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Abstract

Data collected from multi-environment trials conducted for the purpose of
comparisons among genotypes are often in the form of a large three-mode
array; designated as genotypes by environments by attributes. We consider two
complementary ordination and clustering procedures, three-way principal com-
ponent analysis and three-way mixture approach to clustering, to analyse such
data. The application of these techniques enhance the researcher’s ability to
make decisions in crop improvement programs where several attributes are
important and must be considered simultaneously when evaluating the impact
of selection strategies. They are illustrated using data from an experiment
which examined the grain yield adaptation of a sample of advanced wheat lines
from the International Maize and Wheat Improvement Center (CIMMYT) and
three Queensland cultivars in a series of water stress environments in
Queensland. Although grain yield adaptation was of major concern, examina-
tion of other attributes which may influence the adaptation is important and
maturity (days to anthesis) is included here. The interpretation of such analysis
of multi-environment data to make both general and detailed statements about
the relative performance of the lines and differences among the environments is
illustrated.

Introduction

The existence of significant genotype by environment (GxE) interactions has been
recognized by plant breeders as a complicating factor in selection and testing strate-
gies for many years. The interactions reflect differences in adaptation which may be
exploited by breeding for specific adaptation (emphasizing favourable interactions)
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or broad adaptation (minimizing interactions) by selection, and by adjustments to
the test strategy. In order to make objective decisions, a full understanding of the
nature of such interactions is needed. Various methodologies have been proposed
for the analysis of univariate GXE data and they have each proved successful in cer-
tain situations.

Our concern is with multivariate or multiattribute GXE interactions where plant
breeders measure more than one attribute on genotypes in multi-environment trials
(METs). Then the collected data can be summarized in the form of a genotype by
environment by attribute (GXEXA) array of means which is formally defined as a
three-mode three-way data set (Carroll and Arabie, 1983). We shall only discuss
techniques which act directly on three-mode data, rather than those that act on a
converted two-mode three-way data array, €.g. by computing a difference measure
between each pair of genotypes within an environment to form a GXGxE matrix.
We want a simultaneous analysis of all three modes in that data set, rather than
separate univariate analyses. the results of which would then have to be combined.

Methods of Analysis

Two broad classes of analytical methods can be distinguished in the context of
three-way data: ordination and clustering techniques. As stated in Kruskal (1977)
and Arabie and Carroll (1980), the two types are largely complementary, and make
use of the same information in different ways. Multivariate analysis of variance can
also be applied to three-way data, but with a reasonable number of genotypes,
environments and attributes, most interaction terms are nearly always significant.
DeLacy (1981), Gauch (1988) and Gauch and Zobel (1988) all argued that, even for
GxE data on a single attribute, the standard multivariate analysis of variance was
largely uninformative. Basford et al. (1991) believe that the main focus should be
on the structure of the interactions and the similarity of the genotypes, which can
primarily be evaluated via modelling techniques.

Hence, we shall discuss a clustering technique and an ordinagion technique suit-
able for analysing three-mode three-way data. As well as presemting the individual
analyses, the results of the cluster analysis will be displayed sdﬁér’imposed on the
results from the ordination to show how the two techniques are complementary and
can be used to enhance the understanding of the interactions. ;

Clustering

If the genotypes can be clustered or grouped such that the genotypes within a group
have similar response patterns for each of the attributes across environments, then the
plant breeder can examine a much smaller data set and hence more easily integrate
the information inherent in the trials. The mixture maximum likelihood method of
clustering (Basford and McLachlan, 1985) is a model-based technique which can be
applied in such cases to produce a grouping of genotypes (one of the modes) based
on the simultaneous use of attributes and environments (the other two modes).

