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As adults, the summer (alate virginopara) and autumn (gynopara) winged forms of the black bean
aphid, Aphis fabae, utilise different host plants, the bean Vicia faba, and the spindle tree, Evonymus
europaeus, respectively. Electroantennograms (EAGs) were recorded from the antennae of these aphid
forms, reared from a single clone, to thirty five plant volatiles and to paraffin oil extracts from leaves
of the two host plants. The EAG peak responses were normalised against the adjacent responses to
a standard stimulus ((E)-2-hexenal at log 2 dilution). The comparison of different parameters of the
EAG responses, i.e. peak, rise and decay, reveals that peripheral olfactory perception of most volatiles
is not significantly different between these two forms. In addition, the responses of adult wingless
virginoparae to thirteen of the plant volatiles show, with one exception, similar peripheral perception.
The results indicate that any odour discrimination between the two alternative host plants by their
respective colonisers is not perceived at the level of the peripheral olfactory receptors. The EAG
response profile of A. fabae differs from that of the vetch aphid, Megoura viciae, which also colonises

bean.
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INTRODUCTION

Although earlier studies concluded that aphids did not
use odour cues for host-plant location (Kennedy et al.,
1959), it has recently become clear that they do, although
visual cues are still considered important (Ahman et al.,
1985). Aphid antennae possess olfactory receptors which
respond to plant volatiles (Bromley and Anderson, 1982,
Yan and Visser, 1982; Wohlers and Tjallingii, 1983;
Dawson ef al., 1987; Van Giessen et al., 1992; Wadhams,
1990). Aphids respond behaviourally in laboratory situ-
ations to plant odours both walking (Pettersson, 1971;
Visser and Taanman, 1987; Nottingham et al., 1991) or
flying (Nottingham and Hardie, 1993) and in the field
(Chapman ef al., 1981). Single cell recording techniques
offer the opportunity to observe the responses of individ-
ual sensory neurones to odour stimuli (e.g. Bromley and
Anderson, 1982) while electroantennogram (EAG)
recordings provide an overview of total antennal respon-
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siveness (Boeckh er al, 1965). In addition, detailed
analysis of the time course of the EAG allows con-
clusions to be drawn concerning the transport of
volatiles to the receptor sites in the dendritic membranes
and the process of inactivation following stimulation
(Dickens ef al., 1993). In aphids there are two main types
of olfactory organs on the antennae, the distal (on
segment six) and the proximal (on segment five) primary
rhinaria which are present in larval and adult forms, and
secondary rhinaria, primarily located on segment three,
which appear at the final moult and occur in alatae but
are less numerous or absent in apterae (Pickett et al.,
1992). i

Aphid life cycles can be extremely complex, involving
parthenogenetic and sexual reproduction as well as
phenotypically different parthenogenetic females (Hille
Ris Lambers, 1966; Moran, 1992). In host-alternating
(heteroecious) species, such as the black bean aphid,
Aphis fabae Scop., the seasonal cycle moves between a
primary, (winter), often woody host and a secondary
(summer), herbaceous host. Sexual reproduction is as-
sociated with the primary host and parthenogenetic
reproduction with the secondary host, Summer
parthenogenetic females are determined as winged adults
(alate virginoparae), by nutritional factors and high
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population densities, or wingless adults (apterous
virginoparae) under more isolated conditions. The short
days of autumn induce the appearance of a generation
of winged females (gynoparae) which fly to the winter
host where they give birth to the sexual females
(oviparae). Short days also induce males which mate
with the oviparae on the primary host. For A. fabae the
summer females, both alatae and apterae, prefer to feed
and reproduce on the summer host (e.g. broad bean,
Vicia faba L.) while the gynoparae prefer the winter host
(the spindle tree, Euonymus europaeus L.) (Kennedy and
Booth, 1951; Hardie, 1980, 1981; Hardie and
Glascodine, 1990). This preference associated with host
alternation can also be seen in other aphid species e.g.
Rhopalosiphum padi (Dixon, 1981) and Cryptomyzus
species (Guldemond, 1990). Thus, the polyphenism
exhibited in these clonal insects encompasses not only
morphology but also host-plant preference. The present
experiments set out to discover whether there are differ-
ences between the female morphs of 4. fabae in the
peripheral detection of plant volatiles which might be
associated with the different host-plant preference.

METHODS AND MATERIALS

Insects

A clone of Aphis fabae originally established by
Kennedy and Booth (1951) was cultured on tick bean
(V. faba) seedlings at 15°C in Gallenkamp incubators.
Apterous and alate virginoparae were reared under
long-day conditions (LD 16:8), apterous adults devel-
oped in sparse populations while alatae were induced by
crowding young larvae. Transfer of long-day insects to
short days induced the development of the alate
gynoparae (see Hardie, 1980). Alate virginoparae and
gynoparae were used shortly after first take-off (<24 h
old) while pre-reproductive apterae were selected (<72 h
old).

Electroantennogram recordings

Antennal preparation involved amputation of the left
antenna at the base and severing the anterior part of the
head capsule at eye level. A glass capillary, filled with
0.1 M KCI, formed the indifferent electrode and was
inserted into the head so that the tip lodged close to the
base of the intact antenna. The extreme tip of the sixth
antennal segment was then removed and the cut end
sleeved with a 0.1 M KClfilled recording electrode.
Chlorided-silver wires were inserted into the electrodes
and connected to a Grass P16D amplifier via an HIP16A
input probe. Amplified signals were observed on a
Philips PM3302 storage oscilloscope and recorded using
a Krenz TRC 4010 transient recorder attached to an
Estate AT386 computer (for further details see Visser
and Piron, 1994a, b, c).

