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Abstract: 

Today, the world witnesses a huge advancement in technology, specially in the domain 

of virtual (VR) and augmented reality (AR). A lot of the largest companies are interested 

in AR and VR, an imaginary world that you feel inside. That kind of project are based 

on visualization of 3d objects. It was always considered a difficult task for designers to 

build a full 3D environment. Even if it is possible to do it, it could not be achieved 

neither in a short time nor with less expensive software 

The objective of this work is to generate a 3d shape from a short text description with 

the help of the most interesting topic in IA neural, networks and specifically, the 

generative adversarial networks (GAN).  

We built and trained a conditional GAN (CGAN) having as input the Bert embeddings 

of text descriptions and as output their corresponding 3D shape embeddings. We trained 

an Autoencoder to learn the 3D shapes representations.  To validate our model, we 

trained another CGAN having as output the 3D Shapes. We noticed that there isn’t a big 

loss in the obtained 3D forms. 

Keywords: Text to 3D shape, Text embeddings, Shape embeddings, CGAN, Bert, 

Autoencoder. 

  



Résumé :  

Aujourd'hui, le monde est témoin d'un énorme progrès technologique, en particulier 

dans le domaine de la réalité virtuelle et augmentée. De nombreuses grandes entreprises 

s'intéressent à la réalité augmentée et à la réalité virtuelle. Ce genre de projet est basé sur 

la visualisation d'objets 3D. Concevoir un environnement 3D a toujours été considéré 

comme une tâche difficile pour les concepteurs. Et même si c’est possible de le faire, 

cela ne peut être réalisé ni en peu de temps ni avec des logiciels moins coûteux.  

L'objectif de ce travail est de générer une forme 3D à partir d'une description textuelle à 

l'aide du sujet le plus intéressant en IA les réseaux de neurones et plus particulièrement 

les réseaux antagonistes génératifs (GAN). 

Nous avons construit et entraîné un GAN conditionnel (CGAN) ayant en entrée les 

représentations Bert des descriptions textuelles et en sortie leurs représentations de 

forme 3D correspondantes. Pour apprendre les représentations des formes 3D, nous 

avons entrainé un auto encodeur. Pour valider notre modèle, nous avons entrainé un 

autre CGAN ayant en sortie les Formes 3D. Nous avons remarqué qu'il n'y a pas de 

perte significative dans les formes 3D obtenues. 

Mots-clés :  : Text to 3D shape, Représentation Textuelle, représentation des formes 

3D, CGAN, Bert, Autoencoder. 

  



 

 

 ملخص:

الشركات  لكثير منامعزز، يشهد العالم اليوم تقدمًا هائلاً في التكنولوجيا خاصة في مجال الواقع الافتراضي والواقع ال

على  ذي يعتمدروع المهتمة بالواقع المعزز والواقع الافتراضي، عالم خيالي تشعر وكأنك بداخله. هذا النوع من المش

يمكن  ذلك، فلابلقيام عتبر دائمًا مهمة صعبة للمصممين، حتى لو كان من الممكن اتصور اشياء ثلاثية الأبعاد، كان ي  

 قد فكرنافناعي، تحقيقه لا في وقت قصير ولا باستخدام برامج أقل تكلفة. وبما أننا طلاب في تخصص الذكاء الاصط

 .في كيف يمكننا المساعدة في مثل هذه المشكلة

 م فيلاهتمالثي الأبعاد من وصف النص بمساعدة الموضوع الأكثر إثارة الهدف من هذا العمل هو إنشاء شكل ثلا

 .الذكاء الصناعي الشبكات العصبية وعلى وجه التحديد شبكات الخصومة التوليدية

كل نص إلى شويل الالكلمات الرئيسية: التعلم الآلي، الشبكات العصبية، أوصاف النص، الأشكال ثلاثية الأبعاد، تح

 ، بيرت.GANثلاثي الابعاد، 
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General introduction: 

Context and problematic 

Artificial intelligence and machine learning have taken the world by storm in the last 

couple of years and the best seems is yet to come, and its bread and butter is the data, a 

need for a smooth transition between different types of data haven’t been more 

necessary. Although there have been many works on that but the 3d object type of data 

didn’t seem to be getting its fair share of interest? In all fairness, it makes all the sense 

considering how complex time and hardware (money) consuming they are. Companies 

as big as facebook and amazon started to invest in advanced reality(AR) related fields 

which we think is due to the advance in computation algorithms, which led into more 

people believing it is becoming a good future investment. 

Along the way, some issues were raised. Is it possible to learn a 3D shape 

representation? Is there a way to automatically generate 3D AR environment from text 

descriptions? 

Work objectives  

Our work is nothing short of those algorithms where we take on the problem of 3D 

objects and try to find the most cost-efficient way of using them but on the other hand 

also doesn’t affect the results (or affect them in an acceptable way not that big to feel a 

difference). 

Our mains tasks are: 

- Build a neural model to learn 3D shapes representations (embeddings) 

- Build a model that associate 3D shapes and text descriptions using only their 

representations 

- Validate the final model using a real dataset 

We will use a labeled dataset of tables and chairs with textual descriptions and try to 

develop some deep learning algorithms to train a model on them that will, in the end, 

understand and be able to perform cross modal (3D objects or text) tasks like generation 

or classification. 

 

 

We divided our work into a theoretical and a practical part 



Chapter 1: where we will be explaining machine learning and showing how magical 

their algorithms can be which shows why we chose them to handle our problem. 

Chapter 2: in this chapter we will discuss the similar works that are connected in a way 

or another to our work 

That concludes the theoretical part, and in the practical one we have. 

Chapter 3: here we will detail the conceptual part of our work, where we explain our 

deep learning models and how they work as well as their architectures and why we 

chose every single one of them. 

Chapter 4: lastly we discuss the implementation of those models and what parameters 

did we use to get the best out of them, then exploring the non-technical stuff that is just 

as important, to finish off with an evaluation to all the deep learning model 
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CHAPTER 1 

A GLOBAL Overview On MACHINE LEARNING 
 

 
 

1.1 INTRODUCTION 

 
Machine learning is an evolving branch of computational algorithms that are 

designed to emulate human intelligence by learning from the surrounding 

environment, it helps computers understand brute data and make decisions 

or even predictions (which can be even better than humans) based on what 

they have learned at first. It is,in other words, the field of study that gives 

computers the ability to learn without being explicitly programmed. These 

days, techniques based on machine learning have been applied successfully in 

diverse fields ranging from pattern recognition, computer vision, spacecraft 

engineering, finance, entertainment, and computational biology to biomedical 

and medical applications. 

 
1.2 MACHINE LEARNING 

 
At its most basic, machine learning uses programmed algorithms that receive 

and analyse input data to predict output values within an acceptable range. As 

new data is fed to these algorithms, they learn and optimise their operations to 

improve performance, developing ‘intelligence’ over time. 

There are four types of machine learning algorithms: supervised, semi- 

supervised, unsupervised and reinforcement. 

 
1.2.1    Supervised LEARNING 

 

Supervised learning is the type of machine learning in which machines are 

trained using well "labelled" training data, and on basis of that data, machines 

predict [1] . The labelled data means some input data is already tagged with the 

correct output. Supervised learning is where you have input variables (x) and 

an output variable (Y) and you use an algorithm to learn the mapping function 

between the input and the output. Y=F(X). The goal is to approximate the 

1 
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FıGURE 1.1. supervised learning [54] 

 

mapping function so well that when you have new input data (x) that you can 

predict the output variables (Y) for that data In supervised learning, the training 

data provided to the machines work as the supervisor that teaches the machines 

to predict the output correctly. It applies the same concept as a student learns 

in the supervision of the teacher. In the real-world, supervised learning can be 

used for Risk Assessment, Image classification, Fraud Detection, spam filtering, 

etc. The working of Supervised learning can be easily understood by the below 

example and diagram: 

 

 
 

Supervised learning can be further divided into two types of problems [2]: 

• Regression, used for the prediction of continuous variables, such as 
Weather forecasting, Market Trends. 

• Classification, used when the output variable is categorical, which means 
there are two classes such as Yes-No, Male-Female, True-false. 

 
1.2.2     Unsupervised LEARNING 

 
Unsupervised learning is a machine learning technique in which models are 

not supervised using training dataset. Instead, models itself find the hidden 

patterns and insights from the given data. It can be compared to learning which 

takes place in the human brain while learning new things. It can be defined as 

machine learning in which models are trained using unlabeled dataset and are 

allowed to act on that data without any supervision. Unsupervised learning 

cannot be directly applied to a regression or classification problem because 

unlike supervised learning, we have the input data but no corresponding output 
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FıGURE 1.2. unsupervised learning [55] 

 

data. The goal of unsupervised learning is to find the underlying structure of 

dataset, group that data according to similarities, and represent that dataset in 

a compressed format. In real-world, we do not always have input data with the 

corresponding output so to solve such cases, we need unsupervised learning. 

Rewards of unsupervised learning can be understood by the below diagram: 

 

 

 
 

 

The unsupervised learning algorithm can be further categorized into two 

types of problems: 

• Clustering, it is a method of grouping the objects into clusters such that 

objects with most similarities remains into a group and has less or no 

similarities with the objects of another group. 

• Association, it used for finding the relationships between variables in the 

large database. It determines the set of items that occurs together in the 

dataset. Association rule makes marketing strategy more effective. Such 

as people who buy X item (suppose a bread) are also tend to purchase Y 

(Butter/Jam) item. 

