So it does this process for every input, then at the end of each
epoch, itwill accumulate all of the individual errors for each input, and theniin
some way, pass them through to a loss function.[4]
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' ' . Learning

FIGURE1.7. cats dogs classification example [60]

1.3.3 GRADIENT Decent

The Gradient Descent isan optimizationalgorithmwhich is used to minimize
the cost function for many machine learning algorithms. Gradient Descent
algorithm is used for updating the parameters of the learning models. There
are different types of Gradient Descent.[4]

1.Batch Gradient Descent

The Batch Gradient Descent is the type of Gradient Algorithm that is
used for processing all the training datasets for each iteration of the
gradient descent. Suppose the number of the training dataset is large,
the batch gradient descent will be comparatively expensive. Hence, if
the number of the training dataset is large, the users are not advised to
use batch gradient descent. Instead, they can use mini-batch gradient
descent for a large training dataset.[4]

2.Mini-Batch Gradient Descent

The mini-batch gradient descent is the type of gradient descent that is
used for working faster than the other two types of gradient descent.
Suppose the user has ’p’ (where ’p’ is batch gradient descent) dataset
where p <m (where ’m’ is mini-batch gradient descent) will be processed
per iteration. So, even if the number of *p’ training dataset is large, the
mini-batch gradient descent will process it in batches of ’p’ training
datasets in a single attempt. Therefore, it can work for large training
datasets with fewer numbers of iterations.[5]
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3.Stochastic Gradient Descent

tochastic gradient descent is the type of gradient descent which can
process one training dataset per iteration. Therefore, the parameters
will be updated after each iteration, in which only one dataset has been
processed. Thistypeofgradientdescentisfasterthanthe Batch Gradient
Descent. But, ifthe number of training datasets is large thenalso, it will
process only one dataset at a time. Therefore, the number of iterations
will be large.[4]

1.4DEEP LEARNING ARCHITECTURES

Deeplearningisthe mostadvanced featscientists have reachedtothisday,and
that’s because itusessome specificarchitecturesto understand differenttypes
of complex data and make decisions, we will now be looking at some of teh
most important of thesearchitectures.

1.4.1 CONVOLUTIONAL NEURAL network

CNNisoneofthetechniquestodoimage classificationand image recognition
in neural networks (it can treat other input data but it is not as efficient like
when working with images). It is designed to process the data by multiple
layers of arrays. Thistype of neural network is used inapplications like image
recognition or face recognition. The primary difference between CNN and
otherneural networks isthat CNN takes inputasatwo-dimensionalarray. And
it operates directly on the images rather than focusing on feature extraction
which other neural networks do.Convolutional Neural Network (CNN or
ConvNet) isatype of feed-forward artificial networks where the connectivity
pattern betweenitsneuronsisinspired by the organization ofthe animal visual
cortex.CNN takes an image as input, which is classified and process under a
certaincategorysuchasdog, cat, lion, tiger, etc. The computerseesanimageas
an array of pixels and depends on the resolution of the image. Convolutional
Neural Networks have the following 4 layers:

1.the convolutional layer

itis the first layer to extract features from an input image. By learning
image features using a small square of input data, the convolutional layer
preserves the relationship between pixels. It is a mathematical operation
which takes two inputs such as image matrix and a kernel or filter.
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e The dimension of the image matrix is hxw=x=d.

o The dimension of the filter is f;,xf,,xd.

o The dimension of the cutput is (h-f+ 1) x(w-f,+1)x1.

h S ¢ = h-fo+1
]
. d
d " w-fw+1
w
FIGURE1.8. the convolutional layer [61]

2.Rectified Linear unit(ReLU)

it is a transform functions only activates a node if the input is above a
certain quantity. While the data is below zero, the output is zero, but
whentheinputrisesaboveacertainthreshold. Ithasalinear relationship
with the dependent variable.In this layer, we remove every negative value
fromthefilteredimagesand replaces themwithzeros.Itishappeningto
avoid the values from adding up to zero.

y=0

FiGURE1.9. Rectified Linear unit [62]

3.the pooling layer

11
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t plays an important role in pre-processing of an image. Pooling layer
reduces the number of parameters when the images are too large. Pooling
is"downscaling" of the image obtained from the previous layers. It can
be compared to shrinking an image to reduce its pixel density. Spatial
poolingisalsocalleddownsamplingorsubsampling, whichreducesthe
dimensionality of each map but retains the important information.

224" 2 24% 64

112%112%64

ool

/

112
!
= r downscaling 112
224

FiGURE 1.10. the pooling layer [63]

224

4.the fully connected layer

itisalayer inwhichthe inputfromthe other layers will be flattened into
a vector and sent. It will transform the output into the desired number
of classes by the network.In the above diagram, the feature map matrix
will be converted into the vector such as X1, X2, X3... Xnwith the help
of fully connected layers. We will combine features to create a model
andapply theactivation function suchas softmax or sigmoidto classify
the outputs as a car, dog, truck, etc.
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FiGURE 1.11. the fully connected layer [64]

1.4.2 Recurrent NEURAL networks

Arecurrentneural network (RNN) isakind of artificial neural network mainly
used in speech recognition and natural language processing (NLP). RNN is
designed to recognize patterns in sequences of data, such as text, genomes,
handwriting, the spokenword, and numerical time seriesdataemanating from
sensors, stock markets, and governmentagencies. A recurrent neural network
looks similar to a traditional neural network except that a memory-state is
added to the neurons. The computation is to include a simple memory. The
recurrent neural network isatype of deep learning-oriented algorithm, which
follows a sequential approach. In neural networks, we always assume that
each input and output is dependent on all other layers. These types of neural
networks are called recurrent because they sequentially perform mathematical
computations. Recurrent Neural Networks suffer fromshort-termmemory. If
asequenceistoolong, theywon’tbeabletocarryall theimportantinformation
from past steps. When processing a text to do predictions, RNNs may leave
out important information from the beginning.
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= g e A |
| |

FiGURE 1.12. a recurrent neural network [65]

RNN is used in different types of models here are the most relevant ones:

1.Vector-Sequence Models

Theytakefixed-sized vectorsasinputsand outputvectorsofany length,
forexample, inimage captioning, the image isgiven asan inputand the
output describes theimage.

2.Sequence-Vector Model

Takeavector ofanysize and outputavector of fixed size. Eg. Sentiment
analysisofamovie ratesthe review of any movie as positive or negative
as a fixed sizevector.

3.Sequence-to-Sequence Model

The most popular and most used variant, take input as a sequence and
give outputasanother sequence with variantsizes. Example: Language
translation, for time series data for stock market prediction.RNN disad-
vantages: slowtotrainandlongsequence leadsto vanishinggradientor,
say, the problem of long term dependencies. In simple terms, its mem-
ory is not that strong when it comes to remembering old connections.
Therefore they had to come with solutions, the best they made are :

(8) LSTM:
Long Short Term Memory- Special kind of RNN, specially made for
solving vanishing gradient problems. They are capable of learning
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Long-Term Dependencies. Remembering information for long
periodsoftimeispracticallytheir defaultbehavior, notsomething
they struggle to learn it. The LSTM Neurons have unlike normal
neurons have a branch that allows to pass information and to skip
thelongprocessingofthecurrentcell, thisallowsthememorytobe
retained for a longer period of time. It does improve the situation
of the vanishing gradient problem but not that amazingly, like it
will do good till 100 words, but for like 1,000 words, it starts to
lose its grip.But like simple RNN it is also very slow to train, or
even slower.LSTM take input sequentially one by one, which is
notabletouse up GPU’s verywell, whichare designed forparallel
computation.