The electrical recordings started 4s prior to the 2s
odour stimulus injection and continued for 14.5 s after-
wards. At the air flow rate used, the odour stimulus

reached the antennal preparation 0.5 s after injection but
the time of injection was taken as second 0.0. The data
were analysed by software developed in Asyst 3.1 (Visser
and Piron, 1994a,b,c). The original signals were
smoothed, corrected for DC drift (in relation to pre-
stimulus signal) and the parameters examined were:

I. Peak response, the largest negative potential
recorded in seconds 0.0-2.5 from the onset of stimulus
injection in uV.

2. Mean Response, the mean potential recorded in
seconds 1.5-2.0 in uV.

3. Rise, the mean potential reached in seconds 0.0-1.0
relative to the Mean Response in %.

4. Decay, the mean decrease in potential reached in
seconds 2.5-3.5 relative to the Mean Response in %.

The Peak responses were normalised and expressed as a
percentage in relation to adjacent EAG peaks produced
in response to the standard odour ((£)-2-hexenal, see
below).

Odour stimuli, presentation and protocol

The chemicals were obtained from commercial
suppliers or specially prepared (Table 1) and comprised
natural plant volatiles. All chemicals were >95% pure
except for heptanonitrile (92%), (E,E)-u-farnesene
(92%) and (E )-f-farnesene (58%) which also contained
35% a-farnesene isomers. These chemicals were
dissolved in paraffin oil (Merck, Uvasol), 10 1 in | ml
(log 2 dilution). Where other concentrations were used,
they are stated,

Paraffin oil solution (25ul) was pipetted onto a
0.8 x 6 cm piece of filter paper (Schleicher & Schuell
589?, Germany) and the paper inserted into a glass
Pasteur pipette. The pipette was attached to an air line
and the volatile delivered, over a 2s interval, into the
main air flow over the antennal preparation. The air was
purified by passage through Chrompack moisture and
charcoal filters and then re-humidified by bubbling
through de-ionised water. Air flow was controlled at
1800 ml/min for the main flow which was directed over
the preparation by a 1 cm dia. glass tube (i.e. 40 cm/s).
The tip of the Pasteur pipette containing the volatile was
inserted through a small hole in the wall of the glass
tubing and air forced through at 60 ml/min. Air flow was
controlled by Brooks mass flow controllers and the
stimulus via a 3-way solenoid valve.

The antennal preparations proved delicate, EAG
responses tended to decrease with time and the
preparations were short-lived (<20 min). There were
also differences in EAG amplitude between antennae. To
overcomg this variability all test stimuli were bracketed
by a standard stimulus with (£)-2-hexenal (at a dilution
of 10 ul'in 1 ml paraffin oil). EAG peak responses could
then be expressed in terms relative to the adjacent
standards. There were ¢. 30 s between stimulus presenta-
tions.
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peripheral detection of plant volatiles which might be
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long-day conditions (LD 16:8), apterous adults devel-
oped in sparse populations while alatae were induced by
crowding young larvae. Transfer of long-day insects to
short days induced the development of the alate
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gynoparae were used shortly after first take-off (<24 h
old) while pre-reproductive apterae were selected (<72 h
old).
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As adults, the summer (alate virginopara) and autumn (gynopara) winged forms of the black bean
aphid, Aphis fabae, utilise different host plants, the bean Vicia faba, and the spindle tree, Evonymus
europaeus, respectively. Electroantennograms (EAGs) were recorded from the antennae of these aphid
forms, reared from a single clone, to thirty five plant volatiles and to paraffin oil extracts from leaves
of the two host plants. The EAG peak responses were normalised against the adjacent responses to
a standard stimulus ((£)-2-hexenal at log 2 dilution). The comparison of different parameters of the
EAG responses, i.e. peak, rise and decay, reveals that peripheral olfactory perception of most volatiles
is not significantly different between these two forms. In addition, the responses of adult wingless
virginoparae to thirteen of the plant volatiles show, with one exception, similar peripheral perception.
The results indicate that any odour discrimination between the two alternative host plants by their
respective colonisers is not perceived at the level of the peripheral olfactory receptors. The EAG
response profile of A. fubae differs from that of the vetch aphid, Megoura viciae, which also colonises
bean.

Aphids Aphis fabae Electroantennogram EAG decay EAG risc Euonymus europueus  Gynoparae
Host selection Kairomones Odours Olfaction Plant volatiles Semiochemicals Vieia faba Virginoparae

INTRODUCTION

Although earhier studies concluded that aphids did not
use odour cues for host-plant location (Kennedy ef al.,
1959), it has recently become clear that they do, although
visual cues are still considered important (Ahman er al.,
1985). Aphid antennae possess olfactory receptors which
respond to plant volatiles (Bromley and Anderson, 1982;
Yan and Visser, 1982; Wohlers and Tjallingii, 1983;
Dawson et al., 1987; Van Giessen et al., 1992; Wadhams,
1990). Aphids respond behaviourally in laboratory situ-
ations to plant odours both walking (Pettersson, 1971;
Visser and Taanman, 1987; Nottingham et al., 1991) or
flying (Nottingham and Hardie, 1993) and in the field
(Chapman et al., 1981). Single cell recording techniques
offer the opportunity to observe the responses of individ-
ual sensory neurones to odour stimuli (e.g. Bromley and
Anderson, 1982) while electroantennogram (EAGQG)
recordings provide an overview of total antennal respon-
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siveness (Boeckh er al, 1965). In addition, detailed
analysis of the time course of the EAG allows con-
clusions to be drawn concerning the transport of
volatiles to the receptor sites in the dendritic membranes
and the process of inactivation following stimulation
(Dickens et al., 1993). In aphids there are two main types
of olfactory organs on the antennae, the distal (on
segment six) and the proximal (on segment five) primary
rhinaria which are present in larval and adult forms, and
secondary rhinaria, primarily located on segment three,
which appear at the final moult and occur in alatae but
are less numerous or absent in apterae (Pickett et al.,
1992). '

