TECHNOSUP

Les FILIÈRES TECHNOLOGIQUES des ENSEIGNEMENTS SUPÉRIEURS

MATÉRIAUX

Énergie et tension superficielles des solides

Thermodynamique, mesure, rupture, adhérence, réactivité

Éric FELDER

La côte de l'ouvrage : 2-530-275

Table des matières

Avant-propos Objectifs de cet ouvrage	1
Dates essentielles et considérations historiques	1 2
Quelques phénomènes de surface et d'interface	4
Remerciements	4
Table des matières	5
Notations	9
Glossaire des principaux résultats et formules	11
Chapitre I : Thermodynamique des surfaces	15
Objectifs et méthode d'approche	15
1. Energie superficielle γ	15
1.1. Définition et conséquences élémentaires	15
1.2. Application : Energie d'adhésion de deux corps	16
1.3. Relation entre l'énergie superficielle d'un solide et son module d'Young	17
2. Tension superficielle s	20
2.1. Définition	20
2.2 Mise en évidence directe pour les liquides	22
3. Thermodynamique du contact et de la rupture	22
3.1. Présentation du problème	22 22
a) Objectifsb) Définition du système	23
3.2. Expression des deux principes de la thermodynamique	24
a) Expression du premier principe	24
b) Expression du second principe	25
3.3. Application à la formulation de la loi de comportement de l'interface	26
a) Frottement entre deux corps solides	26
b) Rupture d'un corps élastique (rupture fragile)	28
4. Exercices et problèmes	31
4.1. Analyse de l'ascension ou de la dépression capillaire d'un liquide	31
4.2. Analyse de l'étalement d'un liquide sur un solide de surface plane	31
4.3. Analyse de transformations de phase	32
a) Théorie de la germination-croissance	32
b) Température de fusion de nano-particules solides	32
4.4. Stabilité thermomécanique d'un film mince	35
a) Analyse de la traction uniaxiale	35
b) Application à l'analyse de la stabilité d'un film mince	36 39
4.5. Analyse des conditions de rupture des matériaux a) Insuffisance du critère énergétique	39
ar mouribance du cincie encrecidae	י כ

6 Table des matières

b) Relation entre l'approche en contrainte (Irwin) et l'approche	
énergétique (Griffith)	40
4.6. Analyse du décollement d'un poinçon plat adhérent à un massif élastique souple de surface plane	44
Chapitre II : Loi de comportement superficiel	49
1. Description d'une interface	49
1.1. Déformation d'une interface	49 50
1.2. Bilan de matière à l'interface pendant la déformation1.3. Etat de contrainte à l'interface	50 53
2. Expression des deux principes de la thermodynamique	
et du principe de dissipation normale	54
2.1. Expression du premier principe de la thermodynamique	54
2.2. Expression du second principe de la thermodynamique	57
2.3. Principe de dissipation normale	58
3. Formulation de la loi de comportement de l'interface	58
3.1. Interface liquide/fluide (non miscibles)	58
a) Définition du système et expression du second principe	58
b) Loi de comportement générale d'une interface liquide/fluide c) Cas de l'équilibre	60 61
3.2. Interface solide anisotrope/fluide	62
a) Définition du système	62
b) Loi de comportement d'une interface solide/fluide	63
3.3. Interface solide isotrope/fluide	64
4. Conséquences	64
4.1. Influence de la température	64
a) Evolution de l'énergie superficielle avec la température	64
b) Effet de la température sur la nature de la déformation des solides	65
c) Tension superficielle d'un solide près de son point de fusion4.2. Equation d'équilibre de la ligne triple entre trois phases isotropes	67 67
a) Equation d'équilibre en un point de la ligne triple a) Equation générale de l'équilibre en un point de la ligne triple	67
b) Etalement d'une goutte de liquide sur un solide	68
4.3. Influence de la courbure de la surface	69
a) Expression du potentiel chimique sur une interface plane et courbe	70
b) Application aux interfaces courbes	71
c) Cas des surfaces anisotropes	72
5. Exercices et problèmes	73
5.1. Analyse de l'ascension ou de la dépression capillaire d'un liquide	73
5.2. Analyse de l'étalement d'un liquide sur un solide de surface plane	74
5.3. Température de fusion de nano-particules solides déformables	76
5.4. Effet des variations de volume sur une transformation de phase solide a) Etude des déformations élastiques axisymétriques	77 77
b) Application aux transformations de phase	77
/ 11	

