
2020/2021 

Université de BLIDA 1 

Faculté des Sciences 

Département d’Informatique 

 
Master Thesis 

Option : Ingénierie des Logiciels 

 

  SEMI-SUPERVISED LEARNING FOR MULTI-LABEL 

AUDIO TAGGING 

 
By: 

AMROUCHE Djamel Eddine 

ALLALI Adil 

 
In front of a jury composed of: 

 

Mr. CHIKHI Nasim fateh President 

Ms. HADJ HENNI Malika Examiner 

Ms. YKHLEF Hadjer Supervisor 

Ms. DIFFALLAH Zhor Supervisor 

  



1 
 

Abstract 

 
Audio Tagging is concerned with the development of systems that are able to 

recognize sound events. A growing interest is geared towards audio tagging for various 

applications such as acoustic surveillance, tagging video content and environmental 

scene recognition. Our goal is to design an audio tagging system capable of recognizing 

a wide range of sound events. The development process usually requires a large set of 

labeled sound data. However, most existing datasets are unlabeled since hand-labeling is 

a very costly and a time-consuming process, and it involves a lot of manual labor. To 

mend with this, we have built our audio tagging system following the Semi-Supervised 

Learning (SSL) paradigm. Specifically, we have chosen the pseudo-labeling strategy to 

learn from weakly labeled data. In addition, our system trains a ResNet deep learning 

model on log-mel spectrograms, along with augmentation techniques to increase the 

dataset size. The training uses the cyclic cosine annealing technique for the learning rate. 

We have carried out our experiments on a huge dataset made of sound recordings; we 

have investigated the impact of the sharpening temperature (a hyperparameter of our 

system) on the distribution of the pseudo-labels, and have tested ensembling various 

variants of our approach. The results demonstrate the efficacy of pseudo-labeling SSL 

strategy. Furthermore, ensembling various systems significantly boosts the overall 

performance. 

Keywords: Audio Tagging, Semi-Supervised Learning, Feature Extraction, Deep 

Learning, Ensemble Learning, Statistical Tests.  
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Résumé 

 
L’étiquetage audio est concerné par le développement de systèmes capables de 

reconnaître des événements de son. Un intérêt croissant est porté à l’étiquetage audio 

pour diverses applications telles que la surveillance acoustique, l’étiquetage de contenu 

vidéo et la reconnaissance de scènes environnementales. Notre objectif est de concevoir 

un système d’étiquetage audio capable de reconnaître un large ensemble d'événements 

sonores. Le processus de développement nécessite généralement un grand ensemble de 

données sonores étiquetées. Cependant, la plupart des ensembles de données existants ne 

sont pas étiquetés, car l'étiquetage manuel est un processus très coûteux et très long, et il 

implique beaucoup de travail manuel. Pour remédier à cela, nous avons construit notre 

système de l’étiquetage audio en suivant le paradigme de l'apprentissage semi-supervisé 

(SSL). Plus précisément, nous avons choisi la stratégie de pseudo-étiquetage pour 

apprendre à partir de données faiblement étiquetées. En outre, notre système entraîne un 

modèle d'apprentissage profond ResNet sur log mel spectrogrammes, ainsi que des 

techniques d'augmentation pour augmenter la taille de l'ensemble de données. 

L'apprentissage utilise la technique de recuit cosinus cyclique pour déterminer le taux 

d'apprentissage approprié. Nous avons réalisé nos expériences sur un ensemble énorme 

de données constitué d'enregistrements de sonores ; nous avons étudié l'impact de la 

température d'affûtage (un hyperparamètre de notre système) sur la distribution des 

pseudo-étiquettes, et nous avons testé de combiner de diverses variantes de notre 

approche. Les résultats démontrent l'efficacité de la stratégie SSL de pseudo-étiquetage. 

De plus, la combinaison de plusieurs systèmes augmente la performance globale. 

Mots clé: L’étiquetage audio, Apprentissage semi-supervisé, Extractions des 

caractéristiques, Apprentissage approfondi, Apprentissage d'ensemble, Tests 

statistiques 
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 الملخص 
  

و رر لل.ةطعلصررت  امقررلالالمتجررت فل رر للالأصررتا لتعرر على رر لإ ددانتنتهدد أنظمة ددعنالددمنت ال دديةنت  ددات ع

المخت فرررةل ارررالالم اقبرررةلاللرررت  ةلولالتعررر على ررر لالأصرررتا للقا ررر  لتطبالتقرررللاليرررال لارررم ا لاذاتمرررالل  ررر الالم رررا ل

 تعرر على رر ل  متىررةلوا ررعةلللارر   الاررتل لررم  ل  رراللالب ئررة المتجررت فل رر لالفرر اتاا لول ي ارر لالأصررتا لالمتجررت فل رر ل

 ع رر لللكررال متىررةليب رر فل ررالالب ا ررا لاللررت  ةلتا لالع  ررا  تط ررعلىم  ررةلالتطررتا لىررا ف ل  ل  ررالالأارر اصلاللررت  ة

الطررتا  ل اللأتلودررعلالع  ررا لارر واالىم  ررةل ك فررةلل لااررةلو  ررتل  لوقترر  ل،ل  متىررا لالب ا ررا لاليال ررةلن رر ل لرر فةل  رر  

ى رر ل ل (SSL) الررتع  لهررب لالخادررعلل هرر اع مررتت للقرر لقم ررال ء  ررانل  ا  ررالالخررا ل ء بررا لل،ولترر ا هلارر ملالم ررايال

ل رررتع  ل رررالالب ا رررا لتا لالع  رررا ل(لpseudo-labeling)وجررر لالتي اررر ل،لاات  رررالا رررت ا    ةلودرررعلالع  رررا لالما فرررةل

 ةى رر ل خططررا لط ف ررةللتنا اتم ررل ResNet  لو اذدررا ةلىلرر لتلررول لاقررتلل  ا  ررال ترر  اعل مررتت لالررتع  لالعم رر الضررع فة

“Log-Mel Spectrogram” ،ا ررتخ للالترر  اعل لاللررت  ةلماررمللماررا فلا رر ل  متىررةلالب ا ررا ىلرر لجا ررعل ق  ررا لالتعل

   للقررر ليج ا رررال  ا   رررالى ررر ل  متىرررةل  ا رررا لدرررخمةل رررال عررر  لالرررتعتل ررر للل(cyclic cosine anealing) ق  رررةل

وىاتب  رررال  م رررعلالمتل ررر ا لل،ى ررر ل ت ارررعلالع  رررا لالما فرررةللولقررر لقم رررال   ا رررةل ررر    لال ررري ل،ت ررر    لصرررت  ةلال

الررتع  لل(ل رراpseudo-labeling)ل رر فل عال ررةلى ررت ا    ةلودررعلالع  ررا لالما فررةل   رر  لولال تررا  ل ررال    ررا فررةلالمخت

المخت فررةلاعررم لالأ انلالعرراللودررعلالع  ررا لىرر وفلى رر لتلررول،ل ررءتل  م ررعلي  مررةل لل(SSL)هررب لالخادررعلل هرر اعل

ل   كاليب  

ل،الررتع  لالعم رر ل،ى ررتخ ا لالخلررا  لالررتع  لهررب لالخادررعلل هرر اع،ل،الع  ررا لاللررت  ةالكلماا ا الماح ة اا    

 الااتبا ا لاذالا  ة للل،  قةلالتع  
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INTRODUCTION 
 
 

On a daily basis, humans rely on sounds to know their surroundings and 

enhance their scene understanding (e.g. streets, factory, car passing by, car horn, …etc.). 

More broadly, sound complements visual information such as videos and images. There 

are many types of sounds, and almost always in environments there are multiple sources 

producing sounds simultaneously. The task of recognizing sounds is not considered 

difficult for humans since we are able to discern and classify audio without conscious 

effort [1]. Machines in various environments have the ability to hear, such as 

smartphones, autonomous robots, or security systems. However, enabling devices to 

make sense of their environment through the analysis of sounds is a complex task, but 

achieving the automation of sound recognition can benefit humans greatly. In machine 

learning, audio tagging systems are capable of recognizing and discerning a wide range 

of acoustic events and audio scenes, these systems are trained by using a large amount of 

audio data to achieve high accuracy when recognizing and discerning a wide range of 

acoustic events and audio scenes.  

The prospect of human-like sound understanding or audio tagging could open 

up a range of applications, including intelligent monitoring systems of equipment using 

acoustic information, acoustic surveillance, cataloging, search in audio archives, tag 

video content or recognize sound events happening in real time. Audio tagging has been 

implemented in many applications such as audio information retrieval [2], audio 

classification [3], acoustic scene recognition [4], industry sound [5] and music tagging 

[6]. 

Machine learning requires a large number of labeled data to achieve great 

performance. However, these datasets have to be hand-labeled by specialists, which is a 

very costly and time-consuming process since it involves a lot of manual labor [7]. This 

consideration causes a difficulty in collecting enough amounts of audio training data for 

building tagging systems. Furthermore, a large amount of user-generated audio content is 

available on the web, which can be resourceful for audio tagging research. Nevertheless, 

because these resources are either poorly labeled or unlabeled, this can decrease the 
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audio tagging system performance when used in a supervised fashion. To take advantage 

of plenty of web audio resources, the semi-supervised learning paradigm can use both 

labeled and unlabeled data to achieve great audio tagging performance. 

Audio Tagging using semi-supervised learning has been addressed before. Eric 

Bouteillon [8] has presented a novel data augmentation technique for multi-label audio 

tagging named SpecMix. In the paper, the new augmentation technique SpecMix is an 

extension of SpecAugment [9] inspired by Mixup [10]. The author presented a semi-

supervised warm-up pipeline by filtering unreliable samples in a multi-stage process by 

using a self-training technique. This latter refers to retraining a model based on its own 

predictions on unlabeled data. Xiaofeng Hong and Gang Liu [11] used a semi-supervised 

learning method called Interpolation Consistency Training (ICT) [12]. ICT encourages 

the prediction at an interpolation of unlabeled points to be consistent with the 

interpolation of the predictions at those points. Other researchers [13][14] used well-

known semi-supervised techniques in their papers like pseudo-labeling and MixMatch 

[15]. 

Many researchers have experimented using different techniques and concepts to 

build audio tagging systems. The design and evaluation of such systems is actually a 

more complicated task, and should be conducted properly in order to ensure significance 

of results (i.e. avoid deriving conclusions affected by chance). In our case, we have used 

the pseudo-labeling technique on a large dataset, and we have used a sharpening function 

proposed in MixMatch [16] to sharpen the pseudo-labels distribution. Furthermore, we 

have employed the concept of thresholding to produce better distribution of pseudo-

labels that better suits multi-label classification. However, further research is still needed 

to properly assess the effects of the latter techniques and hyperparameters on the 

performance of audio tagging systems. Motivated by these needs, we have designed an 

audio tagging system that uses the pseudo-labeling strategy. Additionally, we have 

conducted extensive experiments and analyzed the behavior of multiple variants of our 

audio tagging system. We can summarize our contributions as follows: 
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- We have carried out our experiments using a recent dataset FSDKaggle2019, and 

we have backed our conducted experimental comparisons using well-known 

statistical tests. 

- We have designed our audio tagging systems using a well-known deep neural 

network architecture, the ResNet-34 [17], which has been used successfully in audio-

related tasks [18][19].  

- We have analyzed the impact of the temperature hyperparameter of sharpening on 

the distribution of pseudo-labels. 

- We have used Ensemble learning by averaging the scores of our audio tagging 

systems. 

- We have studied the behavior of the ResNet neural network model and cosine 

annealing, by increasing the number of training epochs.  

 

The rest of this thesis is structured as follows. Chapter 1 reviews the multi-label audio 

tagging pipeline, starting from data preparation to model evaluation. Chapter 2 

introduces some semi-supervised learning methodologies that have been widely invoked 

for audio tagging. Chapter 3 presents the process of our audio tagging system. It 

summarizes the steps that we have followed to design our model, including 

preprocessing, feature extraction, data augmentation and the training stages. Chapter 4 

reports the obtained results through performance tables and plots. Finally, Conclusion 

summarizes the contributions of this thesis, the lines of limitations and future work. 
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Chapter 1 : Overview of Multi-Label Audio Tagging 

1.1. Introduction 

In recent years, the popularity of sound recognition has increased and gained a 

lot of attention due to the incredible potential and adoption of machine learning in many 

fields. Sound recognition encompasses tasks such as acoustic scene classification, sound 

event detection and audio tagging [20]. The latter is becoming a popular task with its 

great impact on many real-life applications such as (acoustic monitoring, hearing aids, 

virtual reality, videoconferencing, video games, automated sound recognition, etc...). 

The popularity of audio tagging is growing by virtue of its increasing performance with 

the advances of machine learning.  

In this chapter, we provide some basic notions on audio tagging (also known as 

multi-label audio classification) that are necessary for understanding the remaining of 

this thesis. Specifically, we discuss the major steps for building an audio tagging system, 

namely sound representation i.e. features extraction and model learning. We also 

present some scientific and technical challenges that researchers face every day in the 

field of audio tagging. 

1.2. Multi-label Audio Tagging  

Audio tagging is a task where the main goal aims at performing multi-label 

classification on audio recordings by assigning one or more labels to it [20]. Tagging is 

equivalent to multi-label classification in machine learning terminology. Audio Tagging 

has drawn a lot of attention due to its remarkable application in many different fields like 

multimedia sharing sites (e.g., YouTube, … etc.) [21], emotion detection in music [22] 

and music genres classification [23]. 

