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Abstract

In this thesis we are interested to the statistical analysis of extreme values (EVA)

and Modeling of Conditional Extreme Values Distributions under Right Censored

Data with Applications. Our goal, in the first place, is to propose an estimator of

the mean of a heavy-tailed distribution under right random censored data in pres-

ence of covariates by combining the generalized Kaplan-Meier estimator before a

threshold and a parametric model; Generalized Pareto Distribution (GPD) which

approximates the excesses over threshold in order to overcome the bad behavior of

Kaplan Meier estimator (K-M) in the heavy-tail of distribution, then we determined

the asymptotic normality of our estimator in case of deterministic covariates. Sec-

ondly, as application of extreme value theory to hydrology 1, more specifically, to

rainfalls. We have done a study to find out the most adequate fitting distributions

of rainfalls taken in Khemis-Miliana region (Algeria) during the period 1975-2006.

The method of Block Maxima (BM) is adopted when we use Generalized Extreme

Value (GEV) distribution to fit the data, and the Peak Over Threshold (POT) method

is applied when we use Generalized Pareto (GP) distribution, after testing station-

arity of time serie in hand.

Keywords: Extreme values theory, Heavy-tailed distribution, Generalized Kaplan-

Meier estimator, General Pareto Distribution (GPD), Random right censoring, con-

ditional mean estimate, POT, Block Maxima, extreme quantiles, return period, re-

turn level.

1hydrology is the branch of science or geology that studies the Earth’s water.
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Résumé

Ce travail de recherche s’inscrit dans le cadre de deux grandes branches de statis-

tique, à savoir la théorie des valeurs extrêmes et l’analyse de survie. Dans le cadre

des données de survie, nous avons construit un estimateur de la moyenne d’une

distribution à queue lourde avec des données lourdement censurées à droite en

présence des covariables. Notre construction est basée sur l’estimateur de Kaplan-

Meier généralisé avant un seuil choisi à priori, d’une part. D’autre part, nous avons

utilisé le modèle paramétrique Pareto généralisé (GPD) qui approxime mieux les

excès au-dessus du seuil afin d’éviter le mauvais comportement de l’estimateur KM

pour les valeurs extrêmes, puis nous avons établi la normalité asymptotique de

notre estimateur en cas de covariables déterministes. Notre étude pratique ( étude

de cas) consiste en l’analyse statistique des valeurs extrêmes (EVA) avec applica-

tions à l’hydrologie, plus précisément aux précipitations dans la région de Khemis-

Miliana dont les valeurs manquantes ne sont pas nombreuses. Plus précisemment,

nous avons estimé puis testé les paramètres des modèles probabilistes adéquats aux

précipitations enregistrées à la station de Khemis-Miliana durant la période 1975-

2006, puis nous avons fait un test d’hypothèse et déduire le modèle le plus appro-

prié. Ceci montre la puissance et l’applicabilité de la théorie des valeur dans le

domaine de l’hydrologie. Cette modélisation nous a permis d’estimer des valeurs

d’une grande importance dans le monde réel, notamment pour la prévision et la

décision, telles que le temps de retour d’une valeur extrême (dépassant un certain

seuil) et le niveau de retour à court , moyen et long terme (i.e. 5 ans, 10 ans et 100

ans respectivement).

Mots clés : Théorie des valeurs extrêmes, distribution à queue lourde, estima-

teur de Kaplan-Meier généralisé, distribution généralisée de Pareto (GPD), censure

aléatoire à droite, estimation de la moyenne conditionnelle, POT, Block Maxima,

quantiles extrêmes, période de retour, niveau de retour.
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General Introduction

”It is improbable for the impossible to never happen.” ([77])

History: ”The founders of the calculus of probabilities were too occupied with the

general behavior of statistical masses to be interested in the extremes. (N. Bernoulli,

in his actuarial problem (1709): n men of equal age die within t years. What is the

mean duration of life of the last survivor? he reduces this question to the following:

n points lie at random on a straight line of length t. Then he calculates the mean,

largest distance from the origin.)”([77] p.2).

Both of extreme values and Poisson’s law deal with small probabilities (rare events),

where the first considers the size of rare events and the second gives their number.

L. von Bortkiewics studied Extreme Values for the first time in 1922. One year later,

R. von Mise introduced the fundamental notion of the characteristic largest value

(using an other name). In 1925, L.H.C. Tippett gave tables (Tippett’s tables) which

were the fundamental tools for all practical uses of largest values from normal dis-

tributions only.

E.L. Dodd (1923) was the first who studied largest values for non normal distribu-

tions in his work : the Greatest and the Least Variate Under General Laws of Error

([50])

M. Fréchet (1927) was the first who: published a paper based on the concept of a

type of initial distributions (these were not very frequent)different from the normal

one, obtained an asymptotic distribution of the largest value but more than that he

proved that these largest values taken from different initial distributions sharing a

common property may have a common asymptotic distribution.

In the next year (1928), R.A. Fisher and L.H.C. Tippet published paper which made

the foundations of the asymptotic argument forming the backbone of extreme value

theory. They found in addition to Fréchet’s asymptotic distribution two others ad-

equate for other initial types and showed the reason of the slow convergence of the

distribution of the largest normal value toward its asymptote.

11
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In 1936, R. von Mises classified the initial distributions possessing asymptotic dis-

tributions of the largest value, and gave sufficient conditions under which the three

asymptotic distributions are valid. In 1943, B. Gnedenko gave necessary and suffi-

cient conditions. In 1948, G. Elfving and E.J. Gumbel derived the relations of the

asymptotic distribution of the normal range to certain Bessel functions. In his thesis

(1954)R.A. da Silva Leme gave a systematic expository treatment of the asymptotic

distributions of extreme values and their applications to engineering problems, es-

pecially the safety of structures, this problem was studied in great detail by Arne

L. johnson in 1953. The first book treating extreme value theory and extreme value

statistics is E.J. Gumbel’s Statistics of Extremes [77]. In this book, E.J. Gumbel also

provides a historical account of extreme value theory since its beginnings. There

was little theoretical development until a major flood in the Netherlands killed more

than 1800 people in 1953, this phenomena led Dutch mathematician attracted by

the field of extreme value theory, among them Laurens de Haan and Guus Balkema.

In 1974, Laurens de Haan and Guus Balkema, and independently J. Pickands, found

the limit distribution of the excesses of an iid sequence above high thresholds, called

Generalized Pareto Distribution (GPD). Their result gave a theoretical basis to the

Peaks-Over-Threshold method which had been used by hydrologists for modeling

extreme excesses since the 1950s.

In the 1970s, 1980s and 1990s, the foundations were laid for an extreme value

theory of dependent sequences. Pioneering work was done by R. Leadbetter, H.

Rootz´en, S. Resnick, J. Hüsler, T. de Olivera, R.A. Davis, T. Hsing, and many others.

In 1983, Leadbetter, Lindgren and Rootz´en published the book that was the first

one treating the extremes of stationary sequences (see [101]; it essentially solved the

problem for Gaussian sequences in a rather complete way. They discussed extremal

clusters and how to describe them in a quantitative way. Few years later, in 1987,

S.I. Resnick published his important book entitled Extreme Values, Regular Varia-

tion, and Point Processes ([127]). This book focused on the relationship between the

weak convergence of the point processes of the exceedances in a sample and the dis-

tributional convergence of the maxima and largest order statistics. It also provided

a rigorous extreme value theory for a multivariate iid sequence. Castillo [30] has

successfully updated [77] and gave many statistical applications of Extreme Value

Theory. In 1997, P. Embrechts, C. Klüppelberg and T. Micosch wrote their book

”Modelling Extremal Events for Insurance and Finance” not to solve problems re-
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lated to calculus of very high quantiles of the return distributions of speculative

assets, possibly outside the range of the data using extreme value theory but the

book aimed to bring theoretical results about extremes to a very wide audience, in-

cluding undergraduate students at many universities. The two best praises rightly

said toward extreme value theory in a convincing way are cited by [61]: - Richard

Smith: “There is always going to be an element of doubt, as one is extrapolating

into areas one doesn’t know about. But what EVT is doing is making the best use

of whatever data you have about extreme phenomena.” - Jonathan Tawn: “ The key

message is that EVT cannot do magic – but it can do a whole lot better than empiri-

cal curve–fitting and guesswork. My answer to the sceptics is that if people are not

given well founded methods like EVT, they will just use dubious ones instead.”

Since 1998 theory and practice of extreme value theory have been discussed through

biannual international conferences, one can cite the one held in Delft at the end of

June 2017 focused on topics related to stochastic processes related to extreme val-

ues. Those topics included the important class of max-stable processes and random

fields introduced by L. de Haan in 1984 which have proven in a final way useful for

the modeling and statistical analysis of extreme weather and climate phenomena.

Fertility of extreme value theory pushed related community to become more open

to fields like time series analysis, stochastic networks, telecommunications, branch-

ing,... Extreme value theory of high-dimensional structures is a hot topic, e.g. the

extreme eigenvalues of random matrices or finding the important (extreme) compo-

nents in complex stochastic systems.

Heavy tailed data frequently appear in insurance and finance, and a loss variable

with a heavy tail rarely creates unusually huge losses. Unfortunately such an ex-

treme loss often causes severe damages to our society. Extreme value theory has

been developed to model, analyze and predict such an extreme event for decades.

Several excellent books on extreme value theory have been available in the littera-

ture such as Leadbetter et al. [102], Resnick [127], Embrechts et al. [61], Coles [34],

Beirlant et al. [14], de Haan and Ferreira [45] and Novak [119].

In the case of complete data, there is a whole theory (extreme value theory; TVE).

Analysis of extremes is done according to two approaches. The first one, called the

GEV approach; allows to model the maximum blocks by a GEV distribution (gen-

eralized extreme value distribution) and the second, called GPD approach consists

in fitting the observations exceeding a certain threshold (peaks over threshold POT)
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by a GPD (generalized Pareto distribution).

The analysis of random censored extreme values is a new subject of research, espe-

cially when covariate is present. The modeling of censored extreme values is first

seen in 1997 in the literature of extremes with the publication of the book Reiss and

Thomas ( [126]). In 2007, Beirlant et al. ([15]) really approached extreme values

nonparametric statistics with censored data. Their estimator is based on a standard

tail index estimator divided by the estimator of the proportion of uncensored data

exceeding a certain given threshold. They have applied this theory to AIDS data

(survival times of 100 HIV members in a follow up study). Then, Einmahl et al.

(2008, [60]) used the same concept to propose an estimator of the tail index on the

k-largest values, determined its asymptotic properties and finally illustrate its be-

havior on the same AIDS data. Later, research on the theory of censored extreme

values has become a topical issue.

The main aim of this thesis is to extend the results of extreme value theory to the

case where the sample consists of a censored data under fixed covariates, namely

the mean of Pareto-type distributions.

Given samples X1, ...,Xn from a distribution F, can we estimate the mean of F?

This is the problem of mean estimation which is, alongside hypothesis testing, one

of the most fundamental questions in statistics. As a result, answers to this problem

are known in fairly general settings. For instance, the empirical mean is known to

be an optimal estimate of a distribution’s true mean under minimal assumptions.

Unfortunately, it can do not always exist according to the stability of α, α = 1/γ

where γ is the Extreme Value Index (EVI):

• 0 ≤ α ≤ 1: The mean and the variance are both infinite, as an example Cauchy

distribution (α = 1 );

• 1 < α < 2: The mean is finite and the variance is infinite, as the heavy tailed

distributions;

• α = 2: The mean and the variance are finite, as Gauss distributions

When the condition of finiteness of second order mean is deprived, Peng [120], Jo-

hansson [96] and Peng [121] proposed Gaussian asymptotic estimator by exploiting

the tools of extreme value theory. For both authors, the estimators are based on all

observations. When the variable of interest is right censored by another variable,
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estimation techniques based on complete data become inappropriate. In this situ-

ation, Stute [140] introduced an asymptotically normal estimator of the mean of a

finite second order moment distribution using Kaplan-Meier estimator [97].

Our contribution in this thesis is to propose an estimator of the mean of heavy

tailed distribution under censoring and presence of covariates taking advantage

of several recent works restricted to conditional and right censoring case, we can

cite for example [16], [114] concerning EVI estimators and [63] concerning survival

function estimator.

This thesis is a combination between two fields of statistics: survival analysis and

extreme value theory. We will provide a summary of the different notions and fun-

damental properties of these two domains of statistics that help reader to under-

stand. So, this thesis is organized as follows:

Chapter 1 is devoted to generalities which defines the whole concepts and results

that we will use in the rest of this work. We start by recalling the results on order

statistics and extremes and we give exact distributions of order statistics, the latter

allows us to introduce fundamental results on extreme value theory and asymptotic

distributions in value theory extremes.

These distributions depend on an unknown real parameter γ called the tail in-

dex or the extreme values index (EVI) which its knowledge is of great importance

in theory of extreme values. We will see that this parameter controls the behavior

of the distribution tail. The larger is γ , the heavier the tail is. According to this

shape parameter, we will also characterize the different maximum domains of at-

traction. Therefore its estimate has great interest. Then we recall some classical

estimation methods of this parameter, namely Hill, Pickands, and Moments estima-

tors in case of complete data where we toggle to estimating the extreme quantiles

for each method and we conclude by giving available procedures for selecting the

number of extreme values used for the estimate of this parameter. In Chapter 2, we

place ourselves in the general case, that is we define estimators of extreme values in-

dex and extreme quantiles of heavy tailed functions when covariates are present and

data are incomplete and then we give asymptotic properties. Within this section, we

recall some survival analysis notions which are necessary to reach the objective of

this section, as survival, hazard an risk functions and their estimators

The third chapter is about application of extreme value tools in the field of hy-

drology. In Section 2, we give the basic concepts of the classical block maxima
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(for extremes) and threshold exceedances ( for some high threshold) models and

then making inferences for both models including its parameters and return levels

(quantiles) by ML and PWM methods. Finaly, Section 3 is devoted to an applica-

tion to the extreme rainfalls at Khemis -Miliana station (Algeria). This chapter is

an article ”Toufik Guermah Abdelaziz Rassoul (2020) Study of extreme rainfalls us-

ing extreme value theory (case study: Khemis-Miliana region, Algeria), Communica-

tions in Statistics: Case Studies, Data Analysis and Applications, 6:3, 364-379, DOI:

10.1080/23737484.2020.1789901” see [85]

In the last chapter, we give our main result consisting in adapting the mean esti-

mator of heavy tailed distribution, established by Johansson [96], to right random

censoring and to presence of fixed covariates inspired from Ndao PhD thesis [114].

In section 2 we construct our estimator by dividing data into parts; below threshold

and above it, where data exceeding threshold are fitted by general Pareto Distribu-

tion (GPD). Section 3 is specified to our main result; first we give sufficient condi-

tions and then we state asymptotic normality of the estimator as well as its proof.

This chapter is an article submitted for publication.
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Chapter 1

Extreme Value Theory

Abstract In this chapter, we will present principal definitions and classical results

on Extreme Values Theory in uni-dimensional case.

1.1 Introduction

The goal of extreme value theory is to study large observations asymptotic behav-

ior of a sample of independent random variables and identically distributed. The

standard approach in probability theory places emphasis on average behavior and

variability around the average, through probabilistic tools such as the law of large

numbers or the central theorem limit. The fundamental theorem of extreme value

theory (Known as Fisher-Tippett’s theorem) gives the possible limit laws of the max-

imum of the sample and thus provides some knowledge of the tail distribution. The

use of the laws of extreme values is based on statistical properties order and ex-

trapolation methods. More precisely, it is based mainly on the limit distributions of

the extremes and their domains of attraction. In this part, we recall some essential

notions on the extreme values theory and on the notion of censorship which add

reader to understand this thesis. Thus, we present briefly the essential results en-

countered in the literature. We quickly define the notions of attraction domain ,

regular variation functions then we characterize them in the one-dimensional case.

As for censorship we will present some definitions linked to the statistics of survival

times. Censorship is founded with a few functions such as distribution function,

survival function and risk function. Many authors have been interested in the con-

cept, in particular Kaplan and Meier (1958, [97]), who proposed an estimator of the

survival function which Beran generalized ([22]) in the conditional case called the

18
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Generalized or conditional Kaplan-Meier estimator.

1.2 Order Statistics and their Exceedances

”Don’t trust random number” E. J. Gumbel.

1.2.1 Order statistics and Extremes

The study of order statistics is necessary because extreme values are special cases

of order statistics. Conversely, certain problem involving order statistics can easily

be solved from the theory of extreme values, especially the k-th largest observa-

tions problems, see [77] and [14], the latter explained why it would be unrealistic

to assume that only the maximum of a sample contains valuable information about

the tail of a distribution and that other large order statistics could do this as well.

In practice, order statistics are very important and in particular the minimum and

the maximum, because they are the critical values used in engineering, physics,

medicine, etc.; see [31].

Definition 1.1 (Order statistics)

Let X1,X2, ... denote a sequence of iid non-degenerate rvs with common df F. Define the

ordered sample of size n

X1,n ≤ ... ≤ Xn,n.

Hence X1,n = min(X1,X2, ...,Xn) and Xn,n = max(X1,X2, ...,Xn). The rv Xk,n is called the

kth upper order statistic. The notation of order statistics is not the same from an author

to other; some denote by X1,n the maximum and by Xn,n the minimum of a sample.

Definition 1.2 (Extreme order statistics)

The rv X1,n is the smallest order statistic (minimum statistic) and Xn,n is the largest

order statistic (maximum statistic). Note that it is very easy to switch from one to the

other using the relationship

min(X1, ...,Xn) = −max(−X1, ...,−Xn)

1.2.2 Distribution function of the kth upper order statistic

Proposition 1.1 For k = 1, ...,n and x ∈R let Fk,n denote the df of Xk,n. Then
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(a)

Fk,n(x) =
k−1∑
r=0

(
n
r

)
F̄r(x)Fn−r(x)

(b) If F is continuous, then

Fk,n(x) =
∫ x

−∞
fk,n(z)dF(z),

where

fk,n(x) =
n!

(k − 1)!(n− k)!
F̄k−1(x)Fn−k(x);

i.e. fk,n is a density of Fk,n with respect to F.

Proof.[61]

(a) For n ∈N define

Bn =
n∑
i=1

I{X>x}

Then Bn is a sum of n iid Bernoulli variables with success probability

EI{X>x} = P (X > x) = F̄(x).

Hence Bn is a binomial random variable with parameters n and F̄(x). Further-

more, we know that(
Xk,n ≤ x

)
if and only if

(∑n
i=1 I{X>x} < k

)
,

Consequently for x ∈R

Fk,n = P (Bn < k)

=
k−1∑
r=0

P (Bn = r)

=
k−1∑
r=0

(
n
r

)
F̄r(x)Fn−r(x).

(b) Using the continuity of F, we calculate

n!
(k − 1)!(n− k)!

∫ x

−∞
F̄k−1(z)Fn−k(z)dF(z)

=
n!

(k − 1)!(n− k)!

∫ 1

F̄(x)
tk−1(1− t)n−k dt

=
k−1∑
r=0

(
n
r

)
F̄r(x)Fn−r(x) = Fk,n(x).
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By similar arguments, the joint distribution of a finite number of different order

statistics. If F is absolutely continuous with density f , then the joint density of

(X1, ...,Xn) is

f(X1,...,Xn)(x1, ...,xn) =
n∏
i=1

f (xi), (x1, ...,xn) ∈ Rn.

Since the n values of (X1, ...,Xn) can be rearranged in n! ways, every ordered sequence

(Xk,n)k=1,...,n could have come from n! different samples, see for instance [61] and

[124]. The joint density of the ordered samples is then:

f(X1,n,...,Xn,n)(x1, ...,xn) = n!
n∏
i=1

f (xi), (x1 < ... < xn). (1.1)

The following theorem gives marginal densities as immediate consequence of

(1.1).

Theorem 1.1 (Joint density of k upper order statistics) If F is absolutely continuous with

density f , then

f(X1,n,...,Xn,n)(x1, ...,xk) =
n!