Table des matières 7

Chapitre III : Mesure et calcul de l'énergie et de la	
tension superficielles	81
1. Méthodes de mesure et résultats	81
1.1. Méthodes de mesure	81
1.2. Résultats pour les métaux	82
2. Approche théorique directe de γ et s	85
2.1. Principe de la méthode	85
2.2. Quelques résultats	86
3. Méthodes physico-chimiques	88
3.1. Mesures calorimétriques3.2. Application de l'équation d'adsorption de Gibbs	89 89
4. Exercices et problèmes	91
4.1. Analyse de l'essai de fluage nul	91
a) Mode de déformation en traction uniaxiale à haute température	91
b) Application à l'interprétation de l'essai de fluage nul de fils	91
4.2. Etude de nano-particules sphériquesa) Etude des déformations élastiques	93 93
b) Application à des nano-particules cristallines (système cubique)	93 93
4.3. Flexion élastique de lames minces	95
a) Loi de comportement	95
b) Application à l'étude des phénomènes d'adsorption et de dépôts	
de films minces	96
4.4. Essai de clivage d'un matériau homogène	98
a) Flexion élastique d'une lame mince sous l'effet d'une force	98
concentrée appliquée à son extrémité b) Application à l'interprétation de l'essai de clivage	90 99
c) Généralisation	99
4.5. Initiation et propagation des fissures superficielles par indentation	105
a) Analyse semi-quantitative de l'indentation	106
b) Indentation par un poinçon circulaire plat et fissuration circulaire	106
c) Fissuration hertzienne (loi d'Auerbach)	107
d) Indentation par une pyramide Vickers et fissuration radiale	107
Chapitre IV : Mesure de s et γ par les méthodes statiques	113
1. Essai de fluage nul	113
1.1. Principe de l'essai de fluage nul de fils fins	113
1.2. Cas des films minces	115
1.3. Résultats1.4. Analogie avec l'ascension ou la dépression capillaire	117 120
2. Contraction du réseau cristallin	
	121
3. Courbure d'une lame souple	124
3.1. Principe 3.2. Résultats	124 126
4. Forme de cavités internes et anisotropie d'énergie superficielle	131
4.1. Principe	131

3	Table des matières

4.2. Mise en œuvre, résultats et extrapolation de 0 à T _F	133
5. Evolutions superficielles par transport de matière	135
5.1. Mécanismes de transport de matière	136
5.2. Cinétique d'évolution de la morphologie superficielle et des	
cavités internes	138
a) Relations générales	138
b) Atténuation des ondulations de surface	139
c) Creusement des joints de grain	140 142
d) Cinétique de contraction des cavités internes	
6. Exercices	143
6.1. Modélisation de la diffusion superficielle à la surface d'un solide	143
6.2. Analyse des évolutions superficielles induites par la diffusion de surface	
a) Ondulation de surface b) Crousement de jointe de grain	147 147
b) Creusement de joints de grain6.3. Analyse de la diffusion de lacunes à partir d'une porosité sphérique	147
o.s. Analyse de la diffusion de lacunes à partir d'une polosite spherique	147
Chapitre V : Mesure de s et γ par les méthodes dynamiques	151
1. Essai de clivage	151
1.1. Principe de l'essai	151
1.2 .Clivage de feuillets de mica dans divers environnements	153
1.3. Résultats sur divers cristaux - les autres sources d'irréversibilité	156
1.4. Le problème de la rupture selon le plan basal du zinc	157
2. Essai de rupture par poinçonnement élastique : cas des verres	159
2.1. Principe	159
2.2. Résultats	160
3. Etude du contact sphère/plan	162
3.1. Principe et étude théorique	162
3.2. Essais sur des matériaux souples et transparents	165
3.3. Essais sur des matériaux raides	168
Chapitre VI : Problème : Analyse du contact ponctuel	
axisymétrique de corps élastiques	172
1. Cas général	172
2. Cas du contact sphère/plan sans adhésion (théorie de Hertz)	174
3. Cas du contact sphère/plan avec adhésion (théorie JKR)	174
4. Généralisation	175
5. Application au cas du cône (p=1)	175
Bibliographie	185