# (B)

#### République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

#### Université de Blida 1

#### Faculté des Sciences de la Nature et de Vie Département de Biologie et Physiologie Cellulaire

Mémoire de fin d'étude en vue de l'obtention du diplôme de Master

Option « Génétique et Physiologie »

Optimisation de protocole d'établissement de profils génétiques obtenus à partir d'ADN extrait du prélèvement du sang sur cartes FTA®

#### Présenté par

SOUIDI Aníssa

Soutenu le : 15/06/2015

| Nom                     | Grade | Lieu    | Qualité      |
|-------------------------|-------|---------|--------------|
| -Melle BENCHABANE       | MAB   | FSNV    | Presidente   |
| -Mr. MOHAMED SAID       | MAA   | FSNV    | Promoteur    |
| -Mr.DAHO                | MAA   | INCC-GN | Co-promoteur |
| - Mme GUESSAIBIA        | MCB   | FSNV    | Examinatrice |
| - Mr. BRAHIM ERRAHAMANI | MAA   | FSNV    | Invité       |
| - Mr. LAZREG            | MAA   | INCC-GN | Invité       |

Promotion 2014-2015

# Remerciements

Avant toute chose, je remercie ALLAH le tout puissant, de m'avoir donné la force et la patience pour mener à terme ce travail.

Ce travail a été réalisé au sein du laboratoire d'identification génétique de l'Institut National de Criminalistique et de Criminologie de la gendarmerie nationale, Bouchaoui, donc je tiens à exprimer toute ma gratitude au chef du laboratoire, comandant B.Ahmed de m'avoir accueilli avec gentillesse dans son laboratoire et de m'avoir offert son aide avec simplicité et ouverture d'esprit.

Je tiens à exprimer mes reconnaissances à mon promoteur, Monsieur Ramdane MOHAMED SAID, ce travail n'aurait pu être réalisé sans sa confiance, son soutien permanent malgré ses occupations et ses conseils avisés. Je tiens à le remercier d'avoir toujours pris le temps de répondre à mes questions et d'avoir été disponible à tout moment. Je le remercie également pour ses lectures et relectures pour chaque partie de mon mémoire.

Je tiens à exprimer toute ma reconnaissance au capitaine DAHO Kadour, pour le temps qu'il m'a consacré et pour ses remarques instructives. Je le remercie aussi de m'avoir fait partager ses grandes connaissances scientifiques et sa vision de la recherche lors de la rédaction de mon mémoire. Travailler avec vous fut très enrichissant capitaine.

Je remercie vivement, la présidente du jury Melle BENCHABANE et l'examinatrice Mme GUESSAIBIA qui ont accepté de consacrer une partie de leur temps précieux à l'évaluation de ce travail. C'est un grand honneur pour moi d'avoir pu soumettre ce travail à leur regard scientifique.

Mes plus sincères remerciements vont au commandant LAZREG Samir pour sa présence quotidienne à mes côtés jusqu'à la dernière minute de la réalisation de ce travail, sa patience, ses précieux conseils, ses encouragements et son soutien. Je lui en suis extrêmement reconnaissante. Je lui dis merci pour toutes les heures de discussion sur la stratégie de réalisation de ce projet ainsi que pour l'intérêt marqué avec lequel il a dirigé et suivi le déroulement de ce travail. Une grande partie de ce mémoire a été réalisée grâce à vous commandant.

Je tiens à remercier tout particulièrement et à témoigner toute ma reconnaissance au capitaine Adel pour sa disponibilité et son aide et sa gentillesse.

Je remercie également le capitaine AGOUN pour tout type de documentation et conseils, ainsi que pour la formation d'hygiène dons laquelle j'ai découvert plusieurs mesures de protection en laboratoire, tous cela a été utile pour moi.

Je dois ajouter que ce travail n'a pu être possible que grâce à la contribution de toutes les personnes travaillant au laboratoire d'identification génétique de INCC, je les remercie chaleureusement de m'avoir permis de réaliser ce projet et pour l'intérêt qu'elles ont toujours porté à mon travail. Merci aussi pour la gentillesse qu'elles m'ont témoigné tout au long de mon stage de PFE et pour leur aimable assistance et collaboration. Vous étiez pour moi une très belle expérience aussi bien du point de vue scientifique qu'humain.

C'est également avec plaisir que je remercie Monsieur Brahim Errahmani, pour ses nombreux conseils et sa gentillesse pour l'aide qu'il m'a apporté lors des analyses statistiques. Et aussi pour m'avoir fait l'honneur de sa présence à ma soutenance. Soyez assuré de ma profonde reconnaissance et de ma considération respectueuse.

Je tiens à remercier aussi tous mes enseignants qui ont participé à ma formation tout au long de mon cursus. Un grand merci pour madame AISSANI Radia pour toutes les remarques et les discussions enrichissantes qu'elle m'a partagé concernant mon PFE.

Merci à mes amies, Soumia et Manel, que j'ai eu la chance d'avoir à mes côtés et qui m'ont toujours soutenu et encouragé depuis de nombreuses années : ce sont des amies en or.

Je tiens à remercier toutes les personnes ayant contribué, de près ou de loin à la réalisation de ce travail et que je n'ai pas cité explicitement.

Mes derniers remerciements et non les moindres, s'adressent chaleureusement à Mohamed, où qu'il soit, il m'apporte la force qui me manque dans mes moments de faiblesse. Je résume mes sentiments dans cette simple phrase : Tout ce travail n'aurait jamais été possible sans toi...

# Dédicace

C'est avec profonde gratitude que je dédie ce mémoire à mon très cher papa, prunelles de mes yeux

Papa; tu as sacrifié ta vie pour ma réussite, j'espère qu'un jour je pourrais te rendre un peu de ce que tu as fait pour nous faire grandir. Que dieu te prête bonheur et longue vie afin que je puisse à mon tour te combler.

#### À la mémoire de ma mère...

Maman; le bon Dieu t'a arraché de nous trop tôt, J'aurais tant voulu que tu assistes à cette cérémonie et que tu me partage ma joie. Tu as été pour moi un excellent exemple de courage, d'honnêteté, de dignité, de sagesse, et des valeurs humaines. Tu as consacré le meilleur de toimême à notre éducation pour faire de nous ce que nous somme. Que ton âme repose en paix, Maman.

#### Résumé

Actuellement l'empreinte génétique est le moyen clé d'identification en service judicaire, cette dernière est établie par la PCR multiplex des STRs en utilisant différents kits commerciaux. Le kit PowerPlex® ESI 16 system est prévu pour l'établissement des profils génétiques par la coamplification de seize locus marqués différemment. Les protocoles décrits dans ces propres manuels ont été testés selon des spécifications prédéterminées par le fabricant afin de garantir une qualité constante du produit. Cependant, pour des raisons d'assurance qualité, chaque laboratoire doit déterminer la pertinence du produit pour son usage particulier. En fait, le protocole standard utilisé par les analystes du laboratoire d'identification génétique de l'*INCC* pour l'établissement des profils génétiques à partir d'ADN extrait du prélèvement du sang (prélèvement de référence) par la technologie des cartes FTA® présentent une forte saturation qui s'exprime par des hauteurs de pics très élevées puis l'abondance des artéfacts. La présente étude avait pour objectif d'obtenir des profils génétiques exploitables. Pour cela, nous avons optimisé le protocole standard en se basant sur deux paramètres : d'abord, le nombre de lavages du punch imprégné du sang a été augmenté de 3 lavages (définit par le fabricant) à 4 lavages au tampon TE afin de tester l'effet du lavage sur le taux d'inhibition posée par l'hémoglobine et sur l'élimination de l'ADN immobilisé sur la carte FTA®. Par ailleurs, le nombre de cycles de PCR multiplex a été diminué de façon décroissante de 29 cycles (défini par le fournisseur) jusqu'à 24 cycles dans le but de déterminer le nombre de cycle adéquat pour donner un profil ADN complet et interprétable.

Les résultats obtenus ont montré que le lavage n'a pas un effet significatif sur la quantité d'ADN immobilisée sur la carte FTA (p > 0.05) et l'effet sur le taux d'inhibition n'a pas également été observé. Les hauteurs de pics optimales ont été obtenues par les groupes d'échantillons amplifiés à 25 cycles de PCR.

En conclusion, l'avancée majeure de ce travail est la mise en évidence d'un nouveau protocole optimisé. Le nombre de lavages retenu a été celui défini par le fabricant (3 lavages) et le nombre de cycles d'amplification requis a été 25 cycles.

**Mots-clés**: Kit PowerPlex® ESI 16 system, profils génétiques, protocole standard, ADN, cartes FTA®, saturation, lavages, PCR, optimisation

#### **Abstract**

Currently the genetic fingerprint identification is the key way in judicial services; the latter is established by PCR multiplex of STRs using different commercial kits. The PowerPlex® ESI 16 System allows co-amplification and detection of sixteen loci. The protocols described in these own manuals were tested according to predetermined specifications to ensure consistent product quality. However, for quality assurance purposes, each laboratory should determine the suitability of the product for its particular use.

the standard protocol used by analysts on laboratory on DNA analysis (INCC) to establish genetic profiles from DNA extracted from the blood sample (reference sample) by FTA® cards have a high saturation which is expressed by very high peak and the abundance of artifacts. That poses a true problem during the interpretation of the results. This study aimed to obtain usable DNA profiles. For this, we have optimized the protocol based on two parameters: First, the washing of punch was increased for 3 washes (defined by the manufacturer) to 4 washes with TE buffer to test the effect of washing on the inhibition rate raised by hemoglobin and on the elimination of immobilized DNA on FTA® card. In addition, the number of PCR cycles was reduced decreasingly for 29 cycles (defined by the supplier) to 24 cycles in order to determine the appropriate number of ring to give a complete and interpretable DNA profile.

The results showed that washing does not have a significant effect on eliminating DNA fragments immobilized on the FTA® card (p> 0.05); and the effect on the inhibition rate was not also observed. However, peak heights and artefacts have cleared in parallel with the decreasing number of cycles of PCR, and then the groups of samples amplified at 25 cycles of PCR obtained the optimal peak heights.

In conclusion, the major breakthrough of this work is the demonstration of a new optimized protocol. The number of washing retained wash was that defined by the manufacturer (3 washes) and the required number of amplification cycles was 25 cycles.

**Keywords:** Kit PowerPlex® 16 ESI system, genetic profiles, standard protocol, DNA, FTA® cards, saturation, washes, PCR, optimization

#### ملخص

حاليا البصمة الوراثية هي الوسيلة الأكثر استعمالا في مجال التعريف عن طريق تحليل الحمض النووي ، هذه الأخيرة يتم التوصل اليها عن طريق التضخيم للحمض النووي بواسطة عدة منتوجات تجارية المنتوج التجاري من نوع PowerPlex® ESI 16 System يستعمل لإنشاء البصمة الوراثية بواسطة تضخيم ستة عشر واسمات من نوع ميكرو ساتيليت موسومة بألوان مختلفة .

البروتوكو لات الموصوفة في الأدلة الخاصة بالمنتج تمّ اختبارها وفقا لمواصفات محددة و ذلك لضمان جودة المنتج، و لكن رغم ذلك و لضمان دقة أكثر وجب على كل مختبر أن يقوم بتحديد صلاحية هذا المنتج حسب حاجياته الخاصة.

في الواقع إنّ البروتوكول المعتمد من طرف فريق خبراء مخبر تحليل الحمض النووي للمعهد الوطني للأدلة الجنائية و الإجرام المستخدم لرسم البصمة الوراثية انطلاقا من الحمض النووي المستخلص من العينات المرجعية (الدم) عن طريق تقنية البطاقات المدعوة ®FTA يعطي بصمة جينات وراثية متشبعة ، حيث تظهر على شكل خطوط متداكسة ممّا قد يعرقل تحلبيلها و قرائتها .

في هذا الإطار تهدف هذه الدراسة الى الحصول على بصمات جينات وراثية قابلة للاستخدام ، لهذا قمنا بتعديل البروتوكول الأصلى على أساس معلمتين :

أولا: قمنا بزيادة عدد غسل القرص المثبت لشظايا الحمض النووي من 8 غسلات (محددة من طرف الشركة المصنعة) إلى 8 غسلات بواسطة المخفف 8 وذلك لاختبار تأثير الغسيل على مدى تثبيط خضاب الدم من جهة و على شظايا الحمض النووي المثبتة على البطاقة 8 من 8 من جهة أخرى . ثانيا : قمنا بتخفيض عدد دورات تضخيم الحمض النووي بواسطة 8 من 8 من 8 دورة (محددة من طرف المورد) إلى 8 دورة و ذلك من أجل تحديد عدد الدورات المناسبة لإعطاء بصمة جينات وراثية كاملة مقروءة و قابلة للتحليل .

أظهرت النتائج أن الغسيل ليس له أي أثر على شظايا الحمض النووي المثبتة على بطاقة ®FTA حيت (0,05<)و التأثير على تثبيط خضاب الدم أيضا لم يلاحظ ولكن طول خطوط بصمة الجينات الوراثية كان في تناقص مستمر بصفة طردية مع تناقص عدد دورات التضخيم المستعملة.

في الختام، توصلنا إلى وضع بروتوكول معتدل حيث أنّ عدد الغسلات المعتمد هو نفسه المنصوص عليه من طرف شركة الصنع، و عدد دورات التضخيم المناسب هو 25 دورة .

#### الكلمات المفتاحية:

المنتوج PowerPlex® ESI 16 System ، بصمة الجينات الوراثية ، بروتوكول أصلي ، الحمض النووي ، بطاقة همنتوج TA®، تشبع ، غسل ، تضخيم ، تعديل .

## **Sommaire**

| ъ | ,   |   | -  |
|---|-----|---|----|
| к | esi | m | ne |

Abstract

ملخص

Sommaire

Liste des figures

Liste des tableaux

Liste des abréviations et des acronymes

Liste des annexes

| Introduction                                                                | 1  |
|-----------------------------------------------------------------------------|----|
|                                                                             |    |
| Chapitre I : Étude bibliographique                                          | 3  |
| I.1.Empreinte Génétique                                                     | 3  |
| I.2.L'ADN Humain : Rappels essentiels                                       | 3  |
| I.2.1.L'ADN nucléaire                                                       | 4  |
| I.2.2.L'ADN mitochondrial                                                   | 4  |
| I.3.Polymorphisme Génétique                                                 | 5  |
| I.3.1.Polymorphisme de longueur des fragments de restriction                | 5  |
| I.3.2.Polymorphismes de répétition                                          | 5  |
| I.3.3.Polymorphismes d'un seul nucléotide (Single Nucleotide Polymorphisms) | 7  |
| I.4.L'établissement d'un profil génétique                                   | 8  |
| I.4.1.Source d'ADN                                                          | 8  |
| I.4.2.Extraction d'ADN                                                      | 8  |
| I.4.3.Amplification par PCR                                                 | 10 |
| I.4.4.Séparation et détection                                               | 15 |
| I.4.5. Traitement des données et validation des résultats                   | 16 |
| I.5. Limites de la génétique médico-légale                                  | 19 |
| I.5.1. Les inhibiteurs de la PCR                                            | 19 |
| I.5.2. Les artéfacts liés aux erreurs d'amplification                       | 19 |
| Chapitre II : Matériel et méthodes                                          | 21 |
| II.1.Echantillon d'ADN humain                                               | 21 |

| II.2.Méthodes de travail                                      | 21 |
|---------------------------------------------------------------|----|
| II.2.1.Extraction d'ADN par la technique FTA                  | 21 |
| II.2.2.Amplification par PCR                                  | 25 |
| II.3.Électrophorèse capillaire                                | 31 |
| II.3.1. Protocole expérimental de la post-amplification       | 31 |
| II.3.2. Séparation et détection des fragments d'ADN amplifiés | 32 |
| II.4.Traitement des données et validation des résultats       | 33 |
| II.4.1.Traitement des données                                 | 33 |
| II.4.2. Validation des résultats                              | 34 |
| II.5.Analyses statistiques                                    | 34 |
| II.5.1.Comparaison intra-groupe                               | 34 |
| II.5.2.Comparaison inter-groupes                              | 35 |
|                                                               |    |
|                                                               |    |
| Chapitre III : Résultats et discussion                        | 36 |
| III.1.Résultats d'analyses génétiques                         | 36 |
| III.2. Résultats d'analyses statistiques                      | 46 |
| III.2.1. Résultats de comparaison intra-groupe                | 46 |
| III.2.2. Résultats de comparaison inter-groupes               | 60 |
|                                                               | 62 |
| III.2.3. Choix de nombre de cycle adéquat                     | 02 |
| III.2.3. Choix de nombre de cycle adequat                     |    |
| · -                                                           | 73 |
| III.3.Descussion                                              | 73 |

Annexes

# Liste des figures

| Figure 1 : Vue en microscopie électronique d'une portion d'un dépôt de sang sur un suppor                                           |
|-------------------------------------------------------------------------------------------------------------------------------------|
| FTA® a - dépôt frais de sang (1500 X); b - dépôt de sang sur une carte FTA® après un lavage                                         |
| au réactif FTA (10000 X).                                                                                                           |
| Figure 2 : Principe général de la réaction de polymérisation en chaîne (PCR)                                                        |
| Figure 3 : Schéma de la PCR multiplex                                                                                               |
| Figure 4 : Les 13 loci communs analysés sur les autosomes plus l'amélogénine                                                        |
| <b>Figure 5</b> : Schéma du locus mâle (a) et femelle (b) d'amelogenin sur les chromosomes X et Y et au niveau d'électrophérogramme |
| Figure 6 : Représentation schématique d'un appareillage de l'électrophorèse capillaire 10                                           |
| Figure 7 : Schéma de la séparation et la détection des STRs par le séquenceur ABI Prism 1                                           |
| Figure 8 : Exemple des pics tracés par GenneMapper en présence des pics hors échelles 18                                            |
| Figure 9 : Exemple des allèles du marqueur vWA présentants des stutters                                                             |
| Figure 10 : Exemple d'un pul-up                                                                                                     |
| <b>Figure 11</b> : Processus d'établissement d'un profil génétique                                                                  |
| Figure 12: Mini-catre FTA. B. Pochette de stockage pour la protection des cartes FTA® contre                                        |
| les gaz ou les liquides. C. Tapis de coupe et micro-poinçonneuse                                                                    |
| <b>Figure 13</b> : Configuration des locis analysés par le kit PowerPlex® ESI 16 system A* = Amelogenin. Source                     |
| Figure 14: Répartition des tubes des échantillons dans la plaque de 96 puits de thermocycleur                                       |
| (exemple <b>n</b> =29 cycles)                                                                                                       |
| Figure 15 : Schéma général de dispositif expérimental de l'optimisation des lavages et de l'amplification                           |
| Figure 16 : Configuration de la plaque de 96 puits de séquenceur (exemple de répartition de                                         |
| échantillons amplifié avec 29 cycles)                                                                                               |

| Figure 17 : Valeur minimale et valeurs de zone stochastique du kit PowerPlex® ESI 16                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| system selon la validation interne du laboratoire d'identification génétique de l' <i>INCC</i> 33                                                                                        |
| <b>Figure 18</b> : Profil génétique complet obtenu à partir de la co-amplification des 15 STRs, ainsi que du locus amélogénine, inclus dans le kit PowerPlex® ESI 16 system              |
| Figure 19 : Profil génétique d'allelic ladder du kit PowerPlex® ESI 16 system                                                                                                            |
| <b>Figure 20</b> : Profil génétique partiel obtenu à partir de l'echnatillon C3 après la co-amplification des 16 marqueurs inclus dans le kit PowerPlex® ESI 16 system                   |
| <b>Figure 21</b> : Profil génétique complet de contrôle positif (0,5ng) obtenu après la co-<br>amplification à 29 cycles des 16 marqueurs inclus dans le kit PowerPlex® ESI 16 system 40 |
| <b>Figure 22</b> : Profil génétique nul de contrôle négatif obtenu après la co-amplification à 29 cycles des 16 marqueurs inclus dans le kit PowerPlex® ESI 16 system                    |
| Figure 23 : Exemples de la première ligne des profils génétique obtenus après 3 lavages 43                                                                                               |
| Figure 24 : Exemples de la première ligne des profils génétique obtenus après 4 lavages 45                                                                                               |
| <b>Figure 25</b> : Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 3 fois, amplifiés avec 29 cycles de PCR                         |
| <b>Figure 26</b> : Graphe de nuage de points sur le plan factoriel (1,2): groupe d'échantillons lavés 3 fois et amplifiés à 29 cycles de PCR                                             |
| <b>Figure 27</b> : Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 4 fois, amplifiés avec 29 cycles de PCR                         |
| <b>Figure 29</b> : Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 3 fois, amplifiés avec 28 cycles de PCR                         |
| <b>Figure 30</b> : Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 3 fois et amplifiés à 28 cycles de PCR                                                     |
| <b>Figure 31</b> : Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 4 fois, amplifiés avec 28 cycles de PCR                         |

| <b>Figure 32</b> : Nuages de points sur le plan factoriel (1,2): groupe d'échantillons lavés 4 fois e amplifiés à 28 cycles de PCR                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure 33</b> : Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 3 fois, amplifiés avec 27 cycles de PCR |
| <b>Figure 34</b> : Nuages de points sur le plan factoriel (1,2): groupe d'échantillons lavés 3 fois e amplifiés à 27 cycles de PCR                               |
| <b>Figure 35</b> : Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 4 fois, amplifiés avec 27 cycles de PCR |
| <b>Figure 36</b> : Nuages de points sur le plan factoriel (1,2): groupe d'échantillons lavés 4 fois e amplifiés à 27 cycles de PCR                               |
| <b>Figure 37</b> : Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 3 fois, amplifiés avec 26 cycles de PCR |
| <b>Figure 38</b> : Nuages de points sur le plan factoriel (1,2): groupe d'échantillons lavés 3 fois e amplifiés à 26 cycles de PCR                               |
| <b>Figure 39</b> : Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 4 fois, amplifiés avec 26 cycles de PCR |
| <b>Figure 40</b> : Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 4 fois e amplifiés à 26 cycles de PCR                              |
| <b>Figure 41</b> : Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 3 fois, amplifiés avec 25 cycles de PCR |
| <b>Figure 42</b> : Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 3 fois e amplifiés à 25 cycles de PCR                              |
| <b>Figure 43</b> : Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 4 fois, amplifiés avec 25 cycles de PCR |
| <b>Figure 44</b> : Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 4 fois e amplifiés à 25 cycles de PCR                              |
| <b>Figure 45</b> : Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 3 fois, amplifiés avec 24 cycles de PCR |

| <b>Figure 46</b> : Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 3 fois et amplifiés à 24 cycles de PCR                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure 47</b> : Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 4 fois, amplifiés avec 24 cycles de PCR  |
| <b>Figure 48</b> : Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 4 fois et amplifiés à 24 cycles de PCR                              |
| <b>Figure 49</b> : Graphique des moyennes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN amplifiés avec 29 cycles de PCR |
| <b>Figure 50</b> : Graphique des moyennes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN amplifiés avec 28 cycles de PCR |
| <b>Figure 51</b> : Graphique des moyennes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN amplifiés avec 27 cycles de PCR |
| <b>Figure 52</b> : Graphique des moyennes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN amplifiés avec 26 cycles de PCR |
| <b>Figure 53</b> : Graphique des moyennes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN amplifiés avec 25 cycles de PCR |
| <b>Figure 54</b> : Graphique des moyennes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN amplifiés avec 24 cycles de PCR |
| <b>Figure 55</b> : Graphe de nuage de points sur le plan factoriel (1,2): série d'échantillons lavés 3 fois au tampon TE                                          |
| <b>Figure 56</b> : Graphiques des moyennes des hauteurs de pics pour chaque marqueur amplifiés à différents cycles (échantillons à 3 lavages)                     |
| <b>Figure 57</b> : Graphe de nuage de points sur le plan factoriel (1,2) : série d'échantillons lavés 4 fois au tampon TE                                         |
| <b>Figure 58</b> : Graphiques des moyennes des hauteurs de pics pour chaque marqueur amplifiés à différents cycles (échantillons 4 lavages)                       |
| <b>Figure 59</b> : Exemple de la première ligne de profils génétique, du père présumé, obtenu en utilisant le protocole standard (3 lavages/ 29 cycles)           |

| Figure 60 : Exemple de la première ligne de profils génétique, de la mère, obtenu en utili | sant |
|--------------------------------------------------------------------------------------------|------|
| le protocole standard (3 lavages/ 29 cycles)                                               | 76   |
| Figure 61 : Exemple de comparaison entre les marqueurs de la première ligne de             |      |
| l'éléctrophorégramme (enfant, mère et père présumé)                                        | 77   |

# Liste des tableaux

| Tableau I : Les rendements typiques de l'ADN extrait de divers matériaux biologiques                                               |
|------------------------------------------------------------------------------------------------------------------------------------|
| Tableau II: Répartition des tubes identifiés pour les 60 ADN.    2                                                                 |
| Tableau III: Les étapes des lavages effectués pour les 60 échantillons d'ADN       2                                               |
| Tableau IV: Réactifs de kit PowerPlex® ESI 16 system    2                                                                          |
| Tableau V: Composition du milieu réactionnel et volume des différents réactifs utilisés (pou         un volume PCR final de 25 μl) |
| Tableau VI: Tableau des valeurs propres    5                                                                                       |
| Tableau VII: Tableau de comparaison entre les allèles du père présumé, la mère et l'enfan                                          |
| dans le cadre d'un test de paternité                                                                                               |

## Liste des abréviations et des acronymes

**A:** Adénosine

**ABI:** Applied Biosystems

**ABO:** Groupe sanguin ABO

**ACP:** Analyse en Composantes Principales

**ADN:** Acide désoxyribonucléique

**ADNmt :** Acide désoxyribonucléique mitochondrial

**ADNnu:** Acide désoxyribonucléique nucléaire

**AMEL:** Amélogénine

**ANOVA:** Analysis of variance

**ARN:** Acide ribonucléique

C: Cytosine

**C**°: degré Celsius

Ca2+: Calcium

**CCD:** Charge Coupled Device

**cm**: Centimètre

**dATP:** desoxy-adénosine triphosphate

**dCTP:** desoxy- cytosine triphosphate

**dGTP:** desoxy- guanosine triphosphate

**dNTP:** desoxynucleoside triphosphate

**dTTP:** desoxy- timine triphosphate

**EC:** Électrophorèse Capillaire

**éch**: Échantillon

**EDNAP:** « European DNA Profiling group »

**EDTA:** Éthylène Diamine Tétra-Acétique

**ENFSI:** « European Network of Forensic Science Institutes »

**ESI:** « European Standard Investigator »

**F**: Facteur

**FBI:** « Federal Bureau of Investigation »

**FTA:** Fitzco/Flinder Technology Agreement

**G**: Guanine

**HV1:** Hyper-variable regions 1

**HV2:** Hyper-variable regions 2

**ID:** Identifiant

INCC: « Institut National de Criminalistique et de Criminologie »

KV: kilo volt

LINE Long Interspersed Element

**mg:** milligramme

**ml:** millilitre

**mm:** *millimètre* 

mn: minute

**n**: nombre

**ng:** nano-gramme

**OL:** Off Ladder

**pb:** paire de bases

**PCR:** Polymerase Chain Reaction

**pg:** picogramme

**pH:** potentiel Hydrogène

**POP:** Performance Optimized Polymere

**RFLP:** Restriction Fragment Length Polymorphism

**RFU:** Relativ Fluorescent Unit

**SDS:** Sodium Dodecyl Sulfate

sec: seconde

**SINE** Short Interspersed Elements

**SNP:** Single Nucleotide Polymorphisms

**STR:** Short Tandem Repeats

T: Thymine

**Taq:** Thermus aquaticus

**TE:** Tris EDTA

UV: Ultraviolet

V: Variable

**v3.0**: Version 3

**VNTR:** Variable Number Of Tandem Repeats

μ**m:** micro- mètre

### Liste des annexes

- **Annexe 1** : Tableau des marqueurs co-amplifiés et leurs fluorochromes associé du kit PowerPlex® ESI 16 system
- **Annexe 2 :** Tableau des hauteurs de pics de différents marqueurs amplifié à différents cycles par la PCR
- **Annexe 3**: Exemples de profils génétiques de la série 1 à 3 lavages et de la série 2 à 4 lavages
- **Annexe 4**: Tableau des moyennes des hauteurs de pics de différents marqueurs de la série 1 (3 lavages) à différents cycles d'amplification par PCR (29, 28, 27, 26, 25, et 24 cycles)
- **Annexe 5**: Tableau des moyennes des hauteurs de pics de différents marqueurs de la série 2 (4 lavages) à différents cycles d'amplification par PCR (29, 28, 27, 26, 25, et 24 cycles)
- Annexe 6 : Profils génétiques du père présumé, de la mère et de l'enfant pour le test de paternité
- **Annexe 7** : Profils génétique de témoin positif et de témoin négatif des échantillons du père présumé et de la mère pour le test de paternité

# Introduction

Pendant longtemps, les empreintes digitales considérées comme caractéristique individuelle, a été le seul moyen clé qui permettait aux enquêteurs d'identifier les victimes et les criminels en affirmant leur présence où les empreintes avaient été relevées. Cependant ; les empreintes recueillies sur une scène de crime étant rarement complètes et interprétables, donc plusieurs marqueurs génétiques ont dû être développés. Il y a eu d'abord le typage par groupe sanguin ABO, découvert par Karl Landsteiner en 1901, permettant de déterminer la probabilité de retrouver des individus ayant les mêmes caractéristiques sanguines [Coquoz et Taroni, 2006]. Mais ce caractère n'était pas assez fiable. C'est pourquoi une analyse des enzymes de globules rouges et des protéines sériques a été rajoutée afin d'augmenter la valeur probante des expertises biologiques [Souiden et al., 2007]. Le principal désavantage de ces marqueurs était leur dégradation rapide. En fait, selon l'âge et la taille des taches du sang trouvées sur une scène de crime, peu ou pas d'informations peuvent être obtenues en raison de la grande sensibilité de ces marqueurs à la contamination bactérienne menant à des faux positifs. En outre ces méthodes ont un très faible pouvoir de discrimination [Taupin, 2013].

Depuis des quelques années, une technique encore plus révolutionnaire apparaît, la technique d'analyse d'ADN aussi appelée Empreinte génétique [Doutremepuich, 2012], qui permet à partir d'une quantité infime de matériel biologique de procéder à l'identification d'un individu. Donc la possibilité de « faire parler » un ADN inconnu, qui présente le support du patrimoine génétique spécifique à chaque individu [Furkel, 2004]. À l'exception des vrais jumeaux qui possèdent un patrimoine génétique identique [Griffiths et Sanlaville, 2001]. L'empreinte génétique a été décrite pour la première fois en 1985 par le généticien anglais Alec Jeffrey qui démontra que l'ADN contenait des séquences qui se répétaient, et surtout, ce nombre de répétitions variait d'une personne à l'autre en étant transmis par voie mendélienne aux enfants [Doutremepuich, 2012].

Une autre révolution a permis de donner un formidable essor au domaine de l'identification par ADN, et ce par la mise en place de la de PCR (*Polymerase Chain Reaction*) qui permet l'amplification sélective d'un fragment-cible d'ADN en millions d'exemplaires. La contrainte quantitative devenant alors caduque puisque 1000 fois moins d'ADN que la méthode de Southern devenait nécessaire. La PCR fut alors utilisée pour amplifier des séquences microsatellites (STR pour *Short Tandem Repeats*), dont la variabilité du nombre de répétitions restait le support de l'identification et des tests de paternité [**Butler**, 2005].

Les analystes des laboratoires judiciaires procèdent aujourd'hui à l'amplification simultanée de plusieurs STRs en utilisant différents kits commerciaux. Le laboratoire d'identification génétique de l'Institut National de Criminalistique et de Criminologie *INCC* de la gendarmerie national procède par exemple à l'utilisation du kit PowerPlex® ESI 16 system. En outre, pour l'analyse des échantillons de référence (sang) provenant d'individus connus, plusieurs techniques sont actuellement mises en œuvre afin d'extraire l'ADN en toute sécurité qualitativement et quantitativement telle que la technologie des cartes FTA® qui permet la lyse des membranes des cellules déposées et de leurs organelles suivie du largage des acides nucléiques directement sur le papier traité. Toutefois la complexité de cette dernière s'introduit dans la quantité d'ADN présente dans le punch FTA® ainsi que de sa qualité qui est influencée par la présence de l'hémoglobine, un principal inhibiteur de la PCR [Butler, 2011]. En effet les profils génétiques obtenus en utilisant le protocole standard du kit PowerPlex ESI® 16 system pour le génotypage d'ADN extrait sur cartes FTA® à partir du prélèvement du sang présente une forte saturation qui s'exprime par l'abondance des artéfacts qui interfèrent avec l'analyse et rend l'interprétation des résultats difficile et même des fois impossible et souvent lente.

Le protocole d'amplification présenté dans le manuel propre au kit PowerPlex® ESI 16 system a été testé par le fabricant. Cependant, pour des raisons d'assurance qualité, chaque laboratoire doit à son tour testé et validé le protocole en fonction des équipements utilisés. Donc il est nécessaire d'optimiser ces protocoles, y compris le nombre de lavages pour l'étape d'extraction et le nombre de cycles d'amplification pour l'étape de la PCR. À l'issu, une validation interne basée sur des résultats d'expériences initiées au laboratoire concerné.

Dans ce contexte, le présent travail tente d'optimiser l'extraction et réguler l'amplification d'ADN obtenu à partir des prélèvements du sang par la technologie FTA®. L'objectif final de ce travail est d'obtenir des profils génétiques exploitables en proposant d'une part un nombre adéquat pour l'étape de lavages du papier FTA® imprégné du sang. Et d'autre part, un nombre de cycles d'amplification convenable pour les STRs multiplex afin de donner des profils ADN complets et interprétables.