This clustering method uses the measurements on a set of elements (genotypes
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here) to identify clusters in which the genotypes are relatively homogeneous, while
they are heterogeneous between the clusters. It is 2 non-hierarchical procedure
which requires the number of clusters, ¢, O be specified. Although each cluster is
allowed to have a different mean attribute vector in each environment, the covari-
ance matrix (which specifies the correlation structure among the attributes) for each
cluster is the same across environments, although it can differ from cluster to
cluster. By allowing the mean attribute vector for a cluster to differ across environ-
ments, the significant genotype by environment interaction (which is almost always
present) can be considered in the identification of groups of genotypes for which a
general behavioural description is required. Thus a group could perform well in one
environment and poorly in another environment. A covariance matrix particular to
each cluster is beneficial as it might be expected that in the underlying group struc-
ture, the correlations between attributes might differ across groups of genotypes.
For example, there could be a reasonable correlation between two attributes in one
group, but virtually no correlation between these attributes in another group. In the
current model, the correlation structure for an underlying group does not depend on
environment. However, it is possible that significant GxE interactions could result
in changes in correlations across environments.

Formally, if there are ¢ groups (clusters) from which the genotypes have been
sampled in unknown proportions T, (m=1,...,c), then the distribution of the vector
of attribute values for genotype (i=1,....8) in environment j (j=1.. _..e) is given by:

fixg)= E nfl5i) (14.1)
where

Fulx) = Nl Zm) (14.2)

is the usual assumption of the underlying distribution of the attribute vector in each
group being multivariate normal with mean vector 1, (depending on the group and
the environment) and covariance matrix 5, (depending o1 the group). The unknown
parameters, i.e. mean Vectors, covariance matrices and mixing proportions, are
estimated using maximum-likelihood methods. In this process, the genotypes do not
have to belong outright to only one of the groups as each genotype has a probability
of belonging to each group, i.e. the posterior probability that genotype belongs to

group m, given the parameter estimates, is:

Tim = —‘c&"‘i’%ﬁl— (14.3)
L fonfn(x)
where
x;= (xn,...,xie)’ (14.4)

is the vector containing the attribute vectors for all e environments. This non-alloca-
tion of the individuals to a group during the {terative process 1s particularly
advantageous. Hierarchical procedures have been criticized because some of the ini-
tial fusions of individuals into groups (the process Starts with n groups of one
individual and finishes with one group of 7 individuals) may prove 0 be unfor-
tunate at the later Stages (when there are few groups). Non-overlapping groups
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(clusters) are obtained by allocating each genotype to the group to which it has the
highest estimated probability of belonging. The resulting clustering enables an over-
view of the information inherent in the data.

genotypes in METs, it is not necessary that the allocation of the genotypes into
groups represents the ‘true’ grouping of the data, but rather that a satisfactory sum-
marization is obtained. A decision on whether a satisfactory summary is obtained
must be judged by the plant breeder in context with the objectives for conducting
the METs.

The mixture method of clustering was applied using the program MIXCLUS3,
an updated version of that appearing in the Appendix of McLachlan and Basford
(1988). A copy of the program can be obtained from the first author of the chapter.

Ordination

B p

“ ¥ i

If we want to know more detail about the relative performance of the genotypes, we
need to consider an ordination procedure in which scores on a small number of
components or factors are used to summarize the data. Two available techniques are
three-mode principal component analysis (Kroonenberg, 1983) and parallel factor
analysis (Harshman and Lundy, 1984). We shall only discuss the former, principally
because we have more experience with it. In three-mode principal component
analysis (which has some of the interpretational flavour of factor analysis), com-
ponents (or factors) are derived for each of the modes. Each'mode has its own
number of components, and these components can be intefpreted separately.
Moreover, a set of parameters is derived which describe the reIati,oriships between
the components. Generally, the emphasis is not so much on the interpretation of the
components themselves, but on the interpretation of the structures of the genotypes,
environments and attributes, as well as their interrelationships. The technique is
used to reduce the data to such an extent that the main patterns can be inspected.

In order to apply three-mode principal component analysis (or a parallel factor
analysis), the mean response of genotype / (i=1,.. --8) in environment j (=1,...,e) for
attribute £ (k=1....,a), X MUSE be centred and scaled (Basford er al., 1991). The
chosen form is that recommended by Fox and Rosielle (1982) and Cooper and
DeLacy (1994), i.e.:

}ijk = (xijlc = i-jk)/sjk' (14.5)

Thus the data are centred by subtracting the environment mean for that attribute, fjk,
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and scaled by dividing by the environment standard deviation for that attribute, s ke
Formally, given P, Q and R components for genotypes, environments and attn-
butes, respectively, the model becomes

e = E % Z ;0,8 p0r (14.6)

p=lg=1r=1 L

where a, b and c,, are the component coefficients for genotypes, environments
and attngutes, respectively, and the 8pqr Darameters weight combinations of com-
ponents of the three modes. When a g value is large compared with other
weights, that combination of the pth, gth and rth component is more important in
estimating the data values than when it is small. Therefore, these weights can be
used to select the component combinations for interpretation (Kroonenberg, 1983,
Section 6.9).

