

Ministry of Higher Education and Scientific Research

University of Saad Dahleb - BLIDA 1

Faculty of Sciences

Department of Informatics

Performance Evaluation of Networks On-chip Topologies

Report submitted for the fulfilment of the Master degree

Domain: MI

Affiliation: Informatics

Specialisation: Computer systems and networks

Ziraoui Zakaria

Academic year: 2020/2021

Jury:

President: Mrs. Aroussi Sanaa

Examiner: Mr. Benyahia Mohamed

Supervisor:

Mr. Ould-Khaoua Mohamed

Acknowledgment

For the first and foremost, I would like to express my deepest gratitude for Almighty God, for

his marvellous and amazing grace, for the countless blessings and love so I had finally

completed this thesis.

I am over helmed in all humbleness and gratefulness to acknowledge my depth to all those

who have helped me to put these ideas, well above the level of simplicity and into something

concrete.

I would like to express my special thanks of gratitude to my supervisor, Prof. Mohamed Ould-

Khaoua, whose sincerity, encouragement and wisdom I will never forget.

Prof. Mohamed Ould-Khaoua has been an inspiration as I hurdled through the path of this

Master degree. He is the true definition of a leader and the ultimate role model. This thesis

would not have been possible without him, whose guidance from the initial step in research

enabled me to develop an understanding of the subject. I am thankful for the extraordinary

experiences he arranged for me and for providing opportunities for me to grow professionally

and personally. It is a great honour to learn from Prof. Mohamed Ould-Khaoua.

I am grateful for my parents whose constant love and support keep me motivated and

confident. My accomplishments and success are because they believed in me, reminding me of

what is important in life, and they are always supportive of my adventures. I am forever

thankful for the unconditional love and support throughout the entire thesis process and every

day.

My sincere thanks also go to the members of the jury for their interest in my project by

agreeing to examine the work and enrich it with their suggestions and recommendations. I am

extremely grateful to all my professors and instructors who taught me during my Licence and

Master degrees and who have made me what I’m today.

Finally, I would like to thank everyone who participated either directly or indirectly in the

achievement of this work.

Abstract

The main objective of this project is to conduct a performance evaluation of some well-known

topologies that have been proposed for Networks-on-Chip (NoC) including the Mesh and

Express Cube along with its variations. This later is based on a simple Mesh interconnection

network augmented by long-hop wires called express channels to enable bypassing of

intermediate hops for non-local communication. Whereas existing studies have focused on

the graph-theoretical merits of such topologies, our present study examines the performance

of networks-on-chip taking into account the constraints imposed by implementation

technology. The most relevant constraint for NoC systems is the wiring density of the chip. To

achieve our goal, we have developed a simulation model using the discrete-event simulation

technique. Extensive simulation experiments have been performed and the collected results

have then been analysed using statistical methods. Our results reveal that while the Express

Cube has superior performance when technological constraints are ignored due to its richer

connectivity, its performance degrades considerably compared to the Mesh when

technological constraints are taken into consideration. Our results also indicate that the 4

Hops variation of the Express Cube is the more suitable for Networks-On-Chip among the

Express Cube variations as it is a better fit for designs with large number of cores.

Keywords: Performance evaluation, Network-On-Chip, Mesh, Express Cube, Simulation,

Discrete-Event Simulation.

Résumé

L'objectif principal de ce projet est d'évaluer la performance de certaines topologies qui ont

été proposées pour les réseaux sur puce, y compris le Mesh et l'Express Cube avec ses

variantes. Cette dernière est basée sur un simple réseau d'interconnexion Mesh augmenté

par des fils à longs sauts appelés canaux express pour permettre le contournement des sauts

intermédiaires pour la communication non locale. Alors que les études existantes se sont

concentrées sur les propriétés théoriques des graphes de telles topologies, notre étude

examine les performances des réseaux sur puce en tenant compte des contraintes imposées

par la technologie de mise en œuvre. La contrainte la plus importante pour les réseaux sur

puce est la densité de câblage de la puce. Pour atteindre notre objectif, nous avons développé

un modèle de simulation utilisant la technique de simulation par événements discrets. Des

expériences de simulation approfondies ont été réalisées puis analysées à l'aide de méthodes

statistiques. Les résultats obtenus révèlent que si l'Express Cube a des performances

supérieures lorsque les contraintes technologiques sont ignorées en raison de sa riche

connectivité, ses performances se dégradent considérablement par rapport au Mesh une fois

les contraintes technologiques sont prises en compte. Nos résultats indiquent également que

la variante à 4 sauts du L’Express Cube est la plus adaptée aux réseaux sur puce parmi les

variantes du L’Express Cube, car elle convient mieux aux conceptions avec un grand nombre

de cœurs.

Mots-clés : évaluation des performances, réseau sur puce, maillage, Express cube, simulation,

simulation d'événements discrets.

 ملخص

 الرقاقةالشبكات على اقتراحها من أجل التي تم ت المعروفة والطبولوجيا أهم الهدف الرئيسي من هذا المشروع هو تقييم أداء بعض

معززة بأسلاك طويلة تسمى Meshعلى في تركيبته بأشكالها المختلفة. يعتمد هذا الأخير Express Cube و Meshبما في ذلك

ايا النظرية . في حين ركزت الدراسات الحالية على المزةغير المحلي ال ت القنوات السريعة لتمكين تجاوز القفزات الوسيطة للاتصالا

 تكنولوجياو دراستنا أداء الشبكات على الرقاقة مع مراعاة القيود التي تفرضها تقنية تفحص، تلطبولوجياا للرسم البياني لمثل هذه

خدام قمنا بتطوير نموذج محاكاة باست هدفنا،. لتحقيق هاالتنفيذ. أكثر القيود ذات الصلة بالشبكات على الرقاقة هي كثافة الأسلاك الخاصة ب

تكشف النتائج التي و تقنية محاكاة الحدث المنفصل. تم إجراء تجارب محاكاة واسعة النطاق ثم تحليلها باستخدام الأساليب الإحصائية.

 ثراءً، يتمتع بأداء فائق عندما يتم تجاهل القيود التكنولوجية بسبب اتصاله الأكثر Express Cube تم الحصول عليها أنه في حين أن

. تشير نتائجنا أيضًا إلى أن بعين الاعتبار قيد الدراسة القيود التكنولوجية لما نأخذ Mesh دائه يتدهور بشكل كبير مقارنةً بـأ إلا أن

لأنه مناسب Express Cube رقاقة من بين متغيراتالهو الأكثر ملاءمة للشبكات على Express Cube في Hops 4 متغير

 .المعالجاتى عدد كبير من بشكل أفضل للتصاميم التي تحتوي عل

 ، المحاكاة ، محاكاة الأحداث المنفصلة. Mesh ،Express Cube، الرقاقةالشبكات على : تقييم الأداء ، الكلمات الرئيسية

Contents

General Introduction .. 12

Chapter 1 : Background on networks-on-chip ... 14

1.1 Network-on-Chip topologies .. 14
1.1.1 Regular and irregular topologies ... 16
1.1.2 The Express Cube Topology ... 18

1.2 Topological parameters ... 19
1.2.1 Diameter.. 19
1.2.2 Degree ... 19
1.2.3 Cuts and Bisections ... 19

1.3 Related research work ... 21
1.3.1 2D Mesh vs. 2D Digraph (2012) ... 21
1.3.2 2D Mesh vs. Express Cube (2014) ... 22
1.3.3 2D Mesh vs. Ruche Network vs. Express Cube (2020) .. 23
1.3.4 2D Mesh vs. Torus (2020) .. 24
1.3.5 Summary ... 25

Chapter 2 : Simulation modelling .. 27

2.1 Justification of the method of study .. 27

2.2 Simulation techniques.. 28
2.2.1 Emulation .. 28
2.2.2 Monte-Carlo Simulation .. 28
2.2.3 Trace-Driven Simulation .. 28
2.2.4 Discrete-Event Simulation ... 29

2.3 System model ... 29
2.3.1 Node model ... 29
2.3.2 Switching and routing ... 31

2.4 Simulation environment .. 32

Chapter 3 : Implementation of the simulation model .. 33

3.1 Data structures .. 33

3.2 Simulation Clock and Time-advancing Mechanism ... 34

3.3 Simulation events .. 35
3.3.1 Main Program .. 35
3.3.2 Initialization ... 36
3.3.3 Arrival .. 38
3.3.4 DecideRoute .. 38
3.3.5 StartTransmit ... 41
3.3.6 EndTransmit .. 42

3.4 Model verification .. 44
3.4.1 Top-Down Modular Design: .. 45

3.5 Model validation .. 45
3.5.1 Run Simplified Cases ... 45
3.5.2 Run Complex Cases ... 47

Chapter 4 : Performance evaluation between 2D Mesh and Express Cube topologies 49

4.1 Assumptions .. 49

4.2 Simulation parameters .. 50
4.2.1 Traffic pattern ... 50
4.2.2 Message arrival rate .. 50
4.2.3 Network size .. 50

4.3 Performance metrics.. 50
4.3.1 Mean response time ... 50
4.3.2 Mean waiting time .. 51
4.3.3 Mean throughput .. 51

4.4 Method to collect the simulation results ... 51
4.4.1 Compute means for each batch .. 52
4.4.2 Compute the overall mean .. 52
4.4.3 Calculate the dispersion of batch means .. 52
4.4.4 Calculate the confidence interval for the mean .. 52

4.5 Results and Discussion ... 54
4.5.1 Mesh vs Express Cube (2 Hops) vs Express Cube (4 Hops) vs Express Cube (8 Hops): Unconstrained

implementation .. 54
4.5.2 Mesh vs Express Cube (2 Hops) vs Express Cube (4 Hops) vs Express Cube (8 Hops): Constrained

implementation .. 63

4.6 Conclusions .. 73

Conclusions and future directions .. 74

References ... 76

List of abbreviations

NoC Network-on-Chip

SoC System-on-Chip

MPSoC Multi-Processor System-on-Chip

DSM Deep submicron

FT Fat-Tree

BFT Butterfly-Fat-Tree

PE Processing Element

R Router

DMNI Direct Memory Network Interface

DMA Direct Memory Access

NI Network Interface

X+ X- Outputs in the X Axis

Y+ Y- Outputs in the Y Axis

E+ E- Outputs via Express Channels

 Injection Rate (Lambda)

H Number of Hops

HBE Number of Hops between the edges

TR Transmission Time

L Message Length

RT Mean Response Time

WT Mean Waiting Time

TH Mean Throughput

OMRT Overall Mean of the Response Time

OMWT Overall Mean of the Waiting Time

OMTH Overall Mean of Throughput

SDRT Standard Deviation of the Response Time

SDWT Standard Deviation of the Waiting Time

SDTH Standard Deviation of Throughput

MERT Margin of Error of the Response Time

MEWT Margin of Error of the Waiting Time

METH Margin of Error of Throughput

IR Injection Rate (L/l)

CI Constrained implementation

UCI Unconstrained implementation

EC2H Express Cube with 2 Hops

EC4H Express Cube with 4 Hops

EC8H Express Cube with 8 Hops

ECMH Express Cube with M Hops

m Number of Batches used

α Significance level

𝐵𝑚𝑒𝑠ℎ Bisection width of the Mesh

𝑊𝑚𝑒𝑠ℎ channel width of the Mesh

𝐵𝐸𝐶𝑀𝐻 Bisection width of the ECMH

𝑊𝐸𝐶𝑀𝐻 channel width of the ECMH

List of figures
Figure 1-1 A generic node architecture for NoCs .. 14

Figure 1-2 Seamless PE [4]... 15

Figure 1-3 DMNI PE Architecture Block [5] ... 15

Figure 1-4 Ring Topology ... 16

Figure 1-5 Octagon Topology .. 16

Figure 1-6 Star Topology ... 17

Figure 1-7 Mesh Topology ... 17

Figure 1-8 Torus Topology ... 17

Figure 1-9 Irregular reduced Mesh topologies .. 18

Figure 1-10 Express Cube Topology .. 18

Figure 1-11 Cut of 4x4 Mesh ... 20

Figure 1-13 Cut of 8x8 Express Cube with 2 Hops ... 20

Figure 1-13 Cut of 8x8 Express Cube with 4 Hops ... 20

Figure 1-14 2D Mesh Baseline vs Express Cube 4 Hops [10] ... 22

Figure 1-15 A Ruche Network augments a 2D Mesh with additional parallel high-bandwidth links

called Ruche Channels [13] ... 23

Figure 1-16 Digraphs Topologies [14].. 21

Figure 2-1 A Node structure in the 2D Mesh .. 30

Figure 2-2 An Express Node structure in the Express Cube .. 30

Figure 2-3 An example of a message route from source to destination using deterministic routing in

the 2D mesh .. 31

Figure 2-4 Snapshot of the version of CodeBlocks used in the development 32

Figure 2-5 Snaphot of the versions of the gdb and gcc used in the development 32

Figure 3-1 Implementation of the EventQueue .. 33

Figure 3-2 Implementation of the MessageQueue ... 34

Figure 3-3 Simulator Project Structure .. 45

Figure 3-4 Snapshot of a Simulation report .. 46

Figure 3-5 Demonstration of the path traversed by Msg [29] .. 46

Figure 3-6 Snapshot of a Simulation report .. 47

Figure 3-7 Demonstration of the path traversed by Msg [19] .. 48

Figure 4-1 Implementation of the repeaters. Routers 1 and 3 are both connected by Router 2 (a), the

underlying mesh network, and the inserted long-range link (b) [22]. .. 49

Figure 4-2 Simulation Result for the 2D Mesh 8x8 nodes ... 55

file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922951
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922952
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922953
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922954
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922955
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922956
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922957
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922958
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922959
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922960
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922966
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922966
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922969
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922970
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922971
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922973
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922975

Figure 4-3 Performance results for the 2D Mesh vs EC2H vs EC4H under unconstrained uniform traffic

for 8x8 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput .. 56

Figure 4-4 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under unconstrained

uniform traffic for 16x16 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput 57

Figure 4-5 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under unconstrained

uniform traffic for 32x32 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput 58

Figure 4-6 Performance results for the 2D Mesh vs EC2H vs EC4H under unconstrained hotspot traffic

for 8x8 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput .. 60

Figure 4-7 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under unconstrained

hotspot traffic for 16x16 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput 61

Figure 4-8 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under unconstrained

hotspot traffic for 32x32 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput 62

Figure 4-9 a Row of the EC2H .. 63

Figure 4-10 a Row of the EC4H .. 64

Figure 4-11 Performance results for the 2D Mesh vs EC2H vs EC4H under constrained uniform traffic

for 8x8 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput .. 66

Figure 4-12 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under constrained

uniform traffic for 16x16 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput 67

Figure 4-13 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under constrained

uniform traffic for 32x32 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput 68

Figure 4-14 Performance results for the 2D Mesh vs EC2H vs EC4H under constrained hotspot traffic

for 8x8 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput .. 70

Figure 4-15 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under constrained

hotspot traffic for 16x16 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput 71

Figure 4-16 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under constrained

hotspot traffic for 32x32 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput 72

file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922984
file:///G:/Drive%20partagés/PFE%20SIRM2%20Simulation/Thesis/Thesis%20Ziraoui%20.docx%23_Toc91922985

List of tables

Table 1-1 Comparison of the topological properties of Mesh, Torus and Express Cube 20

Table 1-2 Summary of the existing works ... 25

Table 2-1 Criteria for selecting an evaluation technique [16] ... 27

Table 4-1 Results for Simulation of the 2D mesh topology with 8x8 nodes ... 55

List of Algorithms

Algorithm 3-1 Main Program ... 35

Algorithm 3-2 Initialisation .. 36

Algorithm 3-3 PlacingExpressLinks .. 37

Algorithm 3-4 Arrival ... 38

Algorithm 3-5 DecideRoute ... 39

Algorithm 3-6 DecideRouteEx ... 41

Algorithm 3-7 StartTransmit .. 41

Algorithm 3-8 EndTransmit ... 44

 12

General Introduction

We currently live in the era of advanced technology where smart solutions and applications

are being deployed widely in different fields every day. This expansion is the result of the

evolutions and the improvements of integrated chips which are now used in virtually all

electronic equipment and have revolutionized the world of electronics, from computers,

servers to smartphones and even Internet of Things (IoT) devices.

