

Sameh Ayadi

Chimie quantique

Cours et exercices résolus

Table des matières

Cours 1 : Bases de la mécanique	
Quantique	8
I/ Introduction	8
II/ Rappels sur les résultats scientifiques	10
II.1/ Spectre d'émission	
de l'atome d'hydrogène	10
II/ Bases de la mécanique quantique	15
II.1/ Hypothèse de Louis de Broglie	15
II.2/ Principe d'incertitude de Heisenberg	15
II.3/ Equation de schrodinger (1925)	17
II.3.1/ Notion de la fonction d'onde	17
II.3.2/ Equation de Schrödinger	18
III/ Opérateurs	19
III.1/ Définitions	19
III.2/ Exemples d'opérateurs	19

a/ Opérateur position x	19
b/ Opérateur impulsion Px	
	20
III.3/ Propriété des opérateurs	20
a/ Opérateur linéaire	20
b/ Opérateur produit de deux opérateurs	20
c/ Commutateur de deux opérateurs	21
d/ Relation entre commutateurs	21
Exercices	22
Correction	24
Références	27
	8
Cours 2 : Orbitales moléculaires	28
I/ Introduction	28
II/ Résolution de l'équation de Schrödinger	28
II.1/ Approximation de Born –oppenheimer	29
II.2/Approximation monoélectronique	30

III/ Rappels sur la théorie	
des orbitales moléculaires (T.O.M)	30
III.1/ Orbitale moléculaire d'une	
molécule diatomique homonucléaire (A2)	31
A/ Molécules symétriques	
de la première période (H ₂ et He ₂)	31
B/ Molécules symétriques de	
la deuxième période	33
1/ Recouvrement axial : liaison σ	34
2 / Recouvrement latéral : liaison π	34
3/ Exemple de diagramme	-
d'énergie des molécules	35
III.2/ Orbitale moléculaire d'une	
molécule diatomique non symétrique	
de type AB	37
IV/ Orbitales moléculaires des molécules diatomiques homonucléaire	40
IV.1/ Calculs des Orbitales moléculaires	40
IV.2/ Interprétation des orbitales	
moléculaires liantes et antiliantes	44

IV.3/ Exemples des interactions	16'
des électrons pour former des OM	45
V/ Orbitales moléculaires des	
molécules hétéronucléaires	47
V/ Orbitale moléculaires π des	ų
polyatomiques	49
Exercices	53
Correction	57
Références	69
	09
Cours 3 : Etude des molécules par	
la méthode de Hückel : Théorie de Hückel	70
I/ Introduction	70
II/ Méthode de Hückel simple	71
II.1/ Déterminant séculaire énergie	
et coefficients	72
II.2/ Diagramme d'orbitales moléculaires	73
II.3/ Charges électroniques et	
indice de liaison	74

III/ Méthode de Huckel étendue	74
IV/ Etude comparative entre la méthode de	
Hückel simple et Hückel étendue :cas	
de l'éthylène	76
IV.1/ Huckel étendue	76
IV.2/ Huckel simple	78
Exercices	80
Correction	83
Références	98
Cours 4 : Réactivité chimique	99
I/ Etude thermodynamique	100
II/ Etude cinétique	102
III/ Contrôle cinétique et thermodynamique	105
IV/ Orbitales frontières	107
IV.1/ Définition	107
IV.2/ Interactions frontières et réactivité	108
IV.3/Réaction d'époxydation	
des monoterpènes bicycliques :l'α-pinène	112

Exercices	* 114
Correction	118
Références	123