1.4.3 TRANSFORMERS

Transformer is the first transduction model relying entirely on self-attention
to compute representations of its input and output without using sequence-
aligned RNNs or convolution. Therefore we need to introduce attention first,
we can explain attention in neural network by asimple example, supposing we
have a book of machine learning and we need information about categorical
cross-entropy. here are two ways of doing it, first, read the whole book and
come back with the answer. Second, go to the index, find the ‘losses’ chapter,
go to the cross-entropy partand read the part of Categorical Cross Entropy. In
the former case we didn’t focus on any part of the book specifically, whereas
in the latter case, we focused our attention on the chapter of losses and then
further focused our attention on the cross-entropy part where the concept of
Categorical Cross Entropy is explained. Actually, this is the way most of us
humans will do. Attention in neural networks is somewhat similar to what
we find in humans. They focus on the high resolution in certain parts of the
inputs while the rest of the input is in low resolution Remember hidden state
from simple RNN now actually it is the context vector we pass along to the
decoder. The context vector turned out to be problematic for these types
of models. Models have a problem while dealing with long sentences. Or
say they were facing the vanishing gradient problem in long sentences. So, a
solution came along in a paper, Attention was introduced. It highly improved
the quality of machinetranslationasitallowsthe model tofocusontherelevant
part of the input sequence as needed. Transformers are made to solve the
problem of slow training by the input sequence can be passed parallelly so
that GPU can be used effectively The Transformer starts by generating initial
representations, or embeddings, for each word. These are represented by the
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unfilled circles. Then, using self-attention, it aggregates information fromall
of the other words, generating a new representation per word informed by the
entirecontext, representedbythefilledballs. Thisstepisthenrepeated multiple
times in parallel for all words, successively generating new representations.
The decoder operates similarly, but generates one word at a time, from left to
right. Itattends not only to the other previously generated words but also to the
final representations generated by the encoder. Transformers gives wonderful
results, using a self-attention mechanism and also solves the parallelization
issue. Even Google uses BERT that uses a transformer to pre-train models for
common NLP applications.

The little bird took its flight <eos>

s(1) s(2) s(3) s(4) s(5) s(6)

C <start> The little bird took its flight

h(1) h(2) h(3) h(4) n(5) h(6)

Le petit oiseau a pris sa volée

FiGURE 1.13. a transformer handling an NLP task [66]

1.4.4 Autoencodes

Auto-encodersareaspecial type of neural networkwhereinputsare outputsare
foundusuallyidentical. Itwasdesignedtoprimarily solve the problemsrelated
to unsupervised learning. Auto-encoders are highly trained neural networks
that replicate the data. It is the reason why the input and output are generally
thesame. Theyare usedtoachievetasks like pharmadiscovery, image process-
ing, and population prediction. Auto-encoders constitute three components
namely the encoder, the code, and the decoder. Auto-encoders are built in
such a structure that they can receive inputs and transform them into various
representations. The attempts to copy the original input by reconstructing
themismore accurate. They do this by encoding the image or input, reduce the
size. Ifthe image is not visible properly they are passed to the neural network
for clarification. Then, the clarified image is termed a reconstructed image
and this resembles as accurate as of the previous image. To understand this
complex process, see the below-provided image. They are mainly designed to
encode the output into a compressed yet meaningful representation and then
decode it back such that the reconstructed output is similar to the original one
(the output).The problemisto learnthe functions A: Rn— R p (encoder) and
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B : R p — R n (decoder) that satisfy
argmin (&, B)E [(x, BA(X )]

where E is the expectation over the distribution of X, and isthe reconstruction
loss function, which measures the distance between the output of the decoder
and the input. if A and B were linear operations we get a linear auto-encoder.

—| Encoder —»E—» Decoder .2

Compressed

Noisiy input representation Denoised image
The feature we want to
extract from the image
FiGURE 1.14. an example of an autoencoder [67]

1.4.5 GENERATIVE Architecture

1.Generative Adversarial Neural Networks

Generativeadversarial networksareanewbutrapidlygrowingalgorith-
mic architectures that uses two adversarial neural networks (they work
oneagainsttheother),theyarecalledthegeneratorandthediscriminator.
The generator tries to fool the discriminator by generating data similar
to those of the training set while the discriminator tries to identify fake
fromreal data, workingsimultaneouslythey canlearnandtraincomplex
data. The algorithm works as follows: the generator receives arandom
noise input and then transforms it into some meaningful output that is
going to be fed to the discriminator alongside with the training set in
order forittotrytoidentify the original training data from the generated
ones, mathematically speaking, the discriminator and generator play a
two-player minimax game with the value function V(G, D). So, Minimax
Obijective functionis:

Y (D;G) = Ex ~ p (data)[logD (x)] + Es ~ p (s)[log(1 — D (G (s)))]
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where D(x) is the probability that data x is from the training set, and
D(G(2)) is the probability that data G(Z) ,which is fake data generated
by the generator, are from the training set. This way the generator tries
to minimize V (by minimizing D(x) and D(Z)), and the discriminator
tries to maximize V(by maximizing D(x) and minimizing D(Z)).they both
learnbyalternative gradientdescent (weapply GD onaneural netwhile
fixing the other and vice versa).

2
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FiGURE 1.15. Generative Adversarial Network structure [68]

2.Conditional Generative Adversarial Networks

GANSs can be extended to a conditional model if both the generator and
discriminator are conditioned on some extra information (say Y).Y could
be any kind of auxiliary information,such as class labels or data from
othermodalities. Wecan performthe conditioningby feeding Y into the
both the discriminator and generator as an additional input layer.The
new objective function of the two-player minimax game would be:

Y (D3;G) = Ex ~ p (data)[logD (x /y)]+Es ~ p (s)[log(1-D (G (s/y)))]
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FiGURE 1.16. A comparison between GAN and CGAN [69]
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b) CGAN architecture

3.Wasserstein Generative Adversarial Networks

TheWasserstein GAN or WGAN , was introduced by Martin Arjovsky,
etal. intheir 2017 paper [6]. Itis an extension of the GAN that seeks an
alternate way of training the generator model to better approximate the
distribution of dataobserved inagiventraining dataset. Instead of using
adiscriminatortoclassify or predictthe probability of generated images
as being real or fake, the WGAN changes or replaces the discriminator
model with a critic that scores the realness or fakeness of a given image.
This change is motivated by a theoretical argument that training the
generator should seekaminimization of the distance between the distri-
bution of the data observed in the training dataset and the distribution
observed in generated examples. The benefit of the WGAN is that the
training process is more stable and less sensitive to model architecture
and choice of hyperparameter configurations. Perhaps most importantly,
the loss of the discriminator appears to relate to the quality of images
created by the generator. The primary contribution of the WGAN model
is the use of a new loss function that encourages the discriminator to
predict a score of how real or fake a given input looks. This transforms
the role of the discriminator from a classifier into a critic for scoring the
realness or fakeness of images, where the difference between the scores
is as large aspossible.
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1.5M ACHINE LEARNING MODELS PERFORMANCE TESTING

The model training is an important step, but after that step how the model gen-
eralizesonunseendataisanequallyimportantaspectthatshouldbe considered
inevery machine learning pipeline. Weneedto knowwhetheritactually works
and, consequently, if we can trust its predictions in future. This issues can be
handled by evaluating the performance of a machine learning model, Model
evaluation aims to estimate the generalization accuracy of a model on future
(unseen/out-of-sample) data.Methods for evaluating a model’s performance are
divided into 2 categories: namely, holdout and Cross-validation. Both methods
use a test set (i.e data not seen by the model) to evaluate model performance

1.5.1 EVALUATION Techniques

1.Holdout

The purpose of holdout evaluation is to test a model on different data
than it was trained on. This provides an unbiased estimate of learning
performance. The dataset is randomly divided into three subsets: e Train-
ing set: is a subset of the dataset (training data) used to build predictive
models. We cant use all the dataset to train the model, take maximum
of 60 or 70 Validation set: is a subset of the dataset used to assess the
performance of the model built in the training phase. It provides a test
platform for fine-tuning a model’s parameters and selecting the best
performing model. Not all modeling algorithms need a validation set.
Take like 15 or 20e Test set (unseen data): is a subset of the dataset used
to assess the likely future performance of a model. If a model fits to the
training set much better than it fits the test set, overfitting is probably
the cause. Take like 15 or 20The holdout approach is useful because of
its speed, simplicity, and flexibility. However, this technique is often
associated with highvariability since differences inthetraining and test
dataset canresultinmeaningful differences in the estimate of accuracy.

2.Cross-validation

Asthere is never enough data to train your model, removing a part of it
forvalidation poses aproblem of underfitting. By reducing the training
data, we risk losing important patterns/ trends in data set, which in
turn increases error induced by bias. So, what we require is a method
that provides ample data for training the model and also leaves ample
data for validation. K Fold cross validation does exactly that. k-fold
cross-validationismostcommoncross-validationtechnique, wherethe
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original datasetis partitioned into kequal size subsamples, called folds.
The k is a user-specified number, usually with 5 or 10 as its preferred
value. This is repeated k times, such that each time, one of the k subsets
is used as the test set/validation set and the other k-1 subsets are put
together to formatraining set. The error estimation is averaged over all
k trials to get the total effectiveness of our model.