Aphid life cycles can be extremely complex, involving
parthenogenetic and sexual reproduction as well as
phenotypically different parthenogenetic females (Hille
Ris Lambers, 1966; Moran, 1992). 1n host-alternating
(heteroecious) species, such as the black bean aphid,
Aphis fabae Scop., the seasonal cycle moves between a
primary, (winter), often woody host and a secondary
(summer), herbaceous host. Sexual reproduction is as-
sociated with the primary host and parthenogenetic
reproduction  with the secondary host. Summer
parthenogenetic females are determined as winged adults
(alate virginoparae), by nutritional factors and high
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Extraction of bean and spindle volatiles

Thirty g, wet weight, of broad bean (V. Jfaba, cv.
Sutton Dwarf) and spindle (E. europaeus) leaves were
homogenised in 100ml of de-ionised water using a
Waring blender. The mixture was filtered through glass
wool, 50 ml of the filtered aqueous extract was added to
50 mi paraffin oil, shaken and then centrifuged at
7000 rpm for 10 min. The paraffin oil/volatile layer was,
thus, separated from water and 25 ul used to stimulate
EAGs without dilution.

RESULTS

Examples of EAGs recorded from an alate
virginoparous A. fabae in response to the (£ }-2-hexenal
standard and (Z )-3-hexenol-1 are shown in Fig. 1. The
peak responses to the standard, in absolute terms, of
the diflferent aphid forms examined were similar:

TABLE 1. Key to volatiles

Code
Chemical number  Source
Green leaf volatiles
(E)-2-Hexenal 2 Roth
(£)-2-Hexenol-! 4 Roth
(Z )-3-Hexenol-1 5 Roth
(Z )-3-Hexenyl acetate 11 Roth
Hexanol-1 15 Fluka
Hexanal 24 Fluka
(E )-2-Heptenal 102 Aldrich
2-Hexanone 30 Fluka
2-Heptanone 32 Aldrich
Benzaldehydes
Benzaldehyde 36 Roth
2-Methoxybenzaldehyde 37 Aldrich
3-Methoxybenzaldehyde 38 Aldrich
4-Methoxybenzaldehyde 39 Aldrich
2-Hydroxybenzaldehyde 40 Roth
Monoterpenes, -alcohols and
-aldehydes
(—)-(15)-a-Pinene 45 Fluka
(—)-(15)-p-Pinene 46 Fluka
(+)-(S)-Carvone 49 Roth
{—)-(R)-Carvone 50 Aldrich
«-Terpineol 56 Roth
Linalool 59 Fluka
Geraniol 60 Fluka
Nerol 61 Aldrich
Citronellal 65 Roth
( 4 )-Citronellol 66 Roth
Sesquiterpenes
Sabinene 69 Roth
( — )(E)-Caryophyllene 70 Fluka
Farnesenes
(E, E )-u-Farnesene 82 TNO
(E)-f-Farnesene 83 TNO
N-containing compounds
Hexanonitrile 85 Aldrich
Heptanonitrile 86 ICN/K&K
Buty! isothiocyanate 89 Aldrich
tert-Butyl isothiocyanate 90 Aldrich
Allyl isothiocyanate 91 Aldrich
3-Butenyl isothiocyanate 126 Rothamsted
4-Pentenyl isothiocyanate 127 Rothamsted

FIGURE 1. Electroantennogram recordings, smoothed and corrected

for DC drift, from an alate virginopara to (Z)-3-hexenol-1 (centre)

together with responses to the adjacent standard (£ )-2-hexenal (upper

and lower). Chemicals are in log 2 dilution at the source. Scale bars are
100 uV, 4s.

270 +90 4V for apterae (mean+95% C.L),
220 + 60 pV for alate virginoparae and 190 + 60 'V for
gynoparae.

Comparison of the normalised EAG peak responses
produced by alate virginoparae and gynoparae show
that for the standard (compound 2) and thirty four test
chemicals the responses are identical (Fig. 2). EAGs
glicited to general green leaf volatiles (sec Table 1)
indicate similar responses to C6 alcohols and aldehydes
(compounds 2, 4, 5, 15, 24) and to the C7 aldehyde (102)
while the acetate (11) and ketones (30, 32) evoke smaller
responses. The C7 compounds tested are as effective as
or more effective than their C6 equivalents (102 vs 2; 32
vs 30). Of the other compounds tested only the hexano-
and heptanonitriles (85 and 86) elicit larger EAGs than
the standard. Benzaldehyde, methoxy and hydroxy
derivatives (36, 37, 38, 39, 40) elicit responses ranging
from 40-75% of the standard while the maximum
response from the isothiocyanates is ¢. 90% with butyl
(R9), 3-butenyl (126), 4-pentenyl (127) > allyl (91)>> tert-
butyl (90). The two pinene isomers (45 and 46) and the
two carvone isomers (49 and 50) are not distinguished by
the EAG responses while the monoterpene alcohols tend
to elicit smaller responses (56, 59, 60 and 61). Citronellal
(65) is a more potent stimulus than citronellol (66) and
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The transport of the odour molecules to the receptor
sites in the dendritic membranes and the subsequent
process of their inactivation are reflected in the rise and
decay parameters, respectively, of the recorded EAGs.
The rise and decay of EAGs from alate virginoparae and
gynoparae are similar (Fig. 3). In Fig. 3, compounds 59
and 90 are excluded since the amplitudes of their EAGs
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FIGURE 4. Comparison of the normalised EAG peak responses