 
1.2.3     semi-supervised LEARNING 

 
Semi-Supervised learning is a type of Machine Learning algorithm that repre- 

sents the intermediate ground between Supervised and Unsupervised learning 

algorithms. It uses the combination of labeled and unlabeled datasets during 

the training period. The basic disadvantage of supervised learning is that it 

requires hand-labeling by ML specialists or data scientists, and it also requires a 

high cost to process. Further unsupervised learning also has a limited spectrum 
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for its applications. To overcome these drawbacks of supervised learning and 

unsupervised learning algorithms, the concept of Semi-supervised learning is 

introduced. In this algorithm, training data is a combination of both labeled 

and unlabeled data. However, labeled data exists with a very small amount 

while it consists of a huge amount of unlabeled data. Initially, similar data is 

clustered along with an unsupervised learning algorithm, and further, it helps 

to label the unlabeled data into labeled data uses pseudo labeling to train the 

model with less labeled training data than supervised learning Semi-supervised 

learning models are becoming more popular in the industries, some of the main 

applications are: Speech Analysis, Web content classification, Protein sequence 

classification.[2] 

 

 

 

 

 

 

 

 

 
 

1.2.4     Reinforcement LEARNING 

 

 

 

 

 
 

Reinforcement Learning is a feedback-based Machine learning technique in 

which an agent learns to behave in an environment by performing the actions 

and seeing the results of actions. For each good action, the agent gets positive 

feedback, and for each bad action, the agent gets negative feedback or penalty. 

The agent learns automatically using feedbacks without any labeled data, and 

since there is no labeled data, so the agent is bound to learn by its experience 

only and interacts with the environment and explores it by itself. The primary 

goal of an agent in reinforcement learning is to improve the performance by 

getting the maximum positive rewards Reinforcement Learning solves a specific 

type of problem where decision making is sequential, and the goal is long-term, 

such as game-playing, robotics, etc. Rewards and reinforcement learning can 

be understood by the below diagram: 
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FıGURE 1.3. reinforcement learning [56] 
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FıGURE 1.4. deep learning [57] 

 

1.3 D EEP LEARNING 

 
Deep learning is a subset of machine learning, which is essentially a neural net- 

work with three or more layers. Neural networks are just one of many tools and 

approaches used in machine learning algorithms. An artificial neural network 

is usually a computational network based on biological neural networks that 

construct the structure of the human brain. Artificial neural networks have 

neurons that are linked to each other in various layers of the networks. These 

neurons are known as nodes. Every neural network must have at least three 

layers of neurons which are the input, the output and the hidden layer where 

every neuron in a given layer is fully connected with the layer that precedes (to 

pass from a neuron of the input layer to a neuron from the hidden layer you 

must pass by the arc that is associated with a weight and every layer has its own 

activation function Y = F(x*w) where Y is the output X is the input, w is the 

weight of the arc and F is the activation function) this step is called the forward 

propagation.[3] 
 

 

 
1.3.1 ACTIVATION functions 

 
Neural networks are specifically designed based on the inner workings of 

biological brains. These models imitate the functions of interconnected neurons 

by passing input features through several layers of what are referred to as 

perceptrons (neurons), each transforming the input using a set of functions. 

This section will tackles the different modules that make this possible. The 

activation function refers to the set of transfer functions used to achieve the 
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FıGURE 1.5. linear function [58] 

 

desired output. We can classify activation functions in two categories : 

 
(a) linear function 

In the linear activation function, the output of functions is not 

restricted in between any range. Its range is specified from -infinity to 

infinity. For each individual neuron, the inputs get multiplied with 

the weight of each respective neuron, which in turn leads to the 

creation of output signal proportional to the input. If all the input 

layers are linear in nature, then the final activation of the last 

layer will actually be the linear function of the initial layer’s 

input.[4] 
 

 

 
(b) Non-Linear Function 

These are one of the most widely used activation function. It helps 

the model in generalizing and adapting any sort of data in order 

to perform correct differentiation among the output. It solves the 

following problems faced by linear activation functions which is 

problems related to backpropagation and stacking up of several 

layers of the neurons. The non-linear activation function is further 
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FıGURE 1.6. nonlinear function [59] 

 

divided into: Sigmoid or Logistic Activation Function, Tanh or 

Hyperbolic Tangent Activation Function, ReLU (Rectified Linear 

Unit) Activation Function and Softmax Function.[4] 

 

 

 

 

1.3.2 Loss Function 

 

 
The loss function is attempting to minimize by continuously updating the 

weights in the model during training. During the training process, at the end of 

each epoch, the loss will be calculated on the models predictions. So basically 

what is happening is that the model calculates the error on each input by looking 

at what output it predicted for that input, and taking the difference of that 

output value and the correct label for that input. For example, if our model was 

classifying images of cats and dogs, then say the label for a cat is zero, and the 

label for a dog is one. If we pass an image of a cat to our model, and our model 

outputs 0.25 for this image, then the error between the models output versus 

the true label for the image would be 0.25 minus zero, the label for cat which is 

equal to 0.25. So it does this process for every input, then at the end of each 

epoch, it will accumulate all of the individual errors for each input, and then in 

some way, pass them through to a loss function.[4] 
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FıGURE 1.7. cats dogs classification example [60] 

 
 

 
 

 

1.3.3 GRADIENT Decent 

 
The Gradient Descent is an optimization algorithm which is used to minimize 

the cost function for many machine learning algorithms. Gradient Descent 

algorithm is used for updating the parameters of the learning models. There 

are different types of Gradient Descent.[4] 

 

1. Batch Gradient Descent 

The Batch Gradient Descent is the type of Gradient Algorithm that is 

used for processing all the training datasets for each iteration of the 

gradient descent. Suppose the number of the training dataset is large, 

the batch gradient descent will be comparatively expensive. Hence, if 

the number of the training dataset is large, the users are not advised to 

use batch gradient descent. Instead, they can use mini-batch gradient 

descent for a large training dataset.[4] 

2. Mini-Batch Gradient Descent 

The mini-batch gradient descent is the type of gradient descent that is 

used for working faster than the other two types of gradient descent. 

Suppose the user has ’p’ (where ’p’ is batch gradient descent) dataset 

where p < m (where ’m’ is mini-batch gradient descent) will be processed 

per iteration. So, even if the number of ’p’ training dataset is large, the 

mini-batch gradient descent will process it in batches of ’p’ training 

datasets in a single attempt. Therefore, it can work for large training 

datasets with fewer numbers of iterations.[5] 
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3. Stochastic Gradient Descent 

tochastic gradient descent is the type of gradient descent which can 

process one training dataset per iteration. Therefore, the parameters 

will be updated after each iteration, in which only one dataset has been 

processed. This type of gradient descent is faster than the Batch Gradient 

Descent. But, if the number of training datasets is large then also, it will 

process only one dataset at a time. Therefore, the number of iterations 

will be large.[4] 

 
1.4 DEEP LEARNING ARCHITECTURES 

 

Deep learning is the most advanced feat scientists have reached to this day, and 

that’s because it uses some specific architectures to understand different types 

of complex data and make decisions, we will now be looking at some of teh 

most important of these architectures. 

 
1.4.1 CONVOLUTIONAL NEURAL network 

 

CNN is one of the techniques to do image classification and image recognition 

in neural networks (it can treat other input data but it is not as efficient like 

when working with images). It is designed to process the data by multiple 

layers of arrays. This type of neural network is used in applications like image 

recognition or face recognition. The primary difference between CNN and 

other neural networks is that CNN takes input as a two-dimensional array. And 

it operates directly on the images rather than focusing on feature extraction 

which other neural networks do.Convolutional Neural Network (CNN or 

ConvNet) is a type of feed-forward artificial networks where the connectivity 

pattern between its neurons is inspired by the organization of the animal visual 

cortex.CNN takes an image as input, which is classified and process under a 

certain category such as dog, cat, lion, tiger, etc. The computer sees an image as 

an array of pixels and depends on the resolution of the image. Convolutional 

Neural Networks have the following 4 layers: 

 
1. the convolutional layer 

it is the first layer to extract features from an input image. By learning 

image features using a small square of input data, the convolutional layer 

preserves the relationship between pixels. It is a mathematical operation 

which takes two inputs such as image matrix and a kernel or filter. 
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FıGURE 1.8. the convolutional layer [61] 

FıGURE 1.9. Rectified Linear unit [62] 

 
 

 
 

 

2. Rectified Linear unit(ReLU) 

it is a transform functions only activates a node if the input is above a 

certain quantity. While the data is below zero, the output is zero, but 

when the input rises above a certain threshold. It has a linear relationship 

with the dependent variable.In this layer, we remove every negative value 

from the filtered images and replaces them with zeros.It is happening to 

avoid the values from adding up to zero. 

 

 

 
3. the pooling layer 
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FıGURE 1.10. the pooling layer [63] 

 

t plays an important role in pre-processing of an image. Pooling layer 

reduces the number of parameters when the images are too large. Pooling 

is "downscaling" of the image obtained from the previous layers. It can 

be compared to shrinking an image to reduce its pixel density. Spatial 

pooling is also called downsampling or subsampling, which reduces the 

dimensionality of each map but retains the important information. 
 

 

 

 

 

 

4. the fully connected layer 

 
it is a layer in which the input from the other layers will be flattened into 

a vector and sent. It will transform the output into the desired number 

of classes by the network.In the above diagram, the feature map matrix 

will be converted into the vector such as X1, X2, X3... Xn with the help 

of fully connected layers. We will combine features to create a model 

and apply the activation function such as softmax or sigmoid to classify 

the outputs as a car, dog, truck, etc. 
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FıGURE 1.11. the fully connected layer [64] 

 
 

 
 

 

 

 

 

 

 

 

 

 

1.4.2 Recurrent NEURAL networks 

 

 

 

 
A recurrent neural network (RNN) is a kind of artificial neural network mainly 

used in speech recognition and natural language processing (NLP). RNN is 

designed to recognize patterns in sequences of data, such as text, genomes, 

handwriting, the spoken word, and numerical time series data emanating from 

sensors, stock markets, and government agencies. A recurrent neural network 

looks similar to a traditional neural network except that a memory-state is 

added to the neurons. The computation is to include a simple memory. The 

recurrent neural network is a type of deep learning-oriented algorithm, which 

follows a sequential approach. In neural networks, we always assume that 

each input and output is dependent on all other layers. These types of neural 

networks are called recurrent because they sequentially perform mathematical 

computations. Recurrent Neural Networks suffer from short-term memory. If 

a sequence is too long, they won’t be able to carry all the important information 

from past steps. When processing a text to do predictions, RNNs may leave 

out important information from the beginning. 
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FıGURE 1.12. a recurrent neural network [65] 

 
 

 
 

 

RNN is used in different types of models here are the most relevant ones: 

1. Vector-Sequence Models 

They take fixed-sized vectors as inputs and output vectors of any length, 

for example, in image captioning, the image is given as an input and the 

output describes the image. 