1.5.2 EVALUATION Metrics

Evaluation metricsare required to quantify model performance. The choice of
evaluation metrics depends on a given machine learning task (such as classifi-
cation, regression, ranking, clustering, topic modeling, among others). Some
metrics, such as precision-recall, are useful for multiple tasks. Supervised
learning tasks such as classification and regression constitutes a majority of ma-
chinelearning applications. Wewill focus on metrics for these two supervised
learning models.

Classification Accuracy

Accuracy is acommon evaluation metric for classification problems. It’s the
number of correct predictions made as a ratio of all predictions made. When
performing classification predictions, there’s four types of outcomes that could
occur.

1. True Positives
are when you predict an observation belongs to a class and it actually
does belong to thatclass.

2. True Negatives
are when you predict an observation does not belong to a class and it
actually does not belong to that class.

3.False Positives
occurwhenyoupredictanobservation belongstoaclasswheninreality
it does not.

4.False Negatives

occur when you predict an observation does not belong to a class when
in fact itdoes.
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These four outcomes are often plotted on a confusion matrix. The follow-
ing confusion matrix is an example for the case of binary classification. You
would generate this matrix after making predictions on your test data and then
identifying each prediction as one of the four possible outcomes described
above.

Prediction

2 48

true negatives

True Label

FiGURE 1.17. A confusion matrix of a binary classification [70]

The three main metrics used to evaluate a classification model are accuracy,
precision, and recall. Where accuracy is defined as the percentage of correct
predictions for the test data. It can be calculated easily by dividing the number
of correct predictions by the number of total predictions.

correctpredictions
allpredictions

accuracy =

And precision is defined as the fraction of relevant examples (true positives)
among all of the examples which were predicted to belong in a certain class,

truepositiues
Precision = fruepositives + Jalsepositives

meanwhile the recall is defined as the fraction of examples which were predicted
to belong to a class with respect to all of the examples that truly belong in the
class. .

truepositives

truepositives + falseNegatiues

recall =

Regression Accuracy

Evaluation metrics for regression models are quite different than the above
metricswe discussed for classification models because we are now predicting
inacontinuousrange instead of adiscretenumber of classes. If yourregression
model predictsthe price of ahouse to be 400K USD and itsells for405K USD,
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that’s a pretty good prediction. However, in the classification examples we
were only concerned with whether or nota prediction was correct or incorrect,
there was no ability to say a prediction was "pretty good". We have a different
set of evaluation metrics for regression models.

1.Explained variance

compares the variance within the expected outcomes, and compares
that to the variance in the error of our model. This metric essentially
representsthe amount of variation in the original dataset that our model
is able toexplain.

_, Yar(Ytrue, Ypred)
EY {true, Ypreq =1 Yirue

2.Mean squared error

is simply defined as the average of squared differences between the
predicted output and the true output. Squared error is commonly used
because it is agnostic to whether the prediction was too high or too low,
it just reports that the prediction was incorrect.

1 -
MSE(Ytrue,Ypreq = ) ((true _Ypred)2
Nsamples
relevant elements
1
false negatives true negatives

avan
Vi

How many selected How many re
items are relevant? items are selected

true positives false positives

Recall = ——

Precision =

)

selected elements

FiGURE 1.18. Classification Evaluation [71]
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1.6 CONCLUSION

The conclusion in this chapter we concentrated on two parts, machine learn-
ing and neural network and how convolutional neural network works very
efficiently on image recognition and classification, recurrent neural network
directed more to deal with texts and we explain the solutions for RNN prob-
lems. The need for machine learning is increasing day by day. The reason
behind the need for machine learning is that it is capable of doing tasks that
aretoocomplexforapersontoimplementdirectly. Asahuman, we have some
limitations as we cannot access the huge amount of data manually, so for this,
we need some computer systems and here comes the machine learning to make
thingseasyforus. Andtheimportance of machine learningcanbeeasilyunder-
stood by itsusescases, Currently, machinelearningisusedinself-drivingcars,
cyber fraud detection, face recognition, and friend suggestion by Facebook,
etc. Various top companies such as Netflix and Amazon have build machine
learning modelsthat are using a vastamount of datato analyze the user interest
and recommend productaccordingly.



CHAPTER 2

RELATED Works

Therehavebeenalotofworksthatdealtwithtext,imagesand 3d shapesdata, as
forour problemwhich isthe generation of 3d shapes out of textual description
we find it rewarding to have a look at some of the best researches treating this
kind of data since the generation the 3d shapes can come in two ways, either a
directgeneration (shapesoutputs outoftextinput) or generatingimages,out of
thetextinputs, thatare fedtoanimage toshapes generator (text-image-shape).
Inthischapterwetakeaexplore some past or present state of theartapproaches
dealing with data in the sort of text, images or 3d shapes.

2.1 TEXT TO IMAGE

The generation of images from the regular language has numerous potential
applications later on once the innovation is prepared for business applications
and anamazing demonstration of Deep Learning [7]. Generative Adversarial
Networks have a place with the arrangement of generative models. It implies
that they can create new substances. Text is translated into picture pixels[8].
For eg: Flower with pink petals. GAN comprise of an arrangement of two
contending neural organization models that compete with one another and
observe, catch and duplicate the varieties inside a dataset [9]. Text to image
synthesis is all about converting text descriptions into appropriate images.
Nowadays, GAN models are widely used for better results [7]. We focused on
two approaches used with GAN and [7][8] [10] [11] [12] have agood explanation
and demonstration to those two architectures.

2.1.1 CONDITIONAL-GANS

Wetake[8]asexampletoexplainit, intheir paper defined C-GANsworkbyin-
putting a one-hot class label vector as input to the generator and discriminator
in addition to the randomly sampled noise vector. This results in higher train-
ing stability, more visually appealing results, as well as controllable generator
outputs. The goal of Generator isto fool the Discriminator whereas the goal of
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Discriminator is to identify correct data. Generator and Discriminator both
compete with each other. Generator makes all the attempts to convince the
Discriminator thatthe generated fake instances are the real samples of dataand
also increases the probability of mistakes whereas the Discriminator figures
out the real ones. Hence, these steps are repeated many times and both the
sub-models get trained much better. First, Discriminator is trained on the real
data samples to verify if it can identify those samples as real [10]. Again, the
Discriminator is trained on generated fake data to see if isable to discriminate
between actual and fake image. Generator is also trained depending upon the
results of Discriminator so it can improve itself. In addition to constructing
good text embeddings, translating from text to images is highly multi-modal [7].
The term ‘multi-modal’ is an important one to become familiar with in Deep
Learning research. This refers to the fact that there are many different images
of birds with correspond to the text description “bird” [7]. Another example in
speechisthatthereare manydifferentaccents, etc. thatwouldresultindifferent
sounds corresponding to the text “bird”. Multi-modal learning is also present
inimage captioning, (image-to-text). However, thisisgreatly facilitated dueto
the sequential structure of text such that the model can predict the next word
conditioned on the image as well as the previously predicted words. Multi-
modal learning is traditionally very difficult, but is made much easier with
the advancement of GANSs (Generative Adversarial Networks), this framework
creates an adaptive loss function which is well-suited for multi-modal tasks

such as text-to-image.
‘ % . /’ . ol(t
@ l =
‘ (@)

Generator Network Discriminator Network

FIGURE2.1. Reed et al. text-to-image GAN model [72]

The picture above showsthe architecture Reed etal.[79] used to train this
text-to-image GAN model. The mostnoteworthy takeaway fromthis diagram
is the visualization of how the text embedding fits into the sequential

processing of the model. In the Generator network, the text embedding
is filtered through a fully connected layer and concatenated with the random
noise vector z. In this case, the text embedding is converted from a 1024x1
vector to 128x1 and concatenated with the 100x1 random noise vector z. On
the side of the discriminator network, the text-embedding is also compressed
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throughafullyconnectedlayerintoal128x1vectorandthenreshapedintoa4x4
matrix and depth-wise concatenated with the image representation. This image
representation is derived after the input image has been convolved over multiple
times, reduce the spatial resolution and extracting information. This embedding
strategy for the discriminator is different from the conditional-GAN model in
which the embedding is concatenated into the original image matrix and then
convolved over [10]. One general thing to note about the architecture diagram
isto visualize how the DCGAN upsamples vectors or low-resolution images
to produce high-resolution images. You can see each de-convolutional layer
increasesthespatial resolution ofthe image [12]. Additionally, the depth ofthe
feature maps decreases per layer. Lastly, you can see how the convolutional
layers in the discriminator network decreases the spatial resolution and increase
the depth of the feature maps as it processes the image. An interesting thing
about this training process is that it is difficult to separate loss based on the
generated image not looking realistic or loss based on the generated image not
matching the text description. The authors of the paper describe the training
dynamicsbeingthatinitiallythe discriminator doesnotpay any attentiontothe
text embedding, since the images created by the generator do not look real at
all[10]. Once G cangenerateimagesthatat least passthereal vs. fake criterion,
then the text embedding is factored in as well. The authors smooth out the
training dynamics of this by adding pairs of real images with incorrect text
descriptionswhichare labeled as ‘fake’. Thediscriminatorissolely focused on
the binary task of real versus fake and is not separately considering the image
apart from the text. This is in contrast to an approach such as AC-GAN with
one-hotencodedclasslabels. The AC-GANdiscriminatoroutputsreal vs. fake
andusesanauxiliary classifier sharingthe intermediate featuresto classify the
class label of the image. [11]

