
People’s Democratic Republic of Algeria Ministry of Higher
Education and Scientific Research

Saad Dahleb Blida University – Blida 1
Computer Science department

3D Shape generation from a short text description

In order to obtain the Master's degree
Domain: Mathematics and computer science

Branch: Natural Language Processing

Realized by:

Selmane Mohammed Ayyoub

Miloudi Merouane

Supervised by:

Mr. Kameche Abdallah Hicham

In front of the jury:

Mr. Cherif Zahar Sid Ahmed Amine

Mrs. Berramdane Djamila

Date: _ / _ / _

Year: 2020 - 2021

Abstract:

Today, the world witnesses a huge advancement in technology, specially in the domain

of virtual (VR) and augmented reality (AR). A lot of the largest companies are interested

in AR and VR, an imaginary world that you feel inside. That kind of project are based

on visualization of 3d objects. It was always considered a difficult task for designers to

build a full 3D environment. Even if it is possible to do it, it could not be achieved

neither in a short time nor with less expensive software

The objective of this work is to generate a 3d shape from a short text description with

the help of the most interesting topic in IA neural, networks and specifically, the

generative adversarial networks (GAN).

We built and trained a conditional GAN (CGAN) having as input the Bert embeddings

of text descriptions and as output their corresponding 3D shape embeddings. We trained

an Autoencoder to learn the 3D shapes representations. To validate our model, we

trained another CGAN having as output the 3D Shapes. We noticed that there isn’t a big

loss in the obtained 3D forms.

Keywords: Text to 3D shape, Text embeddings, Shape embeddings, CGAN, Bert,

Autoencoder.

Résumé :

Aujourd'hui, le monde est témoin d'un énorme progrès technologique, en particulier

dans le domaine de la réalité virtuelle et augmentée. De nombreuses grandes entreprises

s'intéressent à la réalité augmentée et à la réalité virtuelle. Ce genre de projet est basé sur

la visualisation d'objets 3D. Concevoir un environnement 3D a toujours été considéré

comme une tâche difficile pour les concepteurs. Et même si c’est possible de le faire,

cela ne peut être réalisé ni en peu de temps ni avec des logiciels moins coûteux.

L'objectif de ce travail est de générer une forme 3D à partir d'une description textuelle à

l'aide du sujet le plus intéressant en IA les réseaux de neurones et plus particulièrement

les réseaux antagonistes génératifs (GAN).

Nous avons construit et entraîné un GAN conditionnel (CGAN) ayant en entrée les

représentations Bert des descriptions textuelles et en sortie leurs représentations de

forme 3D correspondantes. Pour apprendre les représentations des formes 3D, nous

avons entrainé un auto encodeur. Pour valider notre modèle, nous avons entrainé un

autre CGAN ayant en sortie les Formes 3D. Nous avons remarqué qu'il n'y a pas de

perte significative dans les formes 3D obtenues.

Mots-clés : : Text to 3D shape, Représentation Textuelle, représentation des formes

3D, CGAN, Bert, Autoencoder.

 ملخص:

الشركات لكثير منامعزز، يشهد العالم اليوم تقدمًا هائلاً في التكنولوجيا خاصة في مجال الواقع الافتراضي والواقع ال

على ذي يعتمدروع المهتمة بالواقع المعزز والواقع الافتراضي، عالم خيالي تشعر وكأنك بداخله. هذا النوع من المش

يمكن ذلك، فلابلقيام عتبر دائمًا مهمة صعبة للمصممين، حتى لو كان من الممكن اتصور اشياء ثلاثية الأبعاد، كان ي

 قد فكرنافناعي، تحقيقه لا في وقت قصير ولا باستخدام برامج أقل تكلفة. وبما أننا طلاب في تخصص الذكاء الاصط

 .في كيف يمكننا المساعدة في مثل هذه المشكلة

 م فيلاهتمالثي الأبعاد من وصف النص بمساعدة الموضوع الأكثر إثارة الهدف من هذا العمل هو إنشاء شكل ثلا

 .الذكاء الصناعي الشبكات العصبية وعلى وجه التحديد شبكات الخصومة التوليدية

كل نص إلى شويل الالكلمات الرئيسية: التعلم الآلي، الشبكات العصبية، أوصاف النص، الأشكال ثلاثية الأبعاد، تح

 ، بيرت.GANثلاثي الابعاد،

Acknowledgements

Above all, it is thanks to Allah that we were able to get to where we are. It is above all

thanks to Him that our path has been lit to finish our modest work.

And then to those who helped us from the verry beginning till the end of this work. On

top of that of course it is our instructor Mr. Kameche, who gave us this huge opportunity

to get some experience handling real life problems, and helped us through it all while

teaching us some valuable that we wouldn’t have had the slightest of chance to come

across anywhere else genuinely thank you monsieur. Our parents who have been there

for us all along, you have sacrificed everything for your children sparing neither health

nor efforts. You have given us a wonderful model of perseverance. We are forever in

your debt.

We would like to express our gratitude to our brothers and sisters, family, and friends

for their encouragement.

We couldn’t have finished the acknowledgement part without mentioning Mme. Mezzi,

we have only good memories by your side. Thank you Madame for being who you are,

passionate about your work, thank you for offering your time to help us even outside of

your working hours. We will never forget that your sessions were both productive and

fun. You are an example to us.

To all of them, we extend our thanks, respect, and gratitude.

General introduction:

Context and problematic

Artificial intelligence and machine learning have taken the world by storm in the last

couple of years and the best seems is yet to come, and its bread and butter is the data, a

need for a smooth transition between different types of data haven’t been more

necessary. Although there have been many works on that but the 3d object type of data

didn’t seem to be getting its fair share of interest? In all fairness, it makes all the sense

considering how complex time and hardware (money) consuming they are. Companies

as big as facebook and amazon started to invest in advanced reality(AR) related fields

which we think is due to the advance in computation algorithms, which led into more

people believing it is becoming a good future investment.

Along the way, some issues were raised. Is it possible to learn a 3D shape

representation? Is there a way to automatically generate 3D AR environment from text

descriptions?

Work objectives

Our work is nothing short of those algorithms where we take on the problem of 3D

objects and try to find the most cost-efficient way of using them but on the other hand

also doesn’t affect the results (or affect them in an acceptable way not that big to feel a

difference).

Our mains tasks are:

- Build a neural model to learn 3D shapes representations (embeddings)

- Build a model that associate 3D shapes and text descriptions using only their

representations

- Validate the final model using a real dataset

We will use a labeled dataset of tables and chairs with textual descriptions and try to

develop some deep learning algorithms to train a model on them that will, in the end,

understand and be able to perform cross modal (3D objects or text) tasks like generation

or classification.

We divided our work into a theoretical and a practical part

Chapter 1: where we will be explaining machine learning and showing how magical

their algorithms can be which shows why we chose them to handle our problem.

Chapter 2: in this chapter we will discuss the similar works that are connected in a way

or another to our work

That concludes the theoretical part, and in the practical one we have.

Chapter 3: here we will detail the conceptual part of our work, where we explain our

deep learning models and how they work as well as their architectures and why we

chose every single one of them.

Chapter 4: lastly we discuss the implementation of those models and what parameters

did we use to get the best out of them, then exploring the non-technical stuff that is just

as important, to finish off with an evaluation to all the deep learning model

xii ► CONTENTS

ABSTRACT VII

ACKNOWLEDGEMENT IX

LIST OF FIGURES XV

LIST OF TABLES XVII

CHAPTER 1 A GLOBAL OVERVIEW ON MACHINE LEARNING 1

1.1 introduction 1

1.2 machine learning 1

1.2.1 Supervised Learning 1

1.2.2 Unsupervised Learning 2

1.2.3 semi-supervised Learning 3

1.2.4 Reinforcement Learning 4

1.3 Deep learning 6

1.3.1 Activation functions 6

1.3.2 Loss Function 8

1.3.3 Gradient Decent 9

1.4 Deep Learning Architectures 10

1.4.1 convolutional neural network 10

1.4.2 Recurrent neural networks 13

1.4.3 Transformers 15

1.4.4 Autoencodes 16

1.4.5 Generative Architecture 17

1.5 Machine Learning Models Performance Testing 20

1.5.1 Evaluation Techniques 20

xi

Contents

1.5.2 Evaluation Metrics 21

1.6 Conclusion 24

CHAPTER 2 RELATED WORKS 25

2.1 Text To Image 25

2.1.1 Conditional-GANs 25

2.1.2 Stack-GAN 27

2.2 Image To 3D Shapes 30

2.2.1 Multi-view 3D Reconstruction 30

2.2.2 Deep Learning on Sets 30

2.3 Text To Shape 32

2.4 Comparing the different related works 33

2.5 Conclusion 34

CHAPTER 3 DESIGN AND CONCEPTION 35

3.1 The global architecture: 36

3.2 Processing the natural language data

3.2.1 Word embedding 37

3.2.2 Common Embedding techniques

37

38

3.2.3 BERT Embedding 38

3.2.4 Generating our text embeddings:

3.3 Processing the 3D shapes 42

3.4 The generation task 44

3.5 Conclusion 47

40

CHAPTER 4 THE IMPLEMENTATION OF OUR WORK 49

4.1 Used Tools: 49

4.1.1 Google Collaboratory 49

4.1.2 Python 49

4.1.3 Fron end we development tools 50

4.1.4 F3D 50

CONTENTS E xiii

4.1.5 Visual studio code 50

4.1.6 NumPy 50

4.1.7 NRRD 50

4.1.8 Bert 50

4.1.9 Pytorch 51

4.2 Datasets 52

4.3 Our interface 55

4.4 Experiments 57

4.4.1 Autoencoder: 57

4.4.2 CGAN 58

4.4.3 Comparative study : 60

4.4.4 Discussing the results: 61

4.5 Conclusion: 62

GENERAL CONCLUSION 63

BIBLIOGRAPHY 65

CHAPTER 1

1.1 supervised learning 2

1.2 unsupervised learning

3

1.3 reinforcement learning

5

1.4 deep learning 6

1.5 linear function 7

1.6 non linear function 8

1.7 cats dogs classification example 9

1.8 the convolutional layer 11

1.9 Rectified Linear unit 11

1.10 the pooling layer 12

1.11 the fully connected layer 13

1.12 a recurrent neural network 14

1.13 a transformer handling an NLP task 16

1.14 an example of an autoencoder 17

1.15 Generative Adversarial Network structure 18

1.16 A comparison between GAN and CGAN 19

1.17 A confusion matrix of a binary classification 22

1.18 Classification Evaluation 23

CHAPTER 2

2.1 Reed et al. text-to-image GAN model 26

2.2 Stack-GAN 28

xv

List of Figures

2.3 The approach used by kevin chen et al 32

CHAPTER 3

3.1 Our autoencoder global architecture 36

3.2 a graphical representation of the base BERT model 39

3.3 an example of inputting a sentence into BERT 40

3.4 all-MiniLM-L6-v2 model information 41

3.5 Our autoencoder architecture 42

3.6 Our CGAN’s generator architecture 45

3.7 Our CGAN’s discriminator architecture 46

4.1 The shapenet project home page 52

4.2 Example form the shapenet tables and chairs dataset 53

4.3 paired sahpes and descriptions from our dataset 53

4.4 example from the primitives dataset 54

4.5 a screenshot of the input page of our application 55

4.6 a screenshot of the successful generation page of our application 55

4.7 some samples generated with our model 56

4.8 the loss function of the autoencoder 57

4.9 the loss function of the discriminator 58

4.10 the loss function of the generator 59

4.11 the loss function of the discriminator 59

4.12 the loss function of the generator 60

4.13 comparative study of the generator 61

CHAPTER 1

A GLOBAL Overview On MACHINE LEARNING

1.1 INTRODUCTION

Machine learning is an evolving branch of computational algorithms that are

designed to emulate human intelligence by learning from the surrounding

environment, it helps computers understand brute data and make decisions

or even predictions (which can be even better than humans) based on what

they have learned at first. It is,in other words, the field of study that gives

computers the ability to learn without being explicitly programmed. These

days, techniques based on machine learning have been applied successfully in

diverse fields ranging from pattern recognition, computer vision, spacecraft

engineering, finance, entertainment, and computational biology to biomedical

and medical applications.