# Chapitre I : Étude bibliographique

#### I.1. EMPREINTE GÉNÉTIQUE

Empreinte génétique ou profil génétique sont des termes utilisés pour la dénomination de la technique d'identification par l'analyse d'ADN. Cependant, le terme « empreinte génétique » transmet de façon exagéré une impression de certitude absolue. Il renvoie immanquablement à l'empreinte digitale dont il a été affirmé depuis le début du 20<sup>e</sup> siècle qu'elle avait un caractère parfaitement individuel. Or que la valeur d'un résultat d'analyse d'ADN est forcément estimée en termes statistiques. Pour cela, le terme « profil génétique » est probablement le plus adéquat, il indique bien que cette analyse détermine le contour d'une personne, sans en donner une description complète [Coquoz et Taroni, 2006].

Le profil génétique d'une personne comprend les résultats d'analyse d'une série de segments d'ADN (appelés locis, ou dans le langage des experts, systèmes), situés à des endroits bien précis de la molécule [Van, 2002]. La probabilité que deux personnes partagent le même profil génétique, compte tenu des examens auxquels il est aujourd'hui procédé, semble largement inférieure à un sur un milliard [Furkel, 2004].

La principale application déduite par les profils génétiques est la criminalistique qui regroupe :

- **-L'identification des corps**, consiste à la recherche de personnes disparues et l'identification des victimes suite à des catastrophes naturelles ou des catastrophes d'origine humaine majeures ;
- -La filiation, consiste principalement la recherche en parentés [Butler, 2010].

Avant de procéder aux processus d'établissement d'un profil génétique, il faut tout d'abord connaître les propriétés et les fonctions de l'ADN humain.

#### I.2. L'ADN HUMAIN : RAPPELS ESSENTIELS

L'unité de base à laquelle s'intéresse la biologie moléculaire est la molécule d'acide désoxyribonucléique, l'ADN, support de l'information génétique. C'est un complexe chimique considéré comme un programme génétique qui détermine notre caractéristique chimique et physique [Coquoz et Taroni, 2006 ; Taupin, 2013].

#### I.2.1. L'ADN nucléaire

L'ADN nucléaire est localisé principalement dans le noyau des cellules répartis sur 46 chromosomes. Chaque cellule somatique nucléée d'un être humain contient 23 paires de chromosomes (22 paires d'autosomes et 1 paire de chromosomes sexuels, XX pour une femme et XY pour un homme) [Mader, 2010]. Chaque paire représente un double exemplaire de l'information génétique, un exemplaire provenant du spermatozoïde (donc du père) et un autre exemplaire provenant de l'ovule (donc de la mère), les cellules somatiques sont dites diploïdes. Toute les cellules de notre corps sont identiques génétiquement [Coquoz et Taroni, 2006]. En revanche, à l'issue de la méiose, les gamètes humains ne possèdent qu'un seul exemplaire de chaque paire (soit 22 autosomes + le chromosome X dans l'ovule, soit 22 autosomes + le chromosome X ou Y dans le spermatozoïde), les cellules germinales sont dites haploïdes [Larsen, 2003].

Chacune de nos cellule, contient environ deux mètres d'ADN qui est encastré dans le noyau, mais sur ces deux mètres deux centimètres seulement sont consacrés aux gènes. Notons que les gènes ne codant pas seulement des protéines, mais aussi des ARN particuliers qui ne seront pas traduits (ARN ribosomique, ARN de transfert, micro ARN...). Près de 99% de notre génome est donc de d'ADN non codant [Raven et al., 2010; Merlin, 2014].

#### I.2.2. L'ADN mitochondrial

L'ADN mitochondrial est localisé principalement dans la mitochondrie. Le génome mitochondrial ne s'hérite pas selon la loi de Mandel; il ne se transmet que par la mère. Il est présent à de multiples exemplaires dans chaque cellule [Keyser et al., 2013]. Cette caractéristique est d'un grand intérêt dans le domaine de la criminalistique. En effet l'analyse de l'ADN mitochondrial pourrait bien être une solution de secours dans le cas où l'ADN nucléaire est en quantité insuffisante [Coquoz et Taroni, 2006].

L'ADNmt est composé que des exons. Il contient seulement deux régions non codantes : la région de contrôle connue sous le nom de « D-loop » et la région V. Deux régions très polymorphes, contenant dans la région de contrôle non codante, sont particulièrement importantes pour l'analyse médico-légale : HV1 et HV2. L'analyse de ces deux régions se font par séquençage, les résultats sont obtenus par comparaison avec une séquence de référence ce

qui permet d'établir des différences entre les séquences analysées et la séquence de référence [Primorac et Schanfield, 2014 ; Doutremepuich, 2012].

#### I.3. POLYMORPHISME GÉNÉTIQUE

Quelque soit leur localisation dans la cellule, les molécules d'ADN sont instables et accumulent des variations au cours du temps. Ces variations se regroupent sous le nom du polymorphisme (grec : *poly* pour plusieurs, *morfoma* pour forme) qui désigne l'ensemble des différences existant à un même locus entre individus d'une même population. Généralement, ces variations sont considérées comme des polymorphismes génétiques à partir du moment où elles sont représentées à une fréquence de plus de 1 % dans la population. Il est possible d'identifier des polymorphismes de l'ADN à différentes échelles, chacun révélant un niveau différent de variabilité [Farce, 2000].

#### I.3.1. Polymorphisme de longueur des fragments de restriction

Le polymorphisme de longueur des fragments de restriction ou RFLP (*Restriction Fragment Length Polymorphism*) résulte de variations individuelles de la localisation de sites de restriction pour une enzyme donnée. Il peut être dû à une création ou une suppression d'un site de restriction. Ces polymorphismes sont révélés par la méthode du Southern blot après digestion enzymatique de l'ADN extrait afin d'observer, grâce à leur reconnaissance par une sonde marquée, des fragments différents par leurs longueurs [**Petkovski**, **2006**].

#### I.3.2. Polymorphismes de répétition

Environ 50% de notre génome est constitué de séquences répétitives. Elles sont de taille variable, constituées de répétitions d'un motif unitaire plus ou moins long [Merlin, 2014].

Ces dernières présentent une caractéristique précieuse dans le domaine de la criminalistique du fait qu'elles sont le siège d'un considérable polymorphisme. En effet, le nombre de répétions de chaque motif en un locus donné varie d'une personne à l'autre [Coquoz et Taroni, 2006].

Pour chacun de ceux-ci, un individu possède deux allèles qu'ils sont transmis de façon stable selon la loi mendélienne aux enfants.

Selon le nombre plus ou moins élevé de bases dans chaque unité répétée, on distingue <u>les</u> satellites, les minisatellites et les microsatellites [Merlin, 2014].

#### a) Satellites

Les satellites sont composés de répétition à un très grand nombre de fois de motif de quelques centaines de nucléotides (de l'ordre de 500 000 à 1 000 000). Ils peuvent être trouvés autour des centromères des chromosomes. On distingue deux formes :

-Les séquences SINE (Short interspersed elements), contenant 100 à 300 nucléotides.

-Les séquences LINE (*Long interspersed element*), contenant 5 à 7 000 nucléotides [Merlin, 2014].

#### b) Minisatellites

Les minisatellites, également appelés VNTR (*Variable Number of Tandem Repeats*) [Gilliquet, 2009] comportent 10 à 100 pb et forment des groupes assez volumineuses comprenant jusqu'à 3000 répétitions. Ils sont instables et le nombre d'exemplaires d'une séquence donnée change souvent d'une génération à l'autre suite à des recombinaisons méiotiques (*crossing-over*) inégales et des conversions génétiques [Karp, 2010].

#### c) Microsatellites

Les microsatellites, aussi nommées STR (*Short Tandem Repeats*) [Gilliquet, 2009] sont des séquences courtes d'une longueur de 1 à 5 paires de bases, forment typiquement des petits groupes d'environ 10 à 40 pb, dispersés assez uniformément dans le génome [Karp, 2010].

Le génome humain contient environ 50000 microsatellites dont chacun est localisé sur un locus précis et identifiable chez tous les individus. Les STRs sont hautement polymorphes dans la population en raison du brassage génétique qu'ils subissent, mais restent stables pour un même individu [Fernandez et *al.*, 2006].

Selon leurs motifs, les STRs sont classés en trois catégories :

- Les répétitions « simples » : contiennent des unités de même séquence et longueur ;
   (ex : motif [AATG] du locus TPOX)
- Les répétitions « composées » : comprennent au moins 2 unités "simples" adjacentes ;
   (ex : [AGAT],[TCTA] du locus D3S1358).
- Les répétitions « complexes » : se composent d'unités répétitives différentes et de longueur variable avec diverses séquences intercalées entre les blocs ; (ex : [TTTC]3
   TTTTTTCT [CTTT]n CTCC [TTCC]2 pour le locus FGA) [El Ossmanil et al., 2007].

# I.3.3. Polymorphismes d'un seul nucléotide (Single Nucleotide Polymorphisms)

Les SNPs ou les polymorphismes d'un seul nucléotide (*single nucleotide polymorphisms*) sont la forme la plus fréquente de variation génétique chez l'homme. Ce sont des polymorphismes portant sur un seul nucléotide. Il s'agit de mutations germinales présentes aussi bien dans les régions codantes que dans les régions non codantes : séquences intergéniques, régions 3' ou 5' non traduites, régions introniques et aussi dans les sites de fixation des facteurs de transcription [Korzeniewski et *al.*, 2013]. Elles sont présentes dans l'ADN nucléaire et aussi dans l'ADN mitochondrial [Keyser et *al.*, 2013].

Il y a plus d'un million de SNPs dans le génome humain, dont plusieurs constituent des polymorphismes distincts et peuvent être génotypés en utilisant des méthodes peu coûteuses et rapides ce qui est utiles dans les tests médico-légaux. Cependant, ces derniers sont limités dans leur variabilité. En fait, il ne peut y avoir que quatre allèles possibles pour chaque SNP, car on ne peut avoir que soit un A, C, G, T dans cette position nucléotidique [Michaelis et al., 2011].

Deux applications principales s'en déduisent par l'analyse des SNPs : L'estimation de l'origine ethnique d'une personne et la détermination d'apparences morphologiques. Ces analyses représentent des aides à l'enquête car elles peuvent prédire : la couleur de la peau, la couleur des yeux, la couleur des cheveux,...[Doutremepuich, 2012].

#### I.4. L'ÉTABLISSEMENT D'UN PROFIL GÉNÉTIQUE

#### I.4.1. Source d'ADN

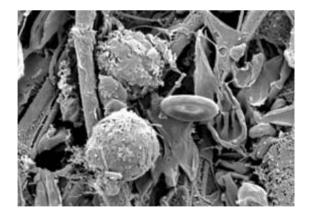
Le profil génétique peut être établi à partir :

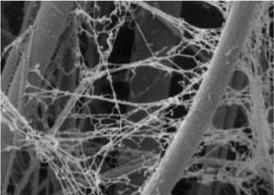
- -Des traces (échantillon de cellules humaines trouvé sur une scène de crime)
- -Des prélèvements de référence (échantillon de cellules humaines prélevé sur des personnes connues) [Van, 2002]

Avant de procéder à l'analyse d'ADN, il est assez important de connaître le type d'échantillon prélevé car le choix de la technique d'extraction d'ADN ainsi que sa réussite dépend principalement de la quantité et de la qualité de cette molécule dans un échantillon biologique donné. La quantité du matériel génétique varie en fonction de la densité de cellules nucléées dans les différents liquides biologiques. Les rendements typiques d'ADN extrait de divers matériaux biologiques sont indiqués dans le tableau I.

**Tableau I.** Les rendements typiques de l'ADN extrait de divers matériaux biologiques [**Butler**, **2011**]

| Type d'échantillon    | Quantité d'ADN                |
|-----------------------|-------------------------------|
| Sang liquide          | 20 000ng/ mL à 40 000ng/ mL   |
| Sperme liquide        | 150 000ng/ mL à 300 000ng/ mL |
| Poil (avec la racine) | 1ng/ racine à 750ng/ racine   |
| Salive liquide        | 1000ng/ mL à 10 000ng/ mL     |
| Os                    | 3ng/ mL à 10ng/ mL            |
| Tissus                | 50ng/ mg à 500ng/ mg          |


#### I.4.2. Extraction d'ADN


Tout échantillon biologique obtenu à partir d'une scène de crime ou un échantillon provenant d'un individu connu, contient un certain nombre de substances autre que l'ADN. Les protéines qui empaquettent l'ADN dans l'environnement cellulaire peuvent inhiber la capacité de son analyse. Le but du processus d'extraction d'ADN est typiquement de lyser des cellules pour

libérer les molécules d'ADN de tout autre matériel cellulaire et de l'isoler dans un format compatible avec les applications en aval, y compris l'amplification par PCR.

#### I.4.2.1. Extraction par carte FTA®

L'extraction d'ADN par la technologie des cartes FTA®, fut initialement développée à la fin des années 1980 par Lee Burgoyne à l'Université de Flinders en Australie comme une méthode pour l'extraction et le stockage de l'ADN. FTA signifie à l'origine "Fitzco/Flinder Technology Agreement". FTA® est une chimie brevetée de la société Whatman. Cette chimie permet la lyse des membranes des cellules déposées et de leurs organelles suivie du largage des acides nucléiques directement sur le papier traité. Ces derniers restent enchâssés et protégés dans les fibres du support sans utiliser de procédés d'extraction supplémentaires (figure 1). Cette carte contient aussi des substances chimiques permettant de protéger les acides nucléiques des attaques fongiques et de la dégradation enzymatique ou oxydative ; et de les préserver de la croissance bactérienne et virale. En conséquence, l'ADN sur ce papier peut être conservé durant plusieurs années à température ambiante [Butler, 2011 ; Funel et al., 2010].





**Figure 1 :** Vue en microscopie électronique d'une portion d'un dépôt de sang sur un support FTA® **a -** dépôt frais de sang (1500 X); **b -** dépôt de sang sur une carte FTA® après un lavage au réactif FTA (10000 X). Source : *Whatman* 

La technologie FTA® présente plusieurs avantages :

- Une seule carte peut être réutilisée pour obtenir plusieurs pionçons pour l'amplification et le typage séquentiel de l'ADN;
- En raison de ses capacités de conservation et de stockage, ces cartes sont actuellement les plus utilisées pour la collecte généralisée de preuves sur les lieux des crimes sans aucun investissement lourd pour le stockage;
- Le temps de traitement des échantillons pour isoler l'ADN est de 15 à 30 minutes, ce qui évite les procédures d'isolation longues à étapes multiples.

Malheureusement, en raison des effets électrostatiques, les poinçons à papier sec risquent de sauter entre les puits dans une plaque de micro-tube contenant des échantillons [Butler, 2011].

#### I.4.3. Amplification par PCR

#### I.4.3.1. Principe

La PCR est une réaction enzymatique basée sur un principe simple : on utilise deux amorces complémentaires des deux brins d'une séquence d'ADN, orientées l'une vers l'autre, quand l'ADN polymérase fonctionne sur ces amorces et sur la séquence d'intérêt, les amorces des brins complémentaires à la matrice sont néo-synthétisés, chaque nouveau brin contenant une amorce. Quand on répète ce mécanisme, on obtient une grande quantité de séquences correspondant à l'ADN situé entre les deux amorces [Raven et al., 2010].

#### I.4.3.2. Étapes de la PCR

Le processus d'amplification d'ADN par PCR est composé d'une série de cycles identiques et successifs (environ 30 cycles en général). Chaque cycle implique 3 étapes à températures différentes. La figure 2 présente le principe général de la réaction de polymérisation en chaîne (PCR).

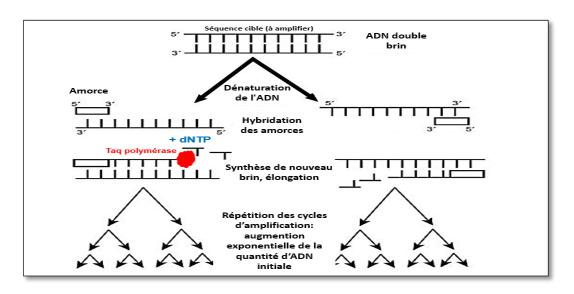



Figure 2 : Principe général de la réaction de polymérisation en chaîne (PCR) [Butler, 2011]

Les cycles de températures sont procédés par un choc thermique (appelé « *hold* ») à haute température (environ 95°C) pour activer les ADN polymérases. En fait, lors de la préparation des réactifs dans le micro-tube à température ambiante, les amorces pourraient s'hybrider de façon non spécifique et l'ADN polymérase pourrait commencer son activité à ces positions non spécifiques avant le démarrage de la PCR.

Afin d'éviter ces phénomènes, l'ADN polymérase (AmpliTaq Gold DNA polymerase) fournis dans les kits commerciaux actuellement utilisés par les laboratoires des analyses médico-légales est maintenu sous forme inactive par la formation d'un anhydride. Lors du chauffage à 95°C la hausse de température abaisse suffisamment le pH pour activer cette enzyme. Le pH de la solution tampon de la PCR varie en fonction de la température (le pH de la solution descend avec 0,02 à chaque 1 °C) et par la suite cette forte température cause des modifications au niveau des groupements amines des résidus lysine de l'enzyme, permettant son activation [Coquoz et Taroni, 2006 ; Butler ,2011].

Cette première étape est suivie de **n** cycle. Chaque cycle comprend les trois étapes suivantes allant de quelques dizaines de secondes à quelques minutes :

**Dénaturation :** au cours de cette étape la solution de la réaction est chauffée au-dessus de point de fusion des deux brins d'ADN cible (environ 94°C), ce qui permet de séparer les deux brins d'ADN complémentaires suite à la rupture des liaisons non covalentes (ponts hydrogènes) entre les bases appariées.

**Hybridation :** au cours de cette étape la température est abaissée (entre 40 et 70°C) ce qui permet aux liaisons hydrogène de se reformer entre les amorces et leurs séquences complémentaires d'ADN cibles. La longueur et la composition en nucléotides des amorces contribuent à la spécificité de la liaison à la séquence cible. D' une part, les paires G-C sont plus stables que les paires A-T. D'autre part, plus une amorce est longue, plus la probabilité qu'elle soit unique dans le génome est grande [Garibyan et Avashia, 2013 ; Iglesias, 2009].

La spécificité de ces amorces est ainsi fortement définie par la température, donc cette étape se déroule à une température bien déterminée et suffisamment élevée pour garantir une hybridation parfaite entre l'amorce et la séquence d'ADN cible [Coquoz et Taroni, 2006].

Élongation: au cours de cette étape la température est élevée à nouveau (environ 72°C) ce qui permet à l'ADN polymérase d'étendre les amorces donc de synthétiser un nouveau brin complémentaire au brin matrice en ajoutant des désoxynucléosides triphosphates complémentaires en direction 5'-3' qui rejoint le groupe 5' phosphate du dNTP avec le groupe 3' hydroxyle à l'extrémité du brin d'ADN en croissance [Garibyan et Avashia, 2013 ; Iglesias, 2009].

À la fin des cycles, un autre cycle final d'élongation est rajouté. Ce cycle est utile pour que l'ADN polymérase puisse terminer son élongation. Il faut savoir que la Taq polymérase tend à ajouter un nucléotide (Adénosine) à l'extrémité 3' de la séquence amplifiée, malgré l'absence de nucléotide en vis-à-vis sur le brin modèle. Lorsque l'ADN polymérase ne réussit pas à rajouter ce nucléotide sur tous les brins en construction, à cause d'un excès d'ADN initial ou par inhibition, un fragment plus petit d'une paire de base est obtenu. Le résultat obtenu sur le graphique de l'analyseur de fragments est la présence de deux pics séparés par une seule paire de base. Ce phénomène porte le nom d'addition A incomplète [**Iglesias**, **2009**].

#### I.4.3.3. Amplification des STRs

Les limites de la taille imposée par la PCR ont attiré l'attention sur la classe des séquences répétitives courtes, les STRs, ces séquences de taille en générale inférieurs à 500 pb de longueur, leur permet d'être des cibles clés pour la PCR, de plus cette classe est extrêmement vaste donc elle présente une source quasi inépuisable de polymorphisme [Coquoz et Taroni, 2006]. Depuis l'introduction de la PCR, des progrès étonnants ont été réalisés. Aujourd'hui, les microsatellites sont analysés par PCR en utilisant des amorces marquées par des fluorophores

et séparé puis détectés par électrophorèse capillaire. L'analyse des STRs peut maintenant être effectuée rapidement et efficacement par différents types de kits commerciaux disponibles qui permettent l'analyse simultanée de multiples locis STRs, dénommé STR multiplexage (figure 3), ainsi que celle du gène de l'amélogénine afin de révéler le sexe de la personne à l'origine de l'échantillon [Butler, 2005].

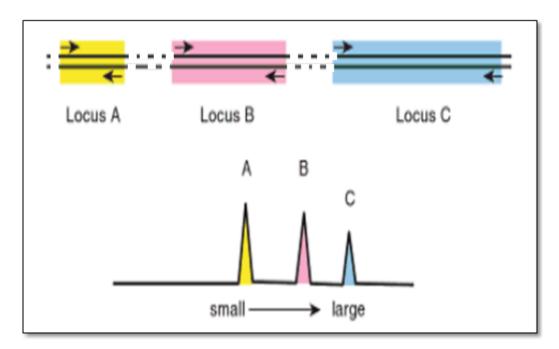
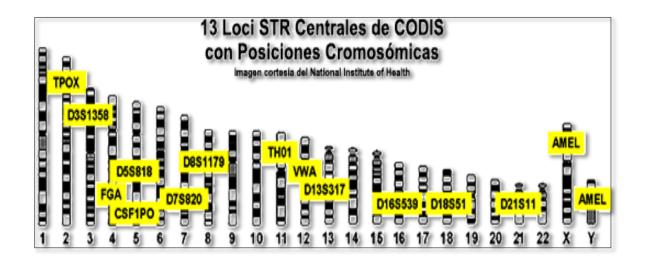
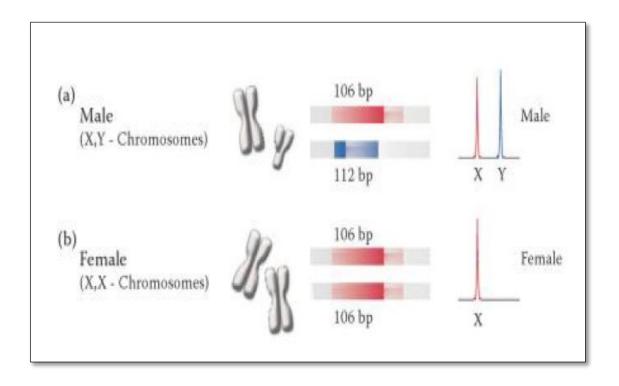




Figure 3 : Schéma de la PCR multiplex [Butler, 2005]

#### a) Marqueurs de base et STRs communs


Pour que le typage d'ADN soit efficace sur plusieurs territoires judiciaires, un ensemble commun de marqueurs standardisés sont actuellement utilisés. Quelques d'autres nouveaux marqueurs peuvent être ajoutés pour augmenter la discrimination, ces derniers varient d'un laboratoire à un autre.il existe 13 locus communs (figure 4) [Butler, 2011].



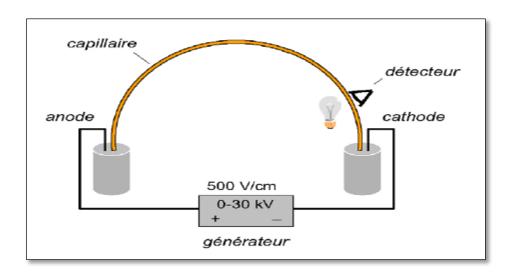
**Figure 4 :** Les 13 loci communs analysés sur les autosomes plus l'amélogénine [Principles of Forensic DNA for Officers of the Court]

#### b) Détermination du sexe

Le marqueur habituellement analysé pour déterminer le sexe de la personne à l'origine d'échantillon biologique étudié est le locus d'amélogénine. Ce n'est pas un STR. Il se situe dans le premier intron du gène qui code pour la protéine Amélogénine, protéine présente dans l'émail dentaire. Ce gène est présent sur X et sur Y, mais au niveau du locus du marqueur il y a une délétion de 6 pb sur X. en fait, le gène sur le chromosome X est de 106 pb, et sur le chromosome Y est de 112 pb. Donc, après l'amplification par la PCR des fragments d'ADN de deux longueurs différentes peuvent être générés. Un seul pic pour AMEL X est obtenu si l'ADN est fourni par une femme et deux pics distincts (pour AMEL X et AMEL Y) sont obtenus si l'ADN est fourni par un homme (figure 5) [Primorac et Schanfield, 2014; Manuel technique Promega, 2014].



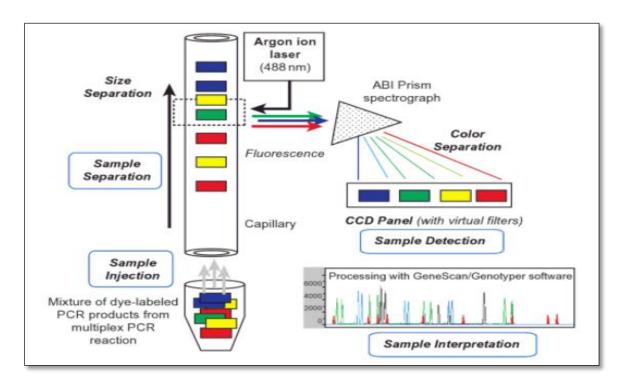
**Figure 5 :** Schéma du locus mâle (a) et femelle (b) d'amélogénine sur les chromosomes X et Y, et au niveau d'électrophorégramme [Primorac et Schanfield, 2014]


#### I.4.4. Séparation et détection

L'utilisation de l'électrophorèse capillaire s'est imposée comme un appareillage clé dans le processus analytique d'une analyse ADN, supplantant l'électrophorèse sur gel des acides nucléiques.

L'électrophorèse capillaire (EC) est une technique qui permet la séparation des produits de PCR sous l'influence d'un champ électrique selon leur rapport charge/masse. Les séparations se font dans un capillaire en verre très fin de 20 à 200 µm de diamètre, permettant ainsi de réguler facilement la température qui est maintenu constante (à 65°C) et d'utiliser des tensions électriques très élevées.

La longueur du capillaire peut varier de 20 à 200 cm. Il est revêtu à l'intérieur de silice fondue recouvert d'un gel. Ce gel est composé d'une solution visqueuse « polyamide ». Le capillaire, enfermé dans un système de thermostatisation, est rempli de tampon et plongé dans deux réservoirs contenant cette même solution. Chaque réservoir est connecté à une électrode reliée à un générateur de courant. Grâce à l'application d'un champ électrique très élevé, les produits


de PCR entrent dans les capillaires par une injection dite électrocinétique, puis se déplacent du pôle négatif (cathode) vers le pôle positif (anode) du circuit électrique. Les petites molécules d'ADN migrent plus facilement tandis que les grosses molécules sont retardées dans leur migration. Les amplifiants passent devant une fenêtre optique où la détection s'effectue. La détection est assurée par une mesure de fluorescence après excitation par un laser (figure 6) [Cotton et al.; 2005].



**Figure 6 :** Représentation schématique d'un appareillage de l'électrophorèse capillaire [Cotton et *al.*, 2005].

#### I.4.5. Traitement des données et validation des résultats

Les signaux fluorescents subissent une décomposition spectrale (prisme) et chaque faisceau est capté par une caméra CCD (*Charge Coupled Device*) qui transforme les signaux lumineux en signaux électriques qui seront collectés par le logiciel "Data Collection" (figure 7) [Butler, 2011].



**Figure 7 :** Schéma de la séparation et la détection des STRs par le séquenceur ABI Prism [Butler, 2011]

Le traitement des données collectées se fait par des logiciels développés ("GeneMapper", par exemple) qui permet dans un premier temps d'assigner une taille aux fragments identifiés en les comparants avec le standard de taille. Ce dernier est une échelle de taille comportant des fragments d'ADN synthétiques de tailles connues.

En second, chaque allèle est identifié d'une manière très spécifique en le comparant avec une échelle allélique (le ladder) qui contient un maximum d'allèles probablement trouvés pour chaque marqueur dans la population humaine. Cette échelle permet d'attribuer le nombre allélique approprié aux fragments d'ADN d'après leurs tailles (pb) et le fluorochrome associé.

#### I.4.5.1. Paramètres de lecture du logiciel de traitement des données

Afin de filtrer correctement les artéfacts qui peuvent interférer avec l'analyse des résultats, il est nécessaire de modifier les plages d'analyse « *Analysis Ranges* » par défaut dans les paramètres de chaque logiciel d'analyse de données de manière à respecter les conditions d'analyse spécifiques au kit d'amplification utilisé.

Le seuil d'amplitude des pics (valeur seuil) correspond à la hauteur minimale de pic à laquelle le logiciel d'analyse de données peut considérer le signal observé comme fiable et l'enregistrer comme un pic. Cela dépendra du kit utilisé, des conditions de migration, et de l'analyseur génétique utilisé. La valeur d'amplitude seuil de pics est généralement 50 RFU. Mais cette valeur peut changer d'un laboratoire à un autre sur la base des expériences de validation interne. Quand la quantité d'ADN initiale est très faible (≤ 100pg) un phénomène connu sous le nom de fluctuation stochastique peut se produire. Les pics avec une hauteur en unité relative de fluorescence au-dessus de 50 RFU mais situé dans la zone stochastique (50-150 RFU) peuvent fausser les résultats car le risque de la perte d'allèle (droup out) ou d'apparition de nouveaux allèles (drop in) à cette plage est très élevé.

Une fois les paramètres régulés puis les données traitées, un résultat final sous la forme d'une série de graphiques de pics de différentes hauteurs est obtenu, correspondant chacun à un ensemble de fragments d'ADN de même taille. La hauteur des pics est indiquée par « unité fluorescente relative » (RFU).

L'électrophorégramme tracé représente ce que l'on nomme profil génétique. Selon le spectre de longueur d'ondes, chacun des fluorochromes sera représenté par une couleur. **Ce profil doit être comparé à ceux existés dans une base de données.** Cette dernière présente le répertoire informatisé qui regroupe les informations requises de tous les cas traités [Rudin et Keith, 2010].

Les pics situés en dehors des segments géniques du panel (hors *Bin*) sont étiquetés par Off Ladder (Hors échelle) (OL) (figure 8). C'est le résultat d'un signal supplémentaire qui est identifié comme un pic de l'échelle allélique en raison d'un dysfonctionnement au cours de l'électrophorèse en cas d'une saturation en ADN.

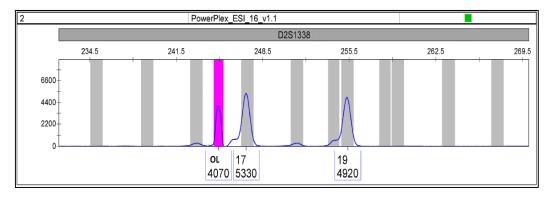



Figure 8 : Exemple des pics tracés par GenneMapper en présence des pics hors échelles

## I.5. Limites de la génétique médico-légale

#### I.5.1. Les inhibiteurs de la PCR

Certains types d'échantillons sont très difficiles à analyser à cause de la présence d'inhibiteurs comme l'hémoglobine, la mélanine ou l'urée et les colorants des vêtements. Il peut s'agir aussi de molécules qui sont co-extraites avec l'ADN. Le mode d'action de ces inhibiteurs est variable. Certains agissent au niveau de l'étape d'extraction de l'ADN en empêchant la lyse cellulaire, d'autres entraînent une dégradation de l'ADN ou s'y lient pour rendre les brins inaccessibles pour l'enzyme d'amplification et d'autres molécules inactivent directement l'enzyme qui ne peut donc copier les différents brins [Butler, 2010].

#### I.5.2. Les artéfacts liés aux erreurs d'amplification

#### I.5.2.1. Les stutters

L'amplification des STRs par la PCR produit inévitablement des produits secondaires non désirés que l'on dénomme selon le terme anglais *stutters*. Ces produits secondaires apparaissent de façon aisément reconnaissable sur les profils ADN sous la forme d'un pic de taille réduite correspondant à un allèle ayant un élément répétitif de moins que l'allèle nominal [Coquoz et Taroni, 2006].

La figure 9 montre un exemple présentant des stutters au niveau des allèles du marquer vWA. L'individu analysé possède 16 répétitions sur l'un des chromosomes du pair n° 12 et 18 répétitions sur l'autre. En réalité on aura à la réception des fragments de 16 et 18 répétions pour ces allèles. Mais dans ce cas un élément répétitif a été oublié pour chaque allèle et deux nouvelles séquences réduites par une unité répétitive ont été produites, ces séquences réduites seront aussi recopiées lors des cycles de PCR suivants. Donc, à la fin du processus de génotypage deux pics principaux correspondent à 16 et 18 répétitions et deux petits pics secondaires de 15 et 17 répétitions seront décrétés.

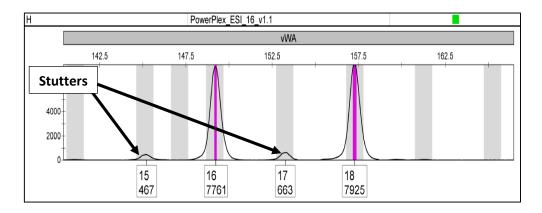



Figure 9 : Exemple des allèles du marqueur vWA présentants des stutters

Ce type d'erreur dépend de la quantité d'ADN analysée. Lorsque la quantité d'ADN est optimale, ces erreurs sont rares (moins de 1%) mais ce pourcentage augmente en cas de saturation. En fait, les stutters résultent de glissement de l'ADN polymérase sur un brin d'ADN lors de l'étape d'extension de la PCR ce qui provoque habituellement une suppression d'une unité répétitive (Parfois deux unités). Ce phénomène est causé par la grande quantité d'ADN analysé, ce qui perturbe l'activité de l'enzyme. Le recopiage du brin complémentaire à partir du brin matrice devient de plus en plus moins correcte car la réparation des erreurs lors de l'amplification n'auras pas lieu [AmpFISTR® SGM Plus® PCR Amplification Kit User Guide, 2012].