Gordon Moore predicted in 1965 the exponential growth of silicon integration and its

consequences on the application of integrated circuits. Following this growth, known as

Moore’s Law, the number of transistors integrated on a single silicon chip has doubled every

18 months, leading to a constant growth in the semi-conductor industry for over 30 years. This

technological evolution implied constant changes in the design of digital circuits with, for

instance, the advent of gate level simulation and logic synthesis. Amongst these changes, the

advent of System on Chip (SoC) represented a major technological shift [1].

A SoC is an integrated circuit composed of many components including: one or several

processors, on-chip memories, hardware accelerators, devices drivers, digital/analog

converters, and analog components. It was initially named SoC because all the features of a

complete “system” were integrated together on the same chip. At that time, a system was

dedicated to a single application: video processing or wireless communication for instance.

Thanks to the increasing role of software, SoCs are no longer specific, in fact many of them

are reused in several different telephony or multimedia devices [1].

The SoC-based system design methodology focuses on the computational aspects of the

problem. However, the number of components in a single chip and their performances

continue to increase. To address complex real-life applications, it is often required to have

multiple processors which can cohesively communicate and provide high parallelism. This, in

turn, has resulted in Chip Multi-Processing (CMP) systems to provide scalable computational

power. Hundreds of processing cores are integrated on the SoC platform to build Multi-

Processor System-on-Chip (MPSoC) in deep submicron (DSM) technology.

In MPSoC systems, the design of communication architecture plays a major role in defining

the area, performance and energy consumption of the overall system. In the many-core

regime, individual processor speed has improved significantly over the technology

generations. As a result, communication architecture has become the roadblock, limiting the

overall system performance. Several research groups from academia and industry have

started to find out suitable communication architectures for next generation many-core based

SoCs. In the process, Network-on-Chip (NoC) has evolved as a standard to design the advanced

Multi-Processor Systems-on-Chip (MPSoCs). It provides better predictability, lower power

consumption, greater scalability and fault-tolerance compared to the previously known

solutions for on-chip communication [2].

The purpose of present project is to revisit the relative performance merit of well-known

topologies proposed for NoCs including the mesh and its variation when implementation

constraints are taken into account. In order to achieve this, a software simulator has been

 13

developed for the most used topologies using the discrete–event simulation technique. The

simulation models are then used to carry out an extensive comparison among such topologies

for both unconstrained implementations as well as constrained implementations.

Organization of the report

The remainder of the report is organized into four chapters:

• Chapter 1: provides a technical background on NoCs and the important factors that affect
 their performance, including topology, switching and routing. It also provides an

overview on the existing related research work which has compared the performance

of various NoC topologies along with a critical summary of these studies

• Chapter 2: explains the simulation model and justifies the selected method of study.

• Chapter 3: presents the system model that has been used for developing the simulator

then provides the techniques used for its verification and validation.

• Chapter 4: uses the simulation model in order to conduct extensive comparison between

the well-known NoC topologies under various operating conditions and discusses the

obtained performance results.

• Conclusion: summarizes the main conclusions drawn from our comparative study and

discusses some possible directions for future research work.

 14

Chapter 1 : Background on networks-on-chip
Some factors determine the performance of the NoC-based system and influence the

effectiveness of the related topology implementation. This chapter provides an overview of

these factors. Our aim is to provide the necessary technical background required for

understanding the subsequent chapters in this project report.

1.1 Network-on-Chip topologies
The network-on-Chip topology defines the interconnection pattern among nodes. The usual

way of modelling network topologies is as a graph G (N, C) where the vertices, denoted by N

represent the set of processing nodes, and the edges C represent the set of links [1]. The links

interconnecting the nodes are defined to be bidirectional. Each node is a programmable

computer with its own processor, local memory, and other supporting devices. These nodes

may have different functional capabilities. For example, the set of nodes may contain vector

processors, graphics processors, and I/O processors.

Figure 1-1 A generic node architecture for NoCs

Figure 1-1 shows the architecture of a generic node. A common component of these nodes is

a router, which handles message communication among nodes. Each router has direct

connections to the router of its neighbours by a bidirectional channel. Although the function

of a router can be performed by the local processor, dedicated routers have been used in

NoCs, allowing overlapped computation and communication within each node [3]. So, a

typical node in the topology is composed of two main elements:

• Processing element (PE): which can be specific-proposed processors, DSPs, memories,

 or I/O blocks.

• Router (R): which is the responsible of establishing communication and exchanging

 messages with the other nodes in the NoC.

Processing Element (PE)

(R)

 15

However, some academic researches proposed new optimized and enhanced designs of the

node on the architecture level as shown in what follows:

The proposed Seamless architecture presented in Figure 1-2 Seamless PE includes the addition

of a hardware Locality Manager to each Processing Element to reduce latency [4].

Figure 1-2 Seamless PE [4]

Another specialized design of the NoC-based MPSoC architecture on the communication

interface level was proposed to optimize packet reception and transmission, called the DMNI

(Direct Memory Network Interface) which merges the functionalities of the DMA and the NI

into a single component as shown in Figure 1-3. (For more details see [5])

Figure 1-3 DMNI PE Architecture Block [5]

 16

1.1.1 Regular and irregular topologies

In regular topologies, the power consumption and network area scalability with an increase in

the size can be predicted. It should be noted that regular network topologies are usually

adapted for the majority NoCs. In this section we will focus on the most popular regular

topologies along with their advantages and drawbacks mentioned in [6, 7, 8], then we will see

the characteristic of irregular ones.

• Ring Topology:

is one of the widely employed NoC topologies. In this

topology, a single wire is used to connect each node.

Consequently, irrespective of the ring size, each of the

nodes has neighbouring nodes as depicted in Figure 1-4

Based on this, in the ring topology, the degree of each node

is two. This implies a corresponding available bandwidth to

every node. Although deployment and troubleshooting are

comparatively easier, the main drawback of the ring

topology is that its diameter increases with an increase in

the number of nodes. So, besides the fact that network

expansion degrades the performance (scalability issue), ring topology is also prone to a

single point of failure (poor path diversity).

• Octagon Topology:

Another prevalent NoC topology is the octagon. A

typical octagon topology comprises eight (8) nodes

and twelve (12) bidirectional links. Also, just like the

ring topology, each node is connected to the preceding

and succeeding nodes. So, between a node pair, there

are two-hop communications. Also, to route a packet

between the network, a simple shortest-path routing

can be employed. Besides, compared with a shared

bus topology, higher aggregate throughput can be

achieved. Furthermore, the architecture can be

connected to support bigger designs, resulting in better scalability.

Figure 1-4 Ring Topology

 Figure 1-5 Octagon Topology

 17

• Star Topology:

The star topology in which the entire nodes are

connected to a central node is shown in Figure 1-6.

Assume an N nodes with N−1 connected nodes to the

central node. In this architecture, the central node has

an N−1 degree while others have a degree of 1.

Therefore, regardless of its size, the star topology

diameter is 2. In this regard, its main benefit is the

offered simplicity and the presented minimum hop

count of two due to the associated small diameter.

Although the nodes are separated and free of the

potential impact from the failed nodes, the central node

failure can result in the entire network failure. Furthermore, as the diameter of the

central node increases with the number of nodes, a communication bottleneck can take

place in the central node.

• Mesh Topology:

The mesh architecture is the widely employed

interconnection topology. A typical 4×4 mesh topology with

16 nodes is illustrated in Figure 1-7. Besides the router at the

edges, each router in the mesh topology is connected to one

computation resource and four neighbouring routers

through communication channels. With mesh topology, a

huge number of nodes can be incorporated in a regular-

shape structure. So, this topology offers an attractive

solution for path diversity and scalability. Likewise, this

topology can tolerate link failure due to multiple paths that

connect a pair of nodes. Nevertheless, one of the main challenges of this topology is that

its diameter increases significantly with the number of nodes.

• Torus Topology:

A typical torus topology is depicted in Figure 1-8. The

architecture is very similar to a mesh topology.

However, mesh topology offers a wide diameter.

Consequently, the challenge of diameter increase of

mesh topology with the network size is addressed by

the torus topology. This is achieved through the

addition of direct connections between the end nodes

that are in the same column or row. For instance, in the

torus topology, wrap-around channels are employed

for the connection of the edge routers to those at the

opposite edge, resulting in a better bisection bandwidth

and reduced average number of hops. However, considerable latency is incurred by the

torus topology due to the employed lengthy wrap-around connections.

 Figure 1-7 Mesh Topology

Figure 1-8 Torus Topology

 Figure 1-6 Star Topology

 18

On the other hand, Irregular topologies are based on the integration of various forms, usually

regular structures, in different fashions. In this regard, a hybrid, hierarchical, or asymmetric

approach can be adopted. Moreover, irregular topologies aim at increasing the available

bandwidth compared with the traditional shared busses. Besides, compared with the regular

topologies, it helps in reducing the distance among nodes. Also, irregular topologies typically

scale nonlinearly with area and power. They are usually based on the concept of clustering

and adapted for specific applications. Figure 1-9 illustrates some irregular topologies such as

reduced (optimized) mesh (Figure 1-9 (i) and (ii)).

1.1.2 The Express Cube Topology

An Express Cube network is a Mesh augmented with a

number of long (express) channels [9] This would allow

non-local messages to traverse these express links and

avoid getting delayed at intermediate nodes, and also

not add to contention at the ports there. Thus,

messages would have dedicated wires for traversing

most of the distance, which would reduce latency

tremendously and remove the power that these

messages would consume at the intermediate nodes.

The trade-off however is that each router would now

have multiple ports, which in turn requires a bigger

crossbar. Thus, the area of the router goes up along

with the power consumption at the crossbar. Moreover, the available metal area adds a

limitation on the number of these express cubes that can be added. A 4x4 express cube

topology with 2-hop express links is shown in Figure 1-10 [10]. Express links in the x and y

dimensions start at every alternate router. This topology design was chosen to allow many

symmetrical express links, without increasing router ports significantly, since the power

consumed by the crossbar increases remarkably with the increase in number of ports. This

topology has 7 ports per router, as compared to the 5-port routers in the baseline 2D Mesh.

 (i) (ii)

Figure 1-9 Irregular reduced Mesh topologies

Figure 1-10 Express Cube Topology

 19

1.2 Topological parameters

In this section, we provide a sight about various factors such as diameter, degree, bisection

width and link complexity which are some of the important parameters that characterize and

distinguish one topology from the others.

1.2.1 Diameter

The diameter of the network is the maximum distance between any two nodes in the

topology, where distance is the number of links in the shortest route [11]. For example, in

Figure 1-4 the Ring topology has a diameter of four, in Figure 1-7 the Mesh has a diameter of

six, in Figure 1-8 the torus has a diameter of three and for the Express Cube in Figure 1-10,

the diameter is equal to four. The diameter serves as a proxy for the maximum latency in the

topology, in the absence of contention.

1.2.2 Degree

The degree of a topology refers to the number of links at each node. For instance, in Figure

1-4, a ring topology has a degree of two since there are two links at each node, while in Figure

1-8 a Torus has a degree of four as each node has four links connecting it to four neighbouring

nodes. Note that in Figure 1-7 of the mesh network, not all nodes have a uniform degree. The

same thing for the Express Cube In Figure 1-10.

Degree is useful as a proxy for the network’s cost, as a higher degree requires more ports at

routers, which increases implementation complexity and adds area/energy overhead at each

router [11]. That’s the reason why in our case of study, we decide that a node in the Express

Cube topology can have a maximum of two express links placed either in the X dimension or

in the Y dimension but not both. As a result, the maximum node degree for an Express Cube

network is equal to six (four for the base links + two express links).

1.2.3 Cuts and Bisections

A cut of a network, C(N1, N2), is a set of channels that partitions the set of all nodes N* into

two disjoint sets, N1 and N2. Each element of C(N1, N2) is a channel with a source in N1 and

destination in N2, or vice versa. The number of channels in the cut is |C(N1, N2)| and the total

bandwidth of the cut is :

𝐵(𝑁1, 𝑁2) = ∑ 𝑏𝑐

𝑐∈𝐶(𝑁1,𝑁2)

A bisection of a network is a cut that partitions the entire network nearly in half, such that
|N2| ≤ |N1| ≤ |N2| + 1, and also partitions the terminal nodes nearly in half, such that
|N2 ∩ N| ≤ |N1 ∩ N| ≤ |N2 ∩ N| + 1. The channel bisection of a network, BC, is the minimum
channel count over all bisections of the network.

𝐵𝐶 = |𝐶(𝑁1, 𝑁2)|𝑏𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠
min

 20

The bisection bandwidth of a network, BB is the minimum bandwidth over all bisections of
the network

𝐵𝐵 = 𝐵(𝑁1, 𝑁2)𝑏𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠
min

We use the bisection bandwidth of a network as an estimate of the

amount of global wiring required to implement it [12]. For instance,

the Figure 1-11 presents a cut of 4x4 Mesh while the Figure 1-13

and Figure 1-13 present cuts of 8x8 Express Cube with 4 Hops and 2

Hops respectively. We will use these cuts later in chapter 4 to

analyse the bisection width of the topologies before performing a

simulation under constrained implementation.

Table 1-1 depicts a comparison of Mesh, Torus and Express Cube based on several graph-

theoretic properties with 𝑁 = 𝑘𝑛 nodes where k is the number of nodes per dimensions and n

is the number of dimensions.