1.2 MACHINE LEARNING

At its most basic, machine learning uses programmed algorithms that receive

and analyse input data to predict output values within an acceptable range. As

new data is fed to these algorithms, they learn and optimise their operations to

improve performance, developing ‘intelligence’ over time.

There are four types of machine learning algorithms: supervised, semi-

supervised, unsupervised and reinforcement.

1.2.1 Supervised LEARNING

Supervised learning is the type of machine learning in which machines are

trained using well "labelled" training data, and on basis of that data, machines

predict [1] . The labelled data means some input data is already tagged with the

correct output. Supervised learning is where you have input variables (x) and

an output variable (Y) and you use an algorithm to learn the mapping function

between the input and the output. Y=F(X). The goal is to approximate the

1

2 ► CHAP. 1 A GLOBAL OVERVIEW ON MACHINE LEARNING

FıGURE 1.1. supervised learning [54]

mapping function so well that when you have new input data (x) that you can

predict the output variables (Y) for that data In supervised learning, the training

data provided to the machines work as the supervisor that teaches the machines

to predict the output correctly. It applies the same concept as a student learns

in the supervision of the teacher. In the real-world, supervised learning can be

used for Risk Assessment, Image classification, Fraud Detection, spam filtering,

etc. The working of Supervised learning can be easily understood by the below

example and diagram:

Supervised learning can be further divided into two types of problems [2]:

• Regression, used for the prediction of continuous variables, such as
Weather forecasting, Market Trends.

• Classification, used when the output variable is categorical, which means
there are two classes such as Yes-No, Male-Female, True-false.

1.2.2 Unsupervised LEARNING

Unsupervised learning is a machine learning technique in which models are

not supervised using training dataset. Instead, models itself find the hidden

patterns and insights from the given data. It can be compared to learning which

takes place in the human brain while learning new things. It can be defined as

machine learning in which models are trained using unlabeled dataset and are

allowed to act on that data without any supervision. Unsupervised learning

cannot be directly applied to a regression or classification problem because

unlike supervised learning, we have the input data but no corresponding output

MACHINE LEARNING E 3 1.2

FıGURE 1.2. unsupervised learning [55]

data. The goal of unsupervised learning is to find the underlying structure of

dataset, group that data according to similarities, and represent that dataset in

a compressed format. In real-world, we do not always have input data with the

corresponding output so to solve such cases, we need unsupervised learning.

Rewards of unsupervised learning can be understood by the below diagram:

The unsupervised learning algorithm can be further categorized into two

types of problems:

• Clustering, it is a method of grouping the objects into clusters such that

objects with most similarities remains into a group and has less or no

similarities with the objects of another group.

• Association, it used for finding the relationships between variables in the

large database. It determines the set of items that occurs together in the

dataset. Association rule makes marketing strategy more effective. Such

as people who buy X item (suppose a bread) are also tend to purchase Y

(Butter/Jam) item.

1.2.3 semi-supervised LEARNING

Semi-Supervised learning is a type of Machine Learning algorithm that repre-

sents the intermediate ground between Supervised and Unsupervised learning

algorithms. It uses the combination of labeled and unlabeled datasets during

the training period. The basic disadvantage of supervised learning is that it

requires hand-labeling by ML specialists or data scientists, and it also requires a

high cost to process. Further unsupervised learning also has a limited spectrum

4 ► CHAP. 1 A GLOBAL OVERVIEW ON MACHINE LEARNING

for its applications. To overcome these drawbacks of supervised learning and

unsupervised learning algorithms, the concept of Semi-supervised learning is

introduced. In this algorithm, training data is a combination of both labeled

and unlabeled data. However, labeled data exists with a very small amount

while it consists of a huge amount of unlabeled data. Initially, similar data is

clustered along with an unsupervised learning algorithm, and further, it helps

to label the unlabeled data into labeled data uses pseudo labeling to train the

model with less labeled training data than supervised learning Semi-supervised

learning models are becoming more popular in the industries, some of the main

applications are: Speech Analysis, Web content classification, Protein sequence

classification.[2]

1.2.4 Reinforcement LEARNING

Reinforcement Learning is a feedback-based Machine learning technique in

which an agent learns to behave in an environment by performing the actions

and seeing the results of actions. For each good action, the agent gets positive

feedback, and for each bad action, the agent gets negative feedback or penalty.

The agent learns automatically using feedbacks without any labeled data, and

since there is no labeled data, so the agent is bound to learn by its experience

only and interacts with the environment and explores it by itself. The primary

goal of an agent in reinforcement learning is to improve the performance by

getting the maximum positive rewards Reinforcement Learning solves a specific

type of problem where decision making is sequential, and the goal is long-term,

such as game-playing, robotics, etc. Rewards and reinforcement learning can

be understood by the below diagram:

MACHINE LEARNING E 5 1.2

FıGURE 1.3. reinforcement learning [56]

6 ► CHAP. 1 A GLOBAL OVERVIEW ON MACHINE LEARNING

FıGURE 1.4. deep learning [57]

1.3 D EEP LEARNING

Deep learning is a subset of machine learning, which is essentially a neural net-

work with three or more layers. Neural networks are just one of many tools and

approaches used in machine learning algorithms. An artificial neural network

is usually a computational network based on biological neural networks that

construct the structure of the human brain. Artificial neural networks have

neurons that are linked to each other in various layers of the networks. These

neurons are known as nodes. Every neural network must have at least three

layers of neurons which are the input, the output and the hidden layer where

every neuron in a given layer is fully connected with the layer that precedes (to

pass from a neuron of the input layer to a neuron from the hidden layer you

must pass by the arc that is associated with a weight and every layer has its own

activation function Y = F(x*w) where Y is the output X is the input, w is the

weight of the arc and F is the activation function) this step is called the forward

propagation.[3]

1.3.1 ACTIVATION functions

Neural networks are specifically designed based on the inner workings of

biological brains. These models imitate the functions of interconnected neurons

by passing input features through several layers of what are referred to as

perceptrons (neurons), each transforming the input using a set of functions.

This section will tackles the different modules that make this possible. The

activation function refers to the set of transfer functions used to achieve the

DEEP LEARNING E 7 1.3

FıGURE 1.5. linear function [58]

desired output. We can classify activation functions in two categories :

(a) linear function

In the linear activation function, the output of functions is not

restricted in between any range. Its range is specified from -infinity to

infinity. For each individual neuron, the inputs get multiplied with

the weight of each respective neuron, which in turn leads to the

creation of output signal proportional to the input. If all the input

layers are linear in nature, then the final activation of the last

layer will actually be the linear function of the initial layer’s

input.[4]

(b) Non-Linear Function

These are one of the most widely used activation function. It helps

the model in generalizing and adapting any sort of data in order

to perform correct differentiation among the output. It solves the

following problems faced by linear activation functions which is

problems related to backpropagation and stacking up of several

layers of the neurons. The non-linear activation function is further

8 ► CHAP. 1 A GLOBAL OVERVIEW ON MACHINE LEARNING

FıGURE 1.6. nonlinear function [59]

divided into: Sigmoid or Logistic Activation Function, Tanh or

Hyperbolic Tangent Activation Function, ReLU (Rectified Linear

Unit) Activation Function and Softmax Function.[4]

1.3.2 Loss Function

The loss function is attempting to minimize by continuously updating the

weights in the model during training. During the training process, at the end of

each epoch, the loss will be calculated on the models predictions. So basically

what is happening is that the model calculates the error on each input by looking

at what output it predicted for that input, and taking the difference of that

output value and the correct label for that input. For example, if our model was

classifying images of cats and dogs, then say the label for a cat is zero, and the

label for a dog is one. If we pass an image of a cat to our model, and our model

outputs 0.25 for this image, then the error between the models output versus

the true label for the image would be 0.25 minus zero, the label for cat which is

equal to 0.25. So it does this process for every input, then at the end of each

epoch, it will accumulate all of the individual errors for each input, and then in

some way, pass them through to a loss function.[4]

DEEP LEARNING E 9 1.3

FıGURE 1.7. cats dogs classification example [60]

1.3.3 GRADIENT Decent

The Gradient Descent is an optimization algorithm which is used to minimize

the cost function for many machine learning algorithms. Gradient Descent

algorithm is used for updating the parameters of the learning models. There

are different types of Gradient Descent.[4]

1. Batch Gradient Descent

The Batch Gradient Descent is the type of Gradient Algorithm that is

used for processing all the training datasets for each iteration of the

gradient descent. Suppose the number of the training dataset is large,

the batch gradient descent will be comparatively expensive. Hence, if

the number of the training dataset is large, the users are not advised to

use batch gradient descent. Instead, they can use mini-batch gradient

descent for a large training dataset.[4]

2. Mini-Batch Gradient Descent

The mini-batch gradient descent is the type of gradient descent that is

used for working faster than the other two types of gradient descent.

Suppose the user has ’p’ (where ’p’ is batch gradient descent) dataset

where p < m (where ’m’ is mini-batch gradient descent) will be processed

per iteration. So, even if the number of ’p’ training dataset is large, the

mini-batch gradient descent will process it in batches of ’p’ training

datasets in a single attempt. Therefore, it can work for large training

datasets with fewer numbers of iterations.[5]

10 ► CHAP. 1 A GLOBAL OVERVIEW ON MACHINE LEARNING

3. Stochastic Gradient Descent

tochastic gradient descent is the type of gradient descent which can

process one training dataset per iteration. Therefore, the parameters

will be updated after each iteration, in which only one dataset has been

processed. This type of gradient descent is faster than the Batch Gradient

Descent. But, if the number of training datasets is large then also, it will

process only one dataset at a time. Therefore, the number of iterations

will be large.[4]

1.4 DEEP LEARNING ARCHITECTURES

Deep learning is the most advanced feat scientists have reached to this day, and

that’s because it uses some specific architectures to understand different types

of complex data and make decisions, we will now be looking at some of teh

most important of these architectures.

1.4.1 CONVOLUTIONAL NEURAL network

CNN is one of the techniques to do image classification and image recognition

in neural networks (it can treat other input data but it is not as efficient like

when working with images). It is designed to process the data by multiple

layers of arrays. This type of neural network is used in applications like image

recognition or face recognition. The primary difference between CNN and

other neural networks is that CNN takes input as a two-dimensional array. And

it operates directly on the images rather than focusing on feature extraction

which other neural networks do.Convolutional Neural Network (CNN or

ConvNet) is a type of feed-forward artificial networks where the connectivity

pattern between its neurons is inspired by the organization of the animal visual

cortex.CNN takes an image as input, which is classified and process under a

certain category such as dog, cat, lion, tiger, etc. The computer sees an image as

an array of pixels and depends on the resolution of the image. Convolutional

Neural Networks have the following 4 layers:

1. the convolutional layer

it is the first layer to extract features from an input image. By learning

image features using a small square of input data, the convolutional layer

preserves the relationship between pixels. It is a mathematical operation

which takes two inputs such as image matrix and a kernel or filter.

DEEP LEARNING ARCHITECTURES E 11 1.4

FıGURE 1.8. the convolutional layer [61]

FıGURE 1.9. Rectified Linear unit [62]

2. Rectified Linear unit(ReLU)

it is a transform functions only activates a node if the input is above a

certain quantity. While the data is below zero, the output is zero, but

when the input rises above a certain threshold. It has a linear relationship

with the dependent variable.In this layer, we remove every negative value

from the filtered images and replaces them with zeros.It is happening to

avoid the values from adding up to zero.