(mean +£95% C.I.) from apterous (outline, n =9-15) and alate

{hatched, n = 12-19) virginoparae to the paraffin oil blank (0) and 13
test volatiles. See Table 1 for key to compounds.

are not different from the paraffin oil blank. For both
rise and decay parameters there is a significant corre-
lation with r = 0.88; P < 0.001; slope = 0.98; n = 33 for
rise, and r =0.90; P <0.001; slope =1.10; n = 33 for
decay. Only, (Z )-3-hexenol-1 (5), shows rise percentages
where the confidence intervals do not overlap while
hexanol-1 (15) evokes EAGs with different decay times.
Thus, all volatiles tested on alate virginoparae and
gynoparae produce EAGs with almost identical shape
characteristics,

Thirteen compounds were also tested on antennae
from apterous virginoparae and the normalised EAG
peak responses are compared with those of alate virg-
inoparae in Fig. 4. Only allyl isothiocyanate (91) shows
a significant difference and is lower in the apterae. All
recorded rise times overlap with those of the alate
virginoparae/gynoparae but two compounds, citronellal
(65) and heptanonitrile (86), produce significantly
different decay parameters.

The comparison between rise and decay parameters is
complicated by the fact that these may differ in EAGs
produced by different dilutions of the same volatile
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FIGURE 3. Comparison of (left) mean rise and (right) mean decay parameters of EAG responses from alate virginoparae
and gynoparae to 33 test volatiles.

Supplied by The British Library - "The world's knowledge"

Peak of BEAG (%)

y

;
FIGU|

respon
inopar
rise (-

(Fig.s
(E)-2
pears!
conce
paran
facilig
An
gynog
leaves
betwe
compi
{'.'

%

l

Thel
(in uYy
anten
stands
sensiti
dicate
which]
pared.

the CD‘L

FIGUR}
alate vir
mean +°



(SN

APHID OLFACTION 93

Extraction of bean and spindle volatiles

Thirty g, wet weight, of broad bean (V. faba, cv.
Sutton Dwarf) and spindle (E. europaeus) leaves were
homogenised in 100 ml of de-ionised water using a
Waring blender. The mixture was filtered through glass
wool, 50 ml of the filtered aqueous extract was added to
50ml paraffin oil, shaken and then centrifuged at
7000 rpm for 10 min. The paraffin oil/volatile layer was,
thus, separated from water and 25 u1 used to stimulate
EAGs without dilution.

RESULTS

Examples of EAGs recorded from an alate
virginoparous A. fabae in response to the (E )-2-hexenal
standard and (Z)-3-hexenol-1 are shown in Fig. 1. The
peak responses to the standard, in absolute terms, of
the different aphid forms examined were similar:

TABLE 1. Key to volatiles

Code
Chemical number  Source
Green leaf volatiles
(E)-2-Hexenal 2 Roth
(E )-2-Hexenol-1 4 Roth
(Z )-3-Hexenol-1 5 Roth
(Z )-3-Hexenyl acctate 11 Roth
Hexanol-1 15 Fluka
Hexanal 24 Fluka
(E)-2-Heptenal 102 Aldrich
2-Hexanone 30 Fluka
2-Heptanone 32 Aldrich
Benzaldehydes
Benzaldehyde 36 Roth
2-Methoxybenzaldehyde 37 Aldrich
3-Methoxybenzaldehyde 38 Aldrich
4-Methoxybenzaldehyde 39 Aldrich
2-Hydroxybenzaldehyde 40 Roth
Monoterpenes, -alcohols and
-aldehydes
{—)-(15)-a-Pinene 45 Fluka
(—)-(15)-f-Pinene 46 Fluka
{+)-(S)-Carvone 49 Roth
(— )-(R)-Carvone 50 Aldrich
a-Terpineol 56 Roth
Linalool 59 Fluka
Geraniol 60 Fluka
Nerol 61 Aldrich
Citronellal 65 Roth
( + )-Citronellol 66 Roth
Sesquiterpenes
Sabinene 69 Roth
( — »(E)-Caryophyllene 70 Fluka
Farnesenes
(E. E )-«-Farnesene 82 TNO
(E )-f-Famesene 83 TNO
N-containing compounds
Hexanonitrile 85 Aldrich
Heptanonitrile 86 ICN/K&K
Butyl isothiocyanate 89 Aldrich
tert-Butyl isothiocyanate 90 Aldrich
Allyl isothiocyanate 91 Aldrich
3-Butenyl isothiocyanate 126 Rothamsted
4-Pentenyl isothiocyanate 127 Rothamsted

FIGURE 1. Electroantennogram recordings, smoothed and corrected

for DC drift, from an alate virginopara to (Z )-3-hexenol-1 (centre)

together with responses to the adjacent standard (£ )-2-hexenal (upper

and lower). Chemicals are in log 2 dilution at the source. Scale bars are
100 uV, 4.