2. Sequence-Vector Model 

Take a vector of any size and output a vector of fixed size. Eg. Sentiment 

analysis of a movie rates the review of any movie as positive or negative 

as a fixed size vector. 

3. Sequence-to-Sequence Model 

The most popular and most used variant, take input as a sequence and 

give output as another sequence with variant sizes. Example: Language 

translation, for time series data for stock market prediction.RNN disad- 

vantages: slow to train and long sequence leads to vanishing gradient or, 

say, the problem of long term dependencies. In simple terms, its mem- 

ory is not that strong when it comes to remembering old connections. 

Therefore they had to come with solutions, the best they made are : 

(a) LSTM: 

Long Short Term Memory- Special kind of RNN, specially made for 

solving vanishing gradient problems. They are capable of learning 
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Long-Term Dependencies. Remembering information for long 

periods of time is practically their default behavior, not something 

they struggle to learn it.The LSTM Neurons have unlike normal 

neurons have a branch that allows to pass information and to skip 

the long processing of the current cell, this allows the memory to be 

retained for a longer period of time. It does improve the situation 

of the vanishing gradient problem but not that amazingly, like it 

will do good till 100 words, but for like 1,000 words, it starts to 

lose its grip.But like simple RNN it is also very slow to train, or 

even slower.LSTM take input sequentially one by one, which is 

not able to use up GPU’s very well, which are designed for parallel 

computation. 

 
 

1.4.3 TRANSFORMERS 

 

Transformer is the first transduction model relying entirely on self-attention 

to compute representations of its input and output without using sequence- 

aligned RNNs or convolution. Therefore we need to introduce attention first, 

we can explain attention in neural network by a simple example, supposing we 

have a book of machine learning and we need information about categorical 

cross-entropy. here are two ways of doing it, first, read the whole book and 

come back with the answer. Second, go to the index, find the ‘losses’ chapter, 

go to the cross-entropy part and read the part of Categorical Cross Entropy. In 

the former case we didn’t focus on any part of the book specifically, whereas 

in the latter case, we focused our attention on the chapter of losses and then 

further focused our attention on the cross-entropy part where the concept of 

Categorical Cross Entropy is explained. Actually, this is the way most of us 

humans will do. Attention in neural networks is somewhat similar to what 

we find in humans. They focus on the high resolution in certain parts of the 

inputs while the rest of the input is in low resolution Remember hidden state 

from simple RNN now actually it is the context vector we pass along to the 

decoder. The context vector turned out to be problematic for these types 

of models. Models have a problem while dealing with long sentences. Or 

say they were facing the vanishing gradient problem in long sentences. So, a 

solution came along in a paper, Attention was introduced. It highly improved 

the quality of machine translation as it allows the model to focus on the relevant 

part of the input sequence as needed. Transformers are made to solve the 

problem of slow training by the input sequence can be passed parallelly so 

that GPU can be used effectively The Transformer starts by generating initial 

representations, or embeddings, for each word. These are represented by the 
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FıGURE 1.13. a transformer handling an NLP task [66] 

 

unfilled circles. Then, using self-attention, it aggregates information from all 

of the other words, generating a new representation per word informed by the 

entire context, represented by the filled balls. This step is then repeated multiple 

times in parallel for all words, successively generating new representations. 

The decoder operates similarly, but generates one word at a time, from left to 

right. It attends not only to the other previously generated words but also to the 

final representations generated by the encoder. Transformers gives wonderful 

results, using a self-attention mechanism and also solves the parallelization 

issue. Even Google uses BERT that uses a transformer to pre-train models for 

common NLP applications. 
 
 

 

 

1.4.4 Autoencodes 

 
Auto-encoders are a special type of neural network where inputs are outputs are 

found usually identical. It was designed to primarily solve the problems related 

to unsupervised learning. Auto-encoders are highly trained neural networks 

that replicate the data. It is the reason why the input and output are generally 

the same. They are used to achieve tasks like pharma discovery, image process- 

ing, and population prediction. Auto-encoders constitute three components 

namely the encoder, the code, and the decoder. Auto-encoders are built in 

such a structure that they can receive inputs and transform them into various 

representations. The attempts to copy the original input by reconstructing 

them is more accurate. They do this by encoding the image or input, reduce the 

size. If the image is not visible properly they are passed to the neural network 

for clarification. Then, the clarified image is termed a reconstructed image 

and this resembles as accurate as of the previous image. To understand this 

complex process, see the below-provided image. They are mainly designed to 

encode the output into a compressed yet meaningful representation and then 

decode it back such that the reconstructed output is similar to the original one 

(the output).The problem is to learn the functions A : R n → R p (encoder) and 
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FıGURE 1.14. an example of an autoencoder [67] 

 

B : R p → R n (decoder) that satisfy 

argmin (a, b)E [(x, BA(x )] 

where E is the expectation over the distribution of x, and is the reconstruction 

loss function, which measures the distance between the output of the decoder 

and the input. if A and B were linear operations we get a linear auto-encoder. 
 

 

 
1.4.5 GENERATIVE Architecture 

 

1. Generative Adversarial Neural Networks 

Generative adversarial networks are a new but rapidly growing algorith- 

mic architectures that uses two adversarial neural networks (they work 

one against the other), they are called the generator and the discriminator. 

The generator tries to fool the discriminator by generating data similar 

to those of the training set while the discriminator tries to identify fake 

from real data, working simultaneously they can learn and train complex 

data. The algorithm works as follows: the generator receives a random 

noise input and then transforms it into some meaningful output that is 

going to be fed to the discriminator alongside with the training set in 

order for it to try to identify the original training data from the generated 

ones, mathematically speaking, the discriminator and generator play a 

two-player minimax game with the value function V(G, D). So, Minimax 

Objective function is: 

Y (D; G) = Ex ∼ p (data)[logD (x )] + Es ∼ p (s)[log(1 − D (G (s)))] 
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FıGURE 1.15. Generative Adversarial Network structure [68] 

 

where D(x) is the probability that data x is from the training set, and 

D(G(Z)) is the probability that data G(Z) ,which is fake data generated 

by the generator, are from the training set.This way the generator tries 

to minimize V (by minimizing D(x) and D(Z)), and the discriminator 

tries to maximize V(by maximizing D(x) and minimizing D(Z)).they both 

learn by alternative gradient descent (we apply GD on a neural net while 

fixing the other and vice versa). 

 

 

 
 

 

 

 

 

 

 

2. Conditional Generative Adversarial Networks 

 

 
GANs can be extended to a conditional model if both the generator and 

discriminator are conditioned on some extra information (say Y).Y could 

be any kind of auxiliary information,such as class labels or data from 

other modalities. We can perform the conditioning by feeding Y into the 

both the discriminator and generator as an additional input layer.The 

new objective function of the two-player minimax game would be: 

 

 

 
Y (D; G) = Ex ∼ p (data)[logD (x /y)]+Es ∼ p (s)[log(1−D (G (s/y)))] 
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FıGURE 1.16. A comparison between GAN and CGAN [69] 

 

 
 

 

3. Wasserstein Generative Adversarial Networks 

The Wasserstein GAN or WGAN , was introduced by Martin Arjovsky, 

et al. in their 2017 paper [6]. It is an extension of the GAN that seeks an 

alternate way of training the generator model to better approximate the 

distribution of data observed in a given training dataset. Instead of using 

a discriminator to classify or predict the probability of generated images 

as being real or fake, the WGAN changes or replaces the discriminator 

model with a critic that scores the realness or fakeness of a given image. 

This change is motivated by a theoretical argument that training the 

generator should seek a minimization of the distance between the distri- 

bution of the data observed in the training dataset and the distribution 

observed in generated examples. The benefit of the WGAN is that the 

training process is more stable and less sensitive to model architecture 

and choice of hyperparameter configurations. Perhaps most importantly, 

the loss of the discriminator appears to relate to the quality of images 

created by the generator. The primary contribution of the WGAN model 

is the use of a new loss function that encourages the discriminator to 

predict a score of how real or fake a given input looks. This transforms 

the role of the discriminator from a classifier into a critic for scoring the 

realness or fakeness of images, where the difference between the scores 

is as large as possible. 
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1.5 M ACHINE LEARNING MODELS PERFORMANCE TESTING 

 
The model training is an important step, but after that step how the model gen- 

eralizes on unseen data is an equally important aspect that should be considered 

in every machine learning pipeline. We need to know whether it actually works 

and, consequently, if we can trust its predictions in future. This issues can be 

handled by evaluating the performance of a machine learning model, Model 

evaluation aims to estimate the generalization accuracy of a model on future 

(unseen/out-of-sample) data.Methods for evaluating a model’s performance are 

divided into 2 categories: namely, holdout and Cross-validation. Both methods 

use a test set (i.e data not seen by the model) to evaluate model performance 

 
1.5.1 EVALUATION Techniques 

 
1. Holdout 

The purpose of holdout evaluation is to test a model on different data 

than it was trained on. This provides an unbiased estimate of learning 

performance. The dataset is randomly divided into three subsets: • Train- 

ing set: is a subset of the dataset (training data) used to build predictive 

models. We cant use all the dataset to train the model, take maximum 

of 60 or 70• Validation set: is a subset of the dataset used to assess the 

performance of the model built in the training phase. It provides a test 

platform for fine-tuning a model’s parameters and selecting the best 

performing model. Not all modeling algorithms need a validation set. 