3. the pooling layer

12 ► CHAP. 1 A GLOBAL OVERVIEW ON MACHINE LEARNING

FıGURE 1.10. the pooling layer [63]

t plays an important role in pre-processing of an image. Pooling layer

reduces the number of parameters when the images are too large. Pooling

is "downscaling" of the image obtained from the previous layers. It can

be compared to shrinking an image to reduce its pixel density. Spatial

pooling is also called downsampling or subsampling, which reduces the

dimensionality of each map but retains the important information.

4. the fully connected layer

it is a layer in which the input from the other layers will be flattened into

a vector and sent. It will transform the output into the desired number

of classes by the network.In the above diagram, the feature map matrix

will be converted into the vector such as X1, X2, X3... Xn with the help

of fully connected layers. We will combine features to create a model

and apply the activation function such as softmax or sigmoid to classify

the outputs as a car, dog, truck, etc.

DEEP LEARNING ARCHITECTURES E 13 1.4

FıGURE 1.11. the fully connected layer [64]

1.4.2 Recurrent NEURAL networks

A recurrent neural network (RNN) is a kind of artificial neural network mainly

used in speech recognition and natural language processing (NLP). RNN is

designed to recognize patterns in sequences of data, such as text, genomes,

handwriting, the spoken word, and numerical time series data emanating from

sensors, stock markets, and government agencies. A recurrent neural network

looks similar to a traditional neural network except that a memory-state is

added to the neurons. The computation is to include a simple memory. The

recurrent neural network is a type of deep learning-oriented algorithm, which

follows a sequential approach. In neural networks, we always assume that

each input and output is dependent on all other layers. These types of neural

networks are called recurrent because they sequentially perform mathematical

computations. Recurrent Neural Networks suffer from short-term memory. If

a sequence is too long, they won’t be able to carry all the important information

from past steps. When processing a text to do predictions, RNNs may leave

out important information from the beginning.

14 ► CHAP. 1 A GLOBAL OVERVIEW ON MACHINE LEARNING

FıGURE 1.12. a recurrent neural network [65]

RNN is used in different types of models here are the most relevant ones:

1. Vector-Sequence Models

They take fixed-sized vectors as inputs and output vectors of any length,

for example, in image captioning, the image is given as an input and the

output describes the image.

2. Sequence-Vector Model

Take a vector of any size and output a vector of fixed size. Eg. Sentiment

analysis of a movie rates the review of any movie as positive or negative

as a fixed size vector.

3. Sequence-to-Sequence Model

The most popular and most used variant, take input as a sequence and

give output as another sequence with variant sizes. Example: Language

translation, for time series data for stock market prediction.RNN disad-

vantages: slow to train and long sequence leads to vanishing gradient or,

say, the problem of long term dependencies. In simple terms, its mem-

ory is not that strong when it comes to remembering old connections.

Therefore they had to come with solutions, the best they made are :

(a) LSTM:

Long Short Term Memory- Special kind of RNN, specially made for

solving vanishing gradient problems. They are capable of learning

DEEP LEARNING ARCHITECTURES E 15 1.4

Long-Term Dependencies. Remembering information for long

periods of time is practically their default behavior, not something

they struggle to learn it.The LSTM Neurons have unlike normal

neurons have a branch that allows to pass information and to skip

the long processing of the current cell, this allows the memory to be

retained for a longer period of time. It does improve the situation

of the vanishing gradient problem but not that amazingly, like it

will do good till 100 words, but for like 1,000 words, it starts to

lose its grip.But like simple RNN it is also very slow to train, or

even slower.LSTM take input sequentially one by one, which is

not able to use up GPU’s very well, which are designed for parallel

computation.

1.4.3 TRANSFORMERS

Transformer is the first transduction model relying entirely on self-attention

to compute representations of its input and output without using sequence-

aligned RNNs or convolution. Therefore we need to introduce attention first,

we can explain attention in neural network by a simple example, supposing we

have a book of machine learning and we need information about categorical

cross-entropy. here are two ways of doing it, first, read the whole book and

come back with the answer. Second, go to the index, find the ‘losses’ chapter,

go to the cross-entropy part and read the part of Categorical Cross Entropy. In

the former case we didn’t focus on any part of the book specifically, whereas

in the latter case, we focused our attention on the chapter of losses and then

further focused our attention on the cross-entropy part where the concept of

Categorical Cross Entropy is explained. Actually, this is the way most of us

humans will do. Attention in neural networks is somewhat similar to what

we find in humans. They focus on the high resolution in certain parts of the

inputs while the rest of the input is in low resolution Remember hidden state

from simple RNN now actually it is the context vector we pass along to the

decoder. The context vector turned out to be problematic for these types

of models. Models have a problem while dealing with long sentences. Or

say they were facing the vanishing gradient problem in long sentences. So, a

solution came along in a paper, Attention was introduced. It highly improved

the quality of machine translation as it allows the model to focus on the relevant

part of the input sequence as needed. Transformers are made to solve the

problem of slow training by the input sequence can be passed parallelly so

that GPU can be used effectively The Transformer starts by generating initial

representations, or embeddings, for each word. These are represented by the

16 ► CHAP. 1 A GLOBAL OVERVIEW ON MACHINE LEARNING

FıGURE 1.13. a transformer handling an NLP task [66]

unfilled circles. Then, using self-attention, it aggregates information from all

of the other words, generating a new representation per word informed by the

entire context, represented by the filled balls. This step is then repeated multiple

times in parallel for all words, successively generating new representations.

The decoder operates similarly, but generates one word at a time, from left to

right. It attends not only to the other previously generated words but also to the

final representations generated by the encoder. Transformers gives wonderful

results, using a self-attention mechanism and also solves the parallelization

issue. Even Google uses BERT that uses a transformer to pre-train models for

common NLP applications.

1.4.4 Autoencodes

Auto-encoders are a special type of neural network where inputs are outputs are

found usually identical. It was designed to primarily solve the problems related

to unsupervised learning. Auto-encoders are highly trained neural networks

that replicate the data. It is the reason why the input and output are generally

the same. They are used to achieve tasks like pharma discovery, image process-

ing, and population prediction. Auto-encoders constitute three components

namely the encoder, the code, and the decoder. Auto-encoders are built in

such a structure that they can receive inputs and transform them into various

representations. The attempts to copy the original input by reconstructing

them is more accurate. They do this by encoding the image or input, reduce the

size. If the image is not visible properly they are passed to the neural network

for clarification. Then, the clarified image is termed a reconstructed image

and this resembles as accurate as of the previous image. To understand this

complex process, see the below-provided image. They are mainly designed to

encode the output into a compressed yet meaningful representation and then

decode it back such that the reconstructed output is similar to the original one

(the output).The problem is to learn the functions A : R n → R p (encoder) and

DEEP LEARNING ARCHITECTURES E 17 1.4

FıGURE 1.14. an example of an autoencoder [67]

B : R p → R n (decoder) that satisfy

argmin (a, b)E [(x, BA(x)]

where E is the expectation over the distribution of x, and is the reconstruction

loss function, which measures the distance between the output of the decoder

and the input. if A and B were linear operations we get a linear auto-encoder.

1.4.5 GENERATIVE Architecture

1. Generative Adversarial Neural Networks

Generative adversarial networks are a new but rapidly growing algorith-

mic architectures that uses two adversarial neural networks (they work

one against the other), they are called the generator and the discriminator.

The generator tries to fool the discriminator by generating data similar

to those of the training set while the discriminator tries to identify fake

from real data, working simultaneously they can learn and train complex

data. The algorithm works as follows: the generator receives a random

noise input and then transforms it into some meaningful output that is

going to be fed to the discriminator alongside with the training set in

order for it to try to identify the original training data from the generated

ones, mathematically speaking, the discriminator and generator play a

two-player minimax game with the value function V(G, D). So, Minimax

Objective function is:

Y (D; G) = Ex ∼ p (data)[logD (x)] + Es ∼ p (s)[log(1 − D (G (s)))]

18 ► CHAP. 1 A GLOBAL OVERVIEW ON MACHINE LEARNING

FıGURE 1.15. Generative Adversarial Network structure [68]

where D(x) is the probability that data x is from the training set, and

D(G(Z)) is the probability that data G(Z) ,which is fake data generated

by the generator, are from the training set.This way the generator tries

to minimize V (by minimizing D(x) and D(Z)), and the discriminator

tries to maximize V(by maximizing D(x) and minimizing D(Z)).they both

learn by alternative gradient descent (we apply GD on a neural net while

fixing the other and vice versa).

2. Conditional Generative Adversarial Networks

GANs can be extended to a conditional model if both the generator and

discriminator are conditioned on some extra information (say Y).Y could

be any kind of auxiliary information,such as class labels or data from

other modalities. We can perform the conditioning by feeding Y into the

both the discriminator and generator as an additional input layer.The

new objective function of the two-player minimax game would be:

Y (D; G) = Ex ∼ p (data)[logD (x /y)]+Es ∼ p (s)[log(1−D (G (s/y)))]

DEEP LEARNING ARCHITECTURES E 19 1.4

FıGURE 1.16. A comparison between GAN and CGAN [69]

3. Wasserstein Generative Adversarial Networks

The Wasserstein GAN or WGAN , was introduced by Martin Arjovsky,

et al. in their 2017 paper [6]. It is an extension of the GAN that seeks an

alternate way of training the generator model to better approximate the

distribution of data observed in a given training dataset. Instead of using

a discriminator to classify or predict the probability of generated images

as being real or fake, the WGAN changes or replaces the discriminator

model with a critic that scores the realness or fakeness of a given image.

This change is motivated by a theoretical argument that training the

generator should seek a minimization of the distance between the distri-

bution of the data observed in the training dataset and the distribution

observed in generated examples. The benefit of the WGAN is that the

training process is more stable and less sensitive to model architecture

and choice of hyperparameter configurations. Perhaps most importantly,

the loss of the discriminator appears to relate to the quality of images

created by the generator. The primary contribution of the WGAN model

is the use of a new loss function that encourages the discriminator to

predict a score of how real or fake a given input looks. This transforms

the role of the discriminator from a classifier into a critic for scoring the

realness or fakeness of images, where the difference between the scores

is as large as possible.

20 ► CHAP. 1 A GLOBAL OVERVIEW ON MACHINE LEARNING

1.5 M ACHINE LEARNING MODELS PERFORMANCE TESTING

The model training is an important step, but after that step how the model gen-

eralizes on unseen data is an equally important aspect that should be considered

in every machine learning pipeline. We need to know whether it actually works

and, consequently, if we can trust its predictions in future. This issues can be

handled by evaluating the performance of a machine learning model, Model

evaluation aims to estimate the generalization accuracy of a model on future

(unseen/out-of-sample) data.Methods for evaluating a model’s performance are

divided into 2 categories: namely, holdout and Cross-validation. Both methods

use a test set (i.e data not seen by the model) to evaluate model performance

1.5.1 EVALUATION Techniques

1. Holdout

The purpose of holdout evaluation is to test a model on different data

than it was trained on. This provides an unbiased estimate of learning

performance. The dataset is randomly divided into three subsets: • Train-

ing set: is a subset of the dataset (training data) used to build predictive

models. We cant use all the dataset to train the model, take maximum

of 60 or 70• Validation set: is a subset of the dataset used to assess the

performance of the model built in the training phase. It provides a test

platform for fine-tuning a model’s parameters and selecting the best

performing model. Not all modeling algorithms need a validation set.