The audio tagging process consists of two main steps: audio signal processing 

and multi-label classification. First, signal processing is the step where the audio data 

undergoes a pre-processing stage to enhance its property by removing silence, making 

audio files the same duration and reducing noises to make audio files fairly equal [24]. In 
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addition, this step involves feature extraction, where the audio signal goes through a 

transformation process into different representations of its physical properties (i.e. time, 

frequency and loudness). These representations provide helpful information about those 

properties to use in the next step, it is worth mentioning that using a suitable 

representation for some tasks can improve the accuracy because the representations carry 

the acoustic content [25][26]. Next is audio classification using a multi-label approach, 

the previous step provides the system with the necessary inputs to train the learning 

model. The goal is to make accurate predictions on unseen data. The overall audio 

tagging process is depicted in Figure 1.1. 

 
Figure 1.1: Audio Tagging process [27]. 
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1.3. Audio Signal Representation 

The physical representation of sound is a pressure wave (i.e., vibration) in the 

air which can be measured with a mechanical device. The arrival of electronic 

technology has introduced the ability to convert the pressure waves into a voltage 

reading that can be transferred onto a variety of storage media. The pressure waves (i.e. 

sounds) are converted from a continuous status to a discrete status (i.e. digitized 

signals) for the machines to process it [28]. The basic representation of sound is by the 

amplitude 𝑨 of its vibration over time as a waveform, where sound is as a changing 

function of time 𝒕 that is denoted as 𝒙(𝒕) as shown in Figure 1.2. 

 
Figure 1.2: Time-Domain representation of a sound tone [29]. 

One of the main characteristics of sound that the human ear can distinct is the 

tonal content that can be high or low pitched, this is the effect of frequencies stored in 

the sound [29]. Humans perceive sounds in terms of their tonal content, in many 

situations it is appropriate to describe audio signals in the frequency domain, where the 

representation that corresponds to the frequency domain shows how much frequency 𝒇 

is present in the signal. Figure 1.3 depicts the frequency representation of a sound tone. 
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Figure 1.3: Time-domain versus frequency representation of a sound tone of amplitude A at 

frequency f0 [29]. 

1.4. Feature Extraction Methods 

For audio tagging, a significant amount of information is contained in the 

relative distribution of energy in frequency of an audio signal [20]. The information 

stored in the frequencies allows for making comparisons between audio files while 

paying attention to the most relevant characteristics of the audio. Feature extraction is 

a crucial process in the development of the audio tagging system, the audio signal gets 

transformed from the default representation (i.e. waveform) into representations that 

maximizes the sound recognition performance of the audio tagging system [20]. 

For the essential audio tagging features to be extracted, the audio signal must be 

converted to the frequency-domain representation. To do that, the mathematical 

function Fourier Transform allows the passage of the audio signal from the time-

domain representation to the frequency representation. The Fourier Transform is the 

basic tool for converting a signal from its representation in time x(t) into a corresponding 

representation in frequency X(f). The Fourier Transform is defined as: 

𝑋(𝑓) ≡ ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 (1.1) 

where the notation is as follow: 

-𝑗 to denote the square root of -1 (the imaginary number). 

-𝑑 is an infinitesimal or a differential “Delta”. 
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The default Fourier transform is used for continuous signals, but because the audio 

signal is stored as discrete and periodic values (i.e. digitized signals), the Discrete 

Fourier Transform (i.e. DFT) is used with the digitized audio signal. Given the 

sequence x0, …, xN of N complex-valued measurements, the DFT is defined by the 

formula: 

𝑋𝑘 = ∑ 𝑥𝑛𝑒−𝑖2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

           𝑘 = 0, . . . , 𝑁 − 1 (1.2) 

where ei2π/N
 is a primitive 𝑁𝑡ℎ root of 1. 

 

The Fast Fourier transform (i.e. FFT) is a more efficient and much faster 

implementation of DFT [30]. Figure 1.4 shows the result of applying the Fast Fourier 

Transform (i.e. FFT) on an audio signal. 

 
Figure 1.4: (a) Time-domain versus (b) Frequency-domain representation of a “Applause, Crowd, 

Cheering” audio file. 

The time-domain and the frequency-domain representations do not really 

carry the information that is suitable for audio tagging, but the time-frequency 

representation (i.e. change of frequency over time) is more suitable for audio tagging. 

One of the most popular time-frequency representations are spectrograms, the Fourier 

transform does convert the audio from time-domain to frequency-domain but it does not 

cover the change of the frequency over time. That is why the concept of Short-Time 

Fourier transform (i.e. STFT) is used to solve the problem. the STFT considers only 
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specific time segments (i.e. frames) of the signal 𝒙(𝒕), which are obtained by applying a 

Window function 𝒘(𝒕) to 𝒙(𝒕): 

𝑥𝑤(𝑡0, 𝑡) = 𝑥(𝑡)𝑤(𝑡 − 𝑡0) (1.3) 

A common Window function is hamming window, plotted in Figure 1.5. 

 
Figure 1.5: Hamming Window [31]. 

The mathematical STFT representation is as follows: 

𝑺𝑻𝑭𝑻{𝑥(𝑡)}(𝑚, 𝜔) ≡ 𝑋(𝑚, 𝜔) = ∑ 𝑥(𝑛)𝑤(𝑛 − 𝑚)𝑒−𝑗𝜔𝑛

∞

−∞

 (1.4) 

Where the notation is as follow 

-𝑗 = square root of -1. 

-𝜔 = frequency. 

-𝑥(𝑛) = input signal at time n. 

-𝑤(𝑛) = length M window function (e.g., Hamming). 

-𝑋(𝑚, 𝜔) is basically the Fourier transform of  𝑥𝑤(𝑡0, 𝑡) = 𝑥(𝑡)𝑤(𝑡 − 𝑡0). 

STFT is applying FFT to small overlapped audio signal segments weighted by a 

hamming Window, this process is called Frame Blocking. The reason to apply 

windowing function to time segments is to avoid the discontinuities caused by Frame 

blocking. STFT process can be depicted in Figure 1.6. 
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Figure 1.6: Graphical interpretation of the overlap-add synthesis method showing the overlapping 

sections (weighted by a Hamming Window Figure 1.5) and the result summation [32]. 

The overall process of producing a spectrogram from an audio file can be illustrated in 

Figure 1.7. 

 
Figure 1.7: Spectrogram making process [33]. 
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Two of the most used spectrograms in audio tagging are Mel spectrogram and Log-Mel 

spectrogram, which will be explained in the next subsections. 

1.4.1. Mel Spectrograms 

A spectrogram is a visual depiction of an audio signal in the Time-Frequency 

region [34]. The Mel scale is based on a unit of PITCH proposed by Stevens, Volkmann 

and Newmann in 1937. The Mel scale provides a linear scale below 1000 Hz and 

logarithmic scale beyond that for the human auditory system [35], and is related to 

Hertz by the following formula, where m represents Mels and 𝑓 represents Hertz [34]: 

𝑚 = 2595𝑙𝑜𝑔10(1 +
𝑓

700 𝐻𝑧
) (1.5) 

The Mel spectrogram is used to provide us with sound information similar to 

what a human would perceive [34]. Figure 1.8 shows what a Mel Spectrogram looks like 

where the color represents the power spectrum. 

 

Figure 1.8: Mel Spectrogram of a “Applause, Crowd, Cheering” audio file. 
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1.4.2. Log-Mel Spectrograms 

The Log-Mel Spectrogram is another visual representation of Mel Spectrograms 

where it is converted from power to decibels, which are log-scaled. The Figure 1.9 is 

the same as Figure 1.8 but the data is converted from power to decibels which results in 

different visuals. The massive experiments show that the Log-Mel Spectrogram is not 

only visually different from the Mel Spectrogram, but is a more suitable approximation 

of the human’s auditory system [3][36]. 

 
Figure 1.9: Log-Mel Spectrogram of a “Applause, Crowd, Cheering” audio file. 

To date, Log-Mel Spectrograms are considered as one of the best variants of the visual 

features that could be used as an input feature to convolutional neural networks [37]. 

1.5. Fundamentals of Classification 

Classification refers to a process where a class label is predicted for a given 

example of input data [24]. Through the use of many training examples, the 

classification model learns and calculates how to best map the examples to a specific 

class label or set of labels. A segment of audio is classified into a single predefined class 
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in single-label classification, or into multiple predefined classes in multi-label 

classification, the type of classification depends on the target application [20]. Figure 

1.10 depicts both classifications methods. 

1.5.1. Single-Label Classification 

Commonly, a classification task involves predicting or associating a single label 

for each sample. More formally, given a set of 𝒏 labels 𝐿 =  {𝑙1, 𝑙2, … , 𝑙𝑛} and a set of 

𝒎 items 𝐼 =  {𝑖1, 𝑖2, … , 𝑖𝑚}, in single-label classification the goal is to associate one 

label 𝒍 to every item 𝒊. 

1.5.2. Multi-Label Classification 

Multi-label classification refers to the tasks where each sample can be assigned 

simultaneously into multiple classes [38]. More formally, given a set of 𝒏 labels 𝐿 =

 {𝑙1, 𝑙2, … , 𝑙𝑛} and a set of 𝒎 items 𝐼 =  {𝑖1, 𝑖2, … , 𝑖𝑚}, the multi-label classification 

task aims to associate a set 𝒄 of 𝒍 labels to every item in 𝒊, where 𝒄 𝝐 [𝟏, 𝒏] and varies for 

every item. In audio analysis systems, audio tagging systems are referred to as multi-

label classification [20]. Moreover, in many real-world applications, multi-label 

classification is considered a more challenging task than single-label classification [39]. 
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Figure 1.10: Overview of (a) Single-Label and (b) Multi-Label audio tagging systems. 

1.6. Performance Evaluation 

The evaluation metric is a crucial element in achieving the optimal classifier 

during the training process. The metrics differs from task to task, where the type of 

classification (i.e. single-label, multi-label) makes a difference in the choice of an 

evaluation metric. For performance evaluation of an audio tagging system, the metrics 

have to be suited for multi-label classification. One of the metrics used for audio tagging 
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tasks is the Multi-Label Ranking Metrics, where the order of labels matters. Samples 

can have any number of ground truth labels associated with it, the goal of label ranking 

is to give better rank to labels according to their scores to focus on the first relevant 

labels, and avoids constructing binary classifiers that distinguish individual labels from 

the other labels. In simpler words, multi-label ranking aims to order all the relevant 

labels at a higher rank than the irrelevant ones. 

1.6.1. Label Ranking Average Precision (LRAP) 

A label ranking average precision score function is often used as an evaluation 

metric for audio tagging where it implements ranking average precision and is based on 

the notion of label ranking instead of precision and recall. Label ranking average 

precision (i.e. LRAP) averages over the samples, this performance measure will be 

higher if the system is able to give better rank to the labels associated with each sample. 

The obtained score is always strictly greater than 0, and the best value is 1. Formally, 

given a binary indicator matrix of the ground truth labels 𝑦𝜖{0,1}𝑛𝑠𝑎𝑚𝑝𝑙𝑒× 𝑛𝑙𝑎𝑏𝑒𝑙𝑠  and the 

score associated with each label 𝑓 𝜖ℝ𝑛𝑠𝑎𝑚𝑝𝑙𝑒× 𝑛𝑙𝑎𝑏𝑒𝑙𝑠, the average precision is defined as: 

𝐿𝑅𝐴𝑃(𝑦, 𝑓) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ∑

1

||𝑦𝑖||

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

∑
|𝐿𝑖𝑗|

𝑟𝑎𝑛𝑘𝑖𝑗
 

 

𝑗:𝑦𝑖𝑗=1

 (1.6) 

where 𝐿𝑖𝑗 = {𝑘: 𝑦𝑖𝑘 = 1, 𝑓𝑖𝑘 ≥ 𝑓𝑖𝑗}, 𝑟𝑎𝑛𝑘𝑖𝑗 = {𝑘: 𝑓𝑖𝑘 ≥ 𝑓𝑖𝑗}, |.| computes the cardinality 

of the set (i.e. the number of elements in the set), and ||.||0 is the ℓ0 “norm” (which 

computes the number of nonzero elements in a vector). 