Take like 15 or 20• Test set (unseen data): is a subset of the dataset used 

to assess the likely future performance of a model. If a model fits to the 

training set much better than it fits the test set, overfitting is probably 

the cause. Take like 15 or 20The holdout approach is useful because of 

its speed, simplicity, and flexibility. However, this technique is often 

associated with high variability since differences in the training and test 

dataset can result in meaningful differences in the estimate of accuracy. 

2. Cross-validation 

As there is never enough data to train your model, removing a part of it 

for validation poses a problem of underfitting. By reducing the training 

data, we risk losing important patterns/ trends in data set, which in 

turn increases error induced by bias. So, what we require is a method 

that provides ample data for training the model and also leaves ample 

data for validation. K Fold cross validation does exactly that. k-fold 

cross-validation is most common cross-validation technique, where the 
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original dataset is partitioned into k equal size subsamples, called folds. 

The k is a user-specified number, usually with 5 or 10 as its preferred 

value. This is repeated k times, such that each time, one of the k subsets 

is used as the test set/validation set and the other k-1 subsets are put 

together to form a training set. The error estimation is averaged over all 

k trials to get the total effectiveness of our model. 

 
1.5.2 EVALUATION Metrics 

 

Evaluation metrics are required to quantify model performance. The choice of 

evaluation metrics depends on a given machine learning task (such as classifi- 

cation, regression, ranking, clustering, topic modeling, among others). Some 

metrics, such as precision-recall, are useful for multiple tasks. Supervised 

learning tasks such as classification and regression constitutes a majority of ma- 

chine learning applications. We will focus on metrics for these two supervised 

learning models. 

 
Classification Accuracy 

Accuracy is a common evaluation metric for classification problems. It’s the 

number of correct predictions made as a ratio of all predictions made. When 

performing classification predictions, there’s four types of outcomes that could 

occur. 

 
1. True Positives 

are when you predict an observation belongs to a class and it actually 

does belong to that class. 

2. True Negatives 

are when you predict an observation does not belong to a class and it 

actually does not belong to that class. 

3. False Positives 

occur when you predict an observation belongs to a class when in reality 

it does not. 

4. False Negatives 

occur when you predict an observation does not belong to a class when 

in fact it does. 
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FıGURE 1.17. A confusion matrix of a binary classification [70] 

 

These four outcomes are often plotted on a confusion matrix. The follow- 

ing confusion matrix is an example for the case of binary classification. You 

would generate this matrix after making predictions on your test data and then 

identifying each prediction as one of the four possible outcomes described 

above. 
 

 

 

The three main metrics used to evaluate a classification model are accuracy, 

precision, and recall. Where accuracy is defined as the percentage of correct 

predictions for the test data. It can be calculated easily by dividing the number 

of correct predictions by the number of total predictions. 
 

accuracy = 
correctpredictions 

allpredictions 

And precision is defined as the fraction of relevant examples (true positives) 

among all of the examples which were predicted to belong in a certain class, 

truepositiUes 

precision = truepositiUes + ƒ alsepositiUes 

meanwhile the recall is defined as the fraction of examples which were predicted 

to belong to a class with respect to all of the examples that truly belong in the 

class. 

recall = 

 
Regression Accuracy 

truepositiUes 

truepositiUes + ƒ alseNegatiUes 

Evaluation metrics for regression models are quite different than the above 

metrics we discussed for classification models because we are now predicting 

in a continuous range instead of a discrete number of classes. If your regression 

model predicts the price of a house to be 400K USD and it sells for405K USD, 
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FıGURE 1.18. Classification Evaluation [71] 

 

that’s a pretty good prediction. However, in the classification examples we 

were only concerned with whether or not a prediction was correct or incorrect, 

there was no ability to say a prediction was "pretty good". We have a different 

set of evaluation metrics for regression models. 

 
1. Explained variance 

compares the variance within the expected outcomes, and compares 

that to the variance in the error of our model. This metric essentially 

represents the amount of variation in the original dataset that our model 

is able to explain. 

EY Ytrue, Ypred = 1 
Yar (Ytrue, Ypred) 

Ytrue 
 

2. Mean squared error 

is simply defined as the average of squared differences between the 

predicted output and the true output. Squared error is commonly used 

because it is agnostic to whether the prediction was too high or too low, 

it just reports that the prediction was incorrect. 

MSE Ytrue, Ypred =
  1  

Ytrue Ypred 2 
Nsamples 
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1.6 CONCLUSION 

 
The conclusion in this chapter we concentrated on two parts, machine learn- 

ing and neural network and how convolutional neural network works very 

efficiently on image recognition and classification, recurrent neural network 

directed more to deal with texts and we explain the solutions for RNN prob- 

lems. The need for machine learning is increasing day by day. The reason 

behind the need for machine learning is that it is capable of doing tasks that 

are too complex for a person to implement directly. As a human, we have some 

limitations as we cannot access the huge amount of data manually, so for this, 

we need some computer systems and here comes the machine learning to make 

things easy for us. And the importance of machine learning can be easily under- 

stood by its uses cases, Currently, machine learning is used in self-driving cars, 

cyber fraud detection, face recognition, and friend suggestion by Facebook, 

etc. Various top companies such as Netflix and Amazon have build machine 

learning models that are using a vast amount of data to analyze the user interest 

and recommend product accordingly. 



 

 

 

 

CHAPTER 2 

RELATED Works 
 

 

 
There have been a lot of works that dealt with text, images and 3d shapes data, as 

for our problem which is the generation of 3d shapes out of textual description 

we find it rewarding to have a look at some of the best researches treating this 

kind of data since the generation the 3d shapes can come in two ways, either a 

direct generation (shapes outputs out of text input) or generating images ,out of 

the text inputs, that are fed to an image to shapes generator (text-image-shape). 

In this chapter we take a explore some past or present state of the art approaches 

dealing with data in the sort of text, images or 3d shapes. 

 
2.1 T EXT TO IMAGE 

 
The generation of images from the regular language has numerous potential 

applications later on once the innovation is prepared for business applications 

and an amazing demonstration of Deep Learning [7]. Generative Adversarial 

Networks have a place with the arrangement of generative models. It implies 

that they can create new substances. Text is translated into picture pixels[8]. 

For eg: Flower with pink petals. GAN comprise of an arrangement of two 

contending neural organization models that compete with one another and 

observe, catch and duplicate the varieties inside a dataset [9]. Text to image 

synthesis is all about converting text descriptions into appropriate images. 

Nowadays, GAN models are widely used for better results [7]. We focused on 

two approaches used with GAN and [7] [8] [10] [11] [12] have a good explanation 

and demonstration to those two architectures. 

 
2.1.1 CONDITIONAL-GANS 

 

We take [8] as example to explain it, in their paper defined C-GANs work by in- 

putting a one-hot class label vector as input to the generator and discriminator 

in addition to the randomly sampled noise vector. This results in higher train- 

ing stability, more visually appealing results, as well as controllable generator 

outputs. The goal of Generator is to fool the Discriminator whereas the goal of 

25 
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FıGURE 2.1. Reed et al. text-to-image GAN model [72] 

 

Discriminator is to identify correct data. Generator and Discriminator both 

compete with each other. Generator makes all the attempts to convince the 

Discriminator that the generated fake instances are the real samples of data and 

also increases the probability of mistakes whereas the Discriminator figures 

out the real ones. Hence, these steps are repeated many times and both the 

sub-models get trained much better. First, Discriminator is trained on the real 

data samples to verify if it can identify those samples as real [10]. Again, the 

Discriminator is trained on generated fake data to see if is able to discriminate 

between actual and fake image. Generator is also trained depending upon the 

results of Discriminator so it can improve itself. In addition to constructing 

good text embeddings, translating from text to images is highly multi-modal [7]. 

The term ‘multi-modal’ is an important one to become familiar with in Deep 

Learning research. This refers to the fact that there are many different images 

of birds with correspond to the text description “bird” [7]. Another example in 

speech is that there are many different accents, etc. that would result in different 

sounds corresponding to the text “bird”. Multi-modal learning is also present 

in image captioning, (image-to-text). However, this is greatly facilitated due to 

the sequential structure of text such that the model can predict the next word 

conditioned on the image as well as the previously predicted words. Multi- 

modal learning is traditionally very difficult, but is made much easier with 

the advancement of GANs (Generative Adversarial Networks), this framework 

creates an adaptive loss function which is well-suited for multi-modal tasks 

such as text-to-image. 

 

 

 
The picture above shows the architecture Reed et al.[79] used to train this 

text-to-image GAN model. The most noteworthy takeaway from this diagram 

is the visualization of how the text embedding fits into the sequential 

processing of the model. In the Generator network, the text embedding 

is filtered through a fully connected layer and concatenated with the random 

noise vector z. In this case, the text embedding is converted from a 1024x1 

vector to 128x1 and concatenated with the 100x1 random noise vector z. On 

the side of the discriminator network, the text-embedding is also compressed 
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through a fully connected layer into a 128x1 vector and then reshaped into a 4x4 

matrix and depth-wise concatenated with the image representation. This image 

representation is derived after the input image has been convolved over multiple 

times, reduce the spatial resolution and extracting information. This embedding 

strategy for the discriminator is different from the conditional-GAN model in 

which the embedding is concatenated into the original image matrix and then 

convolved over [10]. One general thing to note about the architecture diagram 

is to visualize how the DCGAN upsamples vectors or low-resolution images 

to produce high-resolution images. You can see each de-convolutional layer 

increases the spatial resolution of the image [12]. Additionally, the depth of the 

feature maps decreases per layer. Lastly, you can see how the convolutional 

layers in the discriminator network decreases the spatial resolution and increase 

the depth of the feature maps as it processes the image. An interesting thing 

about this training process is that it is difficult to separate loss based on the 

generated image not looking realistic or loss based on the generated image not 

matching the text description. The authors of the paper describe the training 

dynamics being that initially the discriminator does not pay any attention to the 

text embedding, since the images created by the generator do not look real at 

all [10]. Once G can generate images that at least pass the real vs. fake criterion, 

then the text embedding is factored in as well. The authors smooth out the 

training dynamics of this by adding pairs of real images with incorrect text 

descriptions which are labeled as ‘fake’. The discriminator is solely focused on 

the binary task of real versus fake and is not separately considering the image 

apart from the text. This is in contrast to an approach such as AC-GAN with 

one-hot encoded class labels. The AC-GAN discriminator outputs real vs. fake 

and uses an auxiliary classifier sharing the intermediate features to classify the 

class label of the image. [11] 