It is possible to portray the relationships between the genotypes and attributes
for each component of the environment (or the genotypes and environments for
each component of the attributes) in a joint plot, a variant of Gabriel’s (1971) biplot.
The term, joint plot (Kroonenberg, 1983), is used rather than the term biplot,
because information from all three modes is used jointly to construct the plot. Given
an interpretation of an environment component, such a plot indicates which geno-
types have comparatively high or low scores on which attribute for that environment
component. Thus, a very detailed statement about the relative performance of all the
genotypes can be made from this analysis.

Just as the number of underlying groups must be specified for the mixture
method of clustering, the three-mode principal component analysis requires the
number of components for each mode to be determined. As explained in Basford et
al. (1991), the number of components should be determined by the detail with
which one wants to examine the data. This is in contrast to the.view that a search
should be made for the ‘correct’ number of components for each mode. The analogy
is to the ‘correct’ magnification required when using a microscope, where the
general rule is to use the lowest magnification compatible with observing the pheno-
mena of interest.

The ordination was applied using the program TUCKALS3 (Kroonenberg,
1994). A copy of this program can be obtained from the second author of this chapter.

Application
Experimental details

The data used to illustrate these techniques come from an experiment on 49
advanced wheat lines subjected to a range of water stress environments in a MET
conducted in Queensland. The details of the experimental material, test environ-
ments, experimental design and measurements were given by Cooper ef al. (1994a)
and are not repeated here in depth. In summary, the 49 wheat lines were 40
advanced lines from the International Maize and Wheat Improvement Center
(CIMMYT) in Mexico used in the selection study of Cooper et al. (1993), six other
CIMMYT lines and three Queensland cultivars (Hartog, Banks and Kite). They
were tested in six environments generated by imposing an irrigated and dryland
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environment was considered to provide the yield potential condition for comparison
with the other environments,

Although grain yield adaptation was of major concern, grain yield, yield com-
ponents, phenology and dry matter production and partitioning attributes were
measured on all lines in each environment. In the current study, two attributes, grain
yield (g m™?) and maturity (days to anthesis), were analysed simultaneously.
Significant (P<0.05) line variation Wwas reported for both attributes in each environ-
ment when the lattice analysis of variance was used (Cooper et al., 1994a). The
lattice adjusted data were used in subsequent analyses. From the combined analysis
of variance, significant (P<0.05) genotype and GxE interaction was identified for
both attributes. The relative size of the genotypic (0‘3,3) and GxE interaction (Ggf)
components of variance estimated using a REML (residual maximum likelihood)
procedure were; yield (ng=287t120: 0'33=10821161) and maturity (05:5.581‘1.33:
0Q3=4.68t0.52). Previous analysis of these data by Cooper ez al. (1994a) was based

on correlations between the attributes across environments.

Clustering

Using both the approximate test on the log likelihoods and subjective assessment of
the estimated probabilities of group membership for determining underlying group
number, the Seven-group solution (Table 14.1) was found to be most appropriate for
summarizing the variation in the data. Although line 38 was the only one allocated
to Group G, other lines had some (small) probability of belonging to this group;

Table 14.1. Membership of the seven group summary of the 49 wheat lines from the mixture
method of clustering.

Group Membership

48, 49

10, 24, 25

1,2,7,12,13,17,21, 33, 41, 42,43, 44, 47

18,19, 20, 22, 23, 26, 27, 28, 29, 30, 31, 34, 36, 37, 39, 45, 46
+8,9, 14, 15,16, 32, 35, 40
4,5, 11

OTMMoOOw>»

6
3
3
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The absolute values of the estimated correlation coefficient between yield and
maturity for each cluster were generally less than 0.02, although it was 0.33 for
Group E and —0.76 for Group A. The latter value should not be interpreted with
much confidence as it was effectively calculated from only two lines (48 and 49).
This conditional independence of the attributes, i.e. Zero correlation among them, is
often found in the underlying groups and is sometimes specified in the analysis
(Aitkin et al., 1981), although that was not the case here.