270+ 90uV  for apterae (mean+95% C.L),
220 + 60 pV for alate virginoparae and 190 £ 60 uV for
gynoparae.

Comparison of the normalised EAG peak responses
produced by alate virginoparae and gynoparae show
that for the standard (compound 2) and thirty four test
chemicals the responses are identical (Fig. 2). EAGs
elicited to general green leaf volatiles (see Table 1)
indicate similar responses to C6 alcohols and aldehydes
(compounds 2, 4, 5, 15, 24) and to the C7 aldehyde (102)
while the acetate (11) and ketones (30, 32) evoke smaller
responses. The C7 compounds tested are as effective as
or more effective than their C6 equivalents (102 vs 2; 32
vs 30). Of the other compounds tested only the hexano-
and heptanonitriles (85 and 86) elicit larger EAGs than
the standard. Benzaldehyde, methoxy and hydroxy
derivatives (36, 37, 38, 39, 40) elicit responses ranging
from 40-75% of the standard while the maximum
response from the isothiocyanates is ¢. 90% with butyl
(89), 3-butenyl (126), 4-pentenyl (127) > allyl (91)> tert-
butyl (90). The two pinene isomers (45 and 46) and the
two carvone isomers (49 and 50) are not distinguished by
the EAG responses while the monoterpene alcohols tend
to elicit smaller responses (56, 59, 60 and 61). Citronellal
(65) is a more potent stimulus than citronellol (66) and
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FIGURE 2. Comparison of the normalised EAG peak responses

(mean + 95% C.1.) from alate virginoparae (hatched, n = 11-19) and

gynaoparae (outline, n = 10-13) to the paraffin oil blank (0) and 335 test
volatiles. See Table | for key to compounds.

both farnesene isomers (82 and 83) and the two
sesquiterpenes (69 and 70) evoke similar responses.
The transport of the odour molecules to the receptor
sites in the dendritic membranes and the subsequent
process of their inactivation are reflected in the rise and
decay parameters, respectively, of the recorded EAGs.
The rise and decay of EAGs from alate virginoparae and
gynoparae are similar (Fig. 3). In Fig. 3, compounds 59
and 90 are excluded since the amplitudes of their EAGs
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FIGURE 4. Comparison of the normalised EAG peak responses

{mean +95% C.I1.) from apterous (outline, n =9-15) and alatc

(hatched, n = 12-19) virginoparae to the paraffin oil blank (0) and 13
test volatiles. See Table 1 for key to compounds.

are not different from the paraffin oil blank. For both
rise and decay parameters there is a significant corre-
lation with r = 0.88; P < 0.001; slope = 0.98; n = 33 for
rise, and r =0.90; P <0.001; slope =1.10; n =33 for
decay. Only, (Z )-3-hexenol-1 (5), shows rise percentages
where the confidence intervals do not overlap while
hexanol-1 (15) evokes EAGs with different decay times.
Thus, all volatiles tested on alate virginoparae and
gynoparae produce EAGs with almost identical shape
characteristics.

Thirteen compounds were also tested on antennae
from apterous virginoparae and the normalised EAG
peak responses are compared with those of alate virg-
inoparae in Fig. 4. Only allyl isothiocyanate (91) shows
a significant difference and is lower in the apterae. All
recorded rise times overlap with those of the alate
virginoparae/gynoparae but lwo compounds, citronellal
(65) and heptanonitrile (86), produce significantly
different decay parameters.

The comparison between rise and decay parameters is
complicated by the fact that these may differ in EAGs
produced by different dilutions of the same volatile
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FIGURE 3. Comparison of (left) mean rise and (right) mean decay parameters of EAG responses from alate virginoparae
and gynoparae to 33 test volatiles.
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Extraction of bean and spindle volatiles

Thirty g, wet weight, of broad bean (V. faba, cv.
Sutton Dwarf) and spindle (E. europaeus) leaves were
homogenised in 100 ml of de-ionised water using a
Waring blender. The mixture was filtered through glass
wool, 50 ml of the filtered aqueous extract was added to
50ml paraffin oil, shaken and then centrifuged at
7000 rpm for 10 min. The paraffin oil/volatile layer was,
thus, separated from water and 25 ul used to stimulate
EAGs without dilution.

RESULTS

Examples of EAGs recorded from an alate
virginoparous A. fabae in response to the (£ )-2-hexenal
standard and (Z)-3-hexenol-1 are shown in Fig. 1. The
peak responses to the standard, in absolute terms, of
the different aphid forms examined were similar:

