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Abstract

In this thesis we have treated the problem of the Klein-Gordon oscillator
(KGO) with the generalized uncertainty principle (GUP) in deformed space.
In the first case we deal with the problem of the scalar particle in the case
of the free Klein-Gordon oscillator (ε = 0), the energy spectrum En is repre-
sented as function n and the wave function φn(x) is obtaind by the Hermite
polynomial Hn(x).

In the 2nd case, we have solved the equation of the Klein-Gordon oscil-
lator in the presence of the external electric field ε in the deformed space,
where the energy spectrum En is given as a function of power of n due to
minimal length effect and the wave function φn (p) is defined in term of the
Gegenbaouer plynomial Cλ

n(p). The borderline cases are deduced and confir-
med the results obtained, recently the term probabilities Z,U, F, C, S have
been calculated. As conclusion to this work we introduced the path intgral
treatment of the Klein-Gordon oscillator in absence of the external electric
field ε in the deformed space.

Key words : relativistic quantum mechanics, Klein Gordon equation ,
regular spaces, deformed spaces, minimal length.
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Chapitre 1

General introduction

For the last several decades, the subject of unification the theory of general
relativity (GR) and the quantum mechanics (QM) (or quantum field theory
(QFT)) under one model known as ”quantum gravity” have been taking a
huge interest in theoretical high energy physics. This unification constitute
the cornerstone of the modern physics and it directly leads to the birth of
a wide range of new physical ideas and mathematical tools. Most of the
differences found in this unification come from the different assumptions of
these theories about the functioning of the universe :

Theory of GR ; which today is still regarded as the best theory of gravity
just for the fact that is able to predict and describe a large number of physical
phenomena in Astrophysics (the foundation for the current understanding of
black holes), and Cosmology (the standard Big Bang model) explaining the
world in the macro-dimension. The GR theory was introduced in 1916 by
Albert Einstein, representing gravitational interactions in terms of the geo-
metry of continuous space-time manifold where the space-time is described
by a metric that determines the distances separating nearby points (stars,
galaxies, etc.) [1].

QM, on the other hand like GR, has achieved several successes since its
foundation with Planck’s hypothesis of quanta of energy ; proposed in 1900
to confirmation of this hypothesis by Einstein’s 1905 paper which explained
the photoelectric effect. These represent a early attempts to understand mi-
croscopic phenomena the known as old quantum theory. The modern theory
was formulated few years later by number of physicists : N.Bohr in 1913
with the presentation of Bohr’s model of the atom, L. de Brôglie in 1924
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with the proposition of the wave-matterduality, Dirac in 1928-1930, with
the discovery of antimatter particles, E.Schrodinger in 1926 thought his fa-
mous wave mechanics, W. Heisenberg in 1925-1927 with developing the so
called matrix mechanics and the uncertainty Principle. The formulation of
the whole theoretical framework of the theory was done by Dirac and von
Neammenn, where he introduced his notation that combine the Heisnberg
matrix mechanics with Schrödinger wave mechanics [2].

Since the birth of QM and through many experiments we have noticed
many time that our Universe has a quantum nature, but QM even with
relativistic quantum mechanics, wasn’t enough to describe everything in the
Universe. We needed second quantification and more fundamental theory,
the quantification of the classical field theory to the quantum version (QFT).
QFT formulated the knowen Standard Model (SM) of particle physics. SM
or more general QFT represents and describes three of the four fundamental
interactions of nature (electromagnetism, weak and strong nuclear forces)
ignoring the fourth force the gravitational interaction for being much weaker
then the other three.

So far, the attempts to incorporate gravity into QFT run into problems is
that the calculation of effective cross sections of diffusion leads to very serious
discrepancies more exactly we often deal with type of integrals (

∫
d4k(kkk/k2k2))

in the calculation of radiative corrections associated a loop in a Feynman dia-
gram, this integral diverges [3]. The region of integration that generates the
divergence is the area known as ultraviolet region (UV).

Theoretical physics put forward certain number of attempts to address
this problem of discrepancies, all of which have met with various degrees
of success, let us mention a few of this proposals, which are detailed in the
literature [4, 5] :

-String theory (ST) was developed in late of 1960, this theory is an at-
tempt not only to describe quantum gravity but also explain the behavior of
strong interacting particles : hardons and other particles which are presented
in the standard model of particle physics from it premise where everything
is made of tiny strings. The strings may be closed into themselves or have
loose ends ; they can vibrate, stretch, join or split. This theory admits the
supergravity theories as effective low energy theories.

-Loop quantum gravity (LQG) : on the other hand not like ST, is less
interested in the matter and it behavior that occupies the space-time than
in the quantum characteristics of the space-time itself. Where the smooth
functioning of Einstein’s GR is replaced by nodes and links to which those
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quantum characteristics are attached. In this way, space is built up of dis-
crete pieces. LQG is in large part a study of these pieces. in this context,
considering the quantization of gravity and the quantization of the metric
tensor are two faces for one coin, the space-time metric in the proposition
of canonical gravity should stand as an expectation value of wave functional
from Hilbert space in way that should come independently totally for non-
perturbative quantum theory. The dynamics of this approach are governed
by a Hamiltonian operator given some sort of equation. LQG arises to solve
some of the problem by considering this equation is ill defined in general case.
This approach has long been thought incompatible with ST.

- A new mathematical tool has been in theoretical physics to take gravity
in the framework of quantum mechanics based on Synder quantized space
time, a generalized pseudo Riemannian geometry where space and time can
be reinterpreted as discrete concept non-commutative differential geometry
proposed by Alain Connes known as non-commutative geometry (NCG). On
steps of this theory the mathematical physicist Pierre Martinetti introduces
us to what is called the non-commutative SM in particle physics, formulation
of the electroweak forces.

-Doubly Special Relativity (DSR) was proposed by G. Amelino-Camelia,
J. Magueijo, and L. Smolin in 2000-2002. This theory attempts to deform and
modify the Einstein’s special relativity (SR) in order to describe ultra-high-
energy particles by introducing an observer independent length more speci-
fically including an additional postulate in SR in way it considers effects on
transformation laws between observers and symmetries of space-time. Which
leads to a modified law of energy-momentum conservation, the term “Dou-
bly” came back, to the fact there are two observer independent scales, the
speed of light c and Planck mass or Planck length. DSR tries to address
some of the problems that QG faces in the process of quantization, does not
attempt to formulate the full theory.

A various candidate scenarios of QG theory with the ones mentioned
above predicts the existence of a minimum measurable length scale [6] where
physics is inaccessible. This minimal length is supposed to be near the Planck
length (lp ≈ 10−35m) and this concept is old as quantum physics itself, it goes
back to 1930, with the advent QFT it was considered to solve the problem
of divergence and many other problems of elementary particles where few
physicists of that time sew the necessity to believe in fundamental length.
Heisenberg tried to express minimal length to control the infinities [7] thought
supposing that position operators non- commuting [xµ, xν ] 6= 0 which means
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to abandoned the continuum space time and replacing it by a lattice structure
but he failed to express it mathematically, for the fact that a lattice form
collapse under the action of continuous the Lorentz group.Until 1947, the
physicist H. Snyder [8] during his work on problem of the interaction matter
and QFT where he proposed an suggestion that the usual four dimensional
space-time may not be continuous but discrete or quantized adjacent points
(lattice) but at the same time maintaining Lorentz invariant. Here space-time
became Lorentz convarianty non-commutative and this modification effec-
ted Heisenberg uncertainty to so-called Generalized Uncertainty Princeple
(GUP) and this agree totally with the assumption of existence a smallest
unit of length [9]. This new model of quantum theory of space-time removed
the problem of UV divergence caused by the infinite density near the hori-
zon [10]. Later on, the work of Kempf, Mangano, and Mann in 1995 [11] by
developing the mathematical basis for the Snyder model (the GUP approch)
in QM and QFT made it the strongest candidate that could be virtually a
combination of GR and QM, it address the Planck scale phenomena.

The study of the implications of these modifications took a great impor-
tance, it can be useful to describe non-point-like particles, composite par-
ticles such as hadrons in nuclear physics. In this context, many papers were
published studies to embrace the minimum length to relativistic quantum
mechanics through the study of different quantum system in space with the
new Heisenberg principle, we mention : Klein-Gordon equation with Cou-
lomb potential in the presence of a minimal length [12], the minimal length
case of the Klein-Gordon equation with hyperbolic cotangent potential using
Nikivorof-Uvarof method [13], three-dimensional Dirac oscillator with mini-
mal length : novel phenomena for quantized energy [14], Harmonic oscillator
in relativistic minimal length quantum mechanics [15].

In this presented work, the main purpose is to treat in the framework
of relativistic quantum mechanics via the GUP formalism, the massless re-
lativistic particles in this deformed algebra formalism which are represented
by the Klein-Gordon equation with Kempf non-cummutative algebra, and
we are going to study how such a deformation can affect the main proper-
ties : energy spectrum of a simple physical system, using analytical methods
with ”special functions” such as Gegenbauer polynomials and the Hermite
polynomials to find the wave function and the energy in this space.

Our thesis is essentially composed of three chapters : the first chapter is
dedicated as general introduction that gives us a brief history on the motiva-
tions of this minimal length. In the second chapter, we have made a recall to
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the ordinary and regular spaces, starting with brief view on classical mecha-
nics and some properties, then we introduced the mathematical framework
of quantum mechanics. After that, we presented minimal length quantum
mechanics formalism in (1+1) and (1+3) kempf algebra form in momentum
space, we defined the so-called maximum localized states notion for the Po-
sition representation and wave function on this states. In the third chapter
we have established the equation of Klein Gordon oscillator with the scalar
potential of a charged particle in a uniform external electric field of specific
value ε in the GUP formalism.later on we derived the thermic properties of
the deformed Klein Gordon oscillator using the Euler-MacLaurin method.
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Chapitre 2

The mathematical framework
of minimal length quantum
mechanics

2.1 Regular spaces and Heisenberg incertainty
principal

2.1.1 The mathematical framework of quantum me-
chanics

A brief look at classical mechanics (CM) :

In classical mechanics (CM), any physical system described by a state at
time t is given by a point ω (t) and it time evolution equation in the phase
space Ω, which is mathematically a symplectic manifold W = (T ∗M,ω) ,
where T ∗M is the cotangent bundle over configuration space M (i.e. Rn) and
ω is a symplectic form dω = ∑

dpi∧dqi, in the local Darboux coordinates for
standard symplectic forms {qi, pi} : qi = xi generalized coordinates for the
position and pi = mdqi

dt
their canonically conjugate generalized momenta for

(q, p) ∈ Ω together defined as pure states of the system. A general dynamical
variable f(q, p) represents the physical properties of system (classical obser-
vable :”C-observable”) in time t is a scalar (real-value) smooth (C∞function)
on Ω modelled by 2 − n first-order ordinary differential equations (for the
Hamiltonian system) [16] :
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·
qi = dH

dpi
= {qi, H} , ·pi = −dH

dqi
= {pi, H}, (2.1)

where {f, g} ( f ,g smooth functions) is the familiar Poisson braket’s of f
with g :

{f, g} =
∑
k

{ ∂f
∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk
}, (2.2)

we identified (2.1) as Hamilton’s Equations.
In the study in CM of N-particles system (thermostatistics) we use des-

cription on the phase space (Ω = R6n) as a probability distribution of the
behavior of the system at certain time t can be obtain as ρ(q, p) (or p(dω, t))
in the following we shall reserve the term state to the probability density
ρ(q, p) to describe or to define a general or mixed state to explain that sys-
tem lies in small 4ω region of Ω and it can be also expressed as a convex
sum of mixed or pure states ω0(q0, p0) ∈ Ω interpreted in terms of probability
density by using the Dirac delta function

ρω0(q, p) = δn(q − q0)δn(p− p0), (2.3)

ρ(q, p) =
∑
i

Piρi(q, p) Pi > 0,
∑
i

Pi = 1, (2.4)

where Pi is the probabilities of the classical system at any stateρi(q, p).
A C-observable f(q, p) has an expectation value 〈f〉 and dispersion 〈(4f