 

2.1.2 STACK-GAN 

 

To generate high-resolution images with photo-realistic details, [11] propose a 

simple yet effective Stacked Generative Adversarial Networks. It decomposes 

the text-to-image generative process into two stages 

Stage-I GAN: it sketches the primitive shape and basic colors of the object 

conditioned on the given text description, and draws the background layout 

from a random noise vector, yielding a low-resolution image. [12] 

Stage-II GAN: it corrects defects in the low-resolution image from Stage-I and 

completes details of the object by reading the text description again, producing 

a high resolution photo-realistic image. [12] 
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FıGURE 2.2. Stack-GAN [73] 

 
 

 
 

 

Stage-I GAN 

Instead of directly generating a high-resolution image conditioned on the text 

description, we simplify the task to first generate a low-resolution image with 

our Stage-I GAN, which focuses on drawing only rough shape and correct 

colors for the object. [13] Let t be the text embedding of the given description, 

which is generated by a pre-trained encoder in this paper [12]. The Gaussian 

conditioning variables c^0 for text embedding are sampled from N (µ0(t), Σ0(t)) 

to capture the meaning of t with variations. Conditioned on c^0 and random 

variable z, Stage-I GAN trains the discriminator D0 and the generator G0 by 

alternatively maximizing LD0 in Eq. (1) and minimizing LG0 in Eq. (2) where 

the real image I0 and the text description t are from the true data distribution 

Pdata. z is a noise vector randomly sampled from a given distribution Pz (Gaus- 

sian distribution in this paper). λ is a regularization parameter that balances 

the two terms in Eq. (2). We set λ = 1 for all our experiments both µ0(t) and 

Σ0(t) are learned jointly with the rest of the network. [12] 

 
Stage-I GAN Architecture 

For the generator G0, to obtain text conditioning variable c^0, the text embed- 

ding t is first fed into a fully connected layer to generate µ0 and σ0 (σ0 are 

the values in the diagonal of Σ0) for the Gaussian Distribution N (µ0(t), Σ0(t)). 

c^0 are then sampled from the Gaussian distribution. Our Ng dimensional 

conditioning vector c^0 is computed by c^0 = µ0 + σ0 (where is the element- 

wise multiplication, N (0, I)). Then, c^0 is concatenated with a Nz dimensional 

noise vector to generate a W0   H0 image by a series of up-sampling blocks. 

[11] For the discriminator D0, the text embedding t is first compressed to Nd 

dimensions using a fully-connected layer and then spatially replicated to form 
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a Md Md Nd tensor. Meanwhile, the image is fed through a series of down- 

sampling blocks until it has Md Md spatial dimension. Then, the image 

filter map is concatenated along the channel dimension with the text tensor. 

The resulting tensor is further fed to a 1 1 convolutional layer to jointly learn 

features across the image and the text. Finally, a fully connected layer with one 

node is used to produce the decision score. [12] 

 
Stage-II GAN 

Low-resolution images generated by Stage-I GAN usually lack vivid object 

parts and might contain shape distortions. Some details in the text might also 

be omitted in the first stage, which is vital for generating photo-realistic images 

[13]. Our Stage-II GAN is built upon Stage-I GAN results to generate high- 

resolution images. It is conditioned on low-resolution images and also the 

text embedding again to correct defects in Stage-I results. The Stage-II GAN 

completes previously ignored text information to generate more photo-realistic 

details. [14] 

 
Stage-II GAN Architecture 

We design Stage-II generator as an encoder-decoder network with residual 

blocks. Similar to the previous stage, the text embedding t is used to generate 

the Ng dimensional text conditioning vector c^, which is spatially replicated to 

form a Mg Mg Ng tensor [12]. Meanwhile, the Stage-I result s0 generated by 

Stage-I GAN is fed into several down-sampling blocks (i.e., encoder) until it 

has a spatial size of Mg Mg. The image features and the text features are con- 

catenated along the channel dimension. The encoded image features coupled 

with text features are fed into several residual blocks, which are designed to 

learn multi-modal representations across image and text features [14]. Finally, 

a series of up-sampling layers (i.e., decoder) are used to generate a W H high- 

resolution image. Such a generator is able to help rectify defects in the input 

image while add more details to generate the realistic high-resolution image. 

For the discriminator, its structure is similar to that of Stage-I discriminator 

with only extra down-sampling blocks since the image size is larger in this stage 

[16]. To explicitly enforce GAN to learn better alignment between the image 

and the conditioning text, rather than using the vanilla discriminator, we adopt 

the matching-aware discriminator proposed by Reed et al.[79] for both stages. 

During training, the discriminator takes real images and their corresponding 

text descriptions as positive sample pairs, whereas negative sample pairs consist 

of two groups. The first is real images with mismatched text embeddings [15], 

while the second is synthetic images with their corresponding text embeddings. 
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2.2 I MAGE TO 3D SHAPES 

 
In this chapter we take a look at some of the best works on generating 3d shapes 

out of images, where we will highlight the approaches used as far as shapes and 

images are concerned. 

 
2.2.1 Multi-view 3D Reconstruction 

 
3D shapes can be recovered from multiple color images or depth scans. To 

estimate the underlying 3D shape from multiple color images, classic SfM [16] 

and vSLAM [17] algorithms firstly extract and match hand-crafted geometric 

features [18] and then apply bundle adjustment [19] for both shape and camera 

motion estimation. Ji et al. [20] use “maximizing rigidity” for reconstruction, 

but this requires 2D point correspondences across images. Recent deep neural 

net based approaches tend to recover dense 3D shapes through learnt features 

from multiple images and achieve compelling results. To fuse the deep features 

from multiple images, both 3D-R2N2 [21] and LSM apply the recurrent unit 

GRU, resulting in the networks being permutation variant and inefficient for 

aggregating long sequence of images. Recent SilNet [22] [23] and DeepMVS 

[24] simply use max pooling to preserve the first order information of multiple 

images, while RayNet [25] applies average pooling to reserve the first moment 

information of multiple deep features. MVSNet proposes a variance-based 

approach to capture the second moment information for multiple feature ag- 

gregation. These pooling techniques only capture partial information, ignoring 

the majority of the deep features. Recent SurfaceNet [26] and SuperPixel Soup 

[27] can reconstruct 3D shapes from two images, but they are unable to process 

an arbi- trary number of images. As for multiple depth image reconstruction, 

the traditional volumetric fusion method [28] integrates multiple viewpoint 

information by averaging truncated signed distance functions (TSDF). Recent 

learning based OctNetFusion [29] also adopts a similar strategy to integrate 

multiple depth information. However, this integration might result in informa- 

tion loss since TSDF values are averaged [29]. PSDF [30] is recently proposed 

to learn a probabilistic distribution through Bayesian updating in order to fuse 

multiple depth images, but it is not straightforward to include the module into 

existing encoder-decoder networks. 

 
2.2.2 Deep LEARNING on Sets 

 
In contrast to traditional approaches operating on fixed dimensional vectors or 

matrices, deep learning tasks defined on sets usually require learning functions 
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to be permutation invariant and able to process an arbitrary number of elements 

in a set [31]. Such problems are widespread. Zaheer et al.[31] introduce general 

permutation invariant and equivariant models in [31], and they end up with 

a sum pooling for permutation invariant tasks such as population statistics 

estimation and point cloud classification. In the very recent CGQN [32], sum 

pooling is also used to aggregate an arbitrary number of orderless images for 

3D scene representation. Gardner et al. [33] use average pooling to integrate 

an unordered deep feature set for classification task. Su et al. [34] use max 

pooling to fuse the deep feature set of multiple views for 3D shape recognition. 

Similarly, PointNet [35] also uses max pooling to aggregate the set of features 

learnt from point clouds for 3D classification and segmentation. In addition, 

the higher-order statistics based pooling approaches are widely used for 3D 

object recognition from multiple images 
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FıGURE 2.3. The approach used by kevin chen et al [78] 

 

2.3 TEXT TO SHAPE 

 

In the paper «Text2Shape: Generating Shapes from Natural Language » kevin et 

al [78] represent a method for generating 3d shapes from natural language, they 

split their work into two major tasks text to shape retrieval and text to shape 

generation. They first present a method for learning a joint text and shape 

representation space directly from natural language descriptions of 3D shape 

instances, By leveraging a new dataset of paired natural language descriptions 

and colored 3D shapes, their method extends learning by association[41] and 

metric learning[42] to jointly learn a text and 3D shape embedding that clusters 

similar shapes and descriptions, establishing implicit semantic connections 

followed by their text-to-shape generation framework. Unlike related work in 

text-to-image synthesis [12],[13] they do not rely on fine-grained category-level 

class labels or pre-training on large datasets. Furthermore, they train the text 

and shape encoding components jointly in an end-to-end fashion, associating 

similar points in our data both within a modality (text-to-text or shape-to- 

shape) and between the two modalities (text-to-shape). The retrieval task allows 

to evaluate the quality of the jointly learned text-shape embedding against 

baselines from prior work. As for the text-to shape generation task, kevin et al 

[78] focused on colored shape generation because most descriptions of shapes 

involve color or material properties. To address this task, they combined the 

joint embedding model with a novel conditional Wasserstein GAN framework, 

providing greater output quality and diversity compared to a conditional GAN 

formulation. Lastly, they used vector embedding arithmetic and the generator 

to manipulate shape attributes.[78] 

 

 