## **I.5.2.2.** Les pul-up

Les pul-up c'est un autre type d'artéfacts qui résultent de la mauvaise séparation spectrale des produits de PCR en cas d'une quantité importante d'ADN, ce qui provoque des chevauchements lors de la détection des couleurs de fluorescence (figure 10) [Butler, 2010].

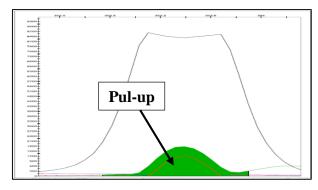



Figure 10: Exemple d'un Pul-up

# Chapitre II : Matériel et méthodes

Le travail présenté dans cette partie a été réalisé dans le laboratoire d'identification génétique, au département de biologie légale au sein de l'Institut National de Criminalistique et de Criminologie *INCC*, gendarmerie nationale algérienne, localisé à *Bouchaoui*, Alger.

## II.1. ÉCHANTILLON D'ADN HUMAIN

L'étude réalisée au cours de ce travail a été effectuée sur l'ADN extrait par la technologie des cartes FTA® (*whatmen*) à partir d'un prélèvement sanguin d'un donneur connu (prélèvement de référence) de sexe masculin. Le donneur a été maintenu sous forme anonyme durant toute cette étude pour des raisons éthiques. L'ADN extrait a resté stocké sur la carte protégé dans une pochette spéciale dans des conditions adaptées, à température ambiante et éloigné d'humidité. Le sang en question a été conservé dans un tube EDTA pour des utilisations ultérieures.

## II.2. MÉTHODES DE TRAVAIL

Quartes étapes principales ont été réalisées lors de ce travail, chacune avec ses propres équipements, consommables, réactifs spécifiques et suivant des protocoles bien définis (figure 11). Une étape préparatoire a principalement été effectuée avant de procéder aux étapes principales.

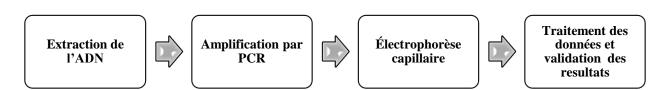
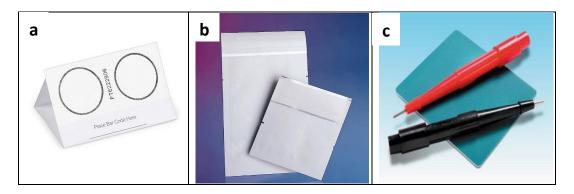




Figure 11 : Processus d'établissement d'un profil génétique

## II.2.1. Extraction d'ADN par la technique FTA®

#### a. Préparation des échantillons

Au cours de ce travail, la technologie des cartes FTA® a été utilisée pour extraire l'ADN du prélèvement sanguin. Les cartes utilisées sont dénommées « mini-cartes FTA® ». Ces dernières possèdent deux emplacements circulaires pouvant accueillir chacun un échantillon. La zone située en bas de la carte est réservée à l'identification des différents échantillons (figure 12a).



**Figure 12 : a.** Mini-catre FTA. **b.** Pochette de stockage pour la protection des cartes FTA® contre les gaz ou les liquides. **c.** Tapis de coupe et micro-poinçonneuse.

L'extraction de l'ADN par la méthode FTA® a été réalisée suivant le protocole présenté par le fabricant. D'abord, une petite quantité du sang (200µl) a été déposée au centre de chacun des deux cercles imprimés sur la carte qui est mise à sécher à température ambiante.

Une fois séchée, une étape de préparation des déchantions a été effectuée. Dans un premier temps, 60 tubes stériles de 0.2 ml ont été identifiés (étiquetés), puis répartis en deux séries chacune contenant 30 tubes (Tableau II).

**Tableau II :** Répartition des tubes identifiés pour les 60 ADN.

| 60 tubes                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Série 1 : 30 tubes                                                                                                                                                                                                                               | Série 2 : 30 tubes                                                                                                                                                                                                                                                                                                                                          |  |
| éch <sub>7</sub> , éch <sub>8</sub> , éch <sub>9</sub> , éch <sub>10</sub> , éch <sub>11</sub> , éch <sub>12</sub> ,<br>éch <sub>13</sub> , éch <sub>14</sub> , éch <sub>15</sub> , éch <sub>16</sub> , éch <sub>17</sub> , éch <sub>18</sub> ,  | éch <sub>A</sub> , éch <sub>B</sub> , éch <sub>C</sub> , éch <sub>D</sub> , éch <sub>E</sub> , éch <sub>F</sub> ,<br>éch <sub>G</sub> , éch <sub>H</sub> , éch <sub>I</sub> , éch <sub>J</sub> , éch <sub>K</sub> , éch <sub>L</sub> ,<br>éch <sub>M</sub> , éch <sub>N</sub> , éch <sub>O</sub> , éch <sub>P</sub> , éch <sub>Q</sub> , éch <sub>R</sub> , |  |
| éch <sub>19</sub> , éch <sub>20</sub> , éch <sub>21</sub> , éch <sub>22</sub> , éch <sub>23</sub> , éch <sub>24</sub> ,<br>éch <sub>25</sub> , éch <sub>26</sub> , éch <sub>27</sub> , éch <sub>28</sub> , éch <sub>29</sub> , éch <sub>30</sub> | éch <sub>S</sub> , éch <sub>T</sub> , éch <sub>U</sub> , éch <sub>V</sub> , éch <sub>W</sub> , éch <sub>X</sub> , éch <sub>Y</sub> ,<br>éch <sub>Z</sub> , éch <sub>A1</sub> , éch <sub>B2</sub> , éch <sub>C3</sub> , éch <sub>D4</sub>                                                                                                                    |  |

Après l'étiquetage, une étape de mise en tube des échantillons a été effectuée comme suit :

- 50 μL de tampon TE ont été déposés dans chaque tube de 0.2ml;
- 60 disques (*punch*) de 1,2 mm de diamètre ont été découpé à l'aide d'une micropoinçonneuse à partir du centre du cercle imprégné du sang, puis placé dans chaque tube ;
- Les 50 μL de TE ont été aspirés puis éliminés à l'aide d'une micropipette.

#### b. Lavage

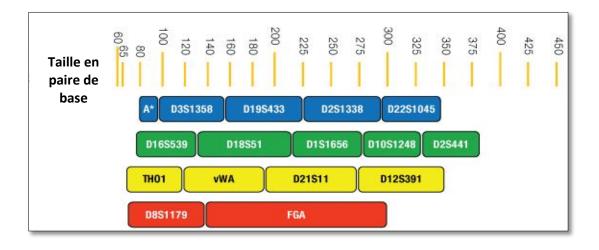
Avant de procéder à l'amplification par PCR, une étape de lavage est nécessaire pour éliminer l'hème et d'autres inhibiteurs de la réaction PCR qui peuvent interférer puis inhiber l'activité de l'ADN polymérase. Cette purification peut être vu visuellement parce que le papier est lavé donc la couleur rouge de l'hémoglobine est éliminée avec le surnageant.

Le punch est normalement lavé à 3 reprises par 100 µL de tampon TE suivant les recommandations du fabricant. Mais au cours de cette étude, cette étape a été optimisée et le nombre des lavages du poinçon imprégné du sang a été augmenté de 3 à 4 lavages afin de tester l'effet de lavage sur le taux d'inhibition provoqué par l'hémoglobine ainsi que dans l'élimination de l'ADN immobilisé sur la carte FTA.

Les lavages effectués pour les poinçons de chaque série ont été réalisés comme suit :

- o Les disques de la série 1 ont été lavés 3 fois au tampon TE
- o Les disques de la série 2 ont été lavés 4 fois au tampon TE

Les étapes de chaque lavage sont illustrées dans le Tableau III.


**Tableau III :** Les étapes des lavages effectués pour les 60 échantillons d'ADN.

| 30 échantillons de la série 1                                                                                                                                                                                                                                                                                                                    | 30 échantillons de la série 2                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Premier lavage</li> <li>1. Ajouter 100 μL de TE</li> <li>2. Agiter pendant 3 minutes à une vitesse de 300 tours/ seconde</li> <li>3. Centrifuger brièvement, environ 15 secondes « quick spin »</li> <li>4. Aspirer puis éliminer les 100 μL de TE</li> </ul>                                                                           | <ul> <li>Premier lavage</li> <li>1. Ajouter 100 μL de TE</li> <li>2. Agiter pendant 3 minutes à une vitesse de 300 tours/ seconde</li> <li>3. Centrifuger brièvement, environ 15 secondes « quick spin »</li> <li>4. Aspirer puis éliminer les 100 μL de TE</li> </ul>                                                                                          |
| <ol> <li>Deuxième lavage</li> <li>Ajouter 100 μL de TE</li> <li>Agiter pendant 2minutes et 30 secondes à une vitesse de 300 tours/ seconde</li> <li>Centrifuger brièvement, environ 15 secondes « quick spin »</li> <li>Aspirer puis éliminer les 100 μL de TE</li> </ol>                                                                        | <ol> <li>Deuxième lavage</li> <li>Ajouter 100 μL de TE</li> <li>Agiter pendant 2minutes et 30 secondes à une vitesse de 300 tours/ seconde</li> <li>Centrifuger brièvement, environ 15 secondes « quick spin »</li> <li>Aspirer puis éliminer les 100 μL de TE</li> </ol>                                                                                       |
| <ol> <li>Troisième lavage</li> <li>Ajouter 100 μL de TE</li> <li>Agiter pendant 2minutes et 30 secondes à une vitesse de 300 tours/ seconde</li> <li>Centrifuger brièvement, environ 15 secondes « quick spin »</li> <li>Aspirer puis éliminer les 100 μL de TE</li> <li>Conserver les tubes à +4°C pour l'étape de pré-amplification</li> </ol> | <ol> <li>Troisième lavage</li> <li>Ajouter 100 μL de TE</li> <li>Agiter pendant 2minutes et 30 secondes à une vitesse de 300 tours/ seconde</li> <li>Centrifuger brièvement, environ 15 secondes « quick spin »</li> <li>Aspirer puis éliminer les 100 μL de TE</li> </ol>                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Quatrième lavage</li> <li>1. Ajouter 100 μL de TE</li> <li>2. Agiter pendant 2minutes et 30 secondes à une vitesse de 300 tours/ seconde</li> <li>3. Centrifuger brièvement, environ 15 secondes « quick spin »</li> <li>4. Aspirer puis éliminer les 100 μL de TE</li> <li>5. Conserver les tubes à +4°C pour l'étape de pré-amplification</li> </ul> |

## II.2.2. Amplification par PCR

L'amplification multiplex des STRs effectuée durant ce travail a été réalisée dans le thermocycleur GeneAmp® PCR System 9700 (Applied Biosystems) en utilisant le kit commercial PowerPlex® ESI16 System (*European Standard Investigator 16*) qui permet de co-amplifier seize locus situés sur différents chromosomes (quinze STRs et l'Amélogénine déterminant le sexe). Ce système utilise des amorces marquées par quatre Fluorochromes différents permettant la détection des locis analysés (Annexe 1). Il inclue les onze locis compatibles avec la base de données nationale d'ADN du Royaume-Uni (D2S1338, D19S433, D3S1358, D18S51, D16S539, D21S11, vWA, TH01, FGA, D8S1179 et l'Amélogénine), plus les cinq locis dernièrement recommandés par les comités ENFSI (*European Network of Forensic Science Institutes*) et EDNAP (*European DNA Profiling Group*) (D2S441, D10S1248, D22S1045, D1S1656 et D12S391) [Tucker et al.; 2010; Manuel technique Promega, 2014].

Le kit PowerPlex® ESI 16 system est utilisé pour l'obtention de profils d'ADN dans le domaine des sciences forensiques, à des fins d'identification de personnes. La configuration des locis analysés par est représentée dans la figure 13.



**Figure 13 :** Configuration des locis analysés par le kit PowerPlex @ ESI 16 system .  $A^* = Amelogenin$ . Source : Promega

Le kit PowerPlex® ESI 16 system contient tous les réactifs nécessaires à la réalisation de génotypage des STRs (Tableau IV).

Tableau IV. Réactifs de kit PowerPlex® ESI 16 system

|                           |      |                        | Réactif                                     | Volume      | Conditions de stockage |
|---------------------------|------|------------------------|---------------------------------------------|-------------|------------------------|
| 16                        |      | Pré-<br>amplification  | Master Mix                                  | 500µl       |                        |
| Kit PowerPlex® ESI system |      |                        | Primer Pair Mix                             | 250μl       |                        |
|                           | em   |                        | AND control 2800M,<br>10ng/μl               | 25µl        | -30°C à -10°C          |
|                           | syst |                        | Eau ultra-pure (Water, Amplification Grade) | 5 × 1,250μl | 30 0 4 10 0            |
|                           |      | Post-<br>amplification | Allelic Ladder Mix                          | 50µl        |                        |
|                           |      |                        | Standard de taille                          | 300μ1       |                        |

Il est à savoir que le Master Mix contient les composants suivants : Taq Gold polymérase, Tampon, Sels, MgCl2, dNTPs)

#### a. Pré-amplification

Cette étape consiste à la préparation du milieu réactionnel d'amplification suivant des volumes bien définit pour chaque réactif (Tableau V). Selon le manuel technique du kit PowerPlex® ESI 16 System, le volume final pour chaque réaction de PCR en utilisant un seul poinçon de carte FTA® imprégné du sang est de 25 µl.

**Tableau V.** Composition du milieu réactionnel et volume des différents réactifs utilisés (pour un volume final de 25 μl)

|                 | Échantillon    | Contrôle positif | Contrôle négatif |
|-----------------|----------------|------------------|------------------|
| Master Mix 5X   | 5 uL           | 5 uL             | 5 uL             |
| Primer Pair Mix | <b>2.5</b> uL  | <b>2.5</b> uL    | 2.5 uL           |
| l'ADN contrôle  |                | 17.5 uL          |                  |
| Eau ultra-pure  | <b>17.5</b> uL |                  | 17.5 uL          |
| Volume final    | <b>25</b> uL   | <b>25</b> uL     | 25 uL            |

Les étapes de préparation du milieu réactionnel sont les suivantes :

- 1) Le Master Mix et le Primer Pair Mix ont été complétement décongelés ;
- 2) Une fois décongelés, les deux réactifs ont été centrifugés brièvement pour mettre le contenu vers le fond ;
- 3) Le nombre de réactions à être mis en place doit être déterminé en ajoutant les réactions des témoins positifs et négatifs afin de déterminer le volume total de Mix à préparer ;
- 4) Pour chaque réaction, un mélange (Mix) de 5 uL Master Mix avec 2.5 uL Primer Pair Mix doit être préparé ;
- 5) le Mix préparé a été agité brièvement dans le vortex afin de bien mélanger le contenu ;
- 6) 7.5 uL de Mix ont été déposés dans le tube contenant déjà le poinçon d'échantillon ;
- 7) 17.5 uL d'eau ultra-pure (fournit avec le kit) ont été ajoutés afin d'ajuster le volume réactionnel jusqu'au 25 uL;
- 8) La préparation de contrôle positif et de contrôle négatif a été effectuée comme suit :

#### Contrôle positif :

Le contrôle positif permet d'estimer le taux d'erreur et de s'assurer des bonnes conditions de déroulement de la réaction d'amplification. C'est un ADN de séquence connue qui va être amplifié en utilisant les mêmes amorces, puis avec les mêmes paramètres que l'amplification des autres STRs. Le contrôle positif a été préparé comme suit :

o Le tube de l'ADN contrôle a été agité dans le vortex ;

- 1 uL d'ADN contrôle (10ng/μl) a été dilué dans 349 uL d'eau ultra-pure de manière à obtenir 0,5 ng dans le volume final d'ADN choisi;
- o 7.5 uL de Mix ont été déposés dans un tube préalablement identifié ;
- o 17.5 uL d'ADN contrôle dilué ont été ajoutés.

#### Contrôle négatif :

Le contrôle négatif (sans matrice) permet de détecter une contamination éventuelle des réactifs. La quantité d'ADN doit être nulle, donc ce dernier ne doit présenter aucun produit d'amplification. Le témoin négatif a été préparé comme suit :

- o 7.5 uL de Mix ont été déposés dans un tube préalablement identifié;
- o 17.5 uL d'eau ultra-pure ont été ajoutés au Mix.
- 9) Tous les tubes ont été centrifugés brièvement (environ 15 secondes) afin d'apporter le contenu au fond et d'éliminer les bulles d'air. ;
- 10) Les tubes ont été placés dans la plaque MicroAmp optique 96 puits Reaction (*Applied Biosystems*).

#### b. Exécution du programme d'amplification

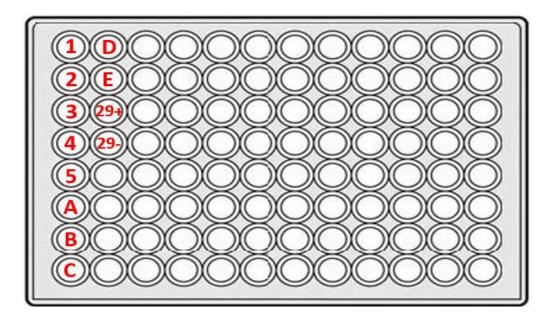
Les échantillons sont normalement amplifiés à 29 cycles par PCR suivant les recommandations du fournisseur ; mais au cours de cette étude, cette étape a été optimisée et le nombre de cycles d'amplification par PCR a été diminué de façon décroissante de 29 cycles jusqu'à 24 cycles dans le but de déterminer le nombre de cycle adéquat pour donner un profil ADN complet et interprétable. Pour chaque nombre de cycle, 10 échantillons d'ADN ont été amplifiés : un groupe de 5 échantillons à 3 lavages, et un autre groupe de 5 échantillons à 4 lavages.

Un contrôle positif et un contrôle négatif ont été préparés puis ajoutés pour être amplifié avec chaque deux groupe d'échantillon de même nombre de cycle (figure 14).

Une fois les tubes placés dans le thermocycleur, les réactions d'amplification par PCR multiplexe commencent en utilisant le programme suivant :

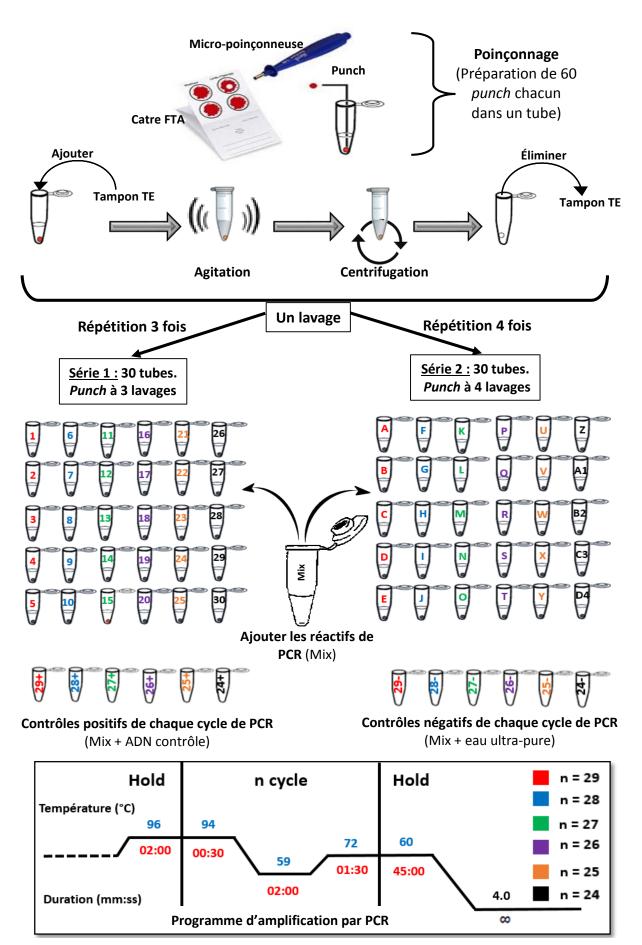
Dénaturation initiale à 96°C pendant 2minutes

Dénaturation à 94°C pendant 30 secondes


Hybridation à 59°C pendant 2 minutes

Élongation à 72°C pendant 90 secondes

n cycles (n= 29, 28; 27; 26; 25; ou 24)


Élongation finale à 60°C pendant 45minutes

Une fois le protocole de cycles thermiques achevé, les produits PCR sont conservés à 4°C pour une utilisation immédiate n'excédant pas deux semaine d'attente, au- delà cette période, pour assurer leur stabilité, ils sont gardé à -20°C.



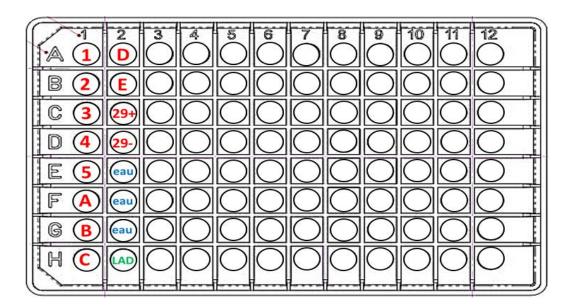
**Figure 14 :** Répartition des tubes des échantillons dans la plaque de 96 puits de thermocycleur, (exemple **n**=29 cycles)

Les différentes étapes d'optimisation des lavages et d'amplification développés au cours de ce travail sont présentées dans sur figure 15.



**Figure 15 :** Schéma général de dispositif expérimental de l'optimisation des lavages et de l'amplification

## II.3. Électrophorèse capillaire


Avant de procéder à la séparation des produits de PCR par électrophorèse capillaire, une étape de préparation dite « post-amplification » a été effectuée. Cette étape est primordiale pour la séparation des STRs par le séquenceur ; son but est de dénaturer les fragments d'ADN en séquences monocaténaires, le maintien en simples brins étant assuré par addition de formamide.

## II.3.1. Protocole expérimental de la post-amplification

Le protocole de préparation des échantillons pour l'électrophorèse capillaire a été effectué comme suit :

- Le dépôt des produits de PCR a été effectué dans une plaque d'électrophorèse à 96 puits, avec 6 runs dont chaque run possède 16 puits répartie en 2 rangés. ;
- Pour un seul puits, un mélange contenant 10 μL de formamide et 1 μL de standard de taille doit être préparé;
- Le volume total de mélange (Standard de taille/Formamide) a été calculé puis préparé selon le nombre de réactions ;
- Le Mix préparé a été agité dans un vortex pendant 5 à 10 secondes ;
- Un volume de Mix (10 μL de formamide et 1 μL de standard de taille) a été déposé dans chaque puits;
- Un microlitre de chaque produit d'amplification a été ajouté à chaque puits contenant le Mix (Standard de taille/Formamide) suivant le plan de la plaque (figure 16);
- À chaque run un puits supplémentaire est ajouté contenant les 11 μL du Mix (Standard de taille/Formamide) et 1 μL de ladder;
- Les contrôles positifs et les contrôles négatifs de chaque cycle de PCR ont été déposés de la même manière que les échantillons. Un volume de 11 μL du Mix (Standard de taille/Formamide) a été déposé dans les puits correspondants, puis 1 μL de chaque contrôle a été ajouté dans le puits correspondant;
- Un volume d'environ 12 μL d'eau ultra-pure a été déposé dans les puits qui ne contenaient pas d'échantillons afin d'éviter les dommages des capillaires suite aux tensions électriques de voltage très élevé;
- Une fois préparé, un Septums plat, propre et sec de caoutchouc a été fixé sur la plaque d'échantillons;

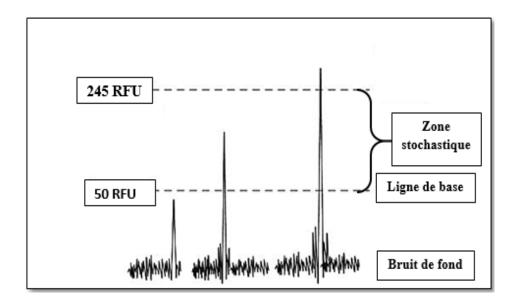
- La plaque est centrifugée brièvement (environ 15 secondes) afin d'apporter le contenu au fond des puits et d'enlever les bulles d'air. Si les bulles ne sont pas retirées, des résultats inégaux peuvent être obtenus ;
- Cette dernière a été déposée sur une plaque chauffante à 95°C pendant 3 minutes afin de dénaturer les fragments amplifiés, puis en le refroidissant immédiatement sur un bloc réfrigéré pendant 3 minutes afin de maintenir les fragments sous cette forme dénaturée;
- La plaque a été couverte par un plastique solide de fermeture avant de la placer dans le séquenceur.



**Figure 16 :** Configuration de la plaque de 96 puits de séquenceur (exemple de répartition des échantillons amplifié avec 29 cycles)

## II.3.2. Séparation et détection des fragments d'ADN amplifiés

Le séquenceur utilisé dans notre travail était un (Applied Biosystems) ABI 3130 XL Genetic Analyzer, version 4.1. Il comprend 16 capillaires (36 cm de longueur/ 50 µm de diamètre) ce qui offre l'opportunité d'analyser simultanément 16 échantillons.


Dans un premier temps, la plaque de 96 puits est placée dans le séquenceur, puis une plateforme automatisée a ensuite amené la plaque des échantillons au niveau de la tête à 16 capillaires disposés en parallèle et remplis d'un polymère POP 4 (*Performance Optimized Polymere* 4)

de faible viscosité qui joue le rôle de tamis moléculaire. L'électrophorèse à lieu dans les tubes capillaires sous un champ électrique de 3kV/5 sec. Les données sont ensuite collectées par le logiciel « Data Collection » v3.0.

#### II.4. Traitement des données et validation des résultats

#### II.4.1. Traitement des données

Au cours de notre travail, les fichiers séquences collectés par le logiciel Data collection ont été analysés par le logiciel GeneMapper ID v.3.2.1 (AB) en utilisant les paramètres de lecture exigés par la validation interne du laboratoire d'identification génétique au sein de l'*INCC* (figure 17).



**Figure 17 :** Valeur minimale et valeurs de la zone stochastique du kit PowerPlex® ESI 16 system selon la validation interne du laboratoire d'identification génétique de l'*INCC* 

#### II.4.2. Validation des résultats

La validation d'un profil génétique par un analyste est alors tributaire de la vérification d'un certain nombre de critères, notamment la vérification de la migration du standard de taille et du ladder, les profils des témoins positifs et négatifs et l'observation de l'allure générale du profil

(hauteur des pics, seuil d'acceptabilité, ...). Ce n'est qu'à l'issue de la validation de ces caractères que le résultat peut être exploité.

## II.5. ANALYSES STATISTIQUES

Après le génotypage des 60 échantillons d'ADN, les données correspondant aux hauteurs de pics des différents marqueurs propres à chaque échantillon ont été rassemblées dans des tableaux qui se trouvent en Annexe 2. Chaque tableau regroupe 10 échantillons amplifiés au même nombre de cycles par PCR (5 échantillons lavés 3 fois/ 5 échantillons lavés 4 fois).

L'Analyse des données désigne un sous-ensemble de la « statistique multi-variée ». Elle correspond à un ensemble de techniques essentiellement descriptives, dont l'outil mathématique majeur est l'algèbre matricielle, et qui s'exprime sans supposer a priori un modèle probabiliste [Benzécri, 1977]. Selon Jean de Lagarde : « Le propre de l'analyse des données, dans son sens moderne, est de raisonner sur un nombre quelconque de variables » [Stafford et Bodson, 2006].

Une variable est une caractéristique étudiée pour une population donnée. Les variables peuvent être qualitatives ou quantitatives. Les variables concernées par l'analyse dans cette étude sont de type quantitatif, elles représentent les hauteurs de pics correspondant aux différents marqueurs et mesurées par unité relative de fluorescence (RFU).

L'analyse des données a été effectuée à l'aide de logiciel XLSTAT (version 2015) qui offre de nombreuses fonctionnalités et des utilitaires pour faciliter la manipulation des données sous Excel.

## II.5.1. Comparaison intra-groupe

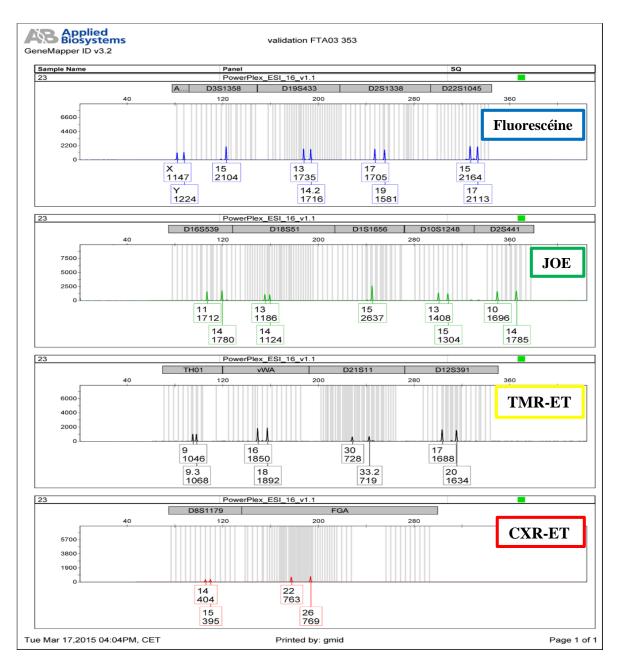
### a) Analyse en Composantes Principales (ACP)

L'étude simultanée de toutes les variables quantitatives correspondant aux 60 échantillons d'ADN analysés présente de nombreuses difficultés, notamment que chaque échantillon présente un nombre important de variables. Donc, afin de réduire le nombre de variables à analyser et en même temps avoir une meilleure combinaison de données de manière à minimiser la perte d'information issue de cette réduction ; nous avons choisi de nous focaliser sur l'analyse des données les plus informatives en se basant sur une méthode multidimensionnelle très employée connue sous le nom d'Analyse en Composantes Principales « ACP » qui permet d'obtenir le résumé le plus pertinent possible des données initiales.

L'Analyse en Composantes Principales (ACP) est une méthode très efficace pour l'analyse de données quantitatives, elle consiste à passer d'un tableau des données brutes (hauteur de pics) à certaines représentations graphiques interprétables par l'utilisateur telles que les nuages de points. Cette méthode nous a permis dans un premier temps d'analyser les corrélations des variables entre les 5 échantillons de mêmes conditions (même nombre de lavages/ même nombre de cycle d'amplification). Et dans un deuxième temps d'analyse les corrélations des variables entre les échantillons de la même série (série 1 : 30 échantillons à 3 lavages/ série 2 : 30 échantillons à 4 lavages) afin d'identifier des états se différenciant fortement des autres.

### II.5.2. Comparaison inter-groupe

La comparaison entre les données de chaque deux groupe d'échantillons amplifiés au même nombre de cycle par la PCR a été effectuée par un test de *Student*. Les conditions d'application du test ont été considérées comme respectées. Les marqueurs des échantillons d'ADN analysés ont été considérés comme normales.


Ce test permet d'estimer la probabilité p que la différence entre les deux moyennes soit aussi importante par hasard. Au-delà de la valeur p critique, c'est-à-dire pour p>0,05 non significatif, on considère que la différence entre les deux moyennes n'est pas liée au nombre de lavages de la carte FTA® au tampon TE et que les deux moyennes sont comparables pour le marqueur considéré.

Le choix de nombre de cycle adéquat pour l'amplification a été effectué en se basant sur les résultats des analyses de variance ANOVA qui ont été effectuées pour la comparaison des moyennes des valeurs quantitatives propres aux échantillons de la série 1 et celles de la série 2.

# Chapitre III : Résultats et discussion

## III.1. RESULTATS D'ANALYSES GENETIQUES

Une fois les données traitées par le logiciel GeneMapper en respectant les paramètres effectués, la fenêtre de graphe affiche des tracés correspondants aux produits de PCR analysés par électrophorèse capillaire sous forme d'électrophorégramme. La figure 18 montre un exemple de résultat de génotypage obtenu pour les 15 microsatellites plus l'amélogénine marqués différemment.



**Figure 18 :** Profil génétique complet obtenu à partir de la co-amplification des 15 STRs, ainsi que du locus amélogénine, inclus dans le kit PowerPlex® ESI 16 system.

Chaque ligne de l'électrophorégramme correspond à une couleur de fluorochrome (bleu, vert, jaune et rouge du haut vers le bas respectivement). Le nom des 16 marqueurs étudiés est mentionné au-dessus de chaque série de pics. Les traits gris en ligne de fond correspondent à « l'échelle allélique » ou marqueur de taille. Cette plage est appelée « *Bin* ». Le profil de mélange d'échelle allélique PowerPlex® ESI 16 system est présenté dans la Figure 19.

Chaque pic est caractérisé en abscisse par sa position (qui dépend de la vitesse de migration donc de la taille) et en ordonnée par l'intensité relative de la fluorescence initiale exprimée en Unité de Fluorescence Relative (RFU). La position du pic coloré correspond à une taille de fragment d'ADN qui est mentionnée au-dessus de chaque série de pics en paire de bases.

Chaque marqueur est représenté par deux formes alléliques, un allèle venant du père de l'individu analysé, et l'autre de sa mère. Pour chaque marqueur 1 ou 2 pics étiquetés peuvent être détecté. La visualisation d'un seul pic représente que cet individu est décrit comme étant homozygote pour ce marqueur c'est-à-dire qu'il a hérité le même allèle de ses deux parents avec le même nombre de répétions de l'élément répétitif du STR étudié. La visualisation de deux pics désigne qu'il est hétérozygote pour ce marqueur et donc il a hérité deux allèles avec un nombre de répétions différent provenant de ses deux parents.