1.6.2. Label-Weighted Label-Ranking Average Precision (LWLRAP) 

The label-weighted label-ranking average precision is abbreviated as l𝖜lrap 

and pronounced “lol wrap” [27]. lwlrap measures the average precision of retrieving a 

ranked list of relevant labels for each audio clip (i.e., the system ranks all the available 

labels, then the precisions of the ranked lists down to each true label are averaged). This 

is a generalization of the mean reciprocal rank measure for the case where there can be 

multiple true labels per test item. The novel "label-weighted" part means that the overall 

score is the average over all the labels, where each label receives equal weight (by 
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contrast, plain lrap gives each item equal weight, thereby discounting the contribution 

of individual labels when they appear on the same item as multiple other labels). The 

label weighting is used because it allows per-class values to be calculated, and still have 

the overall metric be expressed as a simple average of the per-class metrics (weighted by 

each label's prior in the test set). Formally, let 𝑳𝒂𝒃(𝒔, 𝒓) be the class label at rank 𝒓 

(starting from 1) in test sample 𝒔, and 𝑹𝒂𝒏𝒌(𝒔, 𝒄) be the rank of class label c in that list, 

i.e. 𝑳𝒂𝒃(𝒔, 𝑹𝒂𝒏𝒌(𝒔, 𝒄))  =  𝒄 . Then, if the set of ground-truth classes for sample 𝒔 is 

𝑪(𝒔), the label-ranking precision for the list of labels up to class 𝒄 (assumed to be 𝐶(𝑠) 

the number of true class labels for sample 𝒔) is: 

𝑃𝑟𝑒𝑐(𝑠, 𝑐) =
1

𝑅𝑎𝑛𝑘(𝑠, 𝑐)
 ∑ 𝐼[𝐿𝑎𝑏(𝑠, 𝑟)𝜖𝐶(𝑠)]

𝑅𝑎𝑛𝑘(𝑠,𝑐)

𝑟=1

    (1.7) 

where 𝐼[𝐿𝑎𝑏(𝑠, 𝑟)𝜖𝐶(𝑠)] evaluates to 𝐼 if the argument is true, else zero. 𝑷𝒓𝒆𝒄(𝒔, 𝒄) is 

equal to 1 if all the top-ranked labels down to 𝒄 are part of 𝑪(𝒔), and at worst case 

equals 
𝟏

𝑹𝒂𝒏𝒌(𝒔,𝒄)
 if none of the higher-ranked labels are correct. In contrast to plain lrap, 

which averages precisions within a sample then across samples, thereby downweighting 

labels that occur on samples with many labels, l𝖜lrap calculates the precision for each 

label in the test set, and gives them all equal contribution to the final metric: 

𝑙𝜔𝑙𝑟𝑎𝑝 =
1

∑ |𝐶(𝑠)|𝑠  

∑ ∑ 𝑃𝑟𝑒𝑐(𝑠, 𝑐)

𝑐𝜖𝐶(𝑠)𝑠

    (1.8) 

where |𝐶(𝑠)| is the number of true class labels for sample 𝒔. 

• Calculate lwlrap for a label 

In practice, the score of a label is calculated like this: 

 

𝑆𝑐𝑜𝑟𝑒𝑙𝑎𝑏𝑒𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙 𝑟𝑎𝑛𝑘

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙 𝑟𝑎𝑛𝑘
 

 

Assuming we labels A, B, C and D, if the correct answers are (A and C) and the 

predictions are (A: 0.4, B: 0.1, C:0.2, D:0.3) then it will be ranked like this (A:1, 
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B:4, C:3, D:2) (i.e. lower is better), the order in a descending will be (A, D, C, B). 

The calculation of the score of (A and C) will be like this: 

For A: 

Arank = 1 so the number of correct answers from 1 to Arank => 1 to 1 = 1 (i.e. Only 

A is correct and A is Ranked 1), so the score of 𝐴 =
1

1
 =  1. 

For C: 

Crank = 3 so the number of correct answers from 1 to Crank => 1 to 3 = 2 (i.e. Only 

A and C are correct and D have higher rank than C, so only 2 are correct answer out 

of the first 3 Ranked labels), so the score of 𝐶 =
2

3
 =  0.66. 

 

• Calculate lwlrap for all samples 

For a set of two samples if the following is assumed: 

Sample 1: Correct answer label = A, C; prediction = (A: 0.1, B: 0.7, C: 0.2) 

Sample 2: Correct answer label = B, C; prediction = (A: 0.1, B: 0.7, C: 0.2) 

 

First, calculate the score for each class. 

 

𝑆𝑐𝑜𝑟𝑒𝑐𝑙𝑎𝑠𝑠 =
𝑡𝑜𝑡𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 𝑓𝑜𝑟 𝑎 𝑐𝑙𝑎𝑠𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑙𝑎𝑏𝑒𝑙𝑠 𝑓𝑜𝑟 𝑎 𝑐𝑙𝑎𝑠𝑠
 

Using 𝑆𝑐𝑜𝑟𝑒𝑙𝑎𝑏𝑒𝑙 equation we find: 

Sample 1 score = A: 0.6667, C: 0.5  

Sample 2 score = B: 1.0, C: 1.0 

So, the score of each class is as follow: 

𝑆𝑐𝑜𝑟𝑒𝐴  =
0.6667

1
  =  0.6667 

𝑆𝑐𝑜𝑟𝑒𝐵  =
1.0

1
  =  1.0 

𝑆𝑐𝑜𝑟𝑒𝐶  =
(0.5 + 1.0)

2
  =  0.75 
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When calculating scores for all classes, averaging the scores of each class does 

not take into account the bias in the number of correct labels for each class. For lrap, 

frequent classes have less impact on the final score of one label, infrequently 

occurring classes have a greater effect on the final score of one label. Therefore, a 

weighted average is taken with the number of occurrences of each class as a weight 

(i.e. lwlrap) is calculated in the following way. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑐𝑙𝑎𝑠𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑙𝑎𝑏𝑒𝑙𝑠
 

𝑊𝑒𝑖𝑔ℎ𝑡𝑐𝑙𝑎𝑠𝑠 =
(𝐴: 1, 𝐵: 1, 𝐶: 2)

4
= (𝐴: 0.25, 𝐵: 0.25, 𝐶: 0.5) 

𝑆𝑐𝑜𝑟𝑒𝑙𝑤𝑙𝑟𝑎𝑝 = 𝐴 × 𝐴𝑤𝑒𝑖𝑔ℎ𝑡 + 𝐵 × 𝐵𝑤𝑒𝑖𝑔ℎ𝑡 + 𝐶 × 𝐶𝑤𝑒𝑖𝑔ℎ𝑡 

𝑆𝑐𝑜𝑟𝑒𝑙𝑤𝑙𝑟𝑎𝑝 = (0.6667 × 0.25) + (1.0 × 0.25) + (0.75 × 0.5) = 0.7917 

This is ultimately equal to the average of the scores for each label. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑐𝑜𝑟𝑒 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑙𝑎𝑏𝑒𝑙𝑠 𝑠𝑐𝑜𝑟𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑙𝑎𝑏𝑒𝑙𝑠
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑐𝑜𝑟𝑒 =
𝐴𝑠𝑐𝑜𝑟𝑒𝑠 + 𝐵𝑠𝑐𝑜𝑟𝑒𝑠 + 𝐶𝑠𝑐𝑜𝑟𝑒𝑠

4
= 0.7917 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑐𝑜𝑟𝑒 =
0.6667 + 1.0 + (0.5 + 1.0)

4
= 0.7917 

• lwlrap summary: 

-Firstly, the range of the probability score is between 0 and 1, where it is always 

greater than 0 and the higher being the better.  

-Secondly, the score is calculated on the basis of the relative ranking of the 

label and not the actual probability scores, and a score of 1 means if there are 𝒌 

ground-truth labels for a given clip, then if the predicted probabilities are sorted in 

descending order (i.e. for each label of all labels), the first 𝒌 labels are exactly the 

same labels that are present in the ground truth. The non-ground-truth labels can 
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decrease the score when they have a higher probability than the ground-truth labels 

(i.e. they are ranked higher than the ground truth labels).  

-Finally, for LWLRAP specifically, the relative occurrences of the labels are 

taken into account and a weighted average is performed (label-weighted) instead of 

a simple average (lrap), which results in assigning appropriate weights based on the 

frequency of occurrence so that the less frequently appearing labels do not get an 

undue advantage. 

1.6.3. Statistical tests 

Given multiple learning algorithms, model evaluation aims at identifying which 

algorithm produces the most accurate classifiers. This concern is one among the 

fundamental issues in machine learning [39]. Various researchers adopt different 

statistical and common-sense techniques to decide whether the differences between the 

algorithms are real or random. In this regard, Dem�̃�ar [40], Garcίa et al. [41], and 

Japkowicz et al. [42] introduced several statistical tests such as Friedman, Nemenyi, 

Bonferroni-Dunn and Wilcoxon for performance comparison. 

• Friedman test 

The Friedman test is useful for comparing several algorithms over multiple 

domains. It first ranks the techniques for each dataset separately according to the 

generalization measure in descending order. The best performing technique gets 

the rank 1, the second best gets rank 2... etc. In case of ties, average ranks are 

assigned. Let 𝑟𝑖
𝑗
 be the rank attributed to the 𝑗𝑡ℎ algorithm on the 𝑖𝑡ℎ  dataset; and 

let 𝑅𝑗   denote the average rank of algorithm 𝑗 ∈ {1, … , 𝑡} over 𝑁 datasets. Under 

the null hypothesis, it is assumed that all techniques are equivalent; hence, their 

average ranks should be equal. 

𝑅𝑗 =
1

𝑁
∑ 𝑟𝑖

𝑗

𝑁

𝑖=1

 (1.9) 
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𝑥𝐹
2 =

12𝑁

𝑡(𝑡 + 1)
[∑ 𝑅𝑖

𝑗
𝑘

𝑗=1
−

𝑡(𝑡 + 1)2

4
] (1.10) 

The test statistic is given in equations above chi-squared distribution with 𝑡 –  1 

degrees of freedom for sufficiently large N and t (Usually 𝑁 >  10 and 𝑡 >  5). 

This test provides only an assessment whether the observed differences in the 

performances are statistically significant. 

• Nemenyi test 

This test is invoked when all techniques are compared with each other. The 

performance of two methods is significantly different if their corresponding 

average ranks differ by at least the critical difference 𝐶𝐷. 

𝐶𝐷 = 𝑞𝛼√
𝑡(𝑡 + 1)

6𝑁
 (1.11) 

Where the critical value qα is defined based on the Studentized range statistic 

divided by √2. 

• Bonferroni-Dunn test 

In general, the Bonferroni-Dunn test is undesirably conservative and has little 

power; nevertheless, this test is useful when the main interest is the comparison of 

all techniques against a control algorithm. In this specific case, Bonferroni-Dunn 

test is more powerful than Nemenyi test because this latter adjusts the critical 

value for making 𝑡(𝑡 − 1) comparisons, whereas when comparing with a control 

method, only 𝑡 −  1 comparisons are made. This test is basically defined similarly 

to Nemenyi test except that we estimate the critical value for 
𝛼

(𝑡−1)
 significance 

level. 

• Wilcoxon signed-ranks test 

Wilcoxon signed-ranks test is a non-parametric test and is considered the best 

strategy to compare two algorithms over multiple domains [43]. The formulation 

of this test is the following. We designate by 𝑑𝑖 the difference between the 

performance scores of two techniques on 𝑁 datasets. 𝑖 ∈  {1, … , 𝑁}. We first rank 

these differences according to their absolute values; in case of ties, average ranks 
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are attributed. Then, we compute the sum of ranks for the positive and the 

negative differences, which are denoted as 𝑅+ and 𝑅−, respectively. Their formal 

definitions are given by: 

𝑅+ = ∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖<0

+
1

2
∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖=0

 (1.12) 

𝑅− = ∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖<0

+
1

2
∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)

𝑑𝑖=0

 (1.13) 

Notice that the ranks of 𝑑𝑖 = 0 are split evenly between 𝑅+ and 𝑅+. Finally, 

the statistics 𝑇𝑤  is computed as 𝑇𝑤 = min (𝑅+, 𝑅−). For small 𝑁, the critical 

value for 𝑇𝑤 can be found in any textbook on general statistics [41], whereas for 

larger 𝑁, the statistics: 

𝑧 =
𝑇𝑤 −

1
4 𝑁(𝑁 + 1)

√ 1
24 𝑁(𝑁 + 1)(2𝑁 + 1)

 (1.14) 

1.7. Scientific and Technical Challenges in Audio Tagging 

Many audio tagging systems achieve relatively high accuracies when using data 

produced in controlled laboratory conditions [20].  

However, sounds that are produced in realistic environments tend to create 

challenges for the tagging systems which result in poor performance. These challenges 

can vary and depend on many factors. 

Firstly, sounds come in many different types and the characteristics of the class 

that the sound falls under can be highly diverse, some of those characteristics can be very 

similar to other classes which can make recognizing the class of sound accurately more 

difficult. 

Secondly, an audio signal captured by a microphone is affected by the channel 

coupling (impulse response) between the source and microphone, which may alter the 

signal sufficiently to prevent the matching of models developed to recognize the sound 
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[20]. The microphones that are used to capture audio are often significantly further 

away from target sources, which increases the effect of impulse responses from the 

source to the microphone as well as other sources in the environment. 

Thirdly, in realistic environments there are almost always multiple sources 

producing sound simultaneously. The captured audio is a superposition of all the sources 

present, which again distorts the signal captured [20]. 

Finally, the most common challenge is that it may become difficult to collect 

enough samples for audio tagging systems due to different tasks requires different task-

specific datasets, hence the number of recordings available may be limited. Also, the 

datasets have to be hand-labeled either by a machine learning engineer or a data scientist, 

this is a very costly and time-consuming process that involves a lot of manual labor [7], 

especially when dealing with large volumes of data. To counter these disadvantages, the 

concept of Semi-Supervised Learning was introduced.  

