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 الملخص 

المتعلقة   1928 عام في Tippettو   Fisher عليها حصل التي الرئيسية النتيجة

  القيمة نظرية أن فكرة أظهرت و أثبتت القصوى للعينة الممكنة الحد قوانين بشأن

  المركزي الحد  نظرية  عن تمامًا ومختلف ، ما حد إلى خاصًا شيئاً كانت المتطرفة

 . الكلاسيكية

قياس عدم  ل  ر شيوعاالأكث في هذه الأطروحة ، قمنا بتعريف ودراسة أحد المؤشرات 

ِّرًا   كما حاولنا بناء،  Giniالمساواة في دخول رأس المال ، والمعروف بمؤشر  مُقد 

عندما تكون البيانات  صوصاخ لمؤشر جيني في حالة التوزيعات ذات الذيل الثقيل ،  

 خاضعة للرقابة.

  ،  الثقيل الذيل توزيعات ، Gini  مؤشر ،  المتطرف مؤشرال: المفتاحية الكلمات

  الرقابة  ، الخسارة توزيعات  ، Kaplan-Meier مقدر  ، المساواة عدم مقاييس

 . العشوائية

 

Le résumé 

Le principal résultat obtenu par Fisher et Tippett en 1928 sur les lois 

limites possibles du maximum d'échantillon a apparemment créé l'idée 

que la théorie des valeurs extrêmes était quelque chose d'assez spécial, 

très différent de la théorie de la limite centrale classique. 

Dans cette thèse, nous définissons et étudions l'un des indices les plus 

populaires qui mesure l'inégalité des revenus du capital, connu par 

l'indice de Gini, nous construisons un estimateur de l'indice de Gini dans 

le cas des distributions à queue lourde, surtout lorsque les données sont 

censurées. 

Mots-clés : Indice extrême, indice de Gini, distributions à queue lourde, 

mesures d'inégalité, estimateur de Kaplan-Meier, distributions de pertes, 

censure aléatoire 



Abstract

The main result obtained by Fisher and Tippett in 1928 on the possible limit laws

of the sample maximum apparently created the idea that the extreme value theory

was something rather special, very different from the classical central limit theory.

In this thesis, we define and study one of the most popular index which measure

the inequality of capital incomes, known by Gini index, we construct an estimator

for the Gini index in case of the heavy-tailed distributions, specially when data are

censored.

Key-Words: Extreme index, Gini index, heavy tailed distributions, inequality

measures, Kaplan-Meier estimator, loss distributions, random censoring.
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Notations and Abbreviations

The following notation will be used throughout the thesis:

r.v : random variable.

i.i.d : Independent and identically distributed.

i.e : in other words.

e.g : for example.

Xn : arithmitic mean.

Sn : arithmetic sum.

σ2 : variance.

F : cumulative distribution function (cdf).

F−1 : the inverse function.

Fn : empirical distribution function.

f : probability distribution function (pdf).

Q : quantile function.
p
→ : convergence in probability.
L→ : convergence in law.
a.s→ : almost sure convergence.

(Ω;A;P) : probability space.

(X1,n,X2,n, ...,Xn,n) : order statistics of n i.i.d observations from a r.v X.

X1,n : minimum of (X1, ...,Xn).

Xn,n : maximum of (X1, ...,Xn).

Φ(x) : the cdf of the standard Gaussian law.

CLT : Central Limit Theorem.

EV T : Extreme Value Theory.

EV I : Extreme Value Index.

GEV : Generalized Extreme Value.

GPD : Generalized Pareto distribution.

Gγ,σ : generalized Pareto law.

Hγ : the cdf of generalized extreme value.

POT : Peaks Over Threshold.

ML : Maximum Likelihood.

xi



Notations and abbrevitions xii

MM : Method of moments.

L(θ; (X1, ...,Xn)) : Maximum likelihood function.

D(.) : Domain of attraction.

Λ : Gumbel’s distribution.

Φα : Frechet’s distribution.

Ψα : Webull’s distribution.

L(.) : slowly varying function.

U (.) : regular varying function.

xF : The upper-end point.

q̂αn : quantile estimator.

q̂Wαn : Weissman’s estimator.

q̂DHαn : Dekkers and de Haan’s estimator.

γ̂
(P )
n;k : Pickands estimator.

γ̂
(H)
n;k : Hill estimator.

I{A} : the indicator function of the set A.

S(t) = F(t) : Survival function.

h(t) : Hazard function or ”chance rate”

H(t) : Cumulative hazard function.

ŜKM : Kaplan-Meier estimator.

ŜGKM : Generalized Kaplan-Meier estimator.

ĤNA : Nealson-Aalen estimator.

V aR : Value-at-Risk.

T V aR : Tail Value-at-Risk

CTE : Conditional Tail Expectation.

ES : Expected shortfall.

MSE : Mean squared error.

RMSE : Root mean squared error

CV aR : conditional VaR.

GMD : Gini’s mean difference.

IA : Atkinson’s measurement of inequality.



Generale Introduction

Problem description

In recent years the field of extreme value theory has been a very active research

area. It is of relevance in many practical problems such as the flood frequency

analysis, insurance premium, financial area, ... The theory of extreme values is a

branch of statistics that tries to find a solution to these phenomena. It is mainly

based on limit distributions of extremes and their domains of attraction. However,

there are two models: generalized law of extremes (GEV: “Generalized Extreme

Value”) and generalized Pareto law (GPD: “Generalized Pareto Distribution”). Thus,

it all started with the authors Fisher and Tippet (1928, [55]) when they studied the

resistance of cotton threads and later Gnedenko (1943, [69]) became interested in

these distributions. They stated a fundamental theorem with the creation of three

domains of attraction: domain of attraction of Fréchet, Gumbel and Weibull. This

interesting theorem refers to a parameter called the tail index which gives the shape

of the tail of the distribution. For the literature concerning extreme value theory we

refer to Reiss and Thomas (2007, [116]), Coles (2001, [22]) and Beirlant et al. (2007

[14]).

Extreme value analysis under random censoring is becoming more popular with

applications for example in survival analysis, reliability and insurance. For in-

stance, in certain long-tailed insurance products, such as car liability insurance,

long developments of claims are encountered. One major departure from the unbiased-

sample case is that where the sample has been censored. Censored data are com-

monly encountered in practical applications to income and wealth distributions, for

several reasons. The modeling of censored extreme values emerged in 1997 in the

literature of extremes with the publication of the book Reiss and Thomas (2007,

[116]).

It is of great interest to guard against extreme risks, whether they result from

a financial crisis, a nuclear accident or a natural disaster, taking into account the

human, economic and financial repercussions that these can to have.

The statistical analysis of extremes is key to many of the risk management prob-

13



GENERALE INTRODUCTION 14

lems related to insurance, reinsurance, and finance. In statistics of extremes we deal

essentially with the estimation of parameters of extreme or even rare events. Where

the formulation of the possible limiting distributions of the affinely transformed

maximum of a sample, shows that the parameter, i.e, the extreme value index is an

important characteristic of the distribution.

The analysis of extreme values of random censorship is a new subject of research.

The first aim of this thesis is to extend the results of the extreme value theory in the

case where the sample consists of a censored data and estimate risk measures while

making the necessary modifications.

The Gini concept or the mean difference of the Gini, initiated by Gini in 1912

[66], is a characteristic of widespread dispersion in the field of income distribution.

The specificity of this indicator lies in its simple calculations. Monti (1991, 1993)

showed that the Gini concentration ratio is very sensitive to extreme observations, it

means that it records huge changes in the tail of the distribution, and this property

may lead to problems in the presence of outliers. Nevertheless, the Gini index is

robust against rounding errors, which is a good property especially in the case of

grouped data.

Also a Bayesian nonparametric estimation of the Gini index has been proposed.

Gigliarano and Muliere (2013) [65] suggested an alternative approach for dealing

with contaminated observations and extreme income values: avoiding the common

practice that removes these critical data, they instead treat them as censored obser-

vations and apply a Polya tree model for incomplete data.

The theme of this thesis revolves around three axes: extreme values, censored

data and risk measures. In the remainder of this thesis we will mainly be concerned

with the estimation of an inequality mesure when the data are censored. This thesis

can be considered in its entirety as a contribution to the theory of extreme values

and its statistical applications.

Methodology:

The treatment of this problem is established according to the following axes:

• Presentation of the extreme values theory and characterization of the domains

of attraction for each extreme law.

• Review of the mains results about censored data for extremes distributions,

Kaplan-Meier estimator of the cdf.

• Presentation of extreme income distributions and inequalities indices.
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• Empirical estimation of the Gini index, presentation of the restriction of this

estimator on distributions with moments of order two exist and finite.

• Proposed a Semi-parametric estimation of the Gini index for heavy-tailed in-

come distributions, the study of its asymptotic behavior, and some results of

simulation.

• Proposed a non parametric estimator of Gini index for heavy-tailed income

distributions with censored data, the study of its asymptotic behavior, and

some results of simulation.

Organization of the thesis:

In this work, we study the analysis of extreme values under random censorship from

the theoretical development to its applications, we use it for the estimation of some

risk index of certain classes of heavy-tailed distributions.

This thesis consists of two papers and is divided into four chapters:

- Paper 1: ” Bari, A., Rassoul, A., Rouis, H. O. (2021). Estimating the Gini index

for heavy-tailed income distributions. South African Statistical Journal, 55(1), 15-

28.

-Paper 2: ” Estimating the Gini index for income loss distributions under ran-

dom censoring”

The chapters are organized as follows:

- In Chapter 1, the fundamentals of extreme value theory are provided which

are necessary for a proper understanding of the following chapters. We provide an

overview of the essential definitions and results of EV T . We start by the asymptotic

properties of the sum of independent and identically distributed random variables,

order statistics and distributions of upper order statistics. Afterwards, we are in-

terested in the result, first discovered by Fisher and Tippett [55] and later proved

in complete generality by Gnedenko; on the fluctuations and asymptotic behavior

of the maximum Xn,n of a series of independent and identically distributed random

variables. A reminder on generalized extreme value GEV and generalized Pareto

distribution GPD approximations, domains of attraction and regular variation func-

tions is given as well.

- The second chapter presents the following two cases of incomplete data: cen-

sored and truncated. This chapter is divided into four section: an introduction, the

second section present a foreword on survival data and censoring with these dif-

ferent types as well as estimating the survival function as well in a right-censoring

model. Then we will present some definitions related to the statistics of survival

times. Censorship is based on a few functions suchs as the distribution function,



GENERALE INTRODUCTION 16

the survival function, the risk function. Section 2.4 presents a summary of the main

estimators of relevant quantities, of which the most famous non-parametric estima-

tors are the Kaplan-Meier survival function estimator (Kaplan-Meier suggested a

survival function estimator that Beran generalized in 1981 [15] in the conditional

case called the generalized Kaplan-Meier estimator), and the Nelson Allen estimator

for the cumulative risk function.

Chapter 3 is about measuring risk: we will start in Section 3.1 with an introduc-

tion and then provide some of concepts and definitions we need for the following

sections. We also discuss risk measurement wich is a great part of an organization’s

overall risk management strategy. Risk measurment is a tool to used to assess the

probability of a bad event happening. It can be done by businesses as part of dis-

aster recovery planning and as part of the software development lifecycle. Then

we’ll recall the definition of inequality and some well-known measures of income

inequality and the relationships between them. In the last section we discuss what

the Lorenz curve and Gini coefficient are, and give some of their main properties.

- A simulation study is given in chapter four, this Chapter corresponds first to

the article ” Estimating the Gini index for heavy-tailed income distributions”, we

define and study one of the most popular indices which measure the inequality

of capital incomes, known as ”Gini index”, we construct a semiparametric estima-

tor for the Gini index in case of heavy-tailed income distributions, we establish its

asymptotic distribution and derive bounds of confidence. We explore the perfor-

mance of the confidence bounds in a simulation study and draw conclusions about

capital incomes in some income distributions. Then we elaborate a non parametric

estimation of the Gini index for income distributions when the data are randomly

censored on the right. The estimator is constructed and its asymptotic normality

established under appropriate conditions. Its performance is evaluated using simu-

lated data sets, this corresponds to the article ” Estimating the Gini index for income

loss distributions under random censoring”.

Finally, the conclusion is drawn from this work along with areas in which further

research may be directed.



Chapter 1

Extreme value theory

Introduction

In this chapter we introduce the Extreme Value Theory, which is a branch of statis-

tics that ful fils the modelling needs of extreme events and extreme probabilities in

many disciplines, and wich emerged from the research of the limit distribution of

the largest order statistics in a sample as the sample size increases to infinity (Fisher

and Tippett, 1928) [55].

This chapter brings together some essential notions on the theory of extreme

values which make it easier to read the thesis. After having introduced the behavior

of the maximum, we will present the two main tools used to model the behavior of

the extreme values of a sample: the law of extreme values, and the law of excess, we

will then focus on the characterization of domains of attraction, functions with slow

and regular variations and finally, we will recall the different methods of estimating

extreme quantiles.

1.1 Brief history about EVT

Extreme Value Theory (EV T ) is a broad theory aimed at studying rare events, that

is, events with a low probability of occurrence. This theory has become one of the

most important statistical disciplines for applied science in recent years. Extreme

value techniques are also increasingly used in many other disciplines.

The origins of this theory go back to the pioneering work of Fréchet in 1927 and

”Fisher and Tippett” in 1928 [55] on the convergence of the maximum of a sample

of independent and identically distributed random variables.

At that time, the possible limits for the distributions of maximum samples of i.i.d

random variables were derived. The complete proof was proposed by Gnedenko in

1943 [69], and later simplified by de Haan in 1976 [44]. These limit distributions

17
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were unified by a parameterization given by Von Mises in 1954 [130] and Jenkinson

in 1955 [84], leading to the distribution of generalized extreme values.

Gumbel in 1958 [75] was the first to be interested in the potential applications

of the maximum value theory from a statistical point of view, and he exploited this

finding in his famous book, Statistics of Outliers. Since then, great developments

have taken place in theory and applications, and his book remains relevant today.

The theory of extreme values finds application in many fields such as reliability,

metallurgy and astrophysics. It is also of interest to environmental sciences, with

the modeling of large forest fires as well as climatology and meteorology. Two other

main areas of application are: actuarial science for hedging against high impact

claims, and finance.

Extreme value theory provides a rigorous probabilistic mathematical basis on

which to build statistical models to predict the intensity and frequency of these

extreme events.

Two important results from Extreme Values Theory are the limit distributions

of a series of block maxima and of excesses over a threshold, called ”Peaks Over

Threshold” (POT ), given that the distributions are non degenerate and the sample

is iid.

1.2 Laws of extreme values

The extreme values theory (EV T ) is mainly based on two findings. These two results

give us the approximate behavior of the random variable X or the crosses of the

threshold u. The benefit of these results comes from the fact that it is not necessary

to know the law, F for the operation X we want to predict.

However, EV T is analogous to Central Limit Theorem (CLT ) but for extreme

events. Thus, where the CLT shows that the empirical mean of the variable X con-

verges to a normal distribution (independently of the law of the variable of interest

and when moments of order 1 and 2 exist); the EV T establishes similar results but

for the extreme values of X.

1.2.1 Basic concepts

We begin our study with some definitions and results that we need throughout this

thesis.

Definition 1.1 (Sum and arithmetic mean)
Let X1,X2, ...,Xn be a sequence of random variables (rv’s) that are independent and iden-
tically distributed (iid) defined on the same probability space. For an integer n ≥ 1, we
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define the sum and the corresponding arithmetic mean respectively by:

Sn =
n∑
i=1

Xi and Xn =
Sn
n

(1.1)

Xn is then called sample mean or empirical mean.

1.2.1.1 Law of large numbers

The laws of large numbers indicate that a random draw is made from a series of large

sizes, the more the sample size is increased, the more the statistical characteristics

of the draw (the sample) approximate the statistical characteristics of the sample.

They are of two types: weak laws bringing into play the convergence in probability

P and strong laws relating to the convergence almost surely a.s.

Theorem 1.1 Let (X1,X2, ...,Xn) be a sample of independent rv of the same law admitting
a mean µ and a variance σ2. Then the sequence of empirical means {Xn} almost surely
converges to µ, i.e.:

Xn
a.s→ µ as n→∞

We state here the “Strong law” of large numbers. There are different versions of

this law requiring more or less restrictive conditions than those used here, including

the ”Weak law” concerning convergence in probability.

From a practical point of view the law of large numbers ensures that the empir-

ical mean increasingly approaches the mean of the law from which the sample is

taken as the size of the sample is increased.

1.2.1.2 Central Limit Theorem

The study of sums of independent variables with the same law plays a crucial role

in statistics. The following theorem is known under the name of Central Limit

Theorem (CLT ) establishes the convergence in law towards the normal distribution

of a sum of rv i.i.d under very light assumptions. The first proof of this theorem,

published in 1809, is due to Pierre-Simon de Laplace, but the particular case where

the variables follow Bernoulli’s law with parameter δ = 0.5 was known since the

work of De Moivre in 1733.

The CLT states that a sum of n rv’s independently drawn from a common distri-

bution function F(x) with finite variance, converge to the normal distribution as n

goes to infinity.
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Theorem 1.2 (CLT )
If X1,X2, ... is a sequence of rv’s iid of mean µ and finite variance σ2, then

Sn −nµ
σ
√
n

L→N (0,1) as n→∞.

The proof of this Theorem 1.2 could be found in any standard book of statistics

(see example, Lejeune, M. page 83 [97]).

1.2.2 The laws of maximums

Historically, the study of the probability law of the maximum of a sample of n vari-

ables has been the first approach to describe extreme events. Fisher and Tippet

in 1928 [55] were the first to heuristically deduce the possible limit laws for the

maximum of a series of independent random variables with the same law, before

Gnedenko in 1943 [69] rigorously obtained the convergence, the proof of which was

simplified by de Haan in 1976 [44]. The work of von Mises in 1936 [130] and Jenk-

inson in 1955 [84] made it possible to give a unified form to this result. Applications

began following the work of Gumbel in 1954 [75], particularly in hydrology.

Convergence of extremes for maximums is the equivalent of convergence of

means: another law of large numbers. If the distribution of means around their

expectation tends to be Gaussian when the variance is finite, the distribution of

extremes also converges towards a particular limit.

1.2.2.1 Order statistics

Order statistics play an increasingly important role in extreme value theory.

Definition 1.2 (Order statistics)
If the random variables X1,X2, ...,Xn are arranged in increasing order of magnitude and
then written as

X1,n ≤ X2,n ≤ ... ≤ Xn,n

the random variable Xi,n is called the ith order statistics (i = 1, ...,n).

In the following we will assume that Xi are independent and identically dis-

tributed (i.i.d.) random variables from a continuous population with cumulative

distribution function (cdf) F, and probability density function (pdf) f :

Definition 1.3 (Quantile function).
Let F be a distribution function. The quantile function is

Q(s) = F←(s) = inf{x ∈R : F(x) ≥ s}, 0 < s < 1 (1.2)
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For any cdf F, the quantile function is non-decreasing and right-continuous. If F

is continuous, then Q is continuous. If F is strictly increasing, then Q is the inverse

function F−1.

We now present this limit distribution, let {X1,X2, ...,Xn}, n random variables

i.i.d. having the distribution function:

F(x) = P(X < x)

Consider a sample comprising n realizations {x1,x2, ..xn}. We arrange them in

ascending order, and present the convention:

x(1) ≤ x(2) ≤ ... ≤ x(n)

The largest of these realizations x(n) can be considered as the realization of a new

random variable X(n). The same idea prevails for the other observations x(k). Thus,

we present n new random variables with the convention:

X(n) = max(X1,X2, ...,Xn) (1.3)

This represents the maximum of a sample of size nwhich is the random variable

giving the greatest value. In the literature, this quantity is also noted by: Xn,n =Mn

The same:

X(1) = X1,n = min(X1,X2, ...,Xn) (1.4)

represents the minimum of a sample of size n which is the random variable giving

the smallest observed value. More generally X(k) (or Xk;n) is the random variable

attached to the kth value x(k) obtained among n realizations. These n random news

items can be ordered as follows:

X1,n ≤ X2,n ≤ ... ≤ Xn,n

Two order statistics are particularly interesting for the study of extreme events.

These are the extreme order statistics which are given by the following definition:

Definition 1.4 (Extreme statistics).
The extreme order statistics are defined as terms of the maximum and minimum of the n
rv’s X1,X2, ...,Xn. The variable X1,n is the smallest order statistic (or minimum statistic)
and Xn,n is the largest order statistic (or maximum statistic).

We want to determine the limiting behavior of the maximum, i.e., we want to

characterize the probability law of maximum. All results for the minimum sample
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can be obtained from those for the maximum using the following relation:

min(X1,X2, ...,Xn) = −max(−X1,−X2, ...,−Xn) (1.5)

The exact distribution of Mn can be obtained from the cdf F. We consider the

cdf of X(k), which we denote by Fk,n to indicate that the sample is of size n. We have:

F(x) = P(X(k) < x) =
n∑
p=k

C
p
n[F(x)]p[1−F(x)]n−p (1.6)

Let us use the fact that the random variables X1, X2,...., Xn are independent and

have the same function cdf F(x), we get the cdf of the maximum (and even the

minimum) for the value k = n (law of the maximum):

Fn,n(x) = P(X(n) < x) =
n∑
p=n

C
p
n[F(x)]p[1−F(x)]n−p

so:

Fn,n(x) = [F(x)]n (1.7)

and for the value k = 1 (minimum law) we have:

F1,n(x) = P(X(1) < x) =
n∑
p=1

C
p
n[F(x)]p[1−F(x)]n−p

then:

F1,n(x) = 1− [1−F(x)]n (1.8)

and their density functions are respectively: fn,n(x) = n[F(x)]n−1f (x)

f1,n(x) = n[1−F(x)]n−1f (x)
(1.9)

We can also get these expressions directly. Consider for example the maximum.

So:

{Mn < x} ⇔ {max(X1,X2, ...,Xn) < x} ⇔ ∩nk=1{Xk < x}

and, using the independence of the initial random variables:

P(Mn < x) = P(∩nk=1{Xk < x}) =
n∏
k=1

P(Xk < x)
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indeed:

Fn,n(x) = [F(x)]n

In the rest of this thesis, we will focus on the study of the maximum.

We can segregate the values on equal time intervals and record the maximum

value in each interval. We will end up with block maxima (see figure below).

Figure 1.1: Illustrating Block Maxima

Hence, we see that, when the cdf F is known, the exact maximum cdf can be

obtained easily. However, the cdf F is unknown in practice, it is reasonable to study

the asymptotic behavior of Mn for n→∞, with the objective of approximating the

distribution of Mn by a non-degenerate limiting distribution.

Denote by xF to the upper endpoint1 of cdf F with the convention sup{∅} =∞.

It represents the upper limit of the support of the law.

From relation (1.7), we can conclude as to the form of the limit law of Mn by

making n tend towards infinity. We find:

lim
n→∞

Fn,n(x) = lim
n→∞

[F(x)]n =

 1 if x ≥ xF
0 if x < xF

(1.10)

The result (1.10) indicates that the distribution of the maximum Mn is a degen-

erate law. This result provides a limited interest on the behavior of Mn.

1The upper (or right) endpoint of the cdf F is defined as follows:
xF = sup{x ∈R,F(x) < 1} ≤ ∞
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We want to find a distribution of some interest for the maximum. The idea is to

apply a transformation to the maximum Mn so that the passage to the limit leads

to a non-degenerate distribution. This outcome is well known in the context of the

central limit theorem. The latter is concerned with the asymptotic behavior of the

mean X = 1
n

∑n
i=1Xi ; when n→∞

Theorem 1.3 Consider a sequence of random variables i.i.d {X1,X2, ...,Xn} with E(Xi) =

µ and V ar(Xi) = σ2 <∞. So,

lim
n→∞

P

(∑n
i=1Xi −nµ√

nσ
≤ x

)
= Φ(x) (1.11)

where Φ(x) is the fdr of the standard Gaussian law, bn = nµ and an = σ
√
n.

The central limit theorem says that: when n → ∞ the mean tends to be dis-

tributed according to a normal distribution if the variance is finite. If n is large

enough then it seems relevant to use the normal distribution to model the mean.

The extreme value theory follows the same logic, but studies the tail of the law

instead of its mean. So, it’s interested in a non-degenerate distribution for the max-

imum of the sample instead of the mean. For this, we need a similar theorem, i.e.,

we are looking for normalization sequences an > 0 and bn ∈R, such as:

Mn − bn
an

L−→ G, when n −→∞ (1.12)

with G is non-degenerate distribution, i.e.

limP(Mn < anx+ bn) = lim
n→∞

Fn(anx+ bn) = G(x) (1.13)

for any point x where G is continuous.