Pour le profil génétique présenté dans la figure 17, par exemple pour le système D2S1338 situé sur le chromosome 2, l'individu analysé possède 17 répétitions sur l'un des chromosomes du paire n° 2 et 19 répétitions sur l'autre, donc il est hétérozygote pour le marquer D2S1338. Or que pour le marqueur D3S1358 situé sur le chromosome 3, il possède 15 répétitions sur les deux chromosomes de la paire n° 3 ; ce qui signifie qu'il est homozygote pour ce marqueur. On identifie de la même façon le nombre de répétitions pour chacun des 16 systèmes.

Pour le marqueur D19S433, on constate que le nombre de répétition sur l'un des deux chromosomes de la paire n°19 est étiqueté par 14.2, cela veut dire que l'allèle correspondant est composé de 14 répétions de l'unité répétitive concernée [AAGG/AAGG]14, plus 2 nucléotides [AA]. Le marqueur D19S433 est de type complexe donc diverses séquences peuvent intercalées entre les deux blocs [AAGG]. Ce type de polymorphisme est appelé « micro-variant », car les allèles diffèrent l'un de l'autre par des tailles ne correspondent pas à une unité répétitive complète. Pour ce marqueur 4 allèles peuvent être observés avec le même nombre de répétions de l'unité répétitive (14) mais différent au niveau de nombre de nucléotides supplémentaires à cette séquence d'éléments répétitifs (14.1; 14.2; 14.3).

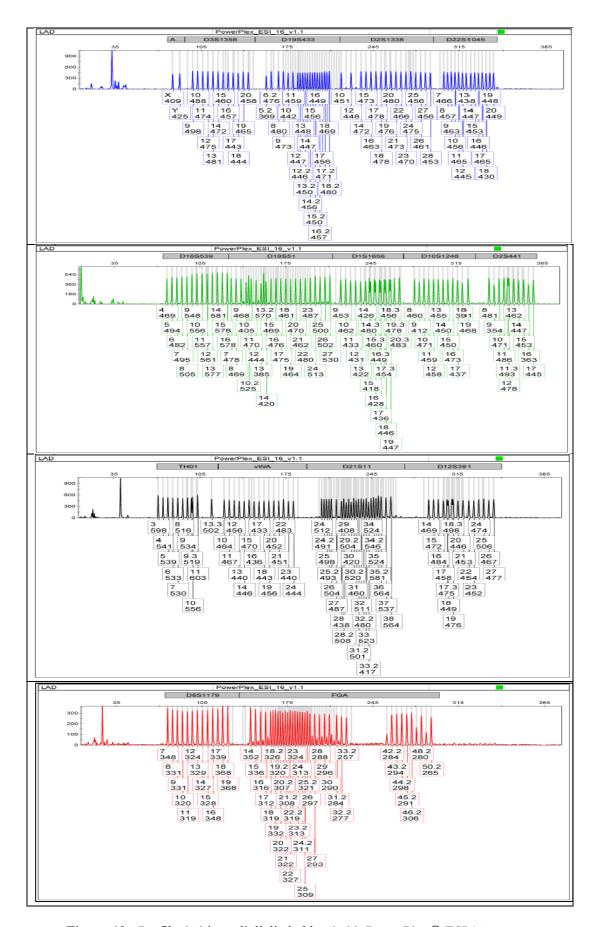
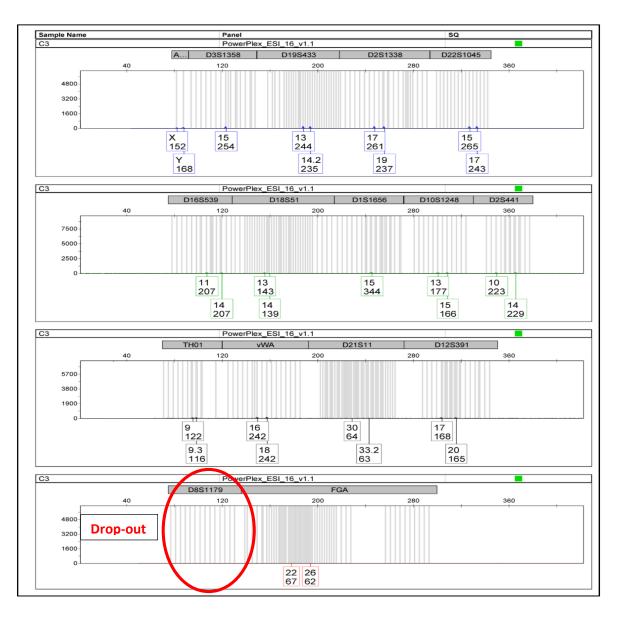
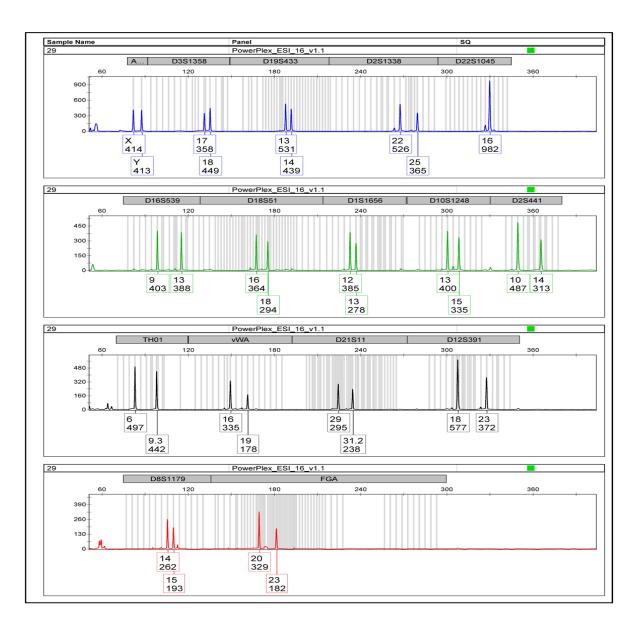
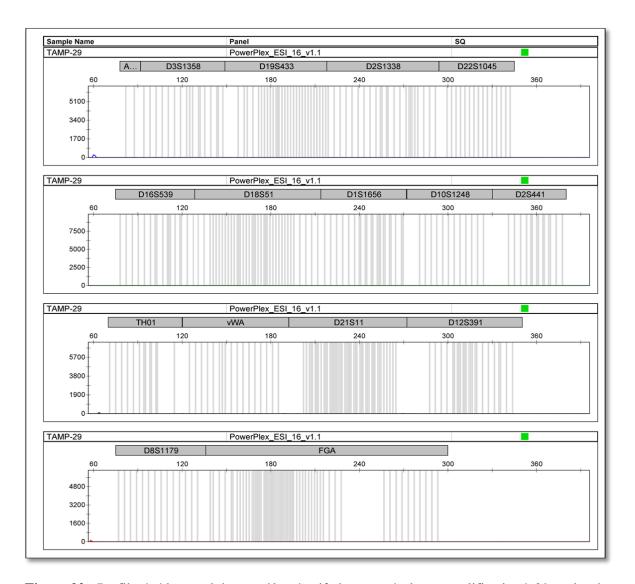




Figure 19 : Profil génétique d'allelic ladder du kit PowerPlex® ESI 16 system.

Les profils génétiques obtenus de génotypages des 30 échantillons d'ADN de la série 1 à 3 lavages (groupe d'échantillons amplifiés à 29, 28, 27, 26,25 et 24 cycles par PCR) ont été complets, aucune perte d'allèle n'a été observée.


En ce qui concerne les échantillons de la série 2 à 4 lavages, les profils génétiques obtenus de génotypages des échantillons amplifiés à 29, 28, 27, 26, et 25 cycles par PCR ont donnés des profils complets, cependant les échantillons amplifiés à 24 cycles de PCR ont données trois catégories de profils : des profils complets, d'autres partiels et même nuls. Le profil nul correspond à l'échantillon D4 ; et le profil génétique partiel dont les deux allèles du marquer D8S1179 n'ont pas été détectés (droup-out) correspond à l'échantillon C3 (Figure 20).




**Figure 20 :** Profil génétique partiel obtenu à partir de l'echnatillon C3 après la co-amplification des 16 marqueurs inclus dans le kit PowerPlex® ESI 16 system

Les profils génétiques des témoins positifs ont été bien observés, nous pouvons en déduire que l'ADN contrôle et les réactifs utilisés sont de bonne qualité, ce qui confirme le bon déroulement de processus d'amplification (Figure 21).

L'utilisation de témoin négatif de réaction, a permis de tester la présence ou l'absence d'ADN étranger lors du processus d'amplification. En effet, aucun pic n'a été observé sur les *électrophorégramme*s résultants de génotypage des contrôles négatifs (Figure 22). Cette négativité est un élément important pour la validation de notre manipulation qui exclue toute contamination.



**Figure 21 :** Profil génétique complet de contrôle positif (0,5ng) obtenu après la co-amplification à 29 cycles des 16 marqueurs inclus dans le kit PowerPlex® ESI 16 system.

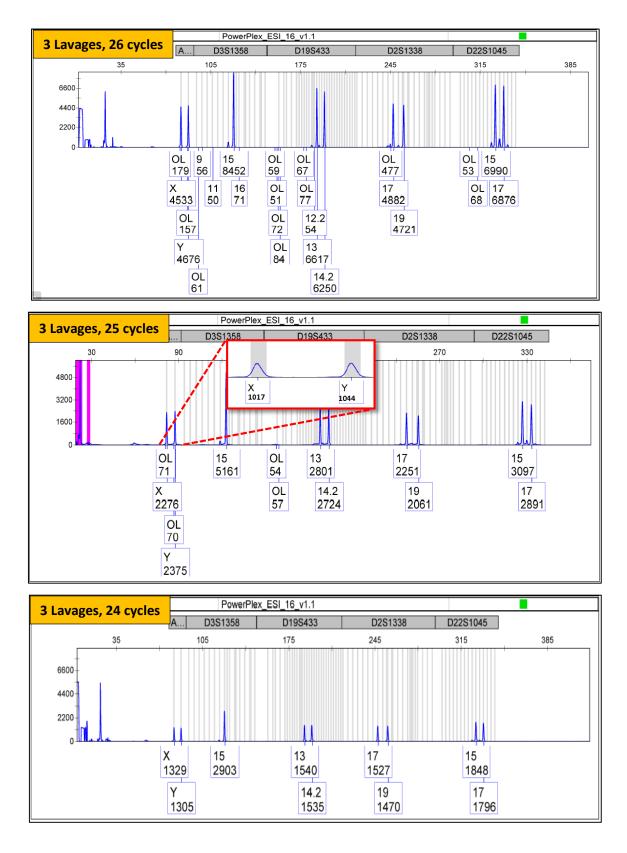
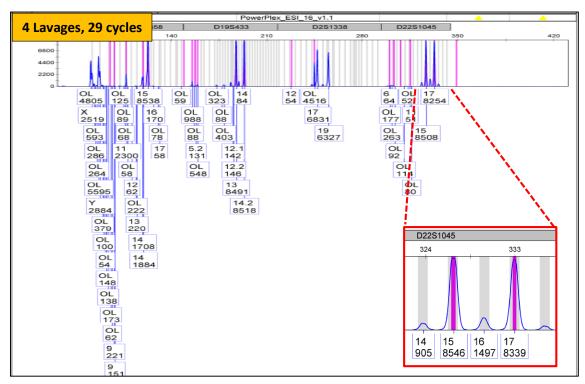
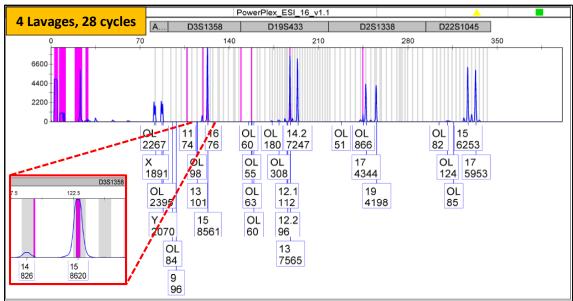
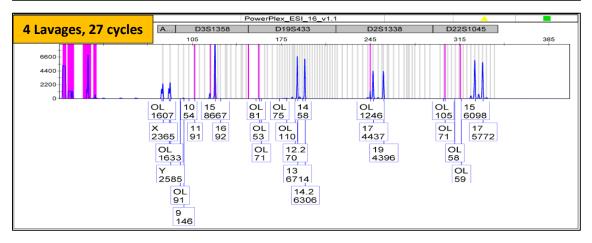
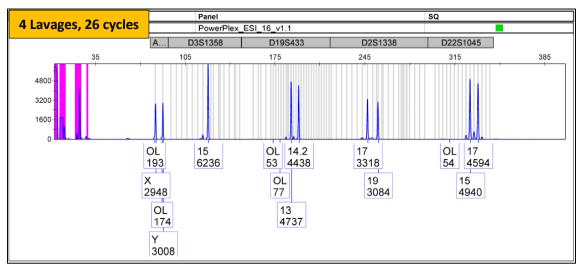


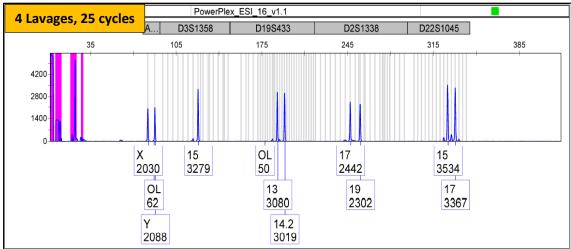
**Figure 22 :** Profil génétique nul de contrôle négatif obtenu après la co-amplification à 29 cycles des 16 marqueurs inclus dans le kit PowerPlex® ESI 16 system.

La notion de saturation de profil génétique est expliquée par deux caractéristiques : la hauteur des pics très élevée et l'abondance des artéfacts tels que les stutters, les pul-up et même les doubles pics produits par l'addition A incomplète.

Selon les éléctrophorégrammes nous pouvons constater que les échantillons amplifiés à 24, 25 et 26 cycles de PCR ne comportent pas de saturation pour les deux séries analysées, mais les saturations sont visibles dans les profils des échantillons amplifiés à 27, 28 et 29 cycles de PCR pour les deux séries analysées (figure 23 et 24). Cette saturation diminue en décroissant le nombre de cycles d'amplification de 29 cycles à 24 cycles. Des exemples de profils génétiques complets sont présentés en Annexe 3.





Figure 23 : Exemples de la première ligne des profils génétique obtenus après 3 lavages.











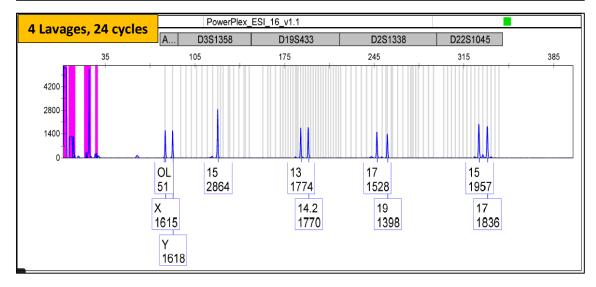
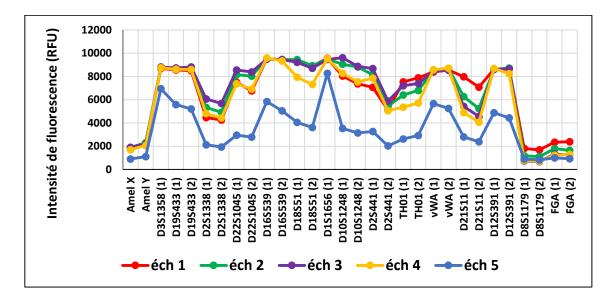



Figure 24 : Exemples de la première ligne des profils génétique obtenus après 4 lavages.


## III.2. RÉSULTATS D'ANALYSE STATISTIQUE

## III.2.1. Résultats de comparaison intra-groupe

#### III.2.1.1. Comparaison intra-groupe des échantillons amplifiés à 29 cycles

La comparaison entre chaque deux groupe d'échantillons amplifiés avec le même nombre de cycle de PCR nécessite d'abord une analyse des variables pour chaque groupe puis une élimination des échantillons contenants des valeurs aberrantes afin de réduire le risque d'erreur lors de la comparaison inter-groupes.

Pour avoir une idée visuelle sur la différence entre les éléctrophorégrammes des échantillons de même groupe, des graphiques sous formes de courbes représentant les hauteurs de pics correspondants aux différents marqueurs ont été réalisées pour chaque groupe d'échantillon à analyser. Les courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 3 fois puis amplifiés avec 29 cycles de PCR sont présentées dans la figure 25.



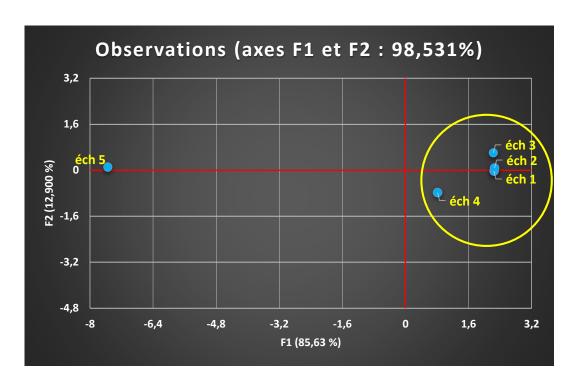
**Figure 25 :** Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 3 fois, amplifiés avec 29 cycles de PCR

Les marqueurs de l'échantillon 5 ont des valeurs très faibles, ils présentent une courbe qui semble plus éloignée des autres. Sur la base de ces courbes, nous pouvons considérer que les échantillons 1, 2, 3 et 4 présentent des pics avec des valeurs similaires alors que celles de l'échantillon 5 semblent aberrantes donc à exclure de la comparaison inter-groupes, mais aucune supposition ne pourrait être retenue sans une analyse statistique.

#### 1) Représentation graphiques

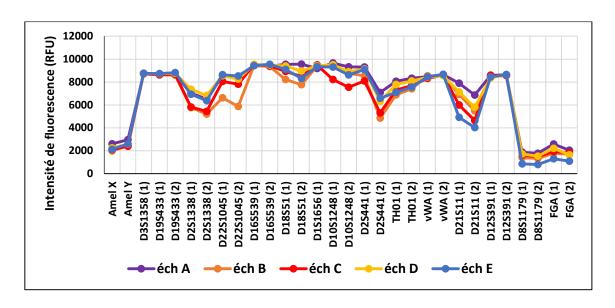
#### a) Choix du nombre d'axes à retenir

Afin de mieux représenter les nuages de points, il faut retenir les axes dont les valeurs propres sont les plus importantes (Tableau VI). On peut par exemple pour le groupe d'échantillons de 3 lavages, 29 cycles de PCR se contenter de sélectionner les deux premiers axes. En effet, d'un côté, la chute d'inertie est très importante dès le troisième axe, qui ne conserve que 1,159 % de l'inertie totale ; de l'autre, les deux premiers axes conservent plus de 98,531 % de l'inertie ce qui est excellent. Avec les deux premiers axes, nous disposons donc d'un espace compréhensible par l'œil sans subir une déformation trop prononcée du nuage. Le choix des axes pour la représentation des autres échantillons a été effectué de la même manière.

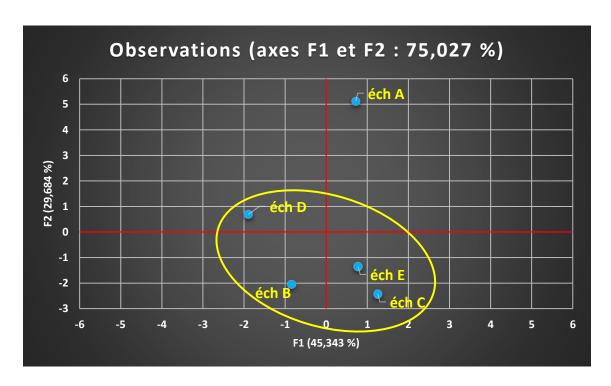

Tableau VI. Tableau des valeurs propres

|                 | F1     | F2     | F3     | F4      |
|-----------------|--------|--------|--------|---------|
| Valeur propre   | 14,557 | 2,193  | 0,197  | 0,053   |
| Variabilité (%) | 85,631 | 12,900 | 1,159  | 0,310   |
| % cumulé        | 85,631 | 98,531 | 99,690 | 100,000 |

#### b) Nuage de points

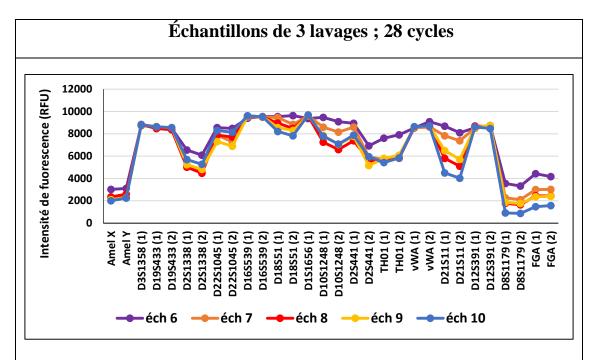

Le nuage de points est construit en projection sur un plan à des axes factoriels, considérés comme virtuels dans cette étude. La présentation de ce nuage permettra de visualiser les corrélations qui existent entre les différentes variables (hauteurs de pics) et d'identifier les échantillons ayant pris des hauteurs de pics proches sur certaines marqueurs.

Le but final de cette analyse de corrélation est d'identifier et d'éliminer l'échantillon qui est moins corrélé aux autres, car, pour chaque échantillon soumis à des conditions bien précises, seulement 5 répétitions ont été considérées (5 échantillons/ groupe). Ces 5 répétitions ont pu ne pas avoir le même résultat et fausser la moyenne obtenue par groupe.

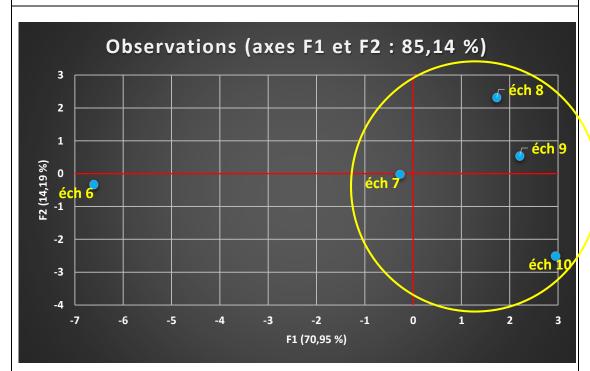



**Figure 26 :** Graphe de nuage de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 3 fois et amplifiés à 29 cycles de PCR

Pour les 5 échantillons lavés 3 fois, puis amplifiés avec 29 cycles de PCR, au vu des graphiques, on peut distinguer que les échantillons qui participent le plus à la formation de l'axe 2 sont les échantillons 1 ; éch 2 ; éch 3 et éch 4. On observe aussi un éloignement trop important de l'échantillon 5 par rapport à l'ensemble des échantillons. Cet échantillon à une forte contribution négative à l'axe 1 ; il est caractérisé en réalité par des valeurs très faibles (hauteurs de pics très faibles par rapport aux autres). Donc, l'échantillon 5 a été exclu de l'ensemble des échantillons amplifiés à 29 cycles et lavés 3 fois, puis la comparaison inter-groupes a été effectuée en prenant compte que des 4 échantillons restants. Les échantillons des autres groupes ont été sélectionnés de la même manière. Les graphiques de groupe d'échantillons lavés 4 fois et amplifiés avec 29 cycles de PCR sont représentés dans les figures 27 et 28.



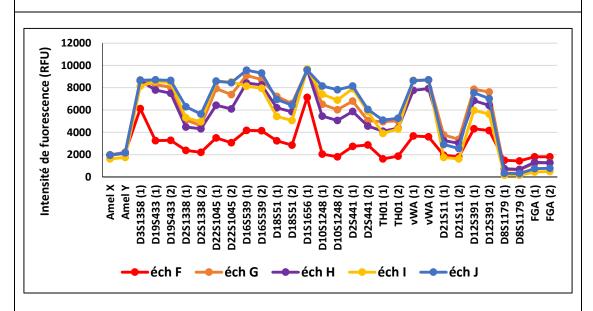

**Figure 27 :** Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 4 fois, amplifiés avec 29 cycles de PCR



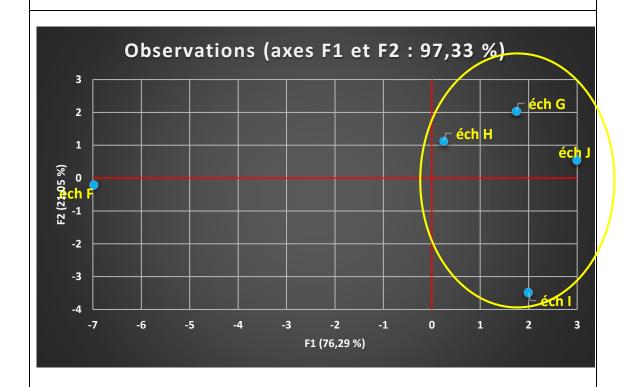

**Figure 28 :** Graphe de nuage de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 4 fois et amplifiés à 29 cycles de PCR

## III.2.1.2. Comparaison intra-groupe des échantillons amplifiés à 28 cycles




**Figure 29 :** Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 3 fois, amplifiés avec 28 cycles de PCR

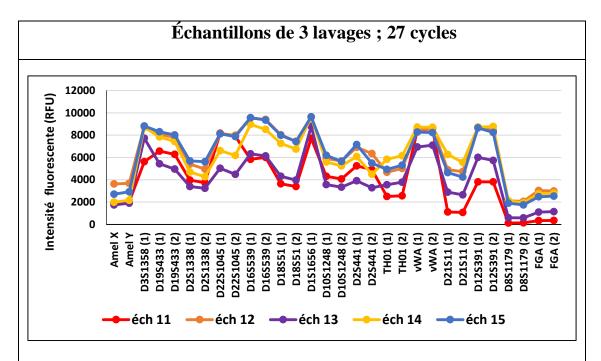



**Figure 30 :** Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 3 fois et amplifiés à 28 cycles de PCR

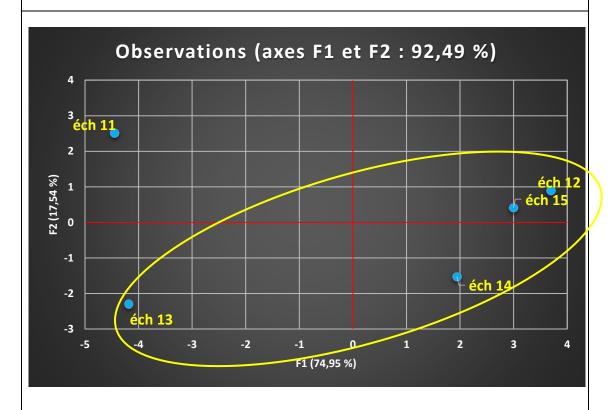
| Échantillon inclus | Échantillons exclus |
|--------------------|---------------------|
| 7;8;9;10           | 6                   |

# Échantillons de 4 lavages ; 28 cycles



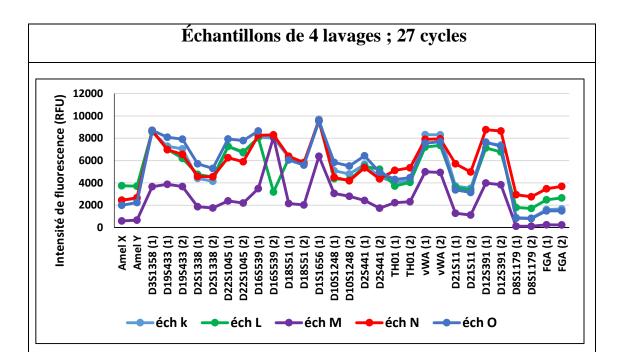

**Figure 31 :** Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 4 fois, amplifiés avec 28 cycles de PCR



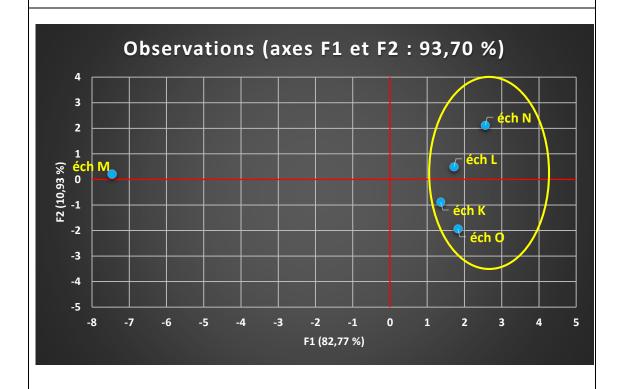

**Figure 32 :** Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 4 fois et amplifiés à 28 cycles de PCR

| Échantillon inclus | Échantillons exclus |
|--------------------|---------------------|
| G;H;I;J            | F                   |

#### III.2.1.3. Comparaison intra-groupe des échantillons amplifiés à 27 cycles



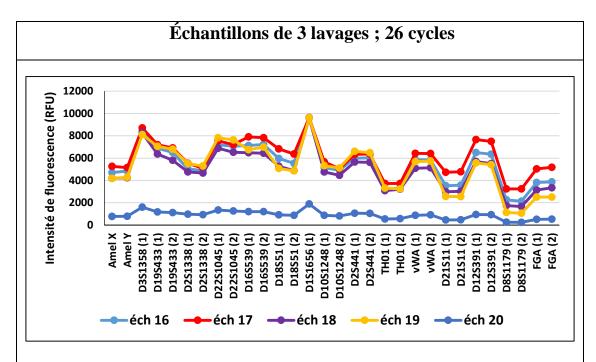

**Figure 33 :** Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 3 fois, amplifiés avec 27 cycles de PCR



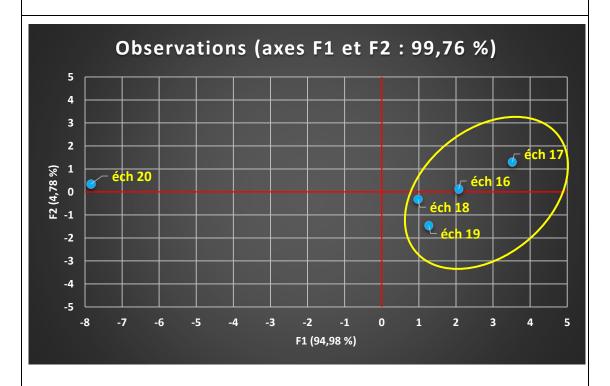

**Figure 34 :** Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 3 fois et amplifiés à 27 cycles de PCR

| Échantillon inclus | Échantillons exclus |  |  |
|--------------------|---------------------|--|--|
| 12; 13; 14; 15     | 11                  |  |  |



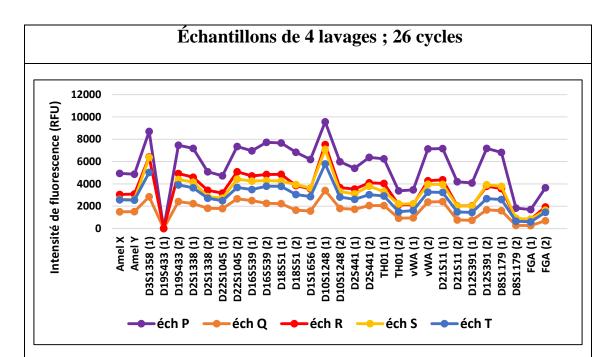

**Figure 35 :** Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 4 fois, amplifiés avec 27 cycles de PCR



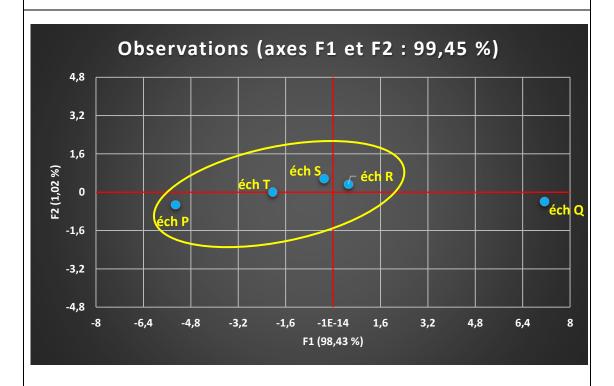

**Figure 36 :** Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 4 fois et amplifiés à 27 cycles de PCR

| Échantillon inclus | Échantillons exclus |  |  |
|--------------------|---------------------|--|--|
| L;N;O;K            | M                   |  |  |

# III.2.1.4. Comparaison intra-groupe des échantillons amplifiés à 26 cycles



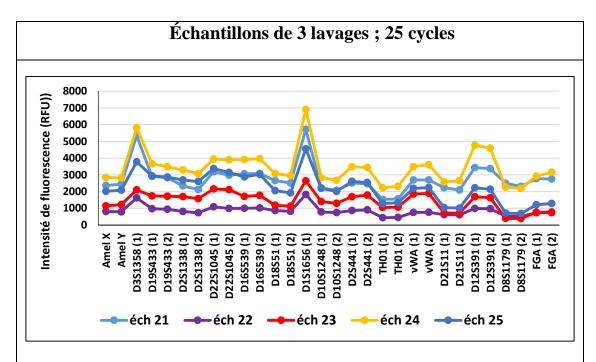

**Figure 37 :** Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 3 fois, amplifiés avec 26 cycles de PCR



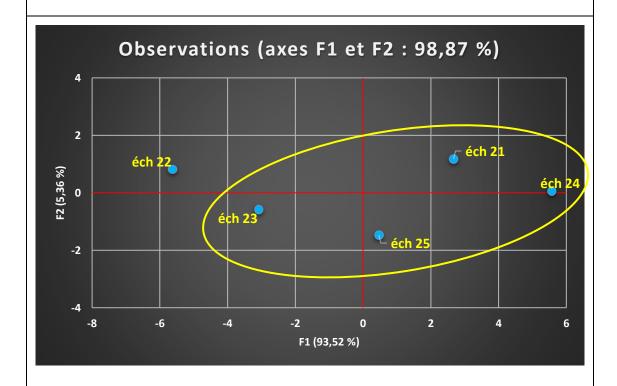

**Figure 38 :** Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 3 fois et amplifiés à 26 cycles de PCR

| Échantillon inclus | Échantillons exclus |  |  |
|--------------------|---------------------|--|--|
| 16; 17; 18; 19     | 20                  |  |  |