Network Degree Diameter Average distance Bisection Width

n-Dimensional
Mesh

<=2n n(k-1)
𝑛

3
(𝑘 −

1

𝑘
) 2√N𝑘

𝑛
2

−1

n-Dimensional
Torus

<=2n 𝑛
𝑘 − 1

2
 𝑛(

𝑘 − 1

4
)

4𝑁

𝑘

n-Dimensional
Express cube M

Hops
<=2(n+1)

n (Div (k-1, M)
+Mod (k-1, M)) <

𝑛

3
(𝑘 −

1

𝑘
) 2√N(

𝑀

2
+ 1)𝑘

𝑛
2

−1

Table 1-1 Comparison of the topological properties of Mesh, Torus and Express Cube

 Figure 1-11 Cut of 4x4 Mesh

Figure 1-13 Cut of 8x8 Express Cube with 2 Hops Figure 1-13 Cut of 8x8 Express Cube with 4 Hops

 21

1.3 Related research work

This section surveys a number of existing comparative studies that have been carried out on

various NoCs topologies especially the express ones, either using analytical modelling or

simulation. Our aim is to provide an updated review of the research carried out in this area.

1.3.1 2D Mesh vs. 2D Digraph (2012)
The 2D Directed graphs known as Digraphs are a promising alternative for the 2D Mesh

topologies [14], this proposal has led the researchers to perform an evaluation of the three

well-known digraphs, namely de Bruijn, shuffle-exchange, and Kautz shown in Figure 1-14

against the most known 2D Mesh topology using an interconnection network simulator that

is developed based on the POPNET simulator.

Figure 1-14 Digraphs Topologies [14]

The shuffle-exchange network is a popular interconnection topology for multiprocessors and

multicomputers due to its scalability and distributed self-routing capability, two nodes are

directly connected (via exchange bidirectional link which is equivalent to two unidirectional

links) to each other if their addresses differ in their least significant bits.

A node is connected to another node (by shuffle unidirectional link) whose address is a one-

bit cyclic shift of its address. Movement of data between the adjacent nodes via shuffle and

exchange links is respectively called shuffle and exchange operations. Messages generated at

source nodes can be communicated between network nodes using shuffle and exchange

operations until reaching their destination nodes.

The de Bruijn network and the generalized Kautz digraph are another well-known digraph

topology for multiprocessors, they are nearly match the shuffle-exchange network.

The performance and power consumption of the proposed topologies are evaluated and

compared to those of the equivalent Meshes. The simulation results were obtained for 8 × 8

and 16 × 16 Mesh NoCs, and 8×8 and 16×16 2-D SEM and 2-D BM NoCs.

To simulate the proposed NoC topologies, an interconnection network was developed and

designed based on POPNET Simulator. It was modified to mimic the exact operation of the 2D

(a)

(b)

(c)

 22

mesh and the 2D digraph-based Mesh NoCs. The simulator was also customized to support

the corresponding routing algorithms for the considered networks.

The results obtained exhibit that under uniform traffic, the 2D BM network has the smallest

average message latency for both message sizes, because the averages inter-node distance is

logarithmic and lower than that of other equivalent networks.

The researchers had noted also that increasing the network size causes earlier saturation in a

simple 2-D mesh NoC, the 2-D BM and 2-D SEM networks attain a reduction in message latency

with respect to the 2-D mesh network for the full range of network loads.

As conclusion the 2-D digraph-based NoCs have superior performance over the 2-D mesh NoC,

since the average hop counts traversed by messages in a 2-D digraph-based network is smaller

than that in the equivalent 2-D mesh.

The node degrees of the 2-D digraph-based networks and 2-D mesh networks are the same.

However, unlike the 2-D mesh topology, the 2-D digraph-based networks have some links that

connect non-adjacent nodes and therefore, they may be longer than links in their 2-D mesh

counterparts. This can lead to an increase in the network area and also cause difficulties in

link placement. The latter can be solved by a number of efficient VLSI layouts proposed for

digraphs.

1.3.2 2D Mesh vs. Express Cube (2014)
In this work [10], a comparison study has been carried out between the physical and virtual

Express topologies for NoCs, the physical express topologies are the ones that employ long

physical links between non-local routers to reduce the effective network diameter in the 2D

Mesh baseline, using GARNET software simulation.

The study evaluated a baseline network (2D Mesh) against the express cube topology, the size

of networks was chosen to be 16x16 nodes and the express links in the Express cube were 4

hops long like shown in Figure 1-15 2D Mesh Baseline vs Express Cube 4 Hops.

Figure 1-15 2D Mesh Baseline vs Express Cube 4 Hops [10]

 23

The metrics examined in this evaluation were latency, throughput, area and power

consumption. The evaluation was performed using Dimension ordered X-Y routing whilst the

synthetic traffic was modelled using Uniform Random, Bit Complement and Tornado

distributions.

The performance results reported in this study indicate that the Express Cube network have

lower latency at low injection rates comparing to the 2D Mesh Baseline. This is because the

express network utilizes express long-hop links to “completely” bypass intermediate routers

and links and thus have a lower average network latency at low injection rates. While for the

throughput, the results indicate also that the express network has a higher saturation

throughput than the 2D Mesh Baseline. This is because the bypassing of intermediate routers

in the express network leads to lower contention and hence pushes the saturation

throughput. The conclusion was that the physical express topologies are desirable for systems

that want lowest network latency for low injection rates.

1.3.3 2D Mesh vs. Ruche Network vs. Express Cube (2020)
Ruche Networks have been proposed by Bespoke Silicon Group from University of Washington

in 2020 at the 14th IEEE/ACM International Symposium on Networks-on-Chip (NOCS)

conference [13], Ruche Networks are based on simple 2-D mesh networks but amplify the NoC

bandwidth and reduce NoC diameter of tiled architectures by adding long-range physical

channels from each tile to other tiles on the same row or column like shown in Figure 1-16.

Figure 1-16 A Ruche Network augments a 2D Mesh with additional parallel high-bandwidth
links called Ruche Channels [13]

 24

A Half Ruche Network only has Ruche Channels along one dimension (i.e., either X or Y) and a

Full Ruche Network has them in both dimensions.

To reduce the router area impact even more, the Depopulated Crossbar Ruche Network,

employs a modified router design that eliminates the ability to turn out of a Ruche Channel;

e.g., packets must hop off of the Ruche Channel on to the local network before changing

dimensions (i.e. to Y or P port). Then the N, S and P crossbars are depopulated to prevent the

area overhead of adding the two Ruche ports. Intriguingly, depopulated variants can have

superior band width characteristics to fully populated ones, because its better load balances

traffic.

The term Ruche Factor describes how far the Ruche Channels span. So, for example, a Ruche

Network with Ruche Factor zero is just a 2D Mesh with single links to nearest neighbours; with

Ruche Factor one has dual links to nearest neighbours; and with Ruche Factor two has one

link to neighbours and another link to the neighbours’ neighbour. the Ruche factor is referred

in the Express Cube Network as the number of hops H.

A performance evaluation to the Ruche Networks has been carried out using a cycle accurate

model to calculate the performance characteristics. The results reveal that a Fully Populated

Crossbar Ruche Network has the best unloaded latencies, followed by the area-optimized

Ruche Network with depopulated crossbar and finally the Express Cube network.

The analysis shows also that the optimal Ruche Factor is also quite small for all networks across

all machine size. For a machine size of 16, the depopulated Ruche Network and the Express

Cube are both latency optimized with a Ruche Factor of 3 while the fully populated Ruche

Network is optimal with a Ruche Factor of 4, outperforming a Ruche Factor of 3 by only 2

cycles. As the machine size increases, so does the optimal Ruche Factor; however, even for a

machine of size 128 the depopulated Ruche Network, fully populated Ruche Network and

Express Cube are optimal at Ruche Factors of 9, 10, and 7 respectively.

1.3.4 2D Mesh vs. Torus (2020)
The popularity and the simplicity of the 2D Mesh and 2D Torus has made them a common

choice for comparisons. In this final year project [15], a comparison study has been carried out

between the 2D Mesh and 2D Torus topologies for NoCs by taking into account the constraints

imposed by implementation technology using a developed simulation software.

The metrics used to determine the overall performance of the 2D mesh and 2D torus are only

the mean throughput and the mean response time. The study used as parameters the

message arrival rate, network size and two traffic patterns (Uniform and Hotpot), the routing

algorithm used is the deterministic routing -XY- and the implemented switching technique is

Packet-Switching.

The simulation results have indicated that the bidirectional torus exhibits the best

performance over the mesh and unidirectional torus (for both the 2D and 3D versions) under

uniform as well as hotspot traffic patterns. This can be justified by the fact that the

bidirectional torus has a lower average distance in comparison to the unidirectional torus and

 25

mesh, and having a topology that is symmetric allowing it to distribute the network traffic

evenly across its links.

When implementation constraints on channel bandwidth are taken into consideration the

mesh and unidirectional torus end up with higher channel bandwidth than the bidirectional

torus. The results have revealed also that the mesh (for both the 2D and 3D versions) can take

advantage of its wider channel bandwidth to mitigate the negative effects of its asymmetrical

topology and higher average distance in comparison to the bidirectional torus. The

unidirectional torus, however, does not manage to exploit its higher channel bandwidth to

compensate for its higher average distance. In other words, the mesh exhibits lower response

times and higher throughput when subjected to uniform and hotspot traffic patterns.

1.3.5 Summary

Table 1-2 provides a summary of the existing works mentioned in the previous sections.

Authors Topologies Metrics Parameters Findings

R. Sabbaghi

et al. (2012)

2D Mesh

vs. 2D

Digraph

Latency &

Power

consumption

Modified

Version of XY-

dimension

routing

the 2-D digraph-based NoCs have

superior performance over the 2-D

mesh NoC

C. O. Chen

et al. (2014)

2D Mesh vs

Express

Cube

Latency,

throughput

& Power

consumption

Dimension

ordered X-Y

routing

the Express Cube network have lower

latency at low injection rates

comparing to the 2D Mesh Baseline

D. C. Jung et

al. (2020)

2D Mesh vs

Ruche

Network vs

Express

Cube

Latency

XY-dimension

routing & wire

length

the depopulated Ruche Network and

the Express Cube are both latency

optimized

A. Ould-

Khaoua and

H. Terranti

(2020)

2D Mesh vs

Torus

Mean
response

time &
throughput

packet
switching &

Deterministic
routing

Torus has superior performance due
to lower diameter and average

distance. However, Mesh is better
when constraints are taken into

consideration

Table 1-2 Summary of the existing works

 26

In this section we have reviewed some research studies that have compared the performance

of some well-known topologies for NoCs. These comparisons include Mesh versus Express

Cube, Mesh versus Ruche Network, Mesh versus Digraph and Mesh versus Torus. However,

some of these comparisons have based on the topological properties but have not taken into

account the constraints imposed by implementation technology such as the wiring density.

This constraint can severely limit the bandwidth of channels in a given topology which may

greatly impact network performance including message delay and throughput.

In addition, some of these comparisons was performed using open-source simulations

software, these simulators implement wide variety of functions and modules which made the

simulation software somehow difficult to understand and hard to modify it in order to match

our needs and our case of study. For that reason, we decide to design and develop a new

simulation software from the scratch that fits well to our research study.

The aim of our study is to convincingly show that implementation constraints have to be taken

into account when comparing the relative merit of NoC topologies as they may greatly impact

the outcome of any comparative study.

 27

Chapter 2 : Simulation modelling

In this chapter we start off with a justification as to why simulation has been adopted in our

study, followed by a presentation of various simulation techniques. We then discuss the

discrete event simulation technique. After that we present the system model that we used in

our simulation. Finally, we present the simulation environment used during the development

and the execution of the simulation model.

2.1 Justification of the method of study

In order to perform the performance comparison between the competing topologies, firstly

we have to select one over of the three main performance evaluation techniques mentioned

in [16], which are analytical modelling, simulation and measurement.

The selection choice was made by taking into account some considerations and by analysing

important factors like the time required of the study, the cost of the resources needed in the

study and the accuracy of the result. In Table 2-1 we show the defined criteria for selecting an

evaluation technique [16].

Criterion Analytical Modeling Simulation Measurement

Stage Any Any Postprototype

Time required Small Medium Varies

Tools Analysts Computer Languages Instrumentation

Accuracy Low Moderate Varies

Trade-off-evaluation Easy Moderate Difficult

Cost Small Medium High

Saleability Low Medium High

Table 2-1 Criteria for selecting an evaluation technique [16]

The Simulation was chosen over the analytical approach because the analytical models often

resort to simplifying assumptions and ignore many system details which results in reduced

prediction accuracy. Moreover, the studies that analysed the static properties of NoC

topologies using for instance graph theory. However, such studies do not consider time

dependent behaviour of the system which may not be captured by the static analysis.

Furthermore, it is a complex undertaking to capture analytically the dependencies between

system parameters when determining system performance. A real-life implementation of the

system is not an option in our case due to lack of funding and computing resources.

 28

2.2 Simulation techniques

Among the variety of simulations that are described in the literature, those that would be of

interest to computer scientists are Emulation, Monte Carlo Simulation, Trace-Driven

Simulation, and Discrete-Event Simulation [16].

2.2.1 Emulation

This simulation technique consists of using hardware or firmware in order to simulates one

kind of terminal on another for example. A processor emulator emulates an instruction set of

one processor on another. Even though emulation is a type of simulation, the design issues

for emulation are mostly hardware design issues. As a result, emulation is not an option for

our research study.

2.2.2 Monte-Carlo Simulation

Monte-Carlo simulation is a method of simulating statistical systems. The method uses

randomness in a defined system to evolve and approximate quantities without the need to

solve the system analytically.

The model predicts by using a range of values in the domain of the problem rather than a

specific input. This method leverages distributions of probability (normal, gaussian, uniform,

etc.) for any variable which has uncertainty. Based on the number of trials specified, this

process of using random values in a domain is repeated numerous times. Generally, the

greater number of trials, the higher likelihood the outcome will converge to a value.

Commonly used in time series analysis for long term predictive modelling. Once all the

simulations are complete, you will have a range of possible outcomes with the associated

probability of each result occurring.

In Addition, Monte-Carlo Simulation is static simulation that is used to model probabilistic

phenomenon that do not change characteristics over time However, this technique is not

suitable for our research study as it cannot model the system behaviour over time.

2.2.3 Trace-Driven Simulation

Trace-Driven simulation consists of two steps. Using a functional simulator or real systems,

the program action log is collected and written to a file. This log is called a trace. Depending

on what is being collected, and in our case of study the trace may include times of the arriving

packets, the states of the buffers and the queues.

The next step is the so-called trace playback, when the simulator reads the trace and executes

all the operations and scenarios from there one by one. As a result, it is possible to calculate

the response time and get other interesting information like, for example, the throughput and

the utilization of channels.

It is worth mentioning that trace execution is deterministic, i.e., the same sequence of actions

can be reproduced as many times as needed. By changing the parameters of the model (the

size of the nodes, buffers, and queues) and using various internal algorithms or fine-tuning

 29

them, one can investigate how a particular parameter affects the overall system performance

and which parameter set gives the best results. All of this can be done with a virtual model

prototype of the device before creating a hardware prototype.

This approach is rather difficult because it requires application pre-running to collect the trace,

and the trace file contains very long sequences which consume a lot of storing and processing

capacities. In addition, the ability of changing the trace characteristics to produce and simulate

other scenarios is not possible as a result this simulation technique is not the best choice for

our case of study.