TABLE 1. Key to volatiles

Code
Chemical number  Source
Green leaf volatiles
(£)-2-Hexenal 2 Roth
(E)-2-Hexenol-1 4 Roth
(Z )-3-Hexenol-1 5 Roth
(Z )-3-Hexenyl acetate 11 Roth
Hexanol-1 15 Fluka
Hexanal 24 Fluka
(E )-2-Heptenal 102 Aldrich
2-Hexanone 30 Fluka
2-Heptanone 32 Aldrich
Benzaldehydes
Benzaldechyde 36 Roth
2-Methoxybenzaldehyde 37 Aldrich
3-Methoxybenzaldehyde 38 Aldrich
4-Methoxybenzaldehyde 39 Aldrich
2-Hydroxybenzaldehyde 40 Roth
Monnterpenes, -alcohols and
-aldehydes
(— )-(1.8 )-a-Pinene 45 Fluka
(— )-(15)-fi-Pinene 46 Fluka
(+)~(S)-Carvone 49 Roth
(— )-(R)-Carvone 50 Aldrich
a-Terpineol 56 Roth
Linalool 59 Fluka
Geraniol 60 Fluka
Nerol 61 Aldrich
Citronellal 65 Roth
( + )Citronellol 66 Roth
Sesquiterpenes
Sabinene 69 Roth
( — »(E)-Caryophyllene 70 Fluka
Farnesenes
(E, E )-a-Farnesene 82 TNO
(E)-f-Farnesene 83 TNO
N-containing compounds
Hexanonitrile 85 Aldrich
Heptanonitrile 86 ICN/K&K
Butyl isothiocyanate 89 Aldrich
tert-Buty! isothiocyanate 90 Aldrich
Allyl isothiocyanate 91 Aldrich
3-Butenyl isothiocyanate 126 Rothamsted

4-Pentenyl isothiocyanate 127 Rothamsted

FIGURE |. Electroantennogram recordings, smoothed and corrected

for DC drift, from an alate virginopara to (Z )-3-hexenol-1 (centre)

together with responses to the adjacent standard (£ )-2-hexenal (upper

and lower). Chemicals are in log 2 dilution at the source. Scale bars are
100 uV, 45,

270 +90uV  for apterae (mean=+95% Cl.),
220 + 60 uV for alate virginoparae and 190 + 60 'V for
gynoparae.

Comparison of the normalised EAG peak responses
produced by alate virginoparae and gynoparae show
that for the standard (compound 2) and thirty four test
chemicals the responses are identical (Fig. 2). EAGs
elicited to general green leaf volatiles (sec Table 1)
indicate similar responses to C6 alcohols and aldehydes
(compounds 2, 4, 5, 15, 24) and to the C7 aldehyde (102)
while the acetate (11) and ketones (30, 32) evoke smaller
responses. The C7 compounds tested are as effective as
or more effective than their C6 equivalents (102 vs 2; 32
vs 30). Of the other compounds tested only the hexano-
and heptanonitriles (85 and 86) elicit larger EAGs than
the standard. Benzaldehyde, methoxy and hydroxy
derivatives (36, 37, 38, 39, 40) elicit responses ranging
from 40-75% of the standard while the maximum
response from the isothiocyanates is ¢. 90% with butyl
(89), 3-butenyl (126), 4-pentenyl (127) > allyl (91)>> tert-
butyl (90). The two pinene isomers (45 and 46) and the
two carvone isomers (49 and 50) are not distinguished by
the EAG responses while the monoterpene alcohols tend
to elicit smaller responses (56, 59, 60 and 61). Citronellal
(65) is a more potent stimulus than citronellol (66) and
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FIGURE 5. Dose-response relationship for normalised EAG peak

responses (left Y-axis, mean 4 95% C.I., n =9-15) of alate virg-

inoparae to (£ )-2-hexenal (—@—). Dose-response relationships for

rise (-~ [J--) and for decay (--- O ---) of the same EAGs (right
Y-axis, mean + 95% C.1.).

(Fig. 5). However, rise is similar for EAGs evoked by
(E)-2-hexenal (2) at log 1-3 dilutions while decay ap-
pears more sensitive and decreases rapidly at higher
concentrations. The similarities between rise and decay
parameters recorded from the different aphid forms is
facilitated by the similarities in peak values.

Antennal responses [rom alate virginoparae and
gynoparae to paraffin oil extracts of bean and spindle
leaves are identical. There were no significant differences
between the rise and decay parameters while Fig. 6
compares the normalised EAG peak responses.

DISCUSSION

The similarities between the absolute EAG peak size
(in uV), as well as the rise and decay parameters, of
antennae from alate virginoparae and gynoparae to the
standard (£ )-2-hexenal indicate similar olfactory
sensitivities to this volatile. These similarities also vin-
dicate the use of this compound as a standard against
which responses to other volatiles can be reliably com-
pared. EAGs to the other thirty four volatiles support
the contention that the peripheral olfactory perception

Pcak of EAG (%)

Blank Bean Spindle

FIGURE 6. Comparison of the normalised EAG peak responses from

alate virginoparae (hatched, n = 11) and gvnoparae (outline, n = 12;

mean + 95% C.1.) evoked by paraffin oil extracts from broad bean
(V. faha) and spindle (E. curopaeus) leaves.

of these two winged forms, which are morphologically
the same but reproductively and behaviourally different
(Hardie, 1980), is identical. Both forms are attracted to
the odour of leaves from their respective hosts. Not-

“tingham er al. (1991) reported attraction of alate

virginoparae to bean leaf volatiles but could not find
an attraction of gynoparae to spindle leaf volatiles in
a linear track olfactometer. However, using the same
clone of A. fabae in a Pettersson olfactometer, R.
Isaacs (pers. comm.) has found attraction to spindle
leaves collected from the field, during autumn when
gynoparae are flying. The utilisation of different host
plants does not appear to be assisted by olfaction at
the peripheral level although central nervous system
integration of olfactory information may provide dis-
tinction between odours emanating from the different
hosts.