2.1.2 STACK-GAN

Togeneratehigh-resolutionimageswithphoto-realisticdetails, [11] proposea
simple yet effective Stacked Generative Adversarial Networks. It decomposes
the text-to-image generative process into two stages

Stage-1 GAN: it sketches the primitive shape and basic colors of the object
conditioned on the given text description, and draws the background layout
from arandom noise vector, yielding a low-resolution image. [12]

Stage-11GAN:itcorrectsdefectsinthelow-resolutionimage from Stage-land
completesdetailsofthe objectbyreadingthetextdescriptionagain, producing
a high resolution photo-realistic image. [12]
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FIGURE2.2. Stack-GAN [73]

Stage-1 GAN

Instead of directly generating a high-resolution image conditioned on the text
description, we simplify the task to first generate a low-resolution image with
our Stage-1 GAN, which focuses on drawing only rough shape and correct
colorsfor the object. [13] Lett be the text embedding of the given description,
which is generated by a pre-trained encoder in this paper [12]. The Gaussian
conditioning variables c"0 for text embedding are sampled from N (u0(t), Z0(t))
to capture the meaning of t with variations. Conditioned on ¢”0 and random
variable z, Stage-1 GAN trains the discriminator DO and the generator GO by
alternatively maximizing LDOin Eqg. (1) and minimizing LGOinEq. (2) where
the real image 10 and the text description t are from the true data distribution
Pdata. zisanoise vectorrandomlysampled fromagivendistribution Pz (Gaus-
sian distribution in this paper). A is a regularization parameter that balances
the two terms in Eq. (2). We set A =1 for all our experiments both p0(t) and
20(t) are learned jointly with the rest of the network. [12]

Stage-1 GAN Architecture

Forthe generator GO, to obtain text conditioning variable c”0, the text embed-
ding t is first fed into a fully connected layer to generate p0 and o0 (o0 are
the valuesinthe diagonal of 20) for the Gaussian Distribution N (L0(t), Z0(t)).
c”0 are then sampled from the Gaussian distribution. Our Ng dimensional
conditioning vector c”0 is computed by ¢*0 = p0 + o0 (where is the element-
wisemultiplication, N (0, 1)). Then, c*0isconcatenated witha Nzdimensional
noise vector to generate a WO »xHO image by a series of up-sampling blocks.
[11] For the discriminator DO, the text embedding t is first compressed to Nd
dimensionsusingafully-connected layerandthenspatiallyreplicated toform
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aMd.,Md Ndtensor. Meanwhile, the image is fed through a series of down-
sampling blocks until it has Md<Md spatial dimension. Then, the image
filter map is concatenated along the channel dimension with the text tensor.
The resulting tensor is further fed to a 11 convolutional layer to jointly learn
featuresacrossthe image andthe text. Finally, afully connected layer with one
node is used to produce the decision score. [12]

Stage-ll GAN

Low-resolution images generated by Stage-1 GAN usually lack vivid object
parts and might contain shape distortions. Some details in the text might also
beomittedinthefirststage, whichisvital for generating photo-realisticimages
[13]. Our Stage-11 GAN is built upon Stage-1 GAN results to generate high-
resolution images. It is conditioned on low-resolution images and also the
text embedding again to correct defects in Stage-I results. The Stage-11 GAN
completes previously ignored text information to generate more photo-realistic
details. [14]

Stage-ll GAN Architecture

We design Stage-11 generator as an encoder-decoder network with residual
blocks. Similar to the previous stage, the text embedding t is used to generate
the Ngdimensional text conditioning vector ¢, whichisspatially replicated to
formaMg,Mg g tensor [12]. Meanwhile, the Stage-I result sO generated by
Stage-1 GAN is fed into several down-sampling blocks (i.e., encoder) until it
has a spatial size of MgxMg. The image features and the text features are con-
catenated along the channel dimension. The encoded image features coupled
with text features are fed into several residual blocks, which are designed to
learnmulti-modal representationsacrossimage andtextfeatures[14]. Finally,
aseries of up-sampling layers (i.e., decoder) are used to generate a W H high-
resolution image. Such a generator is able to help rectify defects in the input
image while add more details to generate the realistic high-resolution image.
For the discriminator, its structure is similar to that of Stage-I discriminator
withonlyextradown-samplingblockssincetheimagesizeislargerinthisstage
[16]. Toexplicitly enforce GAN to learn better alignment between the image
andthe conditioningtext, rather thanusing the vanilladiscriminator, we adopt
the matching-aware discriminator proposed by Reed etal.[79] for both stages.
During training, the discriminator takes real images and their corresponding
text descriptions as positive sample pairs, whereas negative sample pairs consist
oftwo groups. Thefirst is real images with mismatched text embeddings [15],
while the second is synthetic images with their corresponding text embeddings.

E 29
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2.21 MAGE To 3D SHAPES

Inthischapterwe takealook at some of the best works on generating 3d shapes
outofimages, wherewewill highlightthe approachesusedasfarasshapesand
images are concerned.

2.2.1 Multi-view 3D Reconstruction

3D shapes can be recovered from multiple color images or depth scans. To
estimatetheunderlying 3D shape frommultiplecolorimages, classic SfM[16]
and vSLAM [17]algorithms firstly extractand match hand-crafted geometric
features[18] and thenapply bundleadjustment[19] for both shape and camera
motion estimation. Jietal. [20] use “maximizing rigidity” for reconstruction,
butthisrequires 2D pointcorrespondencesacross images. Recentdeep neural
net based approaches tend to recover dense 3D shapes through learnt features
frommultipleimagesandachieve compellingresults. Tofusethedeepfeatures
from multiple images, both 3D-R2N2 [21] and LSM apply the recurrent unit
GRU, resulting in the networks being permutation variant and inefficient for
aggregating longsequence ofimages. Recent SilNet[22] [23] and DeepMV'S

[24] simply use max poolingto preserve thefirst order information of multiple
images, while RayNet [25] appliesaverage poolingtoreserve the firstmoment
information of multiple deep features. MV SNet proposes a variance-based
approach to capture the second moment information for multiple feature ag-
gregation. These pooling techniques only capture partial information, ignoring
themajority ofthe deepfeatures. RecentSurfaceNet[26]and SuperPixel Soup

[27] canreconstruct 3D shapes fromtwo images, buttheyare unable to process
an arbi- trary number of images. As for multiple depth image reconstruction,
the traditional volumetric fusion method [28] integrates multiple viewpoint
informationbyaveragingtruncated signed distance functions (TSDF). Recent
learning based OctNetFusion [29] also adopts a similar strategy to integrate
multipledepthinformation. However, thisintegration mightresultininforma-
tionlosssince TSDF valuesareaveraged [29]. PSDF [30] isrecently proposed
tolearnaprobabilistic distribution through Bayesian updating in order to fuse
multiple depth images, but itis not straightforward to include the module into
existing encoder-decoder networks.