)2〉 given by the following equations

〈f〉 =
∫ ∫

dnqdnpρ(q, p)f(q, p), (2.5)

〈(4f)2〉 = 〈f(q, p)− 〈f〉〉2;
= 〈f(q, p)2〉 − 〈f〉2 ≥ 0. (2.6)

The equations (2.1) for a general state representation of Hamiltonian
system is obtained by the Liouville equation
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∂

∂t
ρ(q, p; t) + {ρ(q, p; t), H(q, p; t)} = 0. (2.7)

Here {ρ(q, p; t), H(q, p; t)} is computed by (2.2) Liouville equation is more
general then equations (2.1), it describes non-Hamiltonian system also.

b-Ordinary quantum mechanics

Quantum mechanics (QM) is fundamentally build on the postulate that
the phase space is a Hilbert space H, the Hilbert space of Lebesgus square
integrable functions L2(M) on a manifold M (we often mean by Hilbert space
specifically for ”wave mechanics ” : the extended Hilbert space that called
the rigged Hilbert space RHS [17, 18]). This implies a different evolution
equation, the classical image of observables, states and laws of motion are
replaced by more sophisticated structures, the deterministic theory turned to
probabilistic one. Here the physical systems are described by the self-adjoint
part of a C*-algebra A over H, namely algebras of operators (observables)
on Hilbert space.

b1)-Hilbert space H

We call a complex Hilbert space H, the space that satisfies the following :
(a)-H is a linear space (H,+, ·)

A linear space (also called vector space) H over the complex numbers C
is a set of elements ϕ, ψ, χ . . . with the addition rule (+) of any two elements
(vectors) and the multiplication rule (·) of vectors by scalars (in this case
we mean complex numbers λ ∈ C), for thus two rules we have the following
properties :

The addition rule properties (structure of an abelian group) :
(1)-ϕ+ ψ = ψ + ϕ , ∀ϕ, ψ ∈ H,
(2)- (ϕ+ ψ) + φ = ϕ+ (ψ + φ), ∀ϕ, ψ, φ ∈ H,
(3)- There exists a 0 ∈ H such that 0 + ψ = ψ, ∀ψ ∈ H,
(4)-∀ϕ ∈ H there exists ψ ∈ H such that ϕ+ ψ = 0 (we write ψ = −ϕ).
The multiplication of vectors by scalars properties :
(5)- (λµ)ψ = λ (µψ), ∀λ, µ ∈ C ,∀ψ ∈ H,
(6)-(λ+ µ)ψ = λψ +µψ, ∀λ, µ ∈ C , ∀ψ ∈ H,
(7)- λ (ϕ+ ψ) = λϕ+ λψ , ∀λ ∈ C , ∀ϕ, ψ ∈ H,
(8)- 1ψ = ψ , ∀ψ ∈ H.
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(b)- H is a scalar product space (H,+, ·, (., .))
A linear space is called a Euclidean space (or scalar product space or pre-

Hilbert space) if for each pair of vectors ϕ, ψ ∈ H we can define a complex
number (ϕ, ψ) satisfying the following properties :

(1)- (ϕ, ψ) = (ψ, ϕ), ∀ϕ, ψ ∈ H,
(2)- (ϕ, αψ1 + βψ2) = α (ϕ, ψ1) + β (ϕ, ψ2), ∀ϕ, ψ1, ψ2 ∈ H , ∀α, β ∈ C,
(3)-(ψ, ψ) ≥ 0, and (ψ, ψ) = 0 if and only if (iff) ψ = 0.

The properties (1) and (3) holds definition of a norm of a vector ‖ ψ ‖=√
(ψ, ψ)

We defined the Cauchy–Schwarz inequality which is always satisfied in
these spaces

| (ϕ, ψ) |2≤ (ψ, ψ) (ϕ, ϕ) . (2.8)

The Parallelogram identity and Polarization identity are also satisfied
naturally in scalar product space :

Parallelogram identity

‖ ψ + ϕ ‖2 + ‖ ψ − ϕ ‖2:= 2
(
‖ ψ ‖2 + ‖ ϕ ‖2

)
. (2.9)

Polarization identity

(ϕ, ψ) = ‖ ϕ+ ψ ‖2 − ‖ ϕ− ψ ‖2

4 + i

(
‖ ϕ+ iψ ‖2 − ‖ ϕ− iψ ‖2

4

)
. (2.10)

Hermitian form : is a complex-valued function h (ϕ, ψ) of two vector
arguments :

(1)-h (ϕ, ψ) = h (ψ, ϕ),
(2)-h (ϕ, λψ) = λh (ϕ, ψ),
(3)-h (ϕ1 + ϕ2, ψ) = h (ϕ1, ψ) + h (ϕ2, ψ).
h is a positive definite Hermitian form, if h satisfies :
(a)-h (ψ, ψ) ≥ 0 ,∀ψ ∈ H,
(b)-h (ψ, ψ) = 0 for ψ = 0.
A positive definite Hermitien form is a scalar product .
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For positive Hermitien form the Cauchy–Schwarz inequality is also satis-
fied | h (ϕ, ψ) |2≤ h (ψ, ψ)h (ϕ, ϕ)

(c)- H is separable space
There exists a Cauchy sequence ψn ∈ H such that for every ψ of H

(n = 1, 2, 3...) and ε > 0, there exists at least one ψn of the sequence for
which

‖ψ − ψn‖ ≤ ε. (2.11)
(d)-H is complete space
Every Cauchy sequence ψn ∈ H converges to an element of H . That is,

for any ψn, the relation

lim
n,m−→∞

‖ψn − ψm‖ = 0, (2.12)

defines a unique limit ψ of H such that

lim
n−→∞

‖ψ − ψn‖ = 0. (2.13)

b2)- Dirac notation (bra ,ket)

Let us consider a complex Hilbert space H (Ref [19]).

H = {|φ〉 , |ϕ〉 , |ψ〉 , . . .}

The elements of H are called a ket vectors or kets .
A linear function ϕ : H → C defined by

ϕ(α |ψ1〉+β |ψ2〉) = αϕ(|ψ1〉)+βϕ(|ψ2〉) ∀α, β ∈ C , |ψi〉 ∈ H. (2.14)

We write the linear function as 〈ϕ |and the action as 〈ϕ | ψ〉 ∈ C. The
set of linear functions is itself a vector space called the dual vector space of
H, denoted H∗. An element of H∗ is called a bra vector or bra.

Let {|e1〉 , |e2〉 , . . .} be a basis of H ( the expansion of Euclidean space
vectors in terms of the basis vectors ”Himal basis”). A ny vector |ψ〉 ∈ H is
then expended as |ψ〉 = ∑

n ψn |en〉 where ψn ∈ C is called the nth component
of |ψ〉 . Now let us introduce a basis {〈ε1| , 〈ε2| , . . .} in H∗. We require that
this basis be a dual basis of {|en〉} that is

〈εi | ej〉 = δij (2.15)
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Then an arbitrary linear function 〈ϕ| is expanded as 〈ϕ| = ∑
n ϕn 〈εn|,

where ϕn ∈ C is the nth component of 〈ϕ|. The action of 〈ϕ| ∈ H∗ on
|ψ〉 ∈ H is now expressed in terms of their components as

〈ϕ | ψ〉 =
∑
ij

ϕiψj〈εi | ej〉 =
∑
ij

ϕiψjδij =
∑
i

ϕiψi (2.16)

One may consider |ψ〉 as column vector and 〈ϕ|as row vector so that
〈ϕ | ψ〉 is regarded as matrix multiplication of a row vector and a column
vector yielding a scalar.

It is possible to introduce a one-to-one correspondence between elements
〈ϕ| = ∑

n ψ
∗ 〈εn| ∈ H∗ the reason for the complex conjugation of ψn becomes

clear shortly. Then it is possible to introduce an inner product between two
elements of H in this notation. Let |ϕ〉 , |ψ〉 ∈ H. Their inner product is
defined by

(|ϕ〉 , |ψ〉) ≡ 〈ϕ | ψ〉 =
∑
n

ϕ∗nψn (2.17)

We customarily use the same letter to denote corresponding bras and kets.
The norm in this notation of inner product is expressed by ‖|ψ〉‖ =

√
〈ψ | ψ〉

and we call a normalized ket vector, the vector that verifies ‖|ψ〉‖2 = 〈ψ |
ψ〉 = 1.

b3) - Linear operators

In the following we are going to focus on H as Euclidean space vectors
(H,+, ·, 〈., .〉)

A linear operators (transformation) in a vector space (H,+, ·), that maps
each vector |ψ〉 in a vector space H into a vector |ϕ〉 ∈ H (or another vector
space), A |ψ〉 = |ϕ〉, is called a linear operator. If for every |ϕ〉, |ψ〉 ∈ H and
λ ∈ C it fulfills the conditions :

(1)-A(|ϕ〉+ |ψ〉) = A |ϕ〉+ A |ψ〉 ;
(2)-A (λ |ψ〉) = λ (A |ψ〉) .
Let’s consider two operators A and B, we can easily defined in the follo-

wing operation :

(A+B) |ψ〉 := A |ψ〉+B |ψ〉 , (λA) |ψ〉 := λ (A |ψ〉) , (AB) |ψ〉 := A (B |ψ〉) .
(2.18)
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The definition of the operation : A+B and AB is more complicated and
involves questions on the domains and on the ranges of the operators.

Adjoint operator : For every linear operator A in vector space H ,there
exists a unique linear operator A† on the elements |ϕ〉 in for which

(|ψ〉 , A |ϕ〉) =
(
A† |ψ〉 , |ϕ〉

)
, (2.19)

for all |ψ〉 , |ϕ〉 ∈ H.
The operator A† is called the adjoint operator of A. An operator for

which A† = A is called self-adjoint or Hermitian. On the other hand, An
operator is anti-Hermitian or skew hermitian if A† = −A

Identity operator : We call Identity operator 11 on H , the linear
operator such that 11 (|ψ〉) = |ψ〉 for all |ψ〉 ∈ H.

The zero operator, denoted 0 in H , 0 |ψ〉 = 0 for all |ψ〉 ∈ H.
The inverse operator : An operator B is called the inverse of an

operator B if BA = AB = 11. The operator B is denoted by A−1.
Projection operator : An operator is said to be a projection operator

if it is Hermitien and satisfies

A† = A , A2 = A, (2.20)

the identity operator is projection operator 11† = 11 , 112 = 11
Unitary operator : An operator is call unitary operator if A = A−1

AA† = A†A = 11. (2.21)

Normal operator : An operator A is said to be normal if

A†A = AA†. (2.22)

Spectral theorem : An operator A in H is diagonalizable iff A is
normal.

Eigenvector and eigenvalue : A nonzero vector |ψ〉 ∈ H is called an
eigenvector of the linear operator A if

A |ψ〉 = λ |ψ〉 with λ ∈ C; (2.23)

λ is called the eigenvalue of A corresponding to the eigenvector |ψ〉.
For a given operator A, there may be many (perhaps infinitely many)

different eigenvectors with different eigenvalues. There may also be n (finite
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or infinite) many different eigenvectors with the same eigenvalue λ. In this
case, λ is called n-fold degenerate.

If A is a Hermitian operator defined on a Hilber space or pre-Hilbert
space H, then eigenvectors and eigenvalues have the following properties :

(1)-All eigenvalues are real.
(2)- If |ψ1〉 and |ψ2〉 are eigenvectors of A with eigenvalues λ1 and λ2,

respectively, and if λ1 6= λ2, then |ψ1〉 and |ψ2〉 are orthogonal to each other
〈ψ1 | ψ2〉 = 0.