(n− k)!
Fn−k(xk)

n∏
i=1

f (xi), (x1 < ... < xk).

Among quantities which are the basic building block of several estimators, Es-

pecially Hill’s estimator, we find the spacings(or distances as called in [77]), that is

the differences between successive order statistics; see [61]

Definition 1.3 (Spacings of a sample) For a sample X1, ...,Xn the spacings are defined by

Xk+1,n −Xk,n, k = 1, ...,n− 1.

For random variables with finite left (right) endpoint x̃F(xF) we define the nth (0th) spac-

ing as

X1,n −X0,n = X1,n − x̃F (Xn+1,n −Xn,n = xF −Xn,n).

For examples; see [61](pp. 185-188).

The next notion is the so called quantile transformation. It is extremely useful

since it often converts order statistics’ problem to its version order statistics issue

from a uniform sample.
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Lemma 1.1 (Quantile transformation) Let X1, ...,Xn be iid with df F. Furthermore, let

U1, ...,Un be iid random variables uniformly distributed on (0,1) and denote by U1,n <

... < Un,n the corresponding order statistics. Then the following results hold:

(a) F←(U1) d=X1.

(b) For every n ∈N,

(X1,n, ...,Xn,n) d=(F←(U1,n, ...,F
←(Un,n)).

(c) The random variable F(X1) has a uniform distribution on (0,1) if and only if F is a

continuous function.

Proof. Follows immediately from the definition of the uniform distribution.

Proposition 1.2 (Almost sure convergence of order statistics)

Let F be a df with right (left) endpoint xF ≤ ∞(x̃F ≥ −∞) and (k(n)) a non-decreasing

integer sequence such that

lim
n→∞

n−1k(n) = c ∈ [0,1].

(a) Then Xk(n),n
a.s.→xF(x̃F according as c = 0(c = 1).

(b) Assume that c ∈ (0,1) is such that there is a unique solution x(c) of the equation

F̄(x) = c. Then

Xk(n),n
a.s.→x(c).

One can find proof in [61] (p.195).

1.3 Extreme value Distribution (EVD)

1.3.1 Max-stable distribution

The study of the uni-variate extreme values distributions is based on a parallel ap-

proach to that of the Central Limit Theorem, which is the basis of the inferential

statistic. This theorem establishes that for a sequence of real random variables i.i.d.

X1, ...,Xn, of finite variance σ2 and mean µ, then∑n
i=1Xi −nµ
σ
√
n

distribution−−−−−−−−−−→
n→∞

N (0,1);
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or in terms of distribution function:

lim
n→∞

P

{√
n

(
X̄n −E(X)

σX

)}
= Φ(x);

where Φ is the standard normal df and X̄n is the sample mean random variable,

that is

X̄n =
1
n

n∑
i=1

Xi .

This theorem means that it exist normalization sequences

{
µn = nµ ∈R

}
and

{
σn = σ

√
n > 0

}
;

in such a manner that the sequence of standardized random variables

Yn =
Sn −µn
σn

converges in distribution to standard normal distribution, i.e

P (Yn) = Φ(y), f or all y ∈R.

In addition to the central limit theorem, one can ask the next natural question, for

the maximum statistic: can we find normalization sequences µn ∈R, σn > 0 and a

non-degenerate distribution H such that

Xn,n −µn
σn

d−−−−−→
n→∞

G i.e lim
n→∞

P (Mn ≤ σnx+µn) =H(x). (1.2)

If the relation (1.2) is satisfied, we say that the respective variable is max-stable.

Definition 1.4 (Max-stability of a distribution)

A non-degenerate variable X and its distribution function F are said to be max stables if

it exists a normalization coefficients sequences µn ∈R, σn > 0 such thatMn
d=σnX+µn for

a sample of variables i.i.d. (Xi ; i = 1..n).

For more explication, see [14].

1.3.2 Fundamental theorem of extreme values

Let (Xn)n ≥ 1 a sequence of independent copies of a random variable X having dis-

tribution function F(x) = P (X1). The central result of extreme value theory concerns
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the asymptotic distribution H of the maximum. Since the random variables are in-

dependent and identically distributed, then the distribution function FXn,n of the

maximum Xn,n is given by

=[F(x)]n. (1.3)

The standardization with σn and µn in (1.2) appears natural since otherwise and

according to (1.3.2) Mn → xF a.s. which make H a degenerate distribution. So we

have a double problem: (1) find all possible non-degenerate distributions H that

can occur as a limit for sample maxima of independent and identically distributed

random variables as in (1.2); (2) specify the distributions F for which there exist

sequences σn and µn such that (1.2) holds for each of those limit distributions.

The solution of problem (1) (called extremal limit problem) is given by Fisher and

Tippett [69], Gnedenko [78] and de Haan [42]. These distributions are called extreme

value distributions. The solution of problem (2) means that for any such specific

limit distribution, one shall find necessary and sufficient conditions on the initial

distribution F satisfying (1.2). The class of such distributions is called the maximum

domain of attraction or simply domain of attraction of H and is often denoted by

D(H). In this context, Laurens de Haan reformulated relation (1.2) in two other

ways and identified all extreme value distributions and their domains of attraction;

see [45].

Definition 1.5 A distribution function F is said to belong to the domain of attraction of

a non-degenerate distribution function G (we write F ∈ D(G) ) if there exist sequences of

real numbers an > 0 and bn ∈R such that

lim
n→∞

Fn(anx+ bn) = G(x) or Fn(anx+ bn)
d→G(x) (1.4)

for all continuity points x of G.

Our first problem can thus be formulated as follows: find all distribution func-

tions with non-empty domains of attraction. Due to Khinchine’s convergence to

type theorem (see [66], Ch. VIII.2, lemma 1), a df F cannot be in the domain of

attraction of two essentially different df ′s. The results of the lemma lead to the

following definition ([43]).
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Definition 1.6 The distribution functions F1and F2 are the same type if there exist two

constants a > 0 and b ∈R such that F2(x) = F1(ax+ b) for all real x.

It is clear from the definition that the relation ”are of the same type” between df ′s

is an equivalence relation. Consequently it defines equivalence classes of distribu-

tion functions called types.

Now we are in a position to identify the class of non-degenerate distributions that

can occur as a limit in the basic relation (1.4). This class of distributions was called

the class of extreme value distributions as mentioned above.

Theorem 1.2 Fisher and Tippet (1928), Gnedenko (1943)

Let (Xn)n≥1 a sequence of independent and identically distributed random variables with

F(x) = P (X1 ≤ x). If there exist two normalization sequences an > 0 and bn ∈ R and a

non-degenerative distribution H such that:

lim
n→∞

P (Xn,n ≤ anx+ bn) = lim
n→∞

Fn(anx+ bn)

=H(x), f or all x,
(1.5)

Then H is of same type as one of the three following distributions:

Φα(x) = exp(−(x)−α)1{x≥0}, α > 0(Fréchet distribution)

Γ (x) = exp(−e−x),(Gumbel distribution)

Ψα(x) = exp(−(−x)−α)1{x<0} +1{x≥0}, α > 0(Weibull distribution)

where 1A is the indicator function of the set A.

For detailed proof of this theorem, see [127] (p.9) or with more expansions

[61](p.152).

Sequences an > 0 and bn ∈ R depends on distribution parameters of X. Figure 1.1

illustrates in case of standard normal distribution, the convergence of random vari-

ables sequence (a−1
n (Xn,n))n≥1 in distribution to a non-degenerate random variable

Γ . As an example, de Haan [45](p.11 example 1.1.7) used the following theoretic

re-normalization sequences associated to standard normal distribution:

an = (2/logn)−1/2 and bn = (2/logn)1/2 −
/log logn+ log4π

2(2logn)1/2
.

Note that (1.5) is equivalent to the following statement (see for other equivalent

statement and proof [45] (theorem 1.1.2 p.5)

lim
t→∞

t(1−F(a(t)x+ b(t))) = −logH(x),
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Figure 1.1: Illustration of extreme value theorem on standard normal distribution.

comparison betweenH0(x)(red), P
[Xn,n−bn

an
≤ x

]
with n = 100(blue) and P

[Xn,n−bn
an
≤ x

]
with n = 10 (green).

for each continuity point x of G for which 0 < G(x) < 1, a(t) := a[t] and b(t) := b[t]

(with [t] the integer part of t .

Maximum Domains of Attraction

Definition 1.7 (Maximum domain of attraction) The random variable X (resp. its dis-

tribution function F, is said to belong to the maximum domain of attraction of the extreme

value distribution H if there exist two normalization sequences an > 0 and bn ∈ R and a

non-degenerative distribution H such that equation 1.5 holds. We write X ∈ MDA(H)

(resp. F ∈MDA(H).

An important result which shows that the limit distribution functions form a

simple explicit one -parameter family (called extreme value distributions family or

general extreme value distributions (GEVD)) is the parametrization theorem due to

von Mises [152] and Jenkinson [95], so we can write

Λγ (x) =

 exp
[
−(1 +γx)−1/γ

]
if γ , 0

exp[−exp(−x)] if γ = 0
and for all x such that 1 +γx > 0. (1.6)

One can introduce the related location–scale family Hγ ;µ,σ by replacing the argu-

ment x above by (x −µ)/σ for µ ∈R, σ > 0.
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Definition 1.8 (Extreme Value Index (EVI)) The parameter γ in (1.6) is called the ex-

treme value index.

This result shows also that the class contains distributions with completely dif-

ferent features, let us consider the subclasses γ > 0, γ = 0 and γ < 0 separately:

(a) For γ > 0 clearly Λγ (x) < 1 for all x, i.e., the right endpoint of the distribution

is infinity. Moreover, as x→∞, 1 −Λγ (x) ∼ γ−1/γx−1/γ , which means that the

distribution presents a heavy right tail, in this case, moments of order greater

than or equal to 1/γ are infinite (see [45](exercise 1.16).

(b) For γ = 0 the right endpoint of the distribution is infinite where the distribu-

tion has a light right tail: 1−Λ0(x) ∼ e−x as x→∞, and therefore all moments

are finite.

(c) for γ < 0 the right endpoint of the distribution is −1/γ so it is short-tailed,

where 1−Λγ (−γ−1 − x) ∼ γ−(γx)−1/γ , as x→ 0.

Figure 1.2 illustrates the behavior of different GEV densities.

Figure 1.2: Example of extreme values densities γ = −1(black), γ = 1(blue) and

γ = 0 (red).
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Conditional distribution of excesses

The fact that F ∈MDA(Hγ ) is equivalent to the following assertion; see [61] (Theo-

rem 3.4.5 p.158):

There exists a positive, measurable function a(.) such that for 1 +γx > 0,

lim
u↑xF

F̄(xa(u))
F̄(u)

=

 (1 +γx)−1/γ if γ , 0,

exp(−x) if γ = 0.
(1.7)

This condition ((1.7)) has a probabilistic meaning; in fact let X be a random

variable with distribution function F ∈MDA(Hγ ), so (1.7) can be rewritten as

lim
u↑xF

P

(
X −u
a(u)

> x/X > u

)
=

 (1 +γx)−1/γ if γ , 0,

exp(−x) if γ = 0.
(1.8)

Let us define a distributional approximation for the scaled excesses over the

threshold u, where the appropriate scaling factor is a(u). Readers can see [61], sec-

tion 6.5 for many applications of this interpretation. The next definition is moti-

vated by the right-hand side limit in (1.8).

Definition 1.9 (The generalized Pareto distribution (GPD)) Define the distribution func-

tion Gγ by

Gγ (x) =

1− (1 +γx)−1/γ if γ , 0,

1− exp(−x) if γ = 0.
(1.9)

where x ≥ 0 if γ ≥ 0,

0 ≤ x ≤ −1/γ if γ < 0.

Gγ is called a standard generalized Pareto distribution (GPD). One can introduce the

related location-scale family Hγ ;µ,σ by replacing the argument x above by (x − µ)/σ for

µ ∈R, σ > 0. The support has to be adjusted accordingly.

Without lost of generality, we will restrict ourselves to the distribution function

Hγ ;0,σ which plays an important role in fitting excesses over a high threshold. The

bridge that links GEV with GP distributions is based on the limit law for excess

distributions over threshold due to Balkema and de Haan [9] and Pickands [123].
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Theorem 1.3 Denote by

Fu(x) = P (X −u ≤ x/X > u)

the conditional distribution of the excess of X over the threshold u, given that µ is ex-

ceeded.

If F belongs to one of three attraction domains of extreme value distributions (Fréchet,

Gumbel or Weibull), then it exists a function σ (u) strictly increasing and a real number

γ such that

lim
u↑xF

sup
0≤y≤xF−u

|Fu(y)−Gγ,σ (u)(y)| = 0 (1.10)

where Gγ,σ is the generalized Pareto distribution defined by

Gγ,σ (y) =

1− (1 +γy/σ )−1/γ if γ , 0, σ > 0,

1− exp(−y/σ ) if γ = 0, σ > 0.
(1.11)

y ∈ [0, (xF −u)] if γ ≥ 0,

y ∈ [0, min(−σ/γ, xF −u)] if γ < 0.

Thus, for an enough high value of u, the excesses distribution is fitted by a gener-

alized Pareto distribution:Fu ≈ Gγ,σ (u). The parameters γ and σ of the generalized

Pareto distribution are the same as those of GEV distribution. It is interesting to

note that the case γ = 0 corresponds to the exponential distribution of mean σ and

the case γ = 1 corresponds to the uniform distribution on [0,σ ].

1.4 Attraction domains Characterization

One of the big problem in Extreme Value Theory is to ask for necessary and suf-

ficient conditions for existence of centering constants an and norming constants bn

to get convergence in equation (1.2); one says that ”F is attracted to H”. Accord-

ing to Bingham [24], the first clear glimpse of the crucial role of regular variation

in probability theory (especially in Extreme Value Theory) is provided by the strik-

ing answer to the question above: the truncated variance should be slowly varying;

see [24](p.170) and [25](Theorem 8.3.1., p.346). This remarkable result has been

achieved independently by Khinchin (1935), feller (1935) and Lévy (1935), but both

of these works did not introduce the regular variation language, whereas this notion

has been already provided by Karamata (1930). In this subsection, we present dif-

ferent characterizations of the three attraction domains given in [44], [127], [61] and
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[45] using regular variation tool, where, they gave criterions to be taken such that

convergence in (1.2) holds.

1.4.1 Regularly Varying (RV) Functions

Regular varying theory started with the pioneering work by Karamata [98] and

passing by Feller [67] in the field of probability theory. theoretical developments

in extreme value theory saw light with L. de Haan doctoral dissertation On Regular

Variation and its Applications to the Weak Convergence of Sample Extremes in the

70’s. We summarize here some of the main results on regular variation theory and

for more details see the encyclopedic volume on the subject by Bingham, Goldie and

Teugels [25].

Definition 1.10 ((Regularly Varying and slowly varying Functions)) Let f be an

ultimately positive and measurable function on R+. We will say that f is regularly vary-

ing at infinity if and only if there exists a real constant ρ for which

lim
x↑∞

f (xt)
f (x)

= tρ f or all t > 0.

We write f ∈ RVρ and we call ρ the index of regular variation. In the case ρ = 0,

the function will be called slowly varying or of slow variation at infinity. We will

reserve the symbol ` for such functions.

The class of all regularly varying functions is denoted by RV

Remark 1.1 1) In the definition above, we have defined regular variation at infinity, i.e.

for x → ∞. Analogously we can define regular variation at zero replacing x → ∞ by

x→ 0, or at any positive number.

2) For α,β ∈R the functions xα, xα(logx)β , xα(loglogx)β are RVα.

The functions 2 + sin(loglogx), exp((logx)α), with 0 < α < 1, are slowly varying.

The functions 2+sinx, exp[logx],2+sin(logx) are not regularly varying; where [.] stands

for integer part.

Typical examples of slowly varying functions are positive constants or functions converg-

ing to a positive constant, logarithms and iterated logarithms.

For more examples see [45] (Example B.1.2, p.362) [61](p.565) and [14] (p.78).

Now, we present some important properties which describe the class RV0 of slowly

varying functions, for others, we refer to the literature.



31

Proposition 1.3 (Properties of the class RV0)

(a) RV0 is closed under addition, multiplication and division.

(b) if ` is slowly varying, then `α is also slowly varying for all α ∈R.

(c) If ` is slowly varying,

lim
x→∞

(log`(x))/ logx = 0.

(d) If ` is slowly varying and ρ > 0,

lim
x→∞

xρ`(x) =∞, lim
x→∞

x−ρ`(x) = 0.

One can transform a regular varying problem at infinity into slowly varying one

through the next result.

Proposition 1.4 Let ρ ∈ R and f ∈ RVρ. then it exists a slowly varying function ` at

infinity such that

∀x > 0, f (x) = xρ`(x). (1.13)

Mathematically, the two most important results about functions in RV0 are given in

the following theorem due to Karamata.

Theorem 1.4

(A) (Uniform convergence theorem) if f ∈ RVρ, then relation (1.12) holds uniformly

for t ∈ [a,b] with 0 < a < b <∞.

(B) (Representation theorem) If f ∈ RVρ, there exist measurable functions

a : R+→R and c : R+→Rwith

lim
x→∞

c(x) = c0 (0 < c0 <∞) and lim
x→∞

a(x) = ρ (1.14)

and x0 ∈R+ such that for x ≥ x0,

f (x) = c(x)exp
(∫ x

x0

a(t)
t
dt

)
. (1.15)

Conversely, if (1.15) holds with a and c satisfying (1.14), then f ∈ RVρ.

For the proof of theorem 1.4, one can refer to [45] (theorem B.1.4 and theorem B.1.6).
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Remark 1.2

1. One can choose arbitrarily x0 ∈ [0,∞] in expression (1.15) by choosing suitably the

functions c(t) anda(t) on the interval [0,x0].

2. The functions c(t) anda(t) given in (1.15) are not uniquely determined. (for more

details see [45]).

Theorem 1.5 (Karamata’s theorem) Suppose f ∈ RVρ. There exists x0 > 0 such that

f (x) is positive and locally bounded for x ≥ x0. if ρ ≥ −1 then

lim
x→∞

xf (x)∫ x
x0
f (t)dt

= ρ+ 1. (1.16)

If ρ < −1, or ρ = −1 and
∫∞

0
f (s)ds <∞, then

lim
x→∞

xf (x)∫∞
x
f (t)dt

= −ρ − 1. (1.17)

Conversely, if (1.16) holds with −1 < ρ <∞, then f ∈ RVρ; if (1.17) holds with∞ < ρ <

−1, then f ∈ RVρ.

For the proof see [45] (theorem B.1.5, p.364). Readers can consult [44], [45], [25]

and [107] for more information on regular varying functions.

1.4.2 Fréchet Attraction Domain

Denote by F̄(.) = 1−F(.) the survival function, the generalized inverse of F is defined

by

Q(s) = F←(s) = inf {x ∈R, F(x) ≥ s, 0 < s ≤ 1} ;

Q(.) is called also the quantile function of the distribution function F. The quantity

xp = F←(p) define the p − quantile of F; an other useful function extracted from the

quantile function and which plays a role in extreme value theory comparable to the

role of the characteristic function in the theory of the stable distributions and their

domains of attraction is the so called the tail quantile function, given by

U (x) =Q(1− 1/x) x ≥ 1,

that is the function U (.) is the inverse function of 1/(1−F)

Proofs of the following results can be found in [45] (Theorem 1.2.1 (part 1), p.19)

and in [128] (Proposition 1.13, p.59).
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Theorem 1.6 The distribution function F is in the domain of attraction of the extreme

value distribution of Fréchet Gγ , γ > 0 (AD(Hγ )) if and only if its endpoint xF is infinite

and

lim
t→∞

1−F(tx)
1−F(t)

= x−1/γ (1.18)

for all x > 0. This means that the survival function F̄ is regularly varying at infinity with

index −1/γ . In this case,

lim
n→∞

Fn(anx) = exp
(
−x−1/γ

)
holds for x > 0 with normalization sequences

an =U (n) and bn = 0.