2.2.4 Discrete-Event Simulation

Modelling complex systems has become a way of life in many fields, most especially in the

engineering, health, management, mathematical, military, social, telecommunications, and

transportation sciences. It provides a relatively low-cost way of gathering information for

decision making. Since the size and complexity of real systems in these areas rarely allow for

analytical solutions to provide the information, discrete-event simulation executed on a

computer has become the method of choice [17].

This technique compresses time so that years of activity can be simulated in minutes or, in

some cases, seconds. This ability enables an investigator to run through several competing

operational designs in a very small fraction of the time required to try each on the real system.

In addition, the purpose of discrete event simulation is to analyse the behaviour of the system

in which state changes over time and can be represented by a collection of discrete events.

Every discrete-event system has a collection of state variables that change values as time

elapses. A change in a state variable is called an event, and this concept is the basic building

block of every discrete-event simulation model.

This simulation technique is the most suitable technique for our research study for its

flexibility and simplicity in designing and building the simulation model.

2.3 System model

For the purpose of our study, the NoCs are modelled as a set of nodes connected with links.

Each node is given a designated address which consists of n components, with n being the

number of dimensions in the topology. In each dimension, there are k nodes, and therefore

the network size is S=kn. For example, in the case of a 2D topology the address for any given

node is designated as [x][y] with 0≤x,y<k .

2.3.1 Node model

In the 2D mesh, each node contains a processing element (PE), and a routing element. The

node consists of five input buffer queues and five output links connected by a crossbar switch.

The role of the crossbar switch is to connect every input to every possible output. There is a

dedicated buffer queue for messages that arrive from the PE, and two dedicated buffers per

dimension, so in this case two buffers for the x dimension and two for the y dimension (one

 30

per direction). The outputs depict the direction in which the messages can travel, the

messages can travel either forward, or in reverse in any given direction. When a message

arrives at its destination, transmission to the local PE for consumption is also considered as an

output. The basic structure of a node can be seen in Figure 2-1.

Figure 2-1 A Node structure in the 2D Mesh

In the Express Cube NoC, the express nodes have the same node structure as in the 2D Mesh

except that there are two additional input buffer queues (E- and E+) and two additional

express output channels, they are highlighted in red in Figure 2-2.

Figure 2-2 An Express Node structure in the Express Cube

 31

2.3.2 Switching and routing

The nodes use packet switching with input buffer queues of large capacity. This is realistic due

to Moore's Law, where limited memory is no longer a significant issue. In this technique

messages are fully buffered at each hop. Upon arrival at a node, the message header is read

and a routing decision is made to which output buffer the message is retransmitted through.

The nodes use deterministic routing to send messages to one another. Deterministic routing

in the 2D mesh works as follows: a message only moves along the x-axis until it reaches a node

with the same x value as the destination node. It then starts moving along the y-axis until it

finally arrives at a node with the same y value as that of the destination node.

For example, Figure 2-3 illustrates how a message at source [0][0] destined to the node [2][2]

would first keep going along the x-axis until it reaches [2][0]. It then goes along the y-axis until

it reaches the destination node [2][2].

The main advantage of using deterministic routing is its ease of implementation compared to

adaptive routing, and more importantly it avoids the issue of deadlock during message

routing.

0

1

2

3

0 1 2 3

 Figure 2-3 An example of a message route from source to
destination using deterministic routing in the 2D mesh

 32

2.4 Simulation environment

The simulation model is developed then executed using the low-level programming language

C in the Codeblocks Integrated Development Environment Installed on a computer running

Windows 10 and have 12 GO of RAM. The compiler used is gcc and the debugger used to

identify and fix bugs is gdb. The Figure 2-4 and Figure 2-5 respectively present the versions

of the Codeblocks, the debugger and the complier used in the development.

Figure 2-4 Snapshot of the version of CodeBlocks used in the development

Figure 2-5 Snaphot of the versions of the gdb and gcc used in the development

 33

Chapter 3 : Implementation of the simulation model

In this chapter we discuss some of the important aspects in the implementation of the

simulation model that is designed to mimic the exact operations of the 2D mesh and the

Express Cube NoCs.

All discrete-event simulations have a common structure. Regardless of the system being

modelled, the simulation will have some of the components described in [16].

Our simulator is enhanced by a tracking module that allows us to track the lifecycles of

messages across the network during the simulation. Also, it generates a summary for the

obtained results in a pre-formatted format to facility the statistical data collection and the

analysis of the simulation results.

In this section we present the pseudo code for the main program of the simulator along with

a description of the events involved in the simulation. The events and the pseudo code

described below applies to the Express Cube with different hops, however the 2D Mesh

topology share similar characteristics except with differences in some events. We will present

also in the end of the section the techniques used in the verification and the validation of the

simulation model.

The nodes are each given a distinct address [x][y] where x<N and y<M. N and M being the

number of nodes on the x and y dimensions respectively. Our description is kept at an abstract

level as much as possible for the sake of clarity for the reader, much coding details such as the

linked lists, reports generation, dynamic memory management and the models of queues

have not been included due to space limitations.

3.1 Data structures

The different data structures implemented in the simulation model are:

• Event: stores information related to a single event in the simulation. It contains a

field for the type of the event, its time, the location (i.se. the node where the event

will occur), the input and the output.

• EventQueue: Is an ordered linked list queue that stores events that occur during the

simulation. The events in this queue are sorted in order of time, the first entry in the

list is the next earliest event. Thus, removal is straightforward. To insert a new event,

the list is searched to find the right place for the new entry.

Event 1 Event 2 Event 3

 Head Count Rear

NULL

EventQueue

Figure 3-1 Implementation of the EventQueue

 34

• Message: stores information related to a single message. It contains a field for the

ID of the message, a field for its time of arrival, a field for its destination and two fields

to track its response time and its waiting time.

• MessageQueue: is also a linked list queue that stores messages. This queue

operates on a FIFO (First In, First Out) principle and does not sort the messages. The

insert operation adds a new node after rear and moves rear to the next node.

However, the removal operation removes the head node and moves head to the next

node.

• Node: represents a single node in the 2D mesh. A node contains 2 MessageQueues

per dimension of the topology and an additional queue for the PE, thus totalling 5

queues in the case of the 2D mesh as showed previously in Figure 2-1.

• NodeEx: represents a single node in the Express Cube topology. An express node

contains the same MessageQueues as in the 2D Mesh node and 2 additional queues

for the express channels, thus totalling 7 queues in the case of the Express Cube. It

contains also 4 Express Boolean variables that indicate the existence and the direction

of the express links in the node as showed previously in Figure 2-2.

The entire topology is represented as matrix of size NxM nodes in the case of 2D Mesh and of

size NxM express nodes in the case of the Express Cube.

Both types of nodes implement arrays associated to the outputs to handle requests in the case

when the requested output channels are not IDLEs. They also implement state variables that

reflect the states of the output links.

3.2 Simulation Clock and Time-advancing Mechanism

We use a global variable Tnow that represent the simulated time, the approach implemented

for the advancing of this time is known as the event-driven approach which consist of

incrementing the time directly to the time of the next earliest occurring event.

 Message Message Message

 Head Count Rear

NULL

MessageQueue

Figure 3-2 Implementation of the MessageQueue

 35

3.3 Simulation events

We have four types of events in the simulator:

• Arrival: Primary event to generate the traffic load on the network.

• DecideRoute: Conditional event that is used to route messages to their destination.

• StartTransmit: Conditional event that occurs at the start of the transmission of a

message over a given output link.

• EndTransmit: Conditional event that occurs at the end of the transmission of a message

The event DecideRoute should have the EndDecideRoute event but we assumed in our study

that the decision time is equal to ZERO and so there is no time between the DecideRoute and

EndDecideRoute in the simulation model.

Each event of the four events mentioned above is associated with a procedure that describes

how the event changes the state variables and advances time, possibly generating other

events. In addition to these procedures, there is a procedure for initialisation that is called

once at the start of the program for initialisation of the system variables (including the status

of the output links, the buffers, the queues etc.). There is also a procedure for collection of

statistics such as the mean response time, the mean waiting time and the throughput. In what

follows we will describe the procedures mentioned in more detail.

3.3.1 Main Program

Main () {

 for (different injection rates ) {

Initialization ();

while (number of transferred messages < max) {

Event = Get event from the event queue;

Tnow = time of Event;

switch (type of Event) {

case Arrival: Arrival (x, y);

case DecideRoute: DecideRoute (x, y, input);

case StartTransmit: StartTransmit (x, y, input, output);

case EndTransmit: EndTransmit (x, y, input, output);

}

}

ReportStatistics ();

 }

}

Algorithm 3-1 Main Program

 36

In the main program, a call is made to the initialisation procedure to initialize the state

variables. After that the program fetches events from the event queue, updates the global

simulation time Tnow and then calls the procedure associated with the event. This is repeated

until a certain number of messages have reached their destination.

3.3.2 Initialization
Procedure Initialization () {

Tnow = 0;

Initialize EventQueue;

Initialize StatisticVars;

for (i=0; i<N; i++) {

 for (j=0; j<M; j++) {

Initialize PE queue;

Initialize X queues;

Initialize Y queues;

Initialize E queues;

Set output States to IDLE;

Set requests for PE output to IDLE;

Set requests for X+ output to IDLE;

Set requests for X- output to IDLE;

Set requests for Y+ output to IDLE;

Set requests for Y- output to IDLE;

Set requests for E+ output to IDLE;

Set requests for E- output to IDLE;

 }

 }

PlacingExpressLinks ();

For Each Node in the Topology Schedule Arrival at t=Tnow

}

Algorithm 3-2 Initialization

The Initialization procedure set the initial state of the system state variables and schedule

the first primary events of the simulation. The system variables are initialized as follows:

- Tnow is the global clock which is set to 0 (i.e. the start of the simulation time).

- The EventQueue initialization includes allocation of memory, setting Head and Rear

to NULL and Count to 0.

- The StatisticVars initialization includes setting the mean response time, the mean

waiting time, the throughput and the number of transferred messages to 0.

- The InputQueues initialization includes allocation of memory, setting Head and Rear

to NULL and Count to 0.

 37

In the case of the Express Cube, we have the procedure PlacingExpressLinks () that is called

to set the express links in the topology and updates the Express Boolean variables in the nodes

in function of number of Hops H that the express links has to jump and number of Hops

between the edges HBE, these express variables help the router later to make routing

decisions by indicating if the current node has an express link in a specific direction or not.

Procedure PlacingExpressLinks () {

 for (j=0; j<M; j++) { ------------------- // Placing Express Links in Lines

 for (i=0; i<N; i++) {

if (i is even & j is even & j+H <= HBE) {

 Node at [i][j].HasExpressX+ = true;

Node at [i][j+H]. HasExpressX- =true;

}

if (i is odd & j is odd & j+H <= HBE) {

 Node at [i][j].HasExpressX+ = true;

Node at [i][j+H]. HasExpressX- =true;

}

 }

 }

 for (i=0; i<N; i++) { ------------------- // Placing Express Links in Columns

 for (j=0; j<M; j++) {

if (i is odd & j is even & i+H <= HBE) {

 Node at [i][j].HasExpressY+ = true;

Node at [i+H][j]. HasExpressY- =true;

}

if (i is even & j is odd & i+H <= HBE) {

 Node at [i][j].HasExpressY+ = true;

Node at [i+H][j]. HasExpressY- =true;

}

 }

 }

}

Algorithm 3-3 PlacingExpressLinks

 38

3.3.3 Arrival

Procedure Arrival (x, y) {

Create new message;

Select random destination for message;

Place message in PE queue;

if (message at the head of the queue) {

 Schedule DecideRoute at t=Tnow

}

Schedule Arrival at t = Tnow - (lambda*log(1-r));

}

Algorithm 3-4 Arrival

The Arrival procedure simulates the generation of new message in the node located at [x][y].

Creating a new message is done by an allocation of memory then an initialization of the

variables of the generated message as fellow: time of response and time of waiting to 0, and

time of arrival and time of last queuing to Tnow.

The destination of the message is randomly selected according to the traffic pattern used

(Uniform or Hotspot).

The message is then placed in the PE queue of node [x][y]. If the message is at the head of the

PE queue, then a DecideRoute is scheduled at time = Tnow.

The scheduling of the following Arrival event in the same node will follow a Poisson

distribution and it scheduled at time= Tnow-(lambda*ln(1-r)) where lambda represents the

mean arrival time and r is a random number uniformly generated between 0 and 1.

3.3.4 DecideRoute

Once the message is at the head of a queue and is ready for transmission, the DecideRoute

procedure selects an appropriate output for the message by comparing the address of the

current node to that of the destination node. Once the appropriate output is determined the

procedure checks for whether the output link is IDLE or not. In the case where the channel is

being IDLE a StartTransmit is scheduled with time=Tnow with the output set to the chosen

output. If the output is BUSY the message registers a request to that output.

In the Express Cube topology, there is some additional tests to perform before the making of

the routing decision like checking whether the current node has an express links in that

direction, and if the difference between the destination and the current node is greater than

H hops. If these conditions are satisfied then the message will be routed through an express

channel. Otherwise, the message will be routed through basic channels like in the 2D Mesh.

 39

In the 2D Mesh Topology, DecideRoute is implemented as fellow:

Procedure DecideRoute (x, y, input) {

Message = Get the head of InputQueue;

if (DestinationX of Message = x & DestinationY of Message = y) {

 if (State of PE= BUSY)

Set a request for PE output;

else

 Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=PE;

}

else if (DestinationX of Message > x) {

if (State of X+ = BUSY)

Set a request for X+ output;

else

Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=X+;

}

else if (DestinationX of Message < x) {

if (State of X-= BUSY)

Set a request for X- output;

else

 Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=X-;

}

else If (DestinationY of message > y) {

if (State of Y+ = BUSY)

Set a request for Y+ output;

else

Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=Y+;

}

else If (DestinationY of message < y) {

if (State of Y- = BUSY)

Set a request for Y- output;

else

Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=Y-;

}

}

Algorithm 3-5 DecideRoute

 40

In the Express Cube of H Hops Topology, DecideRoute will be implemented as fellow:

Procedure DecideRoute (x, y, input) {

Message = Get the head of InputQueue;

if (DestinationX of Message = x & DestinationY of Message = y) {

 if (State of PE= BUSY)

Set a request for PE output;

else

 Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=PE;

}

else if (DestinationX of Message > x) {

 if (DestinationX of Message – x >= H & Current Node HasExpressX+) {

if (State of E+ = BUSY)

Set a request for E+ output;

else

Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=E+;

} else {

if (State of X+ = BUSY)

Set a request for X+ output;

else

Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=X+;

 }

}

else if (DestinationX of Message < x) {

 if (DestinationX of Message – x <= H & Current Node HasExpressX-) {

if (State of E-= BUSY)

Set a request for E- output;

else

 Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=E-;

} else {

if (State of X-= BUSY)

Set a request for X- output;

else

 Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=X-;

 }

}

 41

else If (DestinationY of message > y) {

if (DestinationY of Message – y >= H & Current Node HasExpressY+) {

if (State of E+ = BUSY)

Set a request for E+ output;

else

 Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=E+;

} else {

if (State of Y+ = BUSY)

Set a request for Y+ output;

else

Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=Y+;

 }

}

else If (DestinationY of message < y) {

if (DestinationY of Message – y <= H & Current Node HasExpressY-) {

if (State of E- = BUSY)

Set a request for E- output;

else

 Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=E-;

} else {

if (State of Y- = BUSY)

Set a request for Y- output;

else

Schedule StartTransmit at t = Tnow with x=x, y=y, input=input and output=Y-;

 }

}

}

Algorithm 3-6 DecideRouteEx

3.3.5 StartTransmit

Procedure StartTransmit (x, y, input, output) {

switch (output) {

case PE: Set PEState to BUSY;

case X+: Set X+State to BUSY;

case X-: Set X- State to BUSY;

case Y+: Set Y+State to BUSY;

case Y-: Set Y- State to BUSY;

case E+: Set E+State to BUSY;

case E-: Set E- State to BUSY;

 }
 Schedule EndTransmit at t = Tnow + TR with x=x, y=y, input=input and output=output

} Algorithm 3-7 StartTransmit

 42

The StartTransmit procedure prepares the message to be transmitted via the pre-selected

output from the DecideRoute procedure, the preparation includes:

- Setting up the chosen output to BUSY all along the transmission phase.