Let A and B be two operators in H, the commutator of A and B is defined
by

[A,B] ≡ AB−BA or [A,B] |ψ〉 = AB |ψ〉−BA |ψ〉 ,∀ |ψ〉 ∈ H, (2.24)

A and B are said to commute if [A,B] ≡ AB −BA = 0.
-We assume A is a set of all operators (A,B,C...) define all over the scalar

product space H.
C*-algebra A over H :
Let’s consider a set A is an (associative) algebra with unit element iff
(1)- A is a vector space,
(2)- For every pair A,B ∈ A, a product AB ∈ A is defined such that :
(a)-(AB)C = A (BC) ;
(b)-A(B + C) = AB + AC;
(c)-(A+B)C = AC +BC;
(d)-(λA)B = A(λB) = λAB,
(3) There exists an element 11 ∈ A such that
(a)-11A = A11 = A , ∀A ∈ A,
(4)- An algebra A is called a ∗−algebra if we have on the algebra a

†−operation (involution), A −→ A†, that has the following defining proper-
ties :

(a)-(λA+ µB)† = λ∗A† + µ∗B†;
(b)-(AB)† = B†A†;
(c)-

(
A†
)†

= A;
(d)-11† = 11.
Thus the set of linear operators defined on the whole vector space H forms

a ∗−algebra. A subalgebra of this algebra is called an ”operator ∗−algebra”.
It can be shown that in a certain sense every ∗−algebra can be realized as
an operator ∗−algebra in a scalar-product space.
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-We call a subset A1 of an algebra A a subalgebra of A if A1 is an algebra
with the same definitions of the operations A,B ∈ A1 and λ ∈ C, it follows
that A+B ∈ A1, λA ∈ A1, and AB ∈ A1(for A,B ∈ A).

b4) - Axioms of quantization

A simple isolated classical system a be quantized through the following
axioms :

A1−The quantum system and the state of system is described by vectors
|ψ〉 ∈ H, in this sense |ψ〉 is also called the state or a state vector, the state
|ψ〉 and c |ψ〉 (c ∈ C, c 6= 0) describe the same state.

A2− A physical quantity (observable) is represented by a Hermitien ope-
rator Â acting on H and the value that can take is one of its eigenvalues.

A3−The Poisson bracket in CM (1.2) is replaced by the commutation
(commutator algebra) [

Â, B̂
]
≡ ÂB̂ − B̂Â. (2.25)

multiplied by i
~ . The fundamental commutation relation are :

[q̂i, q̂j] = [p̂i, p̂j] = 0 , [q̂i, p̂j] = i~δij. (2.26)
The Hamilton equation of motion (1.1) became

·
q̂i = i

~
[
q̂i, Ĥ

]
,

·
p̂i = i

~
[
p̂i, Ĥ

]
, (2.27)

which is for Â(t) given by Heisenberg equation of motion (will be clearified
later in the next subsections), hence the time independent C-observable A
(the classical quantity) satisfies the same equation as equation (1.7) (as we
defiened in the previous subsection)

dÂ (t)
dt

= i

~
[
Ĥ, Â (t)

]
. (2.28)

A4−Let |ψ〉 be an arbitrary state. The (real) number a state assigns to
an Hermitien element is interpreted as the expectation value of the corres-
ponding observable Â(t)

〈A〉t = 〈ψ | Â(t) | ψ〉
〈ψ | ψ〉

. (2.29)

A5− For any physical state |ψ〉 ∈ H, there exists an operator for which
|ψ〉 is one of the eigenstates.
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b5) -Discrete bases representation : Operators

In the discrete representation every state vector |ψ〉 of the Hilbert space
H is expressed by it components, using term of complete set of base kets
with the orthonormality condition.

Since H is separable space and there are at most a countably infinite
number of vectors in the basis. It is possible to construct an onthonormal
basis {|φn〉} (Souder basis) such that :

(|φm〉 , |φn〉) = 〈φm | φn〉 = δnm (2.30)

where δnm is the Kronecker delta symbol defined by

δnm =
{

1 for m = n

0 for m 6= n
, (2.31)

by using the scalar product between two ket vectors. Suppose |ψ〉 =∑∞
n=1 ψn |φn〉 by multiplying 〈φn| for the left one obtains 〈φn | ψ〉 = ψn then
|ψ〉 is expressed as

|ψ〉 =
∞∑
n=1
〈φn | ψ〉 |φn〉 =

∞∑
n=1
〈φn | ψ〉 |φn〉 =

∞∑
n=1
|φn〉 〈φn | ψ〉. (2.32)

Since this is true for any |ψ〉, we have obtained the completeness relation

11 =
∞∑
n=1
|φn〉 〈φn| . (2.33)

Where 11 is the identity operator of H.
Or simply (2.29) with the use of identity operator one can obtain

|ψ〉 = 11 |ψ〉 ;

=
( ∞∑
n=1
|φn〉 〈φn|

)
|ψ〉 ;

=
∞∑
n=1

ψn |φn〉 . (2.34)

The bra-ket is given by

17



〈ψ | ϕ〉 =
∞∑
n=1

ψ∗nϕn. (2.35)

For each linear operator A, we can easily write

Â = 11Â11 =
( ∞∑
n=1
|φn〉 〈φn|

)
Â

( ∞∑
n=1
|φn〉 〈φn|

)
;

=
∑
nm

Anm |φn〉 〈φn| , (2.36)

where Anm is the nm matrix element of the operator Â

Anm = 〈φn| Â |φm〉 .

The matrix representation of |φ〉 = Â |ψ〉 can be obtien in the discrete
representation by inserting a completeness relation and simplifying as follows

|φ〉 = Â |ψ〉 ;( ∞∑
n=1
|φn〉 〈φn|

)
|φn〉 =

( ∞∑
n=1
|φn〉 〈φn|

)
Â

( ∞∑
n=1
|φn〉 〈φn|

)
|ψ〉 ;

∞∑
n=1

bn |φn〉 =
∞∑
n=1

ψn |φn〉 〈φn|A |φm〉 =
∞∑
n=1

ψnAnm |φn〉 ; (2.37)

where bn = 〈φn | φ〉.
Similarly we calculate 〈ϕ| Â |ψ〉 through applying

〈ϕ| Â |ψ〉 = 〈ϕ| 11Â11 |ψ〉 ;

〈ϕ| Â |ψ〉 =
∑
m,n

〈ϕ | φn〉 〈φn| Â |φm〉 〈φm | ψ〉; (2.38)

=
∑
n,m

b∗nAnmam.

Now, we introduce another set
{∣∣∣φ′n〉} and it has to be different from

{|φn〉}. The change of basis is represented by expressing kets |φn〉 of the old
basis by the new one

18



|φn〉 =
( ∞∑
n=1

∣∣∣φ′m〉 〈φ′m∣∣∣
)
|φn〉 ;

=
∞∑
n=1

Umn
∣∣∣φ′m〉 , (2.39)

where Umn = 〈φ′m | φn〉 is matrix element.
The eigenvalues and eigenvectors of operator Â are Â |ψ〉 = λ |ψ〉, in this

representation are expressed with use of identity operator by
∑
n

Amn〈φn | ψ〉 = λ
∑
n

〈φn | ψ〉δnm, (2.40)

it can be written
∑
n

[Amn − λδnm] 〈φn | ψ〉 = 0, (2.41)

with Amn = 〈φm| Â |φn〉 .
The change of basis form are given by

A
′

mn =
〈
φ
′

m

∣∣∣
 ∞∑
j=1
|φj〉 〈φj|

 Â( ∞∑
n=1
|φl〉 〈φl|

) ∣∣∣φ′n〉 ;

=
∑
jl

UmjAjlU
∗
nl. (2.42)

b6) - Continues bases representation : Wave function The elements
|ψ〉of H are interpreted as representing physical states and each state vector
corresponds to one wave function :

For a moving particle on real line R, we define on a pair of continuous
bases : the continuous basis in the coordinate and momentum representation
denoted as ({|x〉} and {|p〉}) respectively, with x, p ∈ R. We consider :

X as the position operator with the eigenvalue x and the corresponding
eigenvector |x〉 ; X̂ |x〉 = x |x〉. The eigenvectors are normalized as

〈x | x′〉 = δ(x− x′). (2.43)
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Similarly let p be the eigenvalue of P̂ with the eigenvector |p〉 ; P̂ |p〉 =
p |p〉 with the obtained normalization

〈p | p′〉 = δ(p− p′). (2.44)
The inner product ψ(x) ≡ 〈x | ψ〉 is the component of |ψ〉 in the basis

|x〉

|ψ〉 =
∫
|x〉 〈x | ψ〉dx,

=
∫
ψ(x) |x〉 dx, (2.45)

we intoduce the following identity

11 :=
∫ +∞

−∞
|x〉 〈x| dx. (2.46)

We define the coefficient 〈x | ψ〉 ∈ C by the wave function, it is the
probability amplitude of finding the particle at x in the state |x〉 namely
| 〈x | ψ〉 |2 dx the probability of finding the particle in the interval [x, x+ dx],
the normalization condition in this representation is expressed∫ +∞

−∞
dx | 〈x | ψ〉 |2 dx = 〈ψ | x〉〈x | ψ〉 = 1. (2.47)

Since the probability of finding the particle anywhere on the real line is
always units.

Similarly ψ(p) ≡ 〈p | ψ〉 is the probability amplitude of finding the mo-
mentum of the particle in the interval [p, p+ dp] is | ψ(p) |2 dp.

The scalar product of two arbitrary states |ψ〉, |ϕ〉 of H in terms of the
wave-function is

〈ψ | ϕ〉 =
∫ +∞

−∞
ψ∗ (x)ϕ (x) dx;

=
∫ +∞

−∞
〈ψ | x〉〈x | ϕ〉dx;

〈ψ | ϕ〉 =
∫ +∞

−∞
〈ψ | p〉〈p | ϕ〉dp =

∫ +∞

−∞
ψ∗(p)ϕ(p)dp, (2.48)

with the following identity
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11 :=
∫ +∞

−∞
|p〉 〈p| dp. (2.49)

Now, we write down the operators in the basis |x〉. From the defining
equation X̂ |x〉 = x |x〉, one obtains 〈x| X̂ = 〈x|x. Which yields after multi-
plication by |ψ〉 from the right

〈x| X̂ |ψ〉 = x〈x | ψ〉;
= xψ (x) ,

X̂ (ψ (x)) = xψ(x), (2.50)

the momentum operator for any state |ψ〉 of H, one obtains

〈x| P̂ |ψ〉 = −i d
dx
〈x | ψ〉;

= −i d
dx
ψ(x). (2.51)

This is also written as

P̂ (ψ (x)) = −idψ (x)
dx

. (2.52)

Similarly if one uses a basis |p〉 , one will have the momentum represen-
tation of the operators as

X̂ |p〉 = −i d
dp
|p〉 , P̂ |p〉 = p |p〉 , (2.53)

〈p| X̂ |ψ〉 = i
d

dp
ψ (p) , 〈p| P̂ |ψ〉 = pψ (x) , (2.54)

〈x | p〉 = 1√
2π

exp(ipx) , 〈p | x〉 = 1√
2π

exp(−ipx), (2.55)

ψ(p) could be defined as Fourier transformation of ψ (x) :
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ψ (p) = 〈p | φ〉 =
∫
dx 〈p | x〉〈x | p〉;

=
∫ dx√

2π
exp(−ipx)ψ (x) . (2.56)

we can define the same in 3D
Let’s consider a pair of continuous bases : the continuous basis in the

coordinate and momentum representation denoted as ({|−→r 〉} and {|−→p 〉})
which are respectively eigenkets of the position

−→
R̂ and momentum operator−→

P̂

−→
R̂ |−→r 〉 = −→r |−→r 〉 ,

−→
P̂ |−→p 〉 = −→p |−→p 〉 , (2.57)

with the following normalization for position and momentum

〈−→r | −→r ′〉 = δ(−→r −−→r ′);
〈−→r | −→r ′〉 = δ(x− x′)δ(y − y′)δ(z − z′), (2.58)

〈−→p | −→p ′〉 = δ(−→p −−→p ′);
= δ(px − p

′

x)δ(py − p
′

y)δ(pz − p
′

z), (2.59)

the component of |ψ〉 in the basis of |−→r 〉 are written as follows

|ψ〉 ≡
∫
ψ(−→r ) |−→r 〉 dr3. (2.60)

The 3D position representation inner product is given by

〈ψ | ϕ〉 =
∫ +∞

−∞
ψ∗ (−→r )ϕ (−→r ) dr3, (2.61)

with the following completeness relation

11 :=
∫ +∞

−∞
|−→r 〉 〈−→r | dr3. (2.62)

We also can define this relation
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〈−→r | −→p 〉 = 1
3
√

2π~
exp(i−→p · −→r ) , 〈−→p | −→r 〉 = 1

3
√

2π~
exp(−i−→p · −→r ).