2.2.2 Deep LEARNING on Sets

Incontrasttotraditional approaches operatingon fixed dimensional vectorsor
matrices, deep learning tasks defined on sets usually require learning functions
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tobepermutationinvariantandableto processanarbitrary number ofelements
inaset[31]. Suchproblemsarewidespread. Zaheeretal.[31]introduce general
permutation invariant and equivariant models in [31], and they end up with
a sum pooling for permutation invariant tasks such as population statistics
estimation and point cloud classification. In the very recent CGQN [32], sum
pooling is also used to aggregate an arbitrary number of orderless images for
3D scene representation. Gardner et al. [33] use average pooling to integrate
an unordered deep feature set for classification task. Su et al. [34] use max
poolingto fusethe deep feature setof multiple views for 3D shape recognition.
Similarly, PointNet [35] also uses max pooling to aggregate the set of features
learnt from point clouds for 3D classification and segmentation. In addition,
the higher-order statistics based pooling approaches are widely used for 3D
object recognition from multiple images

E 31
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2.3 TEXT TO SHAPE

In the paper «Text2Shape: Generating Shapes from Natural Language » kevin et
al[78]representamethod forgenerating 3d shapesfromnatural language, they
split their work into two major tasks text to shape retrieval and text to shape
generation. They first present a method for learning a joint text and shape
representation space directly from natural language descriptions of 3D shape
instances, By leveraging anew dataset of paired natural language descriptions
and colored 3D shapes, their method extends learning by association[41] and
metriclearning[42]tojointly learnatextand 3D shape embeddingthatclusters
similar shapes and descriptions, establishing implicit semantic connections
followed by their text-to-shape generation framework. Unlike related work in
text-to-image synthesis [12],[13] they do not rely on fine-grained category-level
class labels or pre-training on large datasets. Furthermore, they train the text
and shape encoding components jointly inan end-to-end fashion, associating
similar points in our data both within a modality (text-to-text or shape-to-
shape) and between the two modalities (text-to-shape). The retrieval task allows
to evaluate the quality of the jointly learned text-shape embedding against
baselines from prior work. As for the text-to shape generation task, kevinetal
[78]focused on colored shape generation because most descriptions of shapes
involve color or material properties. To address this task, they combined the
joint embedding model with a novel conditional Wasserstein GAN framework,
providinggreateroutput quality and diversity comparedtoaconditional GAN
formulation. Lastly, they used vector embedding arithmetic and the generator
to manipulate shape attributes.[78]

a) 3D shapes and natural language descriptions b) Joint embedding of text and 3D shapes c1) Text-to-shape retrieval
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FiIGURE2.3. The approach used by kevin chen et al [78]

€2) Text-to-shape generation

Experimental results on collected 75K natural language descriptions for
15K chairandtable shapes in the ShapeNet[43] dataset shows that they model
outperforms the baselines by a large margin for both the retrieval and genera-
tion tasks.
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Work Type Cons Pros
. 1. Does not ensure the 1. Generates realistic im-
Conditional Text to " auality of qeneration ages from text with de-
GANSs[10]| image quality ot g sirable characters
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GAN [12] | image details of the image the generated images
Multi
view 3D | Image 1. Generated shapes are 1. Learns from one or mul-
recon- to images from the input N
. tiple images
struction | shape and not new
[20]
Deep
learning Image . .
on  sefs to 1. Shapes with low quality 1.Generates new shapes
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Chen et | Textto only) for the shapenet _ )
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pute theembeddings
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2.5 CONCLUSION

In this chapter we explained 3 main related works: Textto image, Image to shape,
and text to shape. We understood that the first class aimed to generate images
from textual descriptions, we chose about two methods (CGAN and Stack
Gan), each time we note that there are points added at the level of the approach
compared to the previous one. The second part aims to transform images
into shapes, we take into consideration these two approaches (Multi-view 3D
Reconstructionand Deep Learningon Sets). Accordingtotheclassification of
the work that we made we understood that the first two parts gave birth to the
third part text to shape which is the basis of our work such that the latter it uses
thearchitectureof CWGAN. Innextchapter, wewillmove ontotheconceptual
part, which will be devoted to expressing the architectures and methods used
in the realization of our approach.



CHAPTER 3

Design AND conception

In the previous chapters, we have seen the different works handling data of
the sort of 3d shapes, images and text, now we will walk you through our own
approach and the models we chose and developed to get better results than the
previews ones. First, we will explain how we generated the text embeddings
using Google’s BERT whichisthe current state of the art world wide, and then
we will explain the Autoencoder we used to retrieve the shapes embeddings,
to finish off by talking about the CGAN that learns the mappings between the
shapes and their textual descriptions as well as generates the shape described
by the text input which is the global goal of our work.

35
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3.1 THE GLOBAL ARCHITECTURE

Asshowninthe previousfigure, our, simple yeteffective, approach consists of
two main blocks the encoding and the generation. The input textual descrip-
tionis fed into an encoder that generates ,through BERT, its embedding, then,
concatenated with some noise, will be passed to the generator that generates
whatitthinksisthe shape associated tothat description, however, to make sure
the generator does its work properly we also feed the discriminator, which is
another neural network that binary classifies the generated shape to a real or
a fake shape in other words it tries to figure out if one shape is real and the
other one is generated or are the (if the discriminator thinks the generated
shape is identical to the real one we call that the discriminator being fooled
by the generator and it means that the generation process was successful).the
shapes are all encoded and decoded when needed to be, we do that by a pretty
loss efficient autoencoder that generates the shapes embeddings and then de-
codesthemback intothe actual shapeswhile calculatingandimprovingitsloss
function.

Shape

Noise
| 4
- 1‘iiiiii’r

Generator

Text

Shape

B Text Embedding Embedding

13

Discriminator

==

Shape

Text Embedding

FIGURE3.1. Our global architecture
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3.2 PROCESSING THE NATURAL LANGUAGE DATA

Undoubtedly, Natural Language Processing (NLP) research has taken enormous
leaps after being relatively stationary for a couple of years [21]. In this part,
we will be looking at word embeddings and see how BERT can be used with
word-embedding strategies to feed as input features for other models built for
custom tasks to perform the state of art results. [22]

3.2.1 Word embedding

“Word embedding is the collective name for a set of language modeling and
feature learning techniques in natural language processing (NLP) where words
or phrases from the vocabulary are mapped to vectors of real numbers.” [23] [22]
Define simply word embeddings as vector representations of a particular word.
Word embedding is one of the most popular representations of document
vocabulary. It is capable of capturing the context of a word in a document,
semantic and syntactic similarity, relation with other words, etc. And [21]
explained embeddings are low dimensional representations of a point in a
higher dimensional vector space. In the same manner, word embeddings are
dense vector representations of words in lower dimensional space. [22] Said
that there are a few key characteristics to a set of useful word embeddings:

1. Everyword hasaunique word embedding (or “vector”), whichisjusta
list of numbers for each word.

2. The word embeddings are multidimensional; typically for a good model,
embeddings are between 50 and 500 in length.

3. The word embeddings are multidimensional; typically for a good model,
embeddings are between 50 and 500 in length.

4.Foreach word, the embedding captures the “meaning” of the word.
5.Similar words end up with similar embedding values.

There are many approaches to generate word embeddings. Context-
independent (Bag of Words, TF-IDF, Word2Vec, GloVe), Context-aware (ELMo,
Transformer, BERT, Transformer-XL), Large model (GPT-2, XLNet, Compres-
sive Transformer) are the main categories. We will focus on Word2Vec and
Bert.

37
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3.2.2 Common Embedding techniques

Word2Vec is one of the most popular technique to learn word embeddings
using shallow neural network. It was developed [24] [14] explaind word2vec
with an example, Consider the following similar sentences: Have a good day
and Have a great day. They hardly have different meaning. If we constructan
exhaustive vocabulary (let’s call it V), itwould have VV = Have, a, good, great,
day. Now, let us create a one-hot encoded vector for each of these words in V.
Length of our one-hot encoded vector would be equal to the size of V (=5). We
would have a vector of zeros except for the element at the index representing
the corresponding word in the vocabulary. That particular element would
be one. The encodings below would explain this better. Have =[1,0,0,0,0];
a=[0,1,0,0,0]; good=[0,0,1,0,0]; great=[0,0,0,1,0]; day=10,0,0,0,1] If we try to

visualize these encodings, we can think of a 5 dimensional space, where each
word occupies one of the dimensions and has nothing to do with the rest (no
projection along the other dimensions). This means ‘good’ and ‘great’ are as
differentas ‘day’ and ‘have’, which is not true. Our objective isto have words
with similar context occupy close spatial positions. Mathematically, the cosine
of the angle between such vectors should be close to 1, i.e. angle close to 0.
Here comes the idea of generating distributed representations. Word2Vecisa
method to construct such anembedding. It can be obtained using two methods
(both involving Neural Networks): Skip Gram and Common Bag Of Words
(CBOW) In the CBOW model, the distributed representations of context (or
surrounding words) are combined to predict the word in the middle. Whilein
the Skip-gram model, the distributed representation of the input word is used
topredictthe context. [25] Bothhave theirownadvantagesanddisadvantages.
Accordingto Mikolov, Skip Gramworks well withsmallamount of dataand is
found to represent rare words well. On the other hand, CBOW is faster and
has better representations for more frequent words. [26]