 
Experimental results on collected 75K natural language descriptions for 

15K chair and table shapes in the ShapeNet[43] dataset shows that they model 

outperforms the baselines by a large margin for both the retrieval and genera- 

tion tasks. 
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2.4 COMPARING THE DIFFERENT RELATED WORKS 

 
 

Work Type Cons Pros 

 
Conditional 

GANs [10] 

 
Text to 

image 

 
1. Does not ensure the 

quality of generation 

1. Generates realistic im- 

ages from text with de- 

sirable characters 

Stack 

GAN [12] 

Text to 

image 

1. Does not capture fine 

details of the image 

1. improves the quality of 

the generated images 

Multi 

view 3D 

recon- 

struction 

[20] 

 

Image 

to 

shape 

1. Generated shapes are 

images from the input 

and not new 

 
1. Learns from one or mul- 

tiple images 

Deep 

learning 

on sets 

[31] 

Image 

to 

shape 

 
1. Shapes with low quality 

 
1.Generates new shapes 

 

 
Kevin 

Chen et 

al’s work 

[78] 

 

 

 
Text to 

shape 

1. A classification problem 

2. Made specifically (and 

only) for the shapenet 

chairs and tables dataset 

3. the embedding task is a 

basic one 

1. Do not rely entirely fine- 

grained category level 

annotations 

2. define a metric learn- 

ing loss, what improves 

the cross model associa- 

tions 

 

 

 

 
Our work 

 

 

 

 
Text to 

shape 

 

 

 
 

1. Works only with 3d ob- 

jects 

1. A regression problem 

2. works with all the 

datasets of 3D shapes 

3. Uses transformers and 

an autoencoder to com- 

pute the embeddings 

4. Time and computation 

power efficient 
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2.5 CONCLUSION 

 
In this chapter we explained 3 main related works: Text to image, Image to shape, 

and text to shape. We understood that the first class aimed to generate images 

from textual descriptions, we chose about two methods (CGAN and Stack 

Gan), each time we note that there are points added at the level of the approach 

compared to the previous one. The second part aims to transform images 

into shapes, we take into consideration these two approaches (Multi-view 3D 

Reconstruction and Deep Learning on Sets). According to the classification of 

the work that we made we understood that the first two parts gave birth to the 

third part text to shape which is the basis of our work such that the latter it uses 

the architecture of CWGAN. In next chapter, we will move on to the conceptual 

part, which will be devoted to expressing the architectures and methods used 

in the realization of our approach. 



 

 

 

 

CHAPTER 3 

Design AND conception 
 

 

 
In the previous chapters, we have seen the different works handling data of 

the sort of 3d shapes, images and text, now we will walk you through our own 

approach and the models we chose and developed to get better results than the 

previews ones. First, we will explain how we generated the text embeddings 

using Google’s BERT which is the current state of the art world wide, and then 

we will explain the Autoencoder we used to retrieve the shapes embeddings, 

to finish off by talking about the CGAN that learns the mappings between the 

shapes and their textual descriptions as well as generates the shape described 

by the text input which is the global goal of our work. 
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FIGURE 3.1. Our global architecture 

 

3.1 THE GLOBAL ARCHITECTURE 

 
As shown in the previous figure, our, simple yet effective, approach consists of 

two main blocks the encoding and the generation. The input textual descrip- 

tion is fed into an encoder that generates ,through BERT, its embedding, then, 

concatenated with some noise, will be passed to the generator that generates 

what it thinks is the shape associated to that description, however, to make sure 

the generator does its work properly we also feed the discriminator, which is 

another neural network that binary classifies the generated shape to a real or 

a fake shape in other words it tries to figure out if one shape is real and the 

other one is generated or are the (if the discriminator thinks the generated 

shape is identical to the real one we call that the discriminator being fooled 

by the generator and it means that the generation process was successful).the 

shapes are all encoded and decoded when needed to be, we do that by a pretty 

loss efficient autoencoder that generates the shapes embeddings and then de- 

codes them back into the actual shapes while calculating and improving its loss 

function. 
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3.2 PROCESSING THE NATURAL LANGUAGE DATA 

 

Undoubtedly, Natural Language Processing (NLP) research has taken enormous 

leaps after being relatively stationary for a couple of years [21]. In this part, 

we will be looking at word embeddings and see how BERT can be used with 

word-embedding strategies to feed as input features for other models built for 

custom tasks to perform the state of art results. [22] 

 
3.2.1 Word embedding 

 

“Word embedding is the collective name for a set of language modeling and 

feature learning techniques in natural language processing (NLP) where words 

or phrases from the vocabulary are mapped to vectors of real numbers.” [23] [22] 

Define simply word embeddings as vector representations of a particular word. 

Word embedding is one of the most popular representations of document 

vocabulary. It is capable of capturing the context of a word in a document, 

semantic and syntactic similarity, relation with other words, etc. And [21] 

explained embeddings are low dimensional representations of a point in a 

higher dimensional vector space. In the same manner, word embeddings are 

dense vector representations of words in lower dimensional space. [22] Said 

that there are a few key characteristics to a set of useful word embeddings: 

 

1. Every word has a unique word embedding (or “vector”), which is just a 

list of numbers for each word. 

 

2. The word embeddings are multidimensional; typically for a good model, 

embeddings are between 50 and 500 in length. 

 

3. The word embeddings are multidimensional; typically for a good model, 

embeddings are between 50 and 500 in length. 

 

4. For each word, the embedding captures the “meaning” of the word. 

5.Similar words end up with similar embedding values. 

There are many approaches to generate word embeddings. Context- 

independent (Bag of Words, TF-IDF, Word2Vec, GloVe), Context-aware (ELMo, 

Transformer, BERT, Transformer-XL), Large model (GPT-2, XLNet, Compres- 

sive Transformer) are the main categories. We will focus on Word2Vec and 

Bert. 
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3.2.2 Common Embedding techniques 

 

Word2Vec is one of the most popular technique to learn word embeddings 

using shallow neural network. It was developed [24] [14] explaind word2vec 

with an example, Consider the following similar sentences: Have a good day 

and Have a great day. They hardly have different meaning. If we construct an 

exhaustive vocabulary (let’s call it V), it would have V = Have, a, good, great, 

day. Now, let us create a one-hot encoded vector for each of these words in V. 

Length of our one-hot encoded vector would be equal to the size of V (=5). We 

would have a vector of zeros except for the element at the index representing 

the corresponding word in the vocabulary. That particular element would 

be one. The encodings below would explain this better. Have = [1,0,0,0,0]; 

a= [0,1,0,0,0]; good= [0,0,1,0,0]; great= [0,0,0,1,0]; day= [0,0,0,0,1] If we try to 

visualize these encodings, we can think of a 5 dimensional space, where each 

word occupies one of the dimensions and has nothing to do with the rest (no 

projection along the other dimensions). This means ‘good’ and ‘great’ are as 

different as ‘day’ and ‘have’, which is not true. Our objective is to have words 

with similar context occupy close spatial positions. Mathematically, the cosine 

of the angle between such vectors should be close to 1, i.e. angle close to 0. 

Here comes the idea of generating distributed representations. Word2Vec is a 

method to construct such an embedding. It can be obtained using two methods 

(both involving Neural Networks): Skip Gram and Common Bag Of Words 

(CBOW) In the CBOW model, the distributed representations of context (or 

surrounding words) are combined to predict the word in the middle. While in 

the Skip-gram model, the distributed representation of the input word is used 

to predict the context. [25] Both have their own advantages and disadvantages. 

According to Mikolov, Skip Gram works well with small amount of data and is 

found to represent rare words well. On the other hand, CBOW is faster and 

has better representations for more frequent words. [26] 

 
3.2.3 BERT Embedding 

 

In 2018, the Google AI team made a revolutionary change in the field of Natural 

Language Processing (NLP) by introducing Bidirectional Encoder Representa- 

tions from Transformers (BERT). Due to its highly pragmatic approach, and 

higher performance, BERT is highlighted for achieving state-of-the-art per- 

formance in many NLP tasks [11]. BERT has an advantage over models like 

Word2Vec because while each word has a fixed representation under Word2Vec 

regardless of the context within which the word appears, BERT produces word 

representations that are dynamically informed by the words around them [22]. 
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FıGURE 3.2. a graphical representation of the base BERT model [74] 

 

For example, given two sentences: 

1.I like apples. 

2.I like Apple macbooks 

Note that the word apple has a different semantic meaning in each sentence. 

Now with a contextualized language model, the embedding of the word ap- 

ple would have a different vector representation which makes it even more 

powerful for NLP tasks [21]. the context-informed word embeddings capture 

other forms of information that result in more accurate feature representations, 

which in turn results in better model performance [22] 

 
BERT Model 

Two primary models were created by BERT developers: 

1. The BASE:Number of transformer blocks (L): 12, Hidden layer size (H): 

768 and Attention heads(A): 12 

2. The LARGE:Number of transformer blocks (L): 24, Hidden layer size 

(H): 1024 and Attention heads(A): 16 
 

 

 

 

It may seem simple but each encoder block encapsulates a more sophisti- 

cated model architecture. At this point, to make things more clear it is important 

to understand the special tokens that BERT authors used for fine-tuning and 

specific task training. [11] These are the following: 

1. CLS: The first token of every sequence. A classification token which 

is normally used in conjunction with a softmax layer for classification 

tasks. For anything else, it can be safely ignored. 
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FıGURE 3.3. an example of inputting a sentence into BERT [74] 

 

2. SEP: A sequence delimiter token which was used at pre-training for 

sequence-pair tasks (i.e. Next sentence prediction). Must be used when 

sequence pair tasks are required. When a single sequence is used it is 

just appended at the end. 

3. MASK: Token used for masked words. Only used for pre-training. 

Moving on, the input format that BERT expects is illustrated below: 
 

 

 

The input layer is simply the vector of the sequence tokens along with 

the special tokens. BERT use WordPiece for tokenization which in effect, 

splits token like “playing” to “play” and “ing”. This is mainly to cover a wider 

spectrum of Out-Of-Vocabulary (OOV) words [22]. Token embeddings are 

the vocabulary IDs for each of the tokens, and a Sentence Embedding is just 

a numeric class to distinguish between sentence A and B, while Transformer 

positional embeddings indicate the position of each word in the sequence. 