(2.63)
The action of momentum operator on the wave function in position re-

presentation expressed by

〈−→r |
−→
P̂ |ψ〉 =

∫
〈−→r |
−→
P̂ |−→p 〉 〈−→p | ψ〉dp3;

= 1
3
√

2π~

∫
−→p exp(i−→p · −→r )ψ (p) dp3;

= −i~∇
∫ 1

3
√

2π~
exp(i−→p · −→r )ψ (p) dp3;

〈−→r |
−→
P̂ |ψ〉 = −i~∇〈−→r | ψ〉, (2.64)

where P̂ = −i~−→∇.
We derive the Schrödinger differential equation, which ψ (−→r ) is a function

of continuos position satisfies by applying 〈−→r | on from the left, we obtain

〈−→r | i d
dt
|ψ(t)〉 = 〈−→r | Ĥ |ψ(t)〉 (2.65)

Now, we obtain the time-dependent Schrödinger equation for the Hamil-
tonian of the type Ĥ = p̂2

2m + v(−→r ) by

i
d

dt
ψ(−→r , t) = 〈−→r |

−→
P̂ 2

2m + v(−→r ) |ψ(t)〉 ;

= − 1
2m∇

2ψ(−→r , t) + v (−→r )ψ(−→r , t), (2.66)

where ψ(−→r , t) ≡ 〈−→r | ψ(t)〉.

b7) -Pictures and evolution equations In quantum mechanics we iden-
tify two type of representations (pictures) with two different evolution equa-
tions :

The first evolution equation is given by the Heisenberg equation (2.28),
where the formal solution of this equation is easily obtained as
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A(t) = exp(iĤt)Â(0) exp(−iĤt), (2.67)

where the operators Â (t) and Â (0) in (2.67) are related by the unitary
operator

U (t) = e−iĤt. (2.68)

-This representation called the Heisenberg picture, where we consider that
the state of the system at a given moment is determined by the values of all
the observables on this state at this moment. It is the algebra of observables
that becomes the central element (the formulation of matrix mechanics). The
evolution equation is done in this algebra, and an observable depends on time
through the Heisenberg equation.

Now to the second evolution equation, let us write down the expectation
value of Â with respect to the state |ψ〉 as

〈A〉t = 〈ψ| exp(iĤt)Â exp(−iĤt) |ψ〉 . (2.69)

If we write |ψ(t)〉 ≡ e−iĤt |ψ〉 we find that the expectation value at t is
also expressed as

〈A〉t = 〈ψ (t)| Â (0) |ψ (t)〉 . (2.70)

-This is the so-called the Schrödinger picture, where it is interpreted as
state function evolution i d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 where the evolution equation is

a differential of normalized time-dependent state associated to a self-adjoint
operator Ĥ on the Hilbert space which is the Hamiltonian. The expectation
value of an observable on a normalized state |ψ〉 in this representation is
expressed at time t by (2.70) this expectation value is real. Here in this
representation wave mechanics becomes the main element.

Generalize uncertainty relation Let’s take the expectation values of
two observables Â and B̂ on a normalize state vector |ψ〉 : 〈Â〉 = 〈ψ| Â |ψ〉,
〈B̂〉 = 〈ψ| B̂ |ψ〉 .

We introduce the operators 4Â and 4B̂ :

4Â = Â− 〈Â〉 , 4B̂ = B̂ − 〈B̂〉. (2.71)

Where
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(
4Â

)2
= Â2 − 2Â〈Â〉+ 〈Â〉2,(

4B̂
)2

= B̂2 − 2B̂〈B̂〉+ 〈B̂〉2. (2.72)

We have 〈Â2〉 = 〈ψ| Â2 |ψ〉, 〈B̂2〉 = 〈ψ| B̂2 |ψ〉 , the uncertainties 4A and
4B is defined by

4A =
√
〈
(
4Â

)2
〉 =

√
〈Â2〉+ 〈Â〉2,

4B =
√
〈
(
4B̂

)2
〉 =

√
〈B̂2〉+ 〈B̂〉2. (2.73)

The action of thus two observables on any state |ψ〉 is given as follows

|ϕ〉 = 4Â |ψ〉 =
(
Â− 〈Â〉

)
|ψ〉 , |φ〉 = 4

a
B |ψ〉 =

(
B̂ − 〈B̂〉

)
|ψ〉 ,

〈ϕ| = 〈ψ|
(
Â− 〈Â〉

)
, 〈φ| = 〈ψ|

(
B̂ − 〈B̂〉

)
. (2.74)

We can construct the famous Heisenberg uncertainty relation for arbitrary
obrervables Â and B̂ by defining

4Â24B̂2 = 〈ϕ | ϕ〉〈φ | φ〉. (2.75)
Now we can apply the Cauchy-Schwarz inequality (1.8), which is true for

any inner product with the following relation

Im(〈ϕ | φ〉) =
[ 1
2i (〈ϕ | φ〉 − 〈φ | ϕ〉)

]
, (2.76)

which is also valid for any complex number 〈ϕ | φ〉 ∈ C.
We insert to (2.75) the inner product formula introduced above and with

relations (1.8) and (1.76), we obtain

4Â24B̂2 ≥
[ 1
2i (〈ϕ | φ〉 − 〈φ | ϕ〉)

]2
;

4Â24B̂2 ≥
[ 1
2i
(
〈ψ|

(
Â− 〈Â〉

) (
B̂ − 〈B̂〉

)
|ψ〉 − 〈ψ|

(
B̂ − 〈B̂〉

) (
Â− 〈Â〉

)
|ψ〉

)]2
;

(2.77)
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it’s easy to simplify (1.77) as

4Â24B̂2 ≥
[ 1
2i(〈ψ| ÂB̂ − 〈Â〉B̂ − 〈B̂〉 Â+ 〈Â〉〈B̂〉 |ψ〉

− 〈ψ| B̂Â− 〈B̂〉 Â− 〈Â〉B̂ + 〈B̂〉〈Â〉 |ψ〉)
]2

;

4Â24B̂2 ≥
[
[ 1
2i(〈ψ| ÂB̂ |ψ〉 − 〈Â〉 〈ψ| B̂ |ψ〉 − 〈B̂〉 〈ψ| Â |ψ〉+ 〈Â〉〈B̂〉 〈ψ | ψ〉

− 〈ψ| B̂Â |ψ〉 − 〈B̂〉 〈ψ| Â |ψ〉 − 〈Â〉 〈ψ| B̂ |ψ〉+ 〈B̂〉〈Â〉〈 ψ | ψ〉)
]2

;

4Â24B̂2 ≥
[ 1
2i(〈ψ| ÂB̂ |ψ〉 − 〈Â〉〈B̂〉 − 〈B̂〉〈Â〉 + 〈Â〉〈B̂〉

− 〈ψ| B̂Â |ψ〉+ 〈B̂〉 〈Â〉+ 〈Â〉〈B̂〉 − 〈B̂〉〈Â〉)
]2

;

4Â24B̂2 ≥
[ 1
2i
(
〈ψ| ÂB̂ |ψ〉 − 〈ψ| B̂Â |ψ〉

)]2
;

4Â24B̂2 ≥
[ 1
2i
(
〈ψ| ÂB̂ − B̂Â |ψ〉

)]2
;

4Â24B̂2 ≥
[ 1
2i
(
〈
[
Â, B̂

]
〉
)]2

;

4Â24B̂2 ≥| 1
2i〈
[
Â, B̂

]
〉 |2;

4Â4B̂ ≥ 1
2 | 〈

[
Â, B̂

]
〉 | (2.78)

The measurement of B̂ made us lose all the information we had obtained
on Â during the first measurement : the observable Â and B̂ do not com-
mute (incompatible), i.e. we cannot measure it simultaneously (problem of
simultaneous diagonalization of operators).
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2.2 General Heisenberg uncertainty princi-
pal and deformed algebra

2.2.1 Momentum space and general Hisenberg uncer-
tainty principal

In the introduction, we have mentioned that quantum gravity is charac-
terized by the Planck length [20], at the Planck length gravitational effect
can not be ignored, the extreme energy concentration in a small space will
create a black hole with an event horizon. To this fact, several studies where
minimal length played an essential role such as non-commutative geome-
tries [21] , the Cosmological Constant Problem [22] , and string theory [23]
have proposed small corrections to the Heisenberg uncertainty principle of
the form :(4X) (4P ) ≥ ~

2

(
1 + β (4p)2 + ...

)
, this form known as genera-

lized uncertainty principle (GUP). This correction has as a consequences,
the minimum non-zero uncertainty (4x)min which can be related to the size
of the particles and the modification of the canonical commutation relation
between the position operator and the momentum operator which become :[
X̂, P̂

]
= i~ (1 + βp2 + ...) , where β is a small positive parameter called the

deformation parameter.

Minimal length deformed QM (ml-QM)

The (1+1) dimensional structure of ml-QM In the present work of
Kempf [11], the one dimonsionl commutation relation between position and
momentum is written [

X̂, P̂
]

= i~(1 + βp2), (2.79)

the relation (2.79) implies the appearance of a non-zero minimal uncer-
tainty 4X0 in position.

The respective uncertainty relation (GUP) to (2.79) is given below

4X4P ≥ ~
2(1 + β(4p)2 + γ), (2.80)

where β and γ are two positive parameters independent of X and P but
which depend on the mean value of the operators X and P ( γ = β〈p〉2), we
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can note that in the case where these quantities are zero we find ourselves
back to the Heisenberg uncertainty relation of ordinary quantum mechanics

4X4P ≥ ~
2 . (2.81)

This fact explains the random characteristic of the variation of 4X and
4P (the increase of4X implies the decrease of4P ). On the other hand, the
dependence of the relation (2.80) in β(4p)2 shows that 4X cannot take any
small value in an arbitrary way. This gives rise to the minimal uncertainty
in the position measurement 4X0

4X0 ≥
~
√

2β
4 (3 + γ). (2.82)

The expression (2.80) is satisfied in the interval : [−4p,+4p] for fixed
4X

4P± = 4X
~β
±
√
4X
~β
− 1
β
− 〈p〉2. (2.83)

The minimal value (4X)min is obtained by

(4X)min(〈p〉) = ~
√
β
√

1 + β〈p〉2;

= ~
√
β, with 〈p〉 = 0, (2.84)

where the smallest value of (4X)min denoted by 4X0 is non-zero

4X0 = ~
√
β. (2.85)

In a similar way to ordinary QM Heisenberg canonical commutation re-
lation , we can find a representation of X̂ and P̂ which verifies the modified
commutation relation above (2.79) described as

X̂ = i~(1 + βp2)∂p , P̂ = p̂ . (2.86)
In the momentum space, we can denote the position X̂ and momentum P̂

operators and ψ(p) is the wave function, which is defined on the momentum
space parameterized by p as

P̂ψ(p) = pψ(p) , X̂ψ(p) = i~(1 + βp2) ∂
∂p
ψ(p). (2.87)

28



As we notice, P̂ is still obviously symmetric(
〈ψ| P̂

)
ϕ〉 = 〈ψ

(
P̂ |ϕ〉

)
, (2.88)

but we can not say the same thing about the symmetry of X̂, it’s can be
seen and satisfied only through new scalar product formula in this deformed
algebra

〈ψ | ϕ〉 =
∫ +∞

−∞

dp

(1 + βp2)ψ
∗(p)ϕ(p). (2.89)

Now, lets show the symmetry of X̂ with the use of deformed algebra scalar
product (2.89)

〈ψ|
(
X̂ |ϕ〉

)
=
∫ +∞

−∞

dp

1 + βp2ψ
∗(p)

[
i~
(
1 + βp2

)
∂p
]
ϕ(p);

= i~
∫ +∞

−∞
dpψ∗(p)∂pϕ(p);

= [i~ψ∗(p)ϕ(p)]+∞−∞ − i~
∫ +∞

−∞
dp (∂pψ∗(p))ψ(p) =

(
〈ψ| X̂

)
ϕ〉.