3.2.3 BERT Embedding

In2018,the Google Alteammadearevolutionary changeinthefieldof Natural
Language Processing (NLP) by introducing Bidirectional Encoder Representa-
tions from Transformers (BERT). Due to its highly pragmatic approach, and
higher performance, BERT is highlighted for achieving state-of-the-art per-
formance in many NLP tasks [11]. BERT has an advantage over models like
Word2Vec because while each word has a fixed representation under Word2Vec
regardless ofthe contextwithinwhichthewordappears, BERT producesword
representationsthatare dynamically informed by the words aroundthem [22].
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For example, given two sentences:
1.1 like apples.
2.1 like Apple machooks

Note that the word apple has a different semantic meaning in each sentence.
Now with a contextualized language model, the embedding of the word ap-
ple would have a different vector representation which makes it even more
powerful for NLP tasks [21]. the context-informed word embeddings capture
otherformsof informationthat resultin more accurate feature representations,
which inturn results in better model performance [22]

BERT Model

Two primary models were created by BERT developers:

1. The BASE:Number of transformer blocks (L): 12, Hidden layer size (H):
768 and Attention heads(A): 12

2. The LARGE:Number of transformer blocks (L): 24, Hidden layer size
(H): 1024 and Attention heads(A): 16

12 [ ENCODER ]

2 [ ENCODER ]
1 [ ENCODER ]

1 2 3 4 see 512

BERT

FIGURE3.2. a graphical representation of the base BERT model [74]

It may seem simple but each encoder block encapsulates a more sophisti-
catedmodelarchitecture. Atthispoint, tomakethingsmoreclearitisimportant
to understand the special tokens that BERT authors used for fine-tuning and
specific task training. [11] These are the following:

1. CLS: The first token of every sequence. A classification token which
is normally used in conjunction with a softmax layer for classification
tasks. For anything else, it can be safely ignored.
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2. SEP: A sequence delimiter token which was used at pre-training for
sequence-pairtasks (i.e. Nextsentence prediction). Must be used when
sequence pair tasks are required. When a single sequence is used it is
just appended at theend.

3.MASK: Token used for masked words. Only used for pre-training.

Moving on, the input format that BERT expects is illustrated below:

o ) (o) (s () (o) () () e ) ) (e ) ()

Token

Embeddings E|CLS] Emy Emsxl ‘ Ers Ecule E{SEP] Ehe Ezms~1| Epray E“mq E(SEPI

+ + + + + + + + + + +
emeoars | Ea || B2 |[ &0 [ B0 ][ B0 ] B0 J[ B |[ B0 ][ & [[ & |[ & ]
Transformer + + + + + +* + + + + +
e L& LB L& [ [ e [ B e {8 [ B [ | s |
FiIGURE3.3. an example of inputting a sentence into BERT [74]

The input layer is simply the vector of the sequence tokens along with
the special tokens. BERT use WordPiece for tokenization which in effect,
splitstoken like “playing” to “play” and “ing”. This is mainly to cover a wider
spectrum of Out-Of-Vocabulary (OOV) words [22]. Token embeddings are
the vocabulary 1Ds for each of the tokens, and a Sentence Embedding is just
anumeric class to distinguish between sentence A and B, while Transformer
positional embeddings indicate the position of each word in the sequence.

3.2.4 GENERATING our text embeddings:

BERT might be known for its words embedding capabilities but the sentence
encoding models also are easily on of the best pre-trained models to be used
to generate sentences embeddings, for instance, all-MiniLM-L6-v2 [**](that
we use to compute the text embeddings) is a sentence transformer model that
maps sentences paragraphs to a 384 dimensional dense vector space and can
be used for tasks like clustering or semantic search. itisintended tobe usedasa
sentence and short paragraph encoder. Given an input text, it outputs a vector
which captures the semantic information. The sentence vector may be used
for information retrieval, clustering or sentence similarity tasks. By default,
input text longer than 256 words pieces is truncated. We chose this particular
model because it fits perfectly our captions dataset. in the figure bellow its
main characteristics.
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Description:

Base Model:

Max Sequence Length:

Dimensions:

Normalized Embeddings:

Suitable Score Functions:

Size:
Pooling:
Training Data:

Model Card:

FiIGURE 3.4.
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All-round model tuned for many use-cases. Trained on a large and diverse dataset of over 1 billion training pairs.

nreimers/MiniLM-L6-H384-uncased
256

384

true

dot-product (util.dot_score), cosine-similarity (util.cos_sim), euclidean distance
80 MB

Mean Pooling

1B+ training pairs. For details, see model card.

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

all-MiniLM-L6-v2 model information

We simply download the pre trained model and then call the ‘encode()’

functiononthe captionsdatasetanditgeneratesthe each caption’sembedding,
the process might take some time but nothing fancy since out of the 6 sentence
embedding BERT models with the highest performance this model is the fastest
(onaV100 GPU itencodes 14200 sentence per second [27]).

41



42 P> CHAP. 3 DESIGN AND CONCEPTION

3.3 PROCESSING THE 3D SHAPES

3dshapesare such highdimensional vectorsand that makesthem costly ,if not
impossible, to be used in machine learning tasks, therefore we are entitled to
generate embeddings that captures the our shapes’ main characteristics while
,at the same time, easier to do machine learning on large inputs of them, this
only be done by focusing on properties of high importance, properties that
distinguish each shape form another (color, material, finishing. ) and ignor-
ing what is repetitive, irrelevant and non schematic(to escape the overfitting
problem). We propose an Autoencoder that encodes and decodes back the 3d
shapes multiple times improving its loss function every time, this way we can
enjoy representative shapes embeddings. An Autoencoder has two main blocks
the encoder and the decoder, the encoder encodes shapes into the wanted em-
beddings while the decoder gets thatembedding and decodes it to get back the
original shape. Their architecture is simple, the encoder is made out of two
conv3d layer (3dimensional filter) followed both by arectifier linear unitacti-
vation function (that outputs the the value if positive otherwise it will output 0)
thefirstoneusesakernel of (32,32,32) andastride of (2,1,1) with padding=(4,
2,0) while the second one convolves through the output of the first layer with
a kernel of size (5, 5, 1) with no stride value nor padding (both set to 1). the
decoder onthe other hands applies a 3D transposed convolution operator over
the embeddings generated by the encoder, that be done by two transposed
convolutional layer layers with the same parameters in the inverse order (the
first layer uses a kernel of (5,5,1) and no padding nor stride ad the first one
kernel=(32, 32, 32), stride=(2, 1, 1), padding=(4, 2, 0))

Shape Conv 1 Conv 2 Conv-tl Conv-t2

Shape

Shape embedding

FiIGURE3.5. Our autoencoder architecture

Weimprovetheencodingand decodingofthe model by applyingthemean
squared error loss between the generated shape of the decoder and the shape
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inputted first into the encoder and updating the weights of the layers during
the back propagation process. Wetrain the model for 100 epochsusingabatch
of 4 shapes at a time (for performance reasons).
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3.4 THE GENERATION TASK

We chose GANSs as a model for this task, generative adversarial networks are
a type of neural networks that uses two blocks called the generator and the
discriminator to understand as well as generate complex data using mathe-
matical operations, which is very helpful since we are trying to generate data
out of another, completely different, type (generating 3d shapes out of textual
descriptions), Inthe normal case the generator generates things out of random
noise (random vectors) butwhat we are trying to do here is alittle bit different,
therefore we will make use of a condition that we inject into the generator to
make sure it always stays close to the textual description inputted (serves as
creating a certain pattern of generation that’s why it is called the conditional
generative adversarial network). After getting the shapes and captions em-
beddings (using respectively our autoencoder and Google’s BERT model) we
now join the shapes with their textual descriptions what gives us a full labeled
dataset of low dimensional train ready shapes embeddings associated with their
respective textual description also encoded, now we move to the generation
task.As mentioned before our CGAN has two main blocks: the generator and
the discriminator, we first feed the embedded textual descriptions ,that are
a latent vector of size 384, concatenated with a random nosy vector into the
generator that will output a 3d shape of the dimension (4,3,3,3) and then fed
, alongside with the embedding of the original shape that is described here,
straightintothe discriminator forittoclassify the generated shape intoareal or
fake (figures out if itwas a generated one or not) and then sends the result back
tothe generatorthereforeitlearnsifitdidagood job or notand keepsrepeating
through many epochs improving every time (most of the time is more accurate),
ifthe discriminator thinks that the generated shape isacompletely identical to
the real one then we can say that the generation part was a success in fact if the
versionsare identical inaway that fools the discriminator itisenough and gets
the job done. The generator and the discriminator, as you might have guessed,
aren’t anywhere near similar in their architecture, since they do completely
different tasks, the generator is a sequential model of 5 linear layers that are,
mathematically, designed to calculate the linear equation Ax = b where x is
input, bisoutput, Aisweightand appliesthe linear transformation to the given
inputinto another size, and that what allows us to move froma latent vector of
size 384 toashape of (4,32,32,32) at the end, the first four layers are followed
by a 1 dimensional batch normalizing layer, except for the first one, and each
of the four uses a leaky rectified linear unit activation function. The last one
outputs the shape embedding (of size (4,3,3,3)) and it uses the Tanhactivation
function. Although we intended to generate shapes, we thought it would be
better to directly generate the shapes embeddings, we tried them both but the
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embedding generation was way better time and performance wise,therefore the
generation of shapes embeddings gets the latent vector of size 384 and outputs
the embedding of size (4,3,3,3).