Remark 1.3 (1) According to Proposition (1.4), F belongs to the domain AD(Hγ ),γ >

0 if and only if xF =∞ and F̄(x) = x−1/γ`F(x) where `F is a slowly varying function

at infinity.

(2) (1.18) can be reformulated in terms of the quantile function Q and the tail quantile

function U respectively as following

Q(1− .) is a regular varying function of index −γ at 0, that is Q(1− s) = s−γ`(1/s),

with ` ∈ RV0.

U (.) is a regular varying function of index γ at∞.

(3) Theorem (1.4) (part (B)) and (1.4) give the next representation

F̄(x) = c(x)x−1/γ exp
(∫ x

x0

a(t)
t
dt

)
, x < xF (1.19)

with

lim
x→∞

c(x) = c0 (0 < c0 <∞) and lim
x→∞

a(x) = 0

1.4.3 Weibull Attraction Domain

Embrechts [61] (Chapter 2) states that there is a full equivalence between the

cases γ > 0 and γ < 0 by a simple transformation. In this subsection we use the

same references as the previous one, so readers can refer to them for more details.

Theorem 1.7 The distribution function F is in the domain of attraction of the extreme

value distribution of Weibull Gγ , γ < 0 (AD(Hγ )) if and only if its endpoint xF is finite

and

lim
t↓0

1−F(xF − tx)
1−F(xF − t)

= x−1/γ (1.20)
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for all x > 0. This means that the function 1− F̄(xF − ·) is regularly varying at zero with

index −1/γ . in this case,

lim
n→∞

Fn(anx+ xF) = exp
(
−(−x)−1/γ

)
holds for x < 0 with normalization sequences

an = xF −U (n) and bn = xF .

Remark 1.4 (1) According to Proposition (1.4), F belongs to the domain AD(Hγ ),γ <

0 if and only if xF <∞ and

F̄(x) = (xF − x)−1/γ`((xF − x)−1)

where ` is a slowly varying function at infinity.

(2) (1.18) can be reformulated in terms of the quantile function Q and the tail quantile

function U respectively as following

Q(1− .) can be written as

Q(1− s) = xF − s−γ`(1/s), ` ∈ RV0. (1.21)

U (.) is a regular varying function of index γ at∞.

1.4.4 Gumbel Attraction Domain

This case, often called extremal type I, is more different than the two previous

ones; its characterization problem is more complex than the other two cases. In this

part, we present the solution to this problem given by the pioneering thesis of de

Haan [42].

Theorem 1.8 The distribution function F is in the domain of attraction of the extreme

value distribution of Gumbel Gγ , γ = 0 (AD(Hγ )) if and only if its endpoint xF can be

finite or infinite and

lim
t↑xF

1−F(t + xf (t))
1−F(t)

= exp(−x) (1.22)

for all real x, where f is a suitable positive function (called auxiliary function). If (1.22)

holds for some f , then
∫ xF
x

(1−F(t))dt <∞ f or x < xF and (1.22) holds with

f (x) :=

∫ xF
x

(1−F(t))dt

1−F(x)
. (1.23)
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in this case,

lim
n→∞

Fn(anx+ bn) = exp(−exp(−x))

holds for all x with

an = f (U (n)) and bn =U (n). (1.24)

Further and general characterization of attraction domains are given in the next

subsection.

1.4.5 General characterization of Attraction Domains

De Haan in [45] has reformulated (1.6), (1.7) and (1.8) in a seemingly more uniform

way (see [45], Theorem 1.2.5, p.21)

Theorem 1.9 The distribution function F is in the domain of attraction of the extreme

value distribution Gγ if and only if for some positive function f ,

lim
t↑xF

1−F(t + xf (t))
1−F(t)

= (1 +γx)−1/γ (1.25)

for all x with 1 +γx > 0. If (1.25) holds for some f > 0, then it also holds with

f (x) =


γx if γ > 0,

−γ(xF − x) if γ < 0,∫ xF

x
(1−F(t))dt/(1−F(x)) if γ = 0

Furthermore, any f for which (1.25) holds satisfies

lim
x→∞

f (x)/x = γ if γ > 0,

lim
x↑xF

f (x)/(xF − x) = −γ if γ < 0,

f (x) ∼ f1(x)where f1(x):is some f unction

f or which f
′

1(x)→ 0, x ↑ xF if γ = 0

A useful representation of survival function, according to index γ values, is

given by the following Theorem.

Theorem 1.10 The distribution function F is in AD(Gγ ) if and only if there exist posi-

tive functions c and f , f continuous, such that for all x ∈ (x0,xF), x0 < xF ,

F̄(x) = c(x)exp
{
−
∫ x

x0

dt
f (t)

}
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with

lim
x↑xF

c(x) = c ∈ (0,∞)

and 

lim
x→∞

f (x)/x = γ if γ > 0,

lim
x↑xF

f (x)/(xF − x) = −γ if γ < 0,

lim
x↑xF

f
′
(x) = 0 and lim

x↑xF
f (x) = 0 if xF <∞ if γ = 0.

Remark 1.5 The auxiliary functions f in Theorems (1.9) and (1.10) are asymptotically

the same. One can take f (x) = (1 − F(x))/F
′
(x), if the following condition (called von

Mises’ condition) is satisfied for γ = 0

lim
x→∞

(
F̄

F ′

)′
= 0

The next table shows some distributions and its attraction domains.

Attraction domains gumbel γ = 0 Fréchet γ > 0 Weibull γ < 0

Gaussian Cauchy

Exponential Pareto

Distributions Log-normal Student Uniform

Gamma Burr Beta

Weibull Chi-square

Fréchet

Table 1.1: Examples of some distributions classified according to its attraction

domains.

1.5 Estimation of Extreme quantiles and Tail Index (EVI) without censoring

As we saw, the extreme value index (or tail index) γ is a real quantity key in the

domain of extreme value analysis. In this section , we consider the estimation of

this parameter which gives information on tail form of extreme value distribution.

This problem has been studied in great details in the literature, we can cite Hill

([90]) in case of positive index, which has been thoroughly studied in the literature

and several generalizations have been proposed. Pickands ([123] in the same year
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proposed an estimator of extreme values index in the general case. Dekkers et al.

[49]) generalized the Hill estimator by the so called moment estimator. Later, Beir-

lant et al. [19] used Hill estimator and quantile function to construct a new tail

index estimator. Works on the estimation of the tail index continues to develop in

the semi-parametric frame. For a recent review of estimation procedures for the

Extreme Value (or tail) index of a distribution see Gomes and Guillou [80]. Most of

these estimators are based on the k-upper ordered statistics Xn−k,n ≤ ... ≤ Xn,n.

1.5.1 Hill estimator

The most famous estimator of γ > 0 is the Hill estimator. Hill used Maximum

Likelihood (ML) method on the set of kn upper observations of a sample. A large

number of theoretical works have been devoted to the study of the properties of

Hill’s estimator. Mason in([110]) demonstrated the weak consistency and Deheuvels,

Haeusler and Mason established the strong consistency in [46]. The asymptotic nor-

mality is due to Davis and Resnick ([39]), Csörgö and Mason ([37]), Haeusler and

Teugels ([87]) and Smith ([136]).

Definition 1.11 (Hill’s estimator)

Let X1, ...,Xn a sequence of iid random variables with common distribution function F ∈
(Hγ ), where γ > 0. Let k = kn such that 0 < k < n and k→∞, Hill’s estimator is defined

by

γ̂H(k,n) =
1

k − 1

k−1∑
i=1

logXn−i+1,n − logXn−k+1,n. (1.26)

Theorem 1.11 Asymptotic behaviors of γ̂H Assume that F ∈ (Hγ ); γ 0, k → ∞ and

k/n→∞ as n→∞

(a) Weak consistency:

then γ̂Hk converges in probability to γ when n→∞,

(b) Strong consistency:

If in addition of above assumption, k/ loglogn→∞ as n→∞,

then γ̂Hk converges almost surely to γ when n→∞,

(c) Asymptotic normality
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Assume that F satisfies second-order condition, i.e. for x > 0,

lim
t→∞

U (tx)
U (t)

− xγ

A(t)
= xγ

xρ − 1
ρ

, (1.27)

or equivalently,

lim
t→∞

1−F(tx)
1−F(t)

− x−1/γ

A

(
1

1−F(t

) = x−1/γ x
ρ/γ − 1
ργ

, (1.28)

where γ > 0, ρ ≤ 0, and A is a positive or negative function with

lim
t→∞

A(t) = 0

then
√
k(γ̂Hk −γ)

d→N
(
λ

1− ρ
,γ2

)
, as n→∞

withN standard normal and

lim
n→∞

√
kA

(n
k

)
= λ

with λ finite.

Remark 1.6 One of the interesting facts concerning (1.26) is that various asymptotically

equivalent versions of γ̂Hk can be derived through essentially different methods (such as

the ML method or the mean excess function approach), showing that the Hill estimator is

very natural.

This estimator is based on the assumption that the right tail function is heavy (Pareto

type) for large x, that is, 1 − F(x) ∼ cx−1/γ at infinity, for some γ > 0 and c > 0. Hence,

Hill’s estimator is only applicable in case the EVI is known to be positive, that is, only in

case the underlying distribution function presents a heavy tail.

The success of this estimator is due to the fact that it can be interpreted as an estimator of

the slope of the Pareto quatile plot (see [19]).

1.5.2 Weissman estimator

Weissman [154] proposed the most famous estimator of the extreme quantile q(αn)

when only the k largest observations of a sample of size n are available, taking Hill’s

estimator of the shape parameter, Weissman estimator is given by
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Definition 1.12 (Weissman’s estimator)

The Weissman estimator, q̂H , is defined by

q̂Hαn = Xn−kn,n

(
kn+1

(n+ 1)αn

)γ̂Hkn
The asymptotic properties of Weissman’s estimator are discussed and a confidence

interval has been constructed under certain conditions on the distribution function

F, kn and αn in [61], [111], [68] and [109].

In practice, the choice of the threshold kn poses problems. If we draw the Hill’s

diagram (see Figure (1.3)); the map of the function kn 7→ γ̂Hk , we observe an extreme

volatility which makes it difficult to use this estimator in practice if there is no

indication of the choice of kn. Furthermore, this estimator is biased.

Figure 1.3: Graphical representation of Hill’s estimator (observations derived from

Cauchy distribution (∈MDA(H1)) by simulation with n = 40000)

Comment

The graph above shows that if k(n) is not negligible with respect to n, for large values

of n, the Hill estimator does not converge.



40

1.5.3 Pickands estimator

The Pickands’ estimator is the simplest and earliest estimator for extreme value

index, it is constructed using three order statistics. This estimator is valid regardless

of the attraction domain of the distribution, i.e. the extreme value index can takes

any real value. Pickands ([123]) demonstrates the weak consistency of his estimator.

Strong convergence as well as asymptotic normality have been demonstrated by

Dekkers and de Haan ([48]).

Definition 1.13 Let (Xn,n ≥ 1) to be a sequence of independent random variables having

the same distribution function F ∈ AD(Hγ ), where γ ∈ R. Let k = k(n) a sequence of

integers such that 1 < k < n. Pickands’ estimator is given by:

γ̂Pk(n) = log2−1 log
(
Xn−k(n)+1,n −Xn−2k(n)+1,n

Xn−2k(n)+1,n −Xn−4k(n)+1,n

)
.

The next theorem summarize asymptotic properties of pickands’ estimator.

Theorem 1.12 Asymptotic properties of γ̂Pk(n) Assume that F ∈ AD(Hγ ), where γ ∈ R.

Let k = k(n) a sequence of integers such that 1 < k < [n/4], k(n)→∞ and k(n)/n→ 0 as

n→∞.

(a) Weak consistency

then γ̂P converges in probability to γ when n→∞,

(b) Strong consistency

If in addition of above assumption, k/ loglogn→∞ as n→∞,

then γ̂Pk converges almost surely to γ when n→∞,

(c) Asymptotic normality

Suppose that the tail functionU associated to F satisfies the second-order condition,

i.e.

lim
x↑xF

1−F(x+ tf (x))
1−F(x)

−Qγ (t)

α(x)
= (Qγ (t))1+γHγ,ρ(Q−1

γ (t)), (1.29)

withQγ (t) := (1+γt)−1/γ , f some positive function, and α some positive or negative

function with

lim
x↑xF

α(x) = 0.



41

Recall the equivalent relation in terms of U := (1/(1−F))←:

lim
x→∞

U (tx)
U (x)

−Dγ (t)

A(x)
=Hγ,ρ(Qγ (t) :=

∫ t

1
sγ−1

∫ s

1
uρ−1duds, (1.30)

for all x > 0 with Dγ (t) = (tγ−1)/γ, a(x) = f (U (x)), and A(x) = α(U (x)).

Then, for

lim
n→∞

√
kA

(n
k

)
= λ

with λ finite.
√
k
(
γ̂Pk −γ

) d→N
(
λbγ,ρ,σ

2
P (γ)

)
, as n→∞

withN standard normal, where

bγ,ρ :=



4−ργ((4γ+ρ − 1)− (2γ + 1)(2γ+ρ − 1))
ρ2γ (ρ+γ)(2γ − 1)log2

, ρ < 0 and γ , 0,

1− 2−ρ+1 + 4−ρ

ρ2(log2)2 ρ < 0 and γ = 0,

1 ρ = 0.

and

σ2
P (γ) :=


γ2(22γ+1 + 1)

4(log2)2(2γ − 1)2 , γ , 0,

3
4(log2)4 γ = 0.

For more details, see de Haan and Ferreira ([45]) p. 85-86. A more formal explica-

tion for the Pickands’ estimator is provided in [61].

Remark 1.7 1. A good property of Pickands estimator is that it is invariant by shift-

ing the sample by a constant.

2. Using asymptotic normality of Pickands estimator in Theorem (1.12) when√
k(n)A(n/k(n)→ 0 as n→∞,

(
√
k/σP (γ))(γ̂Pk −γ)

d→N (0,1),

hence one can construct in this case a confidence interval of γ .

Some authors suggested improvements and generalization of Pickands estimator,

we can cite:

Falk [64] who took a linear combination of two different numbers of observations
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treated as the tail.

Drees [52] extended the Falk’s refinement, proposed an other refinement in [53] and

gave a generalized form in [54] and [55].

Yun [160] introduced a full generalization of the Pickands estimator encompassing

estimators of Fraga Alves [2] and Yun [159] which were less general.

Segers [133] generalized it in a way that includes all of its previously known variants

and proved by explicit formulas these this estimators have the same asymptotic

variance as the maximum likelihood estimator. For more details on basic ideas and

analytic expressions of many tail index estimators, readers can see [65].

Figure (1.4) illustrate Pickands’ estimator with 95 % confidence interval

Figure 1.4: Graphical representation of Pickands’s estimator (observations derived

from Cauchy distribution∈MDA(H1) by simulation with n = 40000)

- For small k, there are large oscillations with a large confidence interval.

- For large k, we have a confidence interval that is narrower but not centered on the

true value.
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Definition 1.14 (Quantile estimator Q̂P ) The estimator Q̂P of the quantile Q(1 − s)
associated with the Pickands estimator is:

Q̂P := Xn−k+1,n +
(k/ns)γ̂

P − 1

1− 2−γ̂P
(Xn−k+1,n −Xn−2k+1,n) (1.31)

The asymptotic properties of the estimator 1.31, are discussed by Dekkers and de

Haan [48] (Theorem 3.3, p.1809), see also Matthys and Beirlant [111].

1.5.4 Moment estimator

The moment estimator is similar to the Hill estimator but it can be used for general

γ ∈R, not only for γ > 0, this extension of Hill estimator is due to Dekkers et al. [49]

by applying the Hill estimator for the case γ ≤ 0 but the problem is that U (∞) ≤ 0 is

possible, in which case the logarithm of observations is not defined. This problem

is overcame by assuming that U (∞) > 0 by shifting the data and being aware that

this shift influences the behavior of the estimator, see [45], Subsection 3.5

Definition 1.15 (Moment estimator)

For γ ∈R, moment estimator is given by

γ̂M(k) :=M(1)
n + Tn :=M(1)

n + 1− 1
2

1−

(
M

(1)
n

)2

M
(2)
n


−1

(1.32)

where

M
(r)
n (k) =

1
k

k∑
i=1

(logXn−i+1,n − logXn−k,n)r , r = 1,2. (1.33)

Note that M(1)
k corresponds to Hill estimator γ̂(k)H . Moment estimator is also known as

Dekkers-Einmahl-de Haan estimator.

Asymptotic properties of moment estimator have been established by Dekkers

at al.[49] (Theorem 3.1 and Corollary 3.2) .

Theorem 1.13 (Asymptotic properties of γ̂M) Assume that F ∈ AD(Hγ ),where γ ∈R.

Let k = k(n) a sequence of integers such that k(n)→∞ and k(n)/n→ 0 as n→∞.

(a) Weak consistency

then γ̂M converges in probability to γ when n→∞,
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Figure 1.5: Graphical representation of Moment estimator (observations derived

from Gumbel distribution∈MDA(H0) by simulation with n = 100000)

(b) Strong consistency

If in addition of above assumption, k/(logn)δ →∞ as n→∞, for δ > 0, then γ̂Mk
converges almost surely to γ when n→∞,

(c) Asymptotic normality

Under some conditions on distribution function F (see [49]),
√
k(γ̂Mk −γ)

d→N (0,σ2
M(γ)), as n→∞

withN standard normal, where

σ2
M(γ) :=


1 +γ2, γ ≥ 0,

(1−γ)2(1− 2γ)
[
4− 8

1− 2γ
1− 3γ)

+
(5− 11γ)(1− 2γ)
(1− 3γ)(1− 4γ)

]
γ < 0,

Remark 1.8 The name of this estimator stems from the fact that M(1)
k and M(2)

k can be

interpreted as empirical moments.

The moment estimator has an excellent performance in general, however when it is ap-

plied to a full data set of exceedances, so one obtains irregular estimates.
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Definition 1.16 (Quantile estimator Q̂M)

Extreme quantile estimate basing on moment estimator is given by

Q̂M := Xn−k+1,n + âMn
(k/ns)γ̂

M − 1
γ̂M

, f or k < n, (1.35)

with

âMn =
M

(r)
n

ρ1(γ̂M)
Xn−k,n, ρ1(γ̂) =


1, γ ≥ 0,

1
1−γ

γ < 0,

1.5.5 Choice of Order Statistics number (k)

As we have seen, extreme value index estimators depend basically on the empirical

tail size, so one must choose attentively the number k used in the implementation

of these estimators which is an important problem. The choice of this number is

clearly a question of trade-off between bias and variance: as k increases, the bias

will grow because the tail satisfies less the convergence criterion, while if less data

are used, the variance increases. The optimal value of k, then should minimize the

mean-square error (the sum of the bias-squared and the variance). Theoretically,

the optimal value of k depends on both the sample size and the unknown values of

γ and ρ (see Hall Welsh [89]. In order to overcome this problem, some authors have

chosen k graphically as the stable point in (γ̂ ,k)plot (see Drees et al. [57]), but this

method is subjective to the practice as a guessing. Other graphical methods have

been proposed by others; we can cite [88]; Draisma et al [51]; Danielsson et al. [38],

Gomes Oliveira [82] and Beirlant et al. [18]; [11]. Some others authors’ selection

methods are based on the bias; see Drees Kaufmann ([56]) and Guillou Hall ([86]),

Gomes Pestana ([94]), Gomes et al. ([79]) and Beirlant et al. ([12]).



Chapter 2

Modeling of conditional extreme

values under censoring: A Review.