For comparison, the composition of the current seven groups is tabulated
against that of the six groups obtained from Cooper et al. (1994b) who analysed
yield alone (Table 14.2) with an hierarchical agglomerative technique (with squared
Euclidean distance as the proximity measure and incremental sum of squares as the
criterion). Using their composition as an initial allocation for the simultaneous
analysis of yield and maturity, a better solution (in terms of log likelihood) at the six
group level was obtained using the mixture method of clustering. However, the
seven-group solution presented here was chosen as more appropriate. As expected,
there were both similarities and differences in the two groupings (Table 14.2) with
those of Cooper et al. (1994b) being allocated across a number of the groups
obtained here.

The response pattern of these seven groups across environments for yield and
maturity is shown in Fig. 14.1. The ordering of the environments On the horizontal
axis is that of increasing mean attribute value over all lines. Basford e¢ al. (1994)
investigated the standard errors of the estimated means from the mixture method of
clustering. They stated that if the underlying groups are widely spaced and the ficted
posterior probabilities of group membership are either close 10 z€ro or one, an
approximate minimum value could be determined by taking the square root of the
estimated variance (of the attribute in question) divided by the sum of the posterior
probabilities of belonging to the group. Basford and Tukey (1996) suggest
underlap—overlap bars which are £1.5 times the standard error of plotted means. If *

Table 14.2. Comparison of groupings from mixture method of clustering (in the rows) with
that obtained from Cooper et al, (1994b) (in the columns) using yield alone.

Grouping from Gooper et al. (1994b)

Table 1
Grouping 91 " 92 (17) 90 (8) 89 (6) 87 (9) T2
A(2) 48, 49
B8 (3) 10, 24, 25
C(13) e e 33 7T
21,41, 42,
43, 44, 47
D (17) 19, 37 18, 20, 23, 26,27,28, 29,36 22. 31
30, 34 39, 45, 46

E(9) 8. 16 3 6,35 40 9,14
F(V L 3.4 5
G( 38

* Number in each group given after group name.
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Fig. 14.1. (a) Group mean yields across environments (environment code given in Table 14.3). {b)
Group mean maturity across environments (environment code given in Table 14.3), :

the bars overlap in comparing any two means, then we are confident that they are
not significantly different. The group with the largest estimated standard error of the
mean is Group G for both yield (21.0) and maturity (0.79); not surprisingly as this is
effectively a single member group. Instead of individual group bars, £1.5 times this
maximum has been used on each plotin Fig. 14.1. This is a VEry conservative estim-
ate and will stop us interpreting too many differences on these displays.
Nevertheless, there is still considerable line group by environment interaction for
both attributes. For the two environments BD and CPI, where line mean yield was
low (Fig. 14.1a), the conservative standard error suggests that line groups do not
differ for yield but do differ for maturity (Fig. 14.1b). Since significant (P<0.05)
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line variation was identified for yield in each environment, this suggests that the
grouping has not adequately described the yield variation among the lines in these
two environments.

Ordination

After examining several solutions, it was decided that the 3x3x2 solution (three
components for lines, three components for environments and two components for
attributes), which accounted for 65% of the variation, was an appropriate summary
of the data on the 49 wheat lines.

The two components for attributes were almost equivalent to the original two
attributes, and it was decided to consider a varimax rotation for both the environ-
ment and attribute components, while leaving the line components unchanged. The
transformed (rotated) components for the environments and the attributes are shown
in Tables 14.3 and 14.4, respectively. They account for 25%, 25% and 14% of the
variation for environments and 28% and 37% of the variation for attributes. The
variation accounted for by the various components from the original analysis was in
decreasing order, but the rotation can change this (as was the case here). The two
(rotated) attribute components are directly representative of the original attributes,
yield and maturity, respectively (Table 14.4). By ignoring the small component
values in Table 14.3, it can be seen that the first environment component primarily
represents BI, CPD and CPI, the second primarily represents GD and GI, while the
third primarily represents BD.