1.8. Conclusion 

In this Chapter, we have reviewed an outline of the basic concepts of audio 

tagging that are essential to understand the ideas treated in this work. We have provided 

some important concepts of classification in general, and audio feature extraction 

methods. In Addition, to performance evaluation metrics used in audio tagging and some 

common challenges of sound recognition research field. In the next chapter, we will 

present the fundamental notion of learning from weakly labeled data, including several 

well-known semi-supervised techniques.  
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Chapter 2 : Learning from Weakly Labeled Data 

2.1. Introduction 

Traditionally, machine learning has been studied in two fundamentally different 

types of tasks, either in the supervised learning paradigm where all the data is labeled, or 

in the unsupervised learning paradigm where all the data is unlabeled [15]. The goal of 

semi-supervised learning is to understand how combining labeled and unlabeled data 

may change the learning behavior, and design algorithms that take advantage of such 

combinations. The success of semi-supervised learning depends critically on some 

underlying assumptions [44]. 

In this chapter, we introduce the semi-supervised paradigm which is halfway 

between supervised and unsupervised learning paradigms, and the techniques used 

within and with the semi-supervised learning paradigm to deal with the lack of training 

data or the weakly labeled data. 

2.2. Motivation 

Current machine learning techniques require large and varied datasets in order 

to provide good performance and generalization [20]. On one side, supervised learning is 

the more commonly used form of machine learning, and it has proven to be a reliable 

solution for most problems by using large datasets to produce good results. However, 

manually labeling a dataset is expensive and time-consuming, which limits its size [20]. 

On the opposite side, unsupervised learning does not require labeled data to work, which 

can learn from the unlabeled data with a minimum human interaction; however, it is best 

used when there is no prior knowledge of what the output values for the samples should 

be, so its goal is to lean the inherent structure present within a set of data points without 

using explicitly-provided labels, but this approach does not really suit the audio tagging 

task where the output values are known. Both supervised and unsupervised learning 

comes with their drawbacks in the audio tagging task from lack of data, complexity and 

intensive human interaction. As a result, an in-between solution exists, semi-supervised 

learning uses both labeled and unlabeled data (i.e. weakly labeled data) to create an 
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audio tagging system. Many websites host large volumes of user-contributed audio and 

metadata, and labels can be inferred automatically from the metadata and/or predicted 

with pre-trained models. Nevertheless, these automatically inferred labels might include 

a substantial level of label noise, making them unreliable for the supervised usage. The 

main research question in learning from weakly labeled data is how to adequately exploit 

a small amount of reliable manually-labeled data, and a larger quantity of noisy web 

audio data (i.e. weakly labeled) in a multi-label audio tagging task. 

2.3. Semi-Supervised Learning Assumptions 

Semi-supervised learning methods have to make strong assumptions about the 

nature of the training data and thus, the performance of the predictor is highly dependent 

on these assumptions [44]. A Semi-Supervised algorithm assumes the following about 

the data: 

● Smoothness assumption 

If two points 𝑥1 and 𝑥2 in a high-density region are close (e.g., if they 

belong to the same cluster and are close), then so should be their corresponding 

label sets 𝑦1, 𝑦2. This assumption is the main assumption made by semi-

supervised learning algorithms [15], which implies that if two points are linked by 

a path of high-density then their outputs are likely to be close. If, on the other 

hand, they are separated by a low-density region then their outputs do not need to 

be close. This assumption applies to both regression and classification. 

● Cluster Assumption 

If points are in the same cluster, they are likely to be of the same class. This 

assumption does not imply that each class forms a single compact cluster: it only 

means that usually, objects of two distinct classes are not observed in the same 

cluster [15]. The cluster assumption can easily be seen as a special case of 

smoothness assumption, considering that clusters are frequently defined as being 

sets of points that can be connected by short curves which traverse only high-

density regions. 
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● Low-Density Assumption 

The low-density assumption implies that the decision boundary of a 

classifier should preferably pass through low-density regions in the input space. In 

other words, the decision boundary should not pass through high-density regions 

which is illustrated in Figure 2.1. For example, when considering a limited set of 

samples from the true distribution of the input data, it means that the decision 

boundary should lie in an area where few data points are observed. For the 

underlying data distribution, the low-density assumption is closely related to the 

smoothness assumption where it can be considered the counterpart of the 

smoothness assumption. In that point, supposing that a low-density area exists, if 

the decision boundary is placed in this low-density area, it will only concern pairs 

of similar data which does not violate the smoothness assumption. On the other 

hand, placing the decision boundary in a high-density area would indicate that the 

predicted labels are dissimilar for similar data points which does violate the 

smoothness assumption.  

● Manifold Assumption 

In machine learning problems where the data can be represented in Euclidean 

space (i.e. 2- or 3-dimensional space), the observed data points in the high-

dimensional input space ℝ𝑑 are usually concentrated along lower-dimensional 

substructures. These substructures are known as manifolds: topological spaces 

that are locally Euclidean. The manifold assumption in semi-supervised learning 

states that the input space is composed of multiple lower-dimensional manifolds 

on which all data points lie and data points lying on the same manifold have the 

same label. For instance, for a 3-dimensional input space where all points lie on 

the surface of a sphere, the data can be said to lie on a 2-dimensional manifold, 

which means that the data lie approximately on a manifold of much lower 

dimension than the input space (e.g. from 3-dimensional to 2-dimensional). 

Consequently, if it is possible to determine which manifolds exist and which data 

points lie on which manifold, the class assignments of unlabeled data points can 

be inferred from the labelled data points on the same manifold. This assumption is 
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different from the other assumption but it forms the basis of several semi-

supervised learning methods [15]. 

 
Figure 2.1: Illustrations of (a) Smoothness and low-density assumptions (b) Manifold assumption, 

and Cluster assumption depicted as the colors [45]. 

The figure above, illustrates all four assumptions. The cluster assumption is 

represented by the different colors; each cluster has a different color where the dots with 

the same color e.g. blue, belong to the same cluster. In (a) and (b), a reasonable 

supervised decision boundary is depicted, as well as the optimal decision boundary, 

which could be closely approximated by a semi-supervised learning algorithm relying on 

the respective assumption [45]. 

2.4. Semi-Supervised Learning Approaches 

In Machine Learning, the semi-supervised learning paradigm is of great interest 

because it provides many techniques and approaches to handle the lack of labeled data. 

Some of the techniques incorporate ideas and components from some dominant 

augmentation and regularization concepts from well-known methods like Consistency 

Regularization techniques, Entropy Minimization and other traditional regularization 

techniques [16][46][47][48]. This section summarizes some of the well-known semi-

supervised techniques. 
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2.4.1. Pseudo Labeling 

The pseudo-labeling method generally follows some basic steps as 

demonstrated in Figure 2.2, it starts by training the model on a batch of labeled data 

following a supervised fashion, then uses it to predict labels on a batch of unlabeled 

data. The model gets retrained using the predicted labels (i.e. guessed labels) where it 

gets used for calculating the loss on unlabeled data, which get combined together with 

labeled loss (i.e. calculated loss on labeled data) and then propagate the combined loss. 

The combination of both losses differ from just simply adding the unlabeled loss with 

labeled loss when retraining the model with labeled and pseudo-labeled data, a weight 

applied to unlabeled loss is more effective [46]. Formally, the overall loss function is 

given by [46]: 

𝐿 =
1

𝑛
 ∑ ∑ 𝐿(𝑦𝑖

𝑚, 𝑓𝑖
𝑚) + 𝛼(𝑡)

1

𝑛′

𝐶

𝑖=1

𝑛

𝑚=1

∑ ∑ 𝐿(𝑦′𝑖
𝑚, 𝑓′𝑖

𝑚)

𝐶

𝑖=1

𝑛′

𝑚=1

 (2.1) 

Where the notation is as follows: 

  -n is the number of batches in labeled data for Stochastic Gradient Descent. 

  -n’ is the number of batches for unlabeled data. 

 -C is the number of labels. 

  -𝑓𝑖
𝑚 is the output units of m’s sample in labeled data. 

  -𝑦𝑖
𝑚is the label of 𝑓𝑖

𝑚. 

  -𝑓𝑖
′𝑚is the output units of m sample in unlabeled data. 

  -𝑦𝑖
′𝑚is the pseudo-label of 𝑓𝑖

′𝑚. 

       -𝛼(𝑡) is a coefficient “weight”. 

 

In another simpler way, the loss function can be represented in this manner: 

𝐿𝑜𝑠𝑠 = 𝐿𝑎𝑏𝑒𝑙𝑒𝑑 𝐿𝑜𝑠𝑠 + 𝑊𝑒𝑖𝑔ℎ𝑡 × 𝑈𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝐿𝑜𝑠𝑠 

 



28 
 

 
Figure 2.2: Pseudo-labeling steps. 

2.4.2. MixMatch 

In MixMatch algorithm, given a batch 𝓧 of labeled examples with one-hot 

targets (representing one of L possible labels) and an equally-sized batch 𝓤 of unlabeled 

examples, MixMatch produces a processed batch of augmented labeled examples 𝓧’ and 

a batch of augmented unlabeled examples with “guessed” labels 𝓤’. 𝓧’ and 𝓤’ are then 

used in computing separate labeled and unlabeled loss terms as illustrated in Figure 2.4. 

More formally, the combined loss ℒ for semi-supervised learning is defined as [16]: 

𝒳′, 𝒰′ = 𝑀𝑖𝑥𝑀𝑎𝑡𝑐ℎ(𝒳, 𝒰, 𝑇, 𝐾, 𝛼) (2.2) 

ℒ𝑋 =
1

|𝑋′|
∑ 𝐻(𝑝, 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦 | 𝑥; 𝜃))

 

𝑥,𝑝𝜖𝑋′

 (2.3) 

ℒ𝒰 =
1

𝓛|𝒰′|
∑ ||𝑞 − 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦 | 𝑢; 𝜃)) 

 || 2
2

 

𝑢,𝑞𝜖𝒰′

 (2.4) 

ℒ = ℒ𝑋 + 𝜆𝒰𝓛𝓤 
 (2.5) 
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where: 

-𝓧 a batch of labeled examples and their labels. 

-𝓧’ a batch of processed labeled examples produced by MixMatch. 

-𝓤 a batch of unlabeled examples. 

-𝓤’ a batch of processed unlabeled examples with their label guesses produced 

by MixMatch. 

-𝐻(𝑝, 𝑞) is the Cross-entropy between “target” distribution p and “predicted” 

distribution q. 

-𝑇 is the sharpening temperature. 

-𝐾 is the number of unlabeled augmentations. 

-𝛼 is the beta distribution parameter for MixUp. 

-𝑝 is a (one-hot) label. 

-𝑝𝑚𝑜𝑑𝑒𝑙(𝑦 | 𝑢; 𝜃) refers to a generic model (i.e. model that represents all models) 

that produces a distribution over class labels y for an input x with parameters 𝜃. 

-𝑥 is a labeled example, used as input to a model. 

-𝑢 is an unlabeled example, used as input to a model. 

-𝜃 model’s parameters. 

-𝜆𝑈 is a hyper-parameter weighting the contribution of the unlabeled examples to 

the training loss. 

 

● Data Augmentation 

The data augmentation is used on both labeled and unlabeled data. For each 

xb in the batch of labeled data 𝒳, where a transformed version �̂�𝑏 =

𝐴𝑢𝑔𝑚𝑒𝑛𝑡(𝑥𝑏) is generated (Figure 2.5, line 3). For each ub in the batch of 

unlabeled data 𝓤, 𝐾 augmentations are generated �̂�𝑏,𝑘 = 𝐴𝑢𝑔𝑚𝑒𝑛𝑡(𝑢𝑏),    𝑘 ∈

(1, … , 𝐾) (Figure 2.5, line 5). 

 

● Label Guessing 

For each unlabeled example in 𝓤, MixMatch produces a “guess” for the 

example’s label using the predictions produces by model trained fully using 

supervised learning (i.e. trained on 𝓧’). This guess is later used in the 

unsupervised loss term. To do so, MixMatch compute the average of the model’s 
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predicted class distribution across all the K augmentations of ub which is shown in 

Figure 2.5, line 7 by: 

�̅�𝑏 =
1

𝐾
∑ 𝑃𝑚𝑜𝑑𝑒𝑙(𝑦 | �̅�𝑏,𝑘; 𝜃)

𝐾

𝑘=1

 (2.6) 

After that comes one additional step, Sharpening. This step is inspired by the 

success of entropy minimization in semi-supervised learning. The sharpening 

function is applied to the average prediction over augmentation 𝑞𝑏 to reduce the 

entropy (uncertainty) of the label distribution. In practice, for the sharpening 

function, a common approach of adjusting the “temperature” of this categorical 

distribution [49] is defined as the operation: 

𝑆ℎ𝑎𝑟𝑝𝑒𝑛(𝑝, 𝑇)𝑖: = 𝑝
𝑖

1
𝑇/ ∑ 𝑝

𝑗

1
𝑇

𝐿

𝑗=1

 (2.7) 

Where 𝑝 is the average class prediction over augmentations �̅�𝑏. 𝑇 is the 

sharpening temperature. Applying the sharpening function on the target 

distribution for unlabeled data achieves entropy minimization, the effect of the 

value of sharpening 𝑇 is illustrated in Figure 2.3. 

 
Figure 2.3: Plots of effect of different values of sharpening. 
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As shown in the figure above, lowering the value of 𝑇 encourages the model 

to produce lower-entropy predictions which means the high probabilities are 

promoted. On one hand, as 𝑇 get close to 0, the output of the sharpening function 

will approach one-hot distribution. On the other hand, increasing the value of 𝑇 

will only result in giving more importance to low probabilities. 