 
3.2.4 GENERATING our text embeddings: 

 
BERT might be known for its words embedding capabilities but the sentence 

encoding models also are easily on of the best pre-trained models to be used 

to generate sentences embeddings, for instance, all-MiniLM-L6-v2 [**](that 

we use to compute the text embeddings) is a sentence transformer model that 

maps sentences paragraphs to a 384 dimensional dense vector space and can 

be used for tasks like clustering or semantic search. it is intended to be used as a 

sentence and short paragraph encoder. Given an input text, it outputs a vector 

which captures the semantic information. The sentence vector may be used 

for information retrieval, clustering or sentence similarity tasks. By default, 

input text longer than 256 words pieces is truncated. We chose this particular 

model because it fits perfectly our captions dataset. in the figure bellow its 

main characteristics. 
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FıGURE 3.4. all-MiniLM-L6-v2 model information 

 

 

 
 

 

We simply download the pre trained model and then call the ‘encode()’ 

function on the captions dataset and it generates the each caption’s embedding, 

the process might take some time but nothing fancy since out of the 6 sentence 

embedding BERT models with the highest performance this model is the fastest 

(on a V100 GPU it encodes 14200 sentence per second [27]). 
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FıGURE 3.5. Our autoencoder architecture 

 

3.3 PROCESSING THE 3D SHAPES 

 

3d shapes are such high dimensional vectors and that makes them costly ,if not 

impossible, to be used in machine learning tasks, therefore we are entitled to 

generate embeddings that captures the our shapes’ main characteristics while 

,at the same time, easier to do machine learning on large inputs of them, this 

only be done by focusing on properties of high importance, properties that 

distinguish each shape form another (color, material, finishing.  ) and ignor- 

ing what is repetitive, irrelevant and non schematic(to escape the overfitting 

problem). We propose an Autoencoder that encodes and decodes back the 3d 

shapes multiple times improving its loss function every time, this way we can 

enjoy representative shapes embeddings. An Autoencoder has two main blocks 

the encoder and the decoder, the encoder encodes shapes into the wanted em- 

beddings while the decoder gets that embedding and decodes it to get back the 

original shape. Their architecture is simple, the encoder is made out of two 

conv3d layer (3 dimensional filter) followed both by a rectifier linear unit acti- 

vation function (that outputs the the value if positive otherwise it will output 0) 

the first one uses a kernel of (32, 32, 32) and a stride of (2,1,1) with padding=(4, 

2, 0) while the second one convolves through the output of the first layer with 

a kernel of size (5, 5, 1) with no stride value nor padding (both set to 1). the 

decoder on the other hands applies a 3D transposed convolution operator over 

the embeddings generated by the encoder, that be done by two transposed 

convolutional layer layers with the same parameters in the inverse order (the 

first layer uses a kernel of (5,5,1) and no padding nor stride ad the first one 

kernel=(32, 32, 32), stride=(2, 1, 1), padding=(4, 2, 0)) 
 

 
 

 

 

 

 

 

We improve the encoding and decoding of the model by applying the mean 

squared error loss between the generated shape of the decoder and the shape 
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inputted first into the encoder and updating the weights of the layers during 

the back propagation process. We train the model for 100 epochs using a batch 

of 4 shapes at a time (for performance reasons). 
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3.4 THE GENERATION TASK 

 

We chose GANs as a model for this task, generative adversarial networks are 

a type of neural networks that uses two blocks called the generator and the 

discriminator to understand as well as generate complex data using mathe- 

matical operations, which is very helpful since we are trying to generate data 

out of another, completely different, type (generating 3d shapes out of textual 

descriptions), In the normal case the generator generates things out of random 

noise (random vectors) but what we are trying to do here is a little bit different, 

therefore we will make use of a condition that we inject into the generator to 

make sure it always stays close to the textual description inputted (serves as 

creating a certain pattern of generation that’s why it is called the conditional 

generative adversarial network). After getting the shapes and captions em- 

beddings (using respectively our autoencoder and Google’s BERT model) we 

now join the shapes with their textual descriptions what gives us a full labeled 

dataset of low dimensional train ready shapes embeddings associated with their 

respective textual description also encoded, now we move to the generation 

task.As mentioned before our CGAN has two main blocks: the generator and 

the discriminator, we first feed the embedded textual descriptions ,that are 

a latent vector of size 384, concatenated with a random nosy vector into the 

generator that will output a 3d shape of the dimension (4,3,3,3) and then fed 

, alongside with the embedding of the original shape that is described here, 

straight into the discriminator for it to classify the generated shape into a real or 

fake (figures out if it was a generated one or not) and then sends the result back 

to the generator therefore it learns if it did a good job or not and keeps repeating 

through many epochs improving every time (most of the time is more accurate), 

if the discriminator thinks that the generated shape is a completely identical to 

the real one then we can say that the generation part was a success in fact if the 

versions are identical in a way that fools the discriminator it is enough and gets 

the job done.The generator and the discriminator, as you might have guessed, 

aren’t anywhere near similar in their architecture, since they do completely 

different tasks, the generator is a sequential model of 5 linear layers that are, 

mathematically, designed to calculate the linear equation Ax = b where x is 

input, b is output, A is weight and applies the linear transformation to the given 

input into another size, and that what allows us to move from a latent vector of 

size 384 to a shape of (4,32,32,32) at the end, the first four layers are followed 

by a 1 dimensional batch normalizing layer, except for the first one, and each 

of the four uses a leaky rectified linear unit activation function. The last one 

outputs the shape embedding (of size (4,3,3,3)) and it uses the Tanh activation 

function. Although we intended to generate shapes, we thought it would be 

better to directly generate the shapes embeddings, we tried them both but the 



 

FıGURE 3.6. Our CGAN’s generator architecture 
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embedding generation was way better time and performance wise,therefore the 

generation of shapes embeddings gets the latent vector of size 384 and outputs 

the embedding of size (4,3,3,3). 
 

 

 

 
 

 
 

 

 

 

 

 

 
On the other hand , in the discriminator we find 4 linear layers, the first 

one has as an input feature 492 and outputs a feature map of 512that is passed 

through a leaky rectified linear units and then through two linear layers with 

a dropout function with a probability of 0.4 what that does is it keeps the 

same size of the vector but zeroes some of its values with the probability of 

40 percent an element is zeroed, at the end the mostly zeroed vector gets fed 

to a linear layer that outputs one value which is if it is a fake or a real shape, 

and the classification accuracy gets improved in the backpropagation process 

after every epoch and this way it motivates the generator to step up its game 

and generate challenging shapes for the discriminator to discriminate between 

them and the real ones, that’s how we get the final generator that can generate 

close to real shapes out of nothing but textual descriptions. 
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FıGURE 3.7. Our CGAN’s discriminator architecture 
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3.5CONCLUSION 

 
The chapter we just walked you through is the most important one in thesis 

since it is the one in which we explained in details what are we doing as well 

as how we are doing it. We can divide it into three important parts the text 

embeddings extraction where we explained how we used Google’s BERT to get 

the embeddings of our dataset captions, and then in the second part we talked 

about our Autoencoder that generates the shapes embeddings and detailed its 

structure and how it works, in the last important part we tackled the CGAN 

that we used in our generation task. In the next and last chapter, we will talk 

about the tools we used and evaluate our work. 



 

 

 

 

CHAPTER 4 

The IMPLEMENTATION of our work 
 

 

 
In the previews chapter we discussed how our models are made and their 

architecture in this chapter we will discuss the process of building them, starting 

with the tools we used moving to parameters we build them upon and finishing 

with a brief overview evaluation . 

 

4.1 USED TOOLS: 

 

in this section we will show you what we used to make this whole thing work. 

 

4.1.1 Google COLLABORATORY 

 

Google Colaboratory (also known as Colab) is a free Jupyter notebook environ- 

ment that runs in the cloud and stores its notebooks on Google Drive., it allows 

you to write and execute Python in your browser, with zero configuration 

required, free access to GPUs and easy sharing, also since it uses google drive 

you can easily read data from drive in Colab and use it which is one of the best 

features out there for developers world wide. 

 

4.1.2 Python 

 

Python is a programming language that has become a staple in data science, 

allowing data analysts and other professionals to use the language to conduct 

complex statistical calculations, create data visualizations, build machine learn- 

ing algorithms, manipulate and analyze data, and complete other data-related 

tasks. Python can build a wide range of different data visualizations, like line 

and bar graphs, pie charts, histograms, and 3D plots. Python also has a number 

of libraries that enable coders to write programs for data analysis and machine 

learning more quickly and efficiently, like TensorFlow, Pytorch and Keras. 

49 
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4.1.3 Frontend we development tools 

 
For our interface we used HTML, CSS and JS, in the interface there is a text 

area so can the user put a small description describe the shape he wants, and 

click generate the description treated in our backend and generate the shape. 

 
4.1.4 F3D 

 
F3D is a desktop program made by c++ and can display 3D shapes in NRRD 

format (the main format we are using in our work). After our model generates 

the shapes we drag and drop the generated NRRD file in the program and it 

displays it. 

 
4.1.5 VISUAL studio code 

 
Visual Studio Code is a streamlined code editor with support for development 

operations like debugging, task running, and version control. It aims to provide 

just the tools a developer needs for a quick code-build-debug cycle and leaves 

more complex workflows to fuller featured IDEs 

 
4.1.6 NumPy 

 
NumPy is an open source project aiming to enable numerical computing with 

Python. It was created in 2005, building on the early work of the Numeric and 

Numarray libraries[49] 

 
4.1.7 NRRD 

 
Nrrd ("nearly raw raster data") is a library and file format for the representation 

and processing of n-dimensional raster data. It was developed by Gordon Kindl- 

mann to support scientific visualization and image processing applications.it 

can be used, accessed and modified through python’s library Pynrrd. 