Take like 15 or 20• Test set (unseen data): is a subset of the dataset used

to assess the likely future performance of a model. If a model fits to the

training set much better than it fits the test set, overfitting is probably

the cause. Take like 15 or 20The holdout approach is useful because of

its speed, simplicity, and flexibility. However, this technique is often

associated with high variability since differences in the training and test

dataset can result in meaningful differences in the estimate of accuracy.

2. Cross-validation

As there is never enough data to train your model, removing a part of it

for validation poses a problem of underfitting. By reducing the training

data, we risk losing important patterns/ trends in data set, which in

turn increases error induced by bias. So, what we require is a method

that provides ample data for training the model and also leaves ample

data for validation. K Fold cross validation does exactly that. k-fold

cross-validation is most common cross-validation technique, where the

MACHINE LEARNING MODELS PERFORMANCE TESTING E 21 1.5

original dataset is partitioned into k equal size subsamples, called folds.

The k is a user-specified number, usually with 5 or 10 as its preferred

value. This is repeated k times, such that each time, one of the k subsets

is used as the test set/validation set and the other k-1 subsets are put

together to form a training set. The error estimation is averaged over all

k trials to get the total effectiveness of our model.

1.5.2 EVALUATION Metrics

Evaluation metrics are required to quantify model performance. The choice of

evaluation metrics depends on a given machine learning task (such as classifi-

cation, regression, ranking, clustering, topic modeling, among others). Some

metrics, such as precision-recall, are useful for multiple tasks. Supervised

learning tasks such as classification and regression constitutes a majority of ma-

chine learning applications. We will focus on metrics for these two supervised

learning models.

Classification Accuracy

Accuracy is a common evaluation metric for classification problems. It’s the

number of correct predictions made as a ratio of all predictions made. When

performing classification predictions, there’s four types of outcomes that could

occur.

1. True Positives

are when you predict an observation belongs to a class and it actually

does belong to that class.

2. True Negatives

are when you predict an observation does not belong to a class and it

actually does not belong to that class.

3. False Positives

occur when you predict an observation belongs to a class when in reality

it does not.

4. False Negatives

occur when you predict an observation does not belong to a class when

in fact it does.

22 ► CHAP. 1 A GLOBAL OVERVIEW ON MACHINE LEARNING

FıGURE 1.17. A confusion matrix of a binary classification [70]

These four outcomes are often plotted on a confusion matrix. The follow-

ing confusion matrix is an example for the case of binary classification. You

would generate this matrix after making predictions on your test data and then

identifying each prediction as one of the four possible outcomes described

above.

The three main metrics used to evaluate a classification model are accuracy,

precision, and recall. Where accuracy is defined as the percentage of correct

predictions for the test data. It can be calculated easily by dividing the number

of correct predictions by the number of total predictions.

accuracy =
correctpredictions

allpredictions

And precision is defined as the fraction of relevant examples (true positives)

among all of the examples which were predicted to belong in a certain class,

truepositiUes

precision = truepositiUes + ƒ alsepositiUes

meanwhile the recall is defined as the fraction of examples which were predicted

to belong to a class with respect to all of the examples that truly belong in the

class.

recall =

Regression Accuracy

truepositiUes

truepositiUes + ƒ alseNegatiUes

Evaluation metrics for regression models are quite different than the above

metrics we discussed for classification models because we are now predicting

in a continuous range instead of a discrete number of classes. If your regression

model predicts the price of a house to be 400K USD and it sells for405K USD,

MACHINE LEARNING MODELS PERFORMANCE TESTING E 23 1.5

() −

() ·
.

(−)

FıGURE 1.18. Classification Evaluation [71]

that’s a pretty good prediction. However, in the classification examples we

were only concerned with whether or not a prediction was correct or incorrect,

there was no ability to say a prediction was "pretty good". We have a different

set of evaluation metrics for regression models.

1. Explained variance

compares the variance within the expected outcomes, and compares

that to the variance in the error of our model. This metric essentially

represents the amount of variation in the original dataset that our model

is able to explain.

EY Ytrue, Ypred = 1
Yar (Ytrue, Ypred)

Ytrue

2. Mean squared error

is simply defined as the average of squared differences between the

predicted output and the true output. Squared error is commonly used

because it is agnostic to whether the prediction was too high or too low,

it just reports that the prediction was incorrect.

MSE Ytrue, Ypred =
 1

Ytrue Ypred 2
Nsamples

24 ► CHAP. 1 A GLOBAL OVERVIEW ON MACHINE LEARNING

1.6 CONCLUSION

The conclusion in this chapter we concentrated on two parts, machine learn-

ing and neural network and how convolutional neural network works very

efficiently on image recognition and classification, recurrent neural network

directed more to deal with texts and we explain the solutions for RNN prob-

lems. The need for machine learning is increasing day by day. The reason

behind the need for machine learning is that it is capable of doing tasks that

are too complex for a person to implement directly. As a human, we have some

limitations as we cannot access the huge amount of data manually, so for this,

we need some computer systems and here comes the machine learning to make

things easy for us. And the importance of machine learning can be easily under-

stood by its uses cases, Currently, machine learning is used in self-driving cars,

cyber fraud detection, face recognition, and friend suggestion by Facebook,

etc. Various top companies such as Netflix and Amazon have build machine

learning models that are using a vast amount of data to analyze the user interest

and recommend product accordingly.

CHAPTER 2

RELATED Works

There have been a lot of works that dealt with text, images and 3d shapes data, as

for our problem which is the generation of 3d shapes out of textual description

we find it rewarding to have a look at some of the best researches treating this

kind of data since the generation the 3d shapes can come in two ways, either a

direct generation (shapes outputs out of text input) or generating images ,out of

the text inputs, that are fed to an image to shapes generator (text-image-shape).

In this chapter we take a explore some past or present state of the art approaches

dealing with data in the sort of text, images or 3d shapes.

2.1 T EXT TO IMAGE

The generation of images from the regular language has numerous potential

applications later on once the innovation is prepared for business applications

and an amazing demonstration of Deep Learning [7]. Generative Adversarial

Networks have a place with the arrangement of generative models. It implies

that they can create new substances. Text is translated into picture pixels[8].

For eg: Flower with pink petals. GAN comprise of an arrangement of two

contending neural organization models that compete with one another and

observe, catch and duplicate the varieties inside a dataset [9]. Text to image

synthesis is all about converting text descriptions into appropriate images.

Nowadays, GAN models are widely used for better results [7]. We focused on

two approaches used with GAN and [7] [8] [10] [11] [12] have a good explanation

and demonstration to those two architectures.

2.1.1 CONDITIONAL-GANS

We take [8] as example to explain it, in their paper defined C-GANs work by in-

putting a one-hot class label vector as input to the generator and discriminator

in addition to the randomly sampled noise vector. This results in higher train-

ing stability, more visually appealing results, as well as controllable generator

outputs. The goal of Generator is to fool the Discriminator whereas the goal of

25

26 ► CHAP. 2 RELATED WORKS

FıGURE 2.1. Reed et al. text-to-image GAN model [72]

Discriminator is to identify correct data. Generator and Discriminator both

compete with each other. Generator makes all the attempts to convince the

Discriminator that the generated fake instances are the real samples of data and

also increases the probability of mistakes whereas the Discriminator figures

out the real ones. Hence, these steps are repeated many times and both the

sub-models get trained much better. First, Discriminator is trained on the real

data samples to verify if it can identify those samples as real [10]. Again, the

Discriminator is trained on generated fake data to see if is able to discriminate

between actual and fake image. Generator is also trained depending upon the

results of Discriminator so it can improve itself. In addition to constructing

good text embeddings, translating from text to images is highly multi-modal [7].

The term ‘multi-modal’ is an important one to become familiar with in Deep

Learning research. This refers to the fact that there are many different images

of birds with correspond to the text description “bird” [7]. Another example in

speech is that there are many different accents, etc. that would result in different

sounds corresponding to the text “bird”. Multi-modal learning is also present

in image captioning, (image-to-text). However, this is greatly facilitated due to

the sequential structure of text such that the model can predict the next word

conditioned on the image as well as the previously predicted words. Multi-

modal learning is traditionally very difficult, but is made much easier with

the advancement of GANs (Generative Adversarial Networks), this framework

creates an adaptive loss function which is well-suited for multi-modal tasks

such as text-to-image.

The picture above shows the architecture Reed et al.[79] used to train this

text-to-image GAN model. The most noteworthy takeaway from this diagram

is the visualization of how the text embedding fits into the sequential

processing of the model. In the Generator network, the text embedding

is filtered through a fully connected layer and concatenated with the random

noise vector z. In this case, the text embedding is converted from a 1024x1

vector to 128x1 and concatenated with the 100x1 random noise vector z. On

the side of the discriminator network, the text-embedding is also compressed

TEXT TO IMAGE E 27 2.1

through a fully connected layer into a 128x1 vector and then reshaped into a 4x4

matrix and depth-wise concatenated with the image representation. This image

representation is derived after the input image has been convolved over multiple

times, reduce the spatial resolution and extracting information. This embedding

strategy for the discriminator is different from the conditional-GAN model in

which the embedding is concatenated into the original image matrix and then

convolved over [10]. One general thing to note about the architecture diagram

is to visualize how the DCGAN upsamples vectors or low-resolution images

to produce high-resolution images. You can see each de-convolutional layer

increases the spatial resolution of the image [12]. Additionally, the depth of the

feature maps decreases per layer. Lastly, you can see how the convolutional

layers in the discriminator network decreases the spatial resolution and increase

the depth of the feature maps as it processes the image. An interesting thing

about this training process is that it is difficult to separate loss based on the

generated image not looking realistic or loss based on the generated image not

matching the text description. The authors of the paper describe the training

dynamics being that initially the discriminator does not pay any attention to the

text embedding, since the images created by the generator do not look real at

all [10]. Once G can generate images that at least pass the real vs. fake criterion,

then the text embedding is factored in as well. The authors smooth out the

training dynamics of this by adding pairs of real images with incorrect text

descriptions which are labeled as ‘fake’. The discriminator is solely focused on

the binary task of real versus fake and is not separately considering the image

apart from the text. This is in contrast to an approach such as AC-GAN with

one-hot encoded class labels. The AC-GAN discriminator outputs real vs. fake

and uses an auxiliary classifier sharing the intermediate features to classify the

class label of the image. [11]

2.1.2 STACK-GAN

To generate high-resolution images with photo-realistic details, [11] propose a

simple yet effective Stacked Generative Adversarial Networks. It decomposes

the text-to-image generative process into two stages

Stage-I GAN: it sketches the primitive shape and basic colors of the object

conditioned on the given text description, and draws the background layout

from a random noise vector, yielding a low-resolution image. [12]

Stage-II GAN: it corrects defects in the low-resolution image from Stage-I and

completes details of the object by reading the text description again, producing

a high resolution photo-realistic image. [12]

28 ► CHAP. 2 RELATED WORKS

×

FıGURE 2.2. Stack-GAN [73]

Stage-I GAN

Instead of directly generating a high-resolution image conditioned on the text

description, we simplify the task to first generate a low-resolution image with

our Stage-I GAN, which focuses on drawing only rough shape and correct

colors for the object. [13] Let t be the text embedding of the given description,

which is generated by a pre-trained encoder in this paper [12]. The Gaussian

conditioning variables c^0 for text embedding are sampled from N (µ0(t), Σ0(t))

to capture the meaning of t with variations. Conditioned on c^0 and random

variable z, Stage-I GAN trains the discriminator D0 and the generator G0 by

alternatively maximizing LD0 in Eq. (1) and minimizing LG0 in Eq. (2) where

the real image I0 and the text description t are from the true data distribution

Pdata. z is a noise vector randomly sampled from a given distribution Pz (Gaus-

sian distribution in this paper). λ is a regularization parameter that balances

the two terms in Eq. (2). We set λ = 1 for all our experiments both µ0(t) and

Σ0(t) are learned jointly with the rest of the network. [12]

Stage-I GAN Architecture

For the generator G0, to obtain text conditioning variable c^0, the text embed-

ding t is first fed into a fully connected layer to generate µ0 and σ0 (σ0 are

the values in the diagonal of Σ0) for the Gaussian Distribution N (µ0(t), Σ0(t)).

c^0 are then sampled from the Gaussian distribution. Our Ng dimensional

conditioning vector c^0 is computed by c^0 = µ0 + σ0 (where is the element-

wise multiplication, N (0, I)). Then, c^0 is concatenated with a Nz dimensional

noise vector to generate a W0 H0 image by a series of up-sampling blocks.