Abstract

In practice estimation of parameters depends on several factors or covariables

for the reason that data under precise factor are homogeneous and statistics present

less variability. In the presence of covariate information, it is interesting to include

it in the estimation by modeling the parameters of extreme value distribution as a

function of the covariate(s). Several works fall in this direction, for example, Davi-

son and Smith (1990) fitted a Generalised Pareto (GP) distribution with parameters

taken as an exponential function of the covariates; Gardes and Girard (2008) used

moving-window methodology, then Gardes et al. [72] and Lekina [105] proposed

conditional extreme quantiles estimators in the non-parametric framework; Beir-

lant and Goegebeur (2003) and Wang and Tsai (2009) used a conditional exponen-

tial regression model, and Beirlant Goegebeur (2004) employed repeated fitting of

local polynomial maximum likelihood estimation.

2.1 Estimating conditional extreme values index and quantiles

we restrict ourselves to fix design, that is covariable is non random. Let Y a real

random variable measured jointly with a non random covariable X. Given a sample

{(xi ,Yi), i = 1, ...,n} of independent and identically distributed observations. Assume

that the conditional distribution F of Y is heavy tailed, i.e.

F̄(y|x) = y−1/γ(x)`(y|x))

46
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where ` ∈ RV0 and γ(.) is the conditional extreme value index (or conditional tail

index). We will use the selection method proposed in [105] and [114] (see Chapter

4), Let Zxi , i = 1, ...,mxn be the response variables Y
′
i s for which the associated covari-

ate X = x and let Zx(1) ≤ ...Z
x
(mxn) be the corresponding order statistics and mxn is the

number of observations having X = x

A family of conditional tail index estimators is introduced in [71], they are

based on weighted sum of the log spacings between the kx largest order statistics

Z(mxn−kx+1), ...,Z
x
(mxn). As in [72], this family is defined by

γ̂n(x,W ) =
kx∑
i=1

i log

Zx(mxn−i+1)

Zx(mxn−i)

W (i/kx,x)
/ kx∑
i=1

W (i/kx,x), (2.1)

where W (.,x) is a weighted function defined on (0,1) and integrating to 1. Under

some conditions on the weight function, L. Gardes and S. Girard ([71], Theorem 2)

established asymptotic normality of γ̂n(x,W ) as following:

k1/2
x (γ̂n(x,W )−γ(x))

D→N (0,γ2(x)V (x,W )),

where

V (x,W ) =
∫ 1

0
W 2(s,x)ds.

Definition 2.1 (conditional extreme quantile estimator of q(αmxn ,x))

Using (2.1) and considering βmxn = kx/mxn, the conditional extreme quantile estimator of

order αmxn is defined by

(C1)

q̂1(αmxn ,x) = Zx(mxn−[mxnαmxn ])

if αmxn converges slowly to 0; i.e. αmxn → 0 and mxnαmxn → ∞ as mxn → ∞. ([t]

denotes the largest integer smaller than t)

(C2)

q̂2(αmxn ,x) = q̂1(βmxn ,x)
(
βmxn
αmxn

)γ̂n(x)

if αmxn converges quickly to 0; i.e. αmxn → 0 and mxnαmxn → c ∈ [0,1] as mxn→∞.

where βmxn converges slowly to 0 and γ̂n(x) is a conditional extreme value index

estimator.
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L. Gardes in [72](Theorem 1, p.421) established the limit distribution of conditional

extreme quantile, especially the estimator is asymptotically Gaussian with asymp-

totic variance proportional to γ2(x)/(mxnαmxn) as shown below:

Theorem 2.1 (Theorem 1 in [72])

Let
(
αmxn

)
n

a sequence satisfying (C1).

If (mxnαmxn)
2ωn(mxn

−(1+δ))→ 0 for some δ > 0 then

(mxnαmxn)
1/2

(
q̂1(αmxn ,x)
q(αmxn ,x)

− 1
)
d→N (0,γ2(x))

ωn(a) is the largest oscillation of the log-quantile function with respect to its second

variable, defined for all a ∈ (0,1/2) as

ωn(a) = sup
{∣∣∣∣∣log

q(α,x)
q(α,x′)

,α ∈ (a,1− a), (x,x′) ∈ B(x,hx)
2
∣∣∣∣∣}

with B(x, ) is the ball centered at point x and with radius hx.

2.2 Survival Analysis language

2.2.1 Introduction

Survival analysis is the study of survival times and of the factors that influence

them, that is analyze time to event data. Survival times can be observed in several

disciplines such that medicine, reliability, insurance, economy, biology, ...etc. Ex-

ample of such times include time from birth until death, time from entry into a

clinical trial until death or disease progression, life-time of a component, ...etc. The

important difference between survival analysis and other statistical analyses is the

presence of censoring or incomplete data. This really leads the survival function to

be more important in setting up the models.

We begin with a reminder of some definitions.

2.2.2 Survival, Hazard and Risk functions

Y denotes the positive random variable representing time to event of interest. Cu-

mulative distribution function is F(y) = P (Y ≤ y) with probability density function

f (y) = F
′
(y).
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Definition 2.2 Survival function

The survival function, also called tail distribution, denoted by S(y) or F̄(y), is defined on

R+ by

S(y) = 1−F(y) := P (Y > y). (2.2)

which is the probability of an individual surviving to time y;

In the context of equipment or manufactured item failures, S(y) is referred to as the

reliability function. If X is a continuous random variable, then S(y) is a continuous

and strictly decreasing function.

When Y is a continuous random variable, the survival function is the integral of the

probability density function, f (x).

Definition 2.3 (empirical survival function).

Let Y1, ...,Yn a sample of size n ≥ 1 of a positive random variable Y . The empirical survival

function F̄n is given by

F̄n(y) = 1−Fn(y) :=
1
n

n∑
i=1

1{Yi>y}, ∀y ≥ 0; (2.3)

where 1{A} denotes the indicator function of the set A.

A basic quantity, fundamental in survival analysis, is the hazard function. This func-

tion is also known as the conditional failure rate in reliability, the force of mortality

in demography, the intensity function in stochastic processes, the age-specific fail-

ure rate in epidemiology, the inverse of the Mill’s ratio in economics, or simply as

the hazard rate.

Definition 2.4 (Hazard rate function)

The hazard rate is defined by

h(y) = lim
δy→0

P [y ≤ Y < y + δy|Y ≥ y]
δy

(2.4)

If Y is continuous random variable, then

h(y) = f (y)/S(y) = −d ln[S(y)]/dy. (2.5)

A related quantity is the cumulative hazard function Λ(y), defined by

Λ(y) =
∫ y

0
h(x)dx = − ln[S(y).] (2.6)
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Conversely

S(y) = exp[−Λ(y)] = exp
[
−
∫ y

0
h(x)dx

]
(2.7)

From (2.4), h(y)δy can be viewed as the approximate probability of an individual of

age y undergoing the event in the next instant. This function is very useful in de-

termining the appropriate survival distribution using qualitative information about

the mechanism of failure (hazard rate function) and for describing how the chance

of the occurring of the event changes with time, for illustrative examples see Lee

and Wang [103], Wienke [155] or Klein Moeschberger [100].

2.2.3 Censoring and Truncation

Time-to-event data present a special problem in analyzing them, known as censor-

ing, which occurs when there is not access to the whole information on lifetimes,

that is some of these lifetimes occur only within certain intervals, whereas the re-

mainder are known exactly. There are many types of censoring, such as right cen-

soring, left censoring, and interval censoring.

Another problem which may be present with incomplete data is that of trunca-

tion under various categories such as left truncation, right truncation and interval

truncation.

Censored Data

The interest of censoring:

The long experiment time is one of the main problems in classical life-time studies

and to overcome this problem, different censoring schemes are proposed in the lit-

erature.

Censoring, arises when the starting or ending events are not precisely observed.

Definition 2.5 (Censoring variable)

The censoring variable C is defined by the non-observation of studied event that is the

time to the censoring event. If instead of observing Y , we observeC, and we know that Y >

C (respectively Y < C, C1 < Y < C2), we say that there is right censorship (respectively

left censorship, interval censorship).

Intuitively, the right censoring, for example, results when the final endpoint is only

known to exceed a particular value.

Formally, for a given individual, we consider:
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• Y representing its survival time (time to event);

• C representing the time to a censoring event;

• Z is the time really observed.

Types of censoring

1. Right censoring

Right censoring occurs when an individual leaves the study before an event

occurs, or the study ends before the event has occurred. For example, we

consider patients in a clinical trial to study the effect of treatments on certain

disease occurrence. The study ends after 5 years. Those patients who have had

no disease by the end of the years of study are censored, that is if the patient

quits the study at time c, then the event occurs after c.

2. Left censoring

The left censorship occurs when the individual has experienced the event be-

fore he was observed. We only know that the variable of interest is lower or

equal to a known variable, but its exact event time is unknown. For exam-

ple concerning reliability if one studies a certain electronic component which

is connected in parallel with one or more other components: the system can

continue to operate, although aberrantly, until this failure is detected (for ex-

ample during a control or in case of system shutdown). Thus, the duration

observed for this component is left censored. Often, if left censoring occurs

in a study, right censoring may also occur, and the lifetimes are considered

doubly censored (cf. [148])

3. Double censoring

Double censoring occurs when both left censoring and right censoring are

present. In addition some exact event times are observed. Many non-parametric

models were suggested for the study of the double censoring. For example, the

Turnbull model (see [148]) is the most used, and several researches are based

on this model.

4. Interval censoring

A more general type of censoring occurs when the lifetime is only known to
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occur within an interval. In clinical trials, such interval censoring occurs when

patients have periodic follow-up and the patient’s event time is only known to

belonging to an interval (L,R] (L for left endpoint and R for right endpoint

of the censoring interval). The same censoring type may also occur in indus-

trial experiments when there is periodic inspection for proper functioning of

equipment items. One advantage of this type of censoring is that it allows

right or left censored data to be presented by intervals of the type [c,1[and

[0, c] respectively, which means that interval censoring is a generalization of

left and right censoring.

The above classes of censorship can be given according to the mode or mecha-

nism of censorship. So Censoring may be classified into three types: Type I, Type II,

and Type III or random.

• Type I censoring (fixed)

In Type I censoring, the censoring times are pre-specified whereas the number

of observed events is random. For example, in an animal experiment, a cohort

of animals may start at a specific time, and all followed until a pre-specified

ending time. Animals which have not experienced the event of interest before

the end of the study are then censored at that time. Another example (dis-

cussed in detail in [113] Example 1.5, p.8) is a smoking cessation study, where

by design each subject is followed until relapse (return to smoking) or 180

days, whichever comes first. Those individuals who did not relapse within the

180 day period were censored at that time.

Formally, Let C be a fixed value. For example in right censorship, instead of

observing the variables of interest Y1, ...,Yn, we observe Yi only if it is less than

or equal to C; else we observe C. One therefore observe a random variable Zi

such that Zi := min(Yi ,C); i = 1, ...,n.

• Type II censoring (waiting) Type II censoring occurs when the experimental

individuals are followed until a fixed number of events among the individuals

has occurred. Such a design is rare in biomedical studies, but may be used

in industrial settings, where time to failure of a device is of primary interest.

As an example (see [113]), where the study stops after, for instance, 25 out

of 100 devices are observed to fail. The remaining 75 devices would then be

censored. In this example, the smallest 25% of the ordered failure times are
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observed, and the remainder are censored.

Formally, Let Y(i) and Z(i) be the order statistics of the variables Yi and Zi ;

the ith individual survival time and the observed survival time respectively.

Suppose that the censorship date Y(k) (until occurrence of k events) and we

only observe the following variables:
Z(1) = Y(1),

...,

Z(k) = Z(k+1) = ... = Z(n) = Y(k)

• Type III censoring (random) This is the last general category of censoring;

it is random censoring. One must be careful to the cause of the censoring in

order to avoid biased survival estimates. For example, in biomedical field, one

cause of random censoring is patient abandon. If the abandon occurs truly at

random, and is unrelated to the disease process, such censoring may not cause

any problems with bias in the analysis. But if patients who are near death are

more likely to abandon than other patients, serious biases may arise in this

situation. Another cause of random censoring is competing events, a good ex-

ample is given in ([113], Example 1.4) in which patient dies of another cause

different to the primary one, while that patient will be censored.

Formally, Let Y1, ...,Yn a sample of a positive random variable X, we say that

there is a random censoring of this sample if there exists another positive ran-

dom variable C of sample C1, ...,Cn, in this case instead of observing the Y
′
i s;

we observe a couple of random variables (Zi ,δi) with

Zi :=min(Yi ,Ci) and δi := 1{Yi≤Ci }, f or i = 1, ...,n (2.8)

where δ is the censorship indicator; That is, δ is 0 or 1 according to whether Y

is a censored time or an observed event time.

In the literature, several authors (see[62] ; [33] and [32]) introduced other types by

combining the two ones censoring types; known as hybrid censoring types. Progres-

sive censoring is a very flexible censoring scheme as it allows for the removal of live

experimental units at various intermittent times during the experiment in addition

to removal at the termination of the experiment, for more details one may refer to

[8] and [7]. Note that hybrid censoring schemes have been introduced in the context
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of progressive censoring as well. Ng et al. (2009, [118]) and Lin et al. (2009, [106])

have proposed adaptive progressive hybrid censoring schemes in order to allow the

experimenter to modify the censoring scheme adaptively during the life-testing ex-

periment. For more details, readers can see (2009, [6]).

In this thesis, we are only interested in the case of random right censorship.

Truncation

There is another type of incompleteness which is a second feature of many survival

studies, sometimes confused with censoring, called ”truncation”. Truncation of sur-

vival data occurs when only those individuals whose event time lies within a certain

observational window (CL,CR) are observed. An individual whose event time is not

in this interval is not observed and no information in this case is available. Contrary

to what we have seen concerning censoring where there is at least partial informa-

tion on each individual. Since we are interested only to individuals with event times

belongs to the observational window, the inference for truncated data is restricted to

conditional estimation. There are three types of truncation: left, right and interval

truncation.

• Left truncation:

When CR is infinite then we have left truncation. Here we only observe those

individuals whose event time Y exceeds the truncation time CL. That is we

observe Y if and only if CL < Y . A common example of left truncation is

the problem of estimating the distribution of the diameters of microscopic

particles. The only particles big enough to be seen based on the resolution of

the microscope are observed and smaller particles do not come to the attention

of the investigator.

• Right truncation:

Right truncation is another form of length-biased sampling, but it is much

more difficult to accommodate than left truncation. Right truncation occurs

when CL is equal to zero. That is, we observe the survival time Y only when

Y ≤ CR . Right truncation arises, for example, in estimating the distribution

of stars from the earth; in that stars too far away are not visible and are right

truncated.
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• Interval truncation:

We say that we have interval truncation if the survival time is left and right

truncated simultaneously.

Likelihood and Censoring

If the censoring mechanism is independent of the event process, then we have an

easy way of dealing with it. Assume that Y is the time to event and that C is the

time to the censoring event.

Suppose that all individuals may have an event or be censored, say for individual

i one of a pair of observations (yi , ci) may be observed. Then since we observe the

minimum time, we would have the following expression for the likelihood (using

independence)

L =
∏
yi<ci

f (yi)SC(yi)
∏
yi>ci

f (ci)SC(ci)

Where SC is survival function of the random variable C. Using notation above, for

each individual we observe zi :=min(yi , ci) and δi , as observations from a continuous

random variable and a binary random variable. Hence L will be

L =
∏
i

g(zi)
δiS(zi)

∏
i

gC(zi)
1−δiSC(zi)

with gC is the density function of C. where we have used

density = hazard × survival f unction.

2.2.4 Estimation of survival function and cumulative hazard function

In the literature, several authors have been interested in estimating the survival

function under censoring. Among these we can cite Kaplan and Meier ([97]) pro-

posed an non-parametric estimator of the survival function. This estimator was

generalized by Beran ([22]) in the conditional case. Some asymptotic properties of

this generalized Kaplan-Meier estimator were presented by Gonzalez-Manteiga and

Cadarso-Suarez ([84]).
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Kaplan-Meier Estimator

Let (Zi ,δi)1≤i≤n be the really observed sample and let (Z(i),δ(i))1≤i≤n its increasing

order statistic. Kaplan-Meier estimator is defined by:

S̄n(t) = 1− F̄n(t) =
n∏
i=1

( n− i
n− i + 1

)δ(i)1{Z(i)≤t}

=
n∏
i=1

1−
δ(i)1{Z(i)≤t}
n− i + 1

 (2.9)

It is also called ”Product limit” due to the existence of product symbol in the

formula of the estimator.

• Kaplan-Meier estimator is a step function having jumps only at uncensored

observations.

• The jumps height of this estimator is random.

• If data is complete, we find the empirical distribution function.

Theorem below show that Kaplan-Meier estimator is asymptotically Gaussian and

one can find the proof in [73] using the point processes theory.

Theorem 2.2 (Droesbeke and Saporta (2011, [58]) If both of survival function (1 − F)

and censorship distribution function (G) don’t have any common discontinuity, then:

sup
t≥1
| Ŝn(t)− S(t) | a.s.→0

and for every t ≥ 0,
√
n(Ŝn(t)− S(t)) | D→Wt

where (Wt)t≥0 a mean zero Gaussian process satisfying for every u and v strictly positive

Cov(Wu ,Wv) = S(u)S(v)
∫ min(u,v)

0

dF(s)
(1−F(s))2(1−G(s))

In the survival analysis literature, many of the authors have been devoted to the

study of the asymptotic properties Kaplan-Meier estimator. For example; Uniform

consistency has been studied by Shorack and Wellner [134], Wang [153], Stute and

Wang [143] and Gill [75]. The normality asymptotic has been studied by Breslow

and Crowley [27], Gill [73] and [74].

In presence of covariates, Kaplan-Meier estimator has been generalized, taking

the name Generalized Kaplan-Meier estimator or Beran estimator.
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Generalized Kaplan-Meier Esimator (GKM)

Beran ([22]) proposed a local aspect to the Kaplan-Meier estimator using smoothing

with Nadaraya-Watson weights. He was studying regression problems with incom-

plete data in a completely non-parametric framework. The estimator proposed is

defined as follows:

1− F̂n(z/x) = ŜGKMn (z/x) =


n∏
i=1

1− Bi(x)∑n
j=11{Zi≥Zj}Bj(x)

1{Z(i)≤z, δ(i)=1}
, if z < Z(n),

0 else.

where

Bi(x) =
K

(
x −Xi
hn

)
∑n
j=1K

(
x −Xj
hn

)
is the Nadaraya-Watson weights, hn→ 0 the window and K the kernel.

In the following we will consider the metric space (X ,d). Let

Hu(z|x) = P (Z ≤ z,δ = 1/X = x)

the conditional sub-distribution of the uncensored observations . In this case, con-

ditional or generalized Kaplan-Meirer estimator has a complicated structure since

it is the product of dependent factors. To avoid this problem in the case of the (un-

conditional) product-limit estimator, Lo and Singh (1986, [108]) furnished a repre-

sentation as a sum of i.i.d. terms with some remainder term which is asymptotically

negligible. For the conditional Kaplan-Meier estimator, decompositions similar to

Lo and Singh (1986, [108]) were derived, all in the case where covariate is univari-

ate, see e.g. Van Keilegom and Akritas (1999, [149]), Van Keilegom and Veraver-

berke (1997, [150]). In particular, Du and Akritas (2002, [59]) proposed an uniform

i.i.d. representation that holds uniformly in terms of survival time and covariate

.For asymptotic properties of this estimator, some assumptions will be assumed

as in Van Keilegom and Veraverbeke (1998, [151]) and in Gonzalez-Manteiga and

Cadarso- Suarez (1994, [84]).

• (C1) The functions H(./xi) and Hu(./xi), for 1 ≤ i ≤ n, belong to the families

(H(./x))x∈X and (Hu(./x))x∈X , continuous and differentiable with respect to the

first variable and twice differentiable with respect to the second variable and

that the derivatives are continuous.
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• (C2) The kernel K is a symmetric density function and second order lipschitz

function with bounded support satisfying:∫
K2(u)du <∞ and

∫
| u |2 K(u)du <∞.

• (C3)

max
i
| si − si−1 |≈max

i
| xi − xi−1 |=O(1/n).