 
4.1.8 Bert 

 
Bidirectional Encoder Representations from Transformers (BERT) is a 

transformer-based machine learning technique for natural language process- 

ing (NLP) pre-training developed by Google. it is designed to pre-train deep 
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bidirectional representations from unlabeled text by jointly conditioning on 

both left and right context. As a result, the pre-trained BERT model can be fine- 

tuned with just one additional output layer to create state-of-the-art models 

for a wide range of NLP tasks. 

 
4.1.9 Pytorch 

 
PyTorch is an open source machine learning library based on the Torch library, 

used for applications such as computer vision and natural language processing, 

primarily developed by Facebook’s AI Research lab (FAIR). Although the Python 

interface is more polished and the primary focus of development, PyTorch also 

has a C++ interface. 
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4.2 DATASETS 

 

 

 

 
ShapeNet is a large, information-rich repository of 3D models. It contains 

models spanning a multitude of semantic categories. Unlike previous 3D model 

repositories, it provides extensive sets of annotations for every model and 

links between models in the repository and other multimedia data outside the 

repository . Like ImageNet, ShapeNet provides a view of the contained data in a 

hierarchical categorization according to WordNet synsets, Unlike other model 

repositories, ShapeNet also provides a rich set of annotations for each shape 

and correspondences between shapes. The annotations include geometric 

attributes such as upright and front orientation vectors, parts and keypoints, 

shape symmetries , and scale of object in real world units. These attributes 

provide valuable resources for processing, understanding and visualizing 3D 

shapes in a way that is aware of the semantics of the shape. 

 

 

 

 

 
 

 

 
 

To create a realistic dataset with real 3D objects and natural language 

descriptions, we use the ShapeNet table and chair object categories (with 8,447 

and 6,591 instances, respectively). These 3D shapes were created by human 

designers to accurately represent real objects. 

FıGURE 4.1. The shapenet project home page [76] 



 

FıGURE 4.2. Example form the shapenet tables and chairs dataset [76] 

FıGURE 4.3. paired sahpes and descriptions from our dataset [76] 
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We choose the table and chair categories because they contain many in- 

stances with fine-grained attribute variations in geometry, color and material. 

We augment this shape dataset with 75,344 natural language descriptions (5 de- 

scriptions on average per shape) provided by people on the Amazon Mechanical 

Turk crowdsourcing platform augmented with natural language descriptions, 

and a controlled, procedurally generated dataset of 3D geometric primitives. 

This large-scale dataset provides many challenging natural language descrip- 

tions paired with realistic 3D shapes. 
 

 

To enable systematic quantitative evaluation of our model, we use a dataset 

of 3D geometric primitives with corresponding text descriptions. This data 
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FıGURE 4.4. example from the primitives dataset [76] 

 

was generated by voxelizing 6 types of primitives (cuboids, ellipsoids, cylinders, 

cones, pyramids, and tori) in 14 color variations and 9 size variations. The 

color and size variations are subjected to random perturbations generating 

10 samples from each of 756 possible primitive configurations, thus creating 

7560 voxelized shapes. They, then, created corresponding text descriptions 

with a template-based approach that fills in attribute words for shape, size, and 

color in several orderings to produce sentences such as “a large red cylinder is 

narrow and tall”. In total, we generate 192,602 descriptions, for an average of 

about 255 descriptions per primitive configuration. Such synthetic text does 

not match natural language but it does allow for an easy benchmark with a 

clear mapping to the attributes of each primitive shape. 
 

 

 

 



 

FıGURE 4.5. a screenshot of the input page of our application 

FıGURE 4.6. a screenshot of the successful generation page of our application 
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4.3 OUR INTERFACE 

 

 
we used a web interface for the users to interact and use our deep learning 

models, is a way that our from end is a simple application that has two pages 

one that has the input field where a user can enter its query which is in our 

case a textual description, that text is getting embedded and then fed straight 

into the generator which will generate the shape that was described textually 

by the user’s query and send a tensor an nrrd file, that we drag and drop in the 

F3D interface which will visualize it as a 3d file. Below are screen shots of the 

whole application. 
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FıGURE 4.7. some samples generated with our model 
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FıGURE 4.8. the loss function of the autoencoder 

 

4.4 EXPERIMENTS 

 
 

in this section we will take a look at the different models that we used in our 

work and the configuration we used to get the best out of them (in terms of 

results performance and computational time). 

 
 

4.4.1 Autoencoder: 

 
 

We used the autoencoder to learn the shape embeddings, and it did a great job, 

bellow the hyper parameters we used to train the model. The number of epochs 

: 100 The batch size : 8 The number of worker : 4, what that means is that we 

will be using 4 cores to fetch and use data at a time. We also used the adam 

optimizer which is one of the best and widely used optimizers it computes 

individual adaptive learning rates for different parameters from estimates of 

first and second moments of the gradients and speaking of the learning rate we 

used a learning rate of 1e-3. As for the loss we used the mean squared error loss, 

nothing fancy but gets the job done. Bellow is the chart of how the autoencoder 

learns and improves during the 100 epochs of training. 
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FıGURE 4.9. the loss function of the discriminator 

 

4.4.2 CGAN 

 
 

In the generative adversarial network part, which is the global neural network 

of this work, the generator gets an encoded caption concatenated with a noise 

vector and generates a 3d shape, but we tried two different approaches, in the 

first one the generation outputs a 3d shape that is fed into the discriminator 

(with a latent vector) in the other approach we do not work with shapes but with 

only embeddings which we see is better. they might be different approaches 

but the hyper parameters are the same which they are : 

The number of epochs : 200 

The batch size : 32 

The number of worker : 4 

The learning rate : 0.0002 

The latent vectors are of size 384 , 

And the shape of the shapes’ embeddings is (4,3,3,3). The loss is the same 

Mean Squared Error.and below are the charts of all the models’ losses per 

epoch. 

 

CGAN with shapes: 
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FıGURE 4.10. the loss function of the generator 

FıGURE 4.11. the loss function of the discriminator 

 

 

 
 

 
 
 

CGAN with shapes embeddings: 
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FıGURE 4.12. the loss function of the generator 

 

 

 
 

 
 
 
 
 
 
 
 
 

 

4.4.3 COMPARATIVE study : 

 

 

 

 

 

 

 

 

 
The generator using the original shapes does a better job than the one using 

the embeddings, not by a big margin but still can be helpful, meanwhile the 

discriminator using the shape embeddings outperforms the other one, again by 

a slight margin. And bellow is both their charts grouped together so we can see 

the difference clearly: 
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FıGURE 4.13. comparative study of the generator 

FıGURE 4.14. comparative study of the discriminator 

 

 

 
 

 

 

 

 
 

4.4.4 Discussing the results: 

 

We mentioned before that the generator works better with the original shapes 

and the discriminator with the embeddings which we think is due to the differ- 

ence in size between the shape and its embedding, the shapes are so big in size 
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which means that are more ways for the generator to fool the discriminator 

and the opposite in the case of the discriminator the embeddings are too small 

for the generator to play with them in other words, the classification of a small 

amount of data is easier than a big one. But in practice we need the generator to 

perform better, although it is a balance we need to find between the generator 

and the discriminator it’s the generator that is going to generate the shapes out 

of the captions for us. now in real practice, considering the cost of using the 

shapes which , in our case, took 4+ hours per epoch comparing with the embed- 

ding that only did the job in minutes and the minimum hardware requirements 

to do both, going with a well generated embeddings is a no brainer. 

 
4.5 CONCLUSION: 

 
We divided this last chapter of our work into two parts where we showed you 

what tools we used to get things done in the first part and then evaluated the 

work we did in the second part while discussing the results of the experiments 

we did. 



GENERAL Conclusion 
 

 
 

 

 

In this final step of this milestone project, we will take a look backat what 

we were doing from the beginning.We used shapenet’s tables and chairs 

dataset of 3d chairs and tables withtheir textual descriptions, also the 

primitives which is a similar one but hasonly the base primitive forms (a 

pyramid, a ball   ), and then generated the caption’sembeddings using 

Google’s Bert which is the current state of the art in all theNLP related 

tasks.We also used google colab to design and implement an autoencoder 

thatextracts the shapes embeddings because we thought that using shapes 

embeddingsinstead of the actual shapes would be such an optimistic way 

of handling the timeand performance issues when dealing with data as 

complex as 3d objects giventhat the results aren’t that bad at all.Then we 

created the generator that will be generating for us shapesgiven a textual 

description, we went for a conditional generativeadversarial network 

because we are after a generation task that demands respect a condi- 

tion (the generated shape should be generated in a way that fitsthe text 

describing it) which is only possible with a CGAN, we trained the genera- 

torand the discriminator in both the 3D shapes and their embeddings and 

thendiscussed the results of both.We learned a lot of things participating 

in this huge project startingwith putting our hands on a real dataset to 

building solutions to real-world problemsand finally implementing what 

we learned throughout our university program. Although we did end up 

getting some pleasing results our work is not by any means perfect, in 

fact we could use a transformer to extract the shape embeddings, since 

nothing beats a transformer when it comes to the embeddings and it 

easily beats our autoencoder. Also using a more realistic dataset would 

be help so much in increasing the quality of the generated shapes an 

example of that would be using shapenet’s (128,128,128) shapes dataset 

which will allow us to generate shapes of the same size that look cleaner 

and more feature-rich. We focused on only chairs and tables, but the text 

to shape task has more to it than that, in fact there is no end to the things 

that could b generated out of textual descriptions, and it is a no brainer 

that the future generations will be investing in this new yet rapidly thriv- 

ing technology, imaging being able to get a 3d shape of whatever you 

can describe that would open new horizons to the whole human race, 
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things that we needed years just to design can be put through words the 

most effective way human beings found ,after hundreds of decades of 

research, to communicate, learn and teach, it would just be enourmous. 
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