[11] For the discriminator D0, the text embedding t is first compressed to Nd

dimensions using a fully-connected layer and then spatially replicated to form

TEXT TO IMAGE E 29 2.1

×

×

× ×

×

×

× ×

a Md Md Nd tensor. Meanwhile, the image is fed through a series of down-

sampling blocks until it has Md Md spatial dimension. Then, the image

filter map is concatenated along the channel dimension with the text tensor.

The resulting tensor is further fed to a 1 1 convolutional layer to jointly learn

features across the image and the text. Finally, a fully connected layer with one

node is used to produce the decision score. [12]

Stage-II GAN

Low-resolution images generated by Stage-I GAN usually lack vivid object

parts and might contain shape distortions. Some details in the text might also

be omitted in the first stage, which is vital for generating photo-realistic images

[13]. Our Stage-II GAN is built upon Stage-I GAN results to generate high-

resolution images. It is conditioned on low-resolution images and also the

text embedding again to correct defects in Stage-I results. The Stage-II GAN

completes previously ignored text information to generate more photo-realistic

details. [14]

Stage-II GAN Architecture

We design Stage-II generator as an encoder-decoder network with residual

blocks. Similar to the previous stage, the text embedding t is used to generate

the Ng dimensional text conditioning vector c^, which is spatially replicated to

form a Mg Mg Ng tensor [12]. Meanwhile, the Stage-I result s0 generated by

Stage-I GAN is fed into several down-sampling blocks (i.e., encoder) until it

has a spatial size of Mg Mg. The image features and the text features are con-

catenated along the channel dimension. The encoded image features coupled

with text features are fed into several residual blocks, which are designed to

learn multi-modal representations across image and text features [14]. Finally,

a series of up-sampling layers (i.e., decoder) are used to generate a W H high-

resolution image. Such a generator is able to help rectify defects in the input

image while add more details to generate the realistic high-resolution image.

For the discriminator, its structure is similar to that of Stage-I discriminator

with only extra down-sampling blocks since the image size is larger in this stage

[16]. To explicitly enforce GAN to learn better alignment between the image

and the conditioning text, rather than using the vanilla discriminator, we adopt

the matching-aware discriminator proposed by Reed et al.[79] for both stages.

During training, the discriminator takes real images and their corresponding

text descriptions as positive sample pairs, whereas negative sample pairs consist

of two groups. The first is real images with mismatched text embeddings [15],

while the second is synthetic images with their corresponding text embeddings.

30 ► CHAP. 2 RELATED WORKS

2.2 I MAGE TO 3D SHAPES

In this chapter we take a look at some of the best works on generating 3d shapes

out of images, where we will highlight the approaches used as far as shapes and

images are concerned.

2.2.1 Multi-view 3D Reconstruction

3D shapes can be recovered from multiple color images or depth scans. To

estimate the underlying 3D shape from multiple color images, classic SfM [16]

and vSLAM [17] algorithms firstly extract and match hand-crafted geometric

features [18] and then apply bundle adjustment [19] for both shape and camera

motion estimation. Ji et al. [20] use “maximizing rigidity” for reconstruction,

but this requires 2D point correspondences across images. Recent deep neural

net based approaches tend to recover dense 3D shapes through learnt features

from multiple images and achieve compelling results. To fuse the deep features

from multiple images, both 3D-R2N2 [21] and LSM apply the recurrent unit

GRU, resulting in the networks being permutation variant and inefficient for

aggregating long sequence of images. Recent SilNet [22] [23] and DeepMVS

[24] simply use max pooling to preserve the first order information of multiple

images, while RayNet [25] applies average pooling to reserve the first moment

information of multiple deep features. MVSNet proposes a variance-based

approach to capture the second moment information for multiple feature ag-

gregation. These pooling techniques only capture partial information, ignoring

the majority of the deep features. Recent SurfaceNet [26] and SuperPixel Soup

[27] can reconstruct 3D shapes from two images, but they are unable to process

an arbi- trary number of images. As for multiple depth image reconstruction,

the traditional volumetric fusion method [28] integrates multiple viewpoint

information by averaging truncated signed distance functions (TSDF). Recent

learning based OctNetFusion [29] also adopts a similar strategy to integrate

multiple depth information. However, this integration might result in informa-

tion loss since TSDF values are averaged [29]. PSDF [30] is recently proposed

to learn a probabilistic distribution through Bayesian updating in order to fuse

multiple depth images, but it is not straightforward to include the module into

existing encoder-decoder networks.

2.2.2 Deep LEARNING on Sets

In contrast to traditional approaches operating on fixed dimensional vectors or

matrices, deep learning tasks defined on sets usually require learning functions

2.2 IMAGE TO 3D SHAPES E 31

to be permutation invariant and able to process an arbitrary number of elements

in a set [31]. Such problems are widespread. Zaheer et al.[31] introduce general

permutation invariant and equivariant models in [31], and they end up with

a sum pooling for permutation invariant tasks such as population statistics

estimation and point cloud classification. In the very recent CGQN [32], sum

pooling is also used to aggregate an arbitrary number of orderless images for

3D scene representation. Gardner et al. [33] use average pooling to integrate

an unordered deep feature set for classification task. Su et al. [34] use max

pooling to fuse the deep feature set of multiple views for 3D shape recognition.

Similarly, PointNet [35] also uses max pooling to aggregate the set of features

learnt from point clouds for 3D classification and segmentation. In addition,

the higher-order statistics based pooling approaches are widely used for 3D

object recognition from multiple images

32 ► CHAP. 2 RELATED WORKS

FıGURE 2.3. The approach used by kevin chen et al [78]

2.3 TEXT TO SHAPE

In the paper «Text2Shape: Generating Shapes from Natural Language » kevin et

al [78] represent a method for generating 3d shapes from natural language, they

split their work into two major tasks text to shape retrieval and text to shape

generation. They first present a method for learning a joint text and shape

representation space directly from natural language descriptions of 3D shape

instances, By leveraging a new dataset of paired natural language descriptions

and colored 3D shapes, their method extends learning by association[41] and

metric learning[42] to jointly learn a text and 3D shape embedding that clusters

similar shapes and descriptions, establishing implicit semantic connections

followed by their text-to-shape generation framework. Unlike related work in

text-to-image synthesis [12],[13] they do not rely on fine-grained category-level

class labels or pre-training on large datasets. Furthermore, they train the text

and shape encoding components jointly in an end-to-end fashion, associating

similar points in our data both within a modality (text-to-text or shape-to-

shape) and between the two modalities (text-to-shape). The retrieval task allows

to evaluate the quality of the jointly learned text-shape embedding against

baselines from prior work. As for the text-to shape generation task, kevin et al

[78] focused on colored shape generation because most descriptions of shapes

involve color or material properties. To address this task, they combined the

joint embedding model with a novel conditional Wasserstein GAN framework,

providing greater output quality and diversity compared to a conditional GAN

formulation. Lastly, they used vector embedding arithmetic and the generator

to manipulate shape attributes.[78]

Experimental results on collected 75K natural language descriptions for

15K chair and table shapes in the ShapeNet[43] dataset shows that they model

outperforms the baselines by a large margin for both the retrieval and genera-

tion tasks.

2.4 COMPARING THE DIFFERENT RELATED WORKS E 33

2.4 COMPARING THE DIFFERENT RELATED WORKS

Work Type Cons Pros

Conditional

GANs [10]

Text to

image

1. Does not ensure the

quality of generation

1. Generates realistic im-

ages from text with de-

sirable characters

Stack

GAN [12]

Text to

image

1. Does not capture fine

details of the image

1. improves the quality of

the generated images

Multi

view 3D

recon-

struction

[20]

Image

to

shape

1. Generated shapes are

images from the input

and not new

1. Learns from one or mul-

tiple images

Deep

learning

on sets

[31]

Image

to

shape

1. Shapes with low quality

1.Generates new shapes

Kevin

Chen et

al’s work

[78]

Text to

shape

1. A classification problem

2. Made specifically (and

only) for the shapenet

chairs and tables dataset

3. the embedding task is a

basic one

1. Do not rely entirely fine-

grained category level

annotations

2. define a metric learn-

ing loss, what improves

the cross model associa-

tions

Our work

Text to

shape

1. Works only with 3d ob-

jects

1. A regression problem

2. works with all the

datasets of 3D shapes

3. Uses transformers and

an autoencoder to com-

pute the embeddings

4. Time and computation

power efficient

34 ► CHAP. 2 RELATED WORKS

2.5 CONCLUSION

In this chapter we explained 3 main related works: Text to image, Image to shape,

and text to shape. We understood that the first class aimed to generate images

from textual descriptions, we chose about two methods (CGAN and Stack

Gan), each time we note that there are points added at the level of the approach

compared to the previous one. The second part aims to transform images

into shapes, we take into consideration these two approaches (Multi-view 3D

Reconstruction and Deep Learning on Sets). According to the classification of

the work that we made we understood that the first two parts gave birth to the

third part text to shape which is the basis of our work such that the latter it uses

the architecture of CWGAN. In next chapter, we will move on to the conceptual

part, which will be devoted to expressing the architectures and methods used

in the realization of our approach.

CHAPTER 3

Design AND conception

In the previous chapters, we have seen the different works handling data of

the sort of 3d shapes, images and text, now we will walk you through our own

approach and the models we chose and developed to get better results than the

previews ones. First, we will explain how we generated the text embeddings

using Google’s BERT which is the current state of the art world wide, and then

we will explain the Autoencoder we used to retrieve the shapes embeddings,

to finish off by talking about the CGAN that learns the mappings between the

shapes and their textual descriptions as well as generates the shape described

by the text input which is the global goal of our work.

35

36 ► CHAP. 3 DESIGN AND CONCEPTION

FIGURE 3.1. Our global architecture

3.1 THE GLOBAL ARCHITECTURE

As shown in the previous figure, our, simple yet effective, approach consists of

two main blocks the encoding and the generation. The input textual descrip-

tion is fed into an encoder that generates ,through BERT, its embedding, then,

concatenated with some noise, will be passed to the generator that generates

what it thinks is the shape associated to that description, however, to make sure

the generator does its work properly we also feed the discriminator, which is

another neural network that binary classifies the generated shape to a real or

a fake shape in other words it tries to figure out if one shape is real and the

other one is generated or are the (if the discriminator thinks the generated

shape is identical to the real one we call that the discriminator being fooled

by the generator and it means that the generation process was successful).the

shapes are all encoded and decoded when needed to be, we do that by a pretty

loss efficient autoencoder that generates the shapes embeddings and then de-

codes them back into the actual shapes while calculating and improving its loss

function.

PROCESSING THE NATURAL LANGUAGE DATA E 37 3.2

3.2 PROCESSING THE NATURAL LANGUAGE DATA

Undoubtedly, Natural Language Processing (NLP) research has taken enormous

leaps after being relatively stationary for a couple of years [21]. In this part,

we will be looking at word embeddings and see how BERT can be used with

word-embedding strategies to feed as input features for other models built for

custom tasks to perform the state of art results. [22]

3.2.1 Word embedding

“Word embedding is the collective name for a set of language modeling and

feature learning techniques in natural language processing (NLP) where words

or phrases from the vocabulary are mapped to vectors of real numbers.” [23] [22]

Define simply word embeddings as vector representations of a particular word.