Theorem 2.3 (Droesbeke and Saporta (2011,[58]) Assume that conditions (C1), (C2)

and (C3) satisfied as
logn
nhn

→ 0 and
nh5

n

logn
=O(1), then for z < τ(x) with

inf
x∈X

(1−H(τ(x)/x)) > 0

,

F̂n(z/x)−Fn(z/x) =
n∑
i=1

Bi(x)ξ(Zi ,δi , z/x) + rn(x,z)

= (nhn)−1f −1
X (x)

n∑
i=1

K

(
x −Xi
hn

)
ξ(Zi ,δi , z/x) + rn(x,z).

where

ξ(Zi ,δi , z/x) =(1−F(z/x))
[∫ z

0

1{Zi≤s} −H(s/x)

(1−H(s/x))2 dHu(s/x)

+
1{Zi≤z,δi=1} −Hu(z/x)

1−H(z/x)

−
∫ z

0

1{Zi≤s,δi=1} −Hu(s/x)

(1−H(s/x))2 dHu(s/x).

and

sup
0≤z≤(1−H(τ(x)/x))

| rn(x,z) |=O
(
(nhn)−3/4(logn)3/4

)
a.s.

with fX is the density function of X.

According to Theorem 2.1 and Theorem 2.2 in [84], the asymptotic covariance and

bias of conditional Kaplan-Meier estimator are

Covasymptotic(F̂n(t/x), F̂n(s/x) = (nhn)−1Γ (s, t/x)

and

Biasasumptotic(F̂n(t/x)) = h2
n
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where

Γ (s, t/x) =
(∫

K2(u)du)(1−F(s/x))(1−F(t/x)
)∫ min(s,t)

0

dHu(y/x)
(1−H(y/x))2

and

b(t/x) =
1
2

(
∫
u2K(u)du)(1−F(t/x))

[∫ t

0

{
Ḧ(s/x)dHu(s/x)

(1−H(s/x))2 +
dḦu(s/x)
1−H(s/x)

}
+ 2f

′
X(x)f −1

X (x)
∫ t

0

{
Ḣ(s/x)dHu(s/x)

(1−H(s/x))2 +
dḢu(s/x)
1−H(s/x)

}
where Ḣ(s/x) and Ḧ(s/x) are first order and second order derivatives respectively

ofH(s/x) with respect to x. Under these results we get the formulas on the parameter

hn which minimizes the asymptotic mean squared error defined by:

MSEasymptotic(hn) = E∞
[
(F̂n(t/x)−Fn(t/x))2

]
= V arasumptotic(F̂n(t/x)) + (biasasymptotic(F̂n(t/x))2

= (nhn)−1Γ (t, t/x) + h4
nb

2(t/x).

where E∞ is the expectation according to the asymptotic distribution. The value of

hn which minimizes this function, MSEasymptotic(hn), is given by:

hnopt =
(
Γ (t, t/x)
4b2(t/x

)1/5

n−1/5.

Under these conditions, one can announce the following asymptotic property of

Beran estimator:

Theorem 2.4 (Droesbeke and Saporta (2011, [58]) Assume that conditions (C1)-(C3)

are satisfied.

• If nh5
n→ 0 and

(logn)3

nhn
→ 0, then, for n→∞

(nhn)1/2(F̂n(./x)−Fn(./x))→W (./x)

• If hn = Cn−1/5 for some C > 0, then for n→∞

(nhn)1/2(F̂n(./x)−Fn(./x))→ W̃ (./x)

where W (./x) and W̃ (./x) are Gaussian processes with covariance function Γ (., ./x),

and for W̃ (./x), mean function is b(./x)C5/2.
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Graphical representation under censored data

1. Using Kaplan-Meier estimator

The ”Pareto quantile plot” can be determined in case of random right-censored

data without covariable. Therefore, it suffices to replace the empirical distri-

bution function by its Kaplan-Meier estimator. We have, then the representa-

tion of the points:(
− log

(
1− F̂n

(
Z(n−i+1)

))
, logZ(n−i+1)

)
, i = 1, ...,n− 1.

2. Using generalized Kaplan-Meier estimator

One can also use ”Pareto quantile plot” to represent graphically random right-

censored data in presence of covariable x:(
− log

(
1− F̂n

(
Z(n−i+1)/x

))
, logZ(n−i+1)

)
, i = 1, ...,n− 1.

where F̂n (·/x) designates to generalized Kaplan-Meier estimator.

Nelson-Aalen Estimator

Cumulative hazard function estimator has be introduced by Nelson [117] in 1972

and generalized later by Aalen [1] in 1978, taken the name Nelson-Aalen estimator.

First, one can observe that under general hypothesis of independence between sur-

vival and censoring times, we can decompose H(t) as:

H(t) = 1− (1−F(t))(1−G(t)) =H (c)(t) +H (u)(t) (2.10)

where

H (c)(t) := P (Z ≤ t, δ = 0) =
∫ t

0
F̄(y)dG(y) (2.11)

and

H (u)(t) := P (Z ≤ t, δ = 1) =
∫ t

0
Ḡ(y)dF(y) (2.12)

For t ≥ 0, the cumulative hazard function (2.6) can be expressed as following:

Λ(t) =
∫ t

0

Ḡ(y)dF(y)
H̄(y)

=
∫ t

0

dH (u)(y)
H̄(y)

.
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Definition 2.6 (Nelson-Aalen Estimator) The non-parametric Nelson-Aalen estima-

tor Λn of Λ based on the sample {(Zi ,δi , 1 ≤ i ≤ n)} is defined by

Λn(t) =
∫ t

0

dH
(u)
n (y)

H̄n(y)
=


n∑

Z(i)≤t

δ(i)

n− i + 1
if t < Z(n),

1 else.

where

Hn(t) =
1
n

n∑
i=1

1{zi≤t} and H
u
n (t) =

1
n

n∑
i=1

δi1{zi≤t}

are respectively the empirical distribution function of H(t) and the empirical version of

Hu
n (t) from the sample Z1, ...,Zn.

Note that by substituting Λ(t) by Λn(t) in (2.7), we obtain a new estimator of

survival function, relative to Nelson-Aalen cumulative hazard function estimator,

called Breslow estimator (see [28]) given by

ŜN−An (t) =


∏
Z(i)≤t

exp
{
−

δ(i)

n− i + 1

}
if t < Z(n),

0 else.

Fleming and Harrington [53] have shown the close relationship between Nelson-

Aalen estimator and Kaplan-Meier one, they compared numerically for several sam-

ple sizes and pointed out that the two estimators, are asymptotically equivalent. For

more details, see Huang and Strawderman [93]. Recently, Dragi Anevski [5] derived

process limit distribution results for the Nelson-Aalen estimator of a hasard func-

tion and for the Kaplan-Meier estimator of a distribution function, under different

dependence assumptions.

2.2.5 Estimation of Extreme Value Index (EVI) under censoring

In this subsection, we focus on the problem of estimating the extreme value index

in the case of right censored data. Beirlant et al. ([15]) and Einmahl et al. ([60]) pro-

posed an inverse probability-of-censoring weighted (IPCW) method to adapt classi-

cal extreme value index estimators to censoring. Similarly, Gomes and Neves ([81])

and Brahimi et al. ([26]) used this idea to adapt various estimators to censoring.

In addition, Beirlant et al. ([16]) addressed the problem of censoring, obtaining

maximum likelihood estimators by adapting the likelihood function of the general-

ized Pareto distribution to censoring. Also, Worms and Worms ([157]) considered
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estimators based on Kaplan-Meier integration and censored regression. After that

Ameraoui et al. ([3]) estimated the extreme value index from a Bayesian perspec-

tives and Beirlant et al. ([17]) proposed a reduced-bias estimator based on an ex-

tended Pareto distribution. Recently, beirlant et al [20] revisited the estimation of

the extreme value index for randomly censored data from a heavy tailed distribu-

tion by introducing a new class of estimators which encompasses the ones given in

Worms and Worms ([157]) and Beirlant et al. ([17]) and proved good bias proper-

ties. They also derived an asymptotic representation and the asymptotic normality

of the larger class of estimators and consider their finite sample behavior, however

they obtained the asymptotic normality in case of heavy censoring, i.e. where the

amount of censoring in the tail is at least 50 %.

In this case, suppose we have two samples Y1, ...,Yn and C1, ...,Cn of independent and

identically distributed for each sample, distributed respectively according to F and

G, such that F ∈ AD(Hγ1
) and G ∈ AD(Hγ2

) for some γ1 and γ2 ∈ R. Let (Zi ,δi)1≤i≤n

be the really observed sample. It is clear that the Z
′
is independent random variables

of distribution function H given by (2.10). The extreme value index of H exists,

denoted by, γ with γ =
γ1γ2

γ1 +γ2
. Let xF , xG and xH be the endpoints of F, G and

H respectively. A general adaptation of existing EVI estimators to censorship is

provided by [60] in the following cases:
case 1 γ1 > 0, γ2 > 0,

case 2 γ1 < 0, γ2 < 0, xF = xG,

case 3 γ1 = γ2 = 0, xF = xG =∞.

Their estimators are based on a standard estimator of the index tail divided by the

estimator of the uncensored data proportion in the greatest k real observed order

statistics, that is

γ̂
(•,c)
1 (k) =

γ̂•

p̂
,and p̂ =

1
k

k∑
i=1

δ(n−i+1) (2.13)

The notation γ̂• can be any estimator not adapted for censorship and p̂ is the es-

timator of the proportion of observed data at the right tail distribution. Beirlant

et al. [15] are the first who introduced this methodology in the case of Hill’s and

Moment’s estimators. Furthermore, they proposed the estimators of the extreme

quantiles and have discussed their asymptotic properties when data are censored

by a deterministic threshold. Einmahl et al. [60] proved that γ̂ (•,c)
1 is a consistent

and asymptotically Gaussian estimator of γ1 as soon as γ̂• and p̂ are also consistent
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and asymptotically Gaussian estimators of γ1 and p respectively.

The main extreme quantile estimator Q(1−s) under random censorship available in

the literature has been proposed by Beirlant et al. [15] and by Einmahl et al. [60]. It

is given by the following definition:

Definition 2.7 (Extreme quantile estimation under random censorship)

Extreme quantile estimator under random censorship is defined by

Q̂(•,c) = Z(n−k) + â(•,c)

((
1− ˆFn(Z(n−k))

)
/s
)γ̂ (•,c)

1 − 1

γ̂
(•,c)
1

(2.14)

where â(•,c) = Z(n−k)M
(1)
n (1− Tn)/p̂, with M(1)

n and Tn are defined in (1.32).

2.2.6 Conditional Extreme quantiles and Tail Index (EVI) under censoring

Introduction

The study of estimation of conditional extreme quantile in incomplete data frame-

works is of growing interest. Specially, the estimation of the extreme value index in

a censorship framework has been the purpose of many investigations when finite

dimension covariate information has been considered. In the case of the presence

of both covariate information and censoring, Ndao et al. ([115]) proposed three

estimators for the estimation of the conditional extreme value index and extreme

quantiles for heavy-tailed distributions. In particular, the Hill, generalized Hill and

moment type estimators were proposed using the moving window method (Gardes

and Girard, [71]) and adapting the estimators to censoring by using the inverse

probability of censoring weighted method (IPCW) (Beirlant et al. [15]; Einmahl et

al. [60]). Whereas Stupfler ([138]) proposed a moment estimator valid for all do-

mains of attraction. In addition, Ndao et al. ([116]) addressed the estimation of the

extreme value index under censoring and the presence of random covariates.

Recently, Justin Ushize Rutikanga and Aliou Diop [129] and [130] discussed

the estimation of the conditional extreme quantile and EVI of a heavy-tailed dis-

tribution when some functional random covariate (i.e. valued in some infinite-

dimensional space) information is available and the scalar response variable is right-

censored, they proposed a weighted kernel version of Hill’s estimator of the extreme-

value index and established its asymptotic normality under mild assumptions.
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In this section, we present fix design conditional index and quantile estimators

under radom right censoring, proposed by Ndao [114] and Lekina [105] in case of

heavy tailed distributions by using mobile window method as in [71].

Some EVI estimators

Suppose that conditional distribution functions of Y and C given x ∈ X are heavy

tailed functions with positive conditional tail indexes γ1(.) and γ2(.) respectively.

Note by Zxi ,δ
x
i , i = 1, ...,mxn real observed data such that its covariates are in suffi-

ciently small neighborhood of x, that is

(Zxi ,δ
x
i ) =

{
(Zi ,δi) if | xi − x |≤ hn,x

}
, i = 1, ...,n with hn,x→ 0 as n→∞.

The associate ordered sample is then denoted by

(Zx(1),δ
x
(1)), ..., (Z

x
(mxn),δ

x
(mxn)).

In the general case, Ndao [116] defined the EVI estimator by

γ̂
(·,c)
kx,m

x
n
(x) =

γ̂
(·)
kx,m

x
n
(x)

p̂x
(2.15)

where p̂x =
1
kx

∑kx
i=1δ

x
(mxn−i+1) estimates px =

γ2(x)
γ1(x) +γ2(x)

and γ̂ (·)
kx,m

x
n
(x) can be:

1. Hill adapted estimator(1975, [90])

γ̂
(H)
kx,m

x
n
(x) =M(1)

kx,m
x
n

=
1
kx

kx∑
i=1

i log
Z(mxn−i+1)

Z(mxn−i)

2. Dekkers-Einmahl-de Haan adapted estimator (1989, [49])

γ̂
(M)
kx,m

x
n
(x) =M(1)

kx,m
x
n

+ 1− 1
2

1−

(
M

(1)
kx,m

x
n

)2

M
(2)
kx,m

x
n


−1

where

M
(2)
kx,m

x
n

=
1
kx

kx∑
i=1

(
i log

Z(mxn−i+1)

Z(mxn−i)

)2

3. UH (Beirlant et al.) adapted estimator, 1996, [19]

γ̂
(UH)
kx,m

x
n
(x) =

1
kx

kx∑
i=1

log
(
Z(mxn−i)γ̂

(H)
i,mxn

(x)
)
− log

(
Z(mxn−kx)γ̂

(H)
kx,m

x
n
(x)

)
For more details on these estimators, the reader can consult Chapter 1 in [114].
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Conditional extreme quantile estimation

A conditional extreme quantile, q(αmxn ,x), of order αmxn is obtained by solving the

equation

P(Y > q(αmxn ,x)/X = x) = αmxn

where αmxn → 0 as n→∞
Ndao [114] gave, by inverting distribution function at order αmxn the solution of the

above equation in case of heavy tailed functions:

q(αmxn ,x) = Zx(mxn−kx)

(
F̄(Z(mxn−kx)/x)

αmxn

)γ1(x)

. (2.16)

and the adapted family estimators are

q̂(αmxn ,x)(·,c) = Zx(mxn−kx)

1− F̂mxn(Z
x
(mxn−kx)/x)

αmxn


γ̂

(·,c)
kx,m

x
n

(x)

. (2.17)

where F̂mxn(./x) is generalized Kaplan-Meier estimator. For example, if one take Hill

estimator for extreme value index, one obtained:

q̂(αmxn ,x)(H,c) = Zx(mxn−kx)

1− F̂(Zx(mxn−kx)/x)

αmxn


γ̂

(H,c)
kx,m

x
n

(x)

.

Asymptotic properties

Under some conditions of regularity (see [114], C1-C5, p.44), the next theorem gives

the asymptotic normality of γ̂ (·,c)
kx,m

x
n
(x) in the general case and its corollary especially

for hill, UH and moment estimators. (see its proofs in [115])

Theorem 2.5 ([115], Theorem 4.1) Let x ∈ X . Under conditions C1 - C6 and if it ex-

ists functions m(.) : and σ (.) such that
√
kx(γ̂

(·)
kx,m

x
n
(x)−γ(x))

D→N (m(x)λ(x),σ2(x)), then

√
kx(γ̂

(·,c)
kx,m

x
n
(x)−γ1(x))

D→N (
m(x)λ(x)−γ1(x)ε(x)

px
,
σ2(x) +γ2

1 (x)px(1− px)
p2
x

)

where

λ(x) = lim
kx→∞

√
kxb

(
mxn
kx
,x

)
and b(.,x) is a regularly varying function with index ρ(x)
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Corollary 2.1 Under hypothesis C1-C6 and k1/2
x hαUn,x→ 0, then√

kx

(
γ̂

(H,c)
kx,m

x
n
(x)−γ1(x)

)
D→N

(
−γ1(x)ε(x)

px
+

λ(x)
px1− ρ(x))

,
γ3

1 (x)
γ(x)

)

√
kx

(
γ̂

(UH,c)
kx,m

x
n

(x)−γ1(x)
)
D→N

(
−γ1(x)ε(x)

px
+

λ(x)
px(1− ρ(x))

,
γ2

1 (x)
γ2(x)

(1 +γ1(x)γ(x))
)

√
kx

(
γ̂

(M,c)
kx,m

x
n
(x)−γ1(x)

)
D→N

(
−γ1(x)ε(x)

px
+

λ(x)
px(1− ρ(x))

,
γ2

1 (x)
γ2(x)

(1 +γ1(x)γ(x))
)

We now turn to the asymptotic properties of the estimator (2.17) of the conditional

extreme quantiles. Under a further regularity assumption on q(., .) (condition C7

in [114], p. 46), Ndao ([115] established its asymptotic normality via the following

theorem:

Theorem 2.6 ([114], Theorem 2.4.2) Assume that conditions C1-C7 hold. Let (αmxn)n≥1

and (βmxn)n≥1 := (1− F̂(Zx(mxn−kx)/x))n≥1 two sequences such that αmxn < βmxn and let

ξmxn = (mxnβmxnβmxn)
1/2 log

(
βmxn
αmxn

)
.

If n→∞,, it exists δ > 0 such that

(mxnβmxnβmxn)
2ωn((mxn)−(1+δ))→ 0

and

k1/2
x max

[
ξ−1

(mxn
, ∆̄(βmxn ,x)

]
→ 0.

Then,
√
kx

log
(
βmxn
αmxn

) log

 q̂(αmxn ,x)(·,c)

q(αmxn ,x)

 D→N
(
λ(x)m(x)−γ1(x)ε(x)

px
,
σ2(x) +γ2

1 (x)px(1− px)
p2
x

)
.

where ωn(.) is the greatest oscillation of log-quantile function (see ndaothesis, p.46)

2.3 Mean lifetime Estimation under right censoring

2.3.1 Kaplan-Meier Integral

In a remarkable paper, Stute [140] extended the Central limit Theorem in full gener-

ality, where the mean is a special case, to the random censorship model. Let Y1, ...,Yn,

the variables of interest, one observe

Zi = min(Yi ,Ci) and δi = 1{Y i≤Ci }, i = 1, ...,n
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as defined in Section 2.2. Let ϕ : R → R be any measurable function such that∫
ϕ2dF < ∞ (i.e. ϕ is F square integrable function). One have also ϕ(Y1), ...,ϕ(Yn)

are i.i.d. Put

S
ϕ
n =

∫
ϕdŜn,

where Ŝn is the kaplan-Meier product limit estimator given by (2.9). It is easily seen

from (2.9) that

S
ϕ
n =

n∑
i=1

Wi,nϕ(Z(i)),

where for 1 ≤ i ≤ n

Wi,n =
δ(i)

n− i + 1

i−1∏
j=1

(
n− j

n− j + 1

)δ(j)

.

is the weight attached to the ith order statistic Z(i) under Ŝn. If there is no censor-

ing, all δ’s equal 1 so that each W takes 1/n value. Whereas, under censoring, Sϕn

becomes function of Z(i)’s correctly weighted by W ’s random quantities.

2.3.2 Sample mean under random right censoring

If we put ϕ(z) = z, we obtain Sϕn = µ

Definition 2.8 Under random censoring, the sample mean estimator is defined by

S
ϕ
n = µ̃n :=

n∑
i=1

Wi,nZ(i).