 

● Mix up 

MixUp is a data augmentation technique that mixes pairs of samples. If 𝑥1 

and 𝑥2 are two different input samples and 𝑦1, 𝑦2 their respective labels, then the 

mixed sample and target are obtained by a simple convex combination: 

𝑥𝑚𝑖𝑥 = λ𝑥1 + (1 − λ)𝑥2 (2.8) 

𝑦𝑚𝑖𝑥 = λ𝑦1 + (1 − λ)𝑦2 (2.9) 

where 𝜆 ∼  𝐵𝑒𝑡𝑎(𝛼, 𝛼)  ∈  [0, 1] (beta distribution is a family of continuous 

probability distributions defined on the interval [0, 1]), the hyper-parameter α 

controls the strength of interpolation between feature-target pairs. MixMatch uses 

a slightly modified version of MixUp to encourage convex behavior “between” 

examples. MixUp is utilized both as a regularizer (applied to labeled data-points) 

and a semi-supervised learning method (applied to unlabeled data-points). For a 

pair of two examples with their corresponding labels probabilities (𝑥1, 𝑝1), 

(𝑥2, 𝑝2) it computes (𝑥’, 𝑝’) by: 

𝜆 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛼) (2.10) 

𝜆′ = 𝑚𝑎𝑥(𝜆, 1 − 𝜆) (2.11) 

𝑥′ = 𝜆′𝑥1 + (1 − 𝜆′)𝑥2 (2.12) 

𝑝′ = 𝜆′𝑝1 + (1 − 𝜆′)𝑝2 (2.13) 

Vanilla MixUp omits the equation (2.11) (i.e. it sets 𝜆’ =  𝜆). In MixMatch both 

labeled and unlabeled examples are concatenated in the same batch, so there is a 
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need to preserve the order of the batch to compute individual loss components 

appropriately, this is achieved by the same omitted equation which ensures that 𝑥’ 

is closer to 𝑥1 than to 𝑥2. To Apply MixUp, all augmented labeled examples with 

their labels and all unlabeled examples with their guessed labels are collected into 

(Figure 2.5 lines 10-11): 

�̂� = ((�̂�𝑏, 𝑝𝑏); 𝑏 ∈ (1, . . . , 𝐵)) (2.14) 

�̂� = ((�̂�𝑏,𝑘, 𝑞𝑏); 𝑏 ∈ (1, . . . , 𝐵), 𝑘 ∈ (1, . . . , 𝐾)) (2.15) 

Then, these collections are combined and the result gets shuffled to form 𝒲 

which will serve as a data source for MixUp (Figure 2.5 line 12). For each 𝑖𝑡ℎ 

example-label pair in �̂�, MixMatch compute 𝑀𝑖𝑥𝑈𝑝(�̂�𝑖, 𝒲𝑖) and add the result to 

the collection 𝒳’ (Figure 2.5 line 13), then compute 𝒰𝑖
′ = 𝑀𝑖𝑥𝑈𝑝(�̂�𝑖, 𝒲𝑖+|�̂�|) for 

𝑖 ∈ (1, … , |�̂�|), intentionally using the remainder of 𝒲 that was not used in the 

construction of 𝒳’ (Figure 2.5 line 14).  

 

● Loss Function 

For the loss function, MixMatch uses the standard semi-supervised loss 

shown in equations (3) to (5) [16]. Equation (5) combines the typical cross-

entropy loss between labels and model predictions from 𝒳’ with squared L2 loss 

on predictions and guessed labels from 𝒰’. Then, L2 loss is used in equation (4) 

(the multiclass Brier score [50]) because unlike the cross-entropy, it is bounded 

and less sensitive to incorrect predictions [16]. For this reason, it is often used as 

the unlabeled data loss in semi-supervised learning [47][51] as well as a measure 

of predictive uncertainty [52]. MixMatch does not propagate gradients through 

computing the guessed labels, as is standard [47][51][53][54]. 
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Figure 2.4: MixMatch workflow [55]. 

 

Algorithm 1 MixMatch takes a batch of labeled data 𝒳 and a batch of unlabeled data 𝒰 and produces a 

collection 𝒳’ (resp. 𝒰’) of processed labeled examples (esp. unlabeled with guessed labels). 

1: Input: Batch of labeled examples and their one-hot labels 𝒳 = ((𝑥𝑏 , 𝑝𝑏); b ∈ (1, … , B)), batch of unlabeled 

examples 𝒰 = (𝑢𝑏; b ∈ (1, … , B)), sharpening temperature 𝑇, number of augmentations 𝐾, Beta distribution 

parameter α for MixUp. 

2: for b = 1 to B do 

3:   �̂� = 𝐴𝑢𝑔𝑚𝑒𝑛𝑡(𝑥𝑏)        // Apply data augmentation to xb 

4:     for k = 1 to K do 

5:         �̂�𝑏,𝑘 = 𝐴𝑢𝑔𝑚𝑒𝑛𝑡(𝑢𝑏)       // Apply kth round of data augmentation to ub 

6:     end for 

7:     �̅�𝑏 =
1

𝐾
∑ 𝑃𝑚𝑜𝑑𝑒𝑙(𝑦 | �̅�𝑏,𝑘; 𝜃)𝐾

𝑘=1         // Compute average predictions across all augmentations of ub 

8:     𝑞𝑏 = 𝑆ℎ𝑎𝑟𝑝𝑒𝑛(�̅�𝑏 , 𝑇)       // Apply temperature sharpening to the average prediction (see eq. (7)) 

9: end for 

10: �̂� = ((�̂�𝑏 , 𝑝𝑏); 𝑏 ∈ (1, . . . , 𝐵))       // Augmented labeled examples and their labels 

11: �̂� = ((�̂�𝑏,𝑘, 𝑞𝑏); 𝑏 ∈ (1, . . . , 𝐵), 𝑘 ∈ (1, . . . , 𝐾))       // Augmented unlabeled examples, guessed labels 

12: 𝒲 = Shuffle(Concat(�̂�, �̂�))       // Combiner and shuffle labeled and unlabeled data 

13: 𝒳′ = (𝑀𝑖𝑥𝑈𝑝(�̂�𝑖 , 𝒲𝑖); 𝑖 ∈ (1, … , |�̂�|))       // Apply MixUp to labeled data and entries from 𝒲 

14: 𝒰′ = (𝑀𝑖𝑥𝑈𝑝 (�̂�𝑖 , 𝒲𝑖+|�̂�|) ; 𝑖 ∈ (1, … , |�̂�|))       // Apply data augmentation to xb 

15: return 𝒳’, 𝒰’ 

Figure 2.5: MixMatch Algorithm [16]. 
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2.4.3. Mean Teacher 

Mean Teacher is a method that propose averaging model weights instead of 

predictions, it uses two neural networks: a “student” 𝑓 (a supervised architecture) and a 

“teacher” 𝘨, that share the same architecture (i.e. teacher is a copy of student). Figure 

2.6 illustrates the mean teacher method. Both the student and the teacher model evaluate 

the input by applying random noise within their computation (i.e. 𝜂 for student, 𝜂’ for 

teacher). The softmax output of the student model is compared with the one-hot label 

using classification cost and with the teacher output using consistency cost, the 

consistency cost 𝑱 is defined as the expected distance between the prediction of the 

student model (with weights 𝜃 and noise 𝜂) and the prediction of the teacher model (with 

weights 𝜃’ and noise 𝜂’). 

𝐽(𝜃) = 𝔼𝑥,𝜂′,𝜂 [||𝑓(𝑥, 𝜃′, 𝜂′) − 𝑓(𝑥, 𝜃, 𝜂)||
2

] (2.16) 

where: 

 -𝑓(𝑥, 𝜃, 𝜂) is the prediction of the student model 

-𝑓(𝑥, 𝜃′, 𝜂′) is the prediction of the teacher model 

For the student model, the weights are updated using the standard gradient descent 

algorithm, whereas the weights of the teacher model are the Exponential Moving 

Average (EMA) of the student weights, where 𝜃𝑡
′ (the weight of the teacher model) is 

defined at training step 𝒕 as the EMA of successive 𝜃 (weight of student model). 

𝜃𝑡
′ = 𝛼𝜃𝑡−1

′ + (1 − 𝛼)𝜃𝑡  (2.17) 

where 𝛼 is a smoothing coefficient hyperparameter. 
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Figure 2.6: The Mean Teacher method [47]. 

 

The Moving average methods are used with time series data to smooth the 

random short-term variations and to highlight other components present in the data. The 

Exponential Moving average method (EMA) is used to filter out noise, the weight of 

each element decreases progressively over time, meaning the exponential moving 

average gives greater weight to recent data points (i.e. For EMA recent data is more 

relevant than old data), because of that EMA reacts faster to changes since it is more 

sensitive to recent movements. 

Finally, both model outputs can be used for prediction, but at the end of the 

training, the teacher prediction is more likely to be correct. A training step with an 

unlabeled example would be similar, except no classification cost would be applied [47]. 

2.5. Multitask Learning 

Multi-Task Learning (MTL) is the process of sharing representation between 

related tasks, to enable the system to generalize better on the original task [56]. Most 

multi-task methods focus on how to combine the weights of several neural networks 

[56][57][58]. By other means, optimizing more than one loss function that share some 

hidden layers and have different output layers is effectively doing multi-task learning (in 

contrast to single-task learning). For example, combining two different losses 𝐿1, 𝐿2 
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(that must share some hidden layers and have different output layers), is done by adding 

the loss together (i.e. 𝐿𝑜𝑠𝑠 =  𝐿1 +  𝐿2), then backpropagate to fine-tune the weights 

is effectively doing multi-task learning (i.e. use different loss to fine-tune the shared 

hidden layers). The Multitask Learning in deep neural networks can be performed in two 

ways, either by hard parameter sharing or soft parameter sharing of hidden layers [56]. 

 

Hard parameter sharing 

Hard parameter sharing is generally applied by sharing the hidden layers between all 

tasks while keeping several task-specific output layers as depicted by Figure 2.7. 

 

 
Figure 2.7: Hard parameter sharing for multi-task learning in deep neural networks [56]. 

Using hard parameter sharing reduces the risk of overfitting [59], the research showed 

that the more tasks get learned simultaneously, the more the model has to find a 

representation that captures all of the tasks and the less is the chance of overfitting the 

original task. 

 

Soft parameter sharing 

In Soft parameter sharing, each task has its own model with its own 

parameters. Also, to encourage the parameters to be similar, the distance between the 

parameters of the model is constrained/regularized which has been seen in [60][61], 

and as depicted in Figure 2.8. 
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Figure 2.8: Soft parameter sharing for multi-task learning in deep neural networks [56]. 

The constraints/regularization used for soft parameter sharing in deep neural networks 

have been greatly inspired by regularization techniques that have been developed for 

other models. 

Finally, in practice, different amounts of sharing tend to work best for different 

tasks [57], and tend to be used successfully across all applications of machine learning 

[56]. But, while the gain from multi-task learning is encouraging, getting the most out of 

it is still tiresome in practice [57].  

2.6. Conclusion 

In this chapter, we introduced some concepts to handle weakly labeled data or 

the lack of training data (i.e. labeled data), which mostly manifest in methods from the 

semi-supervised learning paradigms with a combination of other dominant methods. In 

the next chapter, we will define the setup that presents the characteristics of our main 

system alongside the training process. 
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Chapter 3 : Design of a Semi-Supervised Audio 

Tagging System 

3.1. Introduction 

In the previous chapters, we have presented the basic notions required for 

understanding the materials and components that will be covered in this chapter. We 

introduce our semi-supervised pipeline by presenting our system characterization, 

architecture, data preparations and the training steps. In Section 3.2, we explain the 

nature of inputs used to train the models. Section 3.3, we made an illustration of the 

pipeline of our system. In the following Section 3.4, we present the data preparation, 

Preprocessing steps, Feature Extraction parameters and data augmentation techniques. In 

Section 3.5, we provide an overview of Deep Neural Network Architecture, alongside 

the ResNet-34 architecture used in the training of our system. Finally, in Section 3.6, we 

describe the three main stages for training our system. 

3.2. Nature of input data 

Our audio tagging system requires two types of input: manually-verified 

labeled data denoted as 𝛺𝑐𝑢𝑟𝑎𝑡𝑒𝑑
  and non-manually-verified data as 𝛺𝑛𝑜𝑖𝑠𝑦

  (i.e. weakly 

labeled). The manually-verified data 𝛺𝑐𝑢𝑟𝑎𝑡𝑒𝑑
  is referred to as Curated set with curated 

labels 𝛺𝒄𝒖𝒓𝒂𝒕𝒆𝒅
 = {(𝒘𝟏, 𝒔𝟏), (𝒘𝟐, 𝒔𝟐), . . . , (𝒘𝒎, 𝒔𝒎)}, where 𝒘𝒊 denotes the 𝒊𝒕𝒉  audio file 

and 𝒔𝒊 is the set of label classes 𝑠𝑖 ⊆ {𝑐1, 𝑐2, … , 𝑐𝑛}, i ⊆ {1,2, … , 𝑚}. The curated data is 

split into two sets: one for training 𝛺𝑐𝑢𝑟𝑎𝑡𝑒𝑑
𝑡𝑟𝑎𝑖𝑛  and the other for validation 𝛺𝑐𝑢𝑟𝑎𝑡𝑒𝑑

𝑡𝑒𝑠𝑡 . 