- Scheduling an EndTransmit with time= Tnow + transmission time of the message TR.

- if the output is PE so EndTransmit is scheduled with time = Tnow only (TR=0).

3.3.6 EndTransmit

Procedure EndTransmit (x, y, input, output) {

switch (output) {

case PE:

Set PEState to IDLE;

 switch (input = {X+, X-, Y+, Y-, E+, E-}) {

Remove the message from the corresponding input queue of node[x][y];

 Collect the response time and the waiting time of the message;

 }

Check requests for PE for node[x][y];

if (there is request for output PE from node[x][y] from E+, E-, X+, X-, Y+ or Y-)

Schedule StartTransmit at t= Tnow, input= the requested input queue, output= PE;

Break;

 case X+:

Set X+State to IDLE;

 switch (input = {PE, X+, E+}) {

Remove the message from the corresponding input queue of node[x][y];

Place message in X+ queue of node[x+1][y];

if (message is at the head of X+ queue in node [x+1] [y])

 Schedule DecideRoute at t= Tnow and input= X+ in node [x+1][y];

 }

Check requests for X+ for node[x][y];

if (there is request for output X+ from node[x][y] from PE, E+, X+)

 Schedule StartTransmit at t= Tnow, input= the requested input queue, output= X+;

Break;

case X-:

 Set X-State to IDLE;

 switch (input = {PE, X-, E-}) {

Remove the message from the corresponding input queue of node[x][y];
Place message in X- queue of node[x-1][y];
if (message is at the head of X- queue in node [x-1] [y])
 Schedule DecideRoute at t= Tnow and input= X- in node [x-1][y];

 }

 Check requests for X- for node[x][y];

 if (there is request for output X- from node[x][y] from PE, E-, X-)

 Schedule StartTransmit at t= Tnow, input= the requested input queue, output= X-;

Break;

 43

 case Y+:

 Set Y+State to IDLE;

switch (input = {PE, X+, X-, Y+, E+, E-}) {

Remove the message from the corresponding input queue of node[x][y];

Place message in Y+ queue of node[x][y+1];

if (message is at the head of Y+ queue in node [x][y+1])

 Schedule DecideRoute at t= Tnow and input= Y+ in node [x][y+1];

 }

 Check requests for Y+ for node[x][y];

 if (there is request for output Y+ from node[x][y] from PE, E+, E-, X+, X-, Y+)

 Schedule StartTransmit at t= Tnow, input= the requested input queue, output= Y+;

 Break;

 case Y-:

 Set Y-State to IDLE;

switch (input = {PE, X+, X-, Y-, E+, E-}) {

Remove the message from the corresponding input queue of node[x][y];

Place message in Y- queue of node[x][y-1];

if (message is at the head of Y- queue in node [x][y-1])

 Schedule DecideRoute at t= Tnow and input= Y- in node [x][y-1];

 }

 Check requests for Y- for node[x][y];

 if (there is request for output Y- from node[x][y] from PE, E+, E-, X+, X-, Y-)

 Schedule StartTransmit at t= Tnow, input= the requested input queue, output= Y-;

 Break;

 case E+:

 Set E+State to IDLE;

switch (input = {PE, X+, X-, Y+, E+,}) {

Remove the message from the corresponding input queue of node[x][y];

if (node [x][y] Has Express Link in the X Dimension)

Place message in E+ queue of node[x+H][y];

else Place message in E+ queue of node[x][y+H];

if (message is at the head of E+ queue in node[x+H][y] or node[x][y+H])

 Schedule DecideRoute at t= Tnow and input= E+ in the next node;

}

 Check requests for E+ for node[x][y];

 if (there is request for output E+ from node[x][y] from PE, E+, X+, X-, Y+)

 Schedule StartTransmit at t= Tnow, input= the requested input queue, output= E+;

 Break;

 44

 case E-:
 Set E-State to IDLE;

switch (input = {PE, X+, X-, Y-, E-,}) {

Remove the message from the corresponding input queue of node[x][y];

if (node [x][y] Has Express Link in the X Dimension)

Place message in E- queue of node[x-H][y];

else Place message in E- queue of node[x][y-H];

if (message is at the head of E- queue in node[x-H][y] or node[x][y-H])

 Schedule DecideRoute at t= Tnow and input= E- in the next node;

}

 Check requests for E- for node[x][y];

 if (there is request for output E+ from node[x][y] from PE, E-, X+, X-, Y-)

 Schedule StartTransmit at t= Tnow, input= the requested input queue, output= E-;

 Break;

 Break;

}
Algorithm 3-8 EndTransmit

The EndTransmit procedure consist of ending the transmission of a message by moving the

later from the input queue of the sender node and puts it in the input queue of the next node

along the path. If that message is at the head of the queue, the event DecideRoute is

scheduled at time= Tnow. If the message is at the final destination, then it's sent to the local

PE where the statistics are collected.

The output link then checks for requests from any messages that are waiting to use the output

link. If any requests are found, a StartTransmit is scheduled at time= Tnow.

In the case of Express Cube where a node has 7 inputs, each input is connected to 6 outputs

plus the local PE output making a totalling of 7 outputs, so the number of cases we have to

handle is 7x7 = 49 cases, however the EndTransmit handles only 34 cases, the 15 remain cases

cannot be happened because of the constrained imposed by the routing algorithm.

For example, when the input of a message is Y- or Y+ which means that the message is being

transmitted in the meanwhile via Y Axis, so we won’t across outputs for X Axis like X- or X+,

that because the implemented routing protocol impose that the message has to be

transmitted firstly via the X Axis then via the Y Axis. Another common example where a

message generated in the PE input cannot be transmitted to the PE output in the same node.

3.4 Model verification

Verification is the process of determining that a model or simulation implementation and its

associated data accurately represent the developer’s conceptual description and

specifications [18]. And in order to verify the correctness of the simulation model we used one

of the verification techniques mentioned in [16] and which is the Top-Down Modular design.

 45

3.4.1 Top-Down Modular Design:

This technique requires that the simulation model be divided and structured into modules

that communicate to each other via well-defined interfaces.

The interface consists of a number of input and output variables or data structures.

In our case, the simulation model was structured as follows :

Each one of these modules is composed of two files:

• Source file (*.c) that implement the procedures and the

subprograms of the module.

• Header file (*.h) containing declarations, macro and

data structures definitions that are specified to the

module.

Using this approach in designing the simulation model gave

us more flexibility and smoothness while developing,

debugging and maintaining the modules independently.

That allows the verification of the simulation to be broken

down into smaller problems of verifying the modules and

their interfaces.

3.5 Model validation

Validation is the process of determining the degree to which a simulation model and its

associated data are an accurate representation of the real world from the perspective of the

intended uses of the model [18]. And in order to validate the simulation model, we have tested

it and run it through some predictable and simplified scenarios in the beginning then through

more complex cases to analyse its behaviour and its closeness to real systems.

3.5.1 Run Simplified Cases

We run a simplified simulation for a small number of messages (Max = 100) with the Logging

setting to true in the configuration file in order to allow the report generator module to track

the lifecycles of all messages crossing the network.

The simulation is performed under the following parameters:

• Topology: 4 x 4 Mesh

• Routing: Dimension-ordered (DOR)

• Traffic: Uniform Random

• Message length: 32 phits

• Injection Rate: 300

• Transmission Time: 32 Cycles

Figure 3-3 Simulator
Project Structure

 46

We open the generated log file in “reports/” folder, this file contains all the lifecycles of the

messages, we filter the result to show the lifecycle related to one specific message, in this case

we select the message with ID = 29, Noted as Msg[29].

Note that you can select any other message and that you can check the file for more details.

Figure 3-4 Snapshot of a Simulation report

By analysing the results, we see that the message arrives to the network at ta= 397.02 cycles

in node [2][2] and it reaches its destination which is the node [0][1] at td = 493.02 cycles.

So, the response time of the message is calculated RT = td – ta = 493.02 – 397.02 = 96 cycles.

The message during its lifecycle passes by 2 intermediate

nodes which are [1][2] and [0][2] and making a total of 3

hops in order to reach the destination.

According to [12], in the 2D mesh topology under low traffic

the response time for a message can be given by:

𝑅𝑇 = 𝑇0 = 𝐻 (𝑡𝑟 +
𝐿

𝑏
)

Where:

• 𝑇0 : the Zero load latency.

• H: Hop count, the number of channels traversed along a

path from source to destination

• L: Message length = 32 phits.

• 𝑡𝑟: Router delay, the delay through a single router. (= 0 negligeable)

• b: Channel bandwidth (1 phit / cycle)

Searching 1 file for "Msg[29]"

C:\Users\Zakaria\Desktop\Simulator\reports\Simulation Report 2021-08-25 06-31-28 .log:

 369: (397.02) Msg[29] Arrives in PEQ[2][2] -> [0][1]

 370: (397.02) Msg[29] Decides in PEQ[2][2] -> [0][1]X2Q

 371: (397.02) Start Transmit from PEQ[2][2] -> [1][2]X2Q

 384: (429.02) Msg[29] Ends Trans PEQ[1][2] -> [0][1]X2Q

 385: (429.02) Msg[29] Decides in X2Q[1][2] -> [0][1]X2Q

 386: (429.02) Start Transmit from X2Q[1][2] -> [0][2]X2Q

 399: (461.02) Msg[29] Ends Trans X2Q[0][2] -> [0][1]X2Q

 400: (461.02) Msg[29] Decides in X2Q[0][2] -> [0][1]Y2Q

 401: (461.02) Start Transmit from X2Q[0][2] -> [0][1]Y2Q

 423: (493.02) Msg[29] Ends Trans X2Q[0][1] -> [0][1]Y2Q

 424: (493.02) Msg[29] Decides in Y2Q[0][1] -> [0][1]PEQ

 425: (493.02) Start Transmit from Y2Q[0][1] -> [0][1]PEQ

 426: (493.02) Msg[29] Ends Trans Y2Q[0][1] -> [0][1]PEQ

 427: Msg[29] Response Time : 96.00 cycles Mean Response Time : 76.81 cycles

 428: Msg[29] Waiting Time : 0.00 cycles Mean Waiting Time : 2.13 cycles

11 matches in 1 file

0

1

2

3

0 1 2 3

 29

Figure 3-5 Demonstration
of the path traversed by

Msg [29]

 47

So, a message that make 3 Hops with 32 phits length will have a response time

RT= H x L/b = 3 x 32/1 = 96 cycles.

And which is the case in the result measured by the simulation model.

3.5.2 Run Complex Cases

In the previous section, we have tested the simulation model under simplified cases, where

the message was transmitted directly without waiting in queues & buffers, this is because

the links where free and the network didn’t reach a saturation level yet. In this section we

will analyse the behaviour of the simulation model under a heavy traffic that fellow the

hotspot pattern (the hotspot node was selected to be in the centre of the network) and we

will observe how the model performs when a certain saturation level is reached in some

branches of the network especially in the neighbours of the hotspot node.

The simulation is performed under the following parameters:

• Topology: 4 x 4 Express Cube with 2 Hops

• Routing: Dimension-ordered (DOR)

• Traffic: Hotspot [2][2]

• Message length: 32 phits

• Injection Rate: 100

• Transmission Time: 32 Cycles

We open the generated log file and we track the lifecycle of the message with ID = 19.

Figure 3-6 Snapshot of a Simulation report

By analysing the results, we see that the message arrives to the network at ta= 6.43 cycles in

node [1][1] and it reaches its destination which is the node [0][3] at td= 96.00 cycles.

So, the response time of the message is calculated RT = td – ta = 96 – 6.43 = 89.57 cycles.

Searching 1 file for "Msg[19]"

C:\Users\Zakaria\Desktop\Simulator\reports\Simulation Report 2021-08-26 03-37-55 .log:

 74 : (6.43) Msg[19] Arrives in PEQ[1][1] -> [0][3]

 75 : (6.43) Msg[19] Not Head Of Queue in PEQ[1][1] -> [0][3]

 126: (32.00) Msg[19] Decides in PEQ[1][1] -> [0][3]X2Q

 127: (32.00) Start Transmit from PEQ[1][1] -> [0][1]X2Q

 190: (64.00) Msg[19] Ends Trans PEQ[0][1] -> [0][3]X2Q

 191: (64.00) Msg[19] Decides in X2Q[0][1] -> [0][3]E1Q

 192 :(64.00) Start Transmit from X2Q[0][1] ->[0][3]E1Q

 280: (96.00) Msg[19] Ends Trans X2Q[0][3] ->[0][3]E1Q

 281: (96.00) Msg[19] Decides in E1Q[0][3] -> [0][3]PEQ

 282: (96.00) Start Transmit from E1Q[0][3] ->[0][3]PEQ

 283: (96.00) Msg[19] Ends Trans E1Q[0][3] -> [0][3]PEQ

 284: Msg[19] Response Time : 89.57 cycles Mean Response Time : 59.76 cycles

 285: Msg[19] Waiting Time : 25.57 cycles Mean Waiting Time : 8.06 cycles

10 matches in 1 file

 48

The message during its lifecycle passes by an intermediate node

which is [0][1] and making a total of 2 hops in order to reach the

destination.

In the first hop in the node [1][1], the message has waited

certain time tw1 = 25.57 cycles in the PE queue before being

transmitted, due the occupation of the PE input by another

message, this later frees the input at t=32 cycles at that time

the message N°19 was placed as the head of queue and begin

its transmission via the X- normal channel to the node [0][1].

Otherwise in the second hop and when the message arrives to

the node [0][1], it traverses directly the E+ express channel, in

this node there is no waiting time for the message because there

was no message being transmitted by the node in this channel.

So, tw2 = 0 cycles.