Consider the maximum of the sample rather than the average, also a double

problem arises. On the one hand, we must identify all the possible non-degenerate

distribution functions that can appear as a limit in (1.13), on the other hand, we

must characterize the cdf F (in terms of necessary and sufficient conditions) for

which there are sequences {an;n ≥ 1} and {bn;n ≥ 1}, an > 0 and bn ∈ R, such that

(1.13) is satisfied .

1.2.2.2 Law of excess

It is unrealistic to believe that only the maximum of the sample can model the be-

havior of extreme values. The other large values of the sample also contain infor-

mation about the tail of the distribution. The approach by threshold overruns, or



CHAPTER 1. EXTREME VALUE THEORY 25

”Peaks-Over-Threshold approach” denoted POT, is an alternative to the GEV law

in the modeling of the behavior of the maximum of a sample based on the ”large

values” of the sample.

This approach relies on the use of higher order statistics from the sample. It

consists in keeping only the observations exceeding a certain threshold. The excess

beyond the threshold is defined as the difference between the observation and the

threshold.

More precisely, let a sample of i.i.d X1,X2, ...,Xn, and let u be a fixed (non-

random) threshold such that u < xF . Consider the Nip observations Xi1,Xi2, ....,Xip
exceeding the threshold u. We call excess beyond the threshold u the Yj = Xij − u ,

where j = 1, ...,p.

Figure 1.2: The X1,X2,X3, .. data, and the corresponding excesses Y1, ...,YN above
threshold u.

We will denote by Fu the distribution function of the excess Y beyond the thresh-

old u. The law of excesses is that of random variables i.i.d. admitting for distribu-

tion function Fu(x) = P(Y ≤ x|X > u) representing the probability that the random

variable Y does not exceed the threshold u by at least one quantity x knowing that

it exceeds u. Fu thus describes the law of Y knowing that X > u. We can rewrite it

as a function of F using the following result.

We have for x ≥ 0:

F(x) = P(Y ≤ x|X > u) = P (X −u ≤ x|X > u) =
F(u + x)−F(u)

1−F(u)
(1.14)

The Theorem below is fundamental in extreme value theory because it estab-

lishes the asymptotic law of the suitably normalized maximum Xn,n of a sample.

Theorem 1.4 (Fisher and Tippett)
Let (Xn)n≥1 be a sequence of independent and identically distributed random variables
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of distribution function F. If there are two real normalizing sequences (an)n≥1 > 0 and
(bn)n≥1 ∈R and a non-degenerate distribution Hγ (x) such that:

lim
n→∞

P

(
Xn,n − bn
an

≤ x
)

= lim
n→∞

Fn(anx+ bn) =Hγ (x) (1.15)

then except for a translation and a change of scale, we have:

Hγ (x) = exp
{
− (1 +γx)

− 1
γ

+

}
(1.16)

where γ ∈R and z+ = max(0, z)

Using the result given in the previous theorem for n large enough we have,

Fn(u) ≈ exp

−
(
1 +γ

(
u − bn
an

))− 1
γ

+

 (1.17)

with an > 0 and (bn,γ) ∈R2. So,

n log(F(u)) ≈ −

1 +γ
(
u − bn
an

)− 1
γ
 (1.18)

If u is large enough then a limited expansion gives:

log(F(u)) ≈ −(1−F(u))

By replacing in the expression (1.18) we obtain for u large enough:

1−F(u) ≈ 1
n

(
1 +γ

(
u − bn
an

))
− 1
γ

The same applies to x > 0 we have,

1−F(u + x) ≈ 1
n

(
1 +γ

(
u + x − bn

an

))− 1
γ

by replacing in the expression (1.14) we obtain:

F(u) ≈ 1−
(
1 +γ

x
σ

)− 1
γ

(1.19)

with: σ = an +γ(u − bn).

The works of Balkema, de Haan and Pickands give a precise result on the approx-

imation of this distribution function when the threshold u is close to the terminal

point xF .
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Theorem 1.5 (Balkema and de Haan [9], and Pickands [111])
F belongs to the domain of attraction of Hγ if and only if there exist σ > 0 and γ ∈ R
such that the law of excesses Fu can be uniformly approximated by a generalized Pareto
law denoted by Gγ,σ i.e.

lim
u→xF

sup
x∈]0;xF−u[

| Fu(x)−Gγ,σ (x) |= 0 (1.20)

where:
Gγ,σ (x) = 1−

(
1 +γ

x
σ

)
− 1
γ (1.21)

The proof of the Theorem (1.5) can be found in Embrechts et al. [53].

This approach is commonly called in the literature “the peaks beyond a thresh-

old approach” (POT approach, “Peaks-Over-Threshold”).

The case γ = 0 in the expression (1.21) can be seen as the limiting case when

γ → 0.

We then have:

G0,σ (x) = 1− exp
(
− x
σ

)
, x ≥ 0. (1.22)

We find an exponential law of parameter 1
σ . Note also that G−1,σ corresponds to

the uniform law on [0,σ ].

Figure 1.3: Left: Gγ,1. Right: the densities associated with the generalized Pareto

law
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1.2.3 GEV and GPD distribution

In Fisher and Tippet’s theorem, the cdf of the limit is a type of the following three

classes:

Gumbel : Λ(x) = exp(−exp(−x)),x ∈R and α = 0

Fréchet : Φα(x) =

 0 if x < 0

exp(−x−α) if x ≥ 0
and α > 0

Weibull : Ψα(x) =

 exp{−(−x)α} if x ≤ 0

1 if x > 0
and α > 0

These three distributions Λ, Φα et Ψα are called ”the Standard extreme value

distributions” and the corresponding values are ”the extreme random variables”.

Index α is called sometimes the ”extreme value index”.

1.2.3.1 GEV distribution:

It is difficult to work with three families at the same time, Jenkinson in 1955 shows

that these three families can be grouped together in a single form called the family

of the laws of generalized extreme values (GEV ), Generalized Extreme Value distri-

bution).

Definition 1.5 The fdr of the familyHγ of generalized extreme values GEV , is for γ ∈R
and 1 +γx > 0:

Hγ (x) =

 exp{−(1 +γx)
−1
γ } if γ , 0

exp{−exp(−x)} if γ = 0
(1.23)

The parameter γ which appears in the formula (1.23) is called ”tail index”, or

”extreme values index, EVI”.

For γ = 0 we must read H0(x) = exp{−exp(−x)}, x ∈ R which is obtained in the

preceding formula by making γ → 0. The laws of generalized extreme values corre-

spond to a translation and a change of scale close to the laws of extreme values.

We have, where γ = 1
α , the following correspondances:

Λ = H0(x),x ∈R (1.24)

Φ 1
γ

= Hγ ((x − 1)/γ), x > 0

Ψ 1
γ

= H−γ ((x+ 1)/γ), x < 0

For the non-centered and unreduced variables, we can write Hγ (x) in a more

general form, denoted by Hµ,σ ,γ in which we reveal a localization parameter µ ∈ R
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and a scale’s parameter σ > 0. For (1+γ(x−µσ ) > 0) the distributionHµ,σ ,γ (x) is written

as follows:

Hµ,σ ,γ (x) =


exp

{
−
(
1 +γ

(
x−µ
σ

))−1
γ

}
if γ , 0

exp
{
−exp

[
−(x−µσ )

]}
if γ = 0

(1.25)

We can easily show that the density fonction corresponding to Hµ,σ ,γ for 1 +

γ
(
x−µ
σ

)
> 0, is:

hµ,σ ,γ (x) =

 1
σ

[
1 +γ

(
x−µ
σ

)]−1
γ } if γ , 0

1
σ exp{−exp(−x)} if γ = 0

(1.26)

Remark 1.1 The quantile Q(p) of the distribution Hµ,σ ,γ is given by the following for-
mula:

Q(p) =H−1
µ,σ ,γ (x) =

 µ− σγ−1[1− (− logp)−γ ] if γ , 0

µ− σ log(− logp) if γ = 0
(1.27)

This quantile is therefore strongly influenced by the two parameters σ and γ . Intuitively,
we understand that the larger γ , the higher the quantile.

Figure 1.4: Density and Distributions of extreme value distributions

1.2.3.2 GPD distribution

The approach based on the GEV distribution can be reductive because the use of a

single maxima leads to a continuous loss of information in the other large values of

the sample.
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Definition 1.6 ( Standard generalized Pareto distribution)
The standard generalized Pareto cdf (GPD), denoted by Gγ , is defined for γ ∈R as follows:

Gγ (x) =

 exp
{
− (1 +γx)

−1
γ

}
if γ , 0

exp{−exp(−x)} if γ = 0
(1.28)

with the support:

x ≥ 0 if γ ≥ 0

0 ≤ x ≤ −1
γ

if γ < 0

A general form of GPD, denoted by: Gγ,µ,σ (x) = Gγ (x−µσ ) is obtained by replacing

the argument x by (x−µσ ) in (1.28) with a support must be, which adjusted accord-

ingly, where µ ∈R and σ > 0 are the location and scale parameters, respectively.

Note that the standard GPD is the case where µ = 0 et σ = 1. When the lo-

cation parameter is zero (µ = 0) and the scale parameter is arbitrary (σ > 0), this

distribution plays an important role, in the statistical analysis of extreme events, by

providing an appropriate approximation for the excess beyond a large threshold.

This special family, denoted by Gγ,σ , is defined as follows:

Gγ,σ (x) =


exp

{
−
(
1 +γ x

σ

)−1
γ

}
if γ , 0

exp
{
−exp −xσ

}
} if γ = 0

(1.29)

where

x ≥ 0 if γ ≥ 0

0 ≤ x ≤ −σ
γ

if γ < 0

Remark 1.2 The density of the distribution GPD (Gγ,σ ) is written as follows:

gγ,σ (x) =

 σ−1
(
1 +γ x

σ

)−1
γ −1

if γ , 0

σ−1 exp
{
− xσ

}
if γ = 0

(1.30)

The quantile Q(s) of the distribution Gγ,σ , which is also the Var at the high confidence
level s, is given by:

Q(s) = V ar(s) = u +
σ
γ

{(
n
Nu
s

)−γ
− 1

}
(1.31)
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Figure 1.5: GPD distribution functions for µ = 0 and different values of σ and γ.

1.3 Domain of attraction

Now in the following definition, we shall establish necessary and sufficient condi-

tions for a distribution function F to belong to the domain of attraction of Hγ .

Definition 1.7 (Domain of d’attraction)
We say that a distribution F belongs to the domain of attraction of the maximum of the
distribution Hγ , and we denote by F ∈ D(Hγ ), if there are two normalizing sequences
(an)n≥1 > 0 and (bn)n≥1 ∈R such that the condition (1.15) is verified.

According to the sign of γ , there are three areas of attraction:

1. If γ > 0, we say that F belongs to Fréchet’s D.A., and we note F ∈D(Φγ ); F has

an upper-end point on the infinite right (xF =∞). This domain of attraction is

that of heavy-tailed distributions, that is to say, which have a survival function

with polynomial decay. Distributions from the Fréchet domain are widely

used in mechanical reliability, in climatic phenomena such as meteorology,

hydrology, the wind speed recorded continuously in airports and in finance in

risk studies.

2. If γ = 0; we say that F belongs to Gumbel’s D.A., and we note F ∈ D(Λ),

the upper-end point xF can then be finite or not. This domain of attraction
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is that of distributions with light tails, that is to say which have an exponen-

tially decreasing survival function. These distributions are often used to make

predictions in environmental events such as earthquake, hydrology (floods,

destruction of dams), etc.

3. If γ < 0, we say that F belongs to Weibull’s D.A., and we note F ∈D(Ψγ ); F has

a finite right endpoint (xF < ∞): This domain of attraction is that of survival

functions whose support is superiorly bounded. Weibull type distributions

are often used to describe the mechanical strength of a material or the operat-

ing time of an electronic or mechanical device.

The following tables give different examples of standard distributions in these

three attraction domains [as in Tables 1.1 to 1.3 in Embrechts et al.( 1997 [53]).

Table 1.1: Some Distributions Associated With The Positive Index
Distributions F(x) γ
Pareto (α), α > 0 x−α, x > 1 1

α

Burr (β,τ,λ) β > 0, τ > 0, λ > 0 ( β
β+xτ )λ 1

λτ

Fréchet ( 1
α ), α > 0 1− exp(−x−α) 1

α
Log-gamma (m,λ), m > 0, λ > 0 λm

Γ (m)

∫∞
x

log(u)m−1u−λ−1du 1
λ

Loglogistic (β,α), β > 0,α > 1 1
1+βxα

1
α

Table 1.2: Some Distributions Associated With The Negative Index
Distributions F(x) γ
Uniform (0,1) 1− x −1
Reverse Burr (β,τ,λ,xτ ) β,τ,λ > 0 ( β

β+(xF+x)−τ )λ − 1
λτ

Table 1.3: Some Distributions Associated With a Zero Index
Distributions F(x) γ
Gamma (m,λ) ,m ∈N,λ > 0 λm

Γ (m)

∫∞
x
um−1 exp(−λu)du γ = 0

Gumbel (µ,β) µ ∈R,β > 0 exp(−exp(−x−µβ )) γ = 0
Logistic 2

1+exp(x) γ = 0

Lognormale (µ,σ ) µ ∈R, σ > 0 1√
2Π

∫∞
1

1
u exp(− 1

2σ2 (logu −µ)2) γ = 0

Weibull exp(−λxτ ) γ = 0

These domains of attraction are characterized by functions with regular vari-

ations, so we have to define the notions of functions with regular variations and

functions with slow variations which will be use later.
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1.3.1 Regular variations

The concept of regular variation is widely used in extreme value theory to describe

the deviation from pure power laws. Regular variation of the tails of a distribu-

tion appears as a condition in various theoretical results of probability theory, so

in domain of attraction. In this section, we summarize some of the main results

of regular variation theory, we present the basic properties of the aforementioned

functions which will be used in the following. In general, regularly varying func-

tions are functions which behave asymptotically like power functions.

An encyclopedic treatment of regular variation can be found in Bingham et

al(1987 [17]). To describe the functions with regular variations in more detail, it

is necessary to start with a definition of the functions with slow variations.

Definition 1.8 We say that a function L(.) is slowly varying at infinity if L(x) > 0 for x
large enough and if for all λ > 0, we have:

lim
x→∞

L(λx)
L(x)

= 1 (1.32)

Among the slowly varying functions, we can cite:

- constant functions,

- the functions having a strictly positive limit at infinity,

- functions l such as:

∃M > 0,∀x ≥M l(x) = c+ dx−β(1 + 0(1))

where c,β > 0 and d ∈R. The set of these functions l is called ”Hall class”.

Theorem 1.6 (Karamata representation)
All slowly varying L(.) functions are written in the form :

L(x) = c(x)exp
(∫ x

1

∆(u)
u

du

)
, (x ≥ 1) (1.33)

where c(x)→ c > 0 and ∆(x)→ 0 when x→∞. This formula of slowly varying functions
is called ”Karamata representation”.

Proof.For a demonstration see Resnick (2007 [117] ) Corollaire 2:1; page 29.

In the case where the function c(.) is constant, the corresponding L(.) fonction is

said to be normalized. If the function L is normalized then it is differentiable from

derivative L̀ defined for all x by:

L̀(x) =
∆(x)L(x)

x
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In particular, we have:

lim
x→∞

x
L̀(x)
L(x)

= 0

Definition 1.9 We say that a function U (.) has regular variations of index ρ ∈ R at
infinity, which we will denote by U (.) ∈ RVρ, if U is positive at infinity (i.e. if there
exists A such that for all x > A , U (x) > 0) and if for all λ > 0,

lim
x→∞

U (λx)
U (x)

= λρ (1.34)

In the particular case where ρ = 0, U (.) is a slowly varying function at infinity.

We can easily show that any function with regular variations of index ρ can always

be written in the form:

U (x) = xρ.L(x) (1.35)

where L is a slowly varying function at infinity.

On the other hand, if ρ = ∞, we speak of a ”function with rapid variations at
infinity”.

Lemma 1.1 ( Inverse of a function with regular variations)
-If U has regular variations of index ρ > 0, then U←(x) has regular variations of index
1/ρ.
-If U has regular variations of index ρ < 0, then U←(1/x) has regular variations of index
−1/ρ.

For the proof of Lemma 1.1, we can refer to Bingham et al.(1987 [17] ), Theorem

1.5.12 or Proposition 2.6 of Resnick’s book (1987).

Lemma 1.2 ( Resnick (1987), Proposition 0.5)
If U is a function with regular variations of index ρ at infinity then, for all 0 < a < b,

lim
x→∞

sup
λ∈[a,b]

∣∣∣∣∣U (λx)
U (x)

−λρ
∣∣∣∣∣ = 0 (1.36)

Lemma 1.3 ( de Haan and Ferreira (2006), Proposition B.1.9)
Let L be a slowly varying function at infinity and let an and bn be two positive sequences
which converge towards infinity as n approaches infinity. If an ∼ bn (i.e. an

bn
→ 1 when

n→∞), then:
L(an) ∼ L(bn) (i.e

an
bn
→ 1 when n→∞) (1.37)

The lemma (1.3) which is a consequence of the lemma (1.1) shows that the slowly

varying function keep the equivalents. Consequently, this result implies that if U is

regularly changing with index ρ and if an ∼ bn then U (an) ∼ U (bn) and we say that

the functions with regular variations also keep the equivalent.
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1.3.2 Potter’s inequality

An important result of the extreme value analysis of infinitely variable functions is

Potter’s inequality.

Proposition 1.1 Suppose that g be a regularly varying function with index ρ at infinity.
Then for any real A strictly greater than 1 and for any ε strictly positive, there exists M
such that:

∀x ≥M, ∀y ≥M :
g(x)
g(y)

≤ Amax
{(
x
y

)ρ+ε

,

(
x
y

)ρ−ε}
(1.38)

This inequality can also be written:

∀ε > 0,∃t0 : ∀x ≥ 1,∀t ≥ t0 : (1− ε)xρ−ε <
g(tx)
g(x)

< (1 + ε)xρ+ε (1.39)

Potter’s bounds are very useful for the use of the dominated convergence theo-

rem in the case of studies of integrations of functions with regular variations. For

more other results on the theory of regularly varying functions, we referred the

reader to Bingham et al. (1987 [17]).

With the help of the various results presented on functions with regular vari-

ations and slow variations to infinity, we will be able to characterize the different

domains of attraction. Knowing the F distribution, we would like to know its do-

main of attraction and its normalization constants. We will indicate here the most

widely used criteria, that is to say, the necessary and sufficient conditions on the fdr

F for it to belong to one of the three domains of attraction that are defined above.

1.3.3 Fréchet’s domain of attraction

Recall that the Fréchet domain of attraction contains the laws whose survival func-

tion is polynomial decat, i.e. the heavy-tailed laws or Pareto-type laws. The laws

of this domain have an infinite upper endpoint xF . Indeed, the result below stated

by Gnedenko[69] and of which one will find a simple proof in the book of Resnick
[Proposition 1.11]] ensures that any function belongs to the Fréchet domain of at-

traction is a function with regular variations and vice versa.

Theorem 1.7 ( characterization of D(Φγ ))
A distribution function F(.) belongs to the Fréchet domain of attraction, F ∈ D(Φγ ),with
an index of the extreme values γ > 0 if and only if the upper-endpoint is finite (i.e. xF =

+∞), and its survival function 2 F has regular variations of index −1/γ (F(.) ∈ RV−1/γ),
that is to say:

F(x) = x−1/γL(x)
2A brief study on the survival function will be given in the next chapter.
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In this case, a possible choice of standardization sequences (an)n≥1 and (bn)n≥1 is:

an = F←
(
1− 1

n

)
and bn = 0

where F← is the generalized inverse of F.

From this theorem, we deduce that F ∈ D(Φγ ) if and only if the upper-endpoint

xF is infinite and F(x) = x−1/γL(x), where L is a slowly varying function infinite.

Fréchet’s domain of attraction brings together a great diversity of laws including

among them usual laws (Student’s law, Chi-square law, Log-gamma law, Fréchet’s

law). It is therefore subject to numerous applications, in particular Gardes and

Girard (2010 [62]) and Daouia et al. (2011 [33]).

1.3.4 Weibull’s domain of attraction

All the laws belonging to the Weibull’s domain of attraction have a finite upper

endpoint xF . The following result shows that we go from the Fréchet’s domain of

attraction to that of Weibull’s by a simple change of variable in the distribution

function.

Theorem 1.8 ( characterization of D(Ψγ ))
A distribution function F(.) belongs to the Weibull’s domain of attraction, F ∈ D(Ψγ ),
with γ < 0 if and only if xF < +∞ and in addition 1 − F is a function with regular
variations of index −1/γ , defined:

F(x) =
(
xF −

1
x

)
= x−1/γL(x)

whith L(.) is a slowly varying function at infinity.

In this domain of attraction the normalization sequences are determined as fol-

lows:

an = x −U (n) = xF −F
(
1− 1

n

)
and bn = xF

the sequence (a−1
n (Xn;n − xF)) converges in law to a rv of cdf Ψγ when n→∞.

From Theorem 1.8, we deduce that F ∈ D(Ψγ ) if and only if the upper-endpoint

xF is finite and

F(x) = (xF − x)−
1
γ L[(xF − x)−1],

with L is a slowly varying function at infinity and γ a strictly negative real.

This domain of attraction was considered by Gardes) (2010 [62]) to give an end-

point estimator of a distribution.
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1.3.5 Gumbel’s domain of attraction

The Gumbel’s domain of attraction is more difficult to treat, since there is no direct

linkage between the tail and the regular variation notion such as the domains of

attraction of Fréchet and Weibull. We will find the extensions of the regular varia-

tion that take into account a complete characterization of D(Λ). The Gumbel class

contains the exponential, normal, lognormal, gamma and classical Weibull distri-

butions.

The Gumbel’s domain of attraction contains the laws whose survival function

is exponentially decreasing, i.e. the laws with light tails. Unlike the other two do-

mains, there is no simple representation for the laws belonging to Gumbel’s domain

of attraction. It can be described from Von Mises functions type.

Definition 1.10 (von Mises function).
The df F is called a von Mises function with auxiliary function a if there exists some
z < xF such that:

F(x) = c.exp
(
−
∫ x

z

dt
a(t)

)
, z < x < xF <∞ (1.40)

where c > 0 is some positive constant, and a is a positive absolutely continuous function
(with respect to Lebesgue measure) with density à satisfying: lim

x→xF
à(x) = 0.

As an example of the von Mises function, the exponential distribution function

with parameter λ, F(x) = exp{−λx}, the auxiliary function is a(x) = 1/λ.

Proposition 1.2 (von Mises function’s properties)
Let F be a von Mises function with auxiliary function a. Then
- F is absolutely continuous on (z;xF) with positive pdf f . The auxiliary function can be
chosen as a(x) = F(x)/f (x)

- If xF =∞, then F ∈ RV−∞ and lim
x→xF

xf (x)
F(x)

=∞

- If xF <∞, then F(xF − x) ∈ RV−∞ and lim
x→xF

(xF−x)f (x)
F(x)

=∞

Theorem 1.9 A distribution function F(.) belongs to the Gumbel’s domain of attraction,
F ∈ D(Λ) if and only if:

F(x) = c(x)exp{−
∫ x

z

g(t)
a(t)

dt} z < x < xF

where g and c are some positive functions, such that: c(x)→ c > 0, g(x)→ 1 as x→ xF ,
and a(x) is a positive,absolutely continuous function (with respect to Lebesgue measure)
with density à having lim

x→xF
à(x) = 0. In this case, we can choose for the normalization
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sequences (an)n≥1 and (bn)n≥1 :

an = xF −F−1(1− 1
n

) and bn =
1

F(a)

∫ xF

an

F(y)dy.

Let us conclude on the behavior of the distribution tails:

• The Fréchet’s domain of attraction D(Φγ ) contains all distributions character-

ized by a tail with polynomial decay at infinity, and an infinite xF endpoint. They

are also said to have heavy tails.

• The Gumbel’s domain of attraction D(Λ) contains all distributions character-

ized by an infinitely exponentially decreasing tail. Examples of such distributions

are exponential distributions with slightly heavy (light) tails and thicker than Gaus-

sian.

• The Weibull’s domain of attraction D(Ψγ ) contains all distributions with right-

bound supports i.e. xF <∞. They are also said to have bounded tails.

1.4 Estimating extreme quantiles

In what follows, we assume that F belongs to one of the attraction domains defined

above. In order to summarize the estimation problem investigated in this work, we

introduce the following result called the Poisson approximation.

Lemma 1.4 If αn→ 0 and nαn→ c (not necessarily finished) when n→∞, so:

P(Xn,n < qαn)→ exp(−c)

Thus, according to the previous Lemma, two situations can then be distinguished

as a function of c when we want to estimate the quantiles of order αn when n→∞.

First, if c =∞ so, P(Xn,n < qαn) = 0. In such a context, a natural estimator of qαn
is the empirical quantile which is nothing more than the [nαn]th largest observation

of the sample {X1,X2, ...,Xn} that is to say the statistic of order Xn−[nαn]+1,n.