Whereas, the weakly labeled data 𝛺𝑛𝑜𝑖𝑠𝑦
  is referred to as Noisy set with noisy labels 

𝛺𝒏𝒐𝒊𝒔𝒚
 = {(𝒘𝟏, 𝒔𝟏), (𝒘𝟐, 𝒔𝟐), . . . , (𝒘𝒒, 𝒔𝒒)}, where 𝒘𝒊 denotes the 𝒊𝒕𝒉  audio file and 𝒔𝒊 is 

the set of label classes 𝑠𝑖 ⊆ {𝑐1, 𝑐2, … , 𝑐𝑛}. The Noisy data is used only during the 

training phase. Note that the noisy labels have not been considered for the training of our 

system, but they have been used to train some models in the experiments (refer to 

Chapter 4 Section 4.4 for more details about the use of noisy labels). 
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3.3. System Characterization 

To better understand our main system characterization, we illustrate the overall 

pipeline of our system in Figure 3.1. 

 
Figure 3.1: Overall pipeline of our system. 



40 
 

Our system operates in three main stages: 

(a) Learning from curated data: we have used only the curated data in a supervised 

fashion to train a ResNet model. 

(b) Generating pseudo-labels of noisy data: we have used the trained model from the 

previous stage to predict labels of the noisy data.  Since these predictions have not 

been verified manually, we refer to them as Pseudo-Labels. Then, we have 

employed sharpening technique to enhance the quality of the pseudo-labels. 

(c) Learning from the pseudo-labeled data: we have replaced the noisy labels with the 

pseudo-labels before combining the curated and noisy sets to retrain the trained 

model from (a) to produce the final model. Additional details on data preparation 

and Feature extraction are provided in the next sections. 

 

3.4. Data Preparation and Feature Extraction 

In practice, usually audio passes through Preprocessing steps that involves data 

preparation. One of the most common problems in data preparation is the imbalanced 

class distribution. The skewed class distribution may cause poor prediction performance 

which will require specialized training techniques to achieve good results. But, the 

dataset we used was already well balanced except in a few classes where there are less 

audio clips (refer to Chapter 4 Section 4.2). The next essential step is the Feature 

Extraction of Log-Mel spectrograms which will be explained below. 

 

Log-Mel Spectrograms 

For training our system, we have used only Log-Mel Spectrograms. We handled 

the problem of different audio time durations by slicing equal time lengths of each audio. 

Thereafter, it was normalized by the mean and standard deviation of each data. Log-Mel 

Spectrograms were extracted from the training and testing datasets using the parameters 

provided in Table 3.1. These values have shown promising results [8][13][14]. We 

assume that all audio clips come with a 44.1 kHz sampling rate (i.e. standard sample rate 

in consumer audio), according to Nyquist theorem, 44.1 kHz allows reproduction of all 

frequency content below 22.05 kHz which cover all frequencies perceived by human ear, 

as well as the minimum frequency of 20 Hz. All audio clips are converted to 128 mel 
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bands Log-Mel spectrogram with 2560 FFT and hop length of 347 samples between 

successive frames to achieve 128 Hz time resolution (i.e. 1 second represents 128 Hz). 

Table 3.1: Log-Mel spectrogram parameters. 

Parameter Value 

Sample rate 

Mel bands 

FFT 

Hop size 

FrequencyMin 

FrequencyMax 

44.1 kHz 

128 

2560 

347 

20 Hz 

22.05 kHz 

 

Data augmentations 

To leverage more training data, we have applied numerous augmentation 

techniques to Log-Mel spectrogram: 

● MixUp 

MixUp [10] is an augmentation that mixes two pairs of inputs and labels with 

some ratio (e.g. 70% first input and 30% second input). The mixing ratio is selected 

from the beta distribution where we used alpha of 1.0 which makes Beta distribution 

equal to uniform distribution. 

 

● SpecAugment 

SpecAugment [9] is an augmentation method for spectrograms that consists of 

three kinds of deformation. We have used only frequency masking with a random 

width chosen from 8 to 32 from a uniform distribution. The other two deformations 

are time warping that deforms time-series in the time direction and time masking. 

  

● Slicing (cropping) 

We have used the slicing as a way to adjust and fix the size of the input size and 

as a data augmentation by selecting every time a random section of each audio clip 

while preserving the same length across all audio files. The audio clips that have a 

shorter duration than the input size are extended using zero padding. 
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● Gain augmentations 

We used gain augmentation by changing the decibel ‘dB’ input of each audio 

with a randomly selected factor from a range of 0.8 to 1.2, that means we 

lower/increased audio loudness randomly. 

3.5. Deep Neural Network Architecture 

Deep Neural Network (DNN) architectures have gained a significant interest in 

the recent years; it has been successfully used to build many Audio tagging systems 

[8][13][14]. Most importantly, Deep Neural models have helped many researchers 

achieve better performance in audio tagging tasks compared to shallow acoustic models 

[62]. Most of today’s neural networks are organized into layers of nodes (i.e. neurons) 

which are known to be composed of one input layer, one hidden layer and one output 

layer as shown in Figure 3.2, and they are “feed-forward,” meaning that data moves 

through them in only one direction. 

 

 
Figure 3.2: One Layer Neural Network. 

A neural network consists of thousands or even millions of simple processing nodes that 

are densely interconnected through connectors called weighted connections. The nodes 

perform some operations on the inputs to reach the final output. The overall operations 

done by a node is illustrated in Figure 3.3 [63]. An individual node might be connected 

to several nodes in the layer before it, from which it receives data, and several nodes in 
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the layer after it, to which it sends data (i.e. the input layer is the bottom layer). When a 

neural network is being trained, each node is initialized with a weight and threshold set 

to random values, which will store and evaluate how significant one of the inputs is to 

the output. During training, the neural network starts by feeding the training data to the 

input layer. Then, it passes through the succeeding layers, getting multiplied and added 

together in complex ways after storing information regarding the input’s importance, the 

information goes through an activation function that decide whether to pass the 

information to the next neuron; Then, it finally arrives radically transformed at the output 

layer. After finding patterns that correlate with the output layer (i.e. particular label), the 

weights and thresholds are repeatedly adjusted until training data with the same labels 

consistently yield similar outputs through the use of an optimization method. This latter 

estimates the error gradient for the current state of the neural network using examples 

from the training dataset, then it updates the weights using the backpropagation of losses. 

 
Figure 3.3: Operation done by a neuron [63]. 

A well-known type of neural networks is Deep Neural Networks, what qualifies a 

network as a deep learning network is the use of more than one hidden layer. Deep 

Neural Networks are successful and capable of achieving strong classification 

performance and can outperform other machine learning methods [64]. Deep Neural 

Networks have shown success in many research fields and one of the major fields is 

audio analysis. Many neural networks architectures have been proposed, for instance, 

AlexNet, VGG, ResNet and many more [65]. Each layer of the Deep Neural Network 
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learns distributed representations of features presented at the layer before it, where 

multiple hidden units collaborate together to explain various hidden causes of input data. 

Such a representation allows the model to focus more and more on aspects that are 

important for accurate Audio Tagging at deeper layers [66]. Also, the distributed nature 

of the model’s representation helps generalize better to unseen situations (e.g. different 

audio environments, noise sources), even with limited amounts of training data. Deep 

Neural network architecture can solve complex problems by stacking additional hidden 

layers to improve accuracy and performance, but this achievement comes with its 

drawbacks like vanishing gradient problem which is caused only in deeper networks.  

We have chosen Residual Neural Network (ResNet-34). The architecture is 

depicted in Figure 3.4 (i.e. the right architecture) as our architecture for a few reasons, 

like its success in many audio related research [18][19]. Another reason is the 

breakthrough that ResNet achieved in image processing with the residual blocks 

component that helps solve deep network vanishing gradient problem. The residual 

block and vanishing gradient will be explained in the next subsection. 
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Figure 3.4: Left: a plain network with 34 parameter layers. Right: a residual network with 34 

parameter layers. The dotted shortcuts increase dimensions [17]. 
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● Deep residual neural networks (ResNet) 

The ResNet architecture [17] is one of the most known architectures in deep 

learning networks. It is possible to train hundreds or even thousands of layers and still 

achieves great performance. The ResNet does have many variants (i.e. same concept but 

with different number of layers); few of the most known ResNet Architecture are 

ResNet-18, ResNet-34, ResNet-50 and ResNet-1202 [67]. The digits in the end of 

ResNet name simply implies the number of hidden layers. The main intent of ResNet is 

solving the vanishing gradient problem, which can only be observed in deeper 

networks. The vanishing gradient is encountered when training deep neural networks 

with gradient-based learning methods and backpropagation. The more layers get 

added to the network it makes the gradients of the loss function approaches zero (i.e. 

gradient too small for training to work effectively). The ResNet is a feedforward neural 

network made of Residual Blocks which are skip-connection blocks as shown in the 

following Figure 3.5. 

 
Figure 3.5: Residual learning a building block [17]. 

 

The core idea of residual blocks is called “identity shortcut connection” that skips one 

or more layers, is shown in Figure 3.5. The sub-blocks in the architecture represent the 

complete convolutional layers including the activation functions. A deep residual 

network can consist of multiple stacked building blocks as depicted previously in Figure 

3.4. In one residual building block, the output 𝐻(𝑥) of the block is a mapping of the 

input 𝑥. Instead of letting the multiple convolutional layers directly approximate the 

mapping 𝐻(𝑥), the residual mapping 𝐹(𝑥)  =  𝐻(𝑥)  −  𝑥 is to be approximated. A 
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shortcut connection, also known as a skip connection, from the input to the output 

adds an identity mapping to the output of the stacked layers [68]. Augmenting neural 

networks with skip connections surprised the community by enabling the training of 

networks of more than 1,000 layers with significant performance gains. The skip 

connections in the residual blocks facilitate preserving the norm of the gradient, avoiding 

by this manner the vanishing gradient problem and leading to stable backpropagation 

[69]. 

3.6. Training stages 

We used in the training of our main audio tagging system a semi-supervised 

approach, where the whole process can be broken down into 3 steps: 

● Training Stage 1 

In the first stage we have built our models following a supervised learning 

approach. We trained ResNet-34 on the curated data 𝛺𝒄𝒖𝒓𝒂𝒕𝒆𝒅
𝒕𝒓𝒂𝒊𝒏  for several cycles using 

cyclic cosine annealing [70]. Cosine annealing means that the cosine function is used 

as the learning rate annealing function. Specifically, we lower the learning rate at a 

very fast pace, encouraging the model to converge towards its first local minimum 

after 𝒆 epochs; this process is repeated several times to obtain multiple convergences. 

The cosine annealing function has been shown to perform better than alternatives like 

simple linear annealing in practice [71]. In our case we have stored our models at 64th, 

128th, 192th and 256th epochs (i.e. four cycles and the length of a cycle is set to 64 

epochs). 

● Pseudo Labeling 

This step represents our approach in making of the pseudo labels. The core idea of 

our system is based on this section. The models at 64th, 128th, 192th and 256th epochs 

from stage 1 are used to generate pseudo-labels (i.e. guessed labels) of the Noisy data 

𝛺𝑛𝑜𝑖𝑠𝑦
 . Specifically, we predict the labels of each sample from 𝛺𝑛𝑜𝑖𝑠𝑦

  using the four 

trained models. Note that the output consists of a vector of probabilities not labels. 

Then, we compute the average of these predictions to obtain the final results. Next we 

apply a sharpening function to the obtained pseudo-labels. We have chosen the 
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sharpening function used in MixMatch [16] due to its simplicity and its huge success 

(refer to Chapter 2 Section 4.2). The value of temperature T used in the sharpen 

function has different impact on the pseudo labels probabilities, the figures below 

illustrate the effect of T on the pseudo-labels. 

 

 
Figure 3.6: Plots of different values of sharpening. 

 

On one hand, when T is small (i.e. less than 1), the pseudo-labels probabilities that are 

close to 1 get promoted, otherwise the farther values from 1 get degraded. On the other 

hand, when T gets larger (i.e. larger than 1), the values that are farther than 1 and close to 

0 almost get the same importance as values close to 1 (refer to Chapter 4, experiment 2 

for more details on sharpening values). 

Note that the next stage requires supervised data, oracle output or crisp labels not 

probabilities. To this end, a key element for using the pseudo labels for training is to 

convert the probabilities from float to True or False (i.e. as 1 or 0). We have used a 

threshold value to achieve the conversion and to decide on what labels are suited as 

ground-truth labels, so we used the mean values of each sample predictions (i.e. pseudo-

labels probabilities of each audio sample). The values that are bigger or equal to the 

mean are treated as True labels and the rest as False labels.  
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● Training Stage 2 

In this stage, we assign the processed pseudo labels to the Noisy data 𝛺𝑛𝑜𝑖𝑠𝑦
  (i.e. 

replace noisy labels with refined pseudo labels) to obtain 𝛺𝑛𝑜𝑖𝑠𝑦(𝑛𝑒𝑤)
  a new data for 

training, then combine both the Curated data 𝛺𝒄𝒖𝒓𝒂𝒕𝒆𝒅
𝒕𝒓𝒂𝒊𝒏  with the new Noisy data 

𝛺𝑛𝑜𝑖𝑠𝑦(𝑛𝑒𝑤)
 . Specifically, the combined training data 𝛺𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

𝑡𝑟𝑎𝑖𝑛  have both curated 

labels and pseudo-labels. To ensure a proper balance between the curated labels and 

pseudo-labels and avoid dominance of pseudo-labels over curated labels (i.e. pseudo 

labels are numerous and not accurate as curated labels), we have assigned a different 

weight for both to use in the sampling process to helps establish a well proportional 

number of all classes labels in each training batch. A higher weight is assigned to the 

curated labels to give it more importance. The new training set 𝛺𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
𝑡𝑟𝑎𝑖𝑛  is used to 

train the stored model from stage 1 (e.g. we used 256th, trained for 256 epochs), the 

model is trained for one or more cycles. 