The total waiting time of message N°19 while crossing the network is calculated as follows:

Wait𝑀𝑠𝑔19
= 𝑡𝑤1 + 𝑡𝑤2 = 25.57 cycles

According to [19], The response time of message from its source to its destination is expressed

as shown below:

 𝑅𝑇𝑀𝑠𝑔𝑖
= 𝑃𝐷𝑒𝑙𝑎𝑦𝑀𝑠𝑔𝑖 × 𝑛𝑏𝑟ℎ𝑜𝑝𝑠 + (𝐿 − 1) × 𝐹𝑇 + Wait𝑀𝑠𝑔𝑖

Where:

• 𝑃𝐷𝑒𝑙𝑎𝑦𝑀𝑠𝑔𝑖
 is the physical delay, caused by the network physical aspects such as switch

and link delay which equals to transmission time in our model (=32 cycles).

• 𝑛𝑏𝑟ℎ𝑜𝑝𝑠 is the number of routers traversed by the message which equals to 2 Hops in the

example we take (one normal hop and one express hop).

• FT is the transmission time of one flit (=32 cycle).

• L is the message size in flits (L=1).

• Wait𝑝𝑘𝑡𝑖
 is the contention delay defined as the buffering time.

 𝑅𝑇𝑀𝑠𝑔19
 = 𝑃𝐷𝑒𝑙𝑎𝑦𝑀𝑠𝑔19 × 𝑛𝑏𝑟ℎ𝑜𝑝𝑠 + (𝐿 − 1) × 𝐹𝑇 + Wait𝑀𝑠𝑔19

 𝑅𝑇𝑀𝑠𝑔19
 = 32 × 2 + (1 − 1) × 32 + 25.57

 𝑅𝑇𝑀𝑠𝑔19
 = 89.57 𝑐𝑦𝑐𝑙𝑒𝑠

And which is the case in the result measured by the simulation model.

The comparison between the calculated result and the results obtained from the simulation

both in simplified and complex cases shows how much the implemented model is near and

representative to the real systems and proves the validity of the simulation model and how it

correctly implements the assumptions.

0

1

2

3

0 1 2 3

 19

 Figure 3-7 Demonstration
of the path traversed by

Msg [19]

 49

Chapter 4 : Performance evaluation between 2D

Mesh and Express Cube topologies

In this chapter, we will use the simulation model described in the previous chapter to carry

out the performance comparison between the most preferred topology due to its regularity

and scalability namely the two-dimensional (2D) mesh and the express cube topology with its

variations of 2 Hops, 4 Hops and 8 Hops on the other hand.

In the first stage, the comparison is carried out assuming no technological constraints imposed

on the system implementation. The four topologies are compared in their 2D version. Both

the uniform traffic and the hotspot traffic patterns have been considered in the comparison.

In the second stage, and in order to maintain a fair performance comparison between these

topologies, the physical constraints imposed by the implementation technology were taken

into consideration, notably the bisection width which is relevant to the implementation of

NoCs, for more detail see section 7.1.5 in [3].

In what follows, we will start by outlining the assumptions used in this study, then describing

the method for collecting the simulation results, then discussing the simulation model

validation. After that we present the performance results along with discussions.

4.1 Assumptions

The assumptions which have been used throughout this simulation study have widely been

adopted in existing studies [14, 20, 10]:

• Message generation at a node is independent of all other nodes.

• The message arrival rate at each node follows a Poisson distribution with a mean
interarrival rate 1/λ messages/cycle. Thus, the message inter-arrival time follows an
exponential distribution with a mean arrival time λ cycles.

• The generated messages are of fixed length (L= 32 phits).

• Routing time (time for a router to decide which output to select for a given message) is
negligible.

• Propagation delay across the links is negligible, the same thing across the express
channels of the Express cube, this is possible due to the theory of latency-insensitive
design that allows to increase the robustness of a design implementation, and which
consists that any delay variations of a channel can be “recovered” by changing the channel
latency while the overall system functionality remains unaffected. [21]

This can be achieved by segmenting
Express channels into regular, fixed
length, network channel connected by
repeaters as demonstrated in Figure 4-1
and explained in [22].

Figure 4-1 Implementation of the repeaters.
Routers 1 and 3 are both connected by
Router 2 (a), the underlying mesh network,

and the inserted long-range link (b) [22].

 50

4.2 Simulation parameters
The simulation model includes various parameters described below.

4.2.1 Traffic pattern

The traffic pattern in general describes how nodes communicate among each other. In this

study we have used two traffic patterns, namely uniform and hotspot. These traffic patterns

have been widely used in existing performance comparison studies [10, 13, 15].

 • Uniform: Each node has an equal probability of sending a message to any other node.

 • Hotspot: The Nodes favour sending messages to a specific node with probability p,

 other messages are sent following a uniform traffic pattern.

4.2.2 Message arrival rate

This parameter refers to the number of messages that can be produced during a given period

of time. The arrival rate is gradually changed to reflect the network operating different

operating conditions including light, moderate and heavy traffic.

4.2.3 Network size

The network size is a parameter which is useful for evaluating the properties of networks such

as scalability. In this study, we examine different network sizes including 8x8, 16x16 and 32x32

nodes.

4.3 Performance metrics

The comparison among the different topologies have been based on the following

performance metrics:

4.3.1 Mean response time

The response time is a qualitative measure of network performance. The response time for a

single message is the elapsed time from sending a message from a source node until it arrives

at its destination node. The response time is measured in number of cycles, where a cycle is

the amount of time to send a phit across a link as shown in (1).

𝑅𝑇𝑖 = 𝑇𝑛𝑜𝑤 − 𝑇𝑎𝑟𝑟𝑖𝑣𝑎𝑙……… (1)
Where:

• T𝑛𝑜𝑤 is the time at which the message i reaches the destination node.

• T𝑎𝑟𝑟𝑖𝑣𝑎𝑙 is the time of generation of the message i at the source node.

The mean response time is then found by averaging the response time over all delivered

messages. This can be written as shown in (2).

𝑅𝑇 =
∑ 𝑅𝑇𝑖

𝑚𝑎𝑥
𝑖=1

𝑚𝑎𝑥
…………. (2)

Where: 𝑅𝑇𝑖 is the response time of an individual message 𝑖 and 𝑚𝑎𝑥 is the number of all

delivered messages in the network during the simulation.

 51

4.3.2 Mean waiting time

The waiting time is also a qualitative measure of network performance. The waiting time for

a single message is the time spent in the queues all along the nodes traversed from the source

node until the destination node. The waiting time of message i is also measured in number of

cycles expressed in (3).

𝑊𝑇𝑖 = ∑ 𝑇𝑤𝑗

𝑛

𝑗=1

… … … (3)

Where:

• 𝑇𝑤𝑗 : is the time spent by a message waiting in the queue in node j

• 𝑛 : is the number of nodes traversed by the message

The mean waiting time is then found by averaging the waiting time over all delivered

messages. This can be written as shown in (4).

𝑊𝑇 =
∑ 𝑊𝑇𝑖

𝑚𝑎𝑥
𝑖=1

𝑚𝑎𝑥
… … … (4)

Where:

• 𝑊𝑇𝑖 : is the waiting time of an individual message 𝑖

• 𝑚𝑎𝑥 : is the number of all delivered messages in the network during the simulation.

4.3.3 Mean throughput

Throughput is the average amount of messages delivered per unit of time. This is a

quantitative measure of network performance that describes the raw output of the network.

In this case it is measured in the number of messages per cycle. This is given as shown in (5).

𝑇ℎ =
Total messages delivered

Simulation time
… … … (5)

4.4 Method to collect the simulation results

The method used during the simulation to collect the results known as the batch means

method, also called the method of subsamples, it consists of running a long simulation run,

discarding the initial transient interval, and dividing the remaining observations run into

several batches or subsamples [16]. It was selected due its popularity to its simplicity and

effectiveness.

In our case of study and for each simulation scenario, a total of 20 000 messages were

generated and delivered to their destination, those 20 000 messages were divided into 10

subsamples or batches, as a result the batch size is equal to 2000 messages. then we proceed

as follows:

 52

4.4.1 Compute means for each batch

For each batch, the mean response time, the mean waiting time and the throughput are

calculated from the 2000 messages by the equations mentioned in the previous section.

4.4.2 Compute the overall mean

is the mean of the means of the batches. In the example below the overall mean of the waiting

time is calculated as shown in (6).

𝑂𝑀𝑊𝑇 =
1

𝑚
∑ 𝑊𝑇𝑏𝑖 … … … (6)

𝑚

𝑖=1

Where:

• 𝑂𝑀𝑊𝑇 : is the overall mean of the waiting time

• 𝑊𝑇𝑏𝑖 : is the mean waiting time for the batch with number i

• 𝑚 : is the number of batches used during the simulation

4.4.3 Calculate the dispersion of batch means

Sometimes the mean or the average alone is not sufficient to represent a collection of data

especially if there is a large variability between the values of the data of the collection. The

variability is commonly specified by the variance. It is denoted by s2 and is computed as

expressed in (7).

𝑠2 = 𝑉𝑎𝑟(𝑊𝑇) =
1

𝑚−1
∑ (𝑊𝑇𝑏𝑖 − 𝑂𝑀𝑊𝑇)2 𝑚

 𝑖=1 ……… (7)

Note that the variance is written as s2, it has squared units. In our example, the variance of

the waiting time measured in cycles will be given in cycles squared.

Since the variance of the waiting time is a squared quantity, it cannot be directly compared to

the waiting time values or to the mean waiting time value of a set of messages. It is therefore

more useful to have a quantity which is the square root of the variance. This quantity is known

as the standard deviation, and it is more meaningful because it is expressed in the same unit

as the mean value. It is denoted by SD and is calculated as expressed in (8).

𝑆𝐷𝑊𝑇 = √𝑉𝑎𝑟(𝑊𝑇)2
……… (8)

4.4.4 Calculate the confidence interval for the mean

A confidence interval provides information about the possible range of values for the

performance measure. A narrow confidence interval indicates that the performance measure

has been estimated with a high degree of precision. A wide confidence interval, on the other

hand, indicates that the precision is not high.

 Knowing the precision is often more helpful to analyse the simulation results, in our case of

study and in order to calculate the confidence interval of the waiting time mean as an

example, we use a function categorized under the Excel Statistical functions and which is the

 53

Confidence Interval function, it will use the normal distribution to calculate and return the

margin of error for the means, the margin of error for the waiting time means it’s given as

shown in (9).

𝑀𝐸𝑊𝑇 = 𝐶𝑂𝑁𝐹𝐼𝐷𝐸𝑁𝐶𝐸(α, 𝑆𝐷𝑊𝑇, 𝑚) … … … (9)

Where:

• 𝑀𝐸𝑊𝑇 : is the margin of error for the waiting time means

• α: is the significance level. The significance level is equal to 1– confidence level. So,

a significance level of 0.05 is equal to a 95% confidence level.

• 𝑚 : is the number of batches used during the simulation (number of means)

The confidence interval gives us the actual low and high limits of the waiting time mean

at a given significance level α. These limits are one MEWT below the waiting time mean

and one ME above it, Notice the use of "at a given significance level α" If we want to be

surer that the unknown value is within one MEWT of the waiting mean, we need a better

significance level.

The value of α is equal to 0.05 and is a common one; it means there's only a 5% chance

our confidence interval will not capture the true value. Using α=0.01 would mean there's

only a 1% chance. Of course, there's a trade-off. If we want increased confidence, we

have to take a wider interval. The Excel function above for a significance level of 5%, it

will calculate the confidence interval for the waiting time as expressed in (10).

𝑊𝑇̅̅ ̅̅ ̅ ± 1.96
𝑆𝐷𝑊𝑇

√𝑚
… … … (10)

The use of the excel function instead of integrating this formula in the simulator is more

preferable, because it gives the analyst or the examiner of the simulation results the

ability to choose the significance level α while interpreting and analysing the results.

 54

4.5 Results and Discussion

In this section we present and analyse the simulation results by comparing the topologies

under both unconstrained and constrained implementations.

4.5.1 Mesh vs Express Cube (2 Hops) vs Express Cube (4 Hops) vs Express

Cube (8 Hops): Unconstrained implementation

In this case, the topologies are not be subjected to any physical constraints imposed by

the implementation technology. As a consequence, we assume that the different network

topologies all have the same channel width (i.e. channel bandwidth) irrespective of the

network size. This enables us to assess the impact of the graph-theoretical properties of the

various topologies on system performance.

Scenario 1: Uniform traffic

In this scenario, the 2D Mesh and the Express cube with its variations as well are subjected to

various traffic injection rates () using the uniform traffic pattern, where a sender node has

an equal probability of sending a message to any other destination node.

Before presenting the performance results for the topologies, we show first in Table 4-1 an

example of the performance and the statistical results obtained from a simulation of the 2D

mesh topology with 8x8 nodes, this table generates and draws the blue curves (2D Mesh) with

the error bars in the graphs in Figure 4-3, in what follows all the graphs are generated from

data provided by tables like Table 4-1, where each table is associated to a curve specifically to

a topology from one simulation.

Notice that you will find the associated tables below and theirs graphs of all the performed

simulation during our study in the Excel file attached to the report.

These tables are generated by the report generator module during the simulation and they

are stored in structured and formatted files inside the “reports” folder as shown in Figure 4-2

in order to facility the collection and the exportation of the results to the Excel file.

Each performance result in Table 4-1 and in all the figures below has been collected from 10

batches where each batch reflects the statistics of at least 2000 delivered messages.