Word embedding is one of the most popular representations of document

vocabulary. It is capable of capturing the context of a word in a document,

semantic and syntactic similarity, relation with other words, etc. And [21]

explained embeddings are low dimensional representations of a point in a

higher dimensional vector space. In the same manner, word embeddings are

dense vector representations of words in lower dimensional space. [22] Said

that there are a few key characteristics to a set of useful word embeddings:

1. Every word has a unique word embedding (or “vector”), which is just a

list of numbers for each word.

2. The word embeddings are multidimensional; typically for a good model,

embeddings are between 50 and 500 in length.

3. The word embeddings are multidimensional; typically for a good model,

embeddings are between 50 and 500 in length.

4. For each word, the embedding captures the “meaning” of the word.

5.Similar words end up with similar embedding values.

There are many approaches to generate word embeddings. Context-

independent (Bag of Words, TF-IDF, Word2Vec, GloVe), Context-aware (ELMo,

Transformer, BERT, Transformer-XL), Large model (GPT-2, XLNet, Compres-

sive Transformer) are the main categories. We will focus on Word2Vec and

Bert.

38 ► CHAP. 3 DESIGN AND CONCEPTION

3.2.2 Common Embedding techniques

Word2Vec is one of the most popular technique to learn word embeddings

using shallow neural network. It was developed [24] [14] explaind word2vec

with an example, Consider the following similar sentences: Have a good day

and Have a great day. They hardly have different meaning. If we construct an

exhaustive vocabulary (let’s call it V), it would have V = Have, a, good, great,

day. Now, let us create a one-hot encoded vector for each of these words in V.

Length of our one-hot encoded vector would be equal to the size of V (=5). We

would have a vector of zeros except for the element at the index representing

the corresponding word in the vocabulary. That particular element would

be one. The encodings below would explain this better. Have = [1,0,0,0,0];

a= [0,1,0,0,0]; good= [0,0,1,0,0]; great= [0,0,0,1,0]; day= [0,0,0,0,1] If we try to

visualize these encodings, we can think of a 5 dimensional space, where each

word occupies one of the dimensions and has nothing to do with the rest (no

projection along the other dimensions). This means ‘good’ and ‘great’ are as

different as ‘day’ and ‘have’, which is not true. Our objective is to have words

with similar context occupy close spatial positions. Mathematically, the cosine

of the angle between such vectors should be close to 1, i.e. angle close to 0.

Here comes the idea of generating distributed representations. Word2Vec is a

method to construct such an embedding. It can be obtained using two methods

(both involving Neural Networks): Skip Gram and Common Bag Of Words

(CBOW) In the CBOW model, the distributed representations of context (or

surrounding words) are combined to predict the word in the middle. While in

the Skip-gram model, the distributed representation of the input word is used

to predict the context. [25] Both have their own advantages and disadvantages.

According to Mikolov, Skip Gram works well with small amount of data and is

found to represent rare words well. On the other hand, CBOW is faster and

has better representations for more frequent words. [26]

3.2.3 BERT Embedding

In 2018, the Google AI team made a revolutionary change in the field of Natural

Language Processing (NLP) by introducing Bidirectional Encoder Representa-

tions from Transformers (BERT). Due to its highly pragmatic approach, and

higher performance, BERT is highlighted for achieving state-of-the-art per-

formance in many NLP tasks [11]. BERT has an advantage over models like

Word2Vec because while each word has a fixed representation under Word2Vec

regardless of the context within which the word appears, BERT produces word

representations that are dynamically informed by the words around them [22].

PROCESSING THE NATURAL LANGUAGE DATA E 39 3.2

FıGURE 3.2. a graphical representation of the base BERT model [74]

For example, given two sentences:

1.I like apples.

2.I like Apple macbooks

Note that the word apple has a different semantic meaning in each sentence.

Now with a contextualized language model, the embedding of the word ap-

ple would have a different vector representation which makes it even more

powerful for NLP tasks [21]. the context-informed word embeddings capture

other forms of information that result in more accurate feature representations,

which in turn results in better model performance [22]

BERT Model

Two primary models were created by BERT developers:

1. The BASE:Number of transformer blocks (L): 12, Hidden layer size (H):

768 and Attention heads(A): 12

2. The LARGE:Number of transformer blocks (L): 24, Hidden layer size

(H): 1024 and Attention heads(A): 16

It may seem simple but each encoder block encapsulates a more sophisti-

cated model architecture. At this point, to make things more clear it is important

to understand the special tokens that BERT authors used for fine-tuning and

specific task training. [11] These are the following:

1. CLS: The first token of every sequence. A classification token which

is normally used in conjunction with a softmax layer for classification

tasks. For anything else, it can be safely ignored.

40 ► CHAP. 3 DESIGN AND CONCEPTION

FıGURE 3.3. an example of inputting a sentence into BERT [74]

2. SEP: A sequence delimiter token which was used at pre-training for

sequence-pair tasks (i.e. Next sentence prediction). Must be used when

sequence pair tasks are required. When a single sequence is used it is

just appended at the end.

3. MASK: Token used for masked words. Only used for pre-training.

Moving on, the input format that BERT expects is illustrated below:

The input layer is simply the vector of the sequence tokens along with

the special tokens. BERT use WordPiece for tokenization which in effect,

splits token like “playing” to “play” and “ing”. This is mainly to cover a wider

spectrum of Out-Of-Vocabulary (OOV) words [22]. Token embeddings are

the vocabulary IDs for each of the tokens, and a Sentence Embedding is just

a numeric class to distinguish between sentence A and B, while Transformer

positional embeddings indicate the position of each word in the sequence.

3.2.4 GENERATING our text embeddings:

BERT might be known for its words embedding capabilities but the sentence

encoding models also are easily on of the best pre-trained models to be used

to generate sentences embeddings, for instance, all-MiniLM-L6-v2 [**](that

we use to compute the text embeddings) is a sentence transformer model that

maps sentences paragraphs to a 384 dimensional dense vector space and can

be used for tasks like clustering or semantic search. it is intended to be used as a

sentence and short paragraph encoder. Given an input text, it outputs a vector

which captures the semantic information. The sentence vector may be used

for information retrieval, clustering or sentence similarity tasks. By default,

input text longer than 256 words pieces is truncated. We chose this particular

model because it fits perfectly our captions dataset. in the figure bellow its

main characteristics.

PROCESSING THE NATURAL LANGUAGE DATA E 41 3.2

FıGURE 3.4. all-MiniLM-L6-v2 model information

We simply download the pre trained model and then call the ‘encode()’

function on the captions dataset and it generates the each caption’s embedding,

the process might take some time but nothing fancy since out of the 6 sentence

embedding BERT models with the highest performance this model is the fastest

(on a V100 GPU it encodes 14200 sentence per second [27]).

42 ► CHAP. 3 DESIGN AND CONCEPTION

FıGURE 3.5. Our autoencoder architecture

3.3 PROCESSING THE 3D SHAPES

3d shapes are such high dimensional vectors and that makes them costly ,if not

impossible, to be used in machine learning tasks, therefore we are entitled to

generate embeddings that captures the our shapes’ main characteristics while

,at the same time, easier to do machine learning on large inputs of them, this

only be done by focusing on properties of high importance, properties that

distinguish each shape form another (color, material, finishing.) and ignor-

ing what is repetitive, irrelevant and non schematic(to escape the overfitting

problem). We propose an Autoencoder that encodes and decodes back the 3d

shapes multiple times improving its loss function every time, this way we can

enjoy representative shapes embeddings. An Autoencoder has two main blocks

the encoder and the decoder, the encoder encodes shapes into the wanted em-

beddings while the decoder gets that embedding and decodes it to get back the

original shape. Their architecture is simple, the encoder is made out of two

conv3d layer (3 dimensional filter) followed both by a rectifier linear unit acti-

vation function (that outputs the the value if positive otherwise it will output 0)

the first one uses a kernel of (32, 32, 32) and a stride of (2,1,1) with padding=(4,

2, 0) while the second one convolves through the output of the first layer with

a kernel of size (5, 5, 1) with no stride value nor padding (both set to 1). the

decoder on the other hands applies a 3D transposed convolution operator over

the embeddings generated by the encoder, that be done by two transposed

convolutional layer layers with the same parameters in the inverse order (the

first layer uses a kernel of (5,5,1) and no padding nor stride ad the first one

kernel=(32, 32, 32), stride=(2, 1, 1), padding=(4, 2, 0))

We improve the encoding and decoding of the model by applying the mean

squared error loss between the generated shape of the decoder and the shape

3.3 PROCESSING THE 3D SHAPES E 43

inputted first into the encoder and updating the weights of the layers during

the back propagation process. We train the model for 100 epochs using a batch

of 4 shapes at a time (for performance reasons).

44 ► CHAP. 3 DESIGN AND CONCEPTION

3.4 THE GENERATION TASK

We chose GANs as a model for this task, generative adversarial networks are

a type of neural networks that uses two blocks called the generator and the

discriminator to understand as well as generate complex data using mathe-

matical operations, which is very helpful since we are trying to generate data

out of another, completely different, type (generating 3d shapes out of textual

descriptions), In the normal case the generator generates things out of random

noise (random vectors) but what we are trying to do here is a little bit different,

therefore we will make use of a condition that we inject into the generator to

make sure it always stays close to the textual description inputted (serves as

creating a certain pattern of generation that’s why it is called the conditional

generative adversarial network). After getting the shapes and captions em-

beddings (using respectively our autoencoder and Google’s BERT model) we

now join the shapes with their textual descriptions what gives us a full labeled

dataset of low dimensional train ready shapes embeddings associated with their

respective textual description also encoded, now we move to the generation

task.As mentioned before our CGAN has two main blocks: the generator and

the discriminator, we first feed the embedded textual descriptions ,that are

a latent vector of size 384, concatenated with a random nosy vector into the

generator that will output a 3d shape of the dimension (4,3,3,3) and then fed

, alongside with the embedding of the original shape that is described here,

straight into the discriminator for it to classify the generated shape into a real or

fake (figures out if it was a generated one or not) and then sends the result back

to the generator therefore it learns if it did a good job or not and keeps repeating

through many epochs improving every time (most of the time is more accurate),

if the discriminator thinks that the generated shape is a completely identical to

the real one then we can say that the generation part was a success in fact if the

versions are identical in a way that fools the discriminator it is enough and gets

the job done.The generator and the discriminator, as you might have guessed,

aren’t anywhere near similar in their architecture, since they do completely

different tasks, the generator is a sequential model of 5 linear layers that are,

mathematically, designed to calculate the linear equation Ax = b where x is

input, b is output, A is weight and applies the linear transformation to the given

input into another size, and that what allows us to move from a latent vector of

size 384 to a shape of (4,32,32,32) at the end, the first four layers are followed

by a 1 dimensional batch normalizing layer, except for the first one, and each

of the four uses a leaky rectified linear unit activation function. The last one

outputs the shape embedding (of size (4,3,3,3)) and it uses the Tanh activation

function. Although we intended to generate shapes, we thought it would be

better to directly generate the shapes embeddings, we tried them both but the

FıGURE 3.6. Our CGAN’s generator architecture

3.4 THE GENERATION TASK E 45

embedding generation was way better time and performance wise,therefore the

generation of shapes embeddings gets the latent vector of size 384 and outputs

the embedding of size (4,3,3,3).