When the components are rotated, the core matrix must be counter-rotated in
order to see which combinations of (rotated) components account for most of the
variability. These are displayed in Table 14.5 where the explained variability is now
distributed over a larger number of elements than in the original core matrix, which
is not shown. For grain yield (really the yield slice), most weight is on the combina-
tion of first line component with the first environment component (0.051) and the
second line component with the second environment component (0.088). For matur-
ity (really the maturity slice), most weight is on the combination of first line

Table 14.3. Rotated environment components from the three-mode principal component
analysis of the 49 wheat lines.

Component

Environment 1 2 3

Brookstead dryland (BD) -0.02 -0.03 0.91
Brookstead irrigated (BI) 0.42 0.13 0.32
Cecil Plains dryland (CPD) 0.7 0.05 -0.24
Cecil Plains irrigated (CPI) 0.56 -0.13 0.10
Gatton dryland (GD) -0.04 0.68 0.05
Gatton irrigated (Gl) 0.01 0.71 -0.04

R2 0.25 0.25 0.14
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- Table 14.4. Rotated attribute components from the three-mode principal component analysis

of the 49 wheat lines.

Component
Attribute 1 2
Yield 1.00 0.00
Maturity 0.00 1.00
R? 0.28 0.37

Table 14.5. Counter-rotated core matrix giving the proportion of variation accounted for by the
combinations of components.

Environment components

1 2 3
Yield slice
Line components
1 0.051 0.020 0.001
2 0.033 0.088 0.028
3 0.010 0.019 0.030
Maturity slice
Line components
1 0.156 0.125 0.028
2 0.000 0.000 0.001
3 0.001 0.001 0.055

component with the first and second environment components (0.156 and 0.125,
respectively).

When looking at the joint plots with attribute as the reference mode, we inter-
pret the rotated attribute components, and when looking at the joiﬂ plots with
environments as the reference mode, we interpret the rotated envirofiment com-
ponents. The joint plots of lines and environments are displayed in Fig. 14 2 for the
attribute components, yield and maturity, while the joint plots of lines and ‘attributes
are displayed in Fig. 14.3 for the three environment components, (a) mainly BI,
CPD and CPI, (b) mainly GD and GI, and (c) mainly BD, respectively. [n these joint
plots, the wheat lines have been labelled according to the membership of the seven-
group solution from the mixture method of clustering.

Consider the joint plots where attributes are the reference mode (Fig. 14.2). We
shall initially discuss these, but the same can be said for the joint plots where
environments are the reference mode (Fig. 14.3). Arrows (vectors from the origin)
are drawn for the environment vectors (Fig. 14.2), while the wheat lines are shown
as points in these displays. The length of a vector for a particular environment indi-
cates the importance of that environment to the differences in the component in the

... reference mode. To describe the performance of any particular wheat line with

ddd .



Three-mode Analytical Methods for Crop Improvement 301
(a) (b)
v v
B e -
] ° =
¥ L]
g . s 5 ov
& y e}
E ° £
3 3
(3} Q
° o
& b @ .
a
2 .
L
O Group A - L] O Group A
® Group 8 ® Group 8
- 7 Group C 7 Group C
v Group O - v Group O
3 Group £ 3 Group €
=] s Group F ® Group F
a Group G A Group G
Ist Component Ist Component
(c) (d)
p BD %
. SEN
a . v
“;" %0 G %o v ;
- =] v i 3 a |
é- 1)) g 3
L°> - w » ‘3 ® }
» GI o
a (‘j
]
‘ : o
. O Group A | 8D a® O Group A
® Group B ® Group 8
7 Group C 7 Group C
v Group O v Group D
. a Group £ O Group E
{ & Group F . ®  GCroup F
& Group G a Group G
L
2nd Compounent Lst Component
Fig. 14.2. (a) Joint plot of Component 1 vs Component 2 for yield. (b) Joint plot of Component 1 vs

Component 3 for yield. (c) Joint piot of Compaonent 2 vs Companent 3 for yield. (d) Joint plot of