(2.90)

On the other hand with the same way (integrating by parts) we obtain

(
〈ψ | X̂

)
| ϕ〉 =

∫ +∞

−∞

dp

1 + βp2

[
i~
(
1 + βp2

)
∂pψ (p)

]∗
ϕ (p) ;

= −i~
∫ +∞

−∞
dp (∂pψ∗ (p))ϕ (p) . (2.91)

The modification of this product implies a new completeness relation,
which is written by ∫ +∞

−∞

dp

1 + βp2 |p〉 〈p| = 11. (2.92)

The scalar product of momentum eignstates is given by

〈p | p′〉 = (1 + βp2)δ(p− p′), (2.93)
and it’s equal to
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〈p | p′〉 = δ( 1√
β

arctan(
√
βp)− 1√

β
arctan(

√
βp
′)). (2.94)

A brief review on the ml-QM structure in the form of ( 3+1)
dimension Kempf algebra The development of the field of research rela-
ted to the minimum uncertainty problem for relativistic and non-relativistic
quantum systems has been mainly realized by [11] , which have established
generalized commutation relations according to the dimensions of the mo-
mentum representation space. We shall see that the 3D generalization of the
QM introduced in previous subsection with respect to the commutation re-
lation of the three dimensional deformed Kempf algebra takes the following
tensor form [15] :

[Xi, Pj] = i~[δij(1 + βP 2) + β
′
pipj], (2.95)

[Xi, Xj] = −i~[2β − β ′ + (2β + β
′)βP 2]εijkLk, (2.96)

[Pi, Pj] = 0, (2.97)

where β , β ′and γ are very small non negative parameters.
From the generalized commutation relations above the position and mo-

mentum operators in the momentum space are defined the following form

Xi = i~[(1 + βP 2) ∂

∂pi
+ β

′
pipj

∂

∂pj
+ γpi] ,

a
P i = pi. (2.98)

The angular momentum operator is given in this representation by

Li = (1 + βP 2)−1εijkXjPk i = 1, 2, 3. (2.99)

The (2.97) satisfy the well-known commutation relation as follows

[Li, Xj] = ihεijkXk , [Li, Pj] = ihεijkPj. (2.100)

We can express modified form of GUP (2.84) as

4Xi4Pi ≥
~
2 [1 + 3β(4Pi)2 + β

′(4Pi)2]. (2.101)
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As for the generalized minimal uncertainty relation in 3D (2.79), the
minimal uncertainty in position is isotropic

(4X)min(〈p〉) = ~
√

3β + β ′ . (2.102)
The completeness relation (2.91) in momentum space becomes

11 =
∫ +∞

−∞

d3p(
[1− (β + β ′)p2]1−

γ−β′

β+β′

) | p〉〈p | . (2.103)

Finally, the scalar product in (2.89) turns to

〈ψ | ϕ〉 =
∫ +∞

−∞

d3p

[1− (β + β ′)p2]1−
γ−β′

β+β′

ψ∗(p)ϕ(p). (2.104)

2.2.2 Configuration space representation in presence
of minimal length

In the presence of a minimal measurable length, as we have seen in pre-
vious section and also in the introduction, all literature ([13, 15]) represented
the calculation in the momentum spaces, that goes back to the fact that
we can introduce our QM systems on momentum space without any diffi-
culty meanwhile, in the position space representation of the Hilbert space of
standard QM collapses and breaks down. More exactly (Ref [11]) :

In ordinary quantum mechanics continuous representation, we have defi-
ned momentum space element ψ (p) ≡ 〈p | ψ〉 and position matrix element
ψ (x) ≡ 〈x | ψ〉 (as we explaind prevouislly), where |x〉 is position eigenstate
and |p〉 is momentum eigenstate. These eigenstates can be approximated to
arbitrary precision by sequences |ψn〉 of physical states of increasing locali-
zation in position or momentum space

lim
n−→0
4X|ψn〉 = 0,

lim
n−→0
4P|ψn〉 = 0. (2.105)

But with the presence of a minimal measurable length, the situation gets
different because of the uncertainties 4X0 ≥ 0 and 4P ≥ 0. A non-zero mi-
nimal uncertainty in position implies that there cannot be any physical state
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which is a position eigenstate since an eigenstate would have zero uncertainty
in position, we have ∀ |ψ〉

〈ψ| (4X)2 |ψ〉 = (4X)2 ψ;

= 〈ψ|
(
X̂ − 〈ψ| X̂ |ψ〉

)2
|ψ〉 ≥ 4X0 , (2.106)

The position operator X̂ here is no longer self-adjoint but only symmetric
(as we shown above) which means then there are no more position eigens-
tates |x〉 in the representation of the Heisenberg algebra. The position space
representation in the presence of minimal length can be represented only
through the maximally localized states or quasi-space representation. This
representation has a direct interpretation in terms of position measurements,
although it does not mean that X̂ is diagonalised.

The Brau reduction

The commutation relation presented by Kempf are not unique [25], the
same goes for the Kempf representation that we have introduced (in previous
section). Now we introduce a new representation known as the Brau repre-
sentation this representation satisfies the condition (2.79) and it’s given as
follows

X̂ = x̂ , P̂ = f(p̂), (2.107)
from (2.106) we notice that unlike the Kempf representation, the Brau

representation preserves the ordinary nature of the position operator and
defines a symmetric position operator X̂ and moment operator P̂ taken by
form expansion of an injective function

f(p̂) = p̂(1 + β

3 p̂
2 + . . .), (2.108)

the operator P̂ can be defined by obtaining f(p̂) in the first order in
expansion form

X̂ = x̂ , P̂ = p̂(1 + β

3 p̂
2). (2.109)

The (2.108) is introduced in general form [25] by Stetsko and Tkachuk (
β = 2β ′) as
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X̂i = x̂i + 2β − β ′

4
(
p̂2x̂i + x̂ip̂

2
)
,

P̂i = p̂i(1 + β
′
p̂2). (2.110)

Quasi-position space representation : the maximal localized states

The states with maximum localized around the position x are, by defini-
tion, states

∣∣∣ψmlx 〉 satisfying the two following conditions [11]〈
ψmlx

∣∣∣ X̂ ∣∣∣ψmlx 〉 = a
x , (4X)|ψmlx 〉 = (4X)min , (2.111)

given that the smallest value of the minimum uncertainty (4X)min in
formula (2.84) corresponds to 〈p〉 = 0, starting from this expression ‖ (X̂ −

〈X̂〉)2 +
(
|〈[X̂,P̂ ]〉|
2(4P )2

)2 (
P̂ − 〈P̂ 〉2

)
|ψ〉 ‖ ≥ 0 we can establish the uncertainty

relation
[
X̂, P̂

]
being imaginary, then

〈ψ| (X̂ − 〈X̂〉)2 +
 | 〈

[
X̂, P̂

]
〉 |

2 (4P )2

2 (
P̂ − 〈P̂ 〉2

)
|ψ〉 ≥ 0, (2.112)

which immediately implies the uncertainty relation

4X4P ≥ 1
2 | 〈

[
X̂, P̂

]
〉 |, (2.113)

so the state |ψ〉 can be said to verify 4X4P ≥ 1
2 | 〈

[
X̂, P̂

]
〉 | if and only

if it satisfies X̂ − 〈X̂〉+
〈
[
X̂, P̂

]
〉

2 (4P )2

(
P̂ − 〈P̂ 〉

) |ψ〉 = 0. (2.114)

This expression is injected into the phase space and we obtain

i~ (1 + βp2
)
∂p − 〈X̂〉+

i~
(
1 + β (4p)2 + β〈P̂ 〉

)
2 (4P )2

(
P̂ − 〈P̂ 〉

)ψ (p) = 0,

(2.115)
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whose solution is expressed by

ψ (p) = N


(
〈X̂〉
i~
√
β
− 1+β(4p)2+β〈P̂ 〉2〈P̂ 〉

2(4P )2
√
β

)
(1 + βp2)1+β(4p)2+β〈P̂ 〉2

2β〈4P 〉2

 . (2.116)

The maximum localized states correspond to the case 〈P̂ 〉 = 0 where
(4X)min = ~

√
β . The relation (2.79) implies 4P = 1

β
that we can obtain

the maximal localization states maximal

ψmlx (p) = N
(
1 + βp2

)−1
2 exp

(
−i x

~β
arctan

(√
βp
))

; N =
√

2
√
β

π
.

(2.117)
The states (2.116) is a generalization of the maximum localized states in

ordinary quantum mechanics. Now, the states are physical states ; and we
can see that the divergence of the mean value of energy is absorbed. In effect

∫ +∞

−∞

dp

1 + βp2
P 2

2m = 1
2mβ . (2.118)

The scalar product of states maximum localization 〈ψmlx | ψmlx 〉 as a func-
tion of

(
x− x′

)
defined

〈ψmlx | ψmlx 〉 = 2
√
β

π

∫ +∞

−∞

dp

(1 + βp2)2 exp
−i

(
x− x′

)
~β

arctan
(√

βp
) ;

= 1
π


(
x− x′

)
2π
√
β
−
(
x− x′

2~
√
β

)3−1

sin
(
x− x′

2~
√
β

)
. (2.119)

The maximum localized states are not generally orthogonal and this is
of origin of the new structure of our modified space.

The Quasi-position representation in position space : Position wave
function

The introduction of a minimal uncertainty on the position caused in di-
rect way to the non-existence of a complete basis of the eigenstates {|x〉}
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of the position operator
a
X. However the maximum localized states

∣∣∣ψmlx 〉
can be used to project arbitrary states|ϕ〉 .The projections ϕ (x) = 〈ψmlx | ϕ〉
will be considered as wave functions in a representation to what’s called
”quasi-configuration representation”, where | (ϕ (x)) |2 will be interpreted as
the probability amplitude for the particle to be localized with uncertainty
(4X)min around the position x

ϕ (x) = 〈ψmlx | ϕ〉 =
√

2
√
β

π

∫ +∞

−∞

dpϕ (p)
(1 + βp2)

3
2

exp
ix arctan

(√
βp
)

~
√
β

 .
(2.120)

This relation represents the generalized Fourier transform, is the same as
relation (2.56) in standard QM allow the passage from the representation of
the momentum to the quasi-representation of the position.

The modified dispersion relation corresponding to this ”generalized plane
wave” is

k = 2π
λ

=
arctan

(√
βp
)

~
√
β

, (2.121)

λ (E) = 2π~
√
β

arctan(
√

2mβE) . (2.122)

Similarly, the Fourier transformation of a quasi-position wavefunction into
a momentum space wave function is given by

ϕ (p) = 1√
8π
√
β~

∫ +∞

−∞
dx
(
1 + βp2

) 1
2 exp

−ix arctan
(√

βp
)

~
√
β

ϕ (x) .

(2.123)
Using (2.119) and (2.89) we introduce the scalar product of states in terms

of the quasi-position wave function that have being represented on the space
of quasi-position wave function
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〈ψ | φ〉 =
∫ +∞

−∞

dp

1 + βp2ψ
∗ (p)φ (p) ;

= 1√
8π
√
β~

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dpdxdx

′ exp
(x− x′) arctan

(√
βp
)

~
√
β

ψ∗ (x)φ
(
x
′)
.