On the other hand , in the discriminator we find 4 linear layers, the first

one has as an input feature 492 and outputs a feature map of 512that is passed

through a leaky rectified linear units and then through two linear layers with

a dropout function with a probability of 0.4 what that does is it keeps the

same size of the vector but zeroes some of its values with the probability of

40 percent an element is zeroed, at the end the mostly zeroed vector gets fed

to a linear layer that outputs one value which is if it is a fake or a real shape,

and the classification accuracy gets improved in the backpropagation process

after every epoch and this way it motivates the generator to step up its game

and generate challenging shapes for the discriminator to discriminate between

them and the real ones, that’s how we get the final generator that can generate

close to real shapes out of nothing but textual descriptions.

46 ► CHAP. 3 DESIGN AND CONCEPTION

FıGURE 3.7. Our CGAN’s discriminator architecture

3.5 CONCLUSION E 47

3.5CONCLUSION

The chapter we just walked you through is the most important one in thesis

since it is the one in which we explained in details what are we doing as well

as how we are doing it. We can divide it into three important parts the text

embeddings extraction where we explained how we used Google’s BERT to get

the embeddings of our dataset captions, and then in the second part we talked

about our Autoencoder that generates the shapes embeddings and detailed its

structure and how it works, in the last important part we tackled the CGAN

that we used in our generation task. In the next and last chapter, we will talk

about the tools we used and evaluate our work.

CHAPTER 4

The IMPLEMENTATION of our work

In the previews chapter we discussed how our models are made and their

architecture in this chapter we will discuss the process of building them, starting

with the tools we used moving to parameters we build them upon and finishing

with a brief overview evaluation .

4.1 USED TOOLS:

in this section we will show you what we used to make this whole thing work.

4.1.1 Google COLLABORATORY

Google Colaboratory (also known as Colab) is a free Jupyter notebook environ-

ment that runs in the cloud and stores its notebooks on Google Drive., it allows

you to write and execute Python in your browser, with zero configuration

required, free access to GPUs and easy sharing, also since it uses google drive

you can easily read data from drive in Colab and use it which is one of the best

features out there for developers world wide.

4.1.2 Python

Python is a programming language that has become a staple in data science,

allowing data analysts and other professionals to use the language to conduct

complex statistical calculations, create data visualizations, build machine learn-

ing algorithms, manipulate and analyze data, and complete other data-related

tasks. Python can build a wide range of different data visualizations, like line

and bar graphs, pie charts, histograms, and 3D plots. Python also has a number

of libraries that enable coders to write programs for data analysis and machine

learning more quickly and efficiently, like TensorFlow, Pytorch and Keras.

49

50 ► CHAP. 4 THE IMPLEMENTATION OF OUR WORK

4.1.3 Frontend we development tools

For our interface we used HTML, CSS and JS, in the interface there is a text

area so can the user put a small description describe the shape he wants, and

click generate the description treated in our backend and generate the shape.

4.1.4 F3D

F3D is a desktop program made by c++ and can display 3D shapes in NRRD

format (the main format we are using in our work). After our model generates

the shapes we drag and drop the generated NRRD file in the program and it

displays it.

4.1.5 VISUAL studio code

Visual Studio Code is a streamlined code editor with support for development

operations like debugging, task running, and version control. It aims to provide

just the tools a developer needs for a quick code-build-debug cycle and leaves

more complex workflows to fuller featured IDEs

4.1.6 NumPy

NumPy is an open source project aiming to enable numerical computing with

Python. It was created in 2005, building on the early work of the Numeric and

Numarray libraries[49]

4.1.7 NRRD

Nrrd ("nearly raw raster data") is a library and file format for the representation

and processing of n-dimensional raster data. It was developed by Gordon Kindl-

mann to support scientific visualization and image processing applications.it

can be used, accessed and modified through python’s library Pynrrd.

4.1.8 Bert

Bidirectional Encoder Representations from Transformers (BERT) is a

transformer-based machine learning technique for natural language process-

ing (NLP) pre-training developed by Google. it is designed to pre-train deep

4.1 USED TOOLS: E 51

bidirectional representations from unlabeled text by jointly conditioning on

both left and right context. As a result, the pre-trained BERT model can be fine-

tuned with just one additional output layer to create state-of-the-art models

for a wide range of NLP tasks.

4.1.9 Pytorch

PyTorch is an open source machine learning library based on the Torch library,

used for applications such as computer vision and natural language processing,

primarily developed by Facebook’s AI Research lab (FAIR). Although the Python

interface is more polished and the primary focus of development, PyTorch also

has a C++ interface.

52 ► CHAP. 4 THE IMPLEMENTATION OF OUR WORK

4.2 DATASETS

ShapeNet is a large, information-rich repository of 3D models. It contains

models spanning a multitude of semantic categories. Unlike previous 3D model

repositories, it provides extensive sets of annotations for every model and

links between models in the repository and other multimedia data outside the

repository . Like ImageNet, ShapeNet provides a view of the contained data in a

hierarchical categorization according to WordNet synsets, Unlike other model

repositories, ShapeNet also provides a rich set of annotations for each shape

and correspondences between shapes. The annotations include geometric

attributes such as upright and front orientation vectors, parts and keypoints,

shape symmetries , and scale of object in real world units. These attributes

provide valuable resources for processing, understanding and visualizing 3D

shapes in a way that is aware of the semantics of the shape.

To create a realistic dataset with real 3D objects and natural language

descriptions, we use the ShapeNet table and chair object categories (with 8,447

and 6,591 instances, respectively). These 3D shapes were created by human

designers to accurately represent real objects.

FıGURE 4.1. The shapenet project home page [76]

FıGURE 4.2. Example form the shapenet tables and chairs dataset [76]

FıGURE 4.3. paired sahpes and descriptions from our dataset [76]

4.2 DATASETS E 53

We choose the table and chair categories because they contain many in-

stances with fine-grained attribute variations in geometry, color and material.

We augment this shape dataset with 75,344 natural language descriptions (5 de-

scriptions on average per shape) provided by people on the Amazon Mechanical

Turk crowdsourcing platform augmented with natural language descriptions,

and a controlled, procedurally generated dataset of 3D geometric primitives.

This large-scale dataset provides many challenging natural language descrip-

tions paired with realistic 3D shapes.

To enable systematic quantitative evaluation of our model, we use a dataset

of 3D geometric primitives with corresponding text descriptions. This data

54 ► CHAP. 4 THE IMPLEMENTATION OF OUR WORK

FıGURE 4.4. example from the primitives dataset [76]

was generated by voxelizing 6 types of primitives (cuboids, ellipsoids, cylinders,

cones, pyramids, and tori) in 14 color variations and 9 size variations. The

color and size variations are subjected to random perturbations generating

10 samples from each of 756 possible primitive configurations, thus creating

7560 voxelized shapes. They, then, created corresponding text descriptions

with a template-based approach that fills in attribute words for shape, size, and

color in several orderings to produce sentences such as “a large red cylinder is

narrow and tall”. In total, we generate 192,602 descriptions, for an average of

about 255 descriptions per primitive configuration. Such synthetic text does

not match natural language but it does allow for an easy benchmark with a

clear mapping to the attributes of each primitive shape.

FıGURE 4.5. a screenshot of the input page of our application

FıGURE 4.6. a screenshot of the successful generation page of our application

4.3 OUR INTERFACE E 55

4.3 OUR INTERFACE

we used a web interface for the users to interact and use our deep learning

models, is a way that our from end is a simple application that has two pages

one that has the input field where a user can enter its query which is in our

case a textual description, that text is getting embedded and then fed straight

into the generator which will generate the shape that was described textually

by the user’s query and send a tensor an nrrd file, that we drag and drop in the

F3D interface which will visualize it as a 3d file. Below are screen shots of the

whole application.

56 ► CHAP. 4 THE IMPLEMENTATION OF OUR WORK

FıGURE 4.7. some samples generated with our model

EXPERIMENTS E 57 4.4

FıGURE 4.8. the loss function of the autoencoder

4.4 EXPERIMENTS

in this section we will take a look at the different models that we used in our

work and the configuration we used to get the best out of them (in terms of

results performance and computational time).

4.4.1 Autoencoder:

We used the autoencoder to learn the shape embeddings, and it did a great job,

bellow the hyper parameters we used to train the model. The number of epochs

: 100 The batch size : 8 The number of worker : 4, what that means is that we

will be using 4 cores to fetch and use data at a time. We also used the adam

optimizer which is one of the best and widely used optimizers it computes

individual adaptive learning rates for different parameters from estimates of

first and second moments of the gradients and speaking of the learning rate we

used a learning rate of 1e-3. As for the loss we used the mean squared error loss,

nothing fancy but gets the job done. Bellow is the chart of how the autoencoder

learns and improves during the 100 epochs of training.

58 ► CHAP. 4 THE IMPLEMENTATION OF OUR WORK

FıGURE 4.9. the loss function of the discriminator

4.4.2 CGAN

In the generative adversarial network part, which is the global neural network

of this work, the generator gets an encoded caption concatenated with a noise

vector and generates a 3d shape, but we tried two different approaches, in the

first one the generation outputs a 3d shape that is fed into the discriminator

(with a latent vector) in the other approach we do not work with shapes but with

only embeddings which we see is better. they might be different approaches

but the hyper parameters are the same which they are :

The number of epochs : 200

The batch size : 32

The number of worker : 4

The learning rate : 0.0002

The latent vectors are of size 384 ,

And the shape of the shapes’ embeddings is (4,3,3,3). The loss is the same

Mean Squared Error.and below are the charts of all the models’ losses per

epoch.

CGAN with shapes:

EXPERIMENTS E 59 4.4

FıGURE 4.10. the loss function of the generator

FıGURE 4.11. the loss function of the discriminator

CGAN with shapes embeddings:

60 ► CHAP. 4 THE IMPLEMENTATION OF OUR WORK

FıGURE 4.12. the loss function of the generator

4.4.3 COMPARATIVE study :

The generator using the original shapes does a better job than the one using

the embeddings, not by a big margin but still can be helpful, meanwhile the

discriminator using the shape embeddings outperforms the other one, again by

a slight margin. And bellow is both their charts grouped together so we can see

the difference clearly:

EXPERIMENTS E 61 4.4

FıGURE 4.13. comparative study of the generator

FıGURE 4.14. comparative study of the discriminator

4.4.4 Discussing the results:

We mentioned before that the generator works better with the original shapes

and the discriminator with the embeddings which we think is due to the differ-

ence in size between the shape and its embedding, the shapes are so big in size

62 ► CHAP. 4 THE IMPLEMENTATION OF OUR WORK

which means that are more ways for the generator to fool the discriminator

and the opposite in the case of the discriminator the embeddings are too small

for the generator to play with them in other words, the classification of a small

amount of data is easier than a big one. But in practice we need the generator to

perform better, although it is a balance we need to find between the generator

and the discriminator it’s the generator that is going to generate the shapes out

of the captions for us. now in real practice, considering the cost of using the

shapes which , in our case, took 4+ hours per epoch comparing with the embed-

ding that only did the job in minutes and the minimum hardware requirements

to do both, going with a well generated embeddings is a no brainer.

4.5 CONCLUSION:

We divided this last chapter of our work into two parts where we showed you

what tools we used to get things done in the first part and then evaluated the

work we did in the second part while discussing the results of the experiments

we did.