Results from the paraffin oil extracts of the summer
host plant, broad bean, and the winter host, spindle,
reveal only that a lesser EAG response is elicited to bean,
This observation is undoubtedly due to a larger amount
of volatiles extracted from the 'spindle and this was
detectable by the human nose. The similarity between
alate virginoparae and gynoparae further substantiate
the conclusion that these clonal aphid forms can not
distinguish between the odours of their relevant host
plants at the peripheral sensory level.

Bromley and Anderson (1982) indicated that single
cell recordings from primary rhinaria of greenhouse-
reared currant-lettuce aphid, Nasonovia ribis-nigri,
dilfered between the summer and autumn and postulated
that this may be a change associated with the host-alter-
nating life cycle (between lettuce, Lactuca spp and
currant, Ribes spp). These observations are not sup-
ported by the present recordings from whole antennae
although it is appreciated that the sensitivities of individ-
ual olfactory neurones (i.e. with different central projec-
tions) may differ between alate virginoparae and
gynoparae and remain undetected in EAG responses.
There is currently no way of electrophysiologically
recording {rom positionally identified, individual anten-
nal sensory neurones in aphids.

The finding that olfactory perception by apterous
virginoparae is almost identical to the alate forms is
somewhat surprising as the winged forms possess sec-
ondary rhinaria on the third, and sometimes on the
fourth antennal segments, while the apterae do not
(Jones, 1944; Hardie, 1980; Hardie et al., 1994). This
result is in contrast to earlier reports of heightened EAG
responses in winged virginoparae of Sitobion avenae
compared with apterous forms (Yan and Visser, 1982).
The secondary rhinaria do possess sensory neurones that
respond to plant volatiles (Wadhams and Woodcock,
quoted’in Pickett er al., 1992) but their contribution (o
the overall EAG and to behaviour remains to be
determined in female aphids although in males they
provide the major olfactory organs for detection of sex
pheromones (Pettersson, 1971; Marsh, 1975; Hardie
et al., 1994).
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FIGURE 7. Comparison of mean normalised EAG peak responses to 35 test volatiles: (left) between M. vicige apterous
virginoparae (Visser and Piron, 1994b) and A. fubae alate virginoparae and (right) between A. fabae gynoparae and alate
virginoparae.

Recordings from single olfactory neurones associated
with the proximal primary rhinarium of A4. fabae alate
virginoparae have shown that isothiocyanates differ in
their potency such that 4-pentenyl isothiocyanate > 3-
butenyl isothiocyanate > allyl isothiocyanate (Notting-
ham er al, 1991). The overall antennal response
represented by the EAG broadly agrees with this finding
with 4-pentenyl isothiocyanate = 3-butenyl isothio-
cyanate > allyl isothiocyanate although at the single cell
level the: latter compound appeared to have no effect.

It is also of interest to compare odour perception with
a non-host-alternating aphid species, the vetch aphid
Megoura viciae which utilises, throughout the vyear, a
number of the leguminous host plants also associated
with A. fabae. EAGs have been recorded from apterous
M. viciae (Visser and Piron, 1994b) in exactly the same
way as for A. fabae in the present study. From this
M. viciae data set the same 35 stimuli reported in Fig, 2,
at the same log2 dilution, were selected and used for
comparison of mean normalised EAG peak responses
between M. viciae and alate virginoparae of A. fahae
(Fig. 7). In addition, Fig. 7 shows the comparison for
gynoparae and alate virginoparae of 4. fabae (the
same data as Fig. 2). It is clear that the inter-species
variation, M. viciae vs A. fabae, is much larger than the
intra-specific variation, 4. faubae gynoparae vs alate
virginoparae.

In summary, it appears that although genetically
identical summer (alate and apterous virginoparae) and
autumn (gynoparae) forms of 4. fabae have different
host plant requirements as adults their peripheral olfac-
tory perception is identical. This perception differs from
a different aphid species, i.e. M. vicige, even though the
two species may share the same host plant as larvae and
adults. However, the inter-species comparison was
drawn from aphids reared on different varieties of broad
bean, namely the tick bean and cv. Minica, and it is
known that EAGs differ between insects fed on different
plants as shown for the Colorado potato beetle, Leptino-
tarsa decemlineata (De Jong es al., 1988). The effects of

plant material, on which the aphids are reared, on the
aphids’ perception of volatiles requires investigation.
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FIGURE 7. Comparison of mean normalised EAG peak responses to 35 test volatiles: (left) between M. vicige apterous
virginoparae (Visser and Piron, 1994b) and A. fubae alate virginoparae and (right) between 4. fabae gynoparae and alate
virginoparae.

Recordings from single olfactory neurones associated
with the proximal primary rhinarium of A. fabae alate
virginoparae have shown that isothiocyanates differ in
their potency such that 4-pentenyl isothiocyanate > 3-
butenyl isothiocyanate > allyl isothiocyanate (Notting-
ham et al, 1991). The overall antennal response
represented by the EAG broadly agrees with this finding
with 4-pentenyl isothiocyanate = 3-butenyl isothio-
cyanate > allyl isothiocyanate although at the single cell
level the latter compound appeared to have no effect.

It is also of interest to compare odour perception with
a non-host-alternating aphid species, the vetch aphid
Megoura viciae which utilises, throughout the year, a
number of the leguminous host plants also associated
with 4. fabae. EAGs have been recorded from apterous
M. viciae (Visser and Piron, 1994b) in exactly the same
way as for A. fabae in the present study. From this
M. viciae data set the same 35 stimuli reported in Fig,. 2,
at the same log2 dilution, were selected and used for
comparison of mean normalised EAG peak responses
between M. viciae and alate virginoparae of A. fabae
(Fig. 7). In addition, Fig. 7 shows the comparison for
gynoparae and alate virginoparae of A. fabae (the
same data as Fig. 2). It is clear that the inter-species
variation, M. viciae vs A. fabae, is much larger than the
intra:specific variation, 4. fabae gynoparae vs alate
virginoparae.