2.3.3 Distributional Convergence of the Kaplan-Meier Integral

The asymptotic normality of the KM integral was investigated by different authors,

we cite: Gill [74] who showed the distributional convergence for non negative,

continuous and increasing ϕ’s, Schick et al. [132] established a weak representa-

tion of Sϕn in terms of a sum of i.i.d. random variables, Yang [158] extended the

weak convergence of Sϕn , under some regularity conditions on F, to ϕ’s satisfying∫
ϕ2/ḠdF <∞. Stute [140] obtained a representation of Sϕn as a sum of i.i.d. random

variables plus a remainder without regularity conditions on F and G ,as shown in

Theorem 2.7 below, under the following assumptions:∫ ∞
0
x2Γ 2

0 (x)dH (u)(x) <∞, (2.18)
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∫ ∞
0
x


∫

0

dHc(y)[
H̄(y)

]2


1/2

dF(x) <∞ (2.19)

where H (c) and H (u) are the subdistribution functions given by:

H (c)(t) := P(Z ≤ t,δ = 0) =
∫ t

0
F̄(x)dG(x),

and

H (u)(t) := P(Z ≤ t,δ = 1) =
∫ t

0
Ḡ(x)dF(x),

with

γ0(x) := exp
{∫ x

0

dHc(s)
H̄(s)

{
γ1(x) :=

∫ x

0

sΓ0(s)
H̄(s)

dHu(s)

and

γ2(x) :=
∫ x

0

∫ ∞
s

tΓ0(t)[
H̄(s)

]2dHu(t)dHc(s)

Theorem 2.7 (Stute ([140], Corollary 1.2.) Under assumptions (2.18) and (2.19),

√
n(µ̃−µ)

d−→N (0,σ2),

where

σ2 := V ariance [Z1Γ0(Z1)δ1 + Γ1(Z1)(1− δ1)− Γ2(Z1)]

For the proof, one can see [140].

2.3.4 Further readings

• Concerning the bias of
∫
ϕdFn in estimating

∫ τ
0
ϕdF (where τ is the endpoint

of d.f. H , Mauro [112] showed that for nonnegative ϕ’s, the bias is negative.

• Zhou [161] obtained a lower bound of the bias for nonegative and continuous

ϕ’s.

• Stute [139] derived an expansion of the bias and showed that the bias decreases

to zero exponentially fast as n→∞ if ϕ is bounded and vanishes right of some

T < τ .
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• Informally speaking, Stute [142] indicated that the bias of a Kaplan-Meier in-

tegral may decrease to zero at any polynomial rate, if, e.g., 0 ≤ ϕ(x) ↑ ∞ as

x → ∞ and censoring is heavy (as an example, in estimating mean lifetime;

that is ϕ(x) = x, reader can see [140] (Section 6, p.247).

• In order to reduce the bias, Stute and Wang [144] proposed a jackknife modi-

fication of
∫
ϕdFn.

• Suzukawa [146] obtained a representation of the Kaplan-Meier integral in

terms of the Kaplan-Meier estimator of a censoring distribution. Moreover,

he considered a class of unbiased estimators of
∫ τ

0
ϕdF under the condition

that the censoring distribution is known.

• Soltane [137] proposed an estimating approach of the mean ensuring the asymp-

totic normality property for some class of heavy-tailed distributions for which

The central limit theorem introduced by Stute [140] does not hold.



Chapter 3

Study of extreme rainfalls using

Extreme Value Theory (case study:

Khemis-Miliana region - Algeria)

Abstract

The main topic of this work is the statistical analysis of extreme values (EVA) with

applications to hydrology, more specifically, to rainfalls. Statistical inference of rain-

fall is very important as we consider the risk of damage to agriculture, ecology, in-

frastructure systems and also risk of drought. The main aim of this study is to find

out the most adequate fitting distributions of rainfalls taken in Khemis-Miliana re-

gion (Algeria) during the period 1975-2006. The method of Block Maxima (BM) is

adopted when we use Generalized Extreme Value (GEV) distribution to fit the data,

and the Peak Over Threshold (POT) method is applied when we use Generalized

Pareto (GP) distribution, after testing of course stationarity of time serie in hand.

Concerning estimation of parameters, we use: Maximum Likelihood Estimation

(MLE), Probability Weighted Moments (PWM) and Profile of Maximum Likelihood

(PMLE) for both models (GEV and GP). With these models, we derive estimates of

T-years return levels for different periods T and vice-versa.

Keywords: GEV, GPD, POT, Block Maxima, extreme values, extremes quantiles,

return period, return level.

AMS 2000 Subject Classifications 62G32-62G05
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3.1 Introduction

”However big floods get, there will always be a bigger one coming; so says one theory of ex-

tremes, and experience suggests it is true.” (PRESIDENT’S WATER COMM., p. 141.)([77])

The oldest problems connected with extreme values arise from floods, so we

should protect our life and property against the damages caused by inundations

which are considerated as rare events that are more extreme than any that have

already been observed. Meteorological data generally have no alarming aspects

as long as they are situated in a narrow band around the average. The situation

changes for instance when concentrations occur that overshoot a specific ecological

threshold like Rainfall data with tremendous impact on society as they are among

the most common themes for discussion, specifically global warming and climate

change. Typically, one is interested in the analysis of maximal and minimal ob-

servations and records over time (often attributed to global warming) since these

entail the negative consequences. Algeria, as a Mediterranean country, has under-

gone severe climatic changes during the last decades in terms of rainfall. The floods

of Bab El Oued in 2001 and Ghardaia in 2008 were really catastrophic, caused by

substantial extreme rainfalls. The role of extreme value theory is to develop proce-

dures which are scientifically and statistically rational for estimating the extremal

behaviour of such random variables or processes. In this context, the German math-

ematician Emil Gumbel (1891–1966), who was a pioneer in the application of EVT

to engineering problems, in particular to hydrological phenomena such as annual

flood flows, once wrote: “It seems that the rivers know the theory. It only remains to

convince engineers of the validity of this analysis.”[77]. The foundations of the asymp-

totic argument which forms the backbone of extreme value theory were set out by

Fisher and Tippett in the 1920’s though they were reluctant to propose the models

for statistical application. This theory was unified and extended by Gnedenko in the

1940’s. The statistical application of the probabilistic models for extremes was first

studied and formalized by Gumbel in the 1950’s. Also in the 1950’s, Jenkinson[95]

worked on the application of extreme value models to extreme wind speeds and de-

veloped a model parametrization which unified a number of previously disparate

models thus adding clarity to the modelling procedure

In the 1970’s the classical limit laws were generalized by Pickands leading to

substantially improved modelling procedures which were developed in the 1980’s
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and 1990’s. Also throughout the 1980’s the extremal behaviour of a much more

general class of processes admitting various types of non stationarity and depen-

dence were investigated. Furthermore the characterization and statistical inference

of multivariate extremes has been developed since the mid 1980’s. The extreme lev-

els of a river causing floods in hydrology were also introduced in the literature by

Coles and Tawn (2005)[35]. Concerning rainfall, and the risk of floods caused by

this phenomenon, a considerable number of studies aiming to model such events

can be found in the literature: Coles (2001, [34]) provided a detailed discussion

about the methods used to model such events, and extreme rainfall was modelled

by Friederichs (2010)[70] in Germany, Benestad (2010)[21] in Norway, Kim et al.

(2009) [99] in the south of Korea and Deka et al. (2011)[47] in India. Actually,

extreme value theory is a blend of a variety of applications and sophisticated math-

ematical results on point processes and regular varying functions.

According to Fisher-Tippet’s theorem , if the maximum value of a distribution

function (d.f.) tends (in distribution) to a nondegenerate d.f. then this limiting d.f.

can only be the Generalized Extreme Value (GEV) distribution.

The rest of the paper is organized as follows: in Section 2, we give the basic con-

cepts of the classical block maxima (for extremes) and threshold exceedances ( for

some high threshold) models and then making inferences for both models includ-

ing its parameters and return levels (quantiles) by ML and PWM methods. Finaly,

Section 3 is devoted to an application to the extreme rainfalls at Khemis -Miliana

station (Algeria).

3.2 Models and Methods

Two different methods are used to model extreme events, one is the Block Maxima

Method (BMM) which involves the Generalized Extreme Value (GEV) distribution

and another one is the Peak Over Threshold method which involves the Generalized

Pareto Distribution (GPD).

3.2.1 The Generalized extreme value distribution

Let X
l
, X2, ... be a sequence of independent random variables with common distri-

bution function F, and let

Mn =max(X
1
,X2, ...,Xn)
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Learning more about the (Mn) distribution would give substantial information

about the extreme values of (Xn).

The entire range of possible limit distributions forMn with adequate normaliza-

tion is given by the extremal types theorem (also called limit theorem of Fisher and

Tippet (1928)[69] and Gnedenko (1943)[78]).

A better analysis is offered by a reformulation of the models in the extremal types

theorem. It is straightforward to check that the Gumbel, Frechet and Weibull fami-

lies can be combined into a single family of models having distribution functions of

the form

G(z) = exp{−[1 + ξ(
z −µ
σ

)]−1/ξ} (3.1)

defined on the set {z : 1 + ξ(z − µ)/σ > 0}, where the parameters satisfy −∞ <

µ < ∞,σ > 0 and −∞ < ξ < ∞. This is the generalized extreme value (GEV) family

of distributions. The model has three parameters: a location parameter, µ; scale

parameter, σ ; and a shape parameter, ξ.

Suppose that data are blocked into sequences of observations of length n, for

some large value of n, generating a series of block maxima, Mn,1, ..., Mn,m, say, to

which the GEV distribution can be fitted. Often the blocks are chosen to correspond

to a time period of length one year, in which case n is the number of observations in

a year and the block maxima are annual maxima.

3.2.2 The Generalized Pareto Distribution

Suppose that F satisfies extremal types theorem, so that for large n, P{Mn ≤ z} ≈ G(z),

where

G(z) = exp{−[1 + ξ(
z −µ
σ

)]−1/ξ}

for some µ,σ > 0 and ξ. Then, for large enough u, the distribution function of

(X −u), conditional on X > u, is approximately

H(y) = 1− (1 +
ξy

σ̃
)−1/ξ (3.2)

defined on {y : y > 0 and 1 + ξy/σ̃ > 0}, where

σ̃ = σ + ξ(u −µ)

The family of distributions defined by Eq. 3.2 is called the generalized Pareto

family. The result above implies that if block maxima have approximating distri-

bution G, then threshold excesses have a corresponding approximate distribution



74

within the generalized Pareto family. Moreover, the parameters of the generalized

Pareto distribution of threshold excesses are uniquely determined by those of the

associated GEV distribution of block maxima.

3.2.3 Threshold Selection

Threshold choice is similar to the choice of block size in the block maxima method,

implying a balance between bias and variance. That is, too low a threshold is likely

to violate the asymptotic properties of the model, leading to bias; too high a thresh-

old will generate few excesses (insufficient data) with which the model can be esti-

mated, carrying out a high variance.

Whenever we are interested in large values, estimation of model parameters is

usually performed on the basis of the largest k+1 order statistics in the sample or on

the excesses over a high level u. The question subtracted in practical applications of

extreme value theory is the choice of either k or u. Such a choice can be either heuris-

tic(explorative, see [83]) or based on sample paths stability or on the minimization

of a mean squared error estimate as a function of k which highly sensitive to small

changes in the threshold, we can state for the latest one (not exhaustively):

• Smooth Hill estimator ([128])

• Kernel EVI estimators ([36])

• Semi-parametric PWM-EVI estimator ( [29] )

Among EVI estimators that are less sensitive to the choice of k and easy to use,

are Hill reduced-Bias (RB) estimators ([125] and [10]). For this purpose, we adopt

the two (graphical) methods provided by Coles [34]; one is an exploratory technique

carried out prior to model estimation; the other is an assessment of the stability

of parameter estimates, based on the fitting of models across a range of different

thresholds, for more details see [34]

3.2.4 Parameter Estimation

There are several numerical methods for the determination of the three parame-

ters µ, σ and ξ, but the most commonly described in the literature are maximum

likelihood (ML) and probability weighted moments (PWMs) solutions. We describe
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here the PWM method. The ML method is described in detail elsewhere (Davison

(1985) [41]; Smith (1986) [135]; Hosking and Wallis (1987) [92]; Davison and Smith

(1990) [40]; Wilks (1995) [156]). The PWM method goes back to Hosking, Wallis

and Wood [91] which is a competitor method to maximum likelihood for estimating

the parameters. Define PWM of order r by:

wr = E(XH r
θ(X)), r ∈N (3.3)

where Hθ is the GEV distribution and X has df Hθ with parameter θ = (ξ,µ,σ ).

Recall that for ξ ≥ 1, Hθ is regularly varying with index 1/ξ (see Embrecht [61]).

Hence w0 is infinite, therefore we restrict ourselves to the case ξ < 1. Define the

empirical analogue to 3.3,

ŵr(θ) =
∫ +∞

−∞
xH r

θ(x)dFn(x), r ∈N

where Fn is the empirical df corresponding to the data X
l
, X2, ... ,Xn. In order to

estimate θ we solve the equations:

wr(θ) = ŵr(θ), r = 0,1,2.

3.2.5 Return Level (Quantiles)

The return level is an interesting notion to determine the mean waiting time be-

tween extreme rainfalls. Estimates of extreme quantiles of the annual maximum dis-

tribution (BM approach) are then obtained by inverting Eq. 3.1:

xp =

 µ− σ
ξ

[
1− {− log(1− p)}−ξ

]
, f or ξ , 0

µ− σ log{− log(1− p)}, f or ξ = 0
(3.4)

where G(xp) = 1 − p. In common terminology, xp is the return level associated

with the return period 1/p, since to a reasonable degree of accuracy, the level xp

is expected to be exceeded on average once every 1/p years. More precisely, xp is

exceeded by the annual maximum in any particular year with probability p.

Suppose now the case of POT approach, let we have a Generalized Pareto distri-

bution with parameters σ and ξ as a suitable model for exceedances of a threshold

u by a variable X.

It follows that

P (X > x) = ζu[1 + ξ(
x −u
σ

)]−1/ξ



76

where ζu = P(X > u). Hence the level xm that is exceeded on average once every m

observations is the solution of

ζu[1 + ξ(
xm −u
σ

)]−1/ξ =
1
m

which yields to

xm = u +
σ
ξ

[(mζu)ξ − 1]−1/ξ

provided m is sufficiently large to ensure that xm > u, this all assumes that ξ , 0.

If ξ = 0, by the same procedure we obtain

xm = u + σ log(mζu)

again provided m is sufficiently large.

3.3 Application

3.3.1 Data description

In this section we will fit our data by the two models cited above. Our dataset

consists of the daily and annual maxima of rainfall from 1975 to 2006 registered in

Khemis-Miliana weather station, the unit of measurement is milimeter.

We focus our attention on the estimation of the index of extreme values (EVI), re-

turn levels and return periods. For the computer tool we used R software which con-

tains a large number of packages with several functions will be used and mentioned

to model the data extremes, such as evd, ismev, evir, POT, fExtremes,..., etc.

Gilleland et al.[76] give an excellent software review for extreme value analysis,

they describe and compare packages available in R with other software.

3.3.2 A preliminary data analysis

The results of a preliminary graphical and descriptive analysis are shown in Figure

3.1 and Table 3.1.
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Figure 3.1: Chronogram (top left); scatter plot (top right); histogram (bottom left)

and box-plot (bottom right))

n Min Max 1st Quart. Median Mean 3rd Quart. St Dev. Skew. Kurt.

11324 0 73.7 0 0 1.11 0 3.95 6.37 58.12

Table 3.1: Descriptive statistics

The boxplot, the histogram and the descriptives statistics, in particular the skew-

ness = 6.37 and the kurtosis = 58.12 indicate a heavier tail than the normal one.

3.3.3 Stationarity test

The stationarity was also studied by the Augmented Dickey–Fuller Test through the

function adf.test(), available in the package tseries, in our case the test=-19.20 and

p-value=0.01<0.05 so we accept the alternative hypothesis which allows us to admit

the stationarity of our statistical serie.

3.3.4 Modeling using Generalized Extreme Value (GEV) distribution

In this framework, we have considered the years as blocks of observations and have

picked the maximum values up in each block. So, we will use the maximum values

of each of 31 years. For the yearly maximum rainfalls, the skewness = 0.998 and the

kurtosis =2.265. Graphical analysis are shown in Figure 3.2.
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Figure 3.2: Time serie plot of Annual Maxima (top left); histogram

of Annual Maxima (top right); box-plot of Annual Maxima (bottom left) and Partial

auto-correlation function (bottom right)

The histogram, the boxplot and the skewness indicate a moderate positive asym-

metry. From the partial autocorrelation function (ACF), it seems reasonable to as-

sume that these data are not correlated.

Parameter estimation of GEVξ (ξ ∈R)

We use MLE and PWM to estimate the 3 parameters of GEV with giving its 95%

confidence intervals (see results in tables 3.2, 3.3 and figure 3.3.)

Shape parameter Location parameter Scale parameter

Method ξ̂ SE µ̂ SE σ̂ SE

MLE 0.21 0.18 30 1.81 8.55 1.47

PWM 0.14 30.10 9.19

Table 3.2: Parameter estimates of GEVξ
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Shape parameter ξ̂ Location parameter µ̂ Scale parameter σ̂

CI. Normal Approximation (-0.15;0.57) (26.45;33.55) (5.67;11.43)

CI. Log-Likelihood Profile (-0.10;0.64) (26.75;33.90) (6.17;12.09)

Table 3.3: 95% Confidence Intervals of GEVξ parameters

Figure 3.3: Profile log-Likelihood of

GEVξ parameters by MLE.

For our data, a plot of the log-likelihood is shown in Figure 3.3. Using approx-

imation to the sampling distribution for large sample sizes (see [34], Theorem 2.6,

p. 35), a 95% confidence intervals for 3 parameters are obtained by drawing a line

at a height of 0.5xc1,0.05 below the maximum of this graph, where c1,0.05 is the 95%

quantile of a χ2
1 distribution, and reading off the points of intersection. This leads

to a 95% confidence interval for ξ̂ of [−0.10,−0.64]. Compared with the previous

interval (Normal Approximation) of [−0.15,0.57] the profile likelihood interval is

almost similar in width, but is shifted to the right, corresponding to the skewness

observed in Figure. 3.3.

From Table 3.2, it is clear that the Shape parameter estimator is positive and it is

close to zero, which implies that the GEV distribution in this case study is suspected

to be of type Fréchet or Gumbel (see test below).
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Graphic Diagnostics of GEVξ (ξ ∈R)

Figure 3.4: Graphic diagnostic of GEVξ Model with MLE.

Figure 3.5: Graphic diagnostic of GEVξ Model with Lmoments (linear combination

of PWM)
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The various diagnostic plots for assessing the accuracy of the GEV model fitted to

the rainfall data are shown in Figures. 3.4 and 3.5 using MLE and Lmoments meth-

ods respectively. Both probability plot and quantile plot give the validity of the

fitted model : each set of plotted points is near-linear. The return level curve is con-

vex and has no finite bound as a consequence of the positive estimate of ξ, though

since the estimate is close to zero, the estimated curve is close to linear. Furthermore

the corresponding density estimate seems consistent with the empirical density of

the data. Consequently, all four diagnostic plots lend support to the fitted GEV

model.

Testing GEVξ vsGEV0 (Gumbel)

As the confidence interval of the shape parameter contains the value 0 (see table

(3.4)) the GEV0 is a candidate to be more adequate than GEVξ .To choose the best

distribution (between GEVξ and GEV0), the Likelihood-ratio test gives:

test α Chi square critical value df p-value

1.58 0.05 3.84 1 0.20

Table 3.4: Likelihood Ratio test (GEV0 vs GEVξ)

According to the table above, the test value or the deviance (1.58) is less than the

Chi square critical value which means that we suggest to accept thatGEV0 (Gumbel)

Model is a plausible reduction of theGEVξ Model. So we accept the null hypothesis,

that is the GEV0 (Gumbel) model is more appropriate than the GEVξ model, hence

we can continue modeling the rainfall at Khemis-Miliana using the GEV0 model.