Second, if c = 0 so, P(Xn,n < qαn) = 1. Therefore, we can’t estimate the quantile

empirically. To solve this problem, we have listed three main categories of methods:

• The extreme value theory presented by Guida and Longo (1988 [70]) and

whose first bibliographic elements go back to Fisher and Tippet (1928 [55])

and Gnedenko (1943 [69] ) consists in dividing the sample into m0 disjoint

subgroups of size n0 = n/m0 from which the maxima are determined. The

law of these maxima is then approximated, for n0 large enough, by a law of
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extreme values. Using the relation

P(max(X1, ...,Xn < qαn)) = Fn(qαn)

we can then estimate the extreme quantile qαn .

• The excess method initially presented by Pickands (1975) [111]. It recom-

mends to retain only the observations exceeding a fixed threshold u. The law

of kn observations thus retained, denoted by {Yi , i = 1, ..., kn} can be approx-

imated, if u is large enough by a generalized Pareto distribution (GPD). To

estimate the extreme quantile qαn , it suffices to use the result of (Balkema and

de Haan, 1974 [9]; Pickands, 1975 [111]) which establishes the equivalence

between the convergence in the law of the maximum towards a law of extreme

values and the convergence in law of an excess towards a GPD.

• Semi-parametric methods where we assume that for all γ > 0 we have P(X >

x) ∼ x−
1
γ as x tends to infinity, that is to say that the survival function F(x) de-

creases in x−
1
γ . This assumption makes it possible to construct nonparametric

estimators of the parameter γ , the most famous of which is the Hill (1975)

[79] estimator. Based on this result, Weissman (1978) [132] proposed three

years later an estimator of the extreme quantile qαn . Indeed, supposing that

P(X > x) ∼ x−
1
γ amounts to supposing that the quantile qαn decreases in α.

1.4.1 Extreme quantile approach by the law of extreme values

To estimate the quantile qαn , use the approximation P(Xn,n ≤ anx+bn) = F(anx+bn) '
Hγ (x). Indeed, according to Theorem 1.4 (Fisher and Tippet’s theorem), we can

write

lim
n→∞

n logF(anx+ bn) = logHγ (x)

still

lim
n→∞

n log[1−F(anx+ bn)] = logHγ (x)

when n → ∞, we can show that anx + bn → xF and consequently F(anx + bn)

converges to 0. A first-order limited expansion of log(1 +u) therefore gives

F(anx+ bn) ∼ −1
n

logHγ (x)

for any γ , we can then approach the quantile qαn by:

qαn ' anxαn + bn where xαn checks − logHγ (xαn ) = nαn
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We then have an extreme quantile estimator of type

q̂αn = ânxαn + b̂n (1.41)

=


ân(nαn)−γ̂ + b̂n if F ∈ D(Φγ )

−ân(nαn)−γ̂ + b̂n if F ∈ D(Ψγ )

−ân log(nαn) + b̂n if F ∈ D(Λ)

where (ân, b̂n) and γ̂ are respectively estimators of the sequences (an,bn) and the tail

index γ .

In the particular case where γ = 0, the authors propose to use the approach based

on the GEV law, the result of which is stated as follows.

Theorem 1.10 (Weinstein [131])
Let F ∈ D(Λ), there exist two sequences (an) > 0 and (bn) ∈ R such that for all x ∈ R and
v > 0,

limnF[(bvn + cnx)1/v] = exp(−x) (1.42)

where cn = anvbv−1
n .

In such a situation, we approach the quantile by

q̂αn ' (bvn + cnxαn)
1/v where xαn checks exp(−xαn) = nαn

and an estimator of the extreme quantile is obtained by replacing the sequences bn
and cn respectively by their estimators b̂n and ĉn, i.e.

q̂αn ' (b̂vn + ĉn log(nαn))1/v (1.43)

the advantage of using the result (1.42) comes from the fact that there are values of

v for which the convergence in (1.42) is faster than in the case v = 1. In this case,

on simulation, the approximation of the quantile qαn is of better quality than the

approximation based on the EVD approach, i.e with v = 1. The authors provide the

optimal value of the parameter v.

The parameters γ , an, bn and cn of these distributions can be estimated by the

maximum likelihood method, or the weighted moment method (Hosking et al.,

1985 [82]). In the case of the EVD approach, Smith (1985 [122]) makes a detailed

study of the asymptotic behavior of the estimators of the parameters γ , an, bn ob-

tained by the maximum likelihood method. However, it is advisable to use the

weighted moment estimators because they are not only explicit and easy to calcu-

late but also because they give better results than the maximum likelihood estima-

tors when we have small medium samples. The main difficulty in estimating the
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parameters γ , an, bn and cn is due to the fact that a sample of maxima is required,

which is sometimes difficult to extract from the initial data.

1.4.2 Approaching extreme quantiles using the excess method

Before presenting this approach, it is useful to start with a definition.

Definition 1.11 Generalized Pareto Distribution (GPD).
The Generalized Pareto Distribution is the law whose distribution function is given by:

Gγ,σ (x) =

 1− (1 +γ x
σ )
−1
γ } if γ , 0 and σ > 0

1− exp(− xσ ) if γ = 0 and σ > 0

with

x ≥ 0 if γ ≥ 0

0 ≤ x ≤ −σ
γ

if γ < 0

In the previous expression, σ represents the scale parameter and γ the shape

parameter: this is the same shape parameter introduced in section 1.2 and which is

called the extreme value index.

The GPD distribution has some particularities. Here is a non-exhaustive list :

• If σ = 1, we are talking about the standard GPD distribution ( see definition

12).

• If γ = 0, the GPD corresponds to an exponential law of expectation σ .

• If γ = −1, it corresponds to a uniform law on [0,σ ].

• If γ > 0, we find the decentered Pareto law.

In this approach to estimating extreme quantiles, only observations exceeding a

fixed threshold u < xF are retained. We then define the excess Y of the variable X

above the threshold u by X − u knowing X > u. If we denote by Fu the distribution

function of an excess above the threshold u, we have for all y > 0

1−Fu(y) = P(Y > y)

= P(X −u > y|X > u)

=
P(X > u + y,X > u)

P(X > u)

=
1−F(u + y)

1−F(u)
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When the threshold u is large, we can approach this quantity by the survival

function of a GPD law. In order to approach the quantile, it suffices to use the result

of Balkema, de Haan (1974) [9] and Pickands (1975) [111] which establishes the

equivalence between the convergence in the law of the maximum towards a law of

extreme values Hγ and the convergence in law of an excess towards a GPD, what

was mentioned previously in Theorem 1.5.

From this result, if for an unknown distribution function F, the sample of nor-

malized maxima converges in law towards a non-degenerate distribution, then it

follows that the distribution of the excesses above a high threshold converges to-

wards a GPD when the threshold tends towards the upper limit of the support of F.

This characterization is the basis of the Peaks Over Threshold (POT ) type estimation

methods.

Like 1−F(u + y) = [1−F(u)][1−Fu(y)], if for all y ≥ 0 we set qαn = u + y, then

αn = 1−F(qαn) = [1−F(u)][1−Fu(qαn −u)]

' [1−F(u)](1−Gγ,σ (qαn −u))

for kn excess above the threshold u, the approximation 1−F(u) ' kn/n leads to

kn
n

(1−Gγ,σ (qαn −u)) ' αn

and if γ , 0, then we approach the quantile by

qαn ' u +
σ
γ

((
k
nαn

)γ − 1)

We then have an estimator of the type

q̂αn '
( k
nα )γ̂ − 1
γ̂

σ̂ +u (1.44)

where γ̂ and σ̂ are respectively estimators of the shape and scale parameters. We

can note the similarity between the quantile estimator (1.44) and the expression of

the quantile (1.41) with σ̂ = α̂n and u = b̂n.

The parameters γ and σ of the GPD can be estimated by the method of moments,

the method of weighted moments (Hosking and Wallis, 1987 [83]) or the method of

maximum likelihood (Smith, 1987 [123]; Davison and Smith, 1990 [37]).

This method has an advantage over the previous one in that it is easier to have a

sample of excess than of maxima. In practice, we replace u with Xn−kn+1,n that is the

kn largest observation of the sample {Xi , i = 1, ...,n}.
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Two variants of this method have been presented by Breiman et al. (1990 [19] )

under the names ”Exponential tail” (ET) and ”Quadratic tail” (QT).

1.4.3 Extreme quantile approach by semi-parametric method

We restrict to the functions F ∈ D(Φγ ) for which we have the following characteri-

zation

F̄(x) = x−1/γ`(x)

with ` a slowly varying function at infinity and γ > 0. According to ”Lemma 18”,

this characterization implies that

qαn = F̄←(αn) = α−γn L(1/αn) with αn ≤ 1/n

qβn = F̄←(βn) = β−γn L(1/βn)with βn ≥ 1/n

where L is a slowly varying function at infinity. Regarding the L and ` functions, it

seems important to point out here that it is not the same slowly varying function.

Given the definition of a slowly varying function (refer to Definition 15), for βn
small enough, we have

F̄←(αn) = F̄←(βn)(
βn
αn

)γ

By replacing F̄←(βn) and γ by estimators, we obtain the Weissman (1978) [132] es-

timator defined by:

q̂Wαn = Xn−[nβn]+1,n(
βn
αn

)γ̂

For the properties of the Weissman estimator, one can refer to the work by Em-

brechts et al. (1997) [53].

As another estimator of the extreme quantiles, we can cite the one obtained by

the approximation

F̄←(αn) '
(βn/αn)γ − 1

1− 2−γ
(F̄←(βn)− F̄←(2βn)) + F̄←(βn),

and valid regardless of the domain of attraction of the function F. The asymptotic

normality of the resulting extreme quantile estimator, i.e.

q̂DHαn =
(βn/αn)γ̂ − 1

1− 2−γ̂
(Xn−[nβn]+1,n −Xn−[2nβn]+1,n) +Xn−[nβn]+1,n,

was established by Dekkers and de Haan (1989 [38] ). It clearly appears that this
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extreme quantile estimator can be put in the form (1.44) and therefore (1.41) with

ân =
γ̂

1− 2−γ̂
(Xn−[nβn]+1,n −Xn−[2nβn]+1,n)

and

b̂n = Xn−[nβn]+1,n.

1.5 Tail index estimators

Estimating parameters constitutes an important task in extreme values theory, since

it is a starting point for statistical inference about extreme values of a population.

In particular, the extreme value index (EV I) or tail index, measures the right tail’s

weight of the df F, allowing us to describe the behavior of the extreme values of a

population. With the estimated EV I , it is possible to estimate other parameters of

extreme events like the extreme quantile, the return period and the probability of

exceedance of a hight threshold. There are two approaches : a parametric approach

and a semi-parametric approach. In the parametric case, the most widely used esti-

mation methods are: the maximum likelihood (ML) method and the method of mo-

ments (MM). For the semi-parametric approach we find several techniques, we cite

the most famous: the Hill estimator (1975)[79] and the Pickands estimator (1975)

[111].

LetX1,X2, ...,Xn be a sequence of random variables i.i.d. whose distribution func-

tion F and denote by X1;n,X2;n, ...,Xn;n the order statistics associated with this sam-

ple. We see that the asymptotic behavior of the maxima Xn,n (after renormalization)

is well known and can be modeled by the distribution of extreme values having for

parameter γ . This key parameter is called ”index of extreme values” or ”index tail”.

It measures the weight of the right tail of the underlying fdr F, which allows us to

understand and describe the behavior of extreme values of a population. According

to its sign, three domains of attraction are possible for F: Fréchet (γ > 0), Gumbel

(γ = 0) and Weibull (γ < 0).

Therefore, estimating this parameter is an important task in extreme value the-

ory (tail index estimation is important for many aspects), since it is a starting point

for statistical inference on the extreme values of a population. With its estimation,

it is possible to estimate other extreme event parameters like the right end point xF
of the underlying fdr F, the extreme quantiles, the return period and the probability

of exceeding a high level as well, provided that the existence of moments.

Depending on the importance, there is a large literature on tail index estimation.

Knowledge of γ is therefore necessary to solve a number of problems in extreme

value analysis, such as estimating extreme quantiles of X, which has made its esti-
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mation a central topic in the literature. The first two estimators of this parameter

were proposed in 1975 by Hill [79] and Pickands [111]. Then other estimators were

suggested, such as the maximum likelihood estimator or the moments estimator (de

Haan and Ferreira, 2006 [45]). Drees and Kaufmann (1998 [51]) showed that the

estimators of γ are, in general, regular functions of large order statistics. These es-

timators are called semi-parametric estimators. In the following, we present some

classic estimators for the extreme value index γ .

1.5.1 Maximum likelihood estimator

A widely used and flexible approach for parameter estimation is maximum likeli-

hood, it is the first method that remains the most popular and which under certain

conditions is the most effective. The aim of this approach is to obtain the set of

parameter estimates for which the joint probability density of the observed data is

maximised. In practice, the loglikelihood is maximised with respect to θ to obtain

the maximum likelihood estimate (MLE) θ̂.

The maximum likelihood estimator is built from observations of the maxima,

it is about estimating the index of extreme values as well as the two normalizing

sequences an and bn:

Let X1,X2, ...,Xn be a n-sample, the Xi are i.i.d. of density hθ where θ = (µ,σ ,γ).

The expression of the likelihood function is given by:

L(θ = (µ,σ ,γ); (X1, ...,Xn))=
n∏
i=1

hθ(xi) (1.45)

The estimator θ̂ is given by solving the following system: ∂ logL
∂θ = 0

∂2 logL
∂2θ

< 0
(1.46)

Example, in the case γ = 0 (Gumbel’s law), the log likelihood function is given:

logL(θ = (µ,σ ,γ); (X1, ...,Xn)) = −n logσ −
n∑
i=1

exp(−
xi −µ
σ

)−
n∑
i=1

exp(
xi −µ
σ

)

We derive this function relative to the two parameters, we obtain the following

system of equations to be solved:
∂ logL
∂σ = 0 ⇔ n+

∑n
i=1

xi−µ
σ [exp(−xi−µσ − 1)] = 0

∂ logL
∂µ = 0⇔ n−

∑n
i=1 exp(xi−µσ ) = 0



CHAPTER 1. EXTREME VALUE THEORY 46

solving this system is relatively difficult and does not generally admit explicit solu-

tions.

The maximum likelihood estimator is not straightforward. Jenkinson proposed

an iterative algorithm for maximizing the likelihood function. The corresponding

Newton-Raphson algorithm is given in Hosking[81] and improved in Macleod[99].

The asymptotic properties of the maximum likelihood estimator were studied by

Smith in 1985 [122]. He shows that if γ > −1/2, we have the consistency, efficiency

and asymptotic normality of these estimators. Zhou(2009 [136]) and Dombry ( 2013

[48] ) proved that the maximum likelihood estimator exists and is consistent for γ >

−1. Then in 2010, Zhou also obtained the asymptotic normality for −1 < γ < −1/2

and proved that it is not consistent for γ < −1.

1.5.2 Pickands estimator

The Pickands estimator (Pickands, 1975 [111]) is the first suggested estimator for

the parameter γ . The interest of this estimator is to be defined for γ ∈ R. This

estimator is constructed using three order statistics, it has the advantage of being

valid regardless of the domain of attraction of the distribution and therefore of the

domain of definition of the index of extreme values.

Definition 1.12 ( Pickands estimator)
The Pickands estimator is defined by:

γ̂
(P )
n;k =

1
log2

log
(
Xn−k+1;n −Xn−2k+1;n

Xn−2k+1;n −Xn−4k+1;n

)
. (1.47)

We shall give weak consistency and asymptotic properties of γ̂ (P )
n;k :

Theorem 1.11 (Weak consistency of γ̂ (P )
n;k )

Let (Xn)n≥1 be a sequence of iid rv’s with df F ∈ D(Hγ ) with γ ∈ R. Then as k→∞ and
k/n→ 0

γ̂
(P )
n;k

p
→ γ as n→∞

The properties of the Pickands estimator γ̂ (P )
n;k have been studied by Pickands

(1975 [111] ) and extended by Dekkers and De Haan (1989 [38] ). Pickands demon-

strates the weak consistency of his estimator and Dekkers and De Haan proved

that this estimator is strongly consistent (and therefore also weakly consistent) and

asymptotically Normal-distributed.

Theorem 1.12 (Asymptotic properties of γ̂ (P )
n;k )

Suppose that F ∈ D(Hγ ), γ ∈R, k→∞ and k/n→ 0 as n→∞.
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(a) Strong consistency: If k/ loglogn→∞ as n→∞, then

γ̂
(P )
n;k

a.s→ γ as n→∞

(b) Asymptotic normality: We suppose that U admits positive derivatives U ′ and that
±t1−γU ′(t) and that (with either choice of sign) is Π−varying at infinity with auxiliary
function a. If k = o(n/g−1(n)), where g(t) = t3−2γ (U ′(t)/a(t))2, then

√
k
(
γ̂

(P )
n;k −γ

)
d→N (0,η2) as n→∞,

where

η2 =
γ2(22γ+1 + 1)

(2(2γ − 1)log2)2 .

An improvement of the Pickands estimator is proposed by Drees[50]. It is a

convex combination of the Pickands estimators obtained for different values of k.

This estimator, called the Drees-Pickands estimator, which was generalized later by

Johan[85].

1.5.3 Hill estimator

After the Pickands’estimator, Hill (1975[79] ) introduced another estimator for γ ,

but is restricted to the case of heavy tails df which belong to Fréchet maximum

domain of attraction.

Let X1,X2, ...,Xn , n rv’s i.i.d. from cdf F ∈ D(Φγ ); where γ < 0. Let k = k(n) be a

sequence of integers with 1 < k < n.

Definition 1.13 (Hill’s estimator)
Hill’s estimator, denoted γ̂ (H)

n;k , constructed from the k largest order statistics, is defined
by:

γ̂
(H)
n;k =

1
k

k∑
i=1

logXn−i+1;n − logXn−k;n (1.48)

The construction of this estimator is based on the Maximum Likelihood method

where one uses statistics of order higher than a certain threshold u, to keep only

the largest observations, so that they follow approximately a distribution of Pareto.

After its construction, several researchers tried to determine its asymptotic proper-

ties. Thus, Mason (1982 [100] ) proved the weak consistency of the Hill estimator

for any sequence k = k(n) satisfying k →∞ and k/n→ 0 as n→∞ called an inter-

mediate sequence of integers. The condition k→∞ ensures that the size of k-order

statistics is large enough to obtain stable estimators. On the other hand, the k/n→ 0
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condition makes it possible to stay in the tail of the distribution. Davis and Resnick

(1984[36] ) proposed its asymptotic normality under the conditions of Von Mises;

Csörgő and Mason (1985 [29] ) presented its asymptotic normality by introducing

the approximation of empirical processes by Brownian bridges. In the same vein,

Resnick and de Haan (1998 [47] ) have shown this asymptotic property.

Theorem 1.13 (Asymptotic properties of γ̂ (H)
n;k )

Suppose that F ∈ D(Φγ ), γ > 0, k→∞ and k/n→ 0 as n→∞.

(a) Weak consistency:
γ̂

(H)
n;k

p
→ γ as n→∞

(b) Strong normality: if k/ loglogn→∞ as n→∞, then

γ̂
(H)
n;k

a.s→ γ as n→∞.

(c) Asymptotic normality : Suppose that the df F satisfies the second order condition. If√
kA(n/k)→ λ as n→∞, then

√
k
(
γ̂

(H)
n;k −γ

)
d→N

(
λ

1− ρ
,γ2

)
, as n→∞.



Chapter 2

Censored data

This chapter is dedicated to reminder of the essential concepts on censorship and

survival data. It will present a foreword on survival data and censoring with these

different types as well as estimating the survival function as well in a right-censoring

model. We will present some definitions related to the statistics of survival times.

Censorship is based on a few functions suchs as the distribution function, the sur-

vival function, the risk function... Many authors have been interested in the notion,

in particular Kaplan and Meier (1958 ,[88]), who have proposed an estimator of

the survival function which Beran generalized it (1981,[15]) in the conditional case

called the generalized or conditional Kaplan-Meier estimator.

2.1 Introduction

The problem of missing, incomplete or erroneous data is very vast and very rich by

the multitude of works which have been devoted to it, it has aroused a lot of interest

among statisticians in recent years.

Historically it was the British demographers John Graunt and William Petty who

established the first statistics on the survival times of the population in the middle

of the 17th century. It was not until the 19th century that tables linked to statistical

variables began to appear and the modeling of the risk function was started.

Survival analysis underwent significant development in the second half of the

twentieth century after Kaplan and Meier (1958 [88] ) introduced their famous sur-

vival function estimator for right-censored data.

Survival analysis involves the modeling of time to event data. It has been a

very active research for several decades. An important contribution that stimu-

lated the entire eld was the counting process formulation given by Aalen (1975 [1]

). The exibility of a counting process is that it allows modeling multiple (or recur-

rent) events. Since then a large number of textbooks have been written on survival

49



CHAPTER 2. CENSORED DATA 50

analysis and counting processes, with some key references being Andersen et al.

(1993 [3], Fleming and Harrington (1991,[56]), and Lawless (2003,[96]). Excellent

texts aimed at the biostatistical community with biomedical application as the mo-

tivating factor include Klein (1997 [91] ) and Moeschberger (1997), Therneau and

Grambsch (2000).

2.2 Survival times

Statistical life span analysis, or survival analysis, is the study of how long it takes for

an event to occur. It is a generic term for any analysis of the occurrence over time of

an event. The study of duration data (lifetime, failure time, re-employment time...)

subject to random censoring is a major topic in statistics, which finds applications

in many areas.

Survival times measured from an appropriate origin have two characteristics.

The first is that they are non-negative and such that an assumption of normality

is usually not reasonable due to pronounced asymmetry. The second is structural

and stems from the fact that for some individuals the event studied does not occur

during the observation period and consequently certain data are censored.

2.2.1 Definitions and Notations:

Analysis of survival data studies the appearance of an event over time.

In order to define a failure time random variable, we need some definitions:

2.2.1.1 Origin date:

It corresponds to the origin of the duration studied. It can be the date of birth,

the onset of exposure to a risk factor, the date of onset of the disease or the date of

surgery. Each individual can therefore have a different date of origin (not important

because it is the duration that interests us), e.g. diagnosis of a disease, start of

treatment (randomization)

2.2.1.2 Point date:

It’s the date or the end of the study and we will no longer take subject information

into account.

2.2.1.3 Date of the latest news:

This is the most recent date that information on a topic was collected.
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2.2.1.4 Domains of Applications

Survival data analysis is an area of statistics that finds its place in all fields of appli-

cation where the occurrence of an event, it is used in many fields;

In medicine, survival analysis is used to assess the effectiveness of a treatment.

For example, we want to estimate the probable survival time of a patient. We use

for this a sample of patients of which we know, for each of them,

- either the real survival time (uncensored data or detection),

-or a lower limit of this duration (censored data).

The second case occurs when a patient is lost, for example due to moving, or

when he or she dies for an unrelated cause.

In demography, survival analysis is used to construct life tables. These are used

by actuaries to determine the amount of life insurance and annuities, among others;

we speak of actuarial tables when the data is grouped into intervals.

In engineering, survival analysis makes it possible to estimate the reliability of

machines, electronic components...

2.2.2 Functions of Survival Time:

Now that we have introduced the main notions in survival analysis, let’s define the

variables and functions that we will be using.

Suppose that the survival time X is a positive or zero random variable, and abso-

lutely continuous defined on a probability space (Ω;A;P ); there are several equiva-

lent ways to characterize the probability distribution of a survival random variable

X. Some of these are familiar; others are special to survival analysis.

The functions most used in survival analysis and which best characterize the

distribution of X are the survival function S, the instantaneous risk function h and

the cumulative risk function H .

2.2.2.1 The distribution function

Definition 2.1 Distribution function F(t) describes the probability the time to event X
is smaller or equal compared to a fixed time (t) and is given as:

F(t) = P(X ≤ t) (2.1)

Remark 2.1 F(t) is an increasing monotonic function, continuous to the right such that:

lim
t→0

F(t) = 0 and lim
t→∞

F(t) = 1
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2.2.2.2 Survivorship Function (or Survival Function)

The survival function of X, also called the tail of the distribution, is defined as the

probability that X is greater than a certain time t, and is of considerable interest in

failure time analysis. Let S(t) denote the survival function of X, then,

S(t) = F(t) = 1−F(t) = P(X > t) (2.2)

Survival function S(t) can be also interpreted as the probability that a certain

object of interest will survive beyond a certain time t.

Remark 2.2 S(t) is a decreasing monotonic function, continuous to the left such that:

lim
t→0

S(t) = 1 and lim
t→∞

S(t) = 0

2.2.2.3 Empirical distribution and survival functions

Let X1, ...,Xn be a sample of size n ≥ 1 of a positive r.v X of cdf F and survival

function F. The empirical functions of distribution and survival, Fn and Fn are

respectively defined by:

Fn(t) =
1
n

n∑
i=1

I{Xi≤t} , ∀t ≥ 0 (2.3)

and

Fn(t) = 1−Fn(t) =
1
n

n∑
i=1

I{Xi>t} , ∀t ≥ 0 (2.4)

where I{A} denotes the indicator function of the set A.