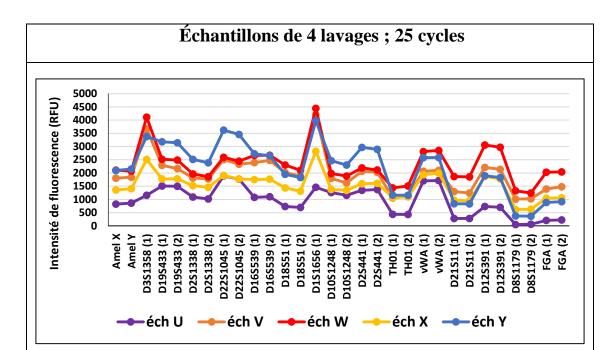

**Figure 39 :** Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 4 fois, amplifiés avec 26 cycles de PCR



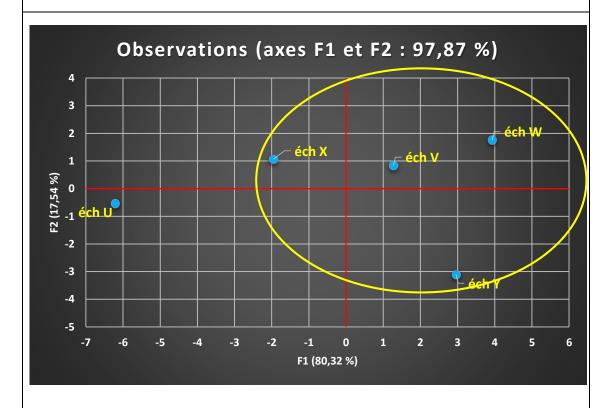

**Figure 40 :** Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 4 fois et amplifiés à 26 cycles de PCR

| Échantillon inclus | Échantillons exclus |
|--------------------|---------------------|
| P; S; T; R         | Q                   |

#### III.2.1.5. Comparaison intra-groupe des échantillons amplifiés à 25 cycles



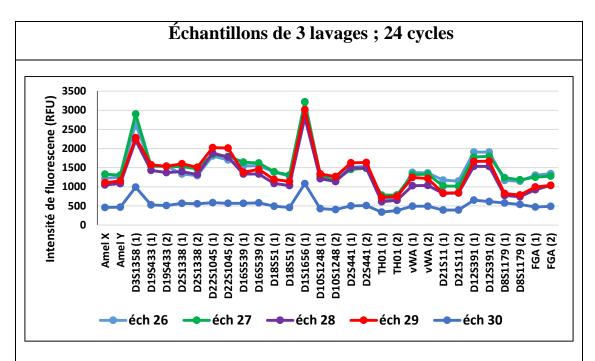

**Figure 41 :** Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 3 fois, amplifiés avec 25 cycles de PCR



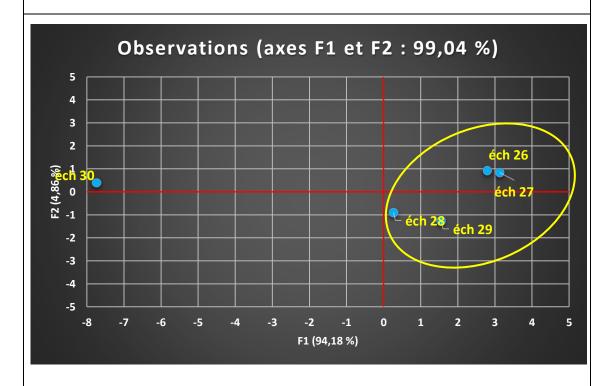

**Figure 42 :** Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 3 fois et amplifiés à 25 cycles de PCR

| Échantillon inclus | Échantillons exclus |  |  |
|--------------------|---------------------|--|--|
| 21;23;24;25        | 22                  |  |  |




**Figure 43 :** Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 4 fois, amplifiés avec 25 cycles de PCR



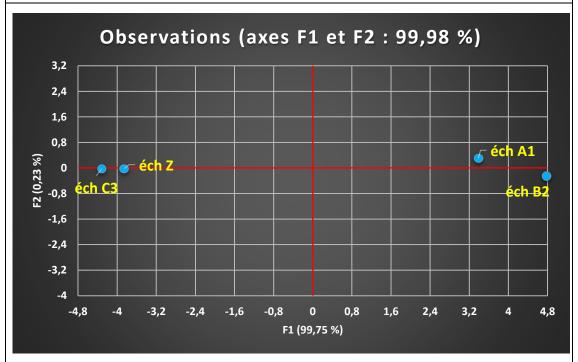

**Figure 44 :** Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 4 fois et amplifiés à 25 cycles de PCR

| Échantillon inclus | Échantillons exclus |  |  |
|--------------------|---------------------|--|--|
| V;W;X;Y            | U                   |  |  |

# III.2.1.6. Comparaison intra-groupe des échantillons amplifiés à 24 cycles



**Figure 45 :** Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 3 fois, amplifiés avec 24 cycles de PCR



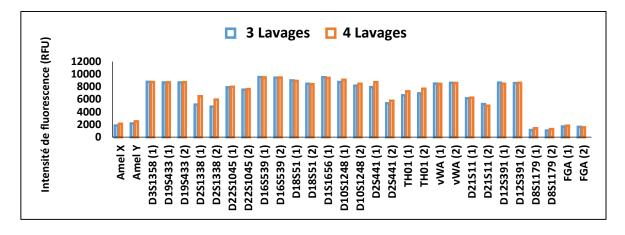

**Figure 46 :** Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 3 fois et amplifiés à 24 cycles de PCR

| Échantillon inclus | Échantillons exclus |  |  |
|--------------------|---------------------|--|--|
| 26; 27; 28; 29     | 30                  |  |  |

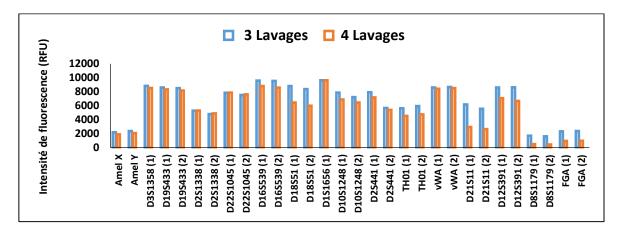
#### Échantillons de 4 lavages ; 24 cycles 4500 Intensité de fluorescene (RFU) 4000 3500 3000 2500 2000 1500 1000 500 TH01 (1) TH01 (2) vWA (1) vWA (2) D21511 (1) D10S1248 (1) D10S1248 (2) D2S441 (1) D2S441 (2) D19S433 (1) D19S433 (2) D22S1045 (1) D22S1045 (2) D16S539 (1) D16S539 (2) D18S51 (1) D18S51 (2) D18S51 (2) (1) D2S1338 (2) 0125391 **D12S391 D8S1179** -éch A1 →éch B2 → éch C3

**Figure 47 :** Courbes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN lavés 4 fois, amplifiés avec 24 cycles de PCR

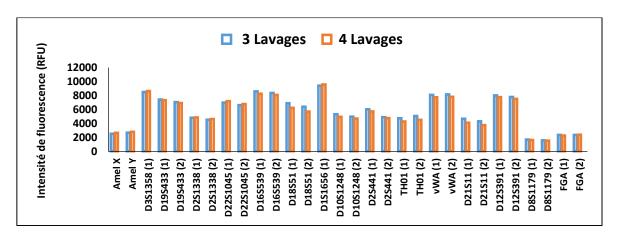



**Figure 48 :** Nuages de points sur le plan factoriel (1,2) : groupe d'échantillons lavés 4 fois et amplifiés à 24 cycles de PCR

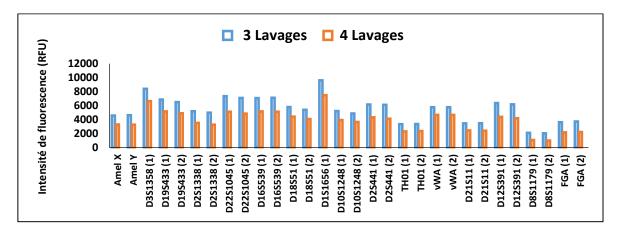
#### Échantillon inclus


On remarque la formation de deux groupes désassemblés (éch Z, éch C3 et éch A1, éch B2), mais vue qu'un échantillon n'as donnée aucun profil (D4), donc les 4 échantillons restants ont été obligatoirement retenu pour la comparaison inter-groupes malgré leurs hétérogénéité distincte.

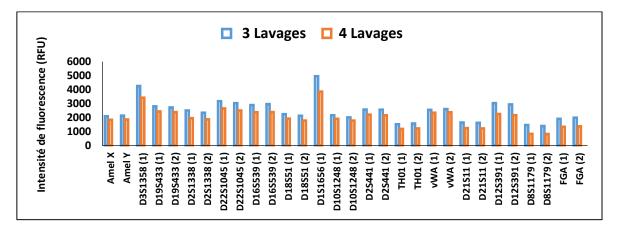
# III.2.2. Résultats de comparaison inter-groupes


Les graphiques des moyennes des hauteurs de pics obtenus de génotypage de chaque deux groupe d'échantillons d'ADN amplifiés avec le même nombre de cycle ont été présentés dans les figures 49, 50, 51, 52,53 et 54.

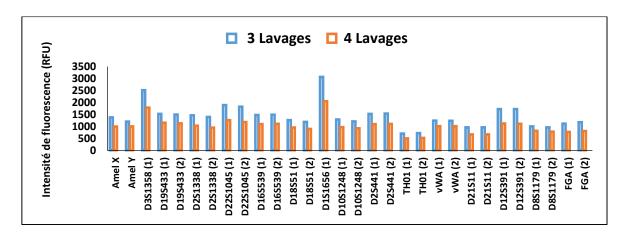



**Figure 49 :** Graphique des moyennes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN amplifiés avec 29 cycles de PCR




**Figure 50 :** Graphique des moyennes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN amplifiés avec 28 cycles de PCR




**Figure 51 :** Graphique des moyennes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN amplifiés avec 27 cycles de PCR



**Figure 52 :** Graphique des moyennes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN amplifiés avec 26 cycles de PCR



**Figure 53 :** Graphique des moyennes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN amplifiés avec 25 cycles de PCR

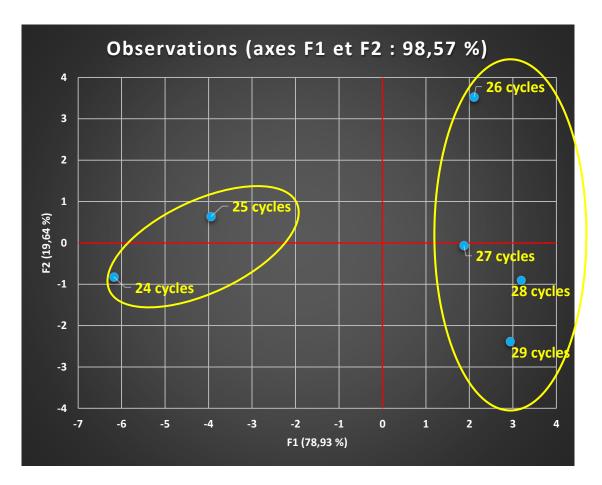


**Figure 54 :** Graphique des moyennes des hauteurs de pics d'éléctrophorégrammes obtenus de génotypage des échantillons d'ADN amplifiés avec 24 cycles de PCR

En utilisant la valeur de p critique à 0,05 ; on ne constate aucune différence significative entre les hauteurs de pics obtenus des échantillons de la série 1 et ceux de la série 2 (p >0,05) pour tous les groupes d'échantillons amplifiés à différents cycles par PCR (29, 28, 27, 26, 25, 24 cycles). Les valeurs p calculés se trouvent en Annexe 2.

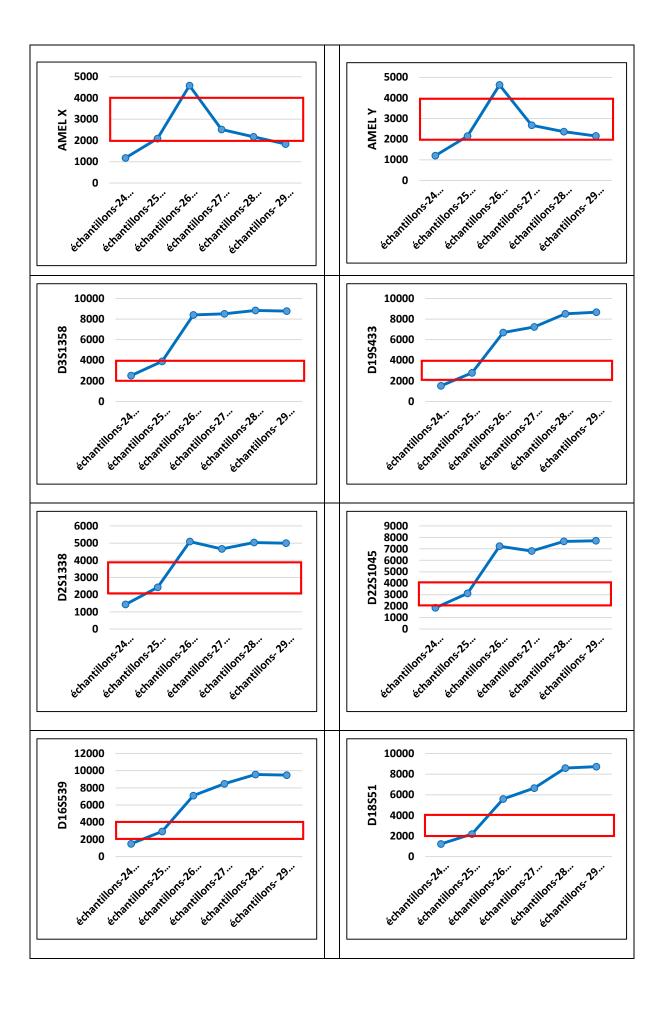
Cela montre qu'il n'existe aucune interaction entre la quantité d'ADN initiale immobilisée sur la carte FTA® et le nombre de lavages au tampon TE ce qui signifie que les fragments d'ADN extraits puis fixés sur le papier de la carte n'ont subi aucune perte même en rajoutant un autre lavage avec le tampon TE.

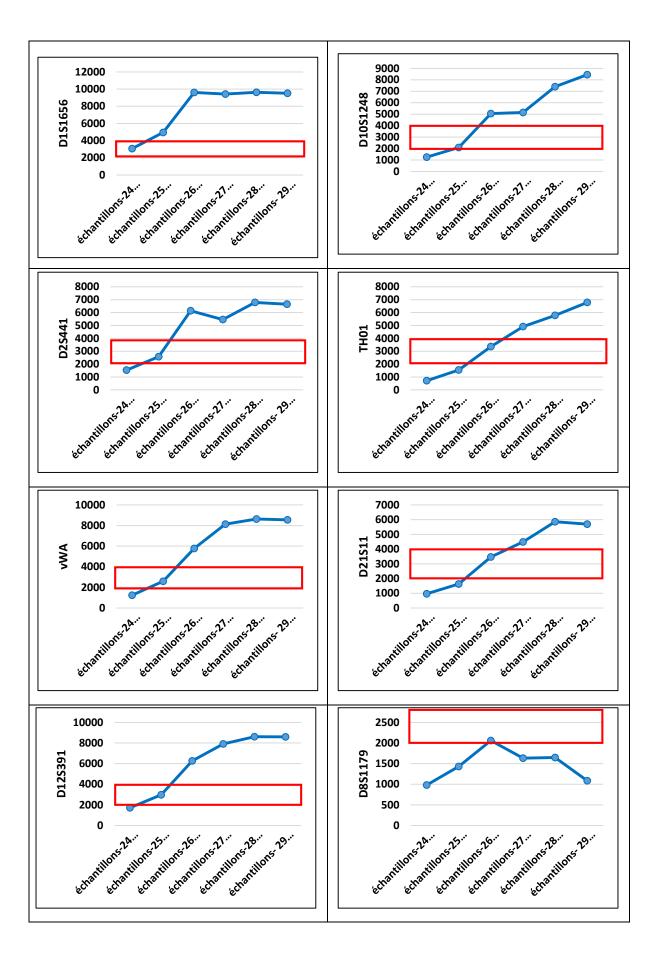
# III.2.3. Choix de nombre de cycle adéquat

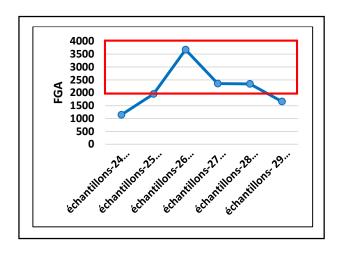

#### III.2.3.1. Série d'échantillons de 3 lavages

Une analyse en composantes principales ACP a été effectuée en utilisant les moyennes de chaque marqueur pour le même groupe d'échantillons comme variables. La moyenne pour chaque groupe a été calculée en prenant compte que des 4 échantillons les plus corrélés.

Un graphique sous forme de nuage de points est représenté dans la figure 55 dont chaque point correspond à un groupe d'échantillons d'un cycle d'amplification précis.


On observe la formation de deux groupes distincts sur le plan factoriel (1,2), un groupe rassemble les groupes d'échantillons amplifiés avec 29, 28, 27 et 26 cycles, qui se caractérisent


par des profils avec des hauteurs de pics élevées, et un groupe représentant les échantillons amplifiés à 25 et à 24 cycles, ces derniers se caractérisent par des hauteurs de pics plus faibles.




**Figure 55** : Graphe de nuage de points sur le plan factoriel (1,2) : série d'échantillons lavés 3 fois au tampon TE

Des analyses de variance ANOVA ont été effectuées pour la comparaison des moyennes des valeurs quantitatives propres aux 30 échantillons de la série 1 supposés indépendants. Le but principale de cette analyse a été de tirer des conclusions visant à préciser le nombre de cycle le plus adéquat qui permet d'obtenir des pics dont la hauteur est optimale (2000-4000 RFU) [Manuel du kit Investigator ESSplex Plus, 2011]. Pour répondre aux mieux à cet objectif, on a focalisé notre sélection en se basant sur les graphiques des moyennes des hauteurs de pics pour chaque marqueur amplifiés à différents cycles représenté ici- dessous (figure 56).Les moyennes calculées sont représentés en Annexe 4.







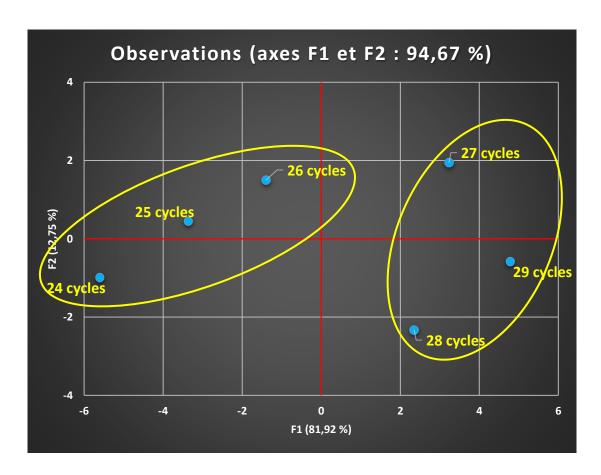
**Figure 56** : Graphiques des moyennes des hauteurs de pics pour chaque marqueur amplifiés à différents cycles (échantillons à 3 lavages)

Au vu des graphiques présentés dans la figure 56, on constate que l'intensité de fluorescence relative à la quantité d'ADN détectée par le séquenceur prend des valeurs différentes. D'un côté, pour le même éléctrophorégramme les différents marqueurs ne se comportent pas de la même manière face au même nombre de cycles de PCR. D'un autre côté, le même marqueur ne prend pas les mêmes valeurs pour un nombre différent de cycle. C'est-à-dire, les valeurs présentées par chaque pic de l'électrophorégramme est dépendante de deux facteurs : le marqueur analysé ainsi que le nombre de cycles de PCR.

Parmi les groupes d'échantillons d'ADN lavés 3 fois au tampon TE, on remarque que les pics avec des hauteurs optimales ont été obtenus par le groupe d'échantillons d'ADN amplifiés à 25 cycles de PCR. À ce cycle on observe que la majorité des marqueurs ont donné des pics à des moyennes comprises entre 2000-4000 RFU. Ces pics correspondent aux marqueurs suivants : AMEL X, AMEL Y, D19S433, D2S1338, D2S1045, D16S539, D18S51, D10S1248, D2S441, vWA, et D12S391. Les moyennes de ces derniers ont été 2091 RFU, 2144 RFU, 2766 RFU, 2425 RFU, 3101 RFU, 2928 RFU, 2186 RFU, 2090 RFU, 2567 RFU, 2582 RFU et 2982 RFU respectivement.

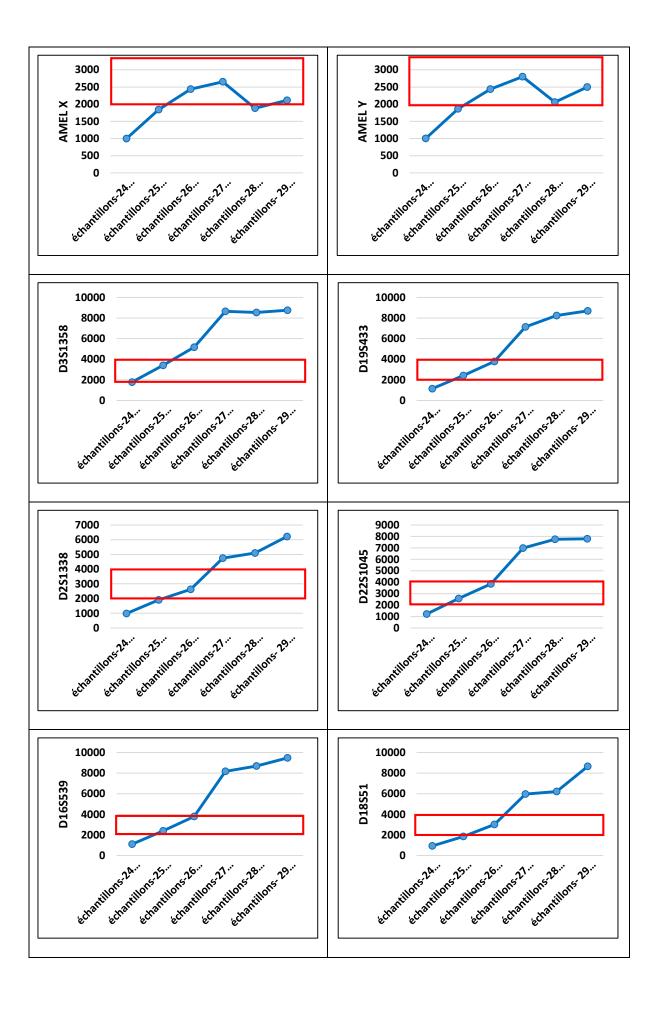
Par contre pour les deux marqueurs D3S1358 et D1S1656 les moyennes des hauteurs de pics ont été 3897 RFU et 4954 RFU respectivement mêmes en 25 cycles de PCR. Ces systèmes ont donnée des valeurs optimales (2510 RFU et 3066 RFU respectivement) avec un nombre de

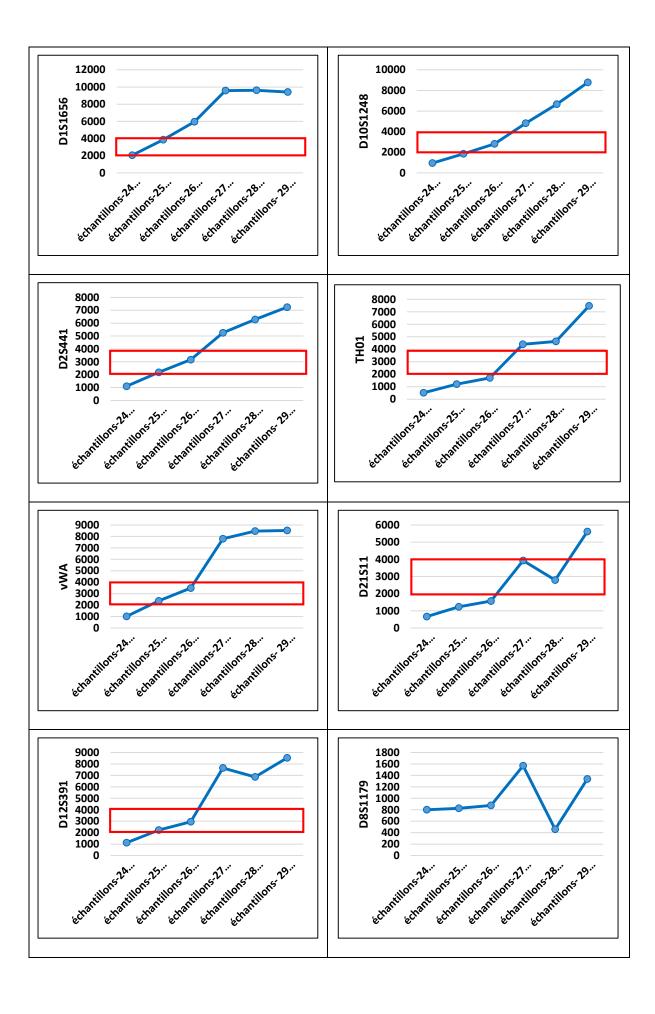
cycle plus faible (24 cycles). Ces deux marqueurs sont homozygotes, donc le signal détecté à partir des produits d'amplification à 25 cycles de PCR est logiquement plus fort que le signal détecté par les marqueurs hétérozygotes. Donc, la détection de leurs pics correspondant nécessite un nombre de cycle d'amplification plus faible que les autres STRs.

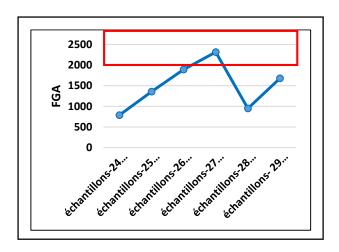

Les marqueurs TH01, D21S11 et D8S1179 ont pris des valeurs plus faibles à 25 cycles, dont les moyennes ont été égales à 1547 RFU, 1630 RFU et 1432 RFU respectivement qui sont très proche de 2000 RFU donc les hauteurs ont été acceptables et les pics ont été interprétables.

D'après ces résultats, et en prenant compte de la plupart des marqueurs, le nombre de cycle adéquat pour obtenir des valeurs optimales après 3 lavages de la carte FTA® imprégné du sang est 25 cycles

#### III.2.3.2. Série d'échantillons de 4 lavages


Une analyse en composants principales des moyennes de différents marqueurs des groupes d'échantillons lavés 4 fois au tampon TE a donné un graphique sous forme d'un nuage de points qui est représenté dans la figure 59.


On observe la formation de deux groupes distincts sur le plan factoriel (1,2), un groupe rassemble les moyennes des marqueurs amplifiés à 29, 28, et 27 cycles de PCR et qui se caractérisent par des hauteurs de pics élevées, et un groupe représentant les moyennes des marqueurs amplifiés à 26, 25 et 24 cycles, ces derniers se caractérisent par des hauteurs de pics plus faibles.




**Figure 57 :** Graphe de nuage de points sur le plan factoriel (1,2) : série d'échantillons lavés 4 fois au tampon TE

Une analyse de variance ANOVA a été effectuée sur les moyennes de cette série d'échantillons, puis les graphiques obtenus sont présentés dans la figure 58. Les moyennes calculées sont représentées en Annexe 5.







**Figure 58 :** Graphiques des moyennes des hauteurs de pics pour chaque marqueur amplifiés à différents cycles (échantillons à 4 lavages)

Au vus des graphiques, parmi la série d'échantillons lavés 4 fois au tampon TE, on remarque que le groupe d'échantillons amplifiés à 25 cycles à donner des valeurs optimales pour certains marqueurs tels que D3S1358, D19S433, D2S44, D1S1656 et vWA qui ont pris les moyennes suivantes respectivement : 3417 RFU, 2418 RFU, 2182 RFU , 3859 RFU et 2366 RFU. Plusieurs d'autres marqueurs tels que D18S51 et D10S1248 ont pris des moyennes égales à 1853 RFU et 1847 RFU qui sont très proches à 2000 RFU. Pour d'autres marqueurs, les valeurs optimales ont été obtenues suite à leur amplification à 25 cycles et même à 26 cycles. C'est le cas de D2S1338, D22S1045, D16S539 et D12S391. Ces derniers ont pris des moyennes égales à 1910 RFU, 2580 RFU, 2387 et 2218 RFU respectivement à 25 cycles de PCR, et ils ont pris des moyennes égales à 2621 RFU, 3852 RFU, 3787 RFU et 2950 RFU à 26 cycles de PCR.

Il est remarquable que le marqueur D8S1179 a pris des moyennes faibles même aux nombre élevé de cycle de PCR et même le marqueur FGA (825 RFU, 1356 RFU respectivement). Cela peut s'expliquer sur le plan génétique par la longueur de ces marqueurs qui est assez importante par rapport à la taille des autres STRs analysés, ce qui prolonge la durée de l'amplification de ces fragments par l'ADN polymérase. En même temps les autres STRs ont un taux d'amplification très important liée à la rapidité de l'activité de l'ADN polymérase sur ces courts fragments. Ce phénomène est connu sous le nom de l'amplification préférentielle dont l'ADN polymérase préfère amplifier les courts fragments que les longs.

D'après ces résultats, l'amplification à 25 cycles peut donner des valeurs optimales après 4 lavages du punch au tampon TE.

#### III.3. DISCUSSION

Au cours de ce travail, nous avons tenté d'optimiser le protocole standard d'établissement de profils génétiques à partir d'ADN extrait du prélèvement du sang (prélèvement de référence) par la technologie FTA®.

L'objectif final de ce travail a été d'obtenir des profils génétiques non saturés, complets et interprétables. Pour cela, on a proposé de réduire le nombre de cycle de la PCR de 29 cycles (défini par le fournisseur) jusqu'à 24 cycles, niveau adéquat pour les objectifs assignés d'une manière décroissante afin de déterminer le nombre de cycle adéquat pour obtenir des pics avec des hauteurs optimales et avec un nombre minimal d'artéfacts. Aussi en parallèle on a augmenté le nombre de lavage au tampon TE de 3 lavages (défini par le fabricant) à 4 lavages afin de tester l'effet du lavage d'une part sur le taux d'inhibition causé par l'hémoglobine et d'autre part sur l'élimination des fragments d'ADN immobilisés sur la carte.

Parmi les 60 échantillons analysés, un échantillon n'a donner aucun profil (D4); cela nous a permis de supposer dans un premier temps que des erreurs lors de la manipulation telle qu'un mauvais pipetage de l'un des composants principaux de la réaction d'amplification a été effectué, donc pas d'amplification d'ADN. Ou bien une très faible quantité d'ADN a été amplifiée puis l'intensité du produit final de la PCR n'a pas dépassé les 50 RFU donc il n'a pas été détecté. Cependant une simple vérification du graphe en utilisant certains paramètres avancés du logiciel d'analyse de données nous a permis de cibler le problème : le stand de taille ajouté au tube correspondant à l'échantillon D4 n'a pas été analysé par le séquenceur pour une simple raison c'est la très faible quantité de mix (formamide /standard de taille) déposée dans le tube. De ce fait, aucune taille n'a pu être assignée aux produits de la PCR analysés. Donc aucun pic n'a été affiché sur le graphe.

Le profil partiel obtenu par l'analyse de l'échantillon C3 a été le résultat d'une très faible quantité de produit de PCR obtenu qui a donné lors du passage par le camera CCD des signaux à une intensité très faible située pour la plupart des marqueurs dans la zone stochastique, puis le signal des deux allèles du marqueur D8S1179 a été inférieur à 50 RFU, donc non considéré comme des pics par le logiciel GenneMapper.

La comparaison entre les échantillons analysés avec les mêmes conditions (même nombre de lavage/ même nombre de cycle) montre une différence dans la hauteur des pics des éléctrophorégrammes des 5 échantillons de même groupe. Cela n'est pas étonnant puisque de nombreuses études ont démontré qu'un seul punch de 1.2 mm imprégné du sang peut contenir

de 15–20 ng d'ADN [Barash et al., 2006]. Donc la quantité d'ADN sur les différents punch est variables et souvent bien plus grande que celle recommandée pour l'amplification optimale (0,5 ng) [Barash et al., 2006 ; Tucker et al., 2010].

En respectant les paramètres d'analyses définis par la validation interne du laboratoire et en prenant en considération que les hauteurs optimales en unités relatives de fluorescence sont comprises entre 2000-4000 RFU [Manuel du kit Investigator ESSplex Plus, 2011], on constate que les échantillons amplifiés avec 29 et 28 cycles de PCR (3 lavages/ 4 lavages) présentent des éléctrophorégrammes saturés avec des hauteurs de pics très élevés (dépassant 9000 RFU pour certains marqueurs tels que D16S539). Cette intensité diminue en décroissant le nombre de cycle de 29 à 24 pour les deux séries d'échantillons analysés. L'intensité des pics des échantillons amplifiés à 24 cycles par exemple ne dépasse pas les 3000 RFU.

Cette variété est expliquée par la quantité d'ADN analysée qui est proportionnelle au nombre de cycle de PCR. En fait, chaque cycle de PCR donne 2<sup>n</sup> comme produit final d'amplification [Butler, 2011]. Cette diminution des hauteurs s'accompagnait aussi d'une réduction des artéfacts. Il est remarquable que ces derniers ont été fréquemment rencontrés dans le cas de pics amplifiés particulièrement intenses (signal élevé). Cela nous a permis de déduire que les échantillons très concentrés présentent un niveau plus élevé de bruit de fond qui peut interférer avec l'analyse. D'ailleurs, de nombreuses études ont déjà montré que la fréquence des artéfacts est très élevée quand la quantité d'ADN analysés est supérieure ou égale à 20 ng [Manuel technique Promega, 2014].