(2.124)

The completeness relation on this space can be written as∫ +∞

−∞
dx
∣∣∣ψmlx 〉 〈ψmlx ∣∣∣ = 4~

√
β
(
1 + βp2

)−1
. (2.125)

We immediately deduce the representation of the operator P̂ in this confi-
guration space from (2.119) as

P̂ψ (x) =
tan

(
−i~
√
β∂x

)
√
β

ψ (x) . (2.126)

Now, for the position operator acting on the functions, it can be deduced
by using equation (2.119)

X̂ψ (x) =
x+ β

tan
(
−i~
√
β∂x

)
√
β

ψ (x) . (2.127)

2.2.3 A brief review on ml-quantum system in path
integral formalism

The path integral approch in momentum space for any ml-quantum sys-
tem can be obtained through constructing the transition amplitude with the
following steps :

We have

(pata | pbtb) = 〈pb | U (tb, ta) |pa〉 ;
= lim

N→∞
〈pb|U (tb, ta) |pa〉 , (2.128)

with the infinitisimal evelution operator
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U (tn, tn−1) = exp
(
−iε

~
Ĥ (tn)

)
, (2.129)

where ε = tj− tj−1 = tb−ta
N+1 . Now we insert the completness relation (2.91)

between each pair of infinitisimal evolution operators we obtain

(pata | pbtb) = lim
N→∞

N∏
j=1

∫ dpn
1 + βp2

n

N+1∏
j=1

(pjtj | pj−1tj−1) , (2.130)

where the infinitisimal amplitude is defined by

(pjtj | pj−1tj−1) = 〈pj| exp−iε
~
Ĥ (tj) |pj−1〉 , (2.131)

using the completness relation for the formal eigenvectors and we obtain
the following phase space path integral

(pata | pbtb) =
∫ dxn

2π~ exp
(
−iε

~
Ĥ (tn)

)
exp

{
ixn
~
√
β

(
arctan

(√
βpn

)
− arctan

(√
βpn−1

))}
.

(2.132)
Substituting in (2.129) we get the final expression for the path integral

representation of the transition amplitude for a nonrelativistic particle with
nonzero minimum position uncertainty submitted to the potential V (x)

(pata | pbtb) = lim
N→∞

N∏
j=1

∫ dpn
1 + βp2

n

N+1∏
j=1

∫ dxn
2π~ exp

{
−iε

~
− iε

~

[
ixn
~
√
β

(
arctan

(√
βpn

)

− arctan
(√

βpn−1

))]
− p2

n

2m − V (xn)
}
. (2.133)

2.3 The free particle of Klein Gordon equa-
tion

Relativistic quantum mechanics was extracted from non-relativistic quan-
tum mechanics and not from classical theory, using the most natural approach
to describe the state of a relativistic particle by application of the Heisen-
berg principle and the energy-momentum dispersion relation, which allows
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to replace classical observable by quantum mechanical differential operators
acting on the wave functions. We first introduce the differential operators
X̂µ and P̂ ν in such way that their commutators obey the rules (Heisenberg
algebra)

[
X̂µ, X̂ν

]
= 0 ,

[
X̂µ, P̂ ν

]
= −i~gµν ,

[
P̂ µ, P̂ ν

]
= 0 (2.134)

and gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 is the Minkowski space mertic

it can be done if we take X̂µ = xµ and P̂ ν = i~∂ν . Expressively

X̂0 = x0 = ict , X̂1 = x1 = x , X̂2 = x2 = y , X̂3 = x3 = z, (2.135)

P̂ 0 = i~
∂

∂x0 = i~
∂

∂ct
, P̂ 1 = i~

∂

∂x1 = −i~ ∂
∂x

, P̂ 2 = i~
∂

∂x2 = −i~ ∂
∂y

,

P̂ 3 = i~
∂

∂x3 = −i~ ∂
∂z
. (2.136)

The direct approach of having a linear equation from the dispersion rela-
tion energy-momentum relation of the restricted relativity E−

√
p̂2c2 +m2

0c
4 =

0 where m0 is the rest of mass of the particle and c the velocity of light in
vacumm .with the squring both of parts of the dispersion relation to write
it in the form E2 = p̂2c2 + m2

0c
4. Now, with the correspondence principle

(2.133) we obtain the Klein-Gordon equation of a free particle by :(
∇2 − 1

c2
∂2

∂t2
+ m2

0c
2

~2

)
ψ (xµ) = 0, (2.137)

where the covariant form of this equation giving by(
∂µ∂µ −

(
m0c

~

)2
)
ψ (xµ) = 0, (2.138)

with ∂µ =
(
∂
∂t
,
−→
∇
)

and ∂µ =
(
∂
∂t
,
−−→
−∇

)
.
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Replacing the plane wave of the type ψ (−→x , t) = exp
(
i
~ (p · −→x − Et)

)
into the Klein Gordon equation with the following de Broglie and Einstein
relations P = ~k and E = ~ω,we obtain :

− | k |2 +ω
2

c2 = m2c2

~2 , (2.139)

〈p〉 = 〈ψ | −i~∇x | ψ〉 = ~k , 〈E〉 = 〈ψ | i~∂t | ψ〉 = ~ω, (2.140)

we insert (2.139) in (2.138) we get the classical relativistic equation

E2 = m2c2 + p2c4 =⇒ E = ±
√
m2c2 + p2c4 (2.141)

We finally get a plane wave solution to the Klein-Gordon equation that
corresponds to energy in the equation

ψ (x, t) = exp(−i(± | E | t− p · x)/~) (2.142)

The negative energy solutions represnt the unoccupied states of negative
energy describe ”antiparticles”.
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Chapitre 3

The Klein-Gordon Oscillator
slutions in different cases

So far, we have exposed : quantum mechanics with regular Heisenberg
algebra which implies the standard uncertainty relation, then quantum me-
chanics in non commutative Heisenberg algebra which implies directly the
Generalized uncertainty principle. In this chapter, we shall apply the forma-
lism introduced in previous chapter. We are going to study the exact solu-
tions of simple examples of relativistic scalar particles in thus two algebras,
we recall the following relations :

Standard Heisenberg algebra[
X̂, P̂

]
= i~ (3.1)

X̂ = x , P̂ = −i~∂x (3.2)

Non standard Heisenberg algebra[
X̂i, P̂i

]
= i~

(
δij + βP̂ 2δij + β

′
P̂iP̂j

)
(3.3)

X̂i = i~
[(

1 + βP 2
) ∂

∂pi
+ β

′
PiPj

∂

∂pi
+ γPi

]
, P̂i = pi (3.4)

In this work, we are going to set β ′ = γ = 0, which is directly equivalent
to one dimension case.
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3.1 The (1+1) Klein Gordon oscillator solu-
tions in regular space

In this section, we are going to solve a one-dimensional Klein Gordon
oscillator in regular space with standard algebra as an example, the equation
of the oscillator is given for

P̂ −→ P̂ − imωx, (3.5)

as follows (for ~ = c = 1)[
E2 +

(
P̂ + imωx

) (
P̂ − imωx

)
−m2

]
ψ (x, t) = 0, (3.6)

where m is the rest mass of the particle, ω is the classical frequency of
the oscillator.

We introduce the following wave function

ψ (x, t) = φ (x) exp (−iEt) , (3.7)

with regular space algebra {
x̂ = x

P̂ = −i∂x
. (3.8)

The (time-independent) Klein-Gordon equation is obtain by inserting
(3.7) in (3.6)

[(p̂+ imωx)(p̂− imωx) +m2 − E2]φ(x) = 0; (3.9)

d2φ(x)
dx2 + (E2 +mω −m2 −m2ω2x2)φ(x) = 0. (3.10)

We set ε = E2 + mω −m2 and transform our equation to the standard
harmonic oscillator equation by multiplying by the factor 1

2m as in the Ref
[26]

1
2m

d2φ(x)
dx2 +

(
−1

2mω
2x2 + ζ

)
φ(x) = 0, (3.11)

where ζ = ε
2m .

By rescaling the variables as z =
√
mωx, λ = ζ

ω
, one arrives at
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d2Φ(x)
dx2 + (λ− z2)φ(x) = 0. (3.12)

The solutions of this type of equations (3.12) are given by

d2hν(τ)
dτ 2 − (ν + 1

2 − τ
2)hν(τ) = 0, (3.13)

where the function hν(τ) for ν is a non-negative integer, one finds Hermite
polynomial

hn (z) = exp
(
−z2

2

)
Hn (z) . (3.14)

The energy spectrum also can be calculated through

λ = n+ 1
2 , (3.15)

where we replace λ = ε
2mω and obtain the energy of this oscillator

E = ±m
[
1 + 2 ω

m
n
] 1

2
. (3.16)

The wave function of the equation (3.12) is expressed as follows

φ (x) ∼ N exp(−mωx
2

2 )Hn

(√
mωx

)
, (3.17)

where N is the normalization constant, we have to use orthogonality condi-
tion to calculate this constant∫ ∞

−∞
ψ∗ (x)φ (x) dx = 1, (3.18)

∫ ∞
−∞

exp
(
−x2

)
Hm (x)Hn (x) dx =

{
0 for m 6= n

2nn!
√
π for m = n

, (3.19)

we obtain the following normalization constant

N =
√√

mω

π

1
2nn! . (3.20)

The wave function of this system is taken by
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φ (x) =
√

mω

2nn!
√
π

[
exp(−mω2 x2)

]
Hn

(√
mωx

)
. (3.21)

3.2 The (1+1) Klein-Gordon oscillator solu-
tions in a uniform electric field of speci-
fic strength ε with presence of minimal
length

The stationary equation describing the one dimensional Klein-Gordon
oscillator in a uniform electric field of specific strength ε in momentum re-
presentation is given by

[(p̂+ imωx̂)(p̂− imωx̂) +m2 − (i d
dt
− qεx̂)2]ψ(p) = 0, (3.22)

where V (x) = qεx̂ is the vectorial potential, ε is the external electric field
and q is the charge of the particle.

The stationary case can be defined by ψ(p) = φ (p) exp {−iEt} , with the
following algebra {

x̂ = i~(1 + βp2) d
dp

P̂ = p̂
. (3.23)

Now, we introduce the algebra
(
x̂,P̂

)
and the stationary case into Eq.(3.22)

and also we set (~ = c = 1) to obtain

[m2ω2x̂2 +(1−mωβ)P̂ 2 +m2−E2−mω− q2ε2x̂2 +2Eqεx̂]φ (p) = 0, (3.24)

otherwise

[(m2ω2− q2ε2)x̂2 + 2Eqεx̂+ (1−mωβ)p̂2 +m2−E2−mω]φ (p) = 0, (3.25)

as will, we set Ω2 = (m2ω2 − q2ε2), with m2ω2 > q2ε2
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[
Ω2x̂2 + 2Eqεx̂+ (1−mωβ) p̂2 +m2 − E2 −mω

]
φ (p) = 0. (3.26)

Substituting the momentum space realization of the operators x̂2 and p̂,
we get the following equation

[
−Ω2

(
(1 + βp2)2 ∂

2

∂p2 + 2β(1 + βp2)p ∂
∂p

)
+ 2iEqε(1 + βp2) ∂

∂p
+ (1−mωβ)p2

+m2 − E2 −mω
]
φ (p) = 0 (3.27)

With the aid of the variable change (Ref [15] for β ′ = 0)

u = 1√
β

arctan(
√
βp) (3.28)

where p ∈ [−∞,∞], u ∈
[
−π

2
√
β
, π

2
√
β

]
, with this variable change the equa-

tion (3.27) becomes :

[−Ω2 ∂
2

∂u2 + 2iEqε ∂
∂u

+ (1−mωβ
β

) tan2(
√
βu) +m2 − E2 −mω]φ(u) = 0

(3.29)
We can eliminate the imaginary term from (3.29), by introducing a 2nd

variable change to the equation as follows

φ(u) =
[
exp

{
i

Eqε

(m2ω2 − q2ε2)u
}]

f (u), (3.30)

[−Ω2 ∂
2

∂u2 +tan2(
√
βu)(1−mωβ

β
)−q

2E2ε2

Ω2 +m2−E2−mω]f (u) = 0. (3.31)

At this stage, we introduce another change of variable defined by

z = sin(
√
βu), (3.32)
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((1− z2) ∂
2

∂z2 − z
∂

∂z
)− z2

1− z2

(
1
β
−mω

)
βΩ2 + 1

βΩ2

(
m2 − E2

)
+ q2ε2E2

Ω4β

 f (z) = 0.