Remark 2.3 Fn(t) is the proportion of the n variables that are less than or equal to t.
Fn(t) is the proportion of observations that exceeds t.
For 1 ≤ i ≤ n, the functions Fn and Fn are written in terms of the values of the order
statistics as follows:

Fn(t) =


0 if t < X1,n

i
n if Xi;n ≤ t < Xi+1,n

1 if t ≥ Xn,n

and

Fn(t) =


1 if t < X1,n

1− i
n if Xi,n ≤ t < Xi+1,n

0 if t ≥ Xn;n

The application of the strong law of large numbers on Fn(t) gives the following

result.
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Corollary 2.1
Fn(t)

a.s→ F(t) as n→∞

The result of this corollary can be strengthened in the following fundamental

result in nonparametric statistics, known under the name of theorem Glivenko-

Cantelli.

Theorem 2.1 (Glivenko-Cantelli)
The convergence of Fn to F is almost surely uniform, i.e.

sup
x∈R
|Fn(x)−F(x)| a.s→ 0 as n→∞

The proof of this Theorem could be found in any standard textbook of probabil-

ity theory such as (Billing [16], chapter 4)

Figure 2.1: Empirical and theoretical distribution function

2.2.2.4 Density function

The probability density function represents the probability of the event occurring

at time t, If F admits a derivative with respect to Lebesgue’s measure on R+, the

probability density function exists, and it is defined for all t ≥ 0 :

f (t) = lim
h→0

P(t ≤ X < t + h)
h

=
dF(t)
dt

,h > 0 (2.5)
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2.2.2.5 Hazard Function

An important function useful in survival is that of hazard function or ”chance rate”,

sometimes called an instantaneous failure rate.

Definition 2.2 the hazard function of X at time t, Noted h(t) and is defined by:

h(t) = lim
∆t→0

P(t ≤ X < t +∆t/X ≥ t)
∆t

(2.6)

it represents the instantaneous probability that a subject fails at time t given that the
subject has not failed before t.

Remark 2.4 The hazard function h; can also be defined in terms of cdf F(t) and the
probability density function f (t):

h(t) =
f (t)

1−F(t)
=
f (t)
S(t)

(2.7)

2.2.2.6 Cumulative hazard function

There is another quantity that is also common in survival analysis, the cumulative

hazard function, this is the integral of the hazard function from 0 to t:

H(t) =
∫ t

0
h(u)du =

∫ t

0

dF(x)

F(x)
= − log(S(t)) (2.8)

The previous five functions are mathematically equivalent, so they are
related to each other. It is sufficient to give any one of them, the others can

be derived: the knowledge of S(t) allows that of f (t) and therefore that of
h(t) thenH(t). Likewise, the knowledge of h(t) allows that of H(t) therefore of
S(t) and finally of f (t) . In other words, if we give ourselves only one of these
functions, then the others are at the same time also defined. In particular,
a choice of specification on the hazard function involves the selection of a
certain distribution of the survival data.

Example:

Suppose that the survival time of a population has the following density func-

tion:

f (t) = exp(−t), t ≥ 0,
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using the definition of the cumulative distribution function,

F(t) =
∫ t

0
f (u)du = 1− exp−t t ≥ 0

from 2.2, we obtain the survivorship function

S(t) = 1−F(t) = exp(−t)

the hazard function can then be obtained from 2.7:

h(t) =
f (t)
S(t)

=
exp−t

exp−t
= 1

2.2.2.7 Mean and variance of survival time

The mean survival time E(X) and the variance of the survival time V (X) are defined

by the following quantities

E(X) =
∫ ∞

0
tdF(t) (2.9)

= −
∫ ∞

0
td(1−F(t))

=
∫ ∞

0
S(t)dt

We can also show that, if V (X) exists, then:

V (X) = 2
∫ ∞

0
tS(t)dt − (E(X))2 (2.10)

2.2.2.8 Quantiles of survival time

The median of the survival time is the time t for which the probability of survival

S(t) is equal to 0.5, that is, the value tk which satisfies S(tk) = 0.5.

Sometimes it is possible to get a confidence interval of the median time. Let

[Bi ;Bs] be a level α confidence interval of S(tk); then a level α confidence interval of

the median time tk is

[S(Bs),S(Bi)]

The quantile function of survival time is defined by:

q(p) = inf(t;F(t) ≥ p), 0 < p < 1

= inf(t;S(t) ≤ 1− p)
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When the distribution function F is strictly increasing and continuous then:

q(p) = F−1(p), 0 < p < 1,

= S−1(1− p).

The quantile q(p) is the time when a proportion p of the population has disap-

peared.

Remark 2.5 Because the distribution of a failure time r.v. is often not symmetric (eg.
Exponential), we often use median survival. Also, median survival is usually better esti-
mated than mean survival.

2.3 Censorship and truncation

Many researchers consider that the analysis of survival data is only the application

of two conventional statistical methods to a particular type of problem: parametric

if the distribution of survival times is known to be normal and nonparametric if the

distribution is unknown. This hypothesis would be true if the survival times for all

subjects were accurate and known; however, some survival times are not. In addi-

tion, the survival distribution is often biased or far from normal. There is therefore

a need for new statistical techniques. One of the most important developments is

due to a special feature of survival data in the life sciences that occurs when some

study subjects have not experienced the event of interest at the end of the study

or at the time of analysis. For example, some patients may still be alive or disease

free at the end of the study period. The exact survival times for these subjects are

unknown. These are called censored observations or censored times and can also

occur when people are lost to follow-up after a period of study.

The phenomenon of censorship is linked to disruptive events that can occur in

the time needed to collect data. It is therefore frequently involved in measurements

that relate to variables modeling the time elapsed between two events: length of

life of an individual, time between the onset of an illness and recovery, duration of

an unemployment episode, ... etc. These disturbances prevent the observer from

accessing all of the information concerning the phenomenon he is studying and

leads to the appearance of incomplete so-called censored observations.

2.3.1 Censorship concept

An observation is censored when it is partially known. Censorship is the most com-

mon phenomenon encountered when collecting survival data.
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Definition 2.3 The censoring variable C is defined as the possible non-observation of
the event. If instead of observing X, we observe C, and we know that X > C (respectively
X < C, C1 < X < C2), we say that there is right censorship (respectively left censorship ,
interval censorship).

In reliability, censorship is the consideration of systems no breaches of the estab-

lishment of the law of reliability. More generally, the term applies when the exact

date of the failure is not known, either because the failure has not yet occurred or

has not been recorded with precision.

Example 2.1 In a medical context, censorship can occur when:

• the patient leaves the study,

• the patient does not present any symptoms / evolution before the end of the study,

• the patient file is lost.

2.3.2 Types of censoring:

Data censorship is done according to several mechanisms, observations can present

different types of censorship such as right censorship, left censorship, double (or

mixed) censorship.

For a given individual i, we will consider

• its survival time Xi , of distribution function F.

• its censorship variable Ci , with distribution function G.

• its actually observed variable Zi with distribution function H .

2.3.2.1 Right censoring

The most common form of censoring is ”Right censoring”, occurs when a time-to-

event is only known to be greater than a censoring time due to end of study, loss to

follow-up, or patient’s withdrawal. It is convenient to use the following notation:

for a specific individual under study, we assume that there is a lifetime X and a

fixed censoring time, Cr ( Cr for ”right” censoring time). The X’s are assumed to

be independent and identically distributed: The exact lifetime X of an individual

will be known if, and only if, X is less than or equal to Cr . If X is greater than Cr ,

the individual is a survivor, and his or her event time is censored at Cr . The data

from this experiment can be conveniently represented by pairs of random variables
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(Z;δ), where δ indicates whether the lifetime X corresponds to an event (δ = 1) or

is censored (δ = 0), and Z is equal to X, if the lifetime is observed, and to Cr if it is

censored, i.e., Z = min(X;Cr).

We call this right-censoring because the true unobserved event is to the right of

our censoring time; i.e., all we know is that the event has not happened at the end

of follow-up.

2.3.2.2 Left censoring

Left censoring is much rare. There is ”left censorship” when the individual has al-

ready experienced the event before it is observed. We only know that the variable

of interest X is less than a censoring time Cl (Cl for ”left” censoring time), that is,

the event of interest has already occurred for the individual before that person is

observed in the study at time Cl . For such individuals, we know that they have

experienced the event sometime before time Cl , but their exact event time is un-

known. The exact lifetime X will be known if, and only if, X is greater than or equal

to Cl . The data from a left-censored sampling scheme can be represented by pairs of

random variables (Z;δ), as in the previous kind, where Z is equal to X if the lifetime

is observed and δ indicates whether the exact lifetime X is observed (δ = 1) or not

(δ = 0). Note that, for left censoring as contrast with right censoring, Z = max(X;Cl).

For example if we want to reliably study a certain electronic component that is

connected in parallel with one or more other components: the system can continue

to operate, albeit in an aberrant fashion, until this failure is detected (for example

during control or in case of system shutdown). Thus, the duration observed for this

component is censored on the left.

In everyday life there are several phenomena which present both right and left

censored data.

2.3.2.3 Double or mixed censorship

We say that we have ”mixed or double censorship” in a sample if we have left-

censored data and right-censored data in the same sample. Several non-parametric

models have been presented for the study of double censorship. For example, the

model of Turnbull (1974 [129] ) is the most used, and several works are based on

this model.
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2.3.2.4 Interval censoring

Another type of censoring occurs when the lifetime is known only to lie in an inter-

val, instead of being observed exactly. In this case, as the name suggests, we observe

both a lower bound and an upper bound of the variable of interest. This pattern

is typically found in follow-up studies where patients are checked periodically if a

patient does not show up for one or more checks and then presents after the event

of interest has occurred. We also have this kind of data which is censored on the

right or, more rarely, on the left.

One advantage of this type is that it allows data to be presented censored to the

right or to the left by intervals of the type [a;+∞[and [0;a] respectively.

Example 2.2 ( right-censorship) :
A classic example of right-censorship is where the study examines the survival time X of
patients with a certain disease. For patients lost to follow-up after time C while they were
still alive, C censors X to the right since, for them, X is unknown but greater than C:
X > C.

Example 2.3 ( left censorship) :
An ethnologist studies the learning time of a task. This duration is a random variable X
and C is the age of the child. For children who already know how to accomplish the task,
C censors X to the left because for them X is unknown but less than C: X < C.

These four categories of censorship described above can arise depending

on the mode or mechanism of censorship. Thus, in the literature we find

the following types:

2.3.2.5 Type I Censoring

The experimenter sets a value (a non-random end date, for example). For example,

in epidemiology, the maximum duration of participation is fixed and the difference

between the date of end of the experiment and the date of entry of the patient into

the study is valid for each observation, eg. animal’s studies; all animals sacrificed

after 2 years. The number of events observed is random.

Let C be a fixed value. For example in right-censorship, instead of observing

the variables X1, ...,Xn which interests us, we observe Xi only when it is less than

or equal to the fixed duration C: We therefore observe a variable Zi such that Zi =

min(Xi ,C); i = 1, ...,n.

This censorship mechanism is frequently encountered in industrial applications.
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2.3.2.6 Type II Censoring

The experimenter fixes a priori the number of events to be observed. The end date

of the experiment then becomes random, the number of events being non-random.

This model is often used in studies of reliability, epidemiology, e.g. in engineering

reliability experiments, the stop of the experiment after the failure of machine parts.

Let X(i) and Z(i) be the order statistics of the variables Xi and Zi . The censorship

date is therefore X(r) and we only observe the following variables:

Z1,n = X1,n

.

.

Zr,n = Xr,n

Zr+1,n = Xr,n

.

.

Zn,n = Xr,n

2.3.2.7 Type III Censoring

This is the random version of type I. Typically this model is used for therapeutic

trials. In this type of experiment, the date of inclusion of the patient in the study is

fixed, but the end date is unknown (this corresponds, for example, to the length of

the patient’s hospital stay).

Let X1, ...,Xn a sample of a non-negative r.v X, we say that there is type III cen-

sorship of this sample if there is another positive r.v Y of sample Y1, ...,Yn in this

case instead of observing the Xi ’s, we observe a couple of r.v’s (Zi ,δi) with:

Zi = min(Xi ,Yi) and δi = I{Xi ≤ Yi}i=1,...n

Type I and type II censored observations are also called singly censored data,

and type III, progressively censored data.

2.3.3 Truncated data

Truncation is another part of missing data of which left truncation is the most com-

mon. It occurs when the loans have been at risk before entering the study. Trun-

cation is a condition other than the event of interest that is, for example, used to
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screen respondents or patients, see e.g. Klein and Moeschberger (1997 [91]). This is

very common in datasets, for example facilities enter the portfolio at a certain point

in time because loans are bought. In that case loans are at risk before entering the

portfolio and data is available.

2.3.3.1 Right truncation:

We say that there is right truncation when the variable of interest Xi (lifetime of

the ie individual) is not observable when it is greater than a fixed threshold R > 0,

i.e, all observations greater than an R value are ignored. As example, if you ask a

group of smoking school pupils at what age they started smoking, you necessarily

have truncated data, as individuals who start smoking after leaving school are not

included in the study.

2.3.3.2 Left truncation:

We say that there is left truncation when the variable of interest Xi (lifetime of

the ie individual) is not observable when it is less than a fixed threshold r > 0 ,i.e,

all observations less than an r value are ignored. Example if you wish to study

how long people who have been hospitalized for a heart attack survive taking some

treatment at home, the start time is taken to be the time of the heart attack, only

those individuals who survive their stay in hospital are able to be included in the

study.

Remark 2.6 We have left and right truncation if all observations less than an r value
or greater than an R value are ignored. If the part is not connected, we say that the
truncation is interval.

Note that there are also models where truncation and censorship are exploited

simultaneously to study practical cases.

2.4 Estimation of survival function

In the literature, several authors have been interested in estimating the survival

function in the case where the data are censored.

The main estimators playing an essential role in the framework of censored data

are:

• The Kaplan-Meier estimator (1958) for the survival function S(t): It is also

called the product-limit estimator.

• The Nelson-Aalen estimator for the cumulative hazard function H(t).
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The Kaplan–Meier is the most commonly used estimator of the survival function,

while the Nelson-Aalen is an alternative estimator for the same function.

Kaplan and Meier proposed a very efficient estimator of the survival function

when observations are right-censored, this estimator was generalized by Beran (1981

[15]).

2.4.1 Kaplan-Meier Estimator

The standard non-parametric estimator of the survival function is the Kaplan-Meier

estimator introduced by Kaplan and Meier (1958). It is also called ”Product-Limit”

because it is obtained as the limit of a product, and has been extensively studied in

the literature.

Definition 2.4 Let (Zi ,δi)1≤i≤n the actually observed sample and let (Z(i),δ(i)) its in-
creasing order statistic, the Kaplan-Meier estimator of the survival function S, denoted
ŜKM , is defined by:

ŜKM(t) =
n∏
i=1

( n− i
n− i + 1

)δ(i)I{Zi≤t}

The great advantage of the Kaplan-Meier (K-M) estimator is that it is computable

for right-censored data. The idea of the K-M estimator is given by the conditional

probability. Let ti ≤ ti+1:

S(ti) = P(T > ti)

= P(T > ti ,T > ti−1)

= P(T > ti |T > ti−1).P(T > ti−1)

= P(T > ti |T > ti−1).P(T > ti−1|T > ti−2)....P(T > t0 = 0)

We assume that at the start of the study all subjects were alive, so P(T >t0 = 0) = 1.

The conditional probability is

P(T > ti |T > ti−1) =
ni − di
ni

where ni is the number of subjects at risk in the study at the time ti , and di is the

number of subject dying at time ti .The Kaplan-Meier estimator is :

ŜKM(t) =
∏
i;ti≤t

ni − di
ni
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• This Kaplan-Meier estimator is a staged function with jumps only at uncen-

sored observations.

• The height of the jumps of this estimator is random.

• When all the observations are uncensored then we get the empirical distribu-

tion function.

Figure 2.2: Kaplan-Meier curve

The Kaplan-Meier estimator converges almost surely and uniformly to S (FÖLDES

et al. 1980 [57]). Under certain conditions of regularity, it converges in law to the

Gaussian process (see Breslow and Crowley 1974 [20]). The mathematical proper-

ties of this estimator can also be found in Chapter 7 of Shorack and Wellner (1986

[120]).

2.4.1.1 Variance of Kaplan Meier estimator

The estimate of the variance is given by Greenwood’s formula:

VAR(ŜKM(t)) = Ŝ2
KM(t)

∑
ti≤t

di
ni(ni − di)
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This formula had been given in 1926 by Greenwood1 before Kaplan and Meier

published their estimator in 1958.

2.4.1.2 The Kaplan-Meier estimator for left-censored data

If we have left-censored data, we have to estimate the cumulative distribution func-

tion instead of the survival function. We could use an estimator derived from the

idea of the Kaplan-Meier estimator. However, here we are interested in the infection

time instead of the dead time. We have the following statement (assuming ti ≤ ti+1):

F(ti) = P(T ≤ ti)

= P(T ≤ ti |T ≤ ti+1).P(T ≤ ti−1)

= P(T ≤ ti |T > ti−1).P(T ≤ ti+1|T ≤ ti+2)....P(T ≤ tn)

We assume that we have only non-censored or left-censored data. Then we have

P(T ≤ tn) = 1, as tn is the greatest time of realisation of all random variables. This

suggests the following estimator:

F̂L(t) =
∑
i;ti>t

ni − di
ni

where di is the number of subjects getting infected at time ti and ni is the number

of data in the study at time ti . If a data is left-censored, it would enter in the study

at the left-censor bound time, and may be count among ni . If a data ti is not left-

censored, it would enter in the study at time ti and count among di .

For the variance of this estimator, we may adapt the Greenwood’s formula chang-

ing ti ≤ t by ti > t.

The Kaplan-Meier estimator can be adapted for both left-truncated and right-

censored data or left-censored data. Other developments have been proposed to

consider data truncated on the left, truncated on the right or even censored by in-

terval (Peto, 1973 [110]; Turnbull, 1976 [129]; Lagakos et al., 1988; Andersen et al.,

1993 [3]).

2.4.2 The Generalised K-M estimator

Beran (1981, [15]) added a local aspect to the Kaplan-Meier estimator using smooth-

ing with Nadaraya-Watson weights. Thus, he was studying regression problems

1M. Greenwood, The natural duration of cancer, Reports on Public Health and Medical Subjects
33, 1926
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with censored data in a completely nonparametric context. We refer to [103] where

this estimator is presented with its properties.

The estimator thus proposed is defined as follows:

1− F̂n(z|x) = ŜGKM(z|x) =


n∏
i=1

(
1− Bi(x)∑n

j=1 I{zj≥zi }Bj (x)

)
I{z(i)≤z, δ(i)=1}

if z ≤ Z(n)

0 if not

where

Bi(x) =
K

(
x−Xi
hn

)
∑n
i=1K

(
x−Xi
hn

)
represent the Nadaraya-Watson weights, h→ 0, the window and K , the kernel.

This estimator is also called ”the conditional Kaplan-Meier estimator” or ”the

generalized Kaplan-Meier estimator”. Note that this estimator in the absence of cen-

sorship corresponds to the estimator of the empirical distribution function, studied

by Stone (1977,[125]).

2.4.3 Nealson-Aalen estimator

Kaplan and Meier introduced the limit product estimator for the survival function.

The cumulative hazard function estimator is the Nelson-Aalen estimator introduced

by Nelson in 1972 and generalized by Aalen in 1978 [1].

First of all, we observe that, under the general hypothesis of independence be-

tween X and Y , we can decompose H(t) as follows:

H(t) = 1− (1−F(t))(1−G(t))

= H (0)(t) +H (1)(t)

where

H (0)(t) = P(z ≤ t,δ = 0) =
∫ t

0
F(x)dG(x)

and

H (1)(t) = P(z ≤ t,δ = 1) =
∫ t

0
G(x)dF(x)

For t ≥ 0; the cumulative hazard function (1.8) can be expressed as follows

H(t) =
∫ t

0

G(x)dF(x)

H(x)
=

∫ t

0

dH (1)(x)

H(x)

Definition 2.5 The Nelson-Aalen non-parametric estimator ĤNA ofH based on the sam-
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ple {(Zi ,δi), 1 ≤ i ≤ n} defined by:

ĤNA(t) =
∫ t

0

dH
(1)
n (x)

Hn(x)
=


∑

zi:n ≤t

δ[i:n]
n−i+1 if t < zi:n

1 if t ≥ zi:n

where:

Hn(t) =
1
n

n∑
i=1

I{zi ≤ t} and H (1)
n (t) =

1
n

n∑
i=1

δiI{zi ≤ t}

respectively represent the empirical fdr of H(t) and the empirical version of H (1)
n (t) of

sample Z1, ...,Zn.

Asymptotically, Kaplan-Meier and Nelson-Aalen estimators are equivalent. On

small samples, Kaplan-Meier would be better when chance decreases over time,

while Nelson-Aalen would be better when chance increases over time (see Colosimo

et al.[23]).

Remark 2.7 We can notice that the Nelson-Aalen estimator of the cumulative chance
rate leads to a natural estimator of the survival function, by exploiting the relation S(t) =

exp(−H(t)); we can thus propose as a survival function estimator

ŜHF = exp(− ĤNA(t))

this estimator is the Harrington and Fleming estimator ( see Fleming [56]).

2.4.3.1 Variance of the Nelson-Aalen estimator

Using the theory of counting processes and approximating by a Poisson distribution,

we show that the variance of the Nelson-Aalen estimator is,

V ar(ĤNA(t)) =
∑

i/zi:n ≤t

δ[i:n]

(n− i + 1)2

Remark 2.8 We show that, under certain conditions, the Nelson-Aalen estimator is uni-
formly consistent, asymptotically normal and asymptotically unbiased (when P(Y = 0)→
0 ).

Another often used estimator is the Breslow or Peterson estimator. It is obtained

from the survival estimator KM and uses the equation linking the two functions,

H̃(t) = − logS(t)



CHAPTER 2. CENSORED DATA 67

We can show that Ĥ(t) < H̃(t): the Nelson-Aalen estimator is always lower than the

Breslow estimator 2. There is no reason, however, to favor one over the other.

2This comes from the fact that the log function being concave it is located under its tangent and
therefore, if we consider a Taylor expansion at order 1, it comes log(1− x+) < x+. As on the one hand
H̃(t) = −

∑
i\ti≤t

log(1− di
ni

) and Ĥ(t) =
∑

i\ti≤t

di
ni

, we immediately obtain the announced property.



Chapter 3

Risk Measurments and measures of
income inequality

Lord Kelvin once said � Anything that exists, exists in some quantity and
can therefore be measured�

Risk is a difficult notion to pin down. But generally speaking, it can be said that

this is an undesirable and relatively innocuous. The risk is generally harmless, but

still harmful enough to be undesirable. In this sense it is distinguished in particular

from the danger which supposes the possibility of serious or even lethal damage.

For example, someone who goes out bareheaded in cold weather will say that he

runs the risk of catching a cold, but we will say that he is in danger if he crosses a

highway.

A risk is an unlikely contingency, which is another difference from danger. We

speak of danger when the probability of occurrence and the consequences are sig-

nificant, while the risk exists when its probability of occurrence is not zero. The as-

sessment of these different criteria is highly subjective, which may justify the search

in scientific and technical fields for a quantifiable and rigorous definition of risk.

This chapter deals with risk measurement: in section 3.2 we present some nota-

tions and definitions for the following sections. Well-known measures of income in-

equality and the relationships between them are presented in section 3.3. In Section

3.4 we discuss what Lorenz curve and Gini coefficient, we give some main properties

that it may have.

3.1 Introduction

In recent years, increasing attention has been paid to methods allowing a quantified

measure to be associated with a risk, this risk possibly arising from a financial po-

68
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sition or contingencies insured by an insurance company, the latter including risks.

major varied such as natural disasters, pandemics, or industrial risks.

In general, a risk is an event which may or may not occur (i.e., a random event)

and has some adverse consequences. It is natural to model risk as a random variable

that represents the random amount of loss a company may experience. It can be

assumed that the random variables modeling risk losses are non-negative (similar

to insurance risk).

Since 1997 the paper of Artzner et al[5] risk measurement, and hence risk mea-

sures, have gained enormously in interest under economist, bank regulators and

mathematicians, giving rise to a new theory. A good reference for the Risk theory is

the book of Denuit et al [42] and Kaas et al [87].

3.2 Definitions and notations

At the beginning risk measurement was mainly focussed on the mathematical prop-

erties which reflect the underlying economical meaning, however in the last years

the statistical properties have become of increasing interest. Nowadays it is obvi-

ous to all working with risk, be it in practice or theory, that the procedure of risk

measurement in fact involves two steps:

1) Estimating the loss distribution of the position.