Le lavage ne semble pas avoir d'effet visible sur la quantité d'ADN initiale immobilisée sur la carte FTA®. En fait, les résultats statistiques de la comparaison entre chaque deux groupe d'échantillons amplifiés au même nombre de cycles nous a démontrés que les hauteurs de pics obtenus des échantillons des deux séries analysées ne présentent pas de différences significatives (p > 0.05) (Annexe 2).

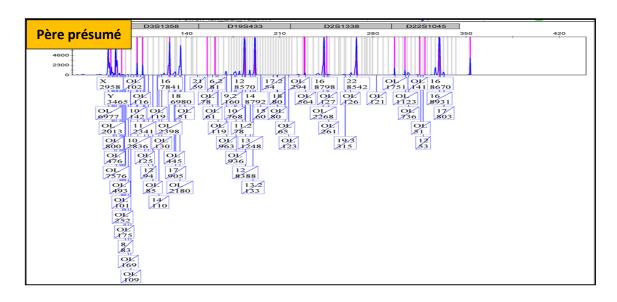
Il est connu que le lavage du punch au tampon TE joue un rôle dans l'élimination des inhibiteurs de la PCR tels que l'hémoglobine ce qui favorise l'activité de l'ADN polymérase donc, une amplification optimale [Butler, 2011].

Les protocoles présentés dans les manuels techniques officiels du fabricant (*Watman*) n'indiquent aucun effet du lavage sur l'élimination des fragments d'ADN enchâssés sur les fibres de la carte. Mais l'effet du lavage au tampon TE sur l'élimination des fragments d'ADN

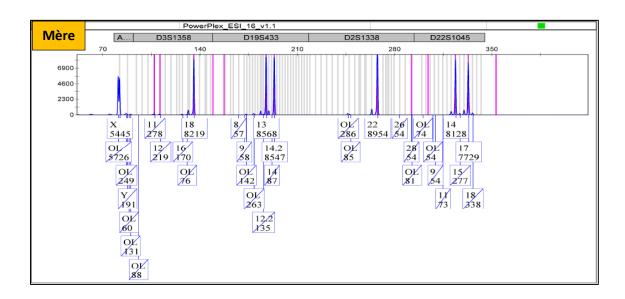
immobilisés sur la carte FTA® ne peut être visible par l'ajout d'un seul lavage, mais seulement une différence de 2 à 3 lavages en plus qui peuvent confirmer ou affirmer cet effet.

Les résultats d'analyse de la variance portée sur les différents marqueurs analysés nous nous a permet de déduire le nombre de cycles adéquat pour l'amplification par PCR.

En fait, les échantillons de la série 1 lavés 3 fois au tampon TE ont donné des intensités de pics optimal à 25 cycles (2000-4000 RFU); mais les échantillons de la série 2 lavés 4 fois au tampon TE ont donné des valeurs plus faibles à ce même nombre de cycle mais qui ont été très proches de la plage optimale (1800-1950 RFU). Cela est due au faible effet du lavage sur l'élimination des fragments d'ADN immobilisée sur la carte FTA® bien qu'il a été non significatif de point de vus statistique.

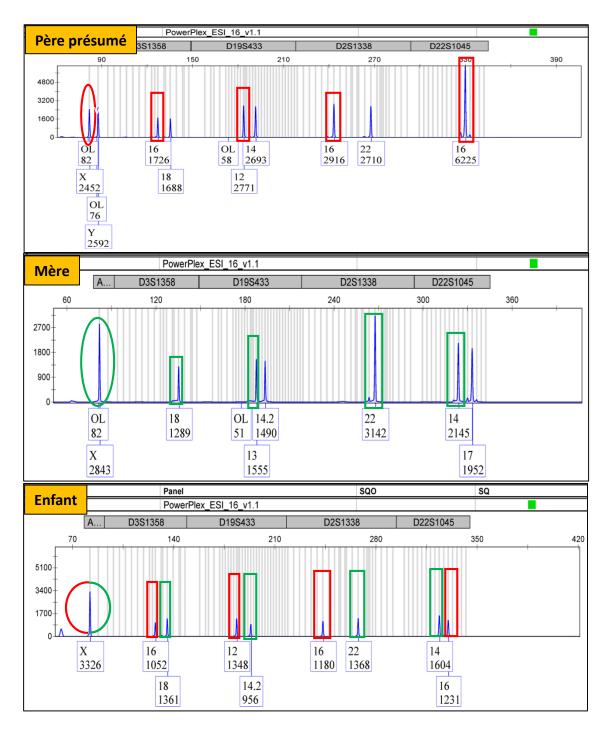

Au final, 3 lavages au tampon TE, puis 25 cycles de PCR seront les paramètres adéquats à adépoter pour le nouveau protocole optimisé.

#### III.3.1. Étude de cas


À fin de vérifier l'efficacité du nouveau protocole optimisé, nous avons eu l'opportunité de disposer de deux échantillons judicaires d'un cas concret dans le cadre d'un test de paternité, qui présente une des affaire les plus fréquemment traitées au laboratoire d'indentification génétique de l'*INCC*. Le principe de la recherche de la paternité consiste à confronter les profils génétiques d'une mère et de son enfant avec ceux d'un homme susceptible d'en être le père, et que l'on dénomme alors le « père présumé ».

Le test a été effectué en se basant sur l'analyse portée sur l'ADN de la mère, et celui du père présumé. Dans un premier temps, on a utilisé le protocole standard du kit PowerPlex® ESI 16 system qui consiste à utiliser un punch de 1,2mm imprégné du sang, lavé 3 fois au tampon TE puis soumis à l'amplification à 29 cycles de PCR dans un volume réactionnel de 25 µl. Dans un deuxième temps, on a utilisé le nouveau protocole optimisé en effectuant 3 lavages au tampon TE pour chaque punch, et 25 cycles pour l'amplification par la PCR. Les profils complets de la mère, le père présumé et l'enfant en utilisant les deux protocoles sont présentés en Annexe 6.Les témoins positif et négatif sont présentés en Annexes 7.

Le profil génétique de l'enfant n'était pas obtenu par ces protocoles, il a été effectué en utilisant un autre protocole pour l'ADN extrait qui ne sera pas détaillé dans ce mémoire.



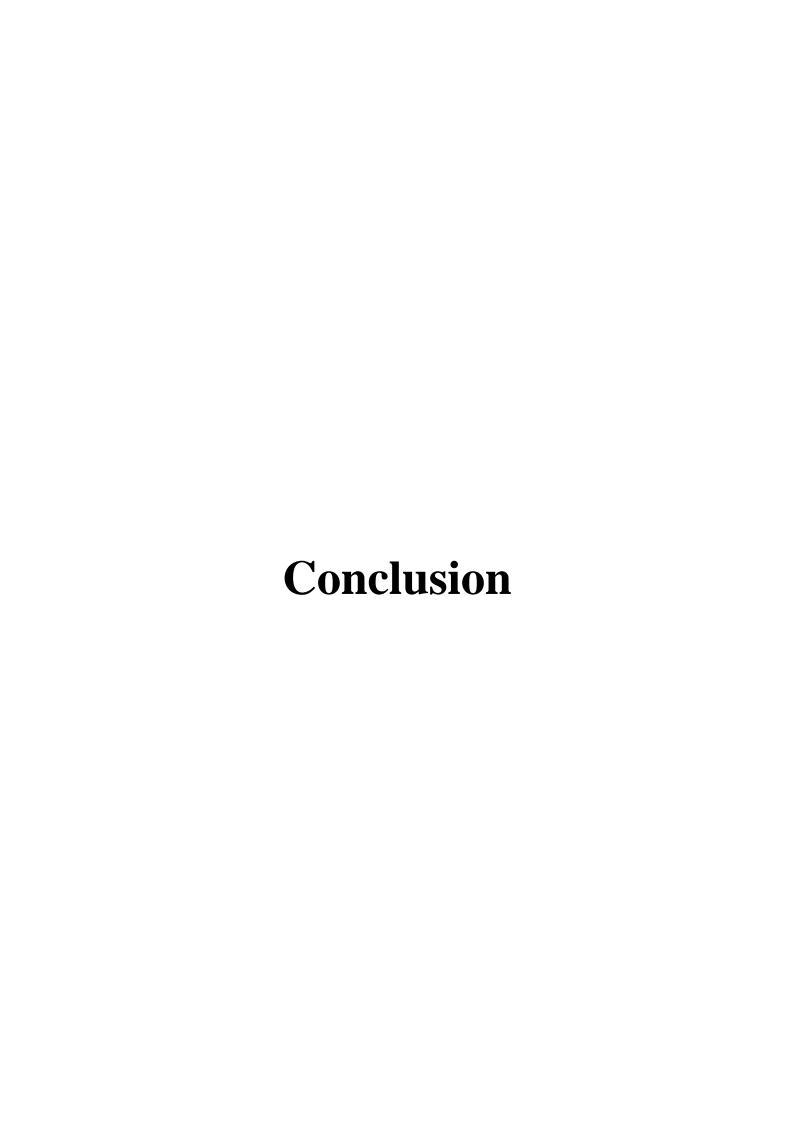

**Figure 59 :** Exemple de la première ligne de profils génétique, du père présumé, obtenu en utilisant le protocole standard (3 lavages/ 29 cycles)



**Figure 60 :** Exemple de la première ligne de profils génétique, de la mère, obtenu en utilisant le protocole standard (3 lavages/ 29 cycles)

L'interprétation des résultats obtenus suite a l'amplification à 29 cycles a été défficile ; les profils génétiques ont été saturé ,chargés des artéfacts et la hauteur des pics a été tres élevés arrivée jusqu'à 8000 RFU. Par contre les profils génétiques obténus à 25 cycles ont été plus claires, complets, ne présentés pas d'artifacts et facilement interprétables.




**Figure 61 :** Exemple de comparaison entre les marqueurs de la première ligne de l'éléctrophorégramme (enfant, mère et père présumé)

Le reste de la comparaison entre les allèles du père présumés e ceux de l'enfant ont été résumé dans le tableau VII.

**Tableau VII.** Tableau de comparaison entre les allèles du père présumé, la mère et l'enfant dans le cadre d'un test de paternité.

| Marqueur  | Père présumé |          | Mère      |             | Enfant    |                 |
|-----------|--------------|----------|-----------|-------------|-----------|-----------------|
| wai queui | Allèle 1     | Allèle 2 | Allèle 1  | Allèle 2    | Allèle 1  | Allèle 2        |
| AMEL      | X            | Y        | X         | X           | X         | X               |
| D3S1358   | <b>16</b>    | 18       | <b>18</b> | 18          | <b>16</b> | <mark>18</mark> |
| D19S433   | 12           | 14       | 13        | 14.2        | 12        | 14.2            |
| D2S1338   | <b>16</b>    | 22       | 22        | <b>22</b>   | <b>16</b> | <b>22</b>       |
| D22S1045  | <b>16</b>    | 16       | <b>14</b> | 17          | <b>14</b> | <b>16</b>       |
| D16S539   | 10           | 11       | 11        | 12          | 11        | <b>12</b>       |
| D18S51    | 11           | 15       | 15        | <b>17</b>   | 15        | <b>17</b>       |
| D1S1656   | 14.3         | 15       | 15        | <b>15.3</b> | 15        | <b>15.3</b>     |
| D10S1248  | 12           | 14       | 11        | <b>14</b>   | 12        | <mark>14</mark> |
| D2S441    | 11           | 11       | 11        | 14          | 11        | 11              |
| TH01      | 6            | 18       | 7         | 9           | 6         | 9               |
| vWA       | <b>19</b>    | 19       | <b>16</b> | 18          | <b>16</b> | <mark>19</mark> |
| D21S11    | <b>30</b>    | 30       | 29        | <b>30</b>   | <b>30</b> | <b>30</b>       |
| D12S391   | 20           | 21       | 17.3      | 21          | 21        | <b>21</b>       |
| D8S1179   | 13           | 15       | 11        | 13          | 13        | 13              |
| FGA       | 19           | 22       | 21        | 22          | 21        | 22              |

D'après les profils, l'enfant partage 50% de son patrimoine avec le père présumé et 50% de son patrimoine avec sa mère, donc nous pouvons en déduire que ce dernier est le père biologique de cet enfant. La fiabilité du test doit être confirmée par des tests de probabilités qui ne font pas le sujet de ce mémoire, en fait le but de cet exemple a été de s'assurer de l'obtention d'un profil de bonne qualité avec le nouveau protocole optimisé.



Dans le cadre de ce projet de fin d'étude, nous avons optimisé le protocole standard d'établissement des profils génétiques issus d'ADN extrait par les cartes FTA® à partir du prélèvement du sang (prélèvement de référence). Les profils génétiques obtenus en utilisant le protocole standard (3 lavages/29 cycles) ont été saturés. C'est pourquoi l'équipe du laboratoire d'identification génétique de l'*INCC* nous a confié de la responsabilité d'optimiser ce protocole dans le but d'obtenir des profils génétiques exploitables.

Nous avons donc procéder, en premier lieu, à tester l'effet du lavage sur la quantité d'ADN initiale et sur le taux d'inhibition causée par l'hémoglobine en ajoutant un autre lavage par rapport au nombre défini par le fabricant. Ensuite nous avons diminué la quantité d'ADN analysé en réduisant le nombre de cycle d'amplification par PCR de 29 cycles (définit par le fournisseur) à 24 cycles d'une manière décroissante.

Nous avons pu montrer à travers les analyses statistiques que le lavage n'as pas d'effet significatif sur l'élimination des fragments d'ADN immobilisés sur la carte FTA®. C'est pourquoi le nombre de lavage requis a été celui décris dans le protocole standard, qui consiste a lavé le punch imprégné du sang 3 fois au tampon TE. Et pour le taux d'inhibition, aucun effet visible n'a été détecté sauf pour les échantillons amplifiés à 29 cycles de PCR.

En ce qui concerne l'optimisation de la PCR, nous avons pu déterminer le nombre de cycle adéquat pour donner des profils génétiques de bonne qualité. Le nombre de cycles retenu dans le protocole optimisé est 25 cycles.

La réalisation de ce projet nous a été bénéfique à tous les niveaux et nous a permis d'obtenir des profils génétiques complets, non saturés, sans artéfacts et donc facilement interprétables. En fait ; l'exclusion avec certitude d'une personne innocente gardée en détention ou la confirmation prompte de l'implication d'un accusé dans un crime présentent sûrement un grand succès pour le laboratoire et en même temps des aspects réconfortants pour la population.

Au finale, un test porté sur l'ajout de 2 ou 3 lavages en plus au tampon TE reste nécessaire pour confirmer ou affirmer l'effet du lavage sur la quantité d'ADN immobilisée sur la carte FTA®. Et pour finaliser la validation de ce nouveau protocole optimisé, les mêmes analyses devront être réalisées sur un plus grand nombre d'échantillons.

# Références bibliographiques

ANDREW Read et DONNAI Dian. Génétique médicale : De la biologie à la pratique clinique. Boeck Supérieur, 2008, pp 113

BARASH Mark, SHPITZEN Moshe et ASHIRA Nany Zamir. A Modified Method for Purification of Biological Samples Collected on FTA Cards for STR Analysi. *Journal of Forensic Identification*. 2006; 56 (2)

BENZÉCRI Jean-Paul. Histoire et Préhistoire de l'Analyse des données. Dunod, 1977, pp 9-40

BUTLER John M. Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers. 2<sup>eme</sup> ed. Academic Press; 2005, pp 2-223

BUTLER John M. Houston DNA Training Workshop: STR and Molecular Biology Artifacts. *National Institute of Standards and Technology*. 2007

BUTLER John M. Fundamentals of Forensic DNA Typing. Academic Press, 2010, pp140-302

BUTLER John M. Advanced Topics in Forensic DNA Typing: Methodology. Academic Press; 2011, pp 15-192

COQUOZ Raphaël et TARONI Franco. Preuve par l'ADN : la génétique au service de la justice. 2<sup>eme</sup> ed. France : PPUR presses polytechniques, 2006, pp 11-89

COTTON F, VERTONGEN F et GULBIS B. Électrophorèse capillaire et hémoglobinopathies .*Elsevier SAS*. 2005 ; 21 (1) :45-50

DOUTREMEPUICH Christian. Les empreintes génétiques en pratique judiciaire. *Bull. Acad. Natle Méd.* 2012 ; 196, (6) :1117-1130

EL OSSMANIL H, B. BOUCHRIF, J. TALBI, H. EL AMRI, A. CHAFIK. La diversité génétique de 15 STR chez la population arabophone de Rabat-Salé-Zemmour-Zaer. *Antropo*. 2007; 15:55-62

FARCE Marie-Hélène. Génétique moléculaire. 2000, pp 37

FERNANDEZ Frédéric, SCHNEIDER Anne, GAUB Marie-Pierre, LINDNER Véronique, OUDET Pierre, LANG Hervé, SAUSSINE Christian et JACQMIN Didier. Intérêt de l'analyse des microsatellites urinaires dans le diagnostic du cancer du rein. Prog Urol; 2006, pp 429

stoire et Préhistoire de l'Analyse des données. 1977, pp 9-40

BUTLER John M. Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers. 2<sup>eme</sup> ed. Academic Press; 2005, pp 2-223

BUTLER John M. Houston DNA Training Workshop: STR and Molecular Biology Artifacts. *National Institute of Standards and Technology*. 2007

BUTLER John M. Fundamentals of Forensic DNA Typing. 2010, pp140-302

BUTLER John M. Advanced Topics in Forensic DNA Typing: Methodology. Academic Press; 2011, pp 15-192

COQUOZ Raphaël et TARONI Franco. Preuve par l'ADN : la génétique au service de la justice. 2<sup>eme</sup> ed. France : PPUR presses polytechniques, 2006, pp 11-89

COTTON F, VERTONGEN F et GULBIS B. Électrophorèse capillaire et hémoglobinopathies .*Elsevier SAS*. 2005; 21 (1):45-50

DOUTREMEPUICH Christian. Les empreintes génétiques en pratique judiciaire. *Bull. Acad. Natle Méd.* 2012 ; 196, (6) :1117-1130

EL OSSMANIL H, B. BOUCHRIF, J. TALBI, H. EL AMRI, A. CHAFIK. La diversité génétique de 15 STR chez la population arabophone de Rabat-Salé-Zemmour-Zaer. *Antropo*. 2007; 15:55-62

FARCE Marie-Hélène. Génétique moléculaire. 2000, pp 37

FERNANDEZ Frédéric, SCHNEIDER Anne, GAUB Marie-Pierre, LINDNER Véronique, OUDET Pierre, LANG Hervé, SAUSSINE Christian et JACQMIN Didier. Intérêt de l'analyse des microsatellites urinaires dans le diagnostic du cancer du rein. Prog Urol; 2006, pp 429

FUNEL Lonvaud, RENAUF et STREHAIANO ; Microbiologie du vin : bases fondamentales et applications. 2010, pp 332

FURKEL Françoise. L'identification par empreintes génétiques en matière civile en république fédérale D'Allemagne. *Revus internationale de droit comparés* 2004 ; 56 (2) :389-416

GARIBYAN Lilit et AVASHIA Nidhi . Polymerase Chain Reaction. *Journal of Investigative Dermatology* 2013; pp 133

GILLIQUET Véronique. Biologie 6eme -Manuel : Sciences générales (2 pér./sem.) ; 2009, pp 146

GOODWIN William, LINACRE, ADRIAN et HADI, SIB. An introduction to forensic genetics. 2<sup>eme</sup> ed. England: John Wiley & Sons Ltd; 2011, pp 216

GRIFFITHS Anthony J. F. et SANLAVILLE Chrystelle . Analyse génétique moderne. France : Boeck Supérieur ; 2001, pp 5

IGLESIAS Miriam sous la supervision du Dr Raphaël Coquoz. Ajout d'un contrôle d'inhibition dans des kits STR multiplex .Laboratoire AURIGEN, Lausanne, 2009

KARP Gerald. Biologie cellulaire et moléculaire : Concepts and experiments. 3<sup>eme</sup> ed ; 2010, pp 410

KEYSER Christine, CRUBÉZY Éric et LUDES Bertrand. L'analyse ADN dans l'approche anthropologique des populations du passé. *Médecine/sciences* 2013 ; 29 : 637-641

KORZENIEWSKI Sylvia, HOFMAN Paul et BREST Patrick. Des polymorphismes silencieux plutôt bruyants. *Médecine/sciences* 2013 ; 29 (2) : 124

LARSEN William. Embryologie humaine, 2<sup>eme</sup> ed. 2003 pp 1

MADER Sylvia S. Biologie humaine. 2010, pp 378-379

MERLIN Jean-Louis. Les biomarqueurs moléculaires en oncologie. 2014, pp 4-6

MICHAELIS Ron C, FLANDERS Rober G, WULFF Paula JR. A Litigator's Guide to DNA: From the Laboratory to the Courtroom. Academic Press; 2011, pp 23

PETKOVSKI Elizabet. Polymorphismes ponctuels de séquence et identification génétique, Étude par spectrométrie de masse MALDI-TOF. 2006. Thèse de doctorat : Sciences du vivant ; Aspects moléculaires et cellulaires de la biologie : Université Louis Pasteur de Strasbourg I : 2006

PRIMORAC Dragan et SCHANFIELD Moses. Forensic DNA Applications : An Interdisciplinary Perspective. 2014, pp 12-25

RAVEN Peter H., GEORGES B. Johnson, KENNETH A. Mason, JONATHAN B. Losos et SUSAN S. Singer. Biologie. 2010, pp 275-359

Richard Li. Forensic Biology: Identification and DNA Analysis of Biological Evidence. 2011, pp 408

RUDIN Norah et KEITH Inman. An introduction to forensic DNA analysis. 2<sup>eme</sup> ed. 2010, pp 43-103

SHEWALE Jaiprakash G et LIU Ray H. Forensic DNA Analysis: Current Practices and Emerging Technologies. 2013, pp 8-43

SOUIDEN Y, CHAIEB K, ROMDHANI M et, MAHDOUANI K. Apport des empreintes génétiques par rapport à la technique de groupage ABO/Rhésus dans l'expertise de filiation. *Ann Biol Clin* 2007; 65 (6): **663-670** 

STAFFORD Jean et BODSON Paul . L'Analyse Multivariée Avec Spss. 2006, pp 3

STEPHENSON Frank H., et ABILOCK Marian. PCR Optimization, Student Guide. 2012, pp 1

TAUPIN Jane Moira. Introduction to Forensic DNA Evidence for Criminal Justice Professionals. CRC Press; 2013, pp 4-5

TUCKER Valerie C, HOPWOOD andrew J, SPRECHER Cynthia J, MCLAREN Robert S, RABBACH Dawn R, ENSENBERGER Martin G, THOMPSON Jonelle Met STORTS Douglas R. Developmental validation of the PowerPlex1 ESI 16 and PowerPlex1 ESI 17 Systems: STR multi plexes for the new European standard. *Forensic Science International: Genetics* 2010; 5 (5): 436-48

VAN Vaerenbergh, G. La criminalistique : du mythe à la réalité quotidienne : manuelle de la police.2002, pp 152-159

# Sites web visités

Whatman FTA® card technology. Disponible sur:

http://www.sigmaaldrich.com/catalog/product/sigma/z719730?lang=en&region=DZ, [Consulté le 12/10/2014]

Proméga Corporation .Technical manual PowerPlex® ESI 16 System Instructions for use of Products reference DC6770 and DC6771, 2014. Disponible sur :

https://www.promega.com/resources/protocols/technical-manuals/101/powerplex-esi-16-system-protocol/, [Consulté le 21/11/2014]

Configuration de kit PowerPlex ESI® 16 system Disponible sur :

http://www.promega.com/resources/profiles-in-dna/2014/using-complementary-str-typing-systems-to-genotype-problematic-samples/?activeTab=0, [Consulté le 13/12/2014]

Principles of Forensic DNA for Officers of the Court. Disponible sur : http://projects.nfstc.org/otc/module2/2.2.005.htm, [Consulté le 04/01/2015]

Manuel du kit Investigator ESSplex Plus, 2011. Disponible sur :

http://www.google.dz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB8QFjAA&url=http%3A%2F%2Fwww.qiagen.com%2Fresources%2Fdownload.aspx%3Fid%3Dcd1869c3-5e11-4598-9c94-07fdc1a73339%26lang%3Dfr-

FR&ei=n01iVZ8zxoBTs5yBkAo&usg=AFQjCNEuIKqOdH8MLqAMySdsVJT2gpJgiQ&sig 2=MrPmObPajyuR0MM-MA0v2Q , [Consulté le 12/04/2015]

Life technology, AmpFlSTR® SGM Plus® PCR Amplification Kit User Guide. 2012. Disponible sur :

https://www3.appliedbiosystems.com/cms/groups/applied\_markets\_support/documents/gener aldocuments/cms\_041049.pdf, [Consulté le 28/04/2015]



# Annexe 1

Tableau des marqueurs co-amplifiés et leurs fluorochromes associé du kit PowerPlex® ESI 16 system [Manuel technique Promega, 2014].

| Désignation Localisation |                           | Séquence répétitive  | Fluorochrome     |  |
|--------------------------|---------------------------|----------------------|------------------|--|
| du marqueur              | •                         |                      | Truor ochir onic |  |
| Amelogénine              | X: p22.1-22.3<br>Y: p11.2 |                      |                  |  |
| D3S1358                  | 3p21.31<br>(45.557Mb)     | TCTA Complex         |                  |  |
| D19S433                  | 19q12<br>(35.109Mb)       | AAGG Complex         | Fluorescéine     |  |
| D2S1338                  | 2q35<br>(218.705Mb)       | TGCC/TTCC            |                  |  |
| D22S1045                 | 22q12.3<br>(35.779Mb)     | ATT                  |                  |  |
| D16S539                  | 16q24.1<br>(84.944Mb)     | GATA                 |                  |  |
| D18S51                   | 18q21.33<br>(59.1Mb)      | AGAA (19)            |                  |  |
| D1S1656                  | 1q42<br>(228.972Mb)       | TAGA Complex         | JOE              |  |
| D10S1248                 | 10q26.3<br>(130.567Mb)    | GGAA                 |                  |  |
| D2S441                   | 2p14<br>(68.214Mb)        | TCTA                 |                  |  |
| TH01                     | 11p15.5<br>(2.149Mb)      | AATG (19)            |                  |  |
| vWA                      | 12p13.31<br>(5.963Mb)     | TCTA<br>Complex (19) | TIMD TOT         |  |
| D21S11                   | 21q21.1<br>(19.476Mb)     | TCTA Complex (19)    | TMR-ET           |  |
| D12S391                  | 12p12<br>(12.341Mb)       | AGAT/AGAC<br>Complex |                  |  |
| D8S1179                  | 8q24.13<br>(125.976Mb)    | TCTA Complex (19)    |                  |  |
| FGA                      | 4q28<br>(155.866Mb)       | TTTC<br>Complex (19) | CXR-ET           |  |

Tableau des hauteurs de pics de différents marqueurs amplifié à différents cycles par la PCR.

Le nombre de ddl=6,  $t_{table}=2,448$ .

Tableau des hauteurs de pics des échantillons amplifiés à 29 cycles par la PCR

|          |        |      |      |        |      | 29 c | ycles |      |       |      |      | ]      |       |
|----------|--------|------|------|--------|------|------|-------|------|-------|------|------|--------|-------|
|          |        |      | 3    | lavage | es   |      |       | 4    | lavag | es   |      |        |       |
| Marqueur | Allèle | éch  | éch  | éch    | éch  | éch  | éch   | éch  | éch   | éch  | éch  | t      | p     |
|          |        | 1    | 2    | 3      | 4    | 5    | A     | В    | C     | D    | E    |        |       |
| AMEL     | Х      | 1853 | 1891 | 1903   | 1700 | 894  | 2596  | 1979 | 2101  | 2247 | 2122 | -3,820 | 0,009 |
| /        | Υ      | 2071 | 2302 | 2186   | 2071 | 1103 | 2959  | 2449 | 2393  | 2574 | 2584 | -4,718 | 0,003 |
| D3S1358  | 15     | 8701 | 8772 | 8824   | 8748 | 6943 | 8704  | 8719 | 8764  | 8761 | 8766 | 0,313  | 0,765 |
|          |        |      |      |        |      |      |       |      |       |      |      |        |       |
| D19S433  | 13     | 8567 | 8689 | 8742   | 8631 | 5584 | 8630  | 8634 | 8639  | 8722 | 8734 | -0,543 | 0,607 |
| D133433  | 14.2   | 8503 | 8740 | 8820   | 8593 | 5206 | 8631  | 8591 | 8697  | 8768 | 8815 | -0,622 | 0,557 |
| D2S1338  | 17     | 4459 | 5330 | 6060   | 4815 | 2122 | 7025  | 5777 | 5814  | 7370 | 6925 | -2,461 | 0,049 |
| D231338  | 19     | 4265 | 4920 | 5678   | 4423 | 1929 | 6511  | 5202 | 5431  | 6815 | 6379 | -2,281 | 0,063 |
| D22S1045 | 15     | 7496 | 8155 | 8560   | 7370 | 2947 | 8546  | 6624 | 8054  | 8551 | 8644 | -0,134 | 0,898 |
| D2231045 | 17     | 6769 | 8033 | 8394   | 6921 | 2782 | 8339  | 5863 | 7815  | 8262 | 8531 | -0,122 | 0,907 |
| D4.66530 | 11     | 9541 | 9506 | 9492   | 9587 | 5840 | 9432  | 9445 | 9520  | 9536 | 9437 | 1,422  | 0,205 |
| D16S539  | 14     | 9436 | 9450 | 9470   | 9348 | 5039 | 9385  | 9348 | 9427  | 9488 | 9541 | -0,506 | 0,631 |
| D400E4   | 13     | 9343 | 9450 | 9219   | 7935 | 4056 | 9541  | 8213 | 8937  | 9396 | 9092 | 0,178  | 0,865 |
| D18S51   | 14     | 8888 | 8929 | 8702   | 7317 | 3616 | 9561  | 7768 | 8479  | 8964 | 8318 | 0,168  | 0,872 |
| DACACEC  | 15     | 9561 | 9497 | 9472   | 9529 | 8271 | 9184  | 9393 | 9484  | 9407 | 9343 | 3,085  | 0,022 |
| D1S1656  |        |      |      |        |      |      |       |      |       |      |      |        | -     |
| D10S1248 | 13     | 8048 | 9047 | 9619   | 8261 | 3532 | 9665  | 9385 | 8212  | 9500 | 9311 | -0,762 | 0,475 |
| D1031248 | 15     | 7366 | 8815 | 8876   | 7532 | 3145 | 9322  | 8763 | 7547  | 8898 | 8628 | -0,612 | 0,563 |
| D2C444   | 10     | 7067 | 8143 | 8681   | 7856 | 3273 | 9306  | 8542 | 8089  | 9141 | 9082 | -1,858 | 0,113 |
| D2S441   | 14     | 5111 | 5448 | 5881   | 5051 | 2027 | 7088  | 4853 | 5295  | 6308 | 6585 | -0,857 | 0,425 |
| T1104    | 9      | 7538 | 6402 | 7212   | 5356 | 2626 | 8063  | 6881 | 7299  | 7781 | 7095 | -1,218 | 0,269 |
| TH01     | 9.3    | 7875 | 6787 | 7404   | 5725 | 2925 | 8332  | 7401 | 7684  | 8089 | 7564 | -1,512 | 0,181 |
|          | 16     | 8388 | 8528 | 8451   | 8586 | 5660 | 8467  | 8538 | 8319  | 8420 | 8447 | 0,915  | 0,395 |
| vWA      | 18     | 8562 | 8694 | 8541   | 8707 | 5249 | 8651  | 8562 | 8600  | 8555 | 8660 | 0,641  | 0,545 |
|          | 30     | 7978 | 6274 | 5432   | 4892 | 2802 | 7896  | 6924 | 5999  | 7122 | 4916 | -0,114 | 0,913 |
| D21S11   | 33.2   | 7089 | 5239 | 4564   | 4069 | 2383 | 6865  | 5478 | 4645  | 5803 | 4029 | 0,325  | 0,756 |
|          | 17     | 8627 | 8607 | 8608   | 8689 | 4874 | 8573  | 8419 | 8592  | 8354 | 8456 | 3,299  | 0,016 |
| D12S391  | 20     | 8684 | 8721 | 8646   | 8244 | 4432 | 8639  | 8588 | 8569  | 8649 | 8648 | -0,352 | 0,737 |
|          | 14     | 1802 | 1177 | 727    | 788  | 901  | 1864  | 1391 | 1607  | 1716 | 847  | -0,850 | 0,428 |
| D8S1179  | 15     | 1684 | 1108 | 671    | 718  | 826  | 1766  | 1327 | 1479  | 1524 | 795  | -0,819 | 0,444 |
|          | 22     | 2350 | 1791 | 1326   | 1227 | 1000 | 2579  | 1768 | 1934  | 2210 | 1302 | -0,407 | 0,698 |
| FGA      | 26     | 2389 | 1637 | 1242   | 1294 | 929  | 2032  | 1704 | 1798  | 1644 | 1084 | 0,268  | 0,798 |
|          | 20     | 2303 | 1037 | 1444   | 1234 | 323  | 2032  | 1/04 | 1730  | 1044 | 1004 | 0,200  | 0,730 |