(3.33)

We set a change of function defined by

f (z) = (1− z2)λ2 g(z), (3.34)
the equation (3.33) becomes

(1− z2) ∂
2

∂z2 − z(1 + 2λ) ∂
∂z

+
λ (λ− 1)− ( 1

β
−mω)
βΩ2

1− z2 − λ2 + 1
β2Ω2

− 1
βΩ2

(
m2 − E2

)
+ q2ε2E2

Ω4β

]
g(z) = 0, (3.35)

we have to eliminate the coefficient that followed by 1
1−z2 through calculating

delta solution of the following second degree equation

λ (λ− 1)−

(
1
β
−mω

)
βΩ2 = 0.

Now, the differential equation (3.35) reduces to the type of Gegenbauer
differential equation[

(1− z2) ∂
2

∂z2 − (2λ+ 1)z ∂
∂z

+ n(n+ 2λ)
]
g(z) = 0. (3.36)

Our physical solution can be satisfied only by taking λ+ solution

λ = λ+ = 1
2 + 1

2

√
1− 4[βmω − 1]

β2Ω2 . (3.37)

The energy spectrum of this system is given by the following relation

−1
βΩ2

(
m2 − E2

)
+ q2ε2E2

Ω4β
− λ2 + 1

β2Ω2 = n(n+ 2λ).

We simplify, to get
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E2
n = Ω4

m2ω2

[
β
(
n2 + 2λn+ λ2

)
+ m2

Ω2 −
1
βΩ2

]
. (3.38)

Then

En = ±
(

1− q2ε2

m2ω2

) 1
2
[
m2 + β(m2ω2 − q2ε2)

(
n2 + 2λn+ λ2

)
− 1
β

] 1
2

.

(3.39)
To deducing the particular cases, we calculate the following limits :

3.2.1 Case one : absent of deformation (β = 0)

lim
β−→0

(βλ) =
√

1
m2ω2 − q2ε2 ; (3.40)

lim
β−→0

(
βΩ2λ

)
=
√

(m2ω2 − q2ε2); (3.41)

lim
β−→0

((
βΩ2λ2

)
− 1
β

)
=
√

(m2ω2 − q2ε2)−mω; (3.42)

Replacing (3.42) and (3.43) in (3.40), we get the energy spectrum in the
absence of minimal length

lim
β−→0

En = ±
(

1− q2ε2

m2ω2

) 1
2 [
m2 −mω +

√
(m2ω2 − q2ε2)(2n+ 1)

] 1
2
.

(3.43)

3.2.2 Case two : Absent of the electric field (ε = 0)
For ε = 0, the energy spectrum is given by

lim
ε−→0

En = En = ±
[
m2 + βm2ω2

(
n2 + 2λn+ λ2

)
− 1
β

] 1
2

. (3.44)
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3.2.3 Case three : The pure Klein-Gordon Oscillator
(β = 0 and ε = 0)

To confirm our result obtained in ordinary space, we calculate the limit
of the energy spectrum En of equation

lim
(β,ε)−→0

En = ±m
[
1 + 2 ω

m
n
] 1

2
, (3.45)

which agrees with the result obtained above and the result in Ref [27] .
We obtain the wave function as

g(z) = NCλ
n(z). (3.46)

Then, for our system the wave function is defined by the following rela-
tionship by

φn (p) = Nλ
n

[
cos

(
arctan

(√
βp
))]( 1

4 + 1
4

√
1−4mωβ−1

β2Ω2

)

×
(

exp
{

iEqε√
β(m2ω2 − q2ε2) arctan

(√
βp
)})

C
( 1
2 + 1

2

√
1−4 mωβ−1

β2(m2ω2−q2ε2)
)

n sin
(

arctan
(√

βp
))

.

(3.47)
where Nn is the normalization constant, given by (Ref [28])

Nλ
n = (Γ (λ))2

(
22λ−1n! (n+ 1)

√
β

πΓ (n+ 2λ)

)
. (3.48)

For the study of the thermal properties of the deformed Klein Gordon
oscillator, which is equivalent to the zero ε case ”absence of the electric field”,
we use a numerical method based on the Euler-Maclaurin formula to compute
the partition function and as consequence we obtain the thermodynamic
properties of the system. In the canonical ensemble, the partition function of
this oscillator in deformd space is given by the energy spectrum formula

Z =
∞∑
n=1

exp
{
−
(
En − E0

kBT

)}
, (3.49)

where kB is the Boltzmann constant. The sum (3.49) can be evaluate with
the help of the Euler-Maclaurin summation formula
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∑
n=0

F (n) = 1
2F (0) +

∫ ∞
0

F (x) dx−
∑
p=1

B2p

(2p)!F
(2p−1) (0) , (3.50)

where B2p
(2p)! are the Bernoulli numbers multiplied by the (2p− 1) order deri-

vations of F (0). We obtain the partition function

Z = 1
2

1−
√

π

βλ4ω2

( T
T0

) 1
2

+
∞∑
n=1

δn

n

(
T0

T

) 2n−1
2

 , (3.51)

where the parameters λ and δ in the case are defined by

lim
ε−→0

λ = 1− 1
βmω

, (3.52)

δ = βω2λ2

2 + 1
2βm2 . (3.53)

Now, we can calculate all thermodynamics quantities for our system such
as free energy, entropy, total energy and specific heat from the partition
function as the follows

F = −kβT ln(1
2

1−
√

π

βλ4ω2

( T
T0

) 1
2

+
∞∑
n=1

δn

n

(
T0

T

) 2n−1
2

),

S =
kβT

√
π

βλ4ω2

 1
2
(
T
T0

)
T0
− T0δ

2T 2
√

T0
T

−∑∞n=1
(2n+1)δn+1

2nT 2

(
T0
T

) 2n−1
2


2Z + kβ ln (Z) ,

U =
kβT

2
√

π
βλ4ω2

 1
2
(
T
T0

)
T0
− T0δ

2T 2
√

T0
T

−∑∞n=1
(2n+1)δn+1

2nT 2

(
T0
T

) 2n−1
2


2Z ,

C =
π

 1
2
(
T
T0

)
T0
− T0δ

2T 2
√

T0
T

−∑∞n=1
(2n+1)δn+1

2nT 2

(
T0
T

) 2n−1
2


4β2λ4

√
π

βλ4ω2ω2Z
. (3.54)
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3.3 Deformed Klein Gordon oscillator in path
integral formalism

In this section, we propose to use the path integral formalism in relativis-
tic quantum mechanics to calculate the Green’s function of the same system
studied ” the zero ε case” or what we can call ”deformed Klein-Gordon os-
cillator” in the energy-momentum space.

Let’s consider the Green function operator of our system[
P̂ 2

0 +
(
P̂i + imωx̂i

) (
P̂ i − imωx̂i

)
−m2

]
Ĝ(β) = I, (3.55)

where

Ĝ(β) = i[
P̂ 2

0 +
(
P̂i + imωx̂i

) (
P̂ i − imωx̂i

)
−m2

]
+ iε

. (3.56)

So the propagator is

G(β) (pb; pa) = 〈pa, p0a| Ĝ(β) |pb, p0b〉 . (3.57)

The Hamiltonian operator of this ml-quantum system in the momentum
space is given by

τĤ(β) = −τ
[
P̂ 2

0 − (1−mωβ) P̂ 2 +mω −m2 −m2ω2X̂2
]
. (3.58)

Now, we follow the standard discretization method for the kernel (3.58)
where the time interval τ get devided to N + 1 infinitesimal equal parts to
ε = τ

N+1 and we apply the formula

〈pf , p0f | exp
(
−iτ

(
Ĥ(β)

))
| pi, p0i〉 = lim

N−→∞
〈pf , p0f |

[
exp

(
−iεĤ(β)

)]N+1
| pi, p0i〉,

(3.59)

G = i
∫
dτ lim

N−→∞

N∏
n=1

∫ dpn

(1 + βp2
n)1−αdp0n

N+1∏
n=1
〈pn, p0n| exp

{
iε
(
P̂ 2

0 − (1−mωβ) P̂
)

+mω −m2 − (mω)2 X̂2
)}
|pn−1, p0n−1〉 . (3.60)
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-We introduce the algebra{
x̂ = i~(1 + βp2) d

dp
+ γp

P̂ = p̂
, (3.61)

to the equation (3.61) with following momentum space representation :
The scalar product of P and P0 in the relativistic case, where we assume

that the deformation does not affect on the time component P0. Which are
given by of momentum eigenstates

〈pj | pj−1〉 =
(
1 + βp2

j

)−α2 (1 + βp2
j−1

)−α2 δ ( 1√
β

arctan
(√

βpj

)
− 1√

β
arctan

(√
βpj−1

))

=
(
1 + βp2

j

) 1−α
2
(
1 + βp2

j−1

) 1−α
2 δ (pj − pj−1) , (3.62)

〈p0j | p0j−1〉 = δ (p0j − p0j−1) , (3.63)

with the following completeness relation

∫ dp(
1 + βp2

j

)1−α |p〉 〈p| = 11, (3.64)

∫
dp0 |p0〉 〈p0| = 11, (3.65)

where α = γ
β
.

We insert the scalar product relation (3.63) and completness relation
(3.65) N times, then we get the Lagrangian path integral representation for
the Green function

G = i lim
N−→∞

∫
dτ

N∏
n=1

∫ dpn

(1 + βp2
n)1−αdp0n

N+1∏
n=1

exp
{
iε
(
p̂2

0n − (1−mωβ) p̂2 +mω −m2
)}

〈pn, p0n| exp
(
−iε (mω)2 q̂2

n

)
|pn−1, p0n−1〉 , (3.66)

The integral representation of 〈pn, p0n | pn−1, p0n−1〉 is defined by

50



〈pn, p0n | pn−1, p0n−1〉 =
∫ ∫ dtn

2π
dqn
2π

exp (itn (p0n − p0n−1))
(1 + βp2

n)
α
2 (1 + βp2

n−1)
α
2

× exp
{
iqn

(
1√
β

arctan
(√

βpn

)
− 1√

β
arctan

(√
βpn−1

))}
. (3.67)

Now by inserting (3.68) in the propagator formula, we get

G = −i
∫
dτ lim

N−→∞

N∏
n=1

∫ dpndp0n

(1 + βp2
n)1−α

N+1∏
n=1

∫ ∫ dtn
2π

dqn
2π

exp {itn (p0n − p0n−1)}
(1 + βp2

n)
α
2 (1 + βp2

n−1)
α
2

exp
{
i

[
1√
β

(
arctan

(√
βpn

)
− arctan

(√
βpn−1

))
qn − ε (mω)2 q2

n

]}

× exp
{
−iε

(
p2

0n − (1−mβω) p2
n −m2 +mω

)}
, (3.68)

with the use of the Gaussian integrations, the propagator become

∫
dqn exp

[
1√
β

(
arctan

(√
βpn

)
− arctan

(√
βpn−1

))
qn − ε (mω)2 q2

n

]

=
 1√

4iε (mω)2 π

 exp

i
4 arctan

(√
βpn

)
β4ε (mω)2

2 , (3.69)

G = i
(
1 + βp2

f

)α
2
(
1 + βp2

i

)α
2
∫
dτ lim

N−→∞

N∏
n=1

dpn
(1 + βp2

n)p0n

N+1∏
n=1

δ (p0n − p0n−1)√
4iπε (mω)2

× exp
{
−iε

(
p2

0n − (1−mωβ) p2
n −m2 +mω

)}

× exp

i
(
arctan

(√
βpn

)
− arctan

(√
βpn−1

))2

4βε (mω)2

 . (3.70)

Let’s introduce now the variable change
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θn = 1√
β

arctan
(√

βpn

)
,

θ0n = p0n, (3.71)

with this variable change, we get the new propagator formula

G(β) (θn, θn−1, τ) = i
(

1 + tan2
(√

βθf

))α
2
(

1 + tan2
(√

βθi

)α
2
)

∫
dτ lim

N−→∞

N∏
n=1

∫
dθ0nδ (θ0n − θ0n−1) exp

{
−iε

(
θ2

0n −m+mω
)}

N∏
n=1

∫
dθn

N+1∏
n=1

1√
4iπε (mω)2

exp
{
i

(
(θn − θn−1)2

4ε (mω)2 − ε
(

1
β
−mω

)
tan2

(√
βθn

))}
,

(3.72)
the term θn − θn−1 can be written as 4θn

4θn = θn − θn−1, (3.73)

G(β) (θn, θn−1, τ) = i
(

1 + tan2
(√

βθf

))α
2
(

1 + tan2
(√

βθi

)α
2
)

∫
dτ lim

N−→∞

N∏
n=1

∫
dθ0nδ (θ0n − θ0n−1) exp

{
−iε

(
θ2

0n −m+mω
)}

N∏
n=1

∫
dθn

N+1∏
n=1

1√
4iπε (mω)2

exp
{
i

(
(4θn)2

4ε (mω)2 − ε
(

1
β
−mω

)
tan2

(√
βθn

))}
.