Parameter estimation of GEV0 (GumbelModel)

Results are presented in Tables 3.5, 3.6 and graphics 3.6, 3.7

Location parameter Scale parameter

Method µ̂ SE σ̂ SE

MLE 31.03 1.79 9.50 1.41

Table 3.5: parameters estimation of GEV0.
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Location parameter µ̂ Scale parameter σ̂

CI. Normal Approximation (27.53;34.53) (6.73;12.26)

CI. Log-Likelihood Profile (27.51;34.75) (7.22;12.93)

Table 3.6: 95% Confidence Intervals of GEV0 parameters

Figure 3.6: Profile log-Likelihood of GEV0 parameters by MLE.

Graphic Diagnostics of GEV0

Figure 3.7: Graphic diagnostic of GEV0 parameters by MLE.
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Both GEVξ and GEV0 models have similar estimated return level curves, but the

confidence intervals are much wider for the GEVξ model, especially for long return

periods. This signifies that Gumbel model is preferable.

Return levels and return periods estimates

After model validation, we can estimate return level at selected return periods for

yearly maximum rainfalls. Table 3.7 shows the results, the 95% confidence intervals

are included. From Table 3.7, the return level estimates increases as the return

period increases because the matter is about rare events.

Selected period (year) 10 20 50 100

Return level (mm) 52.40 59.23 68.08 74.71

CI (44.38;60.39) (49.39;69.07) (55.78;80.37) (60.54;88.87)

Table 3.7: Return level estimation at selected return periods (GEV0 model).

Table 3.8 shows the converse for the highest recorded data,

Highest levels (mm) 73.7 63.6 59.9 56.7

Return period (year) 89.98 31.39 21.42 15.44

Table 3.8: Return periods estimation

3.3.5 Modeling using Generalized Pareto (GP) distribution

It is a method based on the approximation of the distribution of excesses to a thresh-

old by the Generalized Pareto Distribution.

Threshold selection

In a statistical framework, the choice of the threshold u is very important because it

induces great variability in the estimation of extreme quantiles and parameters of

the excesses distribution, it is determined graphically by the Mean Excess Plot. For

our data we suspect the thresholds u1 = 32.5 and u2 = 50.5. (see figure 3.8), and in
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order to confirm, we used the 2nd method ”select threshold by estimate the model at

a range of thresholds” (or parameter stability plot). According to the figure 3.8, the

selected threshold of u = 32.5mm seems reasonable.

Figure 3.8: Mean Exess Plot (left); Estimate model at a range of thresholds (right).

Comments

Mean Excess Plot The graph appears to curve from u = 0 to u = u1 = 32.5mm beyond which

it is approximately linear, but the approximate linearity is very clear after

the value u = u2 = 50.5mm. However, there are just 6 exceedances over the

threshold u2, too ew to make meaningful inferences.

Parameter Stability Plot Perturbations of parameter estimates are see to be small relative to sampling

errors (confidence intervals) beyond the threshold u1 = 32.5mm.

The next graph descibes the exceedances to the threshold selected.

Figure 3.9: Threshold exceedances (u = 32.5 mm)
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Parameter estimation of GPDξ (ξ ∈R)

We estimate GPD parameters ξ and σ with MLE and PWD methods.

Shape parameter Scale parameter

Method ξ̂ SE σ̂ SE

MLE 1.1×10−7 0.32 11.3 4.16

PWM 0.06 9.82

Table 3.9: Parameter estimates of GPDξ .

Shape parameter ξ̂ Scale parameter σ̂

CI. Normal Approximation (-0.64;0.64) (5.67;11.43)

CI. Log-Likelihood Profile (-0.27;0.13) (5.70;23.85)

Table 3.10: 95% Confidence Intervals of GPDξ parameters.

Figure 3.10: Profile log-Likelihood of GPDξ parameters by MLE.

The MLE therefore corresponds to an unlimited distribution (exponential distri-

bution) (as ξ ≈ 0) and a reasonably strong argument is that the confidence interval

contains the value 0, for confirmation, Likelihood ratio test is given by the table 3.11.
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test α Chi square ctrical value df p-value

-0.0069 0.05 3.84 1 1

Table 3.11: Likelihood Ratio test GPD0 vs GPDξ .

Graphic Diagnostic of GPDξ and GPD0 (Exponential distribution)

Figure 3.11: Graphic diagnostic of GPDξ by MLE
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Scale parameter

Method σ̂ SE

MLE 11.54 2.31

Table 3.12: Scale parameter estimation of GPD0

Figure 3.12: Graphic diagnostic of GPD0 by MLE.

Parameter estimation of GPD0 (Exponential Model)

Results are presented in Tables 3.12, 3.13

Scale parameter σ̂

CI. Normal Approximation (7.01;16.06)

CI. Log-Likelihood Profile (8.03;17.50)

Table 3.13: 95% Confidence Intervals of GPD0 parameter.
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Figure 3.13: Profile log-Likelihood of GPD0 parameters by MLE.

Return levels and return periods estimates

Return levels are estimated by MLE method for 10, 20, 50, and 100 years. The

return periods and the 95% confidence intervals are shown in table (3.14) below.

Selected period (year) 10 20 50 100

Return level 52.39 59.23 68.07 74.70

CI (44.39;60.39) (49.38;69.07) (55.78;80.37) (60.54;88.87)

Table 3.14: Return level estimation at selected return periods GPD0 model

Highest levels (mm) 73.7 63.6 59.9 56.7

Return period (year) 89.98 31.39 21.42 15.44

Table 3.15: Return periods estimation.

The corresponding return period estimate for the level 73.7mm is approximately

90years which means that the level 73.7mm will be exceeded once every 90years or

the probability that the extreme value 73.7mm will be observed is 1/90.
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3.3.6 Dependent Data Issue

The asymptotic results (GEV and GPD fitting) used in this application have assumed

a sequence of independent random variables. However in real world, temporal in-

dependence is usually an unrealistic hypothesis, so extreme value data present the

issue of dependence on covariate effects, short-term dependence and long-range

dependence, this last is negligible so far as the standard asymptotic limits are con-

cerned (the standard asymptotic limits still applied for yearly maxima) contrary to

Threshold Excesses method which needs to be adapted because the extremes have

some tendency to cluster, violating the assumption of independence among the in-

dividual excesses.

The most commonly used method for dealing with the problem of dependent

exceedances in the threshold exceedance model is declustering, it means a filtering

of the dependent observations to have a set of threshold excesses that are approxi-

mately independent.(for more details see [34]).

3.4 Conclusion

In our study, the maximum annual rainfall at Khemis-Miliana from 1975 to 2006

is modeled using the Extreme Value Distribution (GEV) to control and predict the

behavior of rainfall and using also the GPD approach. The maximum likelihood

and probability weighted moments methods are used to estimate the parameters of

the models. Both approaches has its advantages, the GPD distribution has a big set

of raw data because it uses all the maxima of the year (exceeding the threshold),

while the GEV distribution uses a single maximum rainfall per year.It was found

that the stationary Gumbel model (no trend) is more appropriate for the Khemis-

Miliana station. According to the results, the two methods provide almost the same

results; whether it is at the level of the estimation of the parameters of the models,

or at the level of estimates of return levels and periods, we can interpret this by the

absence of problems caused by autocorrelation and seasonality (non-stationarity),

these latter are usually overcome by the POT method.

We can, not only fit extreme rainfalls for one station by a GEV or GP distribution,

but also for several homogeneous regions (each region contains several stations) by

a single GEV or GP using L-moment method, which is so called: Regionalization of

Extreme Rainfalls.



Chapter 4

Estimating the Conditional Mean of

Heavy-Tailed Distribution under

Random Right censoring

Abstract

In this paper, we construct a new estimator of the mean of a heavy-tailed distri-

bution under right random censored data in presence of covariates is proposed by

combining the generalized Kaplan–Meier estimator before a threshold and a para-

metric model (GPD) which approximate the excesses over the threshold in order to

overcome the bad behaviour of K-M estimator in the heavy-tail of distribution, and

its asymptotic normality is established.

Keywords: Heavy-tailed distribution, Generalized Kaplan-Meier estimator, Gen-

eral Pareto Distribution (GPD), Random right censoring, conditional mean estimate.

AMS 2000 Subject Classifications

4.1 Introduction

Estimating the mean of heavy-tailed distributions F with tail index γ with com-

plete data and absence of covariates encountered infinite second order mean prob-

lem where the simple sample mean estimator have a nonnormal limit in this case

(see [66]. In order to overcome this problem, many authors gave contributions in

this context; L. Peng in [120] proposed an alternative estimator whose limiting dis-

tribution, under a second order condition, is normal for any γ < 1 by dividing the

mean into three parts. Under the same condition, L. Peng in [121] interested in the

90
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same subject, his idea was to estimate the tail part parametrically and the middle

part nonparametrically. Johansson [96] suggested, like L. Peng [121], a procedure

that separated tail data which starting at some large level and approximated exesses

over this level by GPD distribution in parametric framework. In case of censored

data, Sander [131] obtained estimators for restricted mean untill a fixed finite time

and indicated that is extremely difficult to obtain the distribution theory for mean

life time estimator. Later, V. Susarla and J. Van Ryzin [145] gave a class of estimators

of the mean survival time by replacing infinite time by time’s sequence increasing

to infinity. W. Stute [140] introduced the CLT which is a powerfull tool to establish

asymptotic behaviours of mean life time estimator but this latter, as mentioned in

Stute ([140], p.249), is slightly non-robust under right heavy censoring, in this case

the KM estimator does not vanish to zero in the support tail. Our contribution takes

place in case of censored data and presence of covariates where we try to combinate

above works by proposing an alternative mean estimator ensuring the asymptotic

normality property.

Let (Xi ;Yi), i = 1, ...,n be independent copies of the random pair (X,Y ) where

Y is a non-negative random variable and X ∈ X (with X some bounded set of Rp)

is a p-dimensional covariate. We assume that Y can be right-censored by a non-

negative random variable C. Thus we really observe independent triplets (Xi ,δi ,Zi),

i = 1, ...,n, where Zi = min(Yi ,Ci), δi = 1{Y i≤Ci } and 1A is the indicator function of the

event A. The random variable C is defined on the same probability space (Ω,F,P)

as Y . We assume that C1, ...,Cn are independent of each other and that Y and C

are independent given X. Let F(.|x) and G(.|x) denote the conditional cumulative

distribution functions of Y and C given X = x, respectively. Let also F̄(.|x) = 1−F(.|x)

and Ḡ(.|x) = 1−G(.|x) be the conditional survival functions of Y and C given X = x.

In this paper, we focus on heavy tails. Precisely, we assume that the conditional

survival functions of Y and C given X = x are

F̄(u|x) = c1(x)u−1/γ1(x)(1 +u−δ1L1(u|x))

and

Ḡ(.|x) = c2(x)u−1/γ2(x)(1 +u−δ2L2(u|x)),

where γ1(x) and γ2(x) are unknown positive continuous functions of the covariate

x and for x fixed, L1(.|x) and L2(.|x) are slowly varying functions at infinity. This

amounts to saying that F(.|x) and G(.|x) are regularly varying functions at infinity
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with index −1/γ1(x) and −1/γ2(x) respectively. Condition (C1) also amounts to as-

suming that the conditional distributions of Y and C given X = x are in the Fréchet

maximum domain of attraction. In what follows, the functions γ1(.) and γ2(.) are

referred to as conditional extreme-value index functions.

Remark 4.1 By conditional independence of Y and C, then by straightforward proof,

the conditional cumulative distribution function H(.|x) of Z given X = x is also heavy-

tailed, with conditional extreme-value index

γ(x) = γ1(x)γ2(x)/(γ1(x) +γ2(x)).

Here, Z1:n ≤···≤ Zn:n are the ordered Z ′i s, and δ[i;n] denote the indicator associated to Zi:n,

that is, the ith concomitant. Statistical properties of FKMn are well known (see, e.g., [4]). It

is clearly seen from equation.(4.1) that the Kaplan–Meier estimator is a step function with

jump points located at the uncensored observations, the jump size being a nondecreasing

function of the Z − rank. In the uncensored case, FKMn reduces to the ordinary empirical

cdf of the sample.

Let x ∈ κ, so we take only observations (δi ,Zi) such that X = x, and denote mxn
as the number of such observations. Let Zx(1), ...,Z

x
(mxn) be the ordered values of Z for

these observations and let δx(1), ...,δ
x
(mxn) be the corresponding δ′s (that is, δx(i) = δxj if

Zx(i) = Zj).

An efficient non-parametric estimator of the tail distribution of Y given X =

x based on the sample (Zx(1),δ
x
(1)), ..., (Z

x
(mxn),δ

x
(mxn)), is given by the time-honoured

Kaplan-Meier ([97]) product-limit estimator defined by:

̂̄FKMmxn (y|x) = 1− F̂KMmxn (y|x) =
mxn∏
i=1

1−
δx(i)

mxn − i + 1

1{
Zx(i)≤y

}

=
mxn∏
i=1

(
mxn − i

mxn − i + 1

)δx(i)1{
Zx(i)≤y

}
(4.1)

If all δ′s equal 1, i.e., if there is no censorship, then ̂̄FKMmxn = ̂̄Fmxn .
4.2 Construction of estimate

The aim of this paper is to propose an asymptoticaly normal estimator for the mean

of Y given X = x (E(Y |X = x))
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The standard estimate of E(Y |X = x) is

µ(x) =

∞∫
0

F̄n(y|x)dy

building on this, we propose an estimate of the form ( for incovenients of KM esti-

mate, see Reiss and Thomas [125] and M. S. Pepe and T. R.Fleming [122])

Ê(Y |X = x) := µ̂KP (x) + µ̂T (x) :=

un(x)∫
0

̂̄FKPmxn (y|x)dy +

∞∫
un(x)

ydF̂n(y|x),

where µ̂T is the part of Ê(Y |X = x) originating from the tail of distribution. The tail

is assumed to start at some level un(x), which in the analysis will be assumed to tend

to infinity. Next, we will each term separately.

In order to obtain µ̂KP (x), we use Kaplan-Meier (K-M) integrals introduced by W.

Stute ([143], [141], [142]) by putting the function ϕ equal to identity, which yield

to:

µ̂KP (x) =

un(x)∫
0

yd
[
FKPmxn (y|x)

]
=
mn,un(x)∑
i=1

Wi,mn,un(x)
Zx(i), (4.2)

(we can use 1{
Zx(i)≤un(x)

}) and summing till mxn), where the weight attached to Zx(i)
equals

Wi,mn,un(x)
=

δx(i)
mxn,un(x) − i + 1

mxn,un(x)−1∏
j=1

(
mxn − j

mxn − j + 1

)δx(j)
.

(Beirlant and goegebeur ([13])) To estimate mean over threshold un(x), we will first

introduce conditional distribution of the excesses over the threshold un(x) and then

approximating it by GPD distribution. Let

Fun(x)(z|x) = P (Y −un(x) ≤ z|Y ≥ un(x),X = x)

be conditional distribution of the excesses over the threshold un(x). By definition

F̄un(x)(z|x) =
F̄un(x)(z+un(x)|x)

F̄n(un(x)|x)
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So, one can write

µ̂T (x) :=

∞∫
un(x)

̂̄Fn(y|x)dy

=

∞∫
un(x)

̂̄Fn(un(x)|x)̂F̄un(x)(y −un(x)|x)dy

= ̂̄Fn(un(x)|x)

∞∫
un(x)

̂̄Fun(x)(y −un(x)|x)dy

︸                         ︷︷                         ︸
q

În(x)

By generalized Kaplan-Meier estimate, we have

̂̄Fn(un(x)|x) =
n∏
i=1

1− δ
x
(i)1

{
Zx(i)≤un(x)

}
n− i + 1


It remains the approximation of Fun(x)(.|x) by GPD which has the form

Gγ1(x),σ1(x)(z|x) = 1−
(
1 +

γ1(x)
σ1(x)

z

)− 1
γ1(x)

.

Now results given by Balkema and de Haan ([9]) and Pickands ([123]) ensure, for

large values of un(x), Fun(x)(z) ≈ Gγ1(x),σ1(x)(z|x) in the sense that

lim
un(x)↗zF(x)

sup
0<z<zF(x)−un(x)

∣∣∣Fun(x)(z|x)−Gγ1(x),σ1(x)(z|x)
∣∣∣ = 0

where zF(x) is the right end point of F(.|x).

Therefore integral În(x) can be written as

În(x) =

∞∫
un(x)

Ḡγ1(x),σ1(x)(y −un(x)|x)dy

=

∞∫
un(x)

y
1

σ̂1(x)

[
1 +

γ̂1(x)
σ̂1(x)

(y −un(x)
]− 1

γ̂1(x)−1

dy.

By simple calculus, it yields (% it remains discussion of integral’s convergence ac-

cording to γ1(x) values%)

În(x) = un(x) +
σ̂1(x)

1− γ̂1(x)
.
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We are now able to express our estimte µ̂T (x) by

µ̂T (x) =
n∏
i=1

1− δ
x
(i)1

{
Zx(i)≤un(x)

}
n− i + 1


[
un(x) +

σ̂1(x)
1− γ̂1(x)

]
. (4.3)

The next step is to approximate (γ̂1(x), σ̂1(x)) using P.O.T. method by adapting like-

lihood function to censorship (see Ndao [114]), Toulemonde ([147]) and Beirlant et

al. ([16])). for this purpose, we will use approach proposed by beirlant ([16]) which

consists of solving the ML-equations based on a one-step Newton-Raphson approxi-

mation (as discussed, for instance, in Lehmann [104]) and this to avoid the difficulty

of the asymptotic normality in the case of censoring. According to Beirlant ([16]),

this approach consists to adapt the likelihood to this purpose. This latter method

relies on the results given by Balkema and de Haan ([9]) and Pickands ([123]), for-

mally, let Exi = Zxi − u(x), given Zxi > u, over a threshold u when u→ τF, in this case

the adapted likelihood function is the following: (cf. Andersen et al. [4], p. 411)

L(γ1(x),σ1(x)) =
Nu(x)∏
i=1

[
g
γ1(x),σ1(x)

(Exi |x)
]δx(i) [1−G

γ1(x),σ1(x)
(Exi |x)

]1−δx(i) ,
where 1−G

γ1(x),σ1(x)
(z|x) =

(
1 + γ1(x)

σ1(x)z
)− 1

γ1(x) and g
γ1(x),σ1(x)

is the associated density.

Beirlant ([13], [16]) and Toulemonde ([147]) defined new estimators adapted to

censoring for (γ1(x),σ1(x)) denoted in the sequel by (γ̂ (c,os)
Zx,u(x)(x), σ̂ (c,os)

Zx,u(x)(x)) called the

one-step estimators, furthermore they have established its asymptotic normality af-

ter suitable normalization and have showed that at finite distance these estimators

behave in a similar manner to those of maximum likelihood, however asymptotic

normality of these latter is still an open problem. We are now ready to give an

alternative estimate, M̂(x), of E(Y |X = x) :=M, as follow:

M̂(x) : =
mxn,u∑
i=1

δx(i)
mxn,u − i + 1

mxn,u−1∏
j=1

(
mxn − j

mxn − j + 1

)δx(j)
Zx(i)1

{
Zx(i)≤u

}+

+
n∏
i=1

1− δ
x
(i)1

{
Zx(i)≤u

}
n− i + 1


u(x) +

σ̂
(c,os)
Zx,u (x)

1− γ̂ (c,os)
Zx,u (x)

 , (4.4)

where, by using de Haan and Ferreira ([45], Theorem 1.2.5, p.21), σ̂ (c,os)
Zx,u(x)(x) can be

estimated by

σ̂
(c,os)
Zx,u(x)(x) = u(x)γ̂ (c,os)

Zx,u (x).
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4.3 Main results

4.3.1 Assumptions

(C1) F̄(y|x) = c1(x)y−1/γ1(x)(1+y−δ1L1(y|x)) and Ḡ(y|x) = c2(x)y−1/γ2(x)(1+y−δ2L2(y|x)),

where γ1(x) and γ2(x) are unknown positive continuous functions of the co-

variate x and for x fixed, L1(.|x) and L2(.|x) are slowly varying functions at

infinity, ci(x)andδi f ori = 1,2 are constants.