# Tableau des hauteurs de pics des échantillons amplifiés à 28 cycles par la PCR

|                     |        |          | 28 cycles |          |          |           |          |          |          |          |          |        |       |
|---------------------|--------|----------|-----------|----------|----------|-----------|----------|----------|----------|----------|----------|--------|-------|
|                     |        |          | 3         | lavage   | es       |           |          | 4        | lavage   | es       |          |        |       |
| Marqueur            | Allèle | éch<br>6 | éch<br>7  | éch<br>8 | éch<br>9 | éch<br>10 | éch<br>F | éch<br>G | éch<br>H | éch<br>I | éch<br>J | t      | p     |
|                     | Х      | 3021     | 2249      | 2342     | 2107     | 2009      | 1972     | 1997     | 1956     | 1620     | 1960     | 2,550  | 0,043 |
| AMEL                | Υ      | 3103     | 2351      | 2594     | 2278     | 2241      | 2202     | 2193     | 2124     | 1748     | 2167     | 2,350  | 0,057 |
| D3S1358             | 15     | 8747     | 8787      | 8824     | 8831     | 8832      | 6123     | 8692     | 8620     | 8142     | 8668     | 2,202  | 0,070 |
| D231220             |        |          |           |          |          |           |          |          |          |          |          |        |       |
| D19S433             | 13     | 8646     | 8630      | 8468     | 8632     | 8623      | 3254     | 8284     | 7786     | 8550     | 8706     | 1,249  | 0,258 |
| D133433             | 14.2   | 8491     | 8523      | 8377     | 8562     | 8553      | 3282     | 8046     | 7498     | 8470     | 8652     | 1,297  | 0,258 |
| D2S1338             | 17     | 6542     | 5153      | 5010     | 5235     | 5686      | 2379     | 5105     | 4485     | 5306     | 6293     | -0,065 | 0,242 |
| DZ31336             | 19     | 6088     | 4641      | 4463     | 4820     | 5276      | 2211     | 4612     | 4320     | 4950     | 5642     | -0,243 | 0,950 |
| D22C104E            | 15     | 8556     | 7869      | 7888     | 7303     | 8305      | 3505     | 7919     | 6425     | 8549     | 8592     | -0,055 | 0,816 |
| D22S1045            | 17     | 8482     | 7294      | 7714     | 6892     | 8136      | 3068     | 7397     | 6095     | 8527     | 8450     | -0,172 | 0,958 |
| D1CCE20             | 11     | 9403     | 9515      | 9584     | 9594     | 9615      | 4184     | 9090     | 8428     | 8132     | 9573     | 2,369  | 0,869 |
| D16S539             | 14     | 9546     | 9499      | 9514     | 9550     | 9537      | 4150     | 8745     | 8245     | 7952     | 9311     | 3,223  | 0,056 |
| D100F1              | 13     | 9547     | 9458      | 8963     | 8552     | 8212      | 3243     | 7214     | 6204     | 5423     | 6947     | 4,852  | 0,018 |
| D18S51              | 14     | 9633     | 8845      | 8492     | 8301     | 7830      | 2864     | 6590     | 5845     | 5071     | 6437     | 5,889  | 0,003 |
| D1S1656             | 15     | 9376     | 9598      | 9605     | 9628     | 9688      | 7128     | 9631     | 9622     | 9670     | 9587     | 0,085  | 0,001 |
| D131030             |        |          |           |          |          |           |          |          |          |          |          |        |       |
| D10S1248            | 13     | 9481     | 8596      | 7247     | 7863     | 7783      | 2058     | 6517     | 5460     | 7417     | 8147     | 1,535  | 0,935 |
| D1031246            | 15     | 9090     | 8153      | 6595     | 7056     | 7086      | 1813     | 6029     | 5064     | 6893     | 7826     | 1,137  | 0,176 |
| D2S441              | 10     | 8948     | 8604      | 7386     | 7778     | 7879      | 2741     | 6804     | 5869     | 7917     | 8152     | 1,239  | 0,299 |
| DZ3 <del>44</del> 1 | 14     | 6917     | 5947      | 5626     | 5163     | 5942      | 2878     | 5047     | 4570     | 5862     | 6050     | 0,730  | 0,262 |
| TH01                | 9      | 7614     | 5690      | 5520     | 5807     | 5437      | 1626     | 4950     | 4109     | 3910     | 5102     | 3,543  | 0,493 |
| 11101               | 9.3    | 7911     | 6052      | 5816     | 6073     | 5832      | 1861     | 5033     | 4377     | 4311     | 5271     | 4,811  | 0,012 |
| vWA                 | 16     | 8526     | 8537      | 8578     | 8584     | 8642      | 3674     | 8648     | 7761     | 8649     | 8619     | 0,753  | 0,003 |
| VVVA                | 18     | 9094     | 8623      | 8646     | 8690     | 8707      | 3610     | 8679     | 7925     | 8694     | 8714     | 0,844  | 0,480 |
| D21S11              | 30     | 8691     | 7831      | 5809     | 6492     | 4500      | 1957     | 3775     | 3265     | 1760     | 2910     | 3,962  | 0,431 |
| DZ1311              | 33.2   | 8105     | 7388      | 5096     | 5715     | 4028      | 1808     | 3373     | 3027     | 1626     | 2554     | 3,647  | 0,007 |
| D12C2O1             | 17     | 8549     | 8498      | 8702     | 8575     | 8625      | 4317     | 7865     | 6839     | 5966     | 7542     | 3,657  | 0,011 |
| D12S391             | 20     | 8737     | 8658      | 8655     | 8740     | 8466      | 4168     | 7616     | 6414     | 5638     | 7025     | 4,578  | 0,011 |
| D0C1170             | 14     | 3547     | 2264      | 1766     | 1862     | 913       | 1488     | 661      | 743      | 167      | 327      | 3,894  | 0,004 |
| D8S1179             | 15     | 3317     | 2103      | 1646     | 1763     | 874       | 1440     | 637      | 676      | 160      | 298      | 3,993  | 0,008 |
| rc^                 | 22     | 4420     | 3006      | 2450     | 2362     | 1478      | 1804     | 1239     | 1322     | 453      | 746      | 3,668  | 0,007 |
| FGA                 | 26     | 4163     | 3026      | 2437     | 2407     | 1576      | 1810     | 1298     | 1268     | 496      | 779      | 3,933  | 0,010 |

### Tableau des hauteurs de pics des échantillons amplifiés à 27 cycles par la PCR

|           |        |      |      |         |      | 27 ( | ycles |      |        |      |      | ]      |       |
|-----------|--------|------|------|---------|------|------|-------|------|--------|------|------|--------|-------|
|           |        |      | 3    | 3 lavag | es   |      | Ĭ     | 4    | lavage | es   |      | 1      |       |
| Marqueur  | Allèle | éch  | éch  | éch     | éch  | éch  | éch   | éch  | éch    | éch  | éch  | t      | n     |
|           |        | 11   | 12   | 13      | 14   | 15   | K     | L    | M      | N    | О    | ı      | p     |
| AMEL      | Χ      | 1881 | 3634 | 1755    | 1997 | 2709 | 2449  | 3738 | 594    | 2437 | 1988 | -0,228 | 0,827 |
| AIVILL    | Υ      | 2025 | 3690 | 1907    | 2163 | 2931 | 2604  | 3707 | 666    | 2663 | 2234 | -0,252 | 0,809 |
| D3S1358   | 15     | 5626 | 8798 | 7729    | 8706 | 8816 | 8545  | 8642 | 3658   | 8707 | 8705 | -0,519 | 0,622 |
|           |        |      |      |         |      |      |       |      |        |      |      |        |       |
| D19S433   | 13     | 6575 | 8086 | 5438    | 7850 | 8301 | 7282  | 7021 | 3876   | 6967 | 8092 | 0,109  | 0,916 |
| D 130 100 | 14.2   | 6284 | 7794 | 4964    | 7428 | 8018 | 7045  | 6202 | 3672   | 6556 | 7914 | 0,153  | 0,884 |
| D2S1338   | 17     | 3966 | 5411 | 3396    | 4702 | 5688 | 4401  | 4756 | 1871   | 4581 | 5708 | -0,106 | 0,919 |
| D231330   | 19     | 3743 | 4968 | 3242    | 4278 | 5620 | 4147  | 4524 | 1752   | 4548 | 5287 | -0,177 | 0,865 |
| D22S1045  | 15     | 8172 | 8148 | 5037    | 6613 | 8121 | 7276  | 7278 | 2388   | 6256 | 7939 | -0,254 | 0,808 |
| D2231043  | 17     | 7905 | 7985 | 4488    | 6183 | 7867 | 6681  | 6764 | 2193   | 5903 | 7792 | -0,169 | 0,871 |
| D16S539   | 11     | 5831 | 9532 | 6323    | 8964 | 9571 | 8061  | 8049 | 3490   | 8263 | 8646 | 0,438  | 0,677 |
| D103233   | 14     | 6012 | 9414 | 6141    | 8523 | 9356 | 7938  | 8029 | 3191   | 8099 | 8304 | 0,345  | 0,742 |
| D18S51    | 13     | 3643 | 8028 | 4322    | 7258 | 7983 | 6312  | 6188 | 2151   | 6389 | 6060 | 0,751  | 0,481 |
| D10221    | 14     | 3398 | 7444 | 3977    | 6753 | 7422 | 5707  | 5693 | 2021   | 5820 | 5599 | 0,842  | 0,432 |
| D1S1656   | 15     | 7722 | 9635 | 8794    | 9605 | 9639 | 9696  | 9546 | 6391   | 9572 | 9534 | -0,798 | 0,455 |
| D131030   |        |      |      |         |      |      |       |      |        |      |      |        |       |
| D10S1248  | 13     | 4317 | 5912 | 3570    | 5598 | 6193 | 5100  | 4381 | 3061   | 4510 | 5834 | 0,531  | 0,614 |
| D1031248  | 15     | 4074 | 5673 | 3334    | 5250 | 5648 | 4791  | 4259 | 2803   | 4193 | 5516 | 0,451  | 0,668 |
| D2S441    | 10     | 5243 | 6913 | 3913    | 6077 | 7161 | 5664  | 5487 | 2427   | 5350 | 6422 | 0,368  | 0,726 |
| D23441    | 14     | 4917 | 6356 | 3284    | 4503 | 5486 | 4529  | 5227 | 1741   | 4366 | 4951 | 0,202  | 0,847 |
| TH01      | 9      | 2509 | 4679 | 3563    | 5832 | 4935 | 4034  | 3710 | 2220   | 5122 | 4303 | 0,827  | 0,440 |
| 11101     | 9.3    | 2566 | 5015 | 3780    | 6159 | 5313 | 4191  | 4040 | 2309   | 5354 | 4466 | 0,966  | 0,371 |
|           | 16     | 8440 | 8444 | 6936    | 8715 | 8274 | 8314  | 7218 | 4998   | 7902 | 7564 | 0,745  | 0,484 |
| vWA       | 18     | 8589 | 8647 | 7093    | 8702 | 8226 | 8302  | 7362 | 4938   | 7945 | 7690 | 0,809  | 0,449 |
| D24C44    | 30     | 1112 | 4901 | 2896    | 6263 | 4646 | 3719  | 3621 | 1281   | 5706 | 3367 | 0,654  | 0,538 |
| D21S11    | 33.2   | 1079 | 4732 | 2657    | 5571 | 4244 | 3509  | 3350 | 1117   | 4976 | 3144 | 0,750  | 0,481 |
| D420204   | 17     | 3814 | 8722 | 6011    | 8725 | 8648 | 7568  | 7127 | 3992   | 8769 | 7646 | 0,329  | 0,754 |
| D12S391   | 20     | 3811 | 8440 | 5733    | 8784 | 8242 | 7392  | 6769 | 3836   | 8646 | 7275 | 0,347  | 0,740 |
| D001170   | 14     | 135  | 2122 | 599     | 2106 | 1901 | 887   | 1796 | 123    | 2946 | 839  | 0,106  | 0,919 |
| D8S1179   | 15     | 137  | 2058 | 588     | 1940 | 1753 | 833   | 1708 | 114    | 2750 | 800  | 0,109  | 0,917 |
| 504       | 22     | 348  | 3043 | 1110    | 2756 | 2480 | 1604  | 2481 | 252    | 3474 | 1487 | 0,136  | 0,896 |
| FGA       | 26     | 361  | 2996 | 1140    | 2802 | 2531 | 1658  | 2648 | 231    | 3688 | 1488 | -0,005 | 0,996 |

|                 |        |           |           |           |           | 26 c      | vcles    |          |          |          |          | ]     |       |
|-----------------|--------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|-------|-------|
|                 |        |           | 3         | lavage    | es        | •         |          | 4        | lavage   | es       |          |       |       |
| Marqueur        | Allèle | éch<br>16 | éch<br>17 | éch<br>18 | éch<br>19 | éch<br>20 | éch<br>Q | éch<br>P | éch<br>R | éch<br>S | éch<br>T | t     | p     |
| AMEL            | Χ      | 4698      | 5265      | 4187      | 4188      | 779       | 1506     | 4945     | 3045     | 2623     | 2578     | 2,092 | 0,081 |
| ANIEL           | Υ      | 4847      | 5150      | 4250      | 4281      | 785       | 1516     | 4867     | 3097     | 2593     | 2550     | 2,307 | 0,061 |
| D3S1358         | 15     | 8506      | 8711      | 8266      | 8099      | 1606      | 2847     | 8701     | 6420     | 6371     | 5024     | 2,281 | 0,063 |
| <b>D</b> 351330 |        |           |           |           |           |           |          |          |          |          |          |       |       |
| D19S433         | 13     | 6877      | 7198      | 6364      | 7050      | 1180      | 2421     | 7468     | 4926     | 4403     | 3911     | 2,088 | 0,082 |
| <b>D1</b> 70400 | 14.2   | 6507      | 6908      | 5802      | 6802      | 1120      | 2229     | 7177     | 4597     | 4159     | 3653     | 1,954 | 0,098 |
| D2S1338         | 17     | 5028      | 5531      | 4763      | 5500      | 979       | 1819     | 5085     | 3419     | 2859     | 2716     | 2,933 | 0,026 |
| D201330         | 19     | 4894      | 5089      | 4659      | 5296      | 936       | 1781     | 4731     | 3172     | 2714     | 2494     | 3,266 | 0,017 |
| D22S1045        | 15     | 7183      | 7541      | 6877      | 7829      | 1340      | 2665     | 7344     | 5079     | 4432     | 3681     | 2,722 | 0,035 |
| D2201043        | 17     | 7066      | 7213      | 6528      | 7628      | 1256      | 2501     | 6963     | 4718     | 4247     | 3494     | 2,888 | 0,028 |
| D16S539         | 11     | 7130      | 7900      | 6478      | 6752      | 1209      | 2260     | 7725     | 4836     | 4297     | 3793     | 2,039 | 0,088 |
| D103337         | 14     | 7234      | 7825      | 6442      | 6977      | 1200      | 2226     | 7661     | 4855     | 4255     | 3778     | 2,164 | 0,074 |
| D18S51          | 13     | 5972      | 6831      | 5273      | 5083      | 917       | 1639     | 6829     | 3846     | 3931     | 3041     | 1,498 | 0,185 |
| D10331          | 14     | 5531      | 6361      | 4869      | 4865      | 868       | 1570     | 6196     | 3551     | 3638     | 2861     | 1,653 | 0,149 |
| D1S1656         | 15     | 9627      | 9616      | 9597      | 9606      | 1890      | 3409     | 9555     | 7530     | 7091     | 5788     | 2,715 | 0,035 |
| D151050         |        |           |           |           |           |           |          |          |          |          |          |       |       |
| D10S1248        | 13     | 5130      | 5666      | 4763      | 5326      | 877       | 1806     | 5989     | 3658     | 3305     | 2823     | 1,755 | 0,130 |
| D10012-10       | 15     | 4919      | 5047      | 4459      | 5114      | 820       | 1723     | 5398     | 3532     | 3106     | 2611     | 1,953 | 0,099 |
| D2S441          | 10     | 5998      | 6341      | 5646      | 6607      | 1055      | 2055     | 6375     | 4098     | 3798     | 3037     | 2,435 | 0,051 |
| D20111          | 14     | 6017      | 6369      | 5624      | 6485      | 1046      | 2058     | 6240     | 4031     | 3310     | 2923     | 2,608 | 0,040 |
| TH01            | 9      | 3218      | 3728      | 3077      | 3315      | 542       | 930      | 3381     | 2127     | 2205     | 1493     | 2,473 | 0,048 |
| 11101           | 9.3    | 3299      | 3733      | 3218      | 3234      | 567       | 948      | 3459     | 2137     | 2209     | 1617     | 2,481 | 0,048 |
| vWA             | 16     | 5868      | 6421      | 5096      | 5678      | 876       | 2380     | 7133     | 4277     | 3969     | 3267     | 1,236 | 0,263 |
| VVVA            | 18     | 5833      | 6404      | 5135      | 5729      | 912       | 2411     | 7164     | 4369     | 3954     | 3228     | 1,219 | 0,269 |
| D21S11          | 30     | 3527      | 4730      | 2977      | 2560      | 452       | 768      | 4193     | 2036     | 2020     | 1489     | 1,330 | 0,232 |
| D21511          | 33.2   | 3563      | 4768      | 3019      | 2545      | 474       | 745      | 4081     | 2036     | 2005     | 1441     | 1,440 | 0,200 |
| D12S391         | 17     | 6497      | 7658      | 5697      | 5583      | 952       | 1664     | 7185     | 3796     | 3920     | 2671     | 1,814 | 0,120 |
| D128391         | 20     | 6359      | 7495      | 5504      | 5407      | 926       | 1593     | 6822     | 3574     | 3780     | 2604     | 1,932 | 0,101 |
| D0C1170         | 14     | 2264      | 3242      | 1745      | 1136      | 261       | 276      | 1832     | 860      | 907      | 646      | 2,000 | 0,092 |
| D8S1179         | 15     | 2133      | 3245      | 1668      | 1062      | 247       | 266      | 1706     | 826      | 838      | 595      | 1,983 | 0,095 |
| ECA             | 22     | 3807      | 5027      | 3137      | 2510      | 513       | 690      | 3649     | 1927     | 1648     | 1455     | 1,969 | 0,096 |
| FGA             | 26     | 3877      | 5178      | 3345      | 2512      | 522       | 678      | 3697     | 1970     | 1759     | 1454     | 2,004 | 0,092 |

### Tableau des hauteurs de pics des échantillons amplifiés à 25 cycles par la PCR

|           |        |           | 25 cycles |           |           |           |          |          |          |          |          |       |       |
|-----------|--------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|----------|-------|-------|
|           |        |           | 3         | lavage    | es        |           |          | 4        | lavage   | es       |          | 1     |       |
| Marqueur  | Allèle | éch<br>21 | éch<br>22 | éch<br>23 | éch<br>24 | éch<br>25 | éch<br>U | éch<br>V | éch<br>W | éch<br>X | éch<br>Y | t     | p     |
| A N 451   | Х      | 2359      | 810       | 1147      | 2842      | 2017      | 825      | 1807     | 2107     | 1355     | 2098     | 0,626 | 0,554 |
| AMEL      | Υ      | 2451      | 793       | 1224      | 2815      | 2088      | 864      | 1839     | 2070     | 1405     | 2151     | 0,733 | 0,491 |
| D3S1358   | 15     | 5334      | 1624      | 2104      | 5808      | 3779      | 1157     | 3669     | 4112     | 2510     | 3380     | 0,928 | 0,389 |
|           |        |           |           |           |           |           |          |          |          |          |          |       |       |
| D19S433   | 13     | 2910      | 979       | 1735      | 3659      | 2933      | 1511     | 2292     | 2521     | 1773     | 3181     | 0,744 | 0,485 |
| D 150 100 | 14.2   | 2826      | 941       | 1716      | 3488      | 2867      | 1497     | 2167     | 2489     | 1783     | 3143     | 0,703 | 0,508 |
| D2S1338   | 17     | 2339      | 811       | 1705      | 3290      | 2692      | 1093     | 1811     | 1960     | 1523     | 2510     | 1,421 | 0,205 |
| D231330   | 19     | 2118      | 737       | 1581      | 3073      | 2602      | 1017     | 1775     | 1858     | 1463     | 2386     | 1,267 | 0,252 |
| D22S1045  | 15     | 3186      | 1088      | 2164      | 3943      | 3379      | 1889     | 2506     | 2589     | 1911     | 3622     | 0,994 | 0,358 |
| D2231043  | 17     | 2974      | 996       | 2113      | 3905      | 3144      | 1770     | 2334     | 2446     | 1775     | 3458     | 1,045 | 0,336 |
| D16S539   | 11     | 3072      | 1001      | 1712      | 3908      | 2879      | 1080     | 2391     | 2665     | 1749     | 2727     | 1,010 | 0,352 |
| D103333   | 14     | 3077      | 1024      | 1780      | 3970      | 3033      | 1103     | 2476     | 2671     | 1769     | 2651     | 1,152 | 0,293 |
| D10CE1    | 13     | 2655      | 868       | 1186      | 3074      | 2058      | 732      | 2014     | 2301     | 1435     | 1948     | 0,712 | 0,503 |
| D18S51    | 14     | 2515      | 817       | 1124      | 2952      | 1924      | 698      | 1884     | 2099     | 1316     | 1827     | 0,809 | 0,449 |
| D1S1656   | 15     | 5720      | 1822      | 2637      | 6908      | 4554      | 1460     | 4200     | 4440     | 2823     | 3975     | 1,120 | 0,306 |
| D131030   |        |           |           |           |           |           |          |          |          |          |          |       |       |
| D10S1248  | 13     | 2215      | 781       | 1408      | 2843      | 2197      | 1262     | 1801     | 1978     | 1382     | 2465     | 0,701 | 0,509 |
| D1031246  | 15     | 2074      | 746       | 1304      | 2678      | 2003      | 1155     | 1623     | 1884     | 1346     | 2303     | 0,650 | 0,540 |
| D2S441    | 10     | 2515      | 866       | 1696      | 3480      | 2613      | 1346     | 2064     | 2190     | 1593     | 2968     | 0,804 | 0,452 |
| D23441    | 14     | 2464      | 907       | 1785      | 3446      | 2543      | 1373     | 2030     | 2115     | 1610     | 2893     | 0,917 | 0,394 |
| TH01      | 9      | 1530      | 440       | 1046      | 2230      | 1284      | 436      | 1054     | 1439     | 1075     | 1163     | 1,255 | 0,256 |
| 11101     | 9.3    | 1571      | 455       | 1068      | 2310      | 1342      | 431      | 1123     | 1506     | 1099     | 1160     | 1,861 | 0,261 |
| vWA       | 16     | 2697      | 755       | 1850      | 3492      | 2191      | 1705     | 2067     | 2812     | 1938     | 2582     | 0,503 | 0,633 |
| VVVA      | 18     | 2699      | 761       | 1892      | 3606      | 2236      | 1715     | 2103     | 2852     | 1991     | 2585     | 0,533 | 0,613 |
| D21S11    | 30     | 2236      | 617       | 728       | 2568      | 1038      | 278      | 1296     | 1864     | 969      | 838      | 0,796 | 0,456 |
| DZ1311    | 33.2   | 2095      | 613       | 719       | 2644      | 1017      | 280      | 1241     | 1851     | 945      | 834      | 0,792 | 0,458 |
| D12S391   | 17     | 3427      | 996       | 1688      | 4770      | 2228      | 734      | 2209     | 3055     | 1872     | 1894     | 1,043 | 0,337 |
| D123331   | 20     | 3377      | 970       | 1634      | 4597      | 2137      | 706      | 2139     | 2971     | 1777     | 1830     | 1,053 | 0,333 |
| D0C1170   | 14     | 2490      | 534       | 404       | 2269      | 713       | 54       | 1012     | 1328     | 619      | 379      | 1,111 | 0,309 |
| D8S1179   | 15     | 2313      | 511       | 395       | 2189      | 686       | 63       | 1025     | 1243     | 633      | 368      | 1,081 | 0,321 |
| FCA.      | 22     | 2768      | 739       | 763       | 2911      | 1216      | 210      | 1393     | 2032     | 1049     | 884      | 0,959 | 0,374 |
| FGA       | 26     | 2756      | 734       | 769       | 3157      | 1286      | 229      | 1478     | 2041     | 1062     | 915      | 0,988 | 0,361 |

# Tableau des hauteurs de pics des échantillons amplifiés à 24 cycles par la PCR

|          |        |      |      |        |      | 24 cy | cles |           |           |           |           |       |       |
|----------|--------|------|------|--------|------|-------|------|-----------|-----------|-----------|-----------|-------|-------|
|          |        |      | 3    | lavage | es   |       |      | 4         | lavage    | S         |           |       |       |
| Marqueur | Allèle | éch  | éch  | éch    | éch  | éch   | éch  | éch       | éch       | éch       | éch       | t     | p     |
|          |        | 26   | 27   | 28     | 29   | 30    | Z    | <b>A1</b> | <b>B2</b> | <b>C3</b> | <b>D4</b> |       | •     |
| AMEL     | Χ      | 1222 | 1329 | 1048   | 1107 | 458   | 204  | 1671      | 1957      | 152       |           | 0,376 | 0,720 |
|          | Υ      | 1254 | 1305 | 1084   | 1155 | 468   | 225  | 1665      | 1948      | 168       |           | 0,420 | 0,689 |
| D3S1358  | 15     | 2639 | 2903 | 2214   | 2285 | 992   | 414  | 2952      | 3526      | 254       |           | 0,839 | 0,434 |
|          |        |      |      |        |      |       |      |           |           |           |           |       |       |
| D19S433  | 13     | 1556 | 1540 | 1431   | 1575 | 526   | 329  | 1838      | 2207      | 244       |           | 0,730 | 0,493 |
|          | 14.2   | 1543 | 1535 | 1370   | 1533 | 509   | 304  | 1835      | 2133      | 235       |           | 0,736 | 0,489 |
| D2S1338  | 17     | 1334 | 1527 | 1396   | 1600 | 570   | 347  | 1579      | 1923      | 261       |           | 1,020 | 0,347 |
|          | 19     | 1291 | 1470 | 1323   | 1509 | 556   | 305  | 1440      | 1817      | 237       |           | 1,112 | 0,309 |
| D22S1045 | 15     | 1808 | 1848 | 1884   | 2025 | 584   | 329  | 2007      | 2446      | 265       |           | 1,112 | 0,309 |
|          | 17     | 1703 | 1796 | 1777   | 2010 | 567   | 340  | 1890      | 2268      | 243       |           | 1,209 | 0,272 |
| D16S539  | 11     | 1549 | 1642 | 1333   | 1378 | 569   | 298  | 1790      | 2100      | 207       |           | 0,756 | 0,478 |
|          | 14     | 1557 | 1621 | 1336   | 1456 | 580   | 318  | 1754      | 2146      | 207       |           | 0,775 | 0,468 |
| D18S51   | 13     | 1384 | 1394 | 1089   | 1190 | 494   | 213  | 1591      | 1876      | 143       |           | 0,672 | 0,527 |
|          | 14     | 1279 | 1309 | 1034   | 1141 | 461   | 211  | 1475      | 1762      | 139       |           | 0,690 | 0,516 |
| D1S1656  | 15     | 3217 | 3222 | 2812   | 3016 | 1081  | 517  | 3459      | 3897      | 344       |           | 1,069 | 0,326 |
|          |        |      |      |        |      |       |      |           |           |           |           |       |       |
| D10S1248 | 13     | 1338 | 1273 | 1213   | 1333 | 429   | 245  | 1603      | 1844      | 177       |           | 0,731 | 0,492 |
|          | 15     | 1262 | 1178 | 1139   | 1266 | 407   | 236  | 1493      | 1797      | 166       |           | 0,682 | 0,521 |
| D2S441   | 10     | 1509 | 1457 | 1499   | 1626 | 502   | 298  | 1769      | 2101      | 223       |           | 0,868 | 0,419 |
|          | 14     | 1535 | 1485 | 1489   | 1635 | 508   | 294  | 1768      | 2105      | 229       |           | 0,892 | 0,407 |
| TH01     | 9      | 678  | 782  | 611    | 722  | 337   | 163  | 774       | 937       | 122       |           | 0,941 | 0,383 |
|          | 9.3    | 710  | 788  | 648    | 749  | 379   | 169  | 807       | 980       | 116       |           | 0,927 | 0,390 |
| vWA      | 16     | 1375 | 1317 | 1027   | 1247 | 492   | 388  | 1504      | 1898      | 242       |           | 0,561 | 0,595 |
|          | 18     | 1363 | 1329 | 1036   | 1215 | 492   | 387  | 1497      | 1899      | 242       |           | 0,552 | 0,601 |
| D21S11   | 30     | 1174 | 1019 | 826    | 835  | 394   | 143  | 1205      | 1261      | 64        |           | 0,876 | 0,415 |
| i        | 33.2   | 1149 | 1016 | 837    | 843  | 391   | 134  | 1209      | 1276      | 63        |           | 0,857 | 0,424 |
| D12S391  | 17     | 1908 | 1779 | 1536   | 1666 | 654   | 306  | 1912      | 2095      | 168       |           | 1,162 | 0,289 |
|          | 20     | 1908 | 1797 | 1532   | 1667 | 613   | 303  | 1896      | 2063      | 165       |           | 1,209 | 0,299 |
| D8S1179  | 14     | 1165 | 1238 | 772    | 823  | 575   | 96   | 1145      | 1202      |           |           | 1,122 | 0,305 |
|          | 15     | 1145 | 1184 | 742    | 785  | 538   | 88   | 1102      | 1160      |           |           | 1,123 | 0,304 |
| FGA      | 22     | 1304 | 1251 | 923    | 996  | 473   | 110  | 1421      | 1471      | 67        |           | 0,871 | 0,417 |
|          | 26     | 1344 | 1278 | 1035   | 1037 | 491   | 123  | 1485      | 1568      | 62        |           | 0,862 | 0,422 |

Exemples de profils génétiques de la série 1 à 3 lavages et de la série 2 à 4 lavages