GENERAL Conclusion

In this final step of this milestone project, we will take a look backat what

we were doing from the beginning.We used shapenet’s tables and chairs

dataset of 3d chairs and tables withtheir textual descriptions, also the

primitives which is a similar one but hasonly the base primitive forms (a

pyramid, a ball), and then generated the caption’sembeddings using

Google’s Bert which is the current state of the art in all theNLP related

tasks.We also used google colab to design and implement an autoencoder

thatextracts the shapes embeddings because we thought that using shapes

embeddingsinstead of the actual shapes would be such an optimistic way

of handling the timeand performance issues when dealing with data as

complex as 3d objects giventhat the results aren’t that bad at all.Then we

created the generator that will be generating for us shapesgiven a textual

description, we went for a conditional generativeadversarial network

because we are after a generation task that demands respect a condi-

tion (the generated shape should be generated in a way that fitsthe text

describing it) which is only possible with a CGAN, we trained the genera-

torand the discriminator in both the 3D shapes and their embeddings and

thendiscussed the results of both.We learned a lot of things participating

in this huge project startingwith putting our hands on a real dataset to

building solutions to real-world problemsand finally implementing what

we learned throughout our university program. Although we did end up

getting some pleasing results our work is not by any means perfect, in

fact we could use a transformer to extract the shape embeddings, since

nothing beats a transformer when it comes to the embeddings and it

easily beats our autoencoder. Also using a more realistic dataset would

be help so much in increasing the quality of the generated shapes an

example of that would be using shapenet’s (128,128,128) shapes dataset

which will allow us to generate shapes of the same size that look cleaner

and more feature-rich. We focused on only chairs and tables, but the text

to shape task has more to it than that, in fact there is no end to the things

that could b generated out of textual descriptions, and it is a no brainer

that the future generations will be investing in this new yet rapidly thriv-

ing technology, imaging being able to get a 3d shape of whatever you

can describe that would open new horizons to the whole human race,

63

64 ► GENERAL CONCLUSION

things that we needed years just to design can be put through words the

most effective way human beings found ,after hundreds of decades of

research, to communicate, learn and teach, it would just be enourmous.

BIBLIOGRAPHY

[1] Javatpoint supervised machine learning https://www.javatpoint.com/

supervised-machine-learning

[2] Hastie t., tibshirani r., friedman j. (2009) unsupervised learning. in: The

elements of statistical learning. springer series in statistics. springer, new

york, ny. https://doi.org/10.1007/978- 0-387-84858-714

[3] Zhu, xiaojin (jerry) university of wisconsin-madison semi- supervised

learning literature https://minds.wisconsin.edu

 [4] F. q. lauzon, an introduction to deep learning, 2012 11th international
conference on infor- mation science, signal processing and their applications
(isspa), 2012, pp. 1438-1439, doi: 10.1109/isspa.2012.6310529

 [5] B. YEGNANARAYANA. Artificial neural networks. (). ISBN 8120312538,
9788120312531

 [6] Léon Bottou Martin Arjovsky, Soumith Chintala. Wasserstein gan.
https://arxiv.org/abs/1701.07875.

 [7] «Text to Image » to: Connor Shorten

 [8] «Text to Image using Deep Learning » Paper IJERTV10IS040132 to Akanksha
Singh, Sonam Anekar, Ritika Shenoy, Sainath Patil. Published 21-04-2021

 [9] «Text-to-Image Generation» https://paperswithcode.com

 [10] «Text-to-Image Synthesis » Nikunj Gupta published 11-01-2019

 [11] «StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative
Adversarial Networks » Rutgers University, Lehigh University, The Chinese
University of Hong Kong, Baidu Research

 [12] «Text to Image Synthesis Using Generative Adversarial Networks» to: Han
Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang,
Dimitris Metaxas

 [13] Text to Photo-Realistic Image Synthesis » to: Rajat Garg published 18-02-2019

[14] « StackGAN: Text to Photo-Realistic Image Synthesis » to: Han Zhang published in
2017

 [15] « Stacked generative adversarial networks for image compositing » Bing Yu,
Youdong Ding, Zhifeng Xie & Dongjin Huang published in 2021

 [16] «How to Convert Text to Images » to: Siraj Raval on https://youtube.com

65

66 ► BIBLIOGRAPHY

[17] Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid ID,

Leonard JJ (2016) Past, Present, and Future of Simultaneous Localization

and Map- ping

[18] Hartley R, Zisserman A (2004) Multiple View Geometry in Computer Vision.

Cambridge University Press

[19] Triggs B, McLauchlan PF, Hartley RI, Fitzgibbon AW (1999) Bundle

Adjustment - A Modern Synthesis. International Workshop on Vision

Algorithms

[20] Ji P, Li H, Dai Y, Reid I (2017b) “Maximizing rigid- ity” Revisited: a Convex

Programming Approach for Generic 3D Shape Reconstruction from Multiple

Per- spective Views. IEEE International Conference on Computer Vision pp

929–937

[21] Choy CB, Xu D, Gwak J, Chen K, Savarese S (2016) 3D- R2N2: A Unified

Approach for Single and Multi-view 3D Object Reconstruction. European

Conference on Computer Vision

[22] Wiles O, Zisserman A (2017) SilNet : Single- and Multi- View Reconstruction

by Learning from Silhouettes. British Machine Vision Conference

[23] Wiles O, Zisserman A (2018) Learning to Predict 3D Surfaces of Sculptures

from Single and Multiple Views. International Journal of Computer Vision

pp 1–21

[24] Huang PH, Matzen K, Kopf J, Ahuja N, Huang JB (2018) DeepMVS: Learning

Multi-view Stereopsis. IEEE Conference on Computer Vision and Pattern

Recognition pp 2821–2830

[25] Paschalidou D, Ulusoy AO, Schmitt C, Van Gool L, Geiger A (2018) RayNet:

Learning Volumetric 3D Reconstruction with Ray Potentials. IEEE

Conference on Computer Vision and Pattern Recognition 38973906

[26] Ji M, Gall J, Zheng H, Liu Y, Fang L (2017a) Sur-faceNet: An End-to-end 3D

Neural Network for Mul- tiview Stereopsis. IEEE International Conference

on Computer Vision pp 2326–2334

[27] Kumar S, Dai Y, Li H (2017) Monocular Dense 3D Reconstruction of a

Complex Dynamic Scene from Two Perspective Frames. IEEE International

Conference on Computer Vision pp 4649–4657

[28] Curless B, Levoy M (1996) A Volumetric Method for Building Complex

Models from Range Images. Conference on Computer Graphics and

Interactive Techniques pp 303–312

[29] Riegler G, Ulusoy AO, Bischof H, Geiger A (2017) Oct ,NetFusion: Learning

Depth Fusion from Data. International Conference on 3D Vision pp 57–66

[30] Dong W, Wang Q, Wang X, Zha H (2018) PSDF Fusion:Probabilistic Signed

Distance Function for On-the-fly 3D Data Fusion and Scene Reconstruction.

European Conference on Computer Vision pp 714–730

[31] Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov R, Smola A

(2017) Deep Sets. International Conference on Neural Information

Processing Systems

BIBLIOGRAPHY E 67

[32] Eslami SA, Rezende DJ, Besse F, Viola F, Morcos AS, Garnelo M, Ruderman A,

Rusu AA, Danihelka I, Gregor K, Reichert DP, Buesing L, Weber T, Vinyals O,
Rosenbaum D, Rabinowitz N, King H, Hillier C, Botvinick M, Wierstra D,
Kavukcuoglu K, Hassabis D (2018) Neural scene representation and
rendering. Science 360(6394):1204–1210

[33] Gardner A, Kanno J, Duncan CA, Selmic RR (2017) Classifying Unordered
Feature Sets with Convolutional Deep Averaging Networks. ArXiv
1709.03019

[34] Su H, Maji S, Kalogerakis E, Learned-Miller E (2015) Multi-view
Convolutional Neural Networks for 3D Shape Recognition. IEEE International
Conference on Computer Vision pp 945–953

[35] Qi CR, Su H, Mo K, Guibas LJ (2017) PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation. IEEE Conference on Computer
Vision and Pattern Recognition pp 652–660

[36] Javatpoint Supervised ML, https://www.javatpoint.com/supervised-
machine-learning

[37] Hastie T., Tibshirani R., Friedman J. (2009) Unsupervised Learning. In: The
Elements of Statistical Learning. Springer Series in Statistics. Springer, New
York, NY. https://doi.org/10.1007/978-0-387-84858-7_14

[38] Zhu, Xiaojin University of Wisconsin Madison
https://minds.wisconsin.edu/bitstream/handle/1793/60444/TR1530.pdf

[39] F. Q. Lauzon, An introduction to deep learning,2012 11th International
Conference on Information Science, Signal Processing and their
Applications (ISSPA), 2012, pp. 1438-1439, doi:
10.1109/ISSPA.2012.6310529.

[40] Artificial Neural Networks to B. YEGNANARAYANA
[41] Haeusser, Mordvintsev, Cremers: Learning. arXiv preprint arXiv:1706.00909

(2017)
[42] Song, H.O., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted

structured feature embedding. In: Computer Vision and Pattern
Recognition (CVPR). (2016)

[43] Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M.Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet: An
information-rich 3D model repository. Technical Report arXiv:1512.03012
[cs. GR], Stanford University — Princeton University — Toyota Technological
Institute at Chicago (2015)

 [44] Wasserstein GAN to Martin Arjovsky, Soumith Chintala, Léon Bottou
https://arxiv.org/abs/1701.07875

[45] https://colab.research.google.com/
[46] https://www.python.org/
[47] https://f3d-app.github.io/f3d/
[48] https://code.visualstudio.com/
[49] https://numpy.org/
[50] https://pypi.org/project/pynrrd/
[51] https://blog.google/bert/
[52] https://pytorch.org/
[53] https://shapenet.org/

68 ► BIBLIOGRAPHY

[54] https://www.javatpoint.com/supervised-machine-learning
[55] https://www.javatpoint.com/unsupervised-machine-learning
[56] https://fr.mathworks.com/discovery/reinforcement-learning.html
[57] https://www.technologies-ebusiness.com/enjeux-et-tendances/le-deep-

learning-pas-a-pas
[58] https://www.geogebra.org/m/DK7UF2rB
[59] https://www.researchgate.net/figure/The-most-common-nonlinear-

activation-functions_fig1_309775740
[60] https://www.researchgate.net/figure/An-example-of-a-Supervised-

Learning-classification-of-cats-and-dogs-and-b_fig1_328576527
[61] https://anhreynolds.com/blogs/cnn.html
[62] https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7
[63] https://analyticsindiamag.com/comprehensive-guide-to-different-pooling-

layers-in-deep-learning/
[64] https://medium.com/swlh/fully-connected-vs-convolutional-neural-

networks-813ca7bc6ee5
[65 https://fr.wikipedia.org/wiki/reseau_de_neurones_recurrents
[66] https://www.analyticsvidhya.com/blog/2019/06/understanding-

transformers-nlp-state-of-the-art-models/
[67] https://blog.keras.io/building-autoencoders-in-keras.html
[68] https://developers.google.com/machine-learning/gan/gan_structure
[69] https://medium.com/@ma.bagheri/a-tutorial-on-conditional-generative-

adversarial-nets-keras-implementation-694dcafa6282
[70] https://www.researchgate.net/figure/Confusion-Matrix-for-binary-

classification_fig5_346390613
[71] https://www.nature.com/articles/nmeth.3945
[72] https://towardsdatascience.com/text-to-image-a3b201b003ae
[73] https://www.arabicprogrammer.com/article/12341017339/
[74] https://developpaper.com/transfer-learning-nlp-visual-diagrams-of-bert
[75] https://medium.com/why-bert-has-3-embedding-layers-and-their-

implementation-details-9c261108e28a
[76] https://shapenet.org/
[77] https://stackoverflow.com/questions/58329059/keras-autoencoder-

validation-loss-training-loss-but-performing-well-on-tes
[78] Text2Shape: Generating Shapes from Natural Language by Learning Joint

Embeddings, https://arxiv.org/abs/1803.08495
 [79] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt

Schiele, Honglak Lee (2016) : Generative Adversarial Text to Image
Synthesis https://arxiv.org/abs/1605.05396