;V/

ﬁ
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7

Leaky Relu Linear Batch Drop Out Tanh
Normalisation
768 128 256 512 1024
A, . 2,
108
—————————————————————————————————
i Concatenated two vectors:
i i
E Latent (384) + noise (384) = 768 ! Shape Embedding | ——
FIGURE3.6. Our CGAN’s generator architecture

On the other hand , in the discriminator we find 4 linear layers, the first
one has as an input feature 492 and outputs a feature map of 512that is passed
through a leaky rectified linear units and then through two linear layers with
a dropout function with a probability of 0.4 what that does is it keeps the
same size of the vector but zeroes some of its values with the probability of
40 percent an element is zeroed, at the end the mostly zeroed vector gets fed
to a linear layer that outputs one value which is if it is a fake or a real shape,
and the classification accuracy gets improved in the backpropagation process
after every epoch and this way it motivates the generator to step up its game
and generate challenging shapesforthe discriminator todiscriminate between
them and the real ones, that’s how we get the final generator that can generate
close to real shapes out of nothing but textual descriptions.
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Linear Dropout

|

512
— — | True/ False

FiIGURE3.7. Our CGAN’s discriminator architecture
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3.5CONCLUSION

The chapter we just walked you through is the most important one in thesis
since itis the one in which we explained in details what are we doing as well
as how we are doing it. We can divide it into three important parts the text
embeddings extraction where we explained how we used Google’s BERT to get
the embeddings of our dataset captions, and then in the second part we talked
about our Autoencoder that generates the shapes embeddings and detailed its
structure and how it works, in the last important part we tackled the CGAN
that we used in our generation task. In the next and last chapter, we will talk
about the tools we used and evaluate our work.



CHAPTER 4

The IMPLEMENTATION of our work

In the previews chapter we discussed how our models are made and their
architecture in this chapter we will discuss the process of building them, starting
withthetoolswe used moving to parameterswe build themuponandfinishing
with a brief overview evaluation .

4.1 USED TooLS:

in this section we will show you what we used to make this whole thing work.

4.1.1 Google COLLABORATORY

Google Colaboratory (also known as Colab) is a free Jupyter notebook environ-
mentthatrunsinthe cloudand stores its notebooks on Google Drive., itallows
you to write and execute Python in your browser, with zero configuration
required, free access to GPUs and easy sharing, also since it uses google drive
you can easily read data from drive in Colab and use it which is one of the best
features out there for developers world wide.

4.1.2 Python

Python is a programming language that has become a staple in data science,
allowing data analysts and other professionals to use the language to conduct
complex statistical calculations, create data visualizations, build machine learn-
ingalgorithms, manipulate and analyze data, and complete other data-related
tasks. Python can build a wide range of different data visualizations, like line
and bar graphs, pie charts, histograms, and 3D plots. Pythonalso hasanumber
of libraries that enable coders to write programs for data analysisand machine
learning more quickly and efficiently, like TensorFlow, Pytorch and Keras.
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4.1.3 Frontend we development tools

For our interface we used HTML, CSS and JS, in the interface there is a text
area so can the user put a small description describe the shape he wants, and
click generate the description treated in our backend and generate the shape.

4.1.4 F3D

F3D is a desktop program made by c++ and can display 3D shapes in NRRD
format (the main format we are using in our work). After our model generates
the shapes we drag and drop the generated NRRD file in the program and it
displays it.

4.1.5 VISUAL studio code

Visual Studio Code isastreamlined code editor with support for development
operationslikedebugging, taskrunning,andversioncontrol. Itaimstoprovide
justthetoolsadeveloper needs foraquick code-build-debug cycle and leaves
more complex workflows to fuller featured IDEs

4.1.6 NumPy

NumPy is an open source project aiming to enable numerical computing with
Python. It was created in 2005, building on the early work of the Numeric and
Numarray libraries[49]

4.1.7 NRRD

Nrrd ("nearlyrawraster data™) isalibraryand file format for the representation
and processing of n-dimensional raster data. It was developed by Gordon Kindl-
mann to support scientific visualization and image processing applications.it
can be used, accessed and modified through python’s library Pynrrd.

4.1.8 Bert

Bidirectional Encoder Representations from Transformers (BERT) is a
transformer-based machine learning technique for natural language process-
ing (NLP) pre-training developed by Google. it is designed to pre-train deep
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bidirectional representations from unlabeled text by jointly conditioning on
bothleftandrightcontext. Asaresult, the pre-trained BERT model can be fine-
tuned with just one additional output layer to create state-of-the-art models
for a wide range of NLP tasks.

4.1.9 Pytorch

PyTorchisanopensource machine learning library based onthe Torchlibrary,
used for applications such as computer vision and natural language processing,
primarily developedbyFacebook’s Al Research lab (FAIR). Althoughthe Python
interfaceismore polished andthe primary focus of development, PyTorchalso
has a C++ interface.
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4.2 DATASETS

ShapeNet is a large, information-rich repository of 3D models. It contains
models spanning a multitude of semantic categories. Unlike previous 3D model
repositories, it provides extensive sets of annotations for every model and
links between models in the repository and other multimedia data outside the
repository. Like ImageNet, ShapeNetprovidesaviewofthecontaineddataina
hierarchical categorizationaccordingtoWordNetsynsets, Unlike othermodel
repositories, ShapeNet also provides a rich set of annotations for each shape
and correspondences between shapes. The annotations include geometric
attributes such as upright and front orientation vectors, parts and keypoints,
shape symmetries , and scale of object in real world units. These attributes
provide valuable resources for processing, understanding and visualizing 3D
shapes in a way that is aware of the semantics of the shape.

sharemeT

\
ShapeNet is an ongoing effort to establish a richly-annotated, large-scale dataset of 3D shapes. We provide researchers

around the world with this data to enable research in computer graphics, computer vision, robotics, and other related
disciplines. ShapeNet is a collaborative effort between researchers at Princeton, Stanford and TTIC

1 s h Models |

Overview News

Shape

Feb, 2017 Ve are organizing 3 lar

FIGUREA4.1. The shapenet project home page [76]

To create a realistic dataset with real 3D objects and natural language
descriptions, weusethe ShapeNettableand chairobjectcategories (with 8,447
and 6,591 instances, respectively). These 3D shapes were created by human
designers to accurately represent real objects.
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FIGUREA4.2. Example form the shapenet tables and chairs dataset [76]

(((HX

We choose the table and chair categories because they contain many in-
stances with fine-grained attribute variations in geometry, color and material.
Weaugmentthisshape datasetwith 75,344 natural language descriptions (5de-
scriptions on average per shape) provided by people on the Amazon Mechanical
Turk crowdsourcing platform augmented with natural language descriptions,
and a controlled, procedurally generated dataset of 3D geometric primitives.
This large-scale dataset provides many challenging natural language descrip-
tions paired with realistic 3D shapes.

Circular glass coffee table with two
sets of wooden legs that clasp over
the round glass edge.

)

TR

@

A brown wooden moon shaped
table with three decorative legs
with a wooden vine shaped
decoration base connecting the leg:

Wooden half round table.

Dark brown wooden chair with
adjustable back rest and gold
printed upholestry.

Wooden recliner chair with
patterned fabric.