2) Constructing a risk measure that summarizes the risk of the position.

The position’s loss distribution in practice is generally unknown, and therefore

must be estimated from data. The estimation is essentially done by backtesting1.

Each one of the steps above should be regarded as equally important.

We are now ready to state the definition of a risk measure.

3.2.1 Risk measure

In recent years, increasing attention has been paid to methods allowing a quantified

measure to be associated with a risk, this risk possibly arising from a financial po-

sition or contingencies insured by an insurance company, the latter including risks.

major varied such as natural disasters, pandemics, or industrial risks. In general,

risk can be defined as a random variable representing a future value, but we focus

on the risk of loss , no profits.

Since risks are modelled as non-negative rv’s, measuring risk is equivalent to es-

tablishing a correspondence between the space of rv’s and non-negative real num-

bers R
+: The real number denoting a general risk measure associated with the risk

1the backtesting is the procedure of periodically comparing the forecasted risk measure with
realized values in the financial market.



CHAPTER 3. RISK MEASURMENTS AND MEASURES OF INCOME
INEQUALITY 70

X will henceforth be denoted as %[X]: Thus, a risk measure is nothing but a func-

tional that assigns a non-negative real number to a risk. See Szegö (2004) for an

overview. It is essential to understand which aspect of the riskiness associated with

the uncertain outcome the risk measure attempts to quantify.

Consider a probability space (Ω,A,P) where:

• Ω represents the set of all possible scenarios;

• A is a tribe;

• P is a measure of probability.

The future value of a scenario is uncertain and can be represented by a r.v X.

This is a function of all possible scenarios to the real numbers, X : Ω→R.

Definition 3.1 ( risk)
Let (Ω,A) be a measurable space where Ω is the results space and A is the tribe defined
above. A risk is a random variable defined on (Ω,A).

When X > 0, we call it a loss, whereas when X < 0, we call it a gain.

The class of all random variables on (Ω,A) is denoted by X . X contains the

constants and is stable by addition and multiplication by a scalar.

As its name suggests, a risk measure quantifies the danger inherent in a risk

represented by a random value X (measuring risks means establishing a correspon-

dence between the random variable representing the risk and a non-negative real

number).

Here we take up the definition of a risk measure as formalized in Denuit and

Charpentier (2005) [?, ?]

Definition 3.2 (risk measure)
A risk measure is a functional % mapping a risk X to a non-negative real number %[X]

; possibly infinite, representing the extra cash which has to be added to X to make it
acceptable.

The idea is that % quantifies the riskiness of X: large values of %[X] tell us that X

is ‘dangerous’. Specifically, if X is a possible loss of some financial portfolio over a

time horizon, we interpret %[X] as the amount of capital that should be added as a

buffer to this portfolio so that it becomes acceptable to an internal or external risk

controller. In such a case, %[X] is the risk capital of the portfolio.

Such risk measures are used for determining provisions and capital require-

ments in order to avoid insolvency.

Another function that is useful in analysing the thickness of tails is the ”mean-

excess loss”.
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Definition 3.3 Given a non-negative rv X; the associated mean-excess function (mef)
eX is defined as

eX(x) = E[X − x|X > x] ,x > 0 (3.1)

The mef corresponds to the well-known expected remaining lifetime in life in-

surance. In reliability theory, when X is a non-negative rv, X can be thought of as

the lifetime of a device and eX(x) then expresses the conditional expected residual

life of the device at time x given that the device is still alive at time x.

There are many risk measures introduced in literature and practice, and choos-

ing a risk measure can be difficult. One approach to dealing with the issue of risk

measurement is to start with a list of properties that a risk measurement must sat-

isfy.

To meet the need for theoretical and practical principles, it is customary for a

risk measure to verify a number of properties. A list of axiomatic properties for a

good measure of risk was introduced in the seminal article by Artzner et al. The

verification of these properties leads to the notion of a coherent risk measurement.

Definition 3.4 Two random variables with real values X and Y on (Ω,A) are comono-
tonic if

(X(w)−X(ẃ))(Y (w)−Y (ẃ)) ≥ 0, ∀(w,ẃ) ∈Ω×Ω (3.2)

Proposition 3.1 For two random variables with real values X and Y on (Ω,A) the fol-
lowing conditions are equivalent:

i) X and Y are comonotonic,

ii) They exist a r.v. Z on (Ω,A) and two non-decreasing functions f and g on R such
that X = f (Z) and Y = g(Z).

Definition 3.5 A risk measure % : X → R which satisfies %(X) = %(Y ) for all X,Y ∈ X
such that X and Y have the same distribution below % is called a law invariance risk
measure.

Definition 3.6 A function ψ, defined over an interval I , is convex over I if the part of
the plane located above the curve is convex, i.e., if any arc of its representative curve is
located below the corresponding chord. This definition translates into:

ψ(kx1 + (1− k)x2) ≤ kψ(x1) + (1− k)ψ(x2) (3.3)

∀k ∈ [0,1] and ∀x1,x2 ∈ I . If −ψ is convex, ψ is said to be concave.
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For the definitions of all axioms, X and Y are random variables representing

loss, c ∈R is a scalar representing loss, and % is a risk measure.

Axiom 3.1 Translation invariance: %(X + c) = %(X) + c, for any X ∈ X and for any c ≥ 0.

Axiom 3.2 Monotonicity: If X and Y are two losses such that X < Y , then %(X) ≤ %(Y ).

Axiom 3.3 Positive homogeneity: %(cX) = c%(X) , for all X ∈ X and all c ≥ 0.

Axiom 3.4 Subadditivity: %(X +Y ) ≤ %(X) + %(Y ) for all X,Y ∈ X .

Axiom 3.5 Additivity for comonotonic risks: %(X + Y ) = %(X) + %(Y ) for all X,Y ∈ X
such that X and Y are comonotonic.

Artzner et al. analyzed measures of risk and stated a set of axioms that should

be desirable for any measure of risk. Any measure of risk that satisfies these axioms

is said to be coherent.

3.2.1.1 Coherent risk measures

Several authors have selected some of the precedent conditions to form a set of re-

quirements that any risk measure should satisfy. The first class of risk measures

which was introduced by Artzner et al (1999 [5]) is the coherent risk measures. And

was constructed to possess all mathematical properties to properly reflect the econ-

omy. And hence it takes the second step within the risk measurement procedure

into account. A risk measure is called coherent if it satisfies axioms presented in the

following definition.

Definition 3.7 A risk measure that is translative, positive homogeneous, subadditive
and monotone is called coherent.

Theorem 3.6 A risk measure is coherent if and only if there is a family P of probability
measure over all the states of nature such as:

%(X) = sup{EP (X)/P ∈ P } (3.4)

Proof.See Artenzer et al.(1999 [5] ) for a demonstration.

This axiomatic definition is the cornerstone of a very rich theory which draws its

modules from functional analysis and has interesting economic interpretations.

It is worth mentioning that coherence is defined with respect to a set of axioms,

and no set is universally accepted. Modifying the set of axioms regarded as desirable

leads to other ‘coherent’risk measures.
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3.2.2 Ways of measuring risk

Several families of risk measures are presented in the risk theory literature. The

usual measures most used by practitioners are:

3.2.2.1 Value-at-Risk

One of the most popular risk measures is Value-at-Risk (VaR), it was developed in

the 1990’s as a response to financial disasters. Although developed in the 1990’s,

the methodology behind VaR is not new, it can be traced back to 1952 to the basic

mean-variance framework

Definition 3.8 Given a risk X and a probability level p ∈ [0;1] ; the corresponding V aR;
denoted by V aR(X;p) ; is defined as

V aR(X;p) = F−1
x (p) (3.5)

Note that the V aR risk measure reduces to the percentile principle of Goovaerts

et al. (1984 [74]).

Value-at-Risk remains one of the main risk indicators for the management of

financial portfolios. It is worth mentioning that VaR’s always exist and are expressed

in the proper unit of measure, namely in lost money. Since V aR is defined with the

help of the quantile function F, all their properties immediately apply to V aR. We

will often resort to the following equivalence relation, which holds for all

V aR(X;p) ≤ x⇔ p ≤ Fx(x)

VaR fails to be subadditive (except in some very special cases, such as when the Xi
are multivariate normal). Thus, in general, V aR has the surprising property that the

VaR of a sum may be higher than the sum of the VaR’s. In such a case, diversification

will lead to more risk being reported. Consider two independent Pareto risks of

parametre 1;X and Y : Show that the inequality

V aR(X;p) +V aR(Y ;p) < V aR(X +Y ;p)

holds for any p; so that VaR cannot be subadditive in this simple case. A possi-

ble harmful aspect of the lack of subadditivity is that a decentralized risk manage-

ment system may fail because V aR’s calculated for individual portfolios may not be

summed to produce an upper bound for the V aR of the combined portfolio.
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3.2.2.2 Tail Value at Risk (TVaR)

In addition to highlighting the inconsistency of the V aR, Artzner et al., member of

coherent risk measures has also been proposed as an alternative risk measure: the

Tail Conditional Expectation or Tail Value-at-Risk (denoted TCE or T V aR).

Definition 3.9 Given a risk X and a probability level p; the corresponding T V aR, de-
noted by T V aR(X,p); is defined as

T V aR(X,p) =
1

1− p

∫ 1

p
V ar[x,ζ]dζ, 0 < p < 1 (3.6)

We thus see that T V aR(X,p) can be viewed as the arithmetic average of the VaR’s

of X; from p on [0;1].

3.2.2.3 Some related risk measures

3.2.2.3.1 Conditional Tail Expectation The conditional tail expectation (CTE)

represents the conditional expected loss given that the loss exceeds its VaR.

Definition 3.10 For a risk X, the Conditional Tail Expectation (CTE) at probability
level p ∈ (0;1) is defined as:

CTE(X,p) = E(X\X > V aR(X,p)) (3.7)

So the CTE is the ’average loss in the worst 100(1 − p)% cases’. Writing d =

V aR(X,p) we have a critical loss threshold corresponding to some confidence level

p, CTE(X,p) provides a cushion against the mean value of losses exceeding the

critical threshold d.

3.2.2.3.2 Conditional VaR An alternative to CTE is the conditional VaR (orCV aR).

The CTE(X,p) is the expected value of the losses exceeding VaR.

CV aR(X) = E((X −V aR(X,p)\X > V aR(X,p)) (3.8)

= CTE(X,p)−V aR(X,p)

It’s easy to see that CV aR is related to the mean-excess function through

CV aR = eX(V aR(X,p)) (3.9)

Therefore, evaluating the mef at quantiles yields CV aR.



CHAPTER 3. RISK MEASURMENTS AND MEASURES OF INCOME
INEQUALITY 75

3.2.2.3.3 Expected Shortfall As the V aR at a fixed level only gives local informa-

tion about the underlying distribution, a promising way to escape from this short-

coming is to consider the so-called expected shortfall over some quantile. Expected

shortfall at probability level p is the stop-loss premium with retention V aR(X;p) :

Specifically,

ES(X,p) = E((X −V aRp)+) (3.10)

= πx(V aR(X,p))

3.2.2.4 Relationships between risk measures

The following relation holds between the risk measures defined above.

Proposition 3.2 For any p ∈ [0,1], The following identities are valid:

T V aR(X,p) = V aR(X,p) +
1

1− p
ES(X,p) (3.11)

CTE(X,p) = V aR(X,p) +
1

Fx(V aR(X,p))
ES(X,p) (3.12)

CV aR(X,p) =
ES(X,p)

Fx(V aR(X,p))
(3.13)

Proof.See Denuit et al (2005 [42]).

Corollary 3.1 Note that if Fx is continuous then by combining (3.11) and (3.13) we
find:

CTE(X,p) = T V aR(X,p), p ∈ [0,1] (3.14)

so that CTE and T V aR coincide for all p in thisin this special case. In general, however,
we only have

T V aR(X,p) = CTE(X,p) + (
1

1− p
− 1

Fx(V aR(X;p))
)ES(X;p) (3.15)

Since the quantity between the brackets can be different from 0 for some values of p;
T V aR and CTE are not always equal.

Remark 3.1 Value-at-Risk, although widely used in finance, is not a coherent risk mea-
sure because it is not sub-additive; the same goes for the variance. On the other hand, the
CVaR is a coherent risk measure.



CHAPTER 3. RISK MEASURMENTS AND MEASURES OF INCOME
INEQUALITY 76

3.2.3 Income distribution

The discussion on income distribution and economic growth has gained importance

since the emergence of the Great Recession. Central banks and Treasuries of devel-

oped countries avoided the collapse of the banking systems and the depression of

these economies. The profitability of corporations has increased (Richard Baldwin
2011 [8]), but the economic growth of these economies has been low.

Income distribution is extremely important for development, since it influences

the cohesion of society, determines the extent of poverty for any given average per

capita income and the poverty-reducing effects of growth, and even affects people’s

health.

It finds that the Kuznets hypothesis that income distribution worsens as levels of

income increase is not at all strongly supported by the evidence, while growth rates

of income are not systematically related to changes in income distribution. How-

ever, evidence is accumulating that more equal income distribution raises economic

growth.

A renewed interest in income distribution has developed because of recent his-

tory of the personal income distribution. After several decades of apparent stasis

from the late 1970s onwards there has been a remarkable increase in the dispersion

of incomes in many countries.

In economic analysis income distributionı̂is interpreted in two principal ways:

the functional distribution of income - i.e. the distribution of income among factors-

and the size distribution of income (or distribution of income among persons).

”Why the focus on income rather than some other measurable quantity?”

In many treatments of the subject income plays one of two roles, sometimes both:

• Income as a proxy for economic welfare. If one adopts an individualistic, wel-

farist approach to social economics then it is reasonable to be concerned with

individual well-being or utility. In some respects the low of income captures

this, but it has been argued that consumption expenditure may be a more ap-

propriate economic indicator. It should also be acknowledged that individual

well-being may be determined not only by the level of one’s own income but

also by its relation to the incomes of others

• Income as command over resources. This role of income can be interpreted

in more than one way. If one has in mind spending power then perhaps dis-

posable income (income after taxes and compulsory deductions) may be an

appropriate concept. But if inequality is associated with economic power and

status then a measure of wealth may be more appropriate.
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3.2.4 Definition of inequality

There are many reasons why policymakers and researchers alike are concerned with

a country’s degree of economic inequality. Recent studies show that persistent in-

come disparities among individuals are associated with poverty and deprivation,

mental illness, social unrest, and crime, as well as lower levels of education, em-

ployment, and life expectancy ( Stiglitz, 2012[124]). Many public policies such as

taxes, welfare benefits, provision of education and health services, price, and com-

petition regulations have distributional implications for income.

In the Oxford Dictionary of Economics, inequality is the differences in the dis-

tribution of economic stocks or flows among economic agents. For example, wealth

inequality refers to the distribution of the stock of wealth, whereas income inequal-

ity refers to the distribution of the flow of income’ (Black et al. 2012). Inequality is

broadly defined as the ‘unequal rewards or opportunities for different individuals

within a group or groups within a society’ (Scott and Marshall, 2009 [118]). This

definition mentions two aspects of inequality:

• Unequal rewards,

• Unequal opportunities.

Researchers in the area of income distribution agree that a higher mean income

increases social welfare while higher inequality decreases it. The question is how

to measure inequality. In his seminal paper, Atkinson (1970 [6]) proved that if

one Lorenz curve is always not lower than the other, then the income inequality

in the distribution with the upper Lorenz curve is smaller than the inequality in

the lower curve for every additive concave social welfare function, provided that

the two distributions have equal means. If, on the other hand, the Lorenz curves

of two distributions intersect, then one can always find two additive concave social

welfare functions that will rank inequality in the two distributions in a reversed

order. Shorrocks (1983 [121]) extended the above result to comparisons of distribu-

tions with different means. He showed that having a distribution with an absolute

Lorenz curve that is always not lower than the other forms a necessary and suffi-

cient condition for the expected value of every concave social welfare function to be

greater than the expected welfare of the distribution with the lower absolute Lorenz

curve.

The term inequality can be explained from a mathematical point of view as a

distinction between two or more particular characters, provided that these charac-

ters can be quantified. From another perspective, the notion of inequality by many

people is perceived as a failure to achieve equal opportunities, which is determined

by different circumstances that people can not influence.
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Inequality can have many dimensions. Economists are concerned specifically

with the economics or monetarily-measurable dimension related to individual or

household income and consumption. However, this is just one perspective and in-

equality can be linked to inequality in skills, education, opportunities, happiness,

health, life expectancy, welfare, assets and social mobility.

An explanation for an automatic fall in inequality in rich countries from 1914

to 1945 could be simply because of the World Wars, the great economic depression,

and political shocks (Piketty, 2014 [113]). Many critiques (for instance, Anand and

Kanbur 1993 [2]) point out that there has been not an apparent and significant ‘bell

curve’ relationship between economic growth and inequality within a country. An-

other evidence is an expansion in income gap in the Europe in the 1980s and 1990s

(Doerrenberg and Peichl 2014 [43]). Even when supporting Kuznets’s hypothesis in

the case of early stage of the transformation from agricultural to industrial econ-

omy, economists (e.g. Ahluwalia 1976, Barro 2000) cannot predict a turning point

where income inequality stops accelerating, or when it starts to decline.

“Income inequality” is the extent to which income is distributed unevenly across

people or across households. Income encompasses labor earnings (such as wages,

salaries, and bonuses), capital income derived from dividends, interest on savings

accounts, rent from real estate, as well as welfare benefits, state pensions, and other

government transfers. In addition, it is possible to distinguish between individual

versus family income, pre-tax versus after-tax (disposable) income, and labor earn-

ings versus capital income.

3.3 Measuring income inequality

The aim of this section is to summarise the major statistical measurements of in-

equality. This era has witnessed a considerable evolution of inequality economics

with a variety of measurements of inequality. Applications of mathematical tech-

niques for research in inequality have had an advantage since data indicating in-

equality has been better recorded from the beginning of the twentieth century (Piketty

2014 [113]). Furthermore, the exclusion of political elements in theoretical mea-

surements of inequality allows the economics of inequality to focus entirely on

economic issues. The majority of economists no longer classify society into three

classes (i.e. capitalists, landlords and proletarians). Grouping individuals is in-

stead subjected to different criteria which are based on particular research contexts

such as income, educational background, gender, age and ethnicity. Measurements

of inequality have been widely applied to many countries in the final third of the

twentieth century. Thus, the literature on economic inequality should reflect these
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empirical results of inequality measures.

It is well known that different indicators of income inequality can send conflict-

ing messages about the evolution of inequality, both within countries and across

time (Cowell, 2011 [28]; and World Bank, 2016 2). But even in a given country at

one point in time, the same income inequality indicator can suggest significantly

different levels of inequality.

There is a wide variety of inequality indices in common use, below we will dis-

cuss the most important indicators and the most common and used:

3.3.1 The GMD and GINI coefficient.

A century later, the Gini concentration ratio is still of great interest for the inter-

national scientific community. In fact, the large scientific production on the Gini

concentration ratio in the last decades seems to confirm the long wave of its topi-

cal interest. In particular, new extensions, interpretations, and uses have continued

to keep the interest for this index alive. The Gini concentration ratio is typically

computed using data coming from sample surveys. Therefore, it should not be used

only as a descriptive measure, but a formal statistical inference is rather necessary.

The Gini concept or the mean difference of the Gini, initiated by Gini in 1912,

is a characteristic of widespread dispersion in the field of income distribution. The

specificity of this indicator lies in its simple calculations. The Gini index uses the

Euclidean distance between all pairs in the sample

Gini’s mean difference (GMD) was first introduced by Corrado Gini in 1912 as

an alternative measure of variability. GMD and the parameters which are derived

from it (such as the Gini coefficient, also referred to as the concentration ratio) have

been in use in the area of income distribution for almost a century, and there is

evidence that the GMD was introduced even earlier (Harter, 1978 [78]). In other

areas it seems to make sporadic appearances and to be “rediscovered” again and

again under different names.

Gini’s mean difference is defined as

GMD = 2
∫
F(t)[1−F(t)]dt (3.16)

where F(t) represent the cumulative distribution function. See Dorfman (1979[49]).

The most traditional member of the income inequality family is the Gini coeffi-

cient. It is widely used to measure income inequality, mainly because of its intuitive

geometric interpretation.

2World Bank, 2016, “Poverty and Shared Prosperity 2016: Taking on Inequality,” Washington,
D.C: World Bank.
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The Gini Coefficient is well established as a conventional, ad hoc measure of in-

come inequality. Recently there has been a flurry of interest in it, stirred up by a

debate about its significance as a measure of economic welfare (Atkinson, 1970[6];

Rothschild and Stiglitz, 1973 [124]; Sen, 1973 [119]) in the course of which a con-

fusing variety of formulas for the coefficient have been published, some of them

quite complicated (Atkinson, 1970 [6]; Sen, 1973 [119]; Theil, 1967[127], for exam-

ple). The Gini coefficient was developed independently of the GMD, directly from

the Lorenz curve and for a while it was called “the concentration ratio.” Gini (1914)

has shown the connection between the GMD and the concentration ratio. Ignoring

the differences in definitions, the relationship between the GMD and the Gini co-

efficient is similar to the one between the variance and the coefficient of variation,

CV = σ
µ a property that was already known in 1914. That is, the Gini coefficient

is a normalized version of the GMD and it is unit-free (measured in percent). In

order to calculate it one only needs to derive the GMD, and then easily convert the

representation into a Gini coefficient by dividing by twice the mean.

We will propose a simple formula for the Gini Coefficient that will apply to both

discrete and continuous distributions of income and will be well defined and valid

whether or not there is a finite upper limit to the income that can be received by

anyone, provided the mean of the distribution is finite.

Definition 3.11 The Gini index is defined as twice the area between the egalitarian line
and the Lorenz curve.

Thus, if X is a random variable in L with Lorenz curve LX , a formula for its Gini

index, G(X) or simply G if the random variable is known from the context, is

G(X) = 2
∫ 1

0
[u −LX(u)]du = 1− 2

∫ 1

0
LX(u)du (3.17)

Theorem 3.7 The Gini index can be expressed as

G(X) = 2
∫ 1

0
uL̀X(u)du − 1 (3.18)

Theorem 3.8 The Gini index can be written as

G(X) = 1− E(X1:2)
µ

= 1− 1
µ

∫ ∞
0

[1−FX(x)]2dx (3.19)

where X1:2 is the smaller of a sample of size 2 with the same distribution as X.

If we denote by F the cumulative distribution function (CDF) of the incomes
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under study, the Lorenz curve is defined implicitly by the equation

LX(F(x)) =
1
µ

∫ x

0
ydF(y), (3.20)

where µ =
∫∞

0
ydF(y) is expected income. It is assumed that there are nonegative

incomes. The function LX is increasing and convex, and maps the [0,1] interval into

itself. Twice the area between the graph of L and the 45o-line is then

G = 1− 2
∫ 1

0
L(y)dy (3.21)

Using the definition (3.20) in (3.21), we find that:

G = 1− 2
∫ ∞

0
L(F(x))dF(x)

= 1− 2
µ

∫ ∞
0

∫ x

0
ydF(y)dF(x)

Then,on interchanging the order of integration and simplifying, we obtain:

G = 1− 2
µ

∫ ∞
0
y

∫ ∞
y
dF(x)dF(y)

= 1− 2
µ

∫ ∞
0
y(1−F(y))dF(y)

= 1 +
2
µ

∫ ∞
0
yF(y)dF(y)− 2

=
2
µ

∫ ∞
0
yF(y)dF(y)− 1 (3.22)

The last expression above corresponds to a result cited in Modarres and Gast-

wirth (2006) [102] according to which G is 2/µ times the covariance of Y and F(Y ),

where Y denotes the random variable “income” of which the CDF is F. There are of

course numerous other ways of expressing the index G, but 3.22 is most convenient

for present purposes.

The Gini index is a complex and synthetic indicator of inequality. It provides

condensed information on the distribution of income, but not on its characteristics,

such as location and form. It is also an indicator associated with the descriptive

approach to measuring inequality.

Morrison points out that: “The most important and the most common is the Gini

coefficient.” It must be recognized, however, that the scope of the results of this cal-

culation also has limits. The Gini coefficient is too global and does not clearly distin-

guish the three social categories (rich, middle, poor). Chauvel raises that “theoreti-
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cally and practically, Gini is a measure far too crude to provide a reliable diagnosis

of inequalities”.

The intersection of Lorenz curves is also a major limitation to Gini’s results.

”The Gini coefficients are only supposed to offer a valid instrument of compari-

son between two or more societies if the associated Lorenz curves don’t intersect”,

Chauvel. When these curves intersect, a lot of information is hidden.