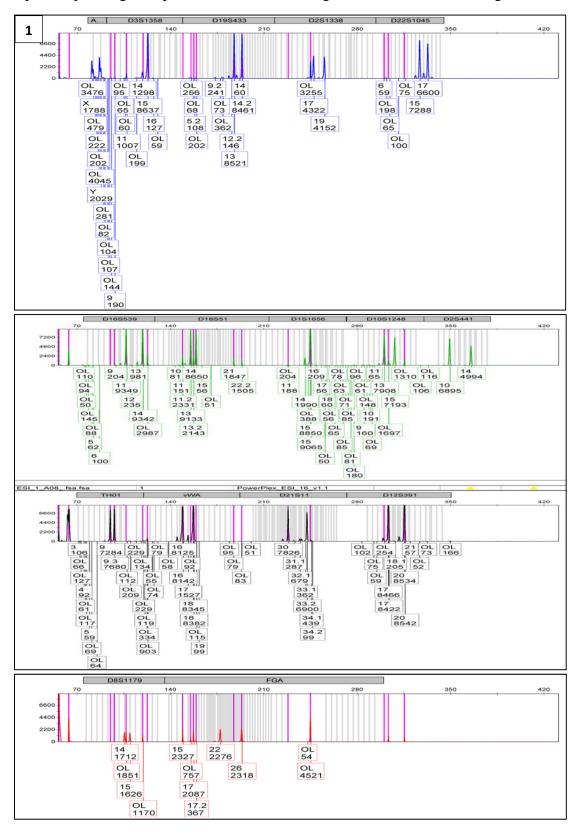



Figure 1 : Exemple de profil génétique d'un échantillon de 3lavages, 29 cycles

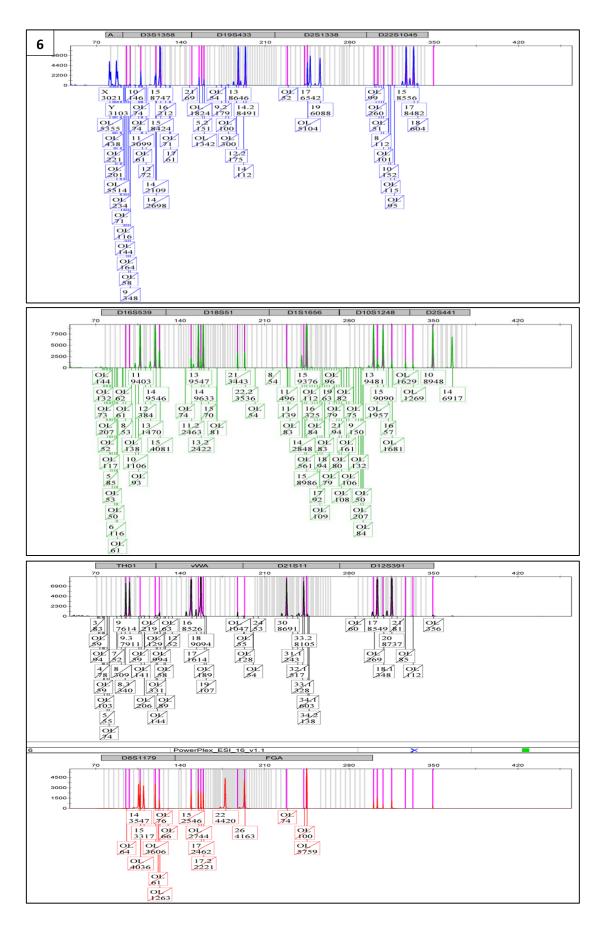



Figure 2 : Exemple de profil génétique d'un échantillon de 3lavages, 28 cycles

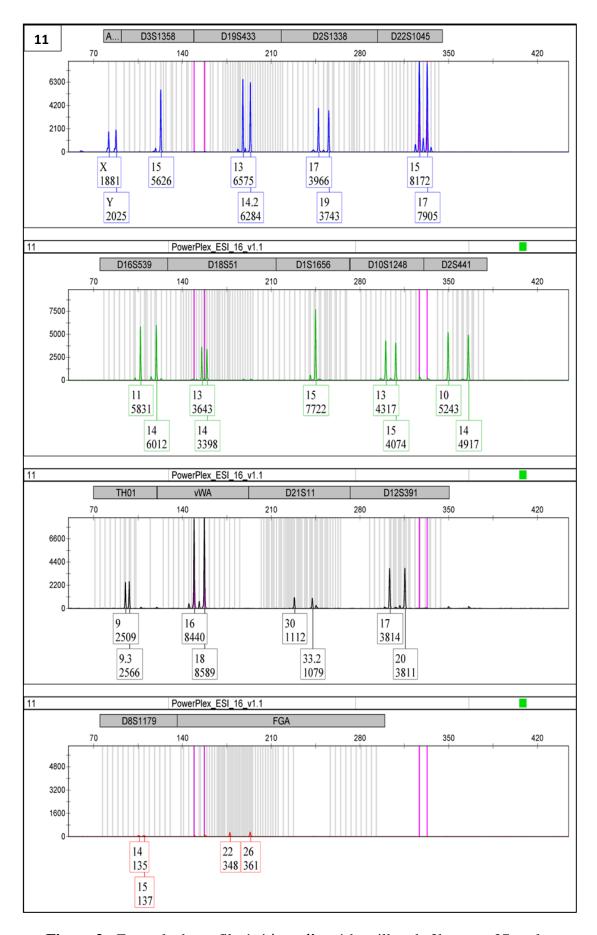



Figure 3 : Exemple de profil génétique d'un échantillon de 3lavages, 27 cycles

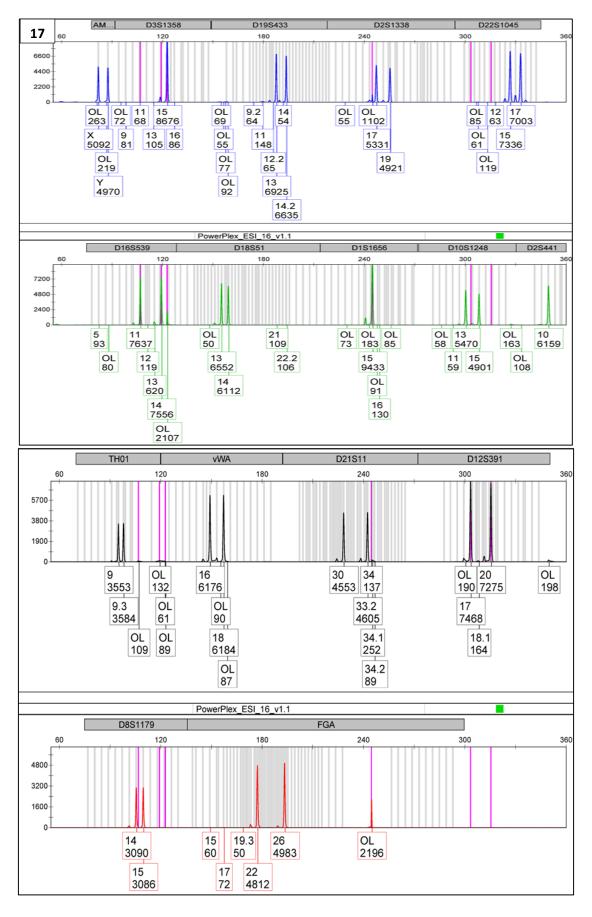



Figure 4 : Exemple de profil génétique d'un échantillon de 3 lavages, 26 cycles

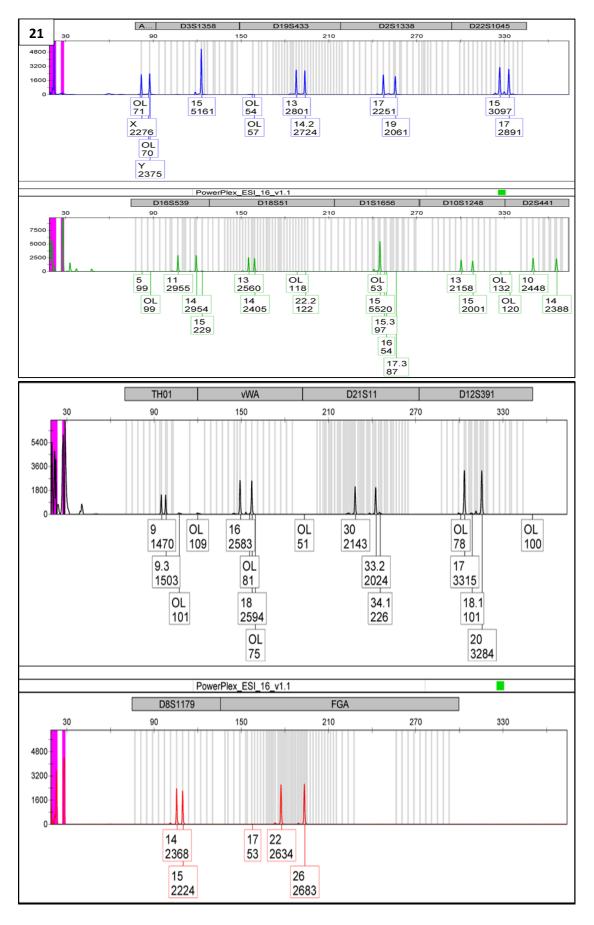



Figure 5 : Exemple de profil génétique d'un échantillon de 3 lavages, 25 cycles

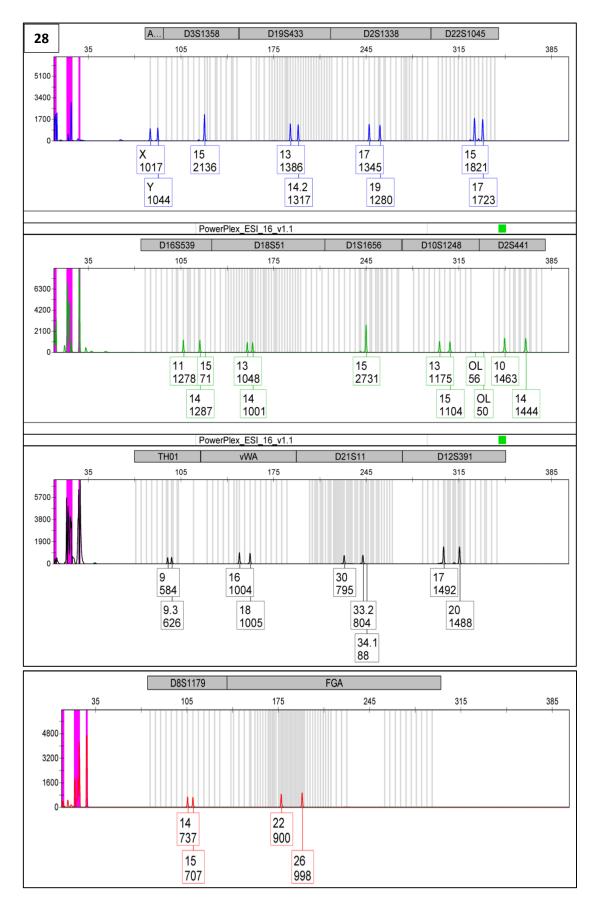



Figure 6 : Exemple de profil génétique d'un échantillon de 3 lavages, 24 cycles

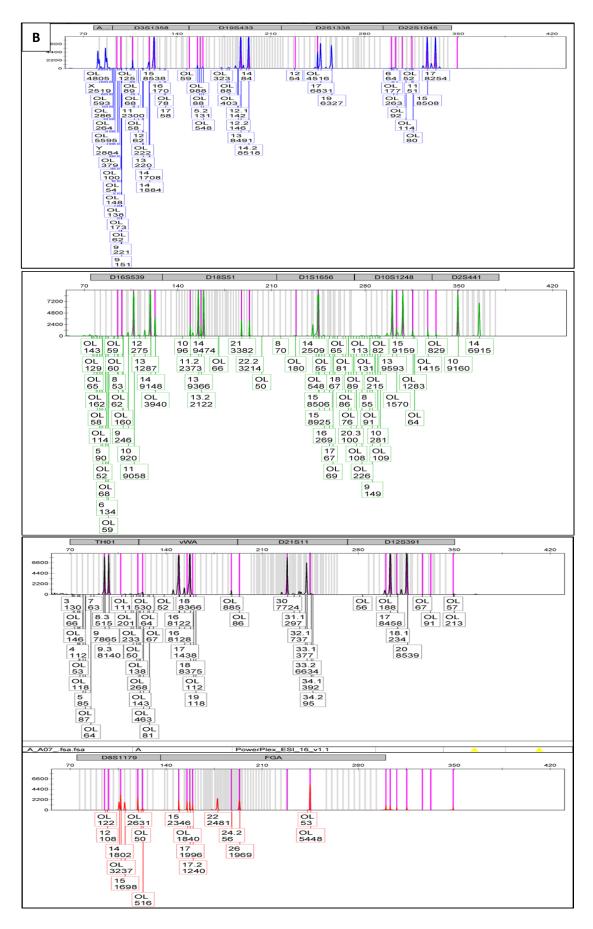



Figure 7 : Exemple de profil génétique d'un échantillon de 4 lavages, 29 cycles

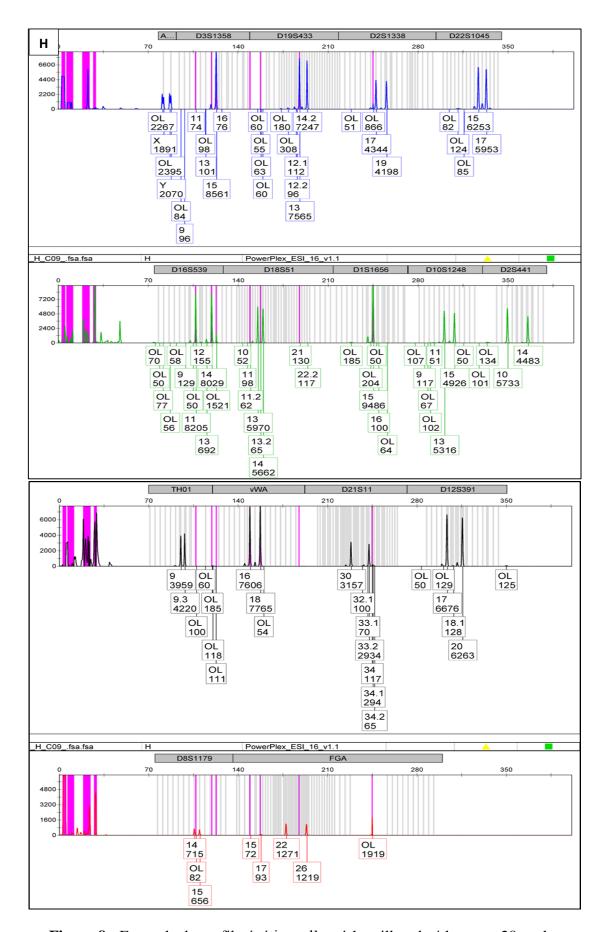



Figure 8 : Exemple de profil génétique d'un échantillon de 4 lavages, 28 cycles

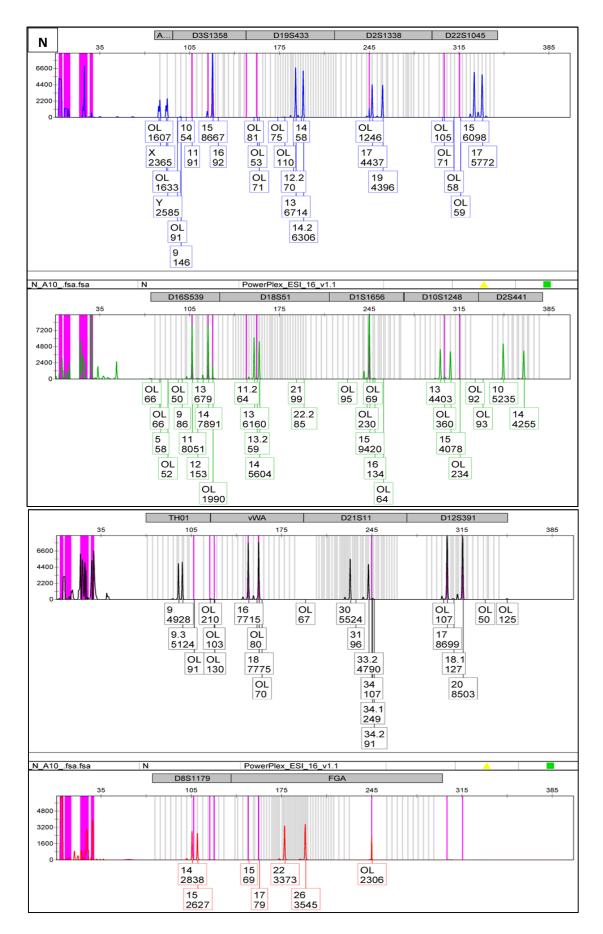



Figure 9 : Exemple de profil génétique d'un échantillon de 4 lavages, 27 cycles

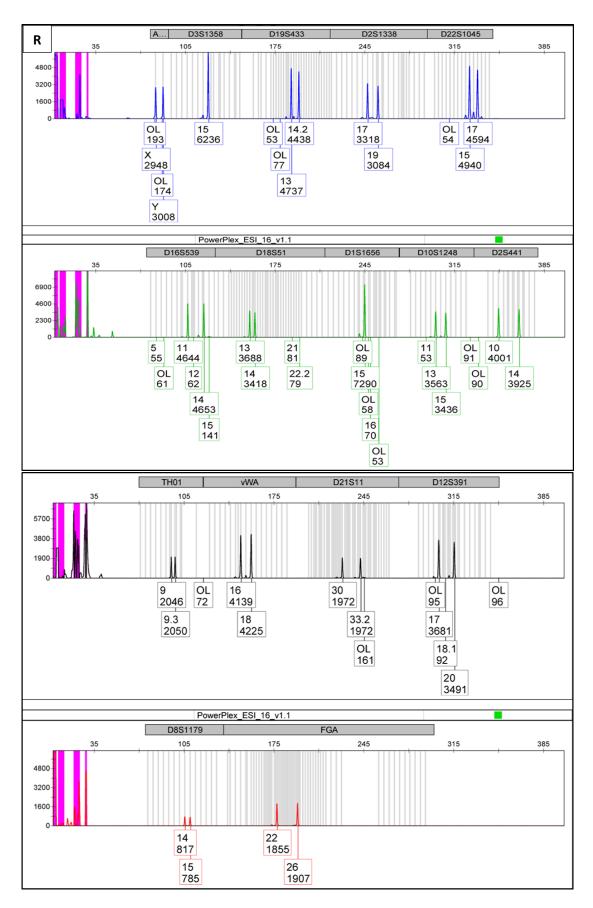



Figure 10 : Exemple de profil génétique d'un échantillon de 4 lavages, 26 cycles

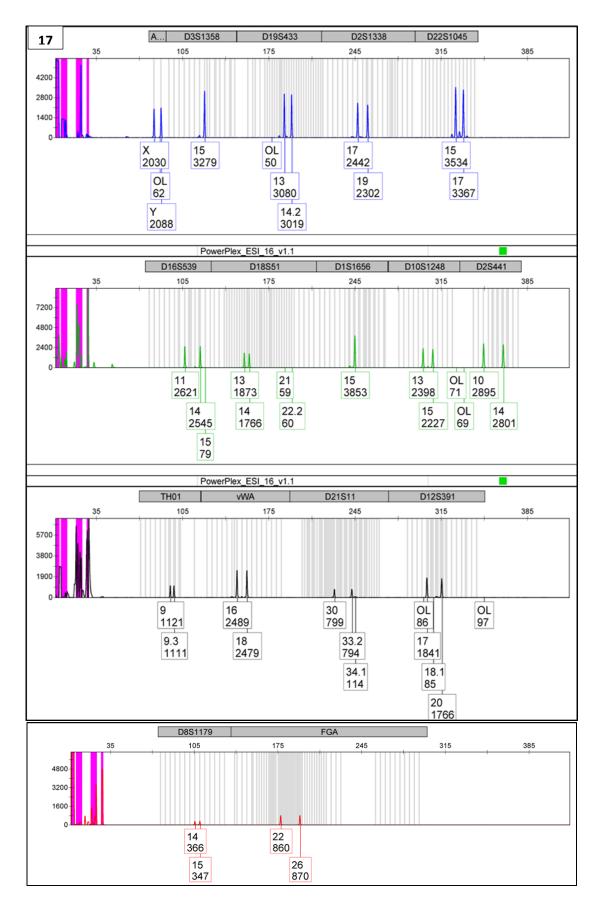



Figure 11 : Exemple de profil génétique d'un échantillon de 4 lavages, 25 cycles

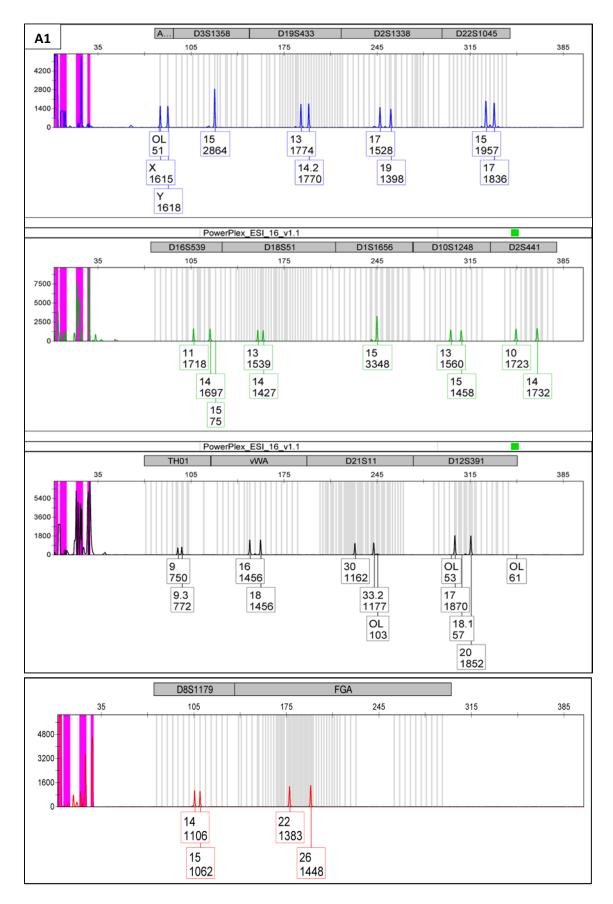
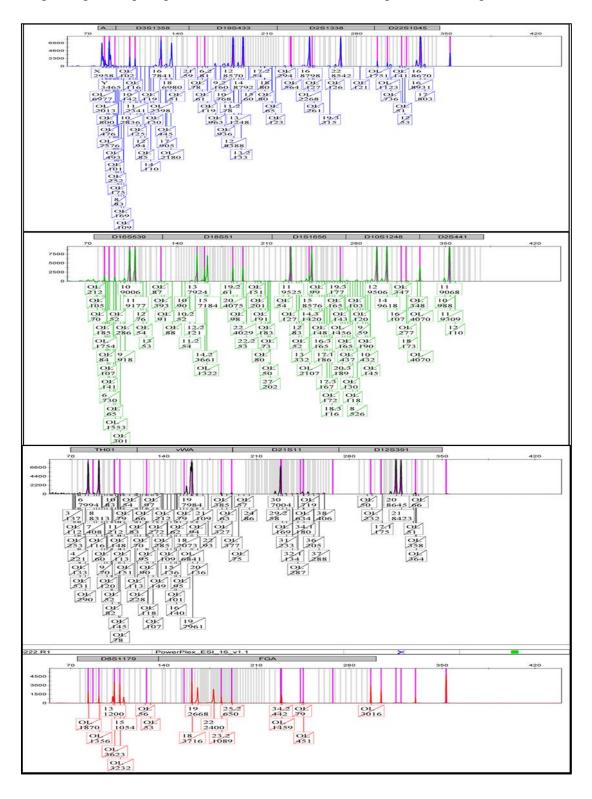
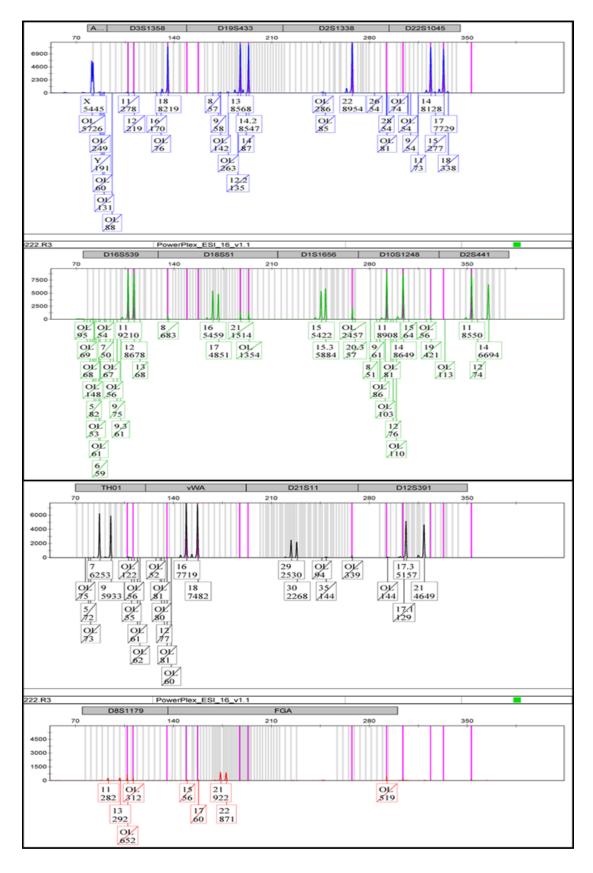


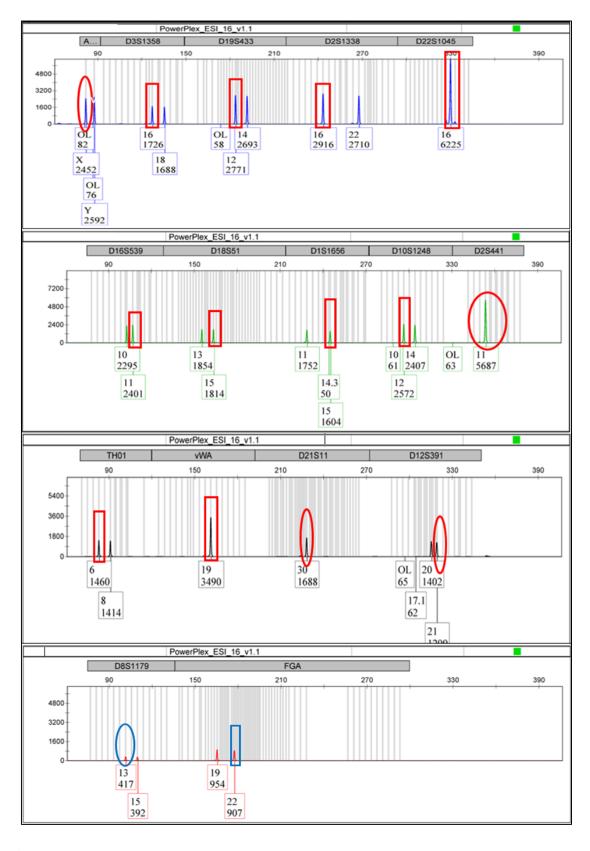

Figure 12 : Exemple de profil génétique d'un échantillon de 4 lavages, 24 cycles


Tableau des moyennes des hauteurs de pics de différents marqueurs de la série 1 (3 lavages) à différents cycles d'amplification par PCR (29, 28, 27, 26, 25, et 24 cycles)

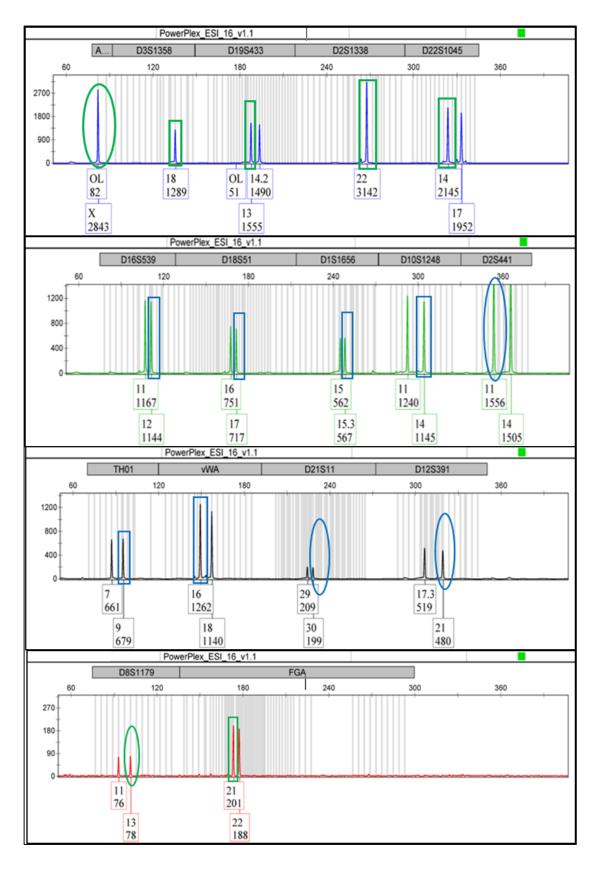
| Marqueur | 29 cycles | 28 cycles | 27 cycles | 26 cycles | 25 cycles | 24 cycles |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| AMEL X   | 1836,750  | 2176,750  | 2523,750  | 4584,500  | 2091,250  | 1176,500  |
| AMEL Y   | 2157,500  | 2366,000  | 2672,750  | 4632,000  | 2144,500  | 1199,500  |
| D3S1358  | 8761,250  | 8829,000  | 8512,250  | 8395,500  | 3897,000  | 2510,250  |
| D19S433  | 8660,625  | 8503,750  | 7234,875  | 6688,500  | 2766,750  | 1510,375  |
| D2S1338  | 4993,750  | 5035,500  | 4663,125  | 5095,000  | 2425,000  | 1431,250  |
| D22S1045 | 7712,250  | 7647,429  | 6805,250  | 7233,125  | 3101,000  | 1856,375  |
| D16S539  | 9478,750  | 9551,000  | 8478,000  | 7092,250  | 2928,875  | 1484,000  |
| D18S51   | 8722,875  | 8581,625  | 6648,375  | 5598,125  | 2186,000  | 1227,500  |
| D1S1656  | 9514,750  | 9629,750  | 9418,250  | 9611,500  | 4954,750  | 3066,750  |
| D10S1248 | 8445,500  | 7397,571  | 5147,250  | 5053,000  | 2090,250  | 1250,250  |
| D2S441   | 6654,750  | 6790,625  | 5461,625  | 6135,875  | 2567,750  | 1529,375  |
| TH01     | 6787,375  | 5778,375  | 4909,500  | 3352,750  | 1547,625  | 711,000   |
| vWA      | 8557,125  | 8625,875  | 8129,625  | 5770,500  | 2582,875  | 1238,625  |
| D21S11   | 5692,125  | 5857,375  | 4488,750  | 3461,125  | 1630,625  | 962,375   |
| D12S391  | 8603,250  | 8614,875  | 7913,125  | 6275,000  | 2982,250  | 1724,125  |
| D8S1179  | 1084,375  | 1648,875  | 1633,375  | 2061,875  | 1432,375  | 981,750   |
| FGA      | 1657,000  | 2342,750  | 2357,250  | 3674,125  | 1953,250  | 1146,000  |


Tableau des moyennes des hauteurs de pics de différents marqueurs de la série 2 (4 lavages) à différents cycles d'amplification par PCR (29, 28, 27, 26, 25, et 24 cycles)

| Marqueur | 29 cycles | 28 cycles | 27 cycles | 26 cycles | 25 cycles | 24 cycles |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| AMEL X   | 2112,250  | 1883,250  | 2653,000  | 2438,000  | 1841,750  | 996,000   |
| AMEL Y   | 2500,000  | 2058,000  | 2802,000  | 2439,000  | 1866,250  | 1001,500  |
| D3S1358  | 8752,500  | 8530,500  | 8649,750  | 5165,500  | 3417,750  | 1786,500  |
| D19S433  | 8700,000  | 8249,000  | 7134,875  | 3787,375  | 2418,625  | 1140,625  |
| D2S1338  | 6214,125  | 5089,125  | 4744,000  | 2621,750  | 1910,750  | 988,625   |
| D22S1045 | 7793,000  | 7744,250  | 6986,125  | 3852,125  | 2580,125  | 1223,500  |
| D16S539  | 9467,750  | 8684,500  | 8173,625  | 3787,500  | 2387,375  | 1102,500  |
| D18S51   | 8645,875  | 6216,375  | 5971,000  | 3009,625  | 1853,000  | 926,250   |
| D1S1656  | 9406,750  | 9627,500  | 9587,000  | 5954,500  | 3859,500  | 2054,250  |
| D10S1248 | 8780,500  | 6669,125  | 4823,000  | 2820,500  | 1847,750  | 945,125   |
| D2S441   | 7236,875  | 6283,875  | 5249,500  | 3163,750  | 2182,875  | 1098,375  |
| TH01     | 7474,250  | 4632,875  | 4402,500  | 1708,250  | 1202,375  | 508,500   |
| vWA      | 8512,625  | 8461,125  | 7787,125  | 3481,875  | 2366,250  | 1007,125  |
| D21S11   | 5614,500  | 2786,250  | 3924,000  | 1567,500  | 1229,750  | 669,375   |
| D12S391  | 8534,375  | 6863,125  | 7649,000  | 2950,250  | 2218,375  | 1113,500  |
| D8S1179  | 1335,750  | 458,625   | 1569,875  | 875,200   | 825,875   | 798,833   |
| FGA      | 1680,500  | 950,125   | 2316,000  | 1892,700  | 1356,750  | 788,375   |


Profils génétiques du père présumé, de la mère et de l'enfant pour le test de paternité




**Figure 13 :** Profils génétique du père présumé, obtenus en utilisant le protocole standard (3lavages / 29 cycles)



**Figure 14 :** Profils génétique de la mère, obtenus en utilisant le protocole standard (3lavages / 29 cycles)



**Figure 15 :** Profils génétique du père présumé, obtenus en utilisant le protocole optimisé (3lavages / 25 cycles)



**Figure 16 :** Profils génétique de la mère, obtenus en utilisant le protocole optimisé (3lavages / 25 cycles)

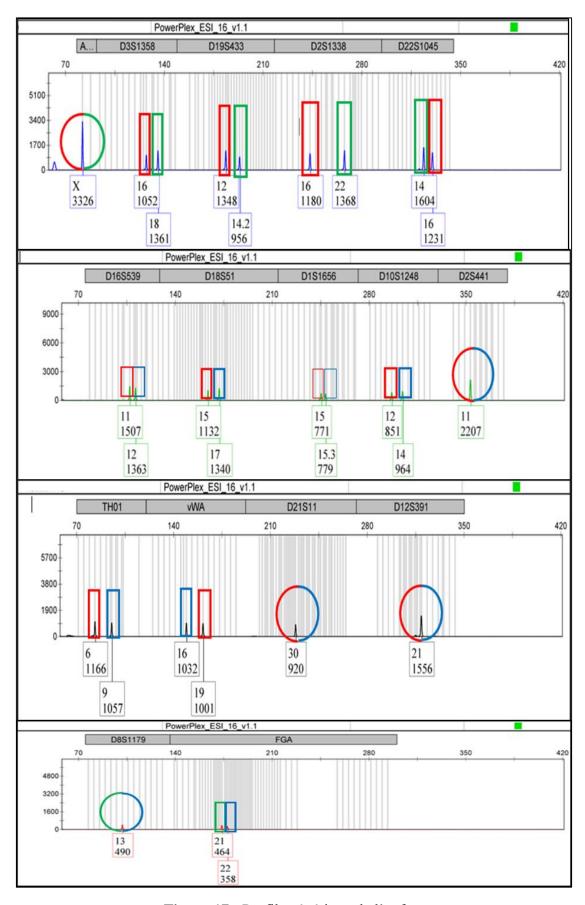
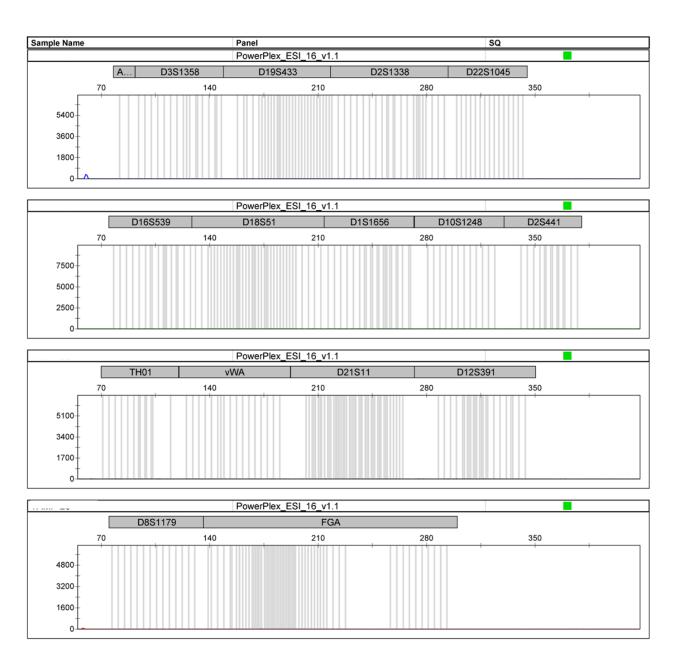




Figure 17 : Profils génétique de l'enfant

Profils génétique de témoin positif et de témoin négatif des échantillons du père présumé et de la mère pour test de paternité



**Figure 18 :** Profil génétique de contrôle positif (0,5ng) obtenu après la co-amplification à 29 cycles des 16 marqueurs inclus dans le kit PowerPlex® ESI 16 system (amplifié avec l'échantillon du père présumé et celui de la mère)



**Figure 19 :** Profil génétique nul de contrôle négatif obtenu après la co-amplification à 29 cycles des 16 marqueurs inclus dans le kit PowerPlex® ESI 16 system (amplifié avec l'échantillon du père présumé et celui de la mère).