(3.74)
The solution of the is type of equation is given in Ref [28,29],

G = i
(

1 + tan2
(√

βθi

))α
2
(

1 + tan2
(√

βθf

))α
2
∞∑
n=0

Nλ
n

∫
dτδ (θ0b − θ0a)

exp
{
−iτ

(
θ2

0n −m2 +mω
)}

exp
{
iτβ (mω)2

(
n2 + (2n+ 1)λ

)}
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(
cos

(√
βθa

)
cos

(√
βθb

))λ
Cλ
n

(
sin

(√
βθa

))
Cλ
n

(
sin

(√
βθb

))
, (3.75)

where the normalization constant is given by

Nλ
n = Γ (λ)2

(
22λ−1n! (n+ 1)

√
β

πΓ (n+ 2λ)

)
. (3.76)

The physical solution are obtain always as we mentioned before for posi-
tive λ+

λ = λ+ = 1
2

1 +

√√√√1 + 41− β (mω)
β2 (mω)2

 . (3.77)

The propagator became

G = i
(

1 + tan2
(√

βθf

))α
2
(

1 + tan2
(√

βθi

)α
2
) ∞∑
n=0

Nλ
n

∫
dτδ (θ0b − θ0a)

exp
{
−iτ

(
θ2

0n −m2 +mω
)}

exp
{
iτβ (mε)2

(
n2 + (2n+ 1)λ

)}

×
(

cos
(√

βθa

)
cos

(√
βθb

))λ
Cλ
n

(
sin

(√
βθa

))
Cλ
n

(
sin

(√
βθb

))
. (3.78)

To evaluate the wave functions and energy spectrum, let us integrate over
the τ variable

G = i
(

1 + tan2
(√

βθf

))α
2
(

1 + tan2
(√

βθi

)α
2
)

∞∑
n=0

Nλ
n

δ (θ0b − θ0a)
(
cos

(√
βθa

)
cos

(√
βθb

))λ
Cλ
n

(
sin

(√
βθa

))
Cλ
n

(
sin

(√
βθb

))
(θ2

0n −m2 +mω)− β (mω)2 (n2 + (2n+ 1)λ) .
(3.79)

Finally evaluating exactly the propagator expression, it is convenient to
write the Fourier transformation (3.80) for the variables {θ0b} and {θ0a} .
The first integral on the delta is immediate, we get
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G = i
(

1 + tan2
(√

βθf

))α
2
(

1 + tan2
(√

βθi

)α
2
) ∞∑
n=0

Nλ
n

∫ dE

2π e
−iE(tf−ti)

(
cos

(√
βθf

)
cos

(√
βθi

))λ
Cλ
n

(
sin

(√
βθi

))
Cλ
n

(
sin

(√
βθf

))
(E2 −m2 +mω)− β (mω)2 (n2 + (2n+ 1)λ)

, (3.80)

wich can be written

G = i
(

1 + tan2
(√

βθf

))α
2
(

1 + tan2
(√

βθi

)α
2
) ∞∑
n=0

Nλ
n

∫ dE

2π e
−iE(tf−ti)

(
cos

(√
βθf

)
cos

(√
βθi

))λ
Cλ
n

(
sin

(√
βθi

))
Cλ
n

(
sin

(√
βθf

))
E2 − (m2 + β (mω)2 n2 + 2n (mω))

. (3.81)

This can be converted to a complex integration along the special contour
C, and then using the residue theorem, we get

∮ dE

2π
e−iE(tf−ti)

E2 − E2
n

= −i
2En

[
Θ (tf − ti) e−iE

(β)
n (tf−ti) −Θ (ti − tf ) eiE

(β)
n (tf−ti)

]
,

(3.82)
where the energy eigenvalues are given by

E
(β)
n,± = ±

√
m2 + β (mω)2 n2 + 2n (mω), (3.83)

the propagator now might be written as

G =
(

1 + tan2
(√

βθf

))α
2
(

1 + tan2
(√

βθi

)α
2
) ∞∑
n=0

Nλ
n

2En

(
cos

(√
βθf

)
cos

(√
βθi

))λ

×Cλ
n

(
sin

(√
βθi

))
Cλ
n

(
sin

(√
βθf

)) [
Θ (tf − ti) e−iE

(β)
n (tf−ti) −Θ (ti − tf ) eiE

(β)
n (tf−ti)

]
,

(3.84)
we use P = 1√

β
tan

(√
βθ
)

as a variable change to the propagator (3.85)
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cos
(√

βθ
)

= 1√
1 + βP 2 ,

sin
(√

βθ
)

=
√
βP√

1 + βP 2 ,

we get

G (pi, pf ) =
∞∑
n=0

Nλ
n

2En

(
(1 + βPf )

α−λ
2 (1 + βPi)

α−λ
2 Cλ

n

( √
βPi√

1 + βPi

)

Cλ
n

 √
βPf√

1 + βPf

[Θ (tf − ti) e−iE
(β)
n (tf−ti) −Θ (ti − tf ) eiE

(β)
n (tf−ti)

]
.

(3.85)
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Conclusion

In the present thesis, we have presented the necessary tools and tech-
niques for the relativistic quantum theory in presence of minimal length
which includes a generalized uncertainly principal (GUP). In the framework
of minimum length we applied this method on the equation of the Klein-
Gordon oscillator with a uniform electric field ε of specific strength ε, where
we have calculated the energy spectrum En and the correlated wave function
φn (p). The energy spectrum Endepends on the deformation parameter β as
well as the power of n which explains the minimal length effect, as well the
wave function is obtaind by the Gegenbaouer polynomials. The limits cases
in the regular space are deduced, which are compatible with the other results
in the references and we also confirmed our calculated results.

In the last of this work, for a better understanding to the behavior of par-
ticles in presence of minimal length according to the analytically calculated
formulas and their graphic representation, we have calculated the thermal
properties : such as free energy F , entropy S and specific heat C from the
partition function Z in the high tempture in the absence of the electric field
ε. After that as final stage to this work, we presented what may look the
Green’s function of this system (in the absence of the electric field ε ).
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Appendix A

Hermite polynomials
The Hermite polynomials Hn (x) are set of orthogonal polynomials over

the domain [−∞,+∞] with weighting function e−x
2 , known by :

Hn (x) = (2x)n 2F0

(
−1

2n,−
1
2 (n− 1) , , x−2

)
= 2nxn

(
x2
)−n

2 U
(−1

2 n,
1
2 , x

2
)

(3.86)

where U (a, b, z) is a confluent hypergeometric function of the second kind.
The Hermite polynomials satisfy the symmetry condition

Hn (−x) = (−1)nHn (x) (3.87)

The Rodrigues formula of the polynomials is defiend by

Hn (x) = (−1)n ex2 dn

dxn
e−x

2 (3.88)

The recurrence relations of this polynomials are given by

Hn+1 (x) = 2xHn (x)− 2nHn−1 (x) (3.89)

The first few Hermite polynomials are
H0 (x) = 1
H1 (x) = 2x
H2 (x) = 4x2 − 2
H3 (x) = 8x3 − 12x
H4 (x) = 16x4 − 48x2 + 12
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They are orthogonal in the range [−∞,+∞] with respect to the weighting
function e−x

2

∫ +∞

−∞
Hm (x)Hn (x) e−x2 = δmn2nn!

√
π (3.90)

and the polynomials also satisfy the second-order differential equation

y” (x)− 2xy′ (x) + 2ny (x) = 0 (3.91)

The functions hn (x) = e−
x2
2 Hn (x) satisfy the differential equation

h”
n (x) +

(
(2n+ 1)− x2

)
hn (x) = 0 (3.92)

Hermite polynomials are relevant for the analysis of the quantum harmo-
nic oscillator.
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Appendix B

Gegenbauer polynomials
Gegenbauer polynomials Cλ

n (x) are n degree polynomial with real coeffi-
cients a class of orthogonal polynomials on the interval [−1, 1], well known
in it hypergeometric function term :

C(λ)
n (x) =

(
n+ 2λ+ 1

n

)
2F1

(
−n, n+ 2λ, λ+ 1

2 ,
1
2 (1− x)

)

=
(
n+ 2λ+ 1

n

)(
x+ 1

2

)n
2F1

(
−n,−n− λ+ 1

2 , λ+ 1
2 ,

(1− x)
x+ 1

)
(3.93)

where

C(λ)
n (−x) = (−1)nC(λ)

n (x) (3.94)
for λ > −1

2
The first few Gegenbauer polynomials are
C

(λ)
0 (x) = 1

C
(λ)
1 (x) = 2λx

C
(λ)
2 (x) = −λ+ 2λ (1 + λ)x2

C
(λ)
3 (x) = −2λ (1 + λ)x+ 4

3λ (1− λ) (2 + λ)x3

The polynomials satisfy the recurrence relation

C(λ)
n (x) = 1

n

[
2x (n+ λ− 1)C(λ)

n−1 (x)− (n+ 2λ− 2)C(λ)
n−2 (x)

]
(3.95)

C
(λ)
(n) (x) is a solution of the following Gegenbauer differential equation :
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(
1− x2

)
y” − (2λ+ 1)xy′ + n (n+ 2λ) y = 0 (3.96)

When λ = 1
2 , the equation reduces to the Legendre equation, and the

Gegenbauer polynomials reduce to the Legendre polynomials.
When λ = 1, the equation reduces to the Chebyshev differential equation,

and the Gegenbauer polynomials reduce to the Chebyshev polynomials of the
second kind.

Gegenbauer polynomials C(λ)
(n) (x) are normalized by

∫ 1

−1

(
1− x2

)λ− 1
2
[
C(λ)
n (x)

]2
dx = 21−2λπ

Γ (n+ 2λ)
(n+ λ) Γ2 (λ) Γ (n+ 1) (3.97)
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Résumé

Dans ce mémoire, nous avons traité le problème de l’oscillateur Klein-
Gordon (KGO) avec le principe d’incertitude généralisé (GUP) dans l’espace
déformé. Dans le premier cas, nous avons traité le problème de la particule
scalaire dans le cas de l’oscillateur Klein-Gordon libre (ε = 0), le spectre
d’énergie En est déduit en fonction de n et la fonction d’onde φn(x) est
déterminée en fonction de polynome Hermite Hn(x) .

Dans le 2ème cas, nous avons résolué l’équation de l’oscillateur Klein-
Gordon en la présence du champs électrique externe ε dans l’espace déformé,
le spectre d’énergie En est donné en fonction de puissance de n qui expliqué
par la lenguer minimal et le fonction d’onde φn(p) est déterminée en fonction
de polynome Gegenbaouer Cµ

n(p). Les cas limites sont déduits et confirm les
résultats obtenus, et on a calculé les probabilites termiques Z,U, F, C, S. En
conclusion de ce travail, nous avons introduit le traitement par les intégrals
de chemin de l’oscillateur de Klein-Gordon en l’absence du champ électrique
externe ε dans l’espace déformé.

Mots-clés : mécanique quantique relativiste, équation de Klein Gordon,
espaces régulier, espaces déformés, longueur minimale.
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