According to Morrisson, ”the downside of the Gini coefficient is that very differ-

ent Lorenz curves can correspond to the same value of the Gini index.” We can see

this in the next exemple:

Example 3.1 Two income distributions with the same Gini index

Figure 3.1: Lorenz Curve



CHAPTER 3. RISK MEASURMENTS AND MEASURES OF INCOME
INEQUALITY 83

These two distributions are represented by the Lorenz curves in Figure 3.3.1.

Since they intersect, they cannot be used to classify them in terms of income in-

equality. But the way they intersect gives areas of equal value before and after the

intersection. It can be concluded that the Gini index is the same, despite the large

income differences.

3.3.2 Atkinson’s measurement of inequality

Atkinson (1970 [6]) illustrates an alternative measurement of inequality calculated

as follows:

IA = 1− YEDE
µ

where YEDE is defined as ”the equally distributed equivalent income”; and µ is the

average real income.

His distinguishing idea is to emphasize the relationship between inequality and

social welfare based on the aggregation of individual utilities. Equal distribution

only occurs when ”the equally distributed equivalent income”, YEDE , is equal to the

mean income. An absence of this ideal condition implies that YEDE deviates from

the mean, µ; the larger the difference between YEDE and µ, the higher the inequality

level. The result of this is that social wealth loss is proportionate to the level of

inequality.

Alternatively, using the social welfare function (SWF)3, inequality can be mea-

sured as follows:

IA = 1−

∑
i

(
yi
µ

)1−ε
f (yi


1

1−ε

(3.23)

In this equation, the level of inequality is clearly subject to changes in the in-

equality aversion degree −ε. The greater the ε, the greater the weight dedicated

to the lower end of the distribution. Using equation (??), Atkinson resolves the

problem of the crossing of the Lorenz curve and estimates inequality with a par-

tial ordering solution. In these cases, measuring inequality with the Lorenz curve

could not produce sensible results. However, by choosing ε in the range of 1.5 to 2,

the number of controversial comparisons was reduced to five cases. However, this

approach depends heavily on the choice of a value for ε.

The Atkinson index is advantageous in terms of evaluation of lost value in economies

due to inequity. This approach also provides a series of results depending upon the

social attitude to inequality. The more a community is concerned about inequal-

3The social welfare function is a statistical ‘aggregator’ that turns a distribution into a single num-
ber that provides an overall judgement on that distribution and that forces us to think coherently
about welfare and its distribution.
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ity, the higher the inequality aversion parameter (ε). Subsequently, the index will

be greater, irrespective of the distribution being the same. However, when com-

pared with the Gini coefficient and Theil indices, Atkinson’s measurement is unable

to analyse inequality attributions to different subgroups; thus, it cannot be used

as a decomposition technique for understanding within-inequality and between-

inequality (Gisbert et al. 2009 [68])

3.3.3 The standard deviation method

A simple measurement of inequality is an estimate of the deviations of every mem-

ber of the population from the standard deviation. Given a population having n

individuals (i), with a semi-infinite income distribution (range from 0 to +∞) and

the mean income (y), the variance of this distribution (var) is defined as the second

moment about the mean or ‘the mean of squares of the deviations from the mean’

(Kendall and Stuart 1977 [89], pp.42- 47); it is computed as follows:

var =
∫ +∞

0
(y − y)2dF =

1
n

n∑
i=1

(y − yi)2 (3.24)

Then the positive square root of variance is called standard deviation (σ =
∣∣∣√var∣∣∣),

which is also the root-mean-square.

Another measurement of inequality that can avoid the ‘arbitrariness of the units’

uses the standard deviation in the logarithmic form (SDL) (Sen 1973 [119]):

SDL =

√∑n
i=1(lny − lnyi)2

n
(3.25)

Yet, Sen (1973) [119] finds that the measurement is not concave at the high in-

come levels and only considers the distances between each of individuals’ income

and the mean income. This could be a reason for the absence of applications of SDL

for inequality analysis, which is also analogous to the case of the mean log deviation.

3.4 The Lorenz curve and Gini coefficient

The contents of this section is built on the contributions of two scholars who lived

more than a century ago: the Italian statistician Corrado Gini, and the American

economist Max Otto Lorenz 4, begining with the definition of classical index of Gini.

The “Lorenz curve” is a common graphical method of representing the degree of

4Max Otto LORENZ (1880 - 1962) is the American economist who invented the graph represent-
ing the curve that bears his name in 1905.
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income inequality in a country [64]. It plots the cumulative share of income (y axis)

earned by the poorest x% of the population, for all possible values of x. The 45-

degree line represents the line of equality, when income is shared equally among

all individuals. If, however, income is not shared equally, then the bottom x% of

individuals earn less than x% of total income in the country, implying that Lorenz

curves typically lie below the 45-degree line. Moreover, the further away the Lorenz

curve is from the equality line, the more unequal the income distribution.

Several inequality indices can be derived from the Lorenz diagram. The Lorenz

Curve construction also gives us a rough measure of the amount of inequality in the

income distribution. This measure is called the Gini Coefficient. The Gini coefficient

is a standard measure of inequality defined as the area between the Lorenz curve

and the line of perfect equality divided by the area below the perfect equality line.

The most common measure that economists and sociologists use is the Gini index

mainly because of clear economic interpretation. The Gini concentration index has

been estimated in di erent ways to obtain valid variance.

3.4.1 Lorenz curve

The Lorenz or the concentration curve play important roles in the areas of GMD and

the related measures such as Gini covariance, Gini correlation, Gini regression, and

more.

Historically, Lorenz (1905 [98]) presented the ”Lorenz curve” as based on the re-

lationship between the cumulative distribution of the variable (the horizontal axis)

and the cumulative value of the percentage of the variate (the vertical axis). The

Lorenz curve is a pivotal tool in the study of economic inequality and the distribu-

tion of wealth in the society[90]. Consider a positive continuous random variable

Y , belonging to the L−1 class, i.e. µ = E(Y ) <∞, and let F(Y ) = P(Y ≤ y) be its cu-

mulative distribution function. Define the quantile function of Y as Q(α) = F−1(α)

(where F−1(α) = inf{y : F(y) ≥ α} with 0 ≤ α ≤ 1).

Consider a non-negative random variable (rv) X with a distribution function

(df) F, quantile function Q(p) , and finite mean E(X) = µ. The Lorenz curve L(x) is

formally given by:

L(x) =

∫ x
0
Q(α)dα∫ 1

0
Q(α)dα

, 0 ≤ x , α ≤ 1 . (3.26)

In terms of wealth, the Lorenz curve reads as follows: for a given x ∈ [0,1], L(x) tells

us that x × 100% of the population owns L(x) × 100% of the total wealth. Such an

interpretation tells that the Lorenz curve is scale-free: the total amount of wealth is

not taken into consideration, whereas the way it is distributed among the individu-
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als is the key information.

Given its strong relation with the quantile function Q, the Lorenz curve can

recover the cumulative distribution of Y up to a constant. However, despite the

Lorenz curve is theoretically a one-to one mapping with a given distribution, dis-

criminate among distributions just looking at their Lorenz curves it is not an easy

task to perform by hand.

Mathematically, the Lorenz curve L : [0,1] → [0,1] defined in equation 3.26

is a continuous, non-decreasing, convex function, almost everywhere differentiable

in [0,1],such that L(0) = 0 and L(1) = 1. The curve L(x) is bounded from above by

the so-called perfect equality curve, i.e. Lpe(x) = x, and from below by the perfect

inequality curve, i.e.

Lpi(x) =

 0 si 0 ≤ x < 1

1 si x = 1
(3.27)

The perfect equality line Lpe indicates the theoretical situation in which everyone

possesses the same amount of wealth in the economy, while the perfect inequality

line Lpi , reachable only as limiting case for continuous random variables, states that

only one individual owns all the wealth in the society.

Figure 3.2: Illustration of Lorenz curve.

The very first mathematical definition of the Lorenz curve goes to Kendall and

Stuart (1977 [89], who expressed it as two equations assuming an absolutely con-

tinuous distribution of income. Two years later, Gastwirth provided a general def-
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inition of the Lorenz curve, applying to both continuous and discrete laws, in the

form of a single formula ??

L(p) =
1
µ

∫ p

0
F−1(t)dt , 0 ≤ p ≤ 1 (3.28)

where the income distribution and its inverse function are denoted by F and F−1,

respectively, and µ denotes the expectation. Due to its numerous applications in

various fields such as economics (Gastwirth) and the Gini index, Hart, Gail and

Gastwirth and tests, fishing (Thompson,1976) or even bibliometrics, the Lorenz

curve has given rise to numerous works in nonparametric estimation. Gastwirth
proposed a natural estimator of the Lorenz curve, defined by:

Ln(p) =
1

Xn

∫ p

0
F−1
n (u)du , 0 ≤ p ≤ 1 (3.29)

where Xn represents the empirical mean of a sample of n independent observations

X1, ...,Xn and with the same distribution F, Fn the empirical distribution function of

this sample.

From this estimator, he was able to construct an estimator of the Gini index.

3.4.1.1 Properties

The Lorenz curve has several interesting mathematical properties.

1. It is entirely contained into a square, because p is defined over [0,1] and L(p)

is at value also in [0,1]. Both the x-axis and the y-axis are percentages.

2. The Lorenz curve is not defined if µ is either 0 or∞.

3. If the underlying variable is positive and has a density, the Lorenz curve is a

continuous function. It is always below the 45o line or equal to it.

4. L(p) is an increasing convex function of p. Its first derivative:

dL(p)
dp

=
q(p)
µ

=
x
µ

with x = F−1(p)

is always positive as incomes are positive. And so is its second order derivative

(convexity). The Lorenz curve is convex in p, since as p increases, the new incomes

that are being added up are greater than those that have already been counted.

(Mathematically, a curve is convex when its second derivative is positive).

5. The Lorenz curve is invariant with positive scaling. X and cX have the same

Lorenz curve

6. The mean income in the population is found at that percentile at which the
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slope of L(p) equals 1, that is, where q(p) = µ and thus at percentile F(µ). This can

be shown easily because the first derivative of the Lorenz curve is equal to x/µ.

7. The median as a percentage of the mean is given by the slope of the Lorenz

curve at p = 0.5. Since many distributions of incomes are skewed to the right, the

mean often exceeds the median and q(p = 0.5)/µ will typically be less than one.

3.4.2 The Gini coefficient revisited

The most well-known member of the income inequality family is the Gini coeffi-

cient. The Gini mean difference and its normalized version, known as the Gini

index, have aided decision makers since their introduction by Corrado Gini more

than a hundred years ago.

The Gini index, which we denote by GF , is usually interpreted as twice the area

between the actual population Lorenz function, it is define by:

GF = 1− 2
µF

∫ 1

0

(
1
p

∫ p

0
F(t)dt

)
dp (3.30)

Several other equivalent ways to define the Gini index exist. An alternative ex-

pression is given by:

G =
η

µ
− 1 =

∫∞
0

2F(t)tdF(t)

µ
− 1 (3.31)

( see David 1968) [34].

The Gini coefficient can be written in many different forms. We shall see how to

pass from the standard definition of the Gini as a surface to its various expressions

(covariance, mean of absolute difference). We shall suppose that the mean of F

exists. As a consequence:

lim
t→0

tF(t) = lim
t→∞

t(1−F(t)) = 0, (3.32)

which means that both limits exists, which simplifies greatly the computation of

some integrals when considering an infinite bound.

3.4.2.1 Gini coefficient as a surface

If everybody had the same income, the cumulative percentage of total income held

by any bottom proportion p of the population would also be p. The Lorenz curve

would then be L(p) = p: population shares and shares of total income would be

identical. A useful informational content of a Lorenz curve is thus its distance,

p − L(p), from the line of perfect equality in income. Compared to perfect equality,
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inequality removes a proportion p−L(p) of total income from the bottom 100.p% of

the population. The larger that “deficit”, the larger the inequality of income. There

is thus an interest in computing the average distance between these two curves or

the surface between the diagonal p and the Lorenz curve L(p). We know that the

Lorenz curve is contained in the unit square having a normalized surface of 1. The

surface of the lower triangle is 1/2. If we want to obtain a coefficient at values

between 0 and 1, we must take twice the integral of p −L(p), i.e.:

G = 2
∫ 1

0
(p −L(p))dp = 1− 2

∫ 1

0
L(p)dp (3.33)

which is nothing but the usual Gini coefficient. Xu (2003 [133]) gives a good account

of the algebra of the Gini index. We have given above an interpretation of the Gini

index as a surface.

3.4.2.2 Gini as a covariance

Let us start from the above definition of the Gini coefficient and use integration by

parts with ù = 1 and v = L(p). Then

G = 1− 2
∫ 1

0
L(p)dp (3.34)

= 1− 2[pL(p)]1
0 + 2

∫ 1

0
pL̀(p)dp

= −1 + 2
∫ 1

0
pL̀(p)dp

We are then going to apply a change of variable p = F(y) and use the fact proved

above that L̀(p) = y/µ. We have

G =
2
µ

∫ ∞
0
yF(y)f (y)dy − 1 (3.35)

=
2
µ

[
∫ ∞

0
yF(y)f (y)dy −

µ

2
]

This formula opens the way to an interpretation of the Gini coefficient in term

of covariance as

cov(y,F(y)) = E(yF(y))−E(y).E(F(y))

Using this definition, we have immediately that

G =
2
µ
cov(y,F(y)) (3.36)



CHAPTER 3. RISK MEASURMENTS AND MEASURES OF INCOME
INEQUALITY 90

which means that the Gini coefficient is proportional to the covariance between a

variable and its rank. The covariance interpretation of the Gini coefficient open the

way to numerical evaluation using a regression.

Meanwhile, noting that cov(y,F(y)) =
∫
y[F(y) − 1

2 ]dF(y), using integration by

parts, we get

cov(y,F(y)) =
1
2

∫
F(x)[1−F(x)]dx

so that we arrive at the integral form

G =
1
µ

∫
F(x)[1−F(x)]dx (3.37)

We can remark that F(x)(1−F(x)) is largest at F(x) = 0.5, which explains why the

Gini index is often said to be most sensitive to changes in incomes occurring around

the median income.

The above integral form can also be written as

G = 1− 1
µ

∫
[1−F(x)]2dx

We shall prove this equivalence by considering the last interpretation of the Gini

which is the scaled mean of absolute differences.

3.4.2.3 Gini as mean of absolute differences

The initial definition of the Gini coefficient is the mean of the absolute differences

divided by twice the mean. If y and x are two random variables of the same distri-

bution F, this definition implies

IG =
1

2µ

∫ ∞
0

∫ ∞
0

∣∣∣x − y∣∣∣dF(x)dF(y) (3.38)

As F(x) and 1−F(x) are simply the proportions of individuals with incomes below

and above x, integrating the product of these proportions across all possible values

of x gives again the Gini coefficient, in its form 1
µ

∫
F(x)[1 − F(x)dx]. If we decide

to proceed step by step, we first note that
∣∣∣x − y∣∣∣ = (x + y) − 2min(x,y), so that the

expectation of this absolute difference is

∆ = E

∣∣∣x − y∣∣∣ = 2µ− 2E(min(x,y))

To compute the last expectation, we need the distribution of the Min of two

random variables having the same distribution. We know or we can show that it is
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equal to 1− (1−F(y))2, while its derivative is −d(1−F(y). So that

∆ = 2µ+ 2
∫ ∞

0
yd(1−F(y))2 (3.39)

The last integral can be transformed using integration by parts with u = y, and

v = (1−F(y))2

∫ ∞
0
yd(1−F(y))2 = [y(1−F(y))2]∞0 −

∫
[1−F(y)]2dy

So that we get the integral form of the Gini

IG =
∆

2µ
= 1− 1

µ

∫
[1−F(x)]2dx, (3.40)

because the first right hand term is zero.

3.4.2.4 The main properties of the Gini index

We will describe the main properties of the Gini Index in terms of the axioms it

respects.

The main properties of the Gini Index are:

• G has zero as lower limit for any v. When all incomes are equal, the covari-

ance between income levels and the cumulative distribution function is zero.

The Gini Index is therefore zero. With regard to the geometrical interpretation

of the standard Gini Index, note that when all incomes are equal, the Lorenz

Curve is equal to the equidistribution line. Therefore, the sum of areas of the

polygons (Z) is equal to 1
2 , i.e. the sum of the triangle under the Lorenz Curve.

Therefore, the Gini Index (1− 2Z) is equal to zero.

• The standard Gini Index G has n−1
n as upper limit. The limit of this value, for

very large populations, is 1. When all incomes are zero except for the last, the

last income is also equal to total income, y = Y . It means that there is only one

area to calculate, i.e., the last trapezium. However, for very large populations,

this area tends to be smaller. In the limit (i.e. in a continuous framework)

the value of the area Z tends towards zero. Therefore, the Gini Index tends

towards 1. As a generalisation, G(v) has 2
v
n−1
n as upper limit. Remember, that

the standard Gini Index is one in which v = 2.

• The Gini Index is scale invariant. By multiplying all incomes by a factor α,

the value of the Gini Index G does not change. Intuitively, when all incomes
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are scaled by a common factor, the cumulative distribution of income does not

change, as a given fraction of population still holds the same fraction of total

income. The areas under the Lorenz Curve, therefore, do not change. With

regard to the covariance formula, the application of a common factor to all

incomes makes the covariance and the average income increase by the same

factor. The Gini Index does not change. The same is true for G(v).

• On the other hand, the Gini IndexG is not translation invariant. By adding/subtracting

the same amount of money to all incomes, the Gini Index would increase (de-

crease) accordingly. The same is true for G(v).

• The Gini Index satisfies the principle of transfers for any v. If income is re-

distributed from relatively richer individuals to relatively poorer individuals,

both G and G(v) decrease. The opposite holds true if income is redistributed

from relatively poorer to relatively richer individuals. With regard to the stan-

dard Gini Index, we note that the size of its change, following a change in any

income, depends on the rank of the individuals involved in redistribution and

on the sample size. It does not depend on the level of individual incomes in-

volved in redistribution, but it depends on total income. In particular, the Gini

Index reacts more to redistribution occurring among individuals who have a

greater difference in ranks. The same amount of redistribution, indeed, gener-

ates a much lower effect if the two individuals have a close rank.

3.4.3 The extended Gini family of measures

The GMD has many alternative presentations. Some of these alternative presen-

tations can be extended into families of variability measures and the GMD can be

viewed as one member of such a family.

A generalization of the Gini coefficient, called the extended Gini coefficient, was

introduced by Yitzhaki (1983 [135]). The extended Gini family (EG) is a family of

variability and inequality measures that depends on one parameter, the extended

Gini parameter. The investigator can choose a member of the family by assigning a

value to the parameter.

One advantage of having a family lies in the fact that one can perform a sensi-

tivity analysis and evaluate the robustness of the conclusions by changing the EG

parameter.

The basic definitions of the members of the EG family used in this part are based

on the covariance. In order to simplify the presentation we will use cov(X,F(X)) as

the Gini, ignoring the constant (4) that is needed to adjust the definition to the
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GMD. Even with this simplification, the fact that the extended Gini is being used in

different areas resulted in two alternative definitions. Let

∆(θ,X) = −θcov(X, [1−F(X)]θ−1) , θ > 0, θ , 1

Then the two definitions refer to θ = υ and θ = υ + 1, where υ is the extended

Gini parameter. More explicitly, the first definition is

∆(υ,X) = −υcov(X, [1−F(X)]υ−1) , υ > 0, υ , 1

This definition is mainly used in the areas of income distribution and finance,

due to the need to adjust the definition to the theory of stochastic dominance. The

other definition is

∆(υ,X) = −(υ+ 1)cov(X, [1−F(X)]υ) , υ > (−1), υ , 0

The definition (..) is mainly used in the area of econometrics, in which case the

term (υ + 1) cancels because the parameters are expressed as ratios. The motivation

for the different definitions is the need for a simple representation, relevant to the

specific application.

The extended Gini index can be written as a covariance between the variate and

a power function of its cumulative distribution. Specifically:

EG(X,υ) = υcov(X,−[1−FX(X)]υ−1)

where FX(x) is the cumulative distribution. The advantage of the covariance formula

is that one can extend it quite easily to define the Gini covariance and Gini corre-

lation. The latter can be used to decompose the EG of a sum of random variables

to the contributions of the EG of each variable and the correlations, while other

properties of the covariance may enable the imitation of ANOVA-like analysis.



Chapter 4

Estimating of the Gini index

Introduction

In this chapter, we discuss the current relevance of an index proposed by the Ital-

ian scientist more than a century ago. In 1914, Corrado Gini introduced his well-

known concentration index for measuring the degree of inequality in the distribu-

tion of income and wealth. A century later, this index is still extremely relevant

and widely used in several fields of research and application, such as economics,

statistics, medicine, biology, ecology, and so on.

Due the simplicity and ease of interpretation, and thanks to its intuitive graph-

ical relation with the Lorenz curve, the Gini index succeed. In addition, several

sources have contributed to highlight its applicability in different aspect.

In fact, as stressed in Forcina and Giorgi (2005 [60]), “the political and economic

debate on the way to reach a more equal distribution of income and wealth was par-

ticularly alive at the beginning of the last century.” Gini first handled this issue in

1909 by proposing the index δ for describing the relations between social classes and

distribution of wealth. He later introduced the mean difference (1912). Finally, in

1914 Gini developed the well-known index of concentration (1914), showing also

the relation with the Lorenz curve and the mean difference. A few months later,

Pietra (1915 [112]) proposed a simple geometrical interpretation of the Gini index

of concentration, but after Gini’s death, the Italian statistical academy did not fol-

low nor develop his ideas immediately. Only in the last decades (starting from the

1970s) we have witnessed the rediscovery, extension, and reinterpretation of the

Gini index of concentration. Important stimulus for the proliferation of studies on

the Gini index have been provided, in particular, by Atkinson (1970 [6]), and Sen

(1973 [119]).

The first section of this chapter is devoted to the construction of a semi-parametric

estimator of the Gini index in the case of a heavy-tailed income distribution, to es-

94
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tablish its asymptotic distribution and to derivate the confidence limits. In the sec-

ond section, we construct an other estimator of the Gini index when the data are

censored, then we study the asymptotic normality property. We show the perfor-

mance of the estimator proposed by some simulation results.

4.1 Estimating the Gini index for heavy-tailed income distributions

This part was the subject of an article published in the paper [10].

Abstract

In the present section, we define and study one of the most popular indices

which measure the inequality of capital incomes, known as ”Gini index”, we con-

struct a semiparametric estimator for the Gini index in case of heavy-tailed income

distributions, we establish its asymptotic distribution and derive bounds of confi-

dence. We explore the performance of the confidence bounds in a simulation study

and draw conclusions about capital incomes in some income distributions.

KeyWords: Heavy-tailed incomes, extreme quantile, income inequality, Gini in-

dex.

4.1.1 Introduction and motivation

The last decade has seen considerable use and development of statistical theory for

inferring the dominance of one distribution (of income, wealth, wages, etc.) over

another. The results thus provide the statistical framework within which to assess

the progressivity of taxes and benefits, and the changes, in the inequality of income,

or in the ranking of individuals with respect to income, which they may cause. The

results can also be applied to the impact on poverty indices of a tax and benefit

system, or of other socio-economic phenomena, when such poverty indices depend

on estimated population quantiles. They furthermore encompass as special cases

most of the previous statistical inference results for the measurement of inequality

and social welfare.

There are many ways of measuring inequality, all of which have some intuitive

or mathematical appeal ( Cowel, 1985 [25]). However, many apparently sensible

measures behave in perverse fashions. Numerous indices exist for measuring the

degree of inequality in the distribution of income and wealth. They range from

simple measures like the share of aggregate earnings received by each quintile to

more complex measures such as the Gini, Theil (1967 [127]), Atkinson and gen-

eralized entropy indices (see Atkinson, 1970 [6]). All have different mathematical

constructions, which can lead to different assessments concerning the degree of in-

equality. In our study, the main measure of inequality used as a proxy to show the
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distribution of income is the Gini coefficient.

The Gini index is the most popular and important inequality measure. This index

has a long history, dating back to Gini (1914 [?]), if not earlier. In particular, the Gini

index has been widely used by economists and sociologists to measure economic in-

equality. Measures inspired by the index have been employed to assess the equality

of opportunity and estimate income mobility. Naturally, numerous modifications

and extensions of the classical Gini index have been proposed during the past 100

years, depending on one’s needs and/or point of view.

The Gini index is based on the area between the egalitarian line and the Lorenz

curve. This quantity is multiplied by 2, in order to have a range of values in the

interval [0,1]. The Italian statistician, demographer and sociologist Corrado Gini (

Gini,1914[?]).

Note that the Lorenz curve can be considered to be a cumulative distribution

function on [0,1] (Lorenz, 1905 [98]; Gastwirth, 1972[64]; Kovacevic and Binder,

1997 [92]; Cowell, 1977 [24]; and Langel and Tillé, 2013 [95]). We can exploit

this fact and employ the moments of the Lorenz curve to develop new measures of

inequality.