In summary, it appears that although genetically
identical summer (alate and apterous virginoparae) and
autumn (gynoparae) forms of A. fabae have different
host plant requirements as adults their peripheral olfac-
tory perception is identical. This perception differs from
a different aphid species, i.e. M. viciae, even though the
two species may share the same host plant as larvae and
adults. However, the inter-species comparison was
drawn from aphids reared on different varieties of broad
bean, namely the tick bean and cv. Minica, and it is
known that EAGs differ between insects fed on different
plants as shown for the Colorado potato beetle, Leptino-
tarsa decemlineata (De Jong et al., 1988). The effects of

plant material, on which the aphids are reared, on the
aphids’ perception of volatiles requires investigation.
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FIGURE 5. Dose-response ielationship for normalised EAG peak

responses (left Y-axis, mean +95% C.1, n =9-15) of alate virg-

inoparae to (£ )-2-hexenal (—@—). Dose-response relationships for

rise (-- [0 —-) and for decay (--- O ---) of the same EAGs (right
Y-axis, mean + 95% C.1.).

(Fig. 5). However, rise is similar for EAGs evoked by
(E)-2-hexenal (2) at log 1-3 dilutions while decay ap-
pears maore sensitive and decreases rapidly at higher
concentrations. The similarities between rise and decay
parameters recorded from the different aphid forms is
facilitated by the similarities in peak values.

Antennal responses [rom alate virginoparae and
gynoparae to paraffin oil extracts of bean and spindle
leaves are identical. There were no significant differences
between the rise and decay parameters while Fig. 6
compares the normalised EAG peak responses.

DISCUSSION

The similarities between the absolute EAG peak size
(in uV), as well as the rise and decay parameters, of
antennae from alate virginoparae and gynoparae to the
standard (£ )-2-hexenal indicate similar olfactory
sensitivities to this volatile. These similarities also vin-
dicate the use of this compound as a standard against
which responses to other volatiles can be reliably com-
pared. EAGs to the other thirty four volatiles support
the contention that the peripheral olfactory perception

Peak of EAG (%)

Blank Bean Spindle

FIGURE 6. Compurison of the normalised EAG peak responses from

alate virginoparae (hatched, n = 11) and gvnoparae (outline, n = 12;

mean + 95% C.1.) evoked by paraffin oil extracts from broad bean
(V. faba) and spindle (E. europaeus) leaves.
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of these two winged forms, which are morphologically
the same but reproductively and behaviourally different
(Hardie, 1980), is identical. Both forms are attracted to
the odour of leaves from their respective hosts. Not-

“tingham er al. (1991) reported attraction of alate

virginoparae to bean leaf volatiles but could not find
an attraction of gynoparae to spindle leaf volatiles in
a linear track olfactometer. However, using the same
clone of A. fabae in a Pettersson olfactometer, R.
Isaacs (pers. comm.) has found attraction to spindle
leaves collected from the field K during autumn when
gynoparae are flying. The utilisation of different host
plants does not appear to be assisted by olfaction at
the peripheral level although central nervous system
integration of olfactory information may provide dis-
tinction between odours emanating from the different
hosts.

Results from the paraffin oil extracts of the summer
host plant, broad bean, and the winter host, spindle,
reveal only that a lesser EAG response is elicited to bean,
This observation is undoubtedly due to a larger amount
of volatiles extracted from the 'spindle and this was
detectable by the human nose. The similarity between
alate virginoparae and gynoparae further substantiate
the conclusion that these clonal aphid forms can not
distinguish between the odours of their relevant host
plants at the peripheral sensory level.

Bromley and Anderson (1982) indicated that single
cell recordings from primary rhinaria of greenhouse-
reared currant-lettuce aphid, Nasonovia ribis-nigri,
dilfered between the summer and autumn and postulated
that this may be a change associated with the host-alter-
nating life cycle (between lettuce, Lactuca spp and
currant, Ribes spp). These observations are not sup-
ported by the present recordings from whole antennae
although it is appreciated that the sensitivities of individ-
ual olfactory neurones (i.e. with different central projec-
tions) may differ between alate virginoparae and
gynoparae and remain undetected in EAG responses.
There is currently no way of electrophysiologically
recording from positionally identified, individual anten-
nal sensory neurones in aphids.

The finding that olfactory perception by apterous
virginoparae is almost identical to the alate forms is
somewhat surprising as the winged forms possess sec-
ondary rhinaria on the third, and sometimes on the
fourth antennal segments, while the apterae do not
(Jones, 1944; Hardie, 1980; Hardie et al., 1994). This
result is in contrast to earlier reports of heightened EAG
responses in winged virginoparae of Sitobion avenae
compared with apterous forms (Yan and Visser, 1982).
The secondary rhinaria do possess sensory neurones that
respond to plant volatiles (Wadhams and Woodcock,
quoted‘in Pickett ez al., 1992) but their contribution to
the overall EAG and to behaviour remains to be
determined in female aphids although in males they
provide the major olfactory organs for detection of sex
pheromones (Pettersson, 1971; Marsh, 1975; Hardie
et al., 1994).
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