3.7. Conclusion 

In this chapter, we have described the process used to train our model, starting 

from presenting our system characterizing, data preparation, Feature extraction and the 

steps of the training process. In the following chapter, we will present the results of the 

experiments and analyze them in order to derive conclusions based on numerous 

statistical comparisons. 
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Chapter 4 : Experimental Design and Results 

Discussion 

4.1. Introduction 

This chapter presents the results of the experiments done on our audio tagging 

system. The experiments aim to evaluate the performance of our models while 

conducting statistical tests of the use of noisy labels in training, impact of different 

values of sharpening, ensemble learning and the effect of increasing training epochs. 

4.2. Dataset Description 

In the making of our system, we used FSDKaggle2019 dataset (24 GB) [27], 

which accommodates more than 102 hours of content. The dataset employs audio clips 

from the following sources: 

● Freesound Dataset (FSD): a dataset under development based on Freesound 

content organized with the AudioSet Ontology [72]. These data are used to 

create the curated train set and the test set, which has been manually labeled by 

humans following a data labeling process using the Freesound Annotator 

platform [73]. 

● The soundtracks of a pool of Flickr videos taken from the Yahoo Flickr Creative 

Commons 100M (YFCC100M) dataset [74]. These data are used to create the 

noisy train set, which were labeled using automated heuristics applied to the 

audio content and metadata. Hence, a substantial amount of label noise can be 

expected. 

The dataset is depicted in Figure 4.1, and its main characteristics are listed in Table 

4.1. 
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Figure 4.1: Data split in FSDKaggle2019, including number of clips/duration in hours, and data 

origin. Colors depict quality of labels: orange, yellow and green correspond to noisy labels, correct 

but potentially incomplete labels, and exhaustive labels, respectively [27]. 

 

Table 4.1: Main stats of the sets in FSDKaggle2019. * A few classes have slightly less than 75 clips [27]. 

Aspect Curated train Noisy train Test 

Clips/class ∼75* 300 ∼50-15 

Total clips 4970 19815 4481 

Labels/clips 1.2 1.2 1.4 

Clip length ∼0.3-30s ∼15s ∼0.3-30s 

Total duration ∼10.5h ∼80h ∼12.9h 

Labeling Correct(inexhaustive) Noisy  exhaustive 

 

The audio data is labeled using a vocabulary of 80 labels from Google’s AudioSet 

Ontology [73], which can be split into 8 categories represented in Figure 4.2. 
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Figure 4.2: Pie Chart of the 8 categories present in FSDKaggle2019 sets [27]. 

4.3. Development Tools and Environments 

The training process of machine learning model requires tons of computational 

power from CPU, GPU, RAM and storage. To meet the requirement for making the 

learning of our models faster we relied on Google Colaboratory cloud service. The 

development tools and environments setup are as follows. 

Python 

Python is an object-oriented open-source programming language [75]. It is one of the 

most used languages in the world in machine learning and it is used in Google 

Colaboratory. 

Google Colaboratory 

We developed our models and carried out the experiments using the GPU & CPU 

computational resources provided by Google Colaboratory which is more commonly 

referred to as “Google Colab” or just simply “Colab”. Google Colab is a free Google-
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Hosted cloud service based on the Jupyter environment for machine learning education 

and research [76]. 

Google Drive Storage 

We chose google drive as our online storage to store the datasets, google drive is an 

online storage that offers 15GB for free for every Gmail account. Using the online 

storage make it easier to access the datasets and load all files to Google Colab runtime. 

PyTorch 

PyTorch is a library for python programs that facilitates building deep learning 

projects, and it emphasizes flexibility and allows deep learning models to be expressed in 

idiomatic python [77]. 

Librosa 

Librosa is a python library that has been built to deal with music signal processing 

and it provides implementations of a variety of common functions used throughout the 

field of music information retrieval [78]. 

 

In addition, to other required libraries for data manipulation and plotting, we used 

numpy for mathematical operation on arrays and to store spectrograms as npy files for 

fast reading while training, Pandas for csv file manipulations, matplotlib for plotting 

graphical representation, pretrainedmodels library to get the base model of Resnet34. 

Table 4.2 provides versions of the utilities and libraries we used including the additional 

ones. 
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Table 4.2: Version of Utilities and libraries used in experiments. 

Library Version 

Python 

Librosa 

PyTorch “torch” 

NumPy 

Pandas 

Matplotlib 

Pretrainedmodels 

3.6.9 

0.8.1 

1.9.0 

1.19.5 

1.1.5 

3.2.2 

0.7.4 

4.4. Experiment 1: Impact of noisy labels and multitasking 

This experiment investigates two different approaches for learning from noisy 

data: Multitasking and Pseudo Labeling. To this end, we have compared our system, 

which we denote ResNet1+PL (PL stands for pseudo-labeling), with 4 Audio Tagging 

systems. Recall that the process of building ResNet1+PL system involves three stages: 

Training stage 1, Pseudo-Labeling and Training stage 2. First, we have trained our 

Residual Network architecture (presented in Chapter 3, Section 5) on curated data only 

and discarded the noisy dataset. Second, we have generated the predictions associated 

with the noisy set, i.e. the pseudo labels, via the aforementioned model ResNet1. Finally, 

we have carried on the training of our model for 64 epochs on both curated and noisy 

sets, while considering the inferred pseudo-labels instead of the provided noisy labels. 

− ResNet1: This system implements a classical supervised learning approach, which 

considers only the curated set during training and discards the noisy dataset. We 

have trained ResNet-34 for 256 epochs. 

− ResNet2: We have built this system using both curated and noisy data. To this 

end, we consider learning from the curated and the noisy set as two distinct tasks; 

then, combine the obtained losses within the context of multitask learning. Note 

that we have trained this system with the provided noisy labels. We have trained 

this model for 256 epochs.  
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− ResNet1+PL+MT: In order to assess the impact of MultiTask Learning (MT) on 

ResNet1+PL, during the training stage 2, we have formulated the learning process 

as a multitasking problem, while considering learning from the curated and the 

noisy datasets as two distinct tasks. Note that we have also trained this model for 

64 epochs. 

− ResNet2+PL+MT: This system adopts a similar training strategy as 

ResNet1+PL+MT. However, it generates the pseudo-labels using ResNet2 i.e. a 

model trained on noisy labels. 

Note that for all systems we have set the temperature parameter T to 0.5. We have 

chosen this value based on exploratory experiments; extensive treatment on this matter 

will be further explored in experiment 2. 

Table 4.3 gives the category-wise lwlrap scores of the aforementioned systems. The last 

row specifies the average score of each technique over all categories. 

Table 4.3: Category-wise lwlrap scores of all systems. 

Categories ResNet1 ResNet2 ResNet1+PL ResNet1+PL+MT ResNet2+PL+MT 

Animals 

(7 tags) 
71.31% 71.04% 72.01% 70.31% 71.16% 

Domestic 

(20 tags) 
69.20% 69.21% 67.99% 69.46% 69.78% 

Human 

(21 tags) 
67.71% 66.24% 72.60% 69.50% 69.49% 

Materials 

(5 tags) 
60.02% 59.76% 59.05% 58.47% 60.90% 

Mechanisms 

(2 tags) 
49.02% 45.18% 45.77% 50.22% 49.07% 

Musical 

Instruments 

(12 tags) 

74.85% 74.30% 77.56% 75.96% 78.42% 

Natural 

(5 tags) 
65.19% 64.79% 62.37% 64.57% 63.89% 

Vehicles 

(8 tags) 
62.15% 59.89% 65.99% 65.54% 64.11% 

System 

lwlrap 
67.54% 66.72% 68.94% 68.33% 68.77% 
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The initial analysis of the above table indicates that ResNet1+PL demonstrates 

superiority over its counterpart, followed by ResNet2+PL+MT and ResNet1+PL+MT. 

However, ResNet2 yields the worst scores. This behavior is expected since we have 

trained this model on noisy data with the provided noisy labels, which can deteriorate the 

overall performance. In addition, we observe that training with pseudo labels yields 

overall better predictive performances. 

These scores do not reveal considerable differences. In addition, according to 

numerous papers on Statistical Machine Learning, when the results on different 

categories of data are not comparable, their averages are meaningless [79]. To cope with 

this shortcoming, appropriate statistical tests should be conducted thoroughly [43]. To 

this end, we have statistically compared the performances of these techniques using 

Friedman test.  This test first ranks the techniques for each tag according to the lwlrap 

scores in ascending order. Specifically, the best performing technique gets the rank 1, the 

second best gets 2, ..., etc. The average ranks of these methods are specified in the Table 

4.4. Then, we have compared the mean ranks of these approaches. We have assumed, 

under the null hypothesis, that all systems perform similarly and the observed differences 

are merely due to chance. 

Table 4.4: Friedman test Ranking results of all systems. 

Algorithm Ranking 

ResNet1 

ResNet2 

ResNet1+PL 

ResNet1+PL+MT 

ResNet2+PL+MT 

3.42 

3.48 

2.68 

2.8 

2.6 

 

Friedman test has rejected this hypothesis with 𝐹𝐹  =  6.09 >  𝐹 (4, 316)  =

 6.08 for 𝛼 = 0.0001 (𝐹𝐹 is distributed according to the 𝐹 distribution with 5 −  1 =

 4 and (5 −  1)  ×  (80 −  1)  =  316 degrees of freedom). The rejection of the null 
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hypothesis confirms the existence of at least two systems that have significantly different 

lwlrap scores. 

For further analysis of these results, we have followed up the Friedman test with 

a Nemenyi post-hoc test with at a 5% significance level with the critical value 𝑞0.05 =

 2.72 and the critical difference 𝐶𝐷 =  0.68. This test aims at identifying pairs of 

algorithms that are significantly different. The results of the Nemenyi test are depicted in 

Figure 4.3. On the horizontal axis, we represent the average ranks of each system (given 

in Table 4.4), and join the groups of systems that are not significantly different using 

thick lines. On the top left, we display the critical difference 𝐶𝐷 used in this experiment. 

 

Figure 4.3: Comparison of all systems with Nemenyi test. 

Based on the analysis of the above figure, we can identify two groups of 

systems: semi-supervised models, i.e. PL-based systems (ResNet1+PL,…), and 

supervised models (ResNet1 and ResNet2). Notice that systems within the same group 

achieve similar performances, and the observed differences are solely due to chance. 

Most importantly, the test provides strong evidence that training models on the generated 

pseudo labels yields significantly better results than its counterpart systems, which 

confirms our initial assumption. Particularly, ResNet1+PL+MT and ResNet1 are linked 

together; hence, we are unable to decide which group ResNet1+PL+MT and ResNet1 

belong to, at 5% significance level. However, while conducting the Nemenyi test at 10% 

significance level (𝐶𝐷 =  0.61), we have found that ResNet1+PL+MT is significantly 

better than ResNet1.   
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From the above findings we can derive two important conclusions: 

1. Training a ResNet model on pseudo labels has a positive impact on the 

generalization ability of audio tagging systems. 

2. Introducing multitasking does not considerably boost the performance when 

trained on the provided labels i.e. without pseudo labeling. 

4.5. Experiment 2: Impact of sharpening hyperparameter 

“Temperature T” 

In order to further investigate the generation of pseudo labels, we have tested 

the impact of varying the hyperparameter 𝑇 on ResNet1+PL. Recall that in the case of 

ResNet1+PL the value of 𝑇 regulates the number of inferred tags per audio sample 

(please refer to Chapter 2 Section 4.2 for additional details on this parameter). We have 

performed this experiment with 11 different values of sharpening hyperparameter  𝑇 ∈

{0.01, 0.06, 0.14, 0.33, 0.4, 0.5, 0.66, 1, 1.33, 2, 100}. Figure 4.4 exhibits the change in 

lwlrap scores per category.  
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Figure 4.4: Effect of the temperature parameter on the lwlrap score for each tag category. 
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For all categories we observe that the curves display the same pattern shown in 

Figure 4.5 that exhibits the average lwlrap over all categories. The performance 

improves as 𝑇 increases and reaches its highest value between 𝑇𝜖[
1

3
,

1

2
]. Then, it knows a 

slight decrease and keeps that score with slight variations.  

 

 
Figure 4.5: Effect of the temperature parameter on the lwlrap score for all categories. 

It is worth underscoring that the change in lwlrap scores noticed in range [
1

3
,

1

2
] 

may contain significant information; thus, it requires further investigation. In order to 

statistically examine this and unravel significant differences, we have first conducted the 

Friedman test. We have assumed that the observed differences are due to random 

behavior. This test rejects our hypothesis with 𝐹𝐹 =  4.29 >  𝐹(7,553)  =  3.79 for 

𝛼 =  0.0005 (𝐹𝐹 is distributed according to the 𝐹 distribution with 8 − 1 =  7 and 

(8 − 1) × (80 − 1)  =  553 degrees of freedom), which indicates an existence of at least 

one pairwise significant difference.  