The Gini index has several possible interpretations and alternative ways in which

it can be expressed. Perhaps, the most popular description of this measure is one

related to the area between the population Lorenz curve and the egalitarian line.

Figure 4.1: Egalitarian line y = u, Lorenz curve y = L(u), and Gini index

Figure 4.1 represents the egalitarian line y = u, the Lorenz curve y = L(u), and

the Gini index for a hypothetical distribution. Consequently, if the Gini index is

G = 0 we have perfect equality (all incomes identical), and G = 1 corresponds to

perfect inequality.

The existing literature has intensively studied various estimators of G and the
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associate inference theory, we cite here (Davidson, 2009 [35]; Qin et al., 2010 [114];

Yitzhaki, 1983 [134]; Kpanzou et al., 2013, 2017[93] , [94]).

More specifically, letX ≥ 0 denote the income variable with distribution function

F(x), and the corresponding quantile function Q (t) for 0 < t < 1, with Lorenz curve

LX , a formula for its Gini index, G(X) or simply G if the random variable is known

from the context, is

G = 2
∫ 1

0
[u −LX(u)]du = 1− 2

∫ 1

0
LX(u)du, (4.1)

where u = F (x) is a cumulative distribution function (CDF) of a non-negative in-

come with positive expectation µ = E(X), LX (p) is Lorenz function defined by

LX (p) :=
1
µ

∫ p

0
Q (t)dt. (4.2)

Using equation (4.1) and equation (4.2), it follows that we can also rewrite the Gini

index as:

G = 1− 2
µ

∫ 1

0

∫ p

0
Q (t)dtdp. (4.3)

Inequality measures are often underestimated using sample data. It has been noted

that the sample Lorenz curve often exhibits less inequality than does the popula-

tion Lorenz curve. This fact suggests that the sample curve is a positively biased

estimate of the population curve. If we have a sample X1,X2, ...,Xn of size n from a

distribution FX(x), recall that the corresponding sample Lorenz curve is defined to

be a linear interpolation of the points (0,0) and (j/n,
∑j
i=1Xi/

∑n
i=1Xi), j = 1,2, ...,n.

As usual denote the sample Lorenz curve by Ln(u).

Replacing the population quantile function Q by its empirical counterpart Qn,

which is equal to the ith-order statistic Xi,n for all s ∈ ((i − 1)/n, i/n], and for all

i = 1, . . . ,n, where X1,n ≤ X2,n ≤ .... ≤ Xn,n are the order statistics based on the sample

X1,X2, ...,Xn. Also the empirical estimator of the mean, µn, where µn = 1
n

∑n
i=1Xi .We

arrive at the ‘traditional’ Gini estimator

Ĝn =
2

n2µn

n∑
i=1

(
i − 1

2

)
Xi,n − 1. (4.4)

Of course, the empirical Gini index Ĝn can be rewritten in many other ways, such as

the ratio of two L-statistics or the ratio of two U-statistics, which are perhaps more

familiar to the reader, but formula (4.4) is best suited in the context of the present

discussion.
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The asymptotic theory for the empirical Gini index has been known at least since

Hoeffding’s paper (Hoeffding, 1948 [80]) on U-statistics. Indeed, the Gini index

has been one of the most popular examples for illustrating the classes of L- and

U-statistics. For this reason, Beach and Davidson (1983) [11] have developed an

asymptotic theory for the traditional Gini estimator, assuming that the underlying

i.i.d. random variables X1,X2, ...,Xn have finite (2 + ε) moments for some ε > 0 as

small as desired.

The latter moment assumption plays a crucial role. To illustrate the performance

of Gn, we draw samples from the Pareto distribution

1−F(x) = x−1/γ ,x > 1, (4.5)

for some γ > 0, which is called the tail index. When γ > 1, then G is not defined.

When γ < 0.5, then E[X2+ε] < ∞ for some ε > 0, and so we can use the available

estimator of G.

Therefore, from now on, we restrict ourselves to only those γ that are in the in-

terval (0.5,1).

The present research has been motivated by the need for better understanding the

distribution and inequality of capital incomes, which in many cases appear to be

heavy-tailed. Since there are many individuals with no capital income, we restrict

our attention to only those with positive capital incomes.

In mathematical terms, a heavy-tailed income distribution of a random variable X

is regularly varying at infinity with index (−1/γ) < 0 , where the parameter γ is re-

ferred to as the tail index of F. Its estimation is of fundamental importance to the

applications of extreme value theory (see for example the monographs: see for ex-

ample the monographs by Hill, 1975 [79]; Beirlant and Teugels, 1989 [12], Matthys

and Beirlant, 2003 [101]; Beirlant et al. (2004 [13]); de Haan and Ferreira (2006

[45]), and the references therein). This class includes a number of popular income

distributions such as Pareto, generalized Pareto, Burr, Fréchet, and Student t, etc.,

which are known to be appropriate models for fitting large incomes. In the remain-

der of this section, we restrict ourselves to this class of distributions. Moreover,

we focus in our study on the case where γ ∈ (1/2,1) to ensure that the Gini index

is finite, and in that case the results of Beach and Davidson (1983 [11]) cannot be

applied, the second moment of X being infinite.

The present work is organized as follows, first 4.1.2, we construct an alterna-

tive estimator of the Gini index and we construct the bounds of confidences of this

estimator, then 4.1.3 we illustrate the performance of the new estimator and the

comparison with empirical estimator for some heavy-tailed models, the proof of the

main results postponed until Section 4.1.4.
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4.1.2 Main results

The idea behind the new estimator of G is to estimate the quantile function Q in the

definition of the Gini index by the empirical quantile function for s < 1 − k/n, and

by an extrapolated quantile function from the heavy-tail assumption for s ≥ 1−k/n.

We next define an alternative estimator for the mean for a heavy-tailed distribution.

Indeed, recall that, the mean µ can be rewritten as

µ =
∫ 1

0
Q(s)ds =

∫ 1−k/n

0
Q(s)ds+

∫ k/n

0
Q(1− s)ds

= µ1 +µ2.

We formulate the mean estimator for a heavy-tailed income distribution satisfying

(??) as follows:

µ̂n,k =
∫ 1−k/n

0
Qn(s)ds+

(
k
n

)
Xn−k ,n
1− γ̂Hn,k

, (4.6)

where γ̂Hn,k is the Hill estimator of the tail index γ, (Hill, 1975[79]):

γ̂Hn,k =
1
k

k∑
i=1

i
(
logXn−i+1,n − logXn−i,n

)
. (4.7)

Note that to estimate µ2 we use a Weissman-type estimator for Q, (Weissman, 1978

[132]):

Q̂ (1− s) := Xn−k,n (k/n)γ̂
H
n,k s−γ̂

H
n,k , s→ 0. (4.8)

The estimation of Hill has been extensively studied in the literature for an interme-

diate sequence k, i.e. a sequence such that k→∞ and k/n→ 0 as n→∞.

Finaly, we obtain a semi-parametric estimator for the Gini index for heavy-tailed

income distribution as follow:

Ĝn,k = 1− 2
µ̂n,k

∫ 1

0

∫ t

0
Qn(s)dsdt. (4.9)

Asymptotic normality for Ĝn,k is obviously related to that of γ̂Hn,k. As usual in the

extreme value framework, to prove such a type of result, we need a second-order

condition on the tail quantile function U, defined as

U(z) = inf {y : F(y) ≥ 1− 1/z} , z > 1. (4.10)

We say that the function U satisfies the second-order regular variation condition
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with second-order parameter ρ ≤ 0 if there exists a function A(t) which does not

change its sign in a neighborhood of infinity, and is such that, for every x > 0,

lim
t→∞

logU(tx)− logU(t)−γ log(x)
A(t)

=
xρ − 1
ρ

, (4.11)

when ρ = 0, the ratio on the right-hand side of equation (4.11) should be interpreted

as log(x). As an example of heavy-tailed income distributions satisfying the second-

order condition, we have the so-called and frequently used Hall’s model (see Hall,

1982[76]; Hall and Welsh, 1985 [77]), which is a class of cdfs, such that

U (t) = ctγ (1 + dA(t)/ρ+ o (tρ)) as t→∞. (4.12)

where γ > 0, ρ ≤ 0, c > 0, and d ∈R∗. For statistical inference concerning the second-

order parameter ρ we refer, for example, to de Haan and Stadtmüller (1996 [46]),

Peng and Qi (2004 [108]), Gomes et al. (2005 [71]), and Gomes and Pestana (2007

[72]).

First, the family includes many of the most popular distributions used in the analy-

sis of income, see for example Arnold and Sarabia (2018) [4], wealth and risk analy-

sis, as special or limiting cases. This subclass of heavy-tailed distributions contains

the Pareto, Burr, Fréchet, and t−Student. This family has several advantages for

practical use.

Theorem 4.1 Assume that the cdf F satisfies condition (4.11) with γ ∈ (1/2,1). Then for
any sequence of integers k = kn→∞ such that k/n→ 0 and k1/2A(n/k)→ 0 when n→
∞, on a suitable probability space, and with Brownian bridges appropriately constructed
Bn(s), we have that

√
n(Ĝn,k −G)

√
k/nQ(1− k/n)

= −
∫ 1−k/n

0

v(s)Bn(s)
√
k/nQ(1− k/n)

dQ(s)

+
γ2v(1− k/n)

(1−γ)2

√
n
k
Bn

(
1− k

n

)
−
γv(1− k/n)

(1−γ)2

√
n
k

∫ 1

1−k/n

Bn(s)
1− s

ds+ op(1) (4.13)

when n→∞, where,

v(s) =
2
µ2

∫ s

0

∫ t

0
Q(s)ds.

The proof of Theorem 4.1 is complex and relegated to Section 4.1.4. From the

statistical inference point of view, the following corollary is our main result.
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Corollary 4.1 With the same hypothesis of Theorem 4.1, we have

√
n(Ĝn,k −G)

σ (γ)
√
k/nQ(1− k/n)

L−→N (0,1) , as n −→∞

where

σ2 (γ) =
v2(1)γ4

(1−γ)4(2γ − 1)
.

4.1.3 Simulation study

To discuss practical implementation of Theorem 4.1, we first fix a significance level

α ∈ (0,1) and use the classical notation zα/2 for the (1−α/2)-quantile of the standard

normal distribution N (0,1). Given a realization of the random variables X1, . . . ,Xn
(e.g., claim amounts), which follow a cdf F satisfying the conditions of Theorem 4.1,

we construct a (1 − α)-level confidence interval for G as follows. First, we need to

choose an appropriate number k of extreme values. Since Hill’s estimator has in

general a substantial variance for small k and a considerable bias for large k, we

search for a k that balances between the two shortcomings, which is indeed a well-

known hurdle when estimating the tail index.

To resolve this issue, several procedures have been suggested in the literature, and

we refer to, e.g., Dekkers and de Haan (1993 [?]), Drees and Kaufmann (1998 [51]),

Danielsson et al. (2001 [32]), Cheng and Peng (2001 [21]), Neves and Fraga Alves

(2004 [106]), Gomes et al. (2009 [73]), and references therein.

In our current study we employ the method of Cheng-Peng for deciding on an ap-

propriate value k∗ of k. We note that, the optimal value of k that minimizes the

absolute value of the leading coverage error term of Hill estimator, this fraction k

depends on the sign of second-order regular variation, for more detail, see Cheng

and Peng (2001 [21]). Having computed Hill’s estimator and consequently deter-

mined Xn−k∗:n, we then compute the corresponding values of Ĝn,k and σ2 (γ̂n), and

denote them by Ĝn,k∗ and σ2∗ (γ̂n), respectively. Finally, using Theorem 4.1 we arrive

at the following (1−α)-confidence interval for G:

Ĝn,k∗ ± zα/2
(k∗/n)1/2Xn−k∗:nσ

∗ (γ̂n)
√
n

. (4.14)

To illustrate the performance of this confidence interval, we have carried out a small

scale simulation study based on the Pareto cdf F(x) = 1−x−1/γ ,x ≥ 1, and the Fréchet

cdf F(x) = exp(−x−1/γ ),x ≥ 0 with the tail index γ set to 2/3 and 3/4, in which case

we have fewer than two finite moments.

For the first part, we have generated 500 independent replicates from the selected
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parent distribution of three samples of sizes n = 500, 1000, and 2000. For every

simulated sample, we have obtained estimates Ĝn,k. Then we have calculated the

arithmetic averages over the values from the 500 repetitions, with the absolute error

and root mean squared error (RMSE) of the new estimator Ĝn,k reported in Table

4.1 for the Pareto model, and Table 4.2 for the Frechet model.

In the tables, we have also reported 95%-confidence intervals with their lower

(lcb) and upper bounds (ucb), coverage probabilities (covpr), and lengths.

Table 4.1: Simulation and confidence bounds of the estimator of the Gini index for
Pareto distribution

γ = 2/3 G = 0.500003
n k∗ Ĝn,k error rmse lcb ucb covpr length

500 26 0.47928 0.02074 0.01927 0.23462 0.76538 0.91782 0.53076
1000 70 0.48718 0.01288 0.01542 0.25881 0.74116 0.93526 0.48231
2000 103 0.50969 0.00969 0.01002 0.29499 0.70501 0.95236 0.41002

γ = 3/4 G = 0.6000003
n k∗ Ĝn,k error rmse lcb ucb covpr length

500 27 0.58429 0.01572 0.01723 0.20304 0.99696 0.92671 0.79392
1000 51 0.58975 0.01025 0.01358 0.26944 0.92145 0.93056 0.66112
2000 102 0.59183 0.00817 0.000904 0.336381 0.83621 0.94748 0.47241

Table 4.2: Simulation and confidence bounds of the estimator of the Gini index for
Frechet distribution

γ = 2/3 G =0.58693
n k∗ Ĝn,k error rmse lcb ucb covpr length

500 26 0.5711 0.01481 0.11025 0.21351 0.97412 0.84811 0.76061
1000 52 0.59892 0.01198 0.07581 0.23069 0.96715 0.90124 0.73646
2000 103 0.58028 0.00665 0.03159 0.26062 0.89995 0.94201 0.63934

γ = 3/4 G = 0.67979
n k∗ Ĝn,k error rmse lcb ucb covpr length

500 26 0.66812 0.01167 0.10231 0.35501 0.98124 0.86220 0.65623
1000 55 0.68541 0.00892 0.07814 0.37479 0.99603 0.89532 0.62124
2000 104 0.68101 0.00128 0.04215 0.37875 0.98327 0.91202 0.60452

The major observations from our simulations results presented in Table 4.1 and

Table 4.2 are summarized as follows: (1) The error and RMSE are decreasing when

the sample size are increasing for all cases. (2) In terms of coverage probability, we

find acceptable results, these results show that the coverage probability is increas-

ing when the sample size is increasing. (3) In terms of average lengths of confidence

intervals, our interval estimators decrease when the sample size is increasing.

The second part of our simulation study consists of a numerical comparison be-

tween the absolute bias and the mean squarre error (MSE) of Ĝn and Ĝn,k. For two
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models (Pareto and Frechet) with two values of tail index (γ = 2/3, and γ = 3/4).

We vary the common size n of the sample, for each size, we generate 500 indepen-

dent replicates. Our overall results are taken as the empirical means of the results

obtained through the 500 repetitions. To determine the optimal number of upper

order statistics (that we denote by k∗) used in the computation of γ̂Hn,k, we apply the

algorithm of Cheng-Peng (2001). The simulation results are summarized in Table

4.3 for the model of Pareto and in Table 4.4 for the model of Frechet (where abs bias

andMSE respectively stand for the absolute value of the bias and the mean squared

error of the estimation).

Table 4.3: Results of comparison bias and mse between Ĝn and Ĝn,k for Pareto model
γ 2/3 3/4
G Ĝn Ĝn,k Ĝ Ĝn,k
n bias mse bias mse bias mse bias mse
500 0.2370 0.0642 0.0556 0.0263 0.2066 0.0509 0.0670 0.00141
1000 0.1898 0.0368 0.0356 0.0123 0.1668 0.0291 0.0049 0.00077
2000 0.1257 0.0225 0.0328 0.0016 0.1393 0.0199 0.0026 0.00043

Table 4.4: Results of comparison bias and rmse between Ĝn and Ĝn,k for Frechet
model
γ 2/3 3/4
G Ĝn Ĝn,k Ĝ Ĝn,k
n bias mse bias mse bias mse bias mse
500 0.0387 0.0154 0.0197 0.00165 0.0455 0.0072 0.0111 0.00061
1000 0.0295 0.0148 0.0106 0.00138 0.0448 0.0028 0.0041 0.00014
2000 0.0168 0.0129 0.0102 0.00108 0.0331 0.0014 0.0027 0.000049

The results presented in Table 4.3 and Table 4.4 which represents the comparison

between our proposed estimator Ĝn,k and the traditional estimator Ĝn in terms of

bias and MSE, show the performance of our estimator, where the bias and MSE of

our estimator are smaller in all cases in comparison with the bias and MSE of the

traditional estimator, then, the values of the bias and MSE are decreasing when the

size of the sample is increasing. In light of these results, we see that, from the point

of view of the bias and the MSE, the estimation accuracy increases when the size of

the sample is increased.

4.1.4 Proofs

Proof of Theorem 4.1. Denote Ui = F(Xi) for i = 1,2, ...,n. Then U1,U2, ...,Un is

a sequence of i.i.d. random variables following the uniform distribution on [0,1].

The following result shows that the empirical and quantile processes based on the
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sequence U1,U2, ...,Un can be approximated by a series of Brownian bridges; see

Csö650rgő et al. (1986) [30]. These Brownian bridges are the same as on the right-

hand side of equation (4.13) in Theorem 4.1. Let αn(s) be the uniform empirical

process defined by

αn(s) =
√
n (Hn(s)− s) ,0 ≤ s ≤ 1,

where Hn(s) = 1
n

∑n
i=1 1{Ui≤s}, and let βn(s) be the uniform quantile process defined

by

βn(s) =
√
n
(
H−1
n (s)− s

)
,0 ≤ s ≤ 1.

Under a Skorokhod-type construction, there exists a sequence of Brownian bridges

B1,B2, ... such that, when n→∞, we have (cf. Csö650rgő et al., 1986 [30])

sup
0≤s≤1−1/n

nv1

∣∣∣αn(s)− βn(s)
∣∣∣

(1− s)1/2−v1
=OP (1) for any 0 ≤ v1 ≤

1
4
, (4.15)

and

sup
0≤s≤1−1/n

nv2

∣∣∣Bn(s) + βn(s)
∣∣∣

(1− s)1/2−v2
=OP (1) for any 0 ≤ v1 ≤

1
2
.

We start the proof of Theorem 4.1, by the calculation of the following difference

Ĝn,k −G =
(
1− 2

µ̂n

∫ 1

0

∫ t

0
Qn(s)dsdt

)
−
(
1− 2

µ

∫ 1

0

∫ t

0
Q(s)dsdt

)
(4.16)

= − 2
µ̂n

∫ 1

0

∫ t

0
Qn(s)dsdt +

2
µ

∫ 1

0

∫ t

0
Q(s)dsdt

= − 2
µ̂n

∫ 1

0

∫ t

0
Qn(s)dsdt +

2
µ̂n

∫ 1

0

∫ t

0
Q(s)dsdt

+
2
µ

∫ 1

0

∫ t

0
Q(s)dsdt − 2

µ̂n

∫ 1

0

∫ t

0
Q(s)dsdt.

Then

√
n(Ĝn,k −G)

√
k/nQ(1− k/n)

= − 2
µ̂n

∫ 1

0

√
n

∫ t
0 [Qn(s)−Q(s)]dsdt
√
k/nQ(1− k/n)

 (4.17)

+
2
µµ̂n

∫ 1

0

√
n(µ̂n −µ)

√
k/nQ(1− k/n)

∫ t

0
Q(s)dsdt (4.18)

= I1 + I2. (4.19)

Since I1 is an integral over [0,1], we split it into the sum of two terms, I11 and

I12, which are the same integrals but over the intervals [0,1 − k/n] and [1 − k/n,1],

respectively. A similar split is applied on I2, which results in I2 = I21 + I22. We

shall prove that I12 = oP (1) and I22 = oP (1) when n → ∞. We shall next show in
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several steps that I11 = Tn,1 +oP (1) and I21 = Tn,2 +Tn,3 +oP (1) when n→∞. This will

conclude the proof of Theorem 4.1. Hence, from now on we deal with the process

An, which may be rewritten as follow

An(t) =
∫ 1−k/n

t
[Qn(s)−Q(s)]ds (4.20)

which is an integral of the general quantile process Qn−Q. To reduce it to an integral

of the general empirical process Fn−F, we employ the (general) Vervaat process (see

e.g., Zitikis, 1998 [137])

Vn(t) =
∫ t

0
(Qn(s)−Q(s))ds+

∫
Q(t)

−∞
(Fn(x)−F(x))dx (4.21)

The process Vn(t) satisfies the boundary conditions Vn(0) = 0 and Vn(1) = 0, is non-

negative for all t ∈ [0,1], and such that

√
nVn(t) ≤ |en(t)||Qn(t)−Q(t)|. (4.22)

Hence, upon recalling that en(t) =
√
n(Fn(Q(t))− t), we conclude from (4.22) that the

difference between the quantities

√
n

∫ t

0
(Qn(s)−Q(s))ds (4.23)

and

−
√
n

∫
Q(t)

−∞
(Fn(x)−F(x))dx (4.24)

tends to zero when n→∞whenever Qn(t) converges to Q(t), which holds because F

is continuous and strictly increasing. This is the main idea of employing the Vervaat

process in the present proof, as it allows us to replace quantity (4.23) by (4.24),

which is much easier to tackle. We have the following equation

An(t) = −
∫ Q(1−k/n)

Q(t)
(Fn(x)−F(x))dx+Vn(1− k/n)−Vn(t)

which we apply on the right-hand sides of equation 4.20 and 4.21. By changing the

variable of integration, we get

An(t) = −
∫ 1−k/n

t

en(s)
√
n
dQ(s) +Vn(1− k/n)−Vn(t) (4.25)
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and ∫ t

0
(Qn(s)−Q(s))ds = −

∫ t

0

en(s)
√
n
dQ(s) +Vn(t). (4.26)

Then

I11 =
2
µ

∫ 1−k/n

0

∫ t
0
en(s)dQ(s)

√
k/nQ(1− k/n)

dt − 2
µ

∫ 1−k/n

0

√
nVn(t)

√
k/nQ(1− k/n)

dt.

Taking into account that ∫ 1−k/n

0

√
nVn(t)

√
k/nQ(1− k/n)

dt = op(1),

when n→∞, we have

I11 =
2
µ

∫ 1−k/n

0

∫ t
0
en(s)dQ(s)

√
k/nQ(1− k/n)

dt + op(1). (4.27)

Here we replace en by Bn in the expressions for (4.27). Namely, when n→∞, by the

use of the Fubini theorem, we obtain

I11 =
∫ 1−k/n

0

Bn(s)v(s)
√
k/nQ(1− k/n)

dQ(s) + op(1)

Tn,1 + op(1).

In a similar way, firstly writing I21 in terms of the empirical and Vervaat processes

I21 =
2
µµ̂n

∫ 1−k/n

0

√
n(µ̂n −µ)

√
k/nQ(1− k/n)

∫ t

0
Q(s)dsdt

With the results of Peng (2001 [107]), Necir et al. (2010[104]), there exist a se-

quence of Brownien bridge {Bn(s),0 ≤ s ≤ 1}n≥1 such that, for any n large enough,

we have:h √
n(µ̂n−µ)√

k/nQ(1−k/n)

d= −
∫ 1−k/n

0
en(s)√

k/nQ(1−k/n)
dQ(s)

+ γ2

(1−γ)2

{√
n
kBn

(
1− kn

)}
− γ

(1−γ)2

√
n
k

∫ 1
1−k/n

Bn(s)
1−s ds+ oP (1),

Then
I21

d=
∫ 1−k/n

0
v(s)en(s)√
k/nQ(1−k/n)

dQ(s)

+γ2v(1−k/n)
(1−γ)2

{√
n
kBn

(
1− kn

)}
−γv(1−k/n)

(1−γ)2

√
n
k

∫ 1
1−k/n

Bn(s)
1−s ds+ oP (1),
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we can easily show that∫ 1−k/n

0

v(s)en(s)
√
k/nQ(1− k/n)

dQ(s) = oP (1).

Then

I21
d=

γ2v(1−k/n)
(1−γ)2

{√
n
kBn

(
1− kn

)}
−γv(1−k/n)

(1−γ)2

√
n
k

∫ 1
1−k/n

Bn(s)
1−s ds+ oP (1)

= Tn,2 + Tn,3

Finally
√
n(Ĝn,k −G)

√
k/nQ(1− k/n)

=
3∑
i=1

Tn,i + op(1)

where

Tn,1 = −
∫ 1−k/n

0

Bn(s)v(s)
√
k/nQ(1− k/n)

dQ(s)

Tn,2 =
γ2v(1− k/n)

(1−γ)2

√
k
n
Bn(1− k

n
)

Tn,3 = −
γv(1− k/n)

(1−γ)2

√
k
n

∫ 1

1−k/n

Bn(s)
1− s

ds.