 55

Table 4-1 Results for Simulation of the 2D mesh topology with 8x8 nodes

Figure 4-2 Simulation Result for the 2D Mesh 8x8 nodes

 RT WT TH SDRT SDWT SDTH MERT MEWT METH

32000 153.42 0.01 0.002 1.67363 0.01145 0.00005 1.03730756 0.007097 3.1E-05

10500 153.36 0.05 0.006 2.01301 0.03301 0.000152 1.247653598 0.020459 9.42E-05

9200 153.39 0.06 0.007 2.06298 0.0353 0.000174 1.278624756 0.021879 0.000108

1000 155.59 0.69 0.064 1.91738 0.11665 0.001248 1.188382599 0.072299 0.000774

400 160.56 2.550 0.161 1.83726 0.24579 0.003148 1.138724621 0.152339 0.001951

350 162.66 3.47 0.19 2.70 0.24 0.003 1.674 0.150 0.001631

300 164.99 4.62 0.216 2.80802 0.32945 0.003003 1.740396847 0.204191 0.001861

250 168.48 6.07 0.251 1.44819 0.46831 0.005515 0.897580968 0.290256 0.003418

200 175.88 10.28 0.322 3.83044 0.9316 0.004383 2.374087684 0.577401 0.002717

180 180.47 13.43 0.356 2.63368 0.82545 0.006639 1.632341781 0.51161 0.004115

160 183.63 16.65 0.393 2.37974 1.19909 0.006071 1.47495103 0.74319 0.003763

150 191.13 21.87 0.42 4.75 3.15 0.01085 2.942346759 1.951431 0.006725

100 296.70 115.07 0.631 19.78052 17.9159 0.019539 12.25986803 11.10419 0.01211

90 534.24 346.12 0.71 78.88 77.40 0.02562 48.8923142 47.97429 0.015879

80 1019.54 828.7 0.742 394.42694 391.73013 0.025261 244.463858 242.7924 0.015657

70 1797.14 1604.65 0.781 888.81213 887.26251 0.027224 550.8813428 549.9209 0.016873

50 3665.86 3468.86 0.837 2065.6682 2063.8698 0.028794 1280.290895 1279.176 0.017846

 56

Figure 4-3 Performance results for the 2D Mesh vs EC2H vs EC4H under unconstrained uniform traffic
for 8x8 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput

0

200

400

600

800

1 000

1 200

1 400

1 600

0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection Rate (Messages/Cycle/Node)

2D Mesh ExpressCube 4 Hops ExpressCube 2 Hops

0

100

200

300

400

500

600

700

800

900

1 000

0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

W
ai

ti
n

g
Ti

m
e

(C
yc

le
s)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops

0

0.2

0.4

0.6

0.8

1

1.2

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops

(i)

(ii)

(iii)

 57

Figure 4-4 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under unconstrained
uniform traffic for 16x16 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection Rate (Messages/Cycle/Node)

2D Mesh ExpressCube 4 Hops ExpressCube 2 Hops Express Cube 8 Hops

0

200

400

600

800

1 000

1 200

0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320

W
ai

ti
n

g
Ti

m
e

(C
yc

le
s)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

0

0.5

1

1.5

2

2.5

3

3.5

4

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

(i)

(ii)

(iii)

 58

Figure 4-5 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under unconstrained
uniform traffic for 32x32 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection Rate (Messages/Cycle/Node)

2D Mesh ExpressCube 4 Hops ExpressCube 2 Hops Express Cube 8 Hops

0

1

2

3

4

5

6

7

8

9

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

0

200

400

600

800

1 000

1 200

0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320

W
ai

ti
n

g
Ti

m
e

(C
yc

le
s)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

(i)

(ii)

(iii)

 59

The four Network-On-Chip topologies are compared amongst each other.

The simulation results are depicted below for network sizes of 8x8 ,16x16 and 32x32 nodes.

 In all the figures, the x-axis represents the rate of messages injected into the network

(measured by messages/cycle where the cycle is the time to send a phit across a link).

In the Figure 4-3(i) to Figure 4-16(i) the y-axis represents the mean message response time

(Measured in cycles) and in figures Figure 4-3(ii) to Figure 4-16(ii) the y-axis represents the

mean message waiting time (Measured in cycles) while in figures Figure 4-3(iii) to Figure

4-16(iii) the y-axis represents the mean throughput (Measured in messages/cycle).

The Figure 4-3 shows that the EC2H has a lowest response time and waiting time compared

to the mesh and the EC4H under all levels of injection rates and an equal throughput with

slight superiority can be observed under an intensive traffic rate, that because it has more

express channels than the other topologies and the chance for a message to pass by 2-Hops

channels is superior then passing by normal links in the mesh or by the 4-hops channels in the

EC4H.

The Figure 4-4 reveals that the EC4H topology has the best performance among the others,

while the EC2H and the EC8H show similar behaviours under different load traffic injections,

this can be explained by the fact that the bypassing of nodes in the EC4H reduces effectively

the diameter and the average distance and balance between the local and the non-local

messages crossing the topology.

The Figure 4-5 exhibit also the effectiveness of the EC4H, unlike the previous figure we see

here that the EC8H performs better too, this can be explained by the good exploitation and

utilization of the 8-Hops Channels by the long-range messages.

Regardless of the network size or load traffic injection, the mesh topology shows the worst

performances compared to the Express cube topologies, this can be interpreted by its long

diameter, which results in larger amounts of traffic congestions all along the paths crossed by

messages from their sources until they reach their destinations.

Scenario 2: Hotspot traffic

The same simulation experiment performed in the above Scenario 1 has been repeated

considering the hotspot traffic pattern where a sender node sends a message to the hotspot

node located in the center of network with probability α and a probability of 1-α to any other

node with equal probability.

The Figure 4-6 to Figure 4-8 are the performance results for network sizes of 8x8, 16x16 and

32x32 nodes under unconstrained implementation where α is set to 0.1.

The figures reveal that the same conclusions as scenario 1 are reached in that the EC2H

exhibits superior performance in the 8x8 network size, while in the 16x16 and 32x32

topologies the EC4H performs better. This is due to the effective bypassing and to its lower

average message distance.

 60

Figure 4-6 Performance results for the 2D Mesh vs EC2H vs EC4H under unconstrained hotspot traffic
for 8x8 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput

0

200

400

600

800

1 000

1 200

1 400

1 600

0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection Rate (Messages/Cycle/Node)

2D Mesh ExpressCube 4 Hops ExpressCube 2 Hops

0

100

200

300

400

500

600

700

800

900

1 000

0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

W
ai

ti
n

g
Ti

m
e

(C
yc

le
s)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops

0

0.2

0.4

0.6

0.8

1

1.2

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops

(i)

(ii)

(iii)

 61

Figure 4-7 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under unconstrained
hotspot traffic for 16x16 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection Rate (Messages/Cycle/Node)

2D Mesh ExpressCube 4 Hops ExpressCube 2 Hops Express Cube 8 Hops

0

200

400

600

800

1 000

1 200

0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320

W
ai

ti
n

g
Ti

m
e

(C
yc

le
s)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

0

0.5

1

1.5

2

2.5

3

3.5

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

(i)

(ii)

(iii)

 62

Figure 4-8 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under unconstrained
hotspot traffic for 32x32 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

2 000

0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection Rate (Messages/Cycle/Node)

2D Mesh ExpressCube 4 Hops ExpressCube 2 Hops Express Cube 8 Hops

0

200

400

600

800

1 000

1 200

0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320

W
ai

ti
n

g
Ti

m
e

(C
yc

le
s)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

0

1

2

3

4

5

6

7

8

9

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

(i)

(ii)

(iii)

 63

4.5.2 Mesh vs Express Cube (2 Hops) vs Express Cube (4 Hops) vs Express

Cube (8 Hops): Constrained implementation

In the previous section, the performances were evaluated and measured based on the

graphical properties only without taking into account any physical or hardware limitations.

However, in this section we will evaluate and present once more the performances of the

Mesh and the Express Cube with its variations under the physical implementation constraints

in order to conduct a fair comparison between the two topologies.

One of the dominant physical constraints in the implementation of interconnection networks

is the available wiring area [3]. The available wiring space in the Express Cube NoC is more

than in a mesh of the same size, that is due to the express channels. Furthermore, an Express

Cube requires significant number of links which must be factored into the wiring budget. If the

available wire tracks along the bisection is fixed, an Express Cube will be restricted to narrower

links than a Mesh, thus lowering per-link bandwidth, and increasing transmission delay.

These contrasting properties illustrate the importance of considering implementation details

in evaluating and analysing the performances of the topologies.

The bisection width of the mesh topology as mentioned in [23] is given as expressed in (11).

𝐵𝑚𝑒𝑠ℎ = 𝟐√𝐍𝒌
𝒏

𝟐
−𝟏

 𝐖𝐦𝐞𝐬𝐡 ……… (11)

Where:

• 𝒌 : number of nodes per dimension

• 𝒏 : number of dimensions

The expression can be interpreted as follows: for each of the √N rows of the network, there

are k((n/2)-1) of these channels in each direction for a total of 2√Nk((n/2)-1) channels. Thus, the
bisection width B𝑚𝑒𝑠ℎ of a k-ary n-cube with W𝑚𝑒𝑠ℎ wide communication channels is

𝐵𝑚𝑒𝑠ℎ = 2√𝑁𝑘
𝑛

2
−1 ∗ 𝑊𝑚𝑒𝑠ℎ [23]

In the case of the Express Cube topology, the same equation above is applied to calculate the

bisection width expect that we need to add the Express channels that cross the midpoint of

the network in each row, the number of these express channels is depending on the Number

of hops H.

For example, in the EC2H we

have one Express channel

crossing the midpoint in any

given row.

Following the same reasoning of Dally, it will be for each of the √N rows of the network, there

are 2k((n/2)-1) of these channels in each direction for a total of 2√N2k((n/2)-1) channels. Thus, the

bisection width 𝐵𝐸𝐶2𝐻 of the Express Cube with 2 Hops with WEC2H wide communication

channels is 𝐵𝐸𝐶2𝐻 = 2√𝑁2𝑘
𝑛

2
−1 ∗ 𝑊𝐸𝐶2𝐻

Figure 4-9 a Row of the EC2H

 64

In the EC4H we have two

Express Channels crossing the

midpoint in any given row.

Following the same reasoning of Dally once more, it will be for each of the √N rows of the

network, there are 3k((n/2)-1) of these channels in each direction for a total of 2√N3k((n/2)-1)

channels. Thus, the bisection width 𝐵𝐸𝐶4𝐻 of the Express Cube with 4 Hops with WEC4H wide

communication channels is

𝐵𝐸𝐶4𝐻 = 2√𝑁3𝑘
𝑛
2

−1 ∗ 𝑊𝐸𝐶4𝐻

We Generalize the equation for any given M Hops (consider that M is an even number):

𝑩𝑬𝑪𝑴𝑯 = 𝟐√𝑵 (
𝑴

𝟐
+ 𝟏) 𝒌

𝒏
𝟐

−𝟏 ∗ 𝑾𝑬𝑪𝑴𝑯

By applying the Bisection Bandwidth Constraint, the limited available wiring area is

represented by a fixed bisection width which will give us:

𝐵𝐸𝐶𝑀𝐻 = 𝐵𝑀𝑒𝑠ℎ

2√𝑁 (
𝑀

2
+ 1) 𝑘

𝑛
2

−1
∗ 𝑊𝐸𝐶𝑀𝐻 = 2√𝑁 𝑘

𝑛
2

−1
∗ 𝑊𝑚𝑒𝑠ℎ

Therefore, the channel width of a link in the Express Cube with M Hops WECMH can be

expressed in terms of that of the mesh as

(
𝑀

2
+ 1) WECMH = Wmesh

 𝑾𝑬𝑪𝑴𝑯 =
𝟐

𝑴 + 𝟐
 𝑾𝒎𝒆𝒔𝒉

Given that the channel width (i.e. the number of wires) is directly proportional to the

bandwidth (given by phits/cycle) of the link, the above equations reveal that the bandwidth

of the link in the Express Cube with M Hops is less of that of the mesh. As a result, the message

length in Express Cube with M Hops will be greater than the message length in the mesh

topology.

To illustrate this, for instance if a message is 32 phits long and therefore takes 32

cycles to be transmitted on a link in the mesh:

It will take 64 cycles in the EC2H Because WEC2H =
2

2+2
Wmesh =

𝟏

𝟐
Wmesh

It will take 96 cycles in the EC4H Because WEC4H =
2

4+2
Wmesh =

𝟏

𝟑
Wmesh

It will take 160 cycles in the EC8H Because WEC8H =
2

8+2
Wmesh =

𝟏

𝟓
Wmesh

Figure 4-10 a Row of the EC4H

 65

Scenario 1: Uniform traffic

The four topologies are subjected to a uniform traffic pattern. The following figures depict the

results of the comparisons.

In figures Figure 4-11 to Figure 4-13 , the impact of the reduction in the channel bandwidth of

Express Cube topologies can be clearly observed as it is now outperformed by the Mesh across

the considered network sizes in terms of response time, waiting time and throughput.

This is in contrast to the performance outcome of the previous scenarios where the Express

Cube topologies exhibited the best performance out of the Mesh topology.

However, the EC8H shows the worst performance among the Express cube topologies that

can be explained by the effect of its significant message length that impacts directly the

transmission time and results longer response time and extended waiting time.

While the EC2H and EC4H reveal almost the same behaviour despite the difference in the

channel bandwidth. This might be attributed to the difference in average message distance

between the two topologies, the gain of the performance in the unconstrained

implementation for the EC4H over the EC2H is decreased in this case because of its longer

message transmission delay comparing to the Express cube with 2 Hops topology.

 66

Figure 4-11 Performance results for the 2D Mesh vs EC2H vs EC4H under constrained uniform
traffic for 8x8 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput

0

500

1 000

1 500

2 000

2 500

3 000

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection Rate (Messages/Cycle/Node)

2D Mesh ExpressCube 4 Hops ExpressCube 2 Hops

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops

0

500

1 000

1 500

2 000

2 500

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457

W
ai

ti
n

g
Ti

m
e

(C
yc

le
s)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops

(i)

(ii)

(iii)

 67

Figure 4-12 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under constrained
uniform traffic for 16x16 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput

0

0.5

1

1.5

2

2.5

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

0

500

1 000

1 500

2 000

2 500

3 000

0.0035 0.032 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

W
ai

ti
n

g
Ti

m
e

(C
yc

le
s)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

0

1 000

2 000

3 000

4 000

5 000

6 000

0.0035 0.032 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection Rate (Messages/Cycle/Node)

2D Mesh ExpressCube 4 Hops ExpressCube 2 Hops Express Cube 8 Hops

(i)

(ii)

(iii)

 68

Figure 4-13 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under constrained
uniform traffic for 32x32 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput

0

500

1 000

1 500

2 000

2 500

3 000

0.0035 0.032 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

W
ai

ti
n

g
Ti

m
e

(C
yc

le
s)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

0

1 000

2 000

3 000

4 000

5 000

6 000

0.0035 0.032 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection Rate (Messages/Cycle/Node)

2D Mesh ExpressCube 4 Hops ExpressCube 2 Hops Express Cube 8 Hops

(i)

(ii)

(iii)

 69

Scenario 2: Hotspot traffic

In Figure 4-14 to Figure 4-16, similar conclusions can be drawn from the simulation results for

all four topologies. That is, the 2D Mesh clearly outperforms the Express Cube topologies

under different traffic injection loads for all of the performance measures.

The EC8H shows once more the worst performance among the Express Cube Topologies due

to its significant message length that impacts directly the transmission time and results longer

response time and extended waiting time.

Once again, The EC2H and EC4H reveal almost the same behaviour despite the difference in

the channel bandwidth. This might be attributed to the difference in average message

distance between the two topologies, the gain of the performance in the unconstrained

implementation for the EC4H over the EC2H is decreased in this case because of its longer

message transmission delay comparing to the Express cube with 2 Hops topology.

The conclusion that can be drawn from this is that despite the Express Cube topologies having

superior graph-theoretical properties in terms of average distance, they are not enough to

offset the reduction in channel bandwidth caused by physical constraints imposed by

implementation technology.