Next, we have compared these scores in a pairwise manner based on the 

Wilcoxon test in Table 4.5. The first row of each entry specifies the number of 

Win/Tie/Loss of the technique in the column over the technique in the row; whereas, the 

second row shows the p-values for the Wilcoxon test. If the entry is bold, this means that 

the number of wins/losses over 80 tags is statistically significant using the Wilcoxon test. 

For example, a 𝑝−𝑣𝑎𝑙𝑢𝑒 = 0.05 indicates that the observed differences are significant at 

5% significance level.  
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Merging the results of the above statistics and those displayed in Figure 4.4, we can 

elaborate the following figure.   

 

Figure 4.6: Effect of the temperature parameter on the mean lwlrap score. W and L stands for the 

number of significant wins and losses. 

 

The analysis of the results reported in the above figure indicate that the lwlrap 

score improves gradually as 𝑇 increases. Then, it settles when 𝑇𝜖[
1

3
,

1

2
] with some 

variations; and it drops dramatically as the temperature value exceeds 
1

2
. Most 

importantly, the lwlrap score reaches its highest value within the range 𝑇𝜖[
1

3
,

1

2
].   

Examining Figure 4.6, we can identify several regions:  

- When 𝑻 <  𝟎. 𝟎𝟔: The performance is very poor; and the above statistics indicate 

that ResNet+PLT = 0.001 achieves 10 significant losses. This behavior is expected 

since when the temperature parameter is very low (close to 0), the sharpening 

curves (Figure 3.6 of Chapter 3) are skewed to the right; hence, very high scores 

(close to 1) are promoted, whereas, lower scores are flattened and ignored. As a 
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result, the system outputs/produces/infers fewer tags that can be meaningless and 

wrong i.e. weak performance.    

- When 𝟎. 𝟎𝟔 ≤ 𝑻 <  
𝟏

𝟑
: We observe a crucial increase in the predictive scores. 

According to the Wilcoxon tests, ResNet+PLT=0.06 and ResNet+PLT = 0.14 score 

4 significant wins over ResNet+PLT=0.001, 1.33, 2, 100. 

- When 
𝟏

𝟑
 ≤  𝑻 ≤

𝟏

𝟐
: The performance attains its highest value with 5 significant 

wins. We believe that when 𝑇 is set to values within this range the 

sharpening/thresholding step produces the appropriate number of tags per audio 

file, which boosts the overall scores considerably. 

- When 𝑻 >  𝟏: The figure shows that the lwlrap scores gradually decrease as the 

temperature value increases. As indicated by the statistical results, 

ResNet+PLT=1.33 and ResNet+PLT=2 significantly lose 7 times and achieve only 

2 significant wins. This behavior is rather anticipated since the sharpening curves 

are skewed to the left when 𝑇 is larger than 1 (refer to Figure 3.6 in Chapter 3). 

Therefore, when 𝑇 gets larger, more importance will be granted to values far from 

1, generating more tags per audio recording which can deteriorate the overall 

performance. 

4.6. Experiment 3: Ensemble Learning 

We observe from Table 4.3 that the previously developed systems provide 

diverse predictions of the events present in the dataset, with various confidences. 

Specifically, the systems characterizations affect the predictive performance differently 

and achieve better scores on particular sound events. A large body of literature has 

demonstrated that amalgamating several learners could improve the generalization 

ability [80][81]. Most importantly, ensemble learning combines the strengths of each 

system by merging their predictions [82].  

Motivated by this, we have tested the impact of fusing our developed systems. 

To this end, we have created an ensemble made of 19 base learners as summarized in 

Table 4.7. 
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Table 4.6: List of all models used in the experiment. 

System System Description 

ResNet1 e=64 

ResNet1 e =128 

ResNet1 e =192 

ResNet1 e =256 

ResNet1 e =320 

ResNet2 e=64 

ResNet2 e =128 

ResNet2 e =192 

ResNet2 e =256 

ResNet2 e =320 

ResNet1+PL e=320 

ResNet1+PL+MT e=320 

ResNet1+PL+MT e=384 

ResNet1+PL+MT e=448 

ResNet1+PL+MT e=512 

ResNet2+PL+MT e=320 

ResNet2+PL+MT e=384 

ResNet2+PL+MT e=448 

ResNet2+PL+MT e=512 

ResNet1 trained for 64 epochs 

ResNet1 trained for 128 epochs 

ResNet1 trained for 192 epochs 

ResNet1 trained for 256 epochs 

ResNet1 trained for 320 epochs 

ResNet2 trained for 64 epochs 

ResNet2 trained for 128 epochs 

ResNet2 trained for 192 epochs 

ResNet2 trained for 256 epochs 

ResNet2 trained for 320 epochs 

ResNet1 e =256 +PL trained for 64 epochs 

ResNet1 e =256 +PL+MT trained for 64 epochs 

ResNet1 e =256 +PL+MT trained for 128 epochs 

ResNet1 e =256 +PL+MT trained for 192 epochs 

ResNet1 e =256 +PL+MT trained for 256 epochs 

ResNet2 e=256 +PL+MT trained for 64 epochs 

ResNet2 e=256 +PL+MT trained for 128 epochs 

ResNet2 e=256 +PL+MT trained for 192 epochs 

ResNet2 e=256 +PL+MT trained for 256 epochs 

 

We report in Table 4.8 the lwlrap scores of the obtained ensemble named Ens. 

Note that we also include the performance of ResNet1, ResNet2, ResNet1+PL, 

ResNet1+PL+MT and ResNet2+PL+MT in order to highlight the improvement provided 

by Ens.  
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Table 4.7: lwlrap results of all systems using post-processing and ensemble learning. 

Systems ResNet1 ResNet2 ResNet1+PL ResNet1+PL+MT ResNet2+PL+MT Ens 

lwlrap 67.93% 66.86% 68.94% 68.33% 68.22% 72.21% 

The results given in Table 4.8 indicate that Ens outperforms the other methods 

in most cases. In order to confirm the significance of the observed differences, we have 

compared the performances of these techniques using the average ranks over the 80 

sound events. Following Demsar’s recommendations [40], we have first conducted a 

Friedman test to statistically compare the performance of these systems, assuming that 

all systems perform similarly. This test rejects this hypothesis with 𝐹𝐹 =  20.05 >

 𝐹(5,395)  =  18.69 for 𝛼 =   1.0 ×  10 − 16 (𝐹𝐹 is distributed according to the 𝐹 

distribution with 6 −  1 =  5 and (6 − 1) × (80 − 1) = 395 degrees of freedom), and 

therefore confirms the existence of at least one pair of systems with significantly 

different performances. 

Second, because we are only interested in comparing Ens with the other 

alternatives, we proceed with a Bonferroni-Dunn test while considering Ens as the 

control system. Figure 4.7 shows the results of the Bonferroni-Dunn test at a 0.1% 

significance level with the critical value 𝑞0.001 =  3.71 and the critical difference 

𝐶𝐷 =  1.001. On the horizontal axis, we represent the average ranks of each system 

(given in Table 4.7), and we mark using a thick line the interval of one 𝐶𝐷 to the left and 

to the right of the average rank of Ens. Any system with a rank outside this area is 

significantly different from Ens. 
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Figure 4.7: Comparison of the ensemble learning system against the other systems with 

Bonferroni-Dunn test. 

The analysis of Bonferroni-Dunn test results illustrated by Figure 4.7 indicates 

that Ens has the lowest rank and all the other systems have higher ranks and fall outside 

the marked interval. Therefore, we can conclude that Ens significantly outperforms the 

individual models, which coincides with our initial observations. 

4.7. Experiment 4: Impact of number of epochs 

To investigate the impact of the number of epochs on ResNet1+PL, we have 

carried out the following experiment. During the second stage of training, we have 

varied the number of epochs and measured the lwlrap scores on the test set. The results 

of his experiment are illustrated in Figure 4.8. 
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Figure 4.8: Plot of training and validation lwlrap scores of 640 epochs. 

The analysis of this curve can be summarized by two main observations:  

- The lwlrap performance (testing lwlrap) increases as the number of epochs 

increases; then, it settles at a certain score and keeps that with some variation. 

Next, it drops rapidly after 64 epochs. This pattern is repeated throughout all the 

remaining epochs. This behavior occurs because the learning rate is updated after 

each cycle of training i.e. after every 64 epochs, which causes the reported sudden 

drop in lwlrap scores. In addition, we observe fluctuations all along the testing 

curve. This behavior is an open area of research where it could be caused by 

ResNet instability [83]. 

- The overall testing lwlrap performance decreases at a slow pace as the number of 

cycles increases on one hand; on the other hand, the overall training lwlrap 

performance is increasing.  These results indicate that the model is overfitting the 

training data which justifies the decrease in the predictive performance. According 
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to several studies, the problem of overfitting might occur in cases when learning is 

performed for longer runs or the training data are not representative of the 

problem at hand [84][85]. 

Based on the above analysis, training on the pseudo labels (ResNet1+PL) should not 

exceed 1 cycle i.e. 64 epochs.  

4.8. Conclusion and summary of empirical findings  

From the experiments that we conduct, we can acquire the following: 

● Using the pseudo labels to train ResNet models, improves the generalization 

ability of the audio tagging system. 

● Applying the Multi-task approach to train a system with Noisy labels does not 

noticeably demonstrate any superiority over pure supervised models. i.e. without 

using the pseudo labels. 

● Setting the values of the temperature 𝑇 in the right range, does help the model to 

perform better. 

● The simplest type of ensemble learning “averaging”, can really boost the 

generalization ability of audio tagging systems. 

● Cyclic cosine annealing can aid the model to reach its first local minimum 

quickly after a few epochs. 

● Training the ResNet model for longer runs, i.e. a large number of epochs, could 

lead to overfitting and a decrease in performance. 
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CONCLUSION 
 

The goal of this thesis was to analyze and empirically compare multi-label 

Audio Tagging systems. To this end, we built several tagging systems and conducted 

multiple experiments to analyze the differences in behavior between these systems. 

1. Contributions and summary of experimental findings 

Our contribution to this research area involves deep investigations using a 

recent large-scale dataset. We have analyzed the impact of fine-tuning the sharpening 

temperature hyperparameter on the performance of audio tagging systems. Additionally, 

we have investigated the effect of training the ResNet architecture using cyclic cosine 

annealing for an extended number of epochs. To avoid deriving conclusions affected by 

chance, we have used well-known statistical tests to perform comparisons between all of 

our audio tagging systems. We can derive the following conclusions from the conducted 

experiments: 

• Using the pseudo-labels to train ResNet models effectively improves the 

generalization ability of the audio tagging system. 

• Applying the multi-task approach to train an audio tagging system with noisy 

labels does not demonstrate noticeable superiority over systems trained in a 

supervised fashion. 

• Proper tuning of the temperature value 𝑇 i.e. setting its value in the right range, 

helps the audio tagging model to produce better results. 

• Ensemble learning applied via averaging can significantly boost the generalization 

ability of audio tagging systems. 

• Cyclic cosine annealing can aid audio tagging models to reach a first local 

minimum after training only for a few epochs. 

• Training a ResNet-based model for longer runs, i.e. a large number of epochs, 

could lead to overfitting and a decrease in performance. 
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2. Limits and Future work 

This research work has yet multiple interesting areas that can be further 

explored. Our developed audio tagging systems have achieved noticeable increases in 

performance. However, we believe that these performances can be further improved by 

developing better techniques to use noisy labels i.e. take advantage of the huge amount 

of web audio data. Throughout our research work, we have used noisy labels following a 

multi-task approach. Nonetheless, deeper investigations and experimentations are 

required to take full advantage of multi-task learning within the context of semi-

supervised audio tagging.  

Another appealing aspect for future experimentations is the choice of the neural 

network architecture. Experiments using variations of the ResNet architecture (e.g. 

ResNet-50) or other deep network architectures (e.g. EnvNet, AlexNet) are to be 

conducted in future works. In addition, future work should consider using raw audio 

signals (i.e. not spectrograms) as inputs to train the audio tagging systems. The 

aforementioned data types can also be combined as they are expected to compensate 

each other [13]. All our experiments have been conducted using the pseudo-labeling 

approach. However, future work can experiment using other semi-supervised techniques 

like self-training, Mean Teacher, MixMatch or other recently developed techniques [15]. 

The impact of employing different ratios of labeled and pseudo-labeled data for training 

should also be investigated, tinkering with the ratio could potentially lead to 

improvement in the overall performance. 

Machine Learning is a very wide and interesting domain. When it comes to 

automating human tasks, this domain is full of great potential. Audio Tagging research is 

vast and resourceful, delving into this research field has helped us acquire valuable 

knowledge about audio signals, their properties and how to develop audio tagging 

systems in a semi-supervised fashion. We have nonetheless encountered a few struggles. 

One of the main struggles is the lack of robust hardware for deep learning. This has 

caused a substantial increase in training time, which prevented us from conducting 

further experiments especially in this short period of time. We have learned and gained 

various useful skills like thesis writing guidelines, implementing machine learning 

experiments using the python language, as well as developing systems on a cloud-based 
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platform like Google Collaboratory. In conclusion, we have only explored the tip of the 

iceberg of machine learning. The rest is yet to be researched as the future of this domain 

appears very promising. 
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