Proof of corollary 4.1. Without the remainder term oP (1), the right-hand side of

equation (4.13) is a mean-zero normal random variable, whose variance converges

to σ2(γ) when n→∞, as the following

E[T 2
n,1] →

2γv2(1)
2γ − 1

, E[T 2
n,2] →

γ4v2(1)
(1−γ)4

E[T 2
n,3] →

γ2v2(1)
(1−γ)4 , E[Tn,1Tn,2] →

γ2v2(1)
(1−γ)2

E[Tn,1Tn,3] →
γv2(1)
(1−γ)2 ,E[Tn,2Tn,3]→

γ3v2(1)
(1−γ)4 .

4.2 Estimating the Gini index for income loss distributions under random censoring

Abstract:

The Gini index is one of the most widely used inequality indices, it has the dis-

tinction of being derived from the Lorenz curve, but generally it is estimated assum-

ing that complete and unbiased samples are available. In this part, we make use of
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the extreme value theory and the Kaplan-Meyer estimator to construct a new esti-

mator of the Gini index when the data are censored, and we study the asymptotic

normality property. We show the performance of our proposed estimator by some

results of simulations.

KeyWords: Gini index, random censoring, loss distributions, Kaplan-Meier esti-

mator.

4.2.1 Introduction

The Gini index, named in honor of the Italian statistician Corrado Gini (1884 −
1965), is one of the most commonly used statistical indices in the social sciences

to measure the concentration in the distribution of a positive random variable, it

is mainly used in economics as a measure of income or wealth inequality between

individuals or households because of clear economic interpretation. Recently, the

Gini coeffcient has been used to describe concentration in levels of mortality, or in

length of life, among different socio-economic groups, and to evaluate inequality in

health and in life expectancy (see, e.g., Andreev and Begun 2003).

Max Lorenz introduced the Lorenz curve corresponding to a non-negative ran-

dom variable (rv) X with a distribution function (df) F, quantile function Q(p) , and

finite mean E(X) = µ as:

LF(t) =
1
µ

∫ t

0
Q(s)ds 0 ≤ t ≤ 1 (4.28)

In econometrics, with X representing income, L(t) gives the fraction of total income

that the holders of the lowest tth fraction of income possesses. Most of the measures

of income inequality are derived from the Lorenz curve. An important example is

the Gini index associated with F defined by:

GF =

∫ 1
0

[u −LF(u)]du∫ 1
0
udu

= 1− 2(CL)F (4.29)

where (CL)F =
∫ 1

0
LF(u)du is the cumulative Lorenz curve corresponding to F. This

is a ratio of the area between the diagonal and the Lorenz curve and the area of

the whole triangle under the diagonal. The numerator is usually called the area of

concentration. Kendall and Stuart (1963) showed that this is equivalent to a ratio

of a measure of dispersion to the mean. In general, these notions are useful for

measuring concentration and inequality in distributions of resources, and in size

distributions. The Gini index has also been studied in its ability to detect requests

in distributions (see, e.g., Nygard and Sandröm 1981; Muliere and Scarsini 1989).
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It is now commonly recognised that income and wealth data may have been cen-

sored or trimmed for reasons of confidentiality or convenience (Fichtenbaum and

Shahidi 1988), but several tests based on the sample Gini index have been proposed

in literature for noncensored data. The goodness-of-fit test was proposed on the ba-

sis of the Gini index specified in spacing by Rao and Goria (2004), and they showed,

by simulation, that such a test has a higher resistance than all the competitors con-

sidered for certain common alternatives.

Tse (2006) and Bonetti et al. (2009) considered Gini estimation under indepen-

dent censoring. Gigliarano and Muliere (2013) required prior distribution infor-

mation. Compared with the Gini estimation under complete data, these methods

incorporated censoring into the Gini estimation. However, the independent cen-

soring and prior distribution requirement may be limitations when applying these

methods to real data.

As we are interested in applying the Gini index to censored data, the purpose

of this part is to construct a new estimator of the Gini index for loss distribution

when the data are censored, using the extreme value theory and the Kaplan-Meyer

estimator.

The Gini index, which we denote by GF , is usually interpreted as twice the area

between the actual population Lorenz function (Lorenz 1905)

LF(p) =
1
µF

∫ p

0
F−1(t)dt (4.30)

and the egalitarian Lorenz function LE(p) = p, 0 ≤ p ≤ 1, which is the hypotenuse of

the right triangle into which every Lorenz curve falls.

Using the Lorenz curves, this Gini index is defined as the ratio of the area be-

tween the diagonal and the Lorenz curve and the whole area under the diagonal.

The formula is

G = 1− 2
∫ 1

0
L(p)dp (4.31)

This definition yields Gini coefficients satisfying the inequalities 0 < G < 1, the

higher the G value, the lower the Lorenz curve and the stronger the inequality. The

reason for the popularity of the Gini coefficient is that it is easy to compute, being

a ratio of two areas in Lorenz curve diagrams. The Gini coefficient allows direct

comparison of the income of two income distributions, regardless of their sizes or

patterns. This index doesn’t capture where in the distribution the inequality occurs.

The Lorenz curve introduced by Max Otto Lorenz in 1905, it is a pivotal tool in

the study of economic inequality and the distribution of wealth in the society.

Consider a non-negative random variable (rv) X with a distribution function

(df) F, quantile function Q(p) , and finite mean E(X) = µ. The Lorenz curve L(x) is



CHAPTER 4. ESTIMATING OF THE GINI INDEX 110

formally given by:

L(x) =

∫ x
0
Q(α)dα∫ 1

0
Q(α)dα

, 0 ≤ x , α ≤ 1. (4.32)

In terms of wealth, the Lorenz curve reads as follows: for a given x ∈ [0,1], L(x) tells

us that x × 100% of the population owns L(x) × 100% of the total wealth. Such an

interpretation tells that the Lorenz curve is scale-free: the total amount of wealth is

not taken into consideration, whereas the way it is distributed among the individu-

als is the key information.

Given its strong relation with the quantile function Q, the Lorenz curve can

recover the cumulative distribution of Y up to a constant. However, despite the

Lorenz curve is theoretically a one-to one mapping with a given distribution, dis-

criminate among distributions just looking at their Lorenz curves it is not an easy

task to perform by hand.

Mathematically, the Lorenz curve L : [0,1] → [0,1] defined in Equation (2;3)

is a continuous, non-decreasing, convex function, almost everywhere differentiable

in [0,1],such that L(0) = 0 and L(1) = 1. The curve L(x) is bounded from above by

the so-called perfect equality curve, i.e. Lpe(x) = x, and from below by the perfect

inequality curve, i.e.

Lpi(x) =

 0 si 0 ≤ x < 1

1 si x = 1
(4.33)

The perfect equality line Lpe indicates the theoretical situation in which everyone

possesses the same amount of wealth in the economy, while the perfect inequality

line Lpi , reachable only as limiting case for continuous random variables, states that

only one individual owns all the wealth in the society.

The very first mathematical definition of the Lorenz curve goes to Kendall and

Stuart, who expressed it as two equations assuming an absolutely continuous dis-

tribution of income. Two years later, Gastwirth provided a general definition of the

Lorenz curve, applying to both continuous and discrete laws, in the form of a single

formula (4.29):

L(p) =
1
µ

∫ p

0
F−1(t)dt , 0 ≤ p ≤ 1

where the income distribution and its inverse function are denoted by F and F−1,

respectively, and µ denotes the expectation. Due to its numerous applications in

various fields such as economics (Gastwirth) and the Gini index, Hart, Gail and

Gastwirth and tests, fishing (Thompson,1976) or even bibliometrics (Burell, 1991),

the Lorenz curve has given rise to numerous works in nonparametric estimation.
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Gastwirth proposed a natural estimator of the Lorenz curve, defined by:

Ln(p) =
1

Xn

∫ p

0
F−1
n (u)du , 0 ≤ p ≤ 1

where Xn represents the empirical mean of a sample of n independent observations

X1, ...,Xn and with the same distribution F, Fn the empirical distribution function of

this sample, that is to say

Fn(x) =
1
n

∑
1[Xi≤x] , x > 0

and

F−1
n (t) = inf

x>0
{x : Fn(x) ≥ t} , 0 ≤ t ≤ 1

the inverse of the empirical distribution function. From this estimator, he was able

to construct an estimator of the Gini index.

The most well-known member of the income inequality family is the Gini co-

efficient. The Gini mean difference and its normalized version, known as the Gini

index, have aided decision makers since their introduction by Corrado Gini more

than a hundred years ago.

The Gini index, which we denote by GF , is usually interpreted as twice the area

between the actual population Lorenz function, it is define by:

GF = 1− 2
µF

∫ 1

0

(
1
p

∫ p

0
F(t)dt

)
dp

Several other equivalent ways to define the Gini index exist. An alternative ex-

pression is given by:

G =
η

µ
− 1 =

∫∞
0

2F(t)tdF(t)

µ
− 1

( see David 1968).

Most research on the Gini coefficient, as well as the majority of applications,

have focused on complete data. However, one often has to deal with censored data

in applications.With respect to lifetime data, the data are often right censored.

The plan of this parts is organized as follows: In Section 2, and using the Kaplan-

Meier estimator we propose an estimator of Gini index in the case of the presence of

censored data, we give the properties of the new estimator, in section 3, we state our

main results, some simulations are given in section 4. For the sake of completeness,

some appendices contain the more technical details of this work.
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4.3 Estimation from censored data

In the uncensored case, a wide variety of nonparametric estimators of Gini index

have been proposed in the literature, in the case where the response variable is cen-

sored, some estimators which generalize the Kaplan-Meier estimator of the survival

function (Kaplan and Meier 1958) have been proposed to estimate this index.

Csörgő and Horváth (1987)[31] first constructed an estimator for right-censored

data and proved its convergence in law, as well as its almost safe uniform conver-

gence. Tse (2006) then considered left-truncated and right-censored observations

and then demonstrated the law of the iterated logarithm of the Lorenz process and

the resulting convergence in law of the Gini index estimator.

In this section, we turn to the problem of estimating G from sample censored

data. Let X1, ...,Xn be n ≥ 1 independent copies of a non-negative random variable

(rv) X, defined over some probability space (Ω,A,P ), with continuous cumulative

distribution fonction (cdf) F. An independent sequence of independent rv’s Y1, ...,Yn
with continuous cdf G censor them to the right, so that at each stage j we only

can observe Zj = min(Xj ,Yj) and the variable δj = 1{Xj≤Yj }( with 1{.} denoting the

indicator function) informing whether or not there has been censorship.

We will use the method of Maximum Likelihood (ML) to estimate the parameters

of the selected loss distribution. This method can be applied in a very wide variety

of situations and the estimated obtained using ML generally have very good prop-

erties compared to estimates obtained by other methods (e. g. method of moments,

method of quantile).

Notice that, under right random censoring, the well-known empirical estimator

of the distribution function F is the nonparametric maximum likelihood estimator,

given by Kaplan-Meier (1958) defined by:

1− F̂n(x) = Ŝn(x) =
n∏
i=1

(
1−

δ[i;n]

n− i + 1

)1{Zi,n≤x}

where Z1,n ≤ Z2,n ≤ ... ≤ Zn,n are the ordered Z-values, where ties within lifetimes or

within censoring times are ordered arbitrairly and ties among lifetimes and censor-

ing times are treated as if the former precedes the latter. δ[i;n] is the concomitant of

the i th order statistic, that is, δ[i;n] = δj if Zi,n = Zj .

Suppose indeed that we are interested in the lifetimes of n individuals or items,

which are subject to K different and exclusive causes of death or failure, and to

random censorship ( from the right) as well.

The Kaplan-Meier estimator converges almost surely and uniformly to S (Földes
et al. 1980). Under certain conditions of regularity, it converges in law towards a
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Gaussian process (see Breslow and Crowley 1974).The mathematical properties of

the Kaplan-Meier estimator can also be found in Chapter 7 of Shorack and Wellner
(1986).

Let us assume that both F andG are heavy-tailed, that is there exist two constants

γ1 > 0 and γ2 > 0, called tail index or extreme value index (EVI’s), such that

F(z) = z−1/γ1`1(z) and G(z) = z−1/γ2`2(z), as z→∞, (4.34)

where `1 and `2 are slowly varying functions at infinity, i.e. lim
z→∞

`i(tz)
`i(z)

= 1 for every

t > 0, i = 1,2. If relations (4.34) hold, then we have, for any x > 0

lim
z→∞

F(xz)

F(z)
= x−1/γ1 and lim

z→∞

G(xz)

G(z)
= x−1/γ2

and we say that F and G are regularly varying at infinity as well, with respective tail

indices −1/γ1 and −1/γ2 which we denote by F ∈ RV−1/γ1
and G ∈ RV−1/γ2. Note

that, in virtue of the independence of X and Y , the cdf of the observed Z ′s, that we

denote by H ; is also heavy-tailed and we have H ∈ RV−1/γ where γ = γ1γ2
γ1+γ2

.

This class of distributions, which includes models such as Pareto, Burr, Fréchet,

Lévy-stable and log-gamma, plays a prominent role in extreme value theory.

Let {(Zi ,δi) ,1 ≤ i ≤ n} be a sample from the couple of rv’s (Z,δ) and Z1:n, ...,Zn:n

the order statistics pertaining to Z1, ...,Zn. If we denote the concomitant of the ith

order statistic by δ[i:n] (i.e. δ[i:n] = j if Zi:n = Zj), then Hill’s estimator of γ1 adapted

to censored data is defined as γ̂ (H,c)
1 = γ̂H /p̂, where

γ̂H =
1
k

k∑
i=1

log(Zn−i+1:n/Zn−k:n) (4.35)

represents Hill’s estimator (Hill, 1975) of γ with k = kn being an integer sequence

satisfying

1 < k < n,k→∞ and k/n→ 0 as n→∞, (4.36)

and p̂ = 1
k

∑k
i=1δ[n−i+1:n] being the proportion of upper non-censored observations.

Einmahl et al. (2008) established the asymptotic normality of γ̂ (H,c)
1 by assuming

that cdf’s are absolutely continuous.

This leads us to derive a Weissman-type estimator (see Weissman, 1978 [132])

for the distribution tail F for censored data as follows:

F̂(x) =
(

x
Zn−k:n

)−1/γ̂ (H,c)
1

Fn(Zn−k:n)
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In the context of randomly right censored observations, the nonparametric max-

imum likelihood estimator of F is given by Kaplan and Meier (1958) as the product

limit estimator

Fn(x) =
∏
Zi:n≤x

(
1−

δ[i:n]

n− i + 1

)
=

∏
Zi:n≤x

( n− i
n− i + 1

)δ[i:n]

, for x < Zi:n,

which gives

Fn(Zn−k:n) =
n−k∏
i=1

(
1−

δ[i:n]

n− i + 1

)
.

Thus, the distribution tail estimator is of the form

F̂(x) =
(

x
Zn−k:n

)−1/γ̂ (H,c)
1 n−k∏

i=1

(
1−

δ[i:n]

n− i + 1

)

and consequently, we define the Gini estimator as follows:

Ĝcn = 1− 2
µ̂cn

 1
Z[nt],n

[nt]∑
j=2

δ[j:n]

n− j + 1

j−1∏
i=1

( n− i
n− i + 1

)δ[i:n]

Zi;n

 ,

µ̂cn = µ̂c1,n + µ̂c2,n

where:

µ̂c1,n =
∏( n− i

n− i + 1

)δ[i:n]

Zn−k,n +
n−k∑
j=2

δ[j:n]

n− j + 1

j−1∏
i=1

( n− i
n− i + 1

)δ[i:n]

Zi;n

and

µ̂c2,n =
γ

(H,c)
1

1−γ (H,c)
1

n−k∏
i=1

( n− i
n− i + 1

)δ[i:n]
Zn−k;n

4.3.1 Main results

We assume that, the cdf F and G satisfies the generalized second-order regular vari-

ation condition with second-order parameter ρ1 and ρ2 are negatives, if there exists

two functions a1(t) and a2(t) which does not changes its sign in a neighbourhood of
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infinity and such that, for every x > 0,

lim
t→∞

1
a1(t)

(
1−F(tx)
1−F(t)

− x−1/γ1

)
= x−1/γ1

xρ1/γ1 − 1
ρ1/γ1

lim
t→∞

1
a2(t)

(
1−G(tx)
1−G(t)

− x−1/γ2

)
= x−1/γ2

xρ2/γ2 − 1
ρ2/γ2

when δ1 = 0 and δ2 = 0 then the ratio on the right-hand side of equation (ref6.1)

should be interpreted as logx.

Assume that the second order condition (ref6.1) hold with γ2/(1 + 2γ2) < γ1 < 1.

Then for any sequence of integers k = kn→∞ such that k/n→ 0 and k1/2a1(n/k)→ 0

when n→∞, we have that:

√
n(Ĝcn −G)

(k/n)1/2Zn−k:nFn(Zn−k:n)
→d N (0,σ2

γ ) as n→∞

where σ2
γ is the asymptotic variance.

4.3.2 Simulation study

Now, we carry out a simulation study (by means of the statistical software R) to

illustrate the performance of our estimator, through three sets of censored and cen-

soring data, all drawn, in the first part, from:

• Pareto model

F(x) = 1− x−γ1 ,G(x) = 1− x−γ2 ,x ≥ 1,

• Fréchet model

F(x) = exp {−x−γ1} ,G(x) = exp {−x−γ2} ,x ≥ 0,

• Burr model

F(x) = 1−
(
1 + x1/η

)−η/γ1
,G(x) = 1−

(
1 + x1/η

)−η/γ2
,x ≥ 0,

where η, γ1, γ2 > 0. We fix η = 0.3 and choose the values 0.3, 0.4 and 0.5 for γ1.

For the proportion of the really observed extreme values, we take p = 0.15, 0.30,

0.40 and 0.50. For each couple (γ1,p), we solve the equation p = γ2/(γ1 + γ2) to get

the pertaining γ2-value. We vary the common size n of both samples (X1, ...,Xn) and

(Y1, ...,Yn), then for each size, we generate 1000 independent replicates. Our overall

results are taken as the empirical means of the results obtained through the 1000

repetitions.
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To determine the optimal number (that we denote by k∗) of upper order statistics

used in the computation of γ̂ (H,c)
1 , we apply the algorithm of Cheng and Peng (2003).

Pareto model:

Table 4.5: Results of simulation for Pareto model with index γ1 = 0.3
n|p 0.15 0.30 0.40 0.5 0.6
250 0.0215 0.0453 0.0570 0.0887 0.1170
500 0.0234 0.0445 0.0648 0.0784 0.0987
1000 0.0232 0.0477 0.0637 0.0762 0.1000
2000 0.0231 0.0464 0.0645 0.0790 0.1028
5000 0.0233 0.0463 0.0634 0.0798 0.1017

Table 4.6: Results of simulation for Pareto model with index γ1 = 0.4
n|p 0.15 0.30 0.40 0.5 0.6
250 0.0308 0.0621 0.0882 0.1121 0.1304
500 0.0309 0.0681 0.0772 0.1138 0.1444
1000 0.0295 0.0622 0.0862 0.1223 0.1359
2000 0.0324 0.0650 0.0892 0.1116 0.1365
5000 0.0313 0.0639 0.0862 0.1094 0.1330

Table 4.7: Results of simulation for Pareto model with index γ1 = 0.5
n|p 0.15 0.30 0.40 0.5 0.6
250 0.0351 0.0971 0.1094 0.1349 0.1982
500 0.0384 0.0770 0.1114 0.1221 0.1870
1000 0.0401 0.0806 0.1089 0.1359 0.1841
2000 0.0389 0.0823 0.1127 0.1407 0.1561
5000 0.0381 0.0807 0.1128 0.1410 0.1781

Fréchet Model:

Table 4.8: Results of simulation for Fréchet model with index γ1 = 0.3
n|p 0.15 0.30 0.40 0.5 0.6
250 0.0721 0.0959 0.1243 0.1302 0.1572
500 0.0649 0.0927 0.1221 0.1436 0.1778
1000 0.0660 0.0972 0.1125 0.1425 0.1716
2000 0.0701 0.0952 0.1168 0.1456 0.1760
5000 0.0672 0.0953 0.1157 0.1418 0.1737
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Table 4.9: Results of simulation for Fréchet model with index γ1 = 0.4
n|p 0.15 0.30 0.40 0.5 0.6
250 0.0865 0.1284 0.1618 0.1736 0.2288
500 0.0927 0.1222 0.1597 0.1908 0.2156
1000 0.0886 0.1327 0.1577 0.1903 0.2431
2000 0.0905 0.1289 0.1629 0.1904 0.2411
5000 0.0905 0.1272 0.1613 0.1934 0.2333

Table 4.10: Results of simulation for Fréchet model with index γ1 = 0.5
n|p 0.15 0.30 0.40 0.5 0.6
250 0.1105 0.1517 0.2261 0.2578 0.3029
500 0.1097 0.1615 0.1899 0.2294 0.3109
1000 0.1107 0.1579 0.1864 0.2296 0.3118
2000 0.1112 0.1528 0.1962 0.2396 0.2994
5000 0.1092 0.1569 0.1928 0.2380 0.3022

Burr model:

Table 4.11: Results of simulation for Burr model with index γ1 = 0.3 and η = 1
n|p 0.15 0.30 0.40 0.5 0.6
250 0.1423 0.1824 0.2186 0.2463 0.2664
500 0.1337 0.1724 0.1936 0.2205 0.2909
1000 0.1382 0.1653 0.1960 0.2377 0.2878
2000 0.1398 0.1649 0.1998 0.2319 0.2841
5000 0.1404 0.1671 0.1939 0.2355 0.2934

Table 4.12: Results of simulation for Burr model with index γ1 = 0.4 and η = 1
n|p 0.15 0.30 0.40 0.5 0.6
250 0.1504 0.2142 0.2695 0.3275 0.3649
500 0.1698 0.2232 0.2555 0.2985 0.3483
1000 0.1739 0.2210 0.2586 0.3112 0.3530
2000 0.1784 0.2223 0.2572 0.3013 0.3702
5000 0.1762 0.2201 0.2528 0.3165 0.3685

Table 4.13: Results of simulation for Burr model with index γ1 = 0.5 and η = 1
n|p 0.15 0.30 0.40 0.5 0.6
250 0.2110 0.2896 0.3092 0.3954 0.4154
500 0.2100 0.2548 0.3137 0.3739 0.4746
1000 0.2204 0.2605 0.3184 0.3819 0.4478
2000 0.2070 0.2669 0.3126 0.3637 0.4481
5000 0.2119 0.2637 0.3148 0.3797 0.4436



Conclusion

in this thesis, we looked at a recent problem in extreme value theory, namely the

presence of random censorship. This problem is very common in several areas of

socio-economic life where data is often randomly censored on the right, such as

medicine, finance, insurance, reliability,...

The objective of this thesis was twofold: initially, the goal was to clearly broaden

the concepts of extremes values theories and its applications. Secondly, the goal was

to estimate the income risk measures when the data are censored.

To facilitate the reading of the work, we recalled in Chapter 1 some fundamental

concepts on the statistics of extreme values with its rich literature, that’s constituted

the starting point of the thesis.

In the same vein, we also recalled in Chapter 2 some fundamental notions on the

statistics of censored data to better understand the field. heavy-tailed data based

on the same number of extreme observations from both truncated and truncation

variables.

Chapter 3 is dedicated to the study of risk measures and income inequality mea-

sures.

Finally, in Chapter 4, we are interested in the index estimation of risk measures

for extreme values for incompletely observed data, with a particular interest in the

case of right-censored data. We start by exploiting the first work on this subject,

which is due to Gardes and Stupfler (2015), to obtain a simple tail index estimator

based on a single sample fraction of extreme values.

Another objective of this thesis, is to combine the two problems of extreme val-

ues and censored data which poses a problem of double complexity, the first is that

the data is too scarce giving statistics on small sizes, and the second is to reduce the

sizes study of statistics due to censorship. This problem remains open in practice,

and it is very interesting in this work to apply this knowledge to risk measurements.

Also, in the long term, it would be interesting to extend this theory of extreme

values in the presence of data randomly right-censored in all domains (Weibull,

Gumbel) and in other types of censorship (left-censored, interval).

This thesis offers interesting perspectives from a theoretical as well as a practical

118
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point of view. In fact, in addition to the new lines of research it opens up, this work

can contribute in many real situations to solving certain statistical problems such

as insurance for example.
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[57] Földes, A., Rejtő, L., Winter, B. B. (1980). Strong consistency properties of

nonparametric estimators for randomly censored data, I: The product-limit

estimator. Periodica Mathematica Hungarica, 11(3), 233-250.
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