©)

FiIGUREA4.3. paired sahpes and descriptions from our dataset[76]

Toenablesystematicquantitativeevaluationofourmodel, weuseadataset
of 3D geometric primitives with corresponding text descriptions. This data
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was generated by voxelizing 6 types of primitives (cuboids, ellipsoids, cylinders,
cones, pyramids, and tori) in 14 color variations and 9 size variations. The
color and size variations are subjected to random perturbations generating
10 samples from each of 756 possible primitive configurations, thus creating
7560 voxelized shapes. They, then, created corresponding text descriptions
withatemplate-based approachthat fillsinattribute words for shape, size, and
colorinseveral orderings to produce sentences suchas “alarge red cylinder is
narrow and tall”. In total, we generate 192,602 descriptions, for an average of
about 255 descriptions per primitive configuration. Such synthetic text does
not match natural language but it does allow for an easy benchmark with a
clear mapping to the attributes of each primitive shape.

A large red A large short
sphere wide green
box

FiIGUREA4.4. example from the primitives dataset [76]
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4.3 OUR INTERFACE

we used a web interface for the users to interact and use our deep learning
models, is a way that our from end is a simple application that has two pages
one that has the input field where a user can enter its query which is in our
case a textual description, that text is getting embedded and then fed straight
into the generator which will generate the shape that was described textually
by the user’s query and send a tensor an nrrd file, that we drag and drop in the
F3D interface whichwill visualize itasa 3dfile. Below are screen shots of the
whole application.

Put your desciption here

FIGUREA4.5. a screenshot of the input page of ourapplication

Shape generated successfully. You can test it now !

FIGUREA4.6. a screenshot of the successful generation page of our application
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A wooden chair with plain backrest
and style leg.

A kitchen chair, with back support
and furnished base, comfortable and
light to use around the house.

A short wooden table, it is brown.

FIGUREA4.7. some samples generated with our model
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4.4 EXPERIMENTS

in this section we will take a look at the different models that we used in our
work and the configuration we used to get the best out of them (in terms of
results performance and computational time).

4.4.1 Autoencoder:

We used the autoencoder to learn the shape embeddings, and it did agreat jaob,
bellowthe hyperparameterswe usedtotrainthe model. The numberofepochs
: 100 The batch size : 8 The number of worker : 4, what that means is that we
will be using 4 cores to fetch and use data at a time. We also used the adam
optimizer which is one of the best and widely used optimizers it computes
individual adaptive learning rates for different parameters from estimates of
firstand second moments of the gradients and speaking of the learning rate we
usedalearningrate of 1e-3. Asforthe losswe usedthe meansquarederror loss,
nothing fancy butgetsthe job done. Bellow isthe chartof howthe autoencoder
learns and improves during the 100 epochs of training.

Autoencoder loss!

28000 -

27000 A

loss

26000 A

25000 A

24000 A1

4
-

0 20 40 60 80 100
epochs

FIGUREA4.8. the loss function of the autoencoder
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4.4.2 CGAN

Inthe generative adversarial network part, which is the global neural network
of thiswork, the generator gets an encoded caption concatenated with a noise
vector and generates a 3d shape, but we tried two different approaches, in the
first one the generation outputs a 3d shape that is fed into the discriminator
(withalatentvector) inthe otherapproachwe donotworkwith shapesbutwith
only embeddings which we see is better. they might be different approaches
but the hyper parameters are the same which they are :

The number of epochs : 200

The batch size : 32

The number of worker : 4

Thelearning rate : 0.0002

The latent vectors are of size 384 ,

Andthe shape of the shapes’ embeddingsis (4,3,3,3). The loss isthe same
Mean Squared Error.and below are the charts of all the models’ losses per
epoch.

CGAN with shapes:

Discriminator loss in the CGAN!

40 P!

30 R
w
S 20 1

10 A1

0 W
0 20 40 60 80 100
epochs

FiIGUREA4.9. the loss function of the discriminator
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Generator loss in the CGAN!

1050 A
1025 A
1000 1
0.975 A

0.950 1

loss

0.925
0.900 1
0.875 -
0.850

0 20 40 60 80 100
epochs

FiGUREA4.10. the loss function of the generator

CGAN with shapes embeddings:

Discriminator loss in the CGAN on the embeddings!

10 1

0.8 1

0.6 1

loss

0.4 1

0.2 1

00

0 20 P 60 80 100
epochs

FIGURE4.11. the loss function of the discriminator
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Generator loss in the CGAN on the embeddings!

1050 4
1025 1
1000 A
0.975 A1

loss

0.950 1
0.925 1
0.900 H
0.875 -

0.850

T T T

0 20 40 60 80 100
epochs

FIGUREA4.12. the loss function of the generator

4.4.3 COMPARATIVE study :

The generator using the original shapes does a better job than the one using
the embeddings, not by a big margin but still can be helpful, meanwhile the
discriminator usingthe shape embeddings outperformsthe other one, again by
aslightmargin. And bellow is both their charts grouped together sowe cansee
the difference clearly:
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comparing the loss between using the shapes and the embeddings

10 1
0.8 1
e
S 06 1
0.4 1
= using embeddings
02 - = using shapes
0 20 40 60 80 100
Epochs
FIGUREA4.13. comparative study of the generator

comparing the discriminator loss between using the shapes and the embeddings

40 ~——using embeddings
- using shapes
30 -
7
g2
10 1
01 \k_ Lodmr N Dot B
0 20 40 60 80 100
Epochs
FIGUREA4.14. comparative study of the discriminator

4.4.4 Discussing the results:

We mentioned before that the generator works better with the original shapes
and the discriminator with the embeddings which we think is due to the differ-
enceinsize betweenthe shape and its embedding, the shapes are sobigin size
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which means that are more ways for the generator to fool the discriminator
and the opposite in the case of the discriminator the embeddings are too small
for the generator to play with them in other words, the classification of asmall
amount of dataiseasier thanabigone. Butin practice we need the generator to
perform better, although it is a balance we need to find between the generator
and the discriminator it’s the generator that is going to generate the shapes out
of the captions for us. now in real practice, considering the cost of using the
shapeswhich,inour case, took 4+ hours per epoch comparingwiththe embed-
ding thatonly did the job in minutes and the minimum hardware requirements
to do both, going with a well generated embeddings is a no brainer.

4.5 CONCLUSION:

We divided this last chapter of our work into two parts where we showed you
what tools we used to get things done in the first part and then evaluated the
work we did inthe second part while discussing the results of the experiments
we did.



GENERAL Conclusion

Inthisfinal step ofthismilestone project, we willtakealook backatwhat
weweredoing fromthebeginning.We usedshapenet’stablesandchairs
dataset of 3d chairs and tables withtheir textual descriptions, also the
primitiveswhichisasimilarone buthasonly the base primitive forms (a
pyramid,aball ), and then generated the caption’sembeddings using

Google’s Bert which is the current state of the art in all theNLP related
tasks.We also used google colab to design and implement an autoencoder
thatextracts the shapes embeddings because we thought that using shapes
embeddingsinstead oftheactual shapeswouldbe suchanoptimisticway
of handling the timeand performance issues when dealing with data as
complexas 3dobjects giventhattheresultsaren’tthatbad atall. Thenwe
created the generatorthatwill be generating for us shapesgiven atextual
description, we went for a conditional generativeadversarial network
because we are after a generation task that demands respect a condi-
tion (the generated shape should be generated in a way that fitsthe text
describing it) which is only possible with a CGAN, we trained the genera-
torandthe discriminator in both the 3D shapesandtheirembeddingsand
thendiscussed the results of both.We learned a lot of things participating
in this huge project startingwith putting our hands on a real dataset to
building solutions to real-world problemsand finally implementing what
we learned throughout our university program. Although we didend up
getting some pleasing results our work is not by any means perfect, in
fact we could use a transformer to extract the shape embeddings, since
nothing beats a transformer when it comes to the embeddings and it
easily beats our autoencoder. Also using a more realistic dataset would
be help so much in increasing the quality of the generated shapes an
exampleofthatwouldbeusingshapenet’s (128,128,128) shapes dataset
whichwill allow us to generate shapes of the same size that look cleaner
and more feature-rich. Wefocused on only chairsandtables, butthe text
to shape task has more to it than that, in fact there is no end to the things
that could b generated out of textual descriptions, and it is a no brainer
thatthe future generations will be investing inthis newyetrapidly thriv-
ing technology, imaging being able to get a 3d shape of whatever you
can describe that would open new horizons to the whole human race,
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things that we needed years just to design can be put through words the
most effective way human beings found ,after hundreds of decades of
research, tocommunicate, learnand teach, it would just be enourmous.
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