(C2) F(.|x) and G(.|x) are continuous distributions

(C3) F̄(.|x) and Ḡ(.|x) are Lipschitzian functions and their first derivatives exist.

(C4) Conditional first order conditions: We denote by UF(.|x) (resp.by UG(.|x))(supposed

continuous) the tail quantile function of F (resp. of G) , that is UF(z|x) = F←(1−
1
z |x) = inf

{
y : F(y|x) ≥ 1− 1

z

}
(resp. UG(z|x) = G←(1−1

z |x) = inf
{
y : G(y|x) ≥ 1− 1

z

}
).

We assume that there exists two conditional positive auxiliary functions, aF

and aG, such that

lim
z→∞

UF(zs|x)−UF(z|x)
aF(z|x)

=
∫ s

1
υγ1(x)−1dυ =: hγ1(x)(s|x) for s > 0

lim
z→∞

UG(zs|x)−UG(z|x)
aG(z|x)

=
∫ s

1
υγ2(x)−1dυ =: hγ2(x)(s|x) for s > 0

(C5) Conditional second order conditions:

UF(zs|x)−UF(z|x)
aF(z|x)

− hγ1(x)(s|x) ∼ a2,F(z|x)kF(s|x), z→∞

UG(zs|x)−UG(z|x)
aG(z|x)

− hγ2(x)(s|x) ∼ a2,G(z|x)kG(s|x), z→∞

where a2,F and a2,G→ 0 are regulary varying functions with respective indices

ρ1(x) ≤ 0 and ρ2(x) ≤ 0, and

kF(s|x) = AFhγ1(x)+ρ1(x)(s|x) + cF

∫ s

1
tγ1(x)−1hρ1(x)(t|x)dt

kG(s|x) = AGhγ2(x)+ρ2(x)(s|x) + cG

∫ s

1
tγ2(x)−1hρ2(x)(t|x)dt

for suitable constants AF , AG, cF and cG..
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Condition on bias √
N x
uB1,u(γ1(x),σ1(x)) →

u→∞
0√

N x
uB2,u(γ1(x),σ1(x)) →

u→∞
0

with

B1,u(γ1(x),σ1(x)) =
1

γ1(x)σ1(x)
1

H(u|x)

∫ ∞
u

H(z|x)

1 + γ1(x)
σ1(x) (z −u)

dz

− 1
γ1(x)σ1(x)

1

H(u|x)

∫ ∞
u

H(z|x)

(1 + γ1(x)
σ1(x) (z −u))2

dz

− 1
σ1(x)

1

H(u|x)

∫ ∞
u

H
u
(z|x)

(1 + γ1(x)
σ1(x) (z −u))2

dz

B2,u(γ1(x),σ1(x)) = −H
u
(u|x)

H(u|x)

1
σ1(x)

1

H(u|x)

∫ ∞
u

H(z|x)

(1 + γ1(x)
σ1(x) (z −u))2

dz

+
1

σ1(x)
1

H(u|x)

∫ ∞
u

H
u
(z|x)

(1 + γ1(x)
σ1(x) (z −u))2

dz

where Hu(s|x) = P (Zx > s,δx = 1|X = x) called the conditional sub-distribution of

noncensored observations.

Theorem 4.1 Suppose the conditions (C1)-(C6) hold.√
mn(x)

αn(x)
√
kn(x)

(M̂(x)−M(x))
d−→N (0,1),

where

α2
n(x) = V ar(

∫ u

0
zdF(z|x))

F(.|x) is a continuous mean-zero Gaussian process (see (4.5) and (4.6))

kn(x) = 1 +

(
H̄(u|x)

)2 γ(x)
γ1(x)−1

α2
n(x)

× γ(x)
γ1(x)

(
u +

σ1(x)
1−γ1(x)

)2

+
σ2

1 (x) (1 +γ(x))2

(1−γ1(x))4

(
γ1(x)
γ(x)

)3

+
2σ2

1 (x) (1 +γ(x))

(1−γ1(x))2

γ1(x)
γ(x)


=O+(1).
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4.3.2 Proofs of main results

First we present some results which will be used in the proof of the Theorem 4.1.

Breslow and Crowly ([27]) have shown that

Fmn(x)(z|x) :=
√
mn(x)

(
Fmn(x)(z|x)−F(z|x)

) weakly
→ F(z|x),0 ≤ z ≤ u, (4.5)

where F(.|x) is a continuous mean-zero Gaussian process with covariance

Γx(t, s) = F̄(t|x)F̄(s|x)
∫ s∧t

0

dHu(y|x)

(1−H(y|x))2 (4.6)

Proposition 4.1 Under conditions (C1) and (C3) and let x ∈ κ and u→∞. Then

F̄(u|x) = P (X1 > u|x) =O+(1),

and

α2
n(x) = V ar(

∫ u

0
zdF(z|x)) =O+(u4+1/γ2(x)+(1/γ2(x)−1/γ1(x))1{γ1(x)≥γ2(x)}),

where εn = O+(an) denotes a sequence such that εn/an is bounded away from zero and

infinity.

Proof of the proposition 4.1.We have

F̄(y|x) = c1(x)y−1/γ1(x)(1 + y−δ1L1(y|x)) = c1(x)y−1/γ1(x)(1 + o(1))

since y−δ1L1(y|x) is non-increasing and L1(y|x) is locally bounded in [y0,∞) for some

y0 ≥ 0. So one can deduce that

F̄(y|x) = y−1/γ1(x)O+(1).

According to Sander ([131], Corollary 1, p.7) or Escobar-Bach ([63], Theorem 4, p.7);

α2
n(x) =

∫ u

0

∫ u

0
std


F̄(t|x)F̄(s|x)

∫ s

0

dHu(y|x)

(1−H(y|x))2︸                               ︷︷                               ︸
Γx(t,s)


;s ≤ t.

Furthermore, under condition (C1) and by Ndao et al. ([116], proof of Lemma A.1.,

p13) we can write

H̄u(y|x) ∼
(
1 +

γ1(x)
γ2(x)

)−1

H̄(y|x)
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which yields to

Γx(t, s) ∼
γ1(x)
γ2(x)

F̄(t|x)
Ḡ(s|x)

Assuming that condition (C3) is satisfied, result follows from straightforward cal-

culations.

Theorem 4.4.1 in Ndao ([114], p.126, proof p.129) gives us the asymptotic dis-

tribution of the tail parameters (γ̂ (c,os)
Zx,u(x)(x), σ̂ (c,os)

Zx,u(x)(x)) as

√
N x
u

γ̂
(c,os)
Zx,u(x)(x)−γ1(x)

σ̂
(c,os)
Zx,u(x)(x)− σ1(x)

 d−→N


0

0

 ,Σ
 ,

where N x
u is the number of absolute excesses over u given the covariable value x,

and

Σ =


(
γ1(x)
γ(x)

)3
(1 +γ(x))2 −

(
γ1(x)
γ(x)

)2
(1 +γ(x))σ1(x)

−
(
γ1(x)
γ(x)

)2
(1 +γ(x))σ1(x) 2γ1(x)

γ(x) (1 +γ(x))σ2
1 (x)

 , (4.7)

under the assumptions (C4-C6).

The distribution of µ̂KP (x) is given by the following lemma:

Lemma 4.1 Let µ(x) =
∫ u

0
zdF(z|x) and α2

n(x) = V ar(
∫ u

0
zdF(z|x)), with un =O+(nαγ1(x))

for some α ∈ (0,1), where δ > 0. Then√
mn(x)
αn(x)

(µ̂KP (x)−µ)
d−→N (0,1), as n→∞,

or, equivalently,

E

exp

it
√
mn(x)
αn(x)

(µ̂KP (x)−µ)


→ e−t

2/2, as n→∞,

where µ̂KP (x) is defined in equation (4.2) .

Proof of Lemma 4.1.We will proceed as in Sander ([131]). We have√
mn(x)(µ̂KP (x)−µ(x)) =

∫ un

0
zdFmn(x)(z|x),

by integration by parts,√
mn(x)(µ̂KP (x)−µ(x)) = unFmn(x)(z|x)−

∫ un

0
Fmn(x)(z|x)dz.

By equation (4.5) and continuous mapping theorem (Billingsly [23]),

unFmn(x)(z|x)
weakly
→ unF(z|x)
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and ∫ un

0
Fmn(x)(z|x)dz

weakly
→

∫ un

0
F(z|x)dz

so √
mn(x)(µ̂KP (x)−µ(x))

d→ unF(z|x)−
∫ un

0
F(z|x)dz

Corollary1 in Sander ([131], p.7) states that

√
mn(x)(µ̂KP (x)−µ(x))

d→N (0,αn(x)), as n→∞,

where, (see proof of proposition 1):

α2
n(x) =

∫ u

0

∫ u

0
stdΓx(t, s);s ≤ t.

Now let us examine the joint distribution of the parameter estimates.

Lemma 4.2 (Joint distributon) un = O+(nαγ1(x)) for some α ∈ (0,1), where δ > 0 and

γ1(x) ∈ (0,1). Then

φmn(x)(t1, t2, t3, t4) = E


exp



it1

√
mn(x)
αn(x) (µ̂KP (x)−µ)

+i
√
N x
u (t2, t3)

(
Σ−1

)1/2

γ̂
(c,os)
Zx,u(x)(x)−γ1(x)

σ̂
(c,os)
Zx,u(x)(x)− σ1(x)


+it4

√
mn(x)

(
F̄mn(x)(un|x)− F̄(un|x)

)




→ exp

{
−1

2
(t21 + t22 + t23 + t24)

}
as n→∞,

where Σ is given by equation (4.7) , µ(x) =
∫ u

0
zdF(z|x), α2

n(x) = V ar(
∫ u

0
zdF(z|x)) and

F̄mn(x)(un|x) =
mn(x)∏
i=1

1− δ
x
(i)1

{
Zx(i)≤un(x)

}
n− i + 1

 .
Proof.By Lemma 4.1, equation (4.5) and Theorem 4.4.1 in Ndao ([114], p.126),

the claim follows using the same techiques as in Johansson ([96], proof of (Lemma

A.2, p.107).

We are now able to prove Theorem 4.1.

Proof of Theorem 4.1.Equation (4.4) states that

M̂ −M = µ̂KP (x)−µ(x) + µ̂T (x)−µT (x)
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where

µT (x) =

∞∫
un(x)

ydF(y|x) = −
∞∫

un(x)

ydF̄(y|x)

= unF̄(un|x) + F̄(un|x)

∞∫
0

F̄un(x)(z|x)dz

= unF̄(un|x) + F̄(un|x)

∞∫
un(x)

F̄(y|x)
F̄(un|x)

dy (4.8)

Furthermore

F̄(y|x) = exp
{
−
∫ y

0

dHu(s|x)
1−H(s|x)

}
By Theorem 1.2.2 in de Haan and Ferreira (2006) and Proof of Lemma 6.1 in Ndao

([116], p.13),

F̄(y|x) ∼
(
H̄(y|x)

)γ/γ1
when y is large. (4.9)

Proposition 1.5.7 in Bingham ([25], p.26) allows us to conclude that

(
H̄(y|x)

)γ/γ1 ∼ y−1/γ1(x) + y−1/γ1(x)−δ3L3(y|x); (4.10)

where L3(.|x) are slowly varying functions at infinity and δ3 > 0. So by substuting

(4.9) and (4.10) in (4.8), we get

µT (x) ∼ unF̄(un|x) + F̄(un|x)
u

1/γ1(x)
n

1 +u−δ3
n L3(un|x)

∞∫
un(x)

(
y−1/γ1(x) + y−1/γ1(x)−δ3L3(y|x)

)
dy.

Now assuming that L3(.|x) is locally bounded in [x0,∞) for some x0 ≥ 0, then by

Karamata’s Theorem (see Resnick ([127], p.26))

µT (x) ∼ F̄(un|x)
(
un +

σ1(x)
1−γ1(x)

)
+R1(x)

where

R1(x) =
F̄(un|x)σ1(x)

1−γ1(x)
δ3(x)γ1(x)

1−γ1(x) + δ3(x)γ1(x)
u−δ3
n L3(un|x)

1 +u−δ3
n L3(un|x)
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Using Taylor expansion, we find that

M̂ −M ∼ µ̂KP (x)−µ(x) +
(
F̄mn(x)(un|x)− F̄(un|x)

)(
un(x) +

σ̂1(x)
1− γ̂1(x)

)
+ F̄(un|x)

(
σ̂1(x)

1− γ̂1(x)
− σ1(x)

1−γ1(x)

)
−R1(x)

= µ̂KP (x)−µ(x) +
(
F̄mn(x)(un|x)− F̄(un|x)

)(
un(x) +

σ1(x)
1−γ1(x)

+R2(x,1)
)

+ F̄(un|x)
(

σ1(x)

(1−γ1(x))2 (γ̂1(x)−γ1(x)) +
σ1(x)− σ̂1(x)

1−γ1(x)
+R2(x,2)

)
−R1(x)

where

R2(x, t)= σ1(x)
∞∑
k=t

(γ̂1(x)−γ1(x))k

(1−γ1(x))k+1

+
∞∑
k=t

1

(1−γ1(x))k
(σ1(x)− σ̂1(x)) (γ̂1(x)−γ1(x))k−1 .

Multiplying by
√
mn(x)
αn(x) and using Proposition 4.1 and Lemma 4.2 in addition of con-

tinuous mapping theorem, we can write√
mn(x)
αn(x)

(
M̂ −M

)
=

√
mn(x)
αn(x)

(µ̂KP (x)−µ(x))

+

√
mn(x)
αn(x)

(
un(x) +

σ1(x)
1−γ1(x)

)(
F̄mn(x)(un|x)− F̄(un|x)

)
+

√
mn(x)F̄(un|x)σ1(x)

αn(x) (1−γ1(x))2 (γ̂1(x)−γ1(x))

+

√
mn(x)F̄(un|x)

αn(x) (1−γ1(x))
(σ1(x)− σ̂1(x)) + oP (1).

Therefore

V ar

√mn(x)
αn(x)

(
M̂ −M

)
≈ 1+

(
H̄(u|x)

)2 γ(x)
γ1(x)−1

α2
n(x)

× γ(x)
γ1(x)

(
u +

σ1(x)
1−γ1(x)

)2

+
σ2

1 (x) (1 +γ(x))2

(1−γ1(x))4

(
γ1(x)
γ(x)

)3

+
2σ2

1 (x) (1 +γ(x))

(1−γ1(x))2

γ1(x)
γ(x)


= kn(x),

where kn(x) =O+(1) (see Proposition 4.1).

We wish to warmly thank the Algerian Directorate General of Scientific Research

and Technological Development for their support and contribution to this work.



Conclusion and Perspectives

Two main problems relating to the univariate theory of extreme values and extreme

values analysis are addressed in this thesis. Before getting to the heart of the matter,

the essential concepts for understanding our work is presented in Chapter 1, con-

cepts that cover different key notions on extreme value theory in the simple case;

i.e. complete data and absence of covariates.

In Chapter 2, we recalled some survival analysis notions namely censorship notion,

Kaplan-Meier estimator and its generalized version. Also we gave a review of con-

ditional extreme quantiles and conditional extreme value index estimators in case

of right random censoring and its asymptotic behaviors that exist in literature up to

now.

Chapter 3 is the main practical topic in this thesis, it is about the field of statistical

analysis of extreme values (EVA) applied to hydrology domain , more especially, to

rainfalls. In this study, we found the most adequate distributions that fit rainfalls in

Khemis-Miliana region recorded between 1975 and 2006, we used the two existent

methods, namely Generalized Extreme Value (GEV) distribution and Generalized

Pareto (GP) distribution. We concluded this chapter by deriving the most impor-

tant estimates, used to overcome risk of drought, called T-years return levels for

different periods using both mentioned models.

Finally, in Chapter 4, we proposed a new estimator of the mean of a heavy-tailed

distribution under right random censored data in presence of fixed covariates by

combining the generalized KaplanMeier estimator before a threshold and a para-

metric model (GPD) which approximate the excesses over the threshold in order to

overcome the bad behavior of K-M estimator in the heavy-tail of distribution, and

its asymptotic normality is established.

This thesis offers interesting perspectives from a point of view both theoretical and

practical.

In our future research we will try first to apply our estimate in real-world after
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testing its performance by simulation. Secondly, an open problem is to construct an

estimator of the mean of a heavy-tailed distribution under right random censored

data where the covariate is random and to establish its asymptotic behaviors.

In practical part, we will use recent estimators to modeling our rainfall data in case

of censorship geographical coordinates as covariates.
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tial representations of log-spacings of extreme order statistics. Extremes,

5(2):157–180, 2002.

[12] Jan Beirlant, Goedele Dierckx, and Armelle Guillou. Bias-reduced estimators

for bivariate tail modelling. Insurance: Mathematics and Economics, 49(1):18–

26, 2011.

[13] Jan Beirlant and Yuri Goegebeur. Local polynomial maximum likelihood

estimation for pareto-type distributions. Journal of Multivariate Analysis,

89(1):97–118, 2004.

[14] Jan Beirlant, Yuri Goegebeur, Johan Segers, and Jozef L Teugels. Statistics of

extremes: theory and applications. John Wiley & Sons, 2006.

[15] Jan Beirlant, Armelle Guillou, Goedele Dierckx, and Amélie Fils-Villetard.
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Mathématique, 48(68):169–180, 1990.

[25] Nicholas H Bingham, Charles M Goldie, and Jef L Teugels. Regular variation.

Number 27. Cambridge university press, 1987.

[26] B Brahimi, D Meraghni, and A Necir. On the asymptotic normality of hill’s es-

timator of the tail index under random censoring. Preprint: arXiv-1302.1666,

page 44, 2013.

[27] Norman Breslow and John Crowley. A large sample study of the life table and

product limit estimates under random censorship. The Annals of statistics,

pages 437–453, 1974.

[28] Norman E Breslow. Contribution to discussion of paper by dr cox. J. Roy.

Statist. Soc., Ser. B, 34:216–217, 1972.

[29] Frederico Caeiro and M Ivette Gomes. Semi-parametric tail inference through

probability-weighted moments. Journal of statistical planning and inference,

141(2):937–950, 2011.

[30] E Castillo. Extreme value theory in engineering. aca. Press, New York, 1988.

[31] Enrique Castillo and Ali S Hadi. Fitting the generalized pareto distribution to

data. Journal of the American Statistical Association, 92(440):1609–1620, 1997.



108

[32] B Chandrasekar, A Childs, and N Balakrishnan. Exact likelihood inference

for the exponential distribution under generalized type-i and type-ii hybrid

censoring. Naval Research Logistics (NRL), 51(7):994–1004, 2004.

[33] A Childs, B Chandrasekar, N Balakrishnan, and D Kundu. Exact likeli-

hood inference based on type-i and type-ii hybrid censored samples from

the exponential distribution. Annals of the Institute of Statistical Mathemat-

ics, 55(2):319–330, 2003.

[34] Stuart Coles, Joanna Bawa, Lesley Trenner, and Pat Dorazio. An introduction

to statistical modeling of extreme values, volume 208. Springer, 2001.

[35] Stuart Coles and Jonathan Tawn. Bayesian modelling of extreme surges on the

uk east coast. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 363(1831):1387–1406, 2005.

[36] Sandor Csorgo, Paul Deheuvels, and David Mason. Kernel estimates of the

tail index of a distribution. The Annals of Statistics, pages 1050–1077, 1985.
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[150] Ingrid Van Keilegom and Noël Veraverbeke. Estimation and bootstrap with

censored data in fixed design nonparametric regression. Annals of the Institute

of Statistical Mathematics, 49(3):467–491, 1997.
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