
Ourida MOHAMMEDI

CINÉTIQUE CHIMIQUE COURS avec exercices d'application

Licence en chimie écoles d'ingénieur

Ourida MOHAMMEDI

Cinétique Chimique Cours

Ce cours s'adresse aux étudiants préparant une Licence en chimie et aux étudiants des écoles d'ingénieur

OFFICE DES PUBLICATIONS UNIVERSITAIRES

Table de matières

PREFACES.		
I	GENERALITES	
I.1	Introduction	11
I.2	Domaine de la cinétique chimique	11
I.3	Les types fondamentaux de réacteurs permettant	
	d'effectuer la réaction	14
I.4	Localisation de la réaction	17
I.5	Les modes d'activation des réactions chimiques	17
I.5.a	I rectivation thermique	17
I.5.b	La mise en œuvre d'un catalyseur	18
I.5.c	L'activation en presence d'un initialeur	18
I.5.d	Le rayonnement électromagnétique	18
I.6	Les formes intermédiaires actives	18
I.6.a	Les intermédiaires moléculaires	19
I.6.b	Les intermédiaires ioniques	19
I.6.c	Les intermédiaires radicalaires	19
I.6.d	Les complexes.	19
II)8	DEFINITIONS	21
II.1	Equation et coefficient stœchiométrique	23
II.2	Définition de la vitesse	23
II.3	Vitesse de réaction	25
Ш	EQUATION DE VITESSE - CAS SIMPLE	31
III.1	Loi de vitesse des réactions	33
III.2	Cinétique formelle d'une réaction simple	34
III.2.a	Réaction d'ordre global 1	34
III 2 b	Réaction d'ordre global 2	39
III.2.c	Réaction d'ordre global 3	46
III.2.d		50
IV	LES METHODES DE DETERMINATION DE	
	L'ORDRE DE LA CINETIQUE FORMELLE	51
IV.1	Détermination de l'ordre par intégration	53
IV.2	Détermination de l'ordre par intégration Utilisation du temps de demi-réaction	54

IV.3	Méthode différentielle de Henri Van'Hoff	56
IV.4	Dégénérescence de l'ordre	59
IV.4.a	Méthode d'isolement de Guillaume Ostwald	59
IV.4.b	Méthode de la concentration initiale partielle	
	constante	59
IV.4.c	L'ordre en fonction du temps, l'ordre en fonction	
	des concentrations initiales	60
V	LES METHODES EXPERIMENTALES DE	
	MESUREDES VITESSES	63
V.1	Détermination graphique de la vitesse de	
	consommation	65
V.2	Les méthodes de suivi d'une réaction	66
V.2.a	Les méthodes chimiques	66
V.2.b	Les méthodes physiques	67
VI	REACTIONS COMPOSEES	71
VI.1	Définition d'une réaction opposée	73
	Les deux réactions opposées sont d'ordre 1	74
	Les deux réactions opposées sont d'ordre 2	76
	Réaction d'ordre 2 opposée à une réaction d'ordre	79
VI.2	Réactions parallèles	80
	Réactions jumelles	80
	Les réactions concurrentes ou compétitives	82
VI.3	Les réactions successives ou consécutives	86
VI.3.a	Définition	86
VI.3.b	Deux réactions d'ordre 1 non compétitives	86
	LES REACTIONS COMPLEXES	95
VII.1	Généralités	97
	Définition	97
	Schéma cinétique	97
	VII.1.6 Schema emenque	
	Principe de la réversibilité microscopique	97 97
	Méthode de l'Approximation de l'Etat Quasi	
16	Stationnaire de Bodensteïn	97
VII.2	Réactions en chaîne ou à séquence fermée	99
V 11.2	reactions on chame of a sequence termice	17,2

VII.3	Réactions par stade ou à séquence ouverte	101
VIII.	INFLUENCE DE LA TEMPERATURE	105
VIII.1	Equation empirique d'Arrhenius.	107
VIII.2	Energie d'activation.	109
VIII.3	Théorie des collisions	111
VIII.4		117
IX	CATALYSE HOMOGENE	121
IX.1	Définition 1	123
IX.2	Catalyse acido –basique	123
IX.2.a	Catalyse par les ions H+ ou (OH-)	123
IX.2.b	Catalyse par les acides et les bases de Bronsted	125
IX.3	Réaction auto –catalytique	127
X	CATALYSE HETEROGENE	131
X .1	Généralité	133
X.2	L'adsorption	135
X.2.a	Définition	135
X.2.b	Méthode de mesure	136
X.2.c	Théories de l'adsorption	139
X.2.d	Adsorption moléculaire d'un corps pur	148
X.2.e	Adsorption de plusieurs composés – adsorption	
	Adsorption dissociative.	149
X.2.f	Adsorption dissociative	151
X.3	Cinétique chimique en catalyse hétérogène	152
X.3.a	Modèle de Langmuir –Hinshelwood	154
X. 3.b	Modèle de Eley – Rideal	159
X. 3.b Modèle de Eley – Rideal. Exercices d'application.		
Bibliographie		