Component 1 vs Component 2 for maturity.

respect to a particular environment, drop a perpendicular to the corresponding vec-
tor. This is equivalent to finding the inner product between the vector to a particular
wheat line and the environment vector. A positive value indicates a larger than aver-
age performance in that environment while a negative value indicates a smaller than
average performance in that environment. Parallel environment vectors indicate that
the environments influence the performance of lines in a similar way, while vectors
at 180° indicate dissimilar performance. Environment vectors at 90° indicate inde-
pendent performance. For example, in the joint plot of the first versus second
components for yield performance (Fig. 14.2a), the dryland and irrigated treatments
at each site are quite similar, whereas the performace at Gatton appears to be
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independent of the performance at the other sites. As Brookstead and Cecil Plains
are in close proximity on the Darling Downs whereas Gatton is in the Lockyer
Valley, this is reflecting genotype by location interactions.

From Fig. 14.2a, the unique response of Group G (containing line 38) is appar-
ent, as is the average to high yield shown by members of Group D in Brookstead
and Cecil Plains, but not in Gatton. Similarly, Groups F and E showed average to
high yield at Gatton, but low yield at the other locations. This reflects the indepen-
dence of the response at Gatton compared with that at Brookstead and Cecil Plains.
Although yield under the water stress environments (Brookstead dryland and Cecil
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Plains, in particular) generally differed from that under yield potential conditions,
Group G did well everywhere. In Fig. 14.2b, Group F showed specific adaptation to
Cecil Plains dryland, while in Fig. 14.2¢c, this group does well at Gatton and Cecil
Plains dryland, but poorly at Brookstead dryland. Fig. 14.2d emphasizes early ver-
sus late flowering groups on the first component, while the second component
suggests Group F was particularly later flowering at Brookstead dryland.

It is clear from the joint plots for the three environment components (Fig. 14.3),
that yield and maturity are independent of one another as they are at right angles.
This is consistent with results from the cluster analysis where these attributes were
basically independent for each group, except possibly Group E. This result was
somewhat surprising given the importance of phenology for yield in Queensland
(Woodruff and Tonks, 1983), but it indicates that variation for grain yield exists
which is largely independent of the effects of phenology.

There is less localization of the groups for the joint plots for the environment
components (Fig. 14.3) than for the attribute components (Fig. 14.2). For
Brookstead irrigated and Cecil Plains (Fig. 14.3a), the higher yielding lines tended
to be later flowering ones in Groups F and G and some individual lines from Group
D. They could be taking advantage of irrigation at these locations and the rainfall
which occurred at flowering at Cecil Plains. For Gatton (Fig. 14.3b), the low pre-
anthesis stress could have ensured that both early and later flowering lines had high
yield. For Brookstead dryland (Fig. 14.3c), the severe water stress could have
resulted in the high yield being generally associated with quicker flowering lines.
The possible exception to this would be Group G.

These results were consistent with the analyses of Cooper et al. (1994a) in that
there was general independence of yield and days to anthesis with only weak rela-
tionships. Looking at the distribution of the wheat lines on the joint plots provides a
much clearer interpretation than that obtained by examining correlations.

Discussion

Both the clustering and ordination procedures gave a sensible and useful summariza-
tion of the data from the trial on the 49 wheat lines subjected to water stress
environments. Considerably more detail and interpretation were available through
the complementary use of these techniques, especially in examining the relationships
and variation among and within clusters. This addresses the practical problem for
plant breeders that, although such clusters are easier to look at than many individual
lines, selection has to be made for individual lines. When selection has to be made
for multiple traits, tandem selection, independent culling levels or selection indices
are often used. Where independent culling levels are attempted, it is extremely diffi-
cult to assess jointly information on multiple attributes integrated across
environments. Similarly, it is hard to visualize what is happening ».\]ith selection
indices. Joint plots provide a powerful graphic to assist in this process- Alternatively,
they could be used to study the patterns once selections have been-made.

As argued by Basford et al. (1991), the major advantage of these methods is
that they allow the data set to be treated in the formr ofi a:three-mode three-way
array. An overall picture of response is obtained by studying: the groups from a
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