 70

Figure 4-14 Performance results for the 2D Mesh vs EC2H vs EC4H under constrained
hotspot traffic for 8x8 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops

0

500

1 000

1 500

2 000

2 500

0.032 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457

W
ai

ti
n

g
Ti

m
e

(C
yc

le
s)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops

0

500

1 000

1 500

2 000

2 500

3 000

3 500

4 000

0.032 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection Rate (Messages/Cycle/Node)

2D Mesh ExpressCube 4 Hops ExpressCube 2 Hops

(i)

(ii)

(iii)

 71

Figure 4-15 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under constrained
hotspot traffic for 16x16 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

0

500

1 000

1 500

2 000

2 500

3 000

0.0035 0.032 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

W
ai

ti
n

g
Ti

m
e

(C
yc

le
s)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

0

1 000

2 000

3 000

4 000

5 000

6 000

0.0035 0.032 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection Rate (Messages/Cycle/Node)

2D Mesh ExpressCube 4 Hops ExpressCube 2 Hops Express Cube 8 Hops

(i)

(ii)

(iii)

 72

Figure 4-16 Performance results for the 2D Mesh vs EC2H vs EC4H vs EC8H under constrained
hotspot traffic for 32x32 nodes (i) Response Time, (ii) Waiting Time, (iii) Throughput

0

1 000

2 000

3 000

4 000

5 000

6 000

0.0035 0.032 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

R
es

p
o

n
se

 T
im

e
(C

yc
le

s)

Injection Rate (Messages/Cycle/Node)

2D Mesh ExpressCube 4 Hops ExpressCube 2 Hops Express Cube 8 Hops

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

Th
ro

u
gh

p
u

t
(M

es
sa

ge
s/

C
yc

le
)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

0

500

1 000

1 500

2 000

2 500

3 000

0.0035 0.032 0.080 0.091 0.107 0.128 0.160 0.178 0.200 0.213 0.320 0.356 0.400 0.457 0.640

W
ai

ti
n

g
Ti

m
e

(C
yc

le
s)

Injection Rate (Messages/Cycle/Node)

2D Mesh Express Cube 4 Hops Express Cube 2 Hops Express Cube 8 Hops

(i)

(ii)

(iii)

 73

4.6 Conclusions

In order to compare the performance merits of the two well-known topologies, namely the

Mesh and the Express Cube, simulation results for the mean response time, the mean waiting

time and throughput have been reported for a number of scenarios. For an unconstrained

implementation on channel bandwidth, the Express Cube shows the best performance in

terms of response time, waiting time and throughput compared to the Mesh. This is due to

the combination of the express channels along with its good average distance. The EC4H

exhibits performance than the EC2H and the EC8H thanks to its effective balanced bypassing

of nodes. In contrast, when implementation constraints on channel bandwidth are taken into

consideration the Mesh topology demonstrates superior performance over all the variations

of the Express Cube topology.

This is mainly due to its higher channel bandwidth manages to offset the detrimental effects

of the absence of the express channels and higher average distance in comparison to the

Express Cube.

Another comparison between the Express Cube topologies has also been carried out.

Simulation results have revealed that the EC4H topology deliver better performance in the

unconstrained scenarios in higher node size owing to their superior graph-theoretical

properties and the balanced bypassing relative to the EC2H and EC8H. However once

implementation constrains are considered the significant reduction in channel bandwidth for

the Express Cube topologies caused their performance to deteriorate. This allows the 2D Mesh

to exhibit better performance.

It is worth mentioning that the observed performance trends are applicable for both uniform

and hotspot traffic patterns.

 74

Conclusions and future directions

Much research activities on Systems-on-Chip (SoCs) have gained momentum over the past

decades due to the exponential increase in transistor integration into chips as predicted by

Moore’s Law [1]. This has enabled the implementation of many processing elements inside a

single chip. These processing elements are often interconnected by means of routing

elements via links forming what is usually known as a Network-on-Chip (NoC).

Numerous research studies have proposed various topologies for NoCs, including the mesh,

torus, fat-tree and Spidergon. Many of the existing studies have compared the relative

performance of these topologies However, most of these studies have concentrated on the

graph-theoretical properties of these topologies and have largely ignored the impact of the

constraints imposed by implementation technology on channel bandwidth.

The most relevant constraint in the case of NoCs is the wiring density. This is often

measured in terms of the bisection width.

The aim of our project has been to compare the performance of some well-known topologies

notably the Mesh and the Express Cube with its variations while taking into account the

implementation constraints. To achieve this, a discrete-event simulation

model for these networks has been designed and implemented in C using the Codeblocks IDE

and Git VCS version control System which is also known as source control, which is the practice

of tracking and managing changes to software code. The GIT Version control systems helped

us to manage changes of the simulator code source and the logic of the simulation over time.

As development environments have been accelerated, version control systems help us work

faster and smarter. Also, it handles all the history of the development phase and tracking and

saving the reports files and traces generated from the simulation.

The link to our repository where the code source of the developed simulator is saved is:

https://github.com/ZakariaZiraoui/DiscreteEventSimulator

The repository is public, so the students and researchers working in the field of the Network

of Chips can download it, use it and even modify it to match their needs and cases of studies.

https://github.com/ZakariaZiraoui/DiscreteEventSimulator

 75

The simulator has been validated using known test cases where the outcomes can be easily

predicted. The simulation model has been used to perform extensive simulation experiments

to analyse the performance of the Mesh and the Express Cube under various operating

scenarios. When implementation constraints on channel bandwidth are ignored, the

simulation results have indicated that the Express Cube exhibits the best performance over

the Mesh topology under uniform as well as hotspot traffic patterns. This can be justified by

the fact that the Express Cube has a lower average distance in comparison to the Mesh, and

having a combination of the express channels that reduce long hop counts delays.

When implementation constraints on channel bandwidth are taken into consideration the 2D

Mesh end up with higher channel bandwidth than the Express Cube.

The simulation results have revealed that the Mesh can take advantage of its wider channel

bandwidth to mitigate the detrimental effects of the absence of the express channels and the

higher average distance in comparison to the Express Cube. The latter, however, does having

express links, the decrease in the bandwidth rate of its channels did not manage to exploit

well and effectively those channels in order to compensate for Mesh’s higher average

distance. In other words, the Mesh exhibits lower response times and higher throughput when

subjected to uniform and hotspot traffic patterns.

Another comparison between the Express Cube topologies has also been carried out.

Simulation results have revealed that the EC4H topology deliver better performance in the

unconstrained scenarios in higher node size owing to their superior graph-theoretical

properties and the balanced bypassing relative to the EC2H and EC8H. However once

implementation constrains are considered the significant reduction in channel bandwidth for

the Express Cube topologies caused their performance to deteriorate. This allows the 2D Mesh

to exhibit better performance.

It is worth mentioning that the observed performance trends are applicable for both uniform

and hotspot traffic patterns. There are a number of possible directions that can be pursued in

order to further extend our work and these are listed below:

• If the necessary computing resources were available, it would be interesting to run

simulations for large network sizes (e.g. thousands of nodes). This is motivated by Moore’s

Law that predicts that NoCs with thousands of nodes would be a reality in the near future.

• Many adaptive routing algorithms have been proposed in the literature which can take

advantage of the various paths that exist in a topology to improve network performance.

• A possible extension of this work would be to extend our simulator to incorporate adaptive

routing and evaluate its influence on the performance properties of the NoC networks.

• A popular alternative to packet switching is virtual cut-through as it enables the reduction

of response time under light to moderate traffic by avoiding the necessary buffering at

intermediate routing elements. It would be interesting to adapt our simulation model to

include this switching technique and quantify its influence on the outcome of any

comparative study of competing NoC topologies.

• Applications typically exhibit various communication patterns between the processing

elements including broadcast and multicast. A natural extension of our work would be to

develop the simulation model further to accommodate these traffic patterns and assess

their impact on the performance of NoC topologies.

 76

References

[1] D. Padua, Encyclopedia of parallel computing, London: Springer, 2011.

[2] K. Manna and J. Mathew, Design and Test Strategies for 2D/3D Integration for NoC-

based Multicore Architectures, Springer, 2020.

[3] J. Duato, Y. Sudhakar and L. M. Ni, Interconnection Networks - An Engineering

Approach, San Francisco, CA 94104-3205, USA: Elsevier Science, 2003.

[4] S. Fineberg, T. Casavant and B. Pease, “Seamless A Latency-Tolerant RISC-Based

Multiprocessor Architecture,” University of Iowa, December 1998.

[5] M. Ruaro, F. B. Lazzarotto, C. A. Marcon and F. G. Moraes, “DMNI: A specialized

network interface for NoC-based MPSoCs,” in IEEE International Symposium on Circuits

and Systems (ISCAS), Montreal, QC, Canada, 22-25 May 2016.

[6] K. Ray, A. Kalita, A. Biswas and M. A. Hussain, “A multipath network-on-chip topology,”

in International Conference on Information Communication and Embedded Systems

(ICICES), Chennai, India, 25-26 Feb. 2016.

[7] J. Chen, P. Gillard and C. Li, “Network-on-Chip (NoC) Topologies and Performance: A

Review,” in Proceedings of the 2011 Newfoundland Electrical and Computer

Engineering Conference (NECEC), 2011.

[8] T. N. K. Reddy, A. K. Swain, J. K. Singh and K. K. Mahapatra, “Performance assessment

of different Network-on-Chip topologies,” in 2nd International Conference on Devices,

Circuits and Systems (ICDCS), Coimbatore, India, 6-8 March 2014.

[9] W. Dally, “Express cubes: improving the performance of k-ary n-cube interconnection

networks,” IEEE Transactions on Computers, vol. 40, no. 9, pp. 1016 - 1023, Sep 1991.

[10] C.-H. O. Chen, N. Agarwal, T. Krishna, K.-H. Koo, L.-S. Peh and K. Saraswat, “Comparison

of Physical and Virtual Express Topologies for Future Many-core On-Chip Networks,” 03

July 2014.

[11] N. E. Jerger, T. Krishna and L.-S. Peh, On-Chip Networks: Second Edition (Synthesis

Lectures on Computer Architecture), Morgan & Claypool Publishers, June 19, 2017.

[12] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection Networks,

Morgan Kaufmann, 2004.

[13] R. Sabbaghi-Nadooshan, M. Modarressi and H. Sarbazi-Azad, “The 2D digraph-based

NoCs: attractive alternatives to the 2D mesh NoCs,” The Journal of Supercomputing,

vol. 59, p. 1–21, January 2012.

 77

[14] D. C. Jung, S. Davidson, C. Zhao, D. Richmond and M. B. Taylor, “Ruche Networks: Wire-

Maximal, No-Fuss NoCs : Special Session Paper,” in 14th IEEE/ACM International

Symposium on Networks-on-Chip (NOCS), Hamburg, Germany, 24-25 Sept. 2020.

[15] A.-S. Ould-Khaoua and H. Terranti, “Performance Evaluation of Networks On-chip

Topologies,” University of Saad Dahleb - BLIDA 1, Blida, 2020.

[16] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation and Modeling, New York NY: Wiley

Computer Publishing, John Wiley & Sons, Inc, April 1991.

[17] G. Fishman, Discrete-Event Simulation Modeling, Programming, and Analysis, New

York: Springer, 2001.

[18] U.S. Department of Defense, DoD Modeling and Simulation (M&S) Verification,

Validation, and Accreditation (VV&A), 2009.

[19] O. Matoussi, “NoC Performance Model for Effcient Network Latency Estimation,” hal-

03207778, Grenoble (virtual), France, Feb 2021.

[20] C.-H. O. Chen, N. Agarwal, T. Krishna, K.-H. Koo, L.-S. Peh and K. C. Saraswat, “Physical

vs. Virtual Express Topologies with Low-Swing Links for Future Many-core NoCs,” in

2010 Fourth ACM/IEEE International Symposium on Networks-on-Chip, Grenoble,

France, 3-6 May 2010.

[21] L. P. Carloni, K. L. McMillan and A. L. Sangiovanni-Vincentelli, “Theory of Latency-

Insensitive Design,” IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS, vol. 20, no. 9, pp. 1059-1076, SEPTEMBER 2001.

[22] U. Y. Ogras and Marculescu Radu, “Application-Specific Network-on-Chip Architecture

Customization via Long-Range Link Insertion,” in ICCAD-2005. IEEE/ACM International

Conference on Computer-Aided Design, San Jose, CA, USA, 6-10 Nov. 2005.

[23] W. J. Dally, “Performance analysis of k-ary n-cubes interconnection networks,” IEEE

Transactions on Computers, vol. 39, no. 06, pp. 775-785, June 1990.

[24] K. Rajeev , G. Pankaj and N. Vikas, “Network on Chip: Topologies, Routing,

Implementation,” International Journal of Advances in Science and Technology, vol. 4,

no. 1, pp. 24-34, Janury 2012.

	Acknowledgment
	Abstract
	Résumé
	ملخص
	Contents
	List of abbreviations
	List of figures
	List of tables
	List of Algorithms
	General Introduction
	Chapter 1 : Background on networks-on-chip
	1.1 Network-on-Chip topologies
	1.1.1 Regular and irregular topologies
	1.1.2 The Express Cube Topology

	1.2 Topological parameters
	1.2.1 Diameter
	1.2.2 Degree
	1.2.3 Cuts and Bisections

	1.3 Related research work
	1.3.1 2D Mesh vs. 2D Digraph (2012)
	1.3.2 2D Mesh vs. Express Cube (2014)
	1.3.3 2D Mesh vs. Ruche Network vs. Express Cube (2020)
	1.3.4 2D Mesh vs. Torus (2020)
	1.3.5 Summary

	Chapter 2 : Simulation modelling
	2.1 Justification of the method of study
	2.2 Simulation techniques
	2.2.1 Emulation
	2.2.2 Monte-Carlo Simulation
	2.2.3 Trace-Driven Simulation
	2.2.4 Discrete-Event Simulation

	2.3 System model
	2.3.1 Node model
	2.3.2 Switching and routing

	2.4 Simulation environment

	Chapter 3 : Implementation of the simulation model
	3.1 Data structures
	3.2 Simulation Clock and Time-advancing Mechanism
	3.3 Simulation events
	3.3.1 Main Program
	3.3.2 Initialization
	3.3.3 Arrival
	3.3.4 DecideRoute
	3.3.5 StartTransmit
	3.3.6 EndTransmit

	3.4 Model verification
	3.4.1 Top-Down Modular Design:

	3.5 Model validation
	3.5.1 Run Simplified Cases
	3.5.2 Run Complex Cases

	Chapter 4 : Performance evaluation between 2D Mesh and Express Cube topologies
	4.1 Assumptions
	4.2 Simulation parameters
	4.2.1 Traffic pattern
	4.2.2 Message arrival rate
	4.2.3 Network size

	4.3 Performance metrics
	4.3.1 Mean response time
	4.3.2 Mean waiting time
	4.3.3 Mean throughput

	4.4 Method to collect the simulation results
	4.4.1 Compute means for each batch
	4.4.2 Compute the overall mean
	4.4.3 Calculate the dispersion of batch means
	4.4.4 Calculate the confidence interval for the mean

	4.5 Results and Discussion
	4.5.1 Mesh vs Express Cube (2 Hops) vs Express Cube (4 Hops) vs Express Cube (8 Hops): Unconstrained implementation
	Scenario 1: Uniform traffic
	Scenario 2: Hotspot traffic

	4.5.2 Mesh vs Express Cube (2 Hops) vs Express Cube (4 Hops) vs Express Cube (8 Hops): Constrained implementation
	Scenario 1: Uniform traffic
	Scenario 2: Hotspot traffic

	4.6 Conclusions

	Conclusions and future directions
	References

