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Abstract 
 

 

Large companies need to integrate a full fault detection system into their industry, especially electric 

companies. Consequently, automatic fault detection has become of utmost importance to assess the 

condition of electrical components and has been a long-standing challenge. Partial discharge is a 

common indication of faults in power systems, such as generators and cables. These PDs can 

eventually result in costly repairs and substantial power outages. The main goal of this work consists 

of devising a monitoring system capable of detecting partial discharge patterns in signals acquired 

from power lines. To accomplish this task, we have built and compared several detectors trained on 

hand-crafted features extracted using basic statistics and signal processing-based methods. These 

features are fed to a learning module; we have explored two kinds of learning paradigms: Sequential 

Learning and Ensemble-based Learning. Specifically, we have invoked four deep sequential models: 

Long-Short-Term-Memory (LSTM), Bidirectional LSTM (Bi-LSTM), Gated Recurrent Unit (GRU), 

Recurrent Neural Network (RNN), and four ensemble learning approaches namely: AdaBoost, 

Random Forest, LightGBM, and XGBoost. We have conducted our experiments on VSB power-line-

faults-detection challenge dataset. Our experimental findings indicate that signal processing-based 

features do not improve the performance and that efficiently preprocessing signals achieves state-of-

the-art performance compared to other features extraction techniques. In addition, we have found 

that gated-based models (LSTMs and GRUs) have shown good results. Moreover, our analysis 

reveals that the gradient boosting machine (LightGBM, XGBoost) exhibits high scores compared 

with the other learning models.  Most importantly, in order to build a successful fault detector, the 

focus has to shift from model-centric to data-centric, i.e. understand the input training data and 

preprocess it. 

 

 

 

Keywords: Anomaly detection, Partial discharge, Ensemble learning, Long Short Term 

Memory, Signal Processing. 

 

 

 



 
 

 

 

Résumé  
 

 
Les grandes entreprises ont besoin d’intégrer un système complet de détection des défauts dans leur 

secteur, notamment les entreprises qui travaille dans  domaine  électriques. Par conséquent, la 

détection automatique des fautes est devenue de la plus haute importance pour évaluer l'état des 

composants électriques et constitue un défi de longue date. Les décharges partielles sont une 

indication courante de défauts dans les systèmes électriques, tels que les générateurs et les câbles. 

Ces décharges partielles peuvent éventuellement entraîner des dégâts coûteuses et des coupures de 

courant importantes. L'objectif principal de ce travail consiste à concevoir un système de 

surveillance capable de détecter la décharge partielle dans les signaux acquis à partir des lignes 

électriques. Pour accomplir cette tâche, nous avons construit et comparé plusieurs détecteurs formés 

à partir de caractéristiques extraites à l'aide des statistiques et des méthodes basées sur le traitement 

du signal. Ces caractéristiques sont transmises à un modèle d'apprentissage ; nous avons exploré 

deux types de paradigmes d'apprentissage: L'apprentissage séquentiel et l'apprentissage d'ensemble. 

Plus précisément, nous avons fait appel à quatre modèles séquentiels profonds: réseaux de neurones 

récurrents RNN, LSTM, Bi-LSTM et GRU; et quatre modèles d'apprentissage supervisé, à savoir : 

AdaBoost, Foret aléatoire, LightGBM et XGBoost. Nous avons mené nos expériences sur l'ensemble 

des données VSB de la compétition « détection des défauts de lignes électriques ». Nos résultats 

expérimentaux indiquent que les caractéristiques basées sur le traitement des signaux n'améliorent 

pas les performances et qu'un prétraitement efficace des signaux permet d'obtenir de meilleures 

performances par rapport aux autres techniques d'extraction de caractéristiques. En outre, nous avons 

constaté que les modèles basés sur les portes (LSTMs et GRUs) ont donné de bons résultats. De plus, 

notre analyse a révéler que le gradient boosting machine (LightGBM, XGBoost) présente des scores 

élevés par rapport aux autres paradigmes d'apprentissage. Plus important encore, pour construire un 

détecteur de fautes efficace, il faut passer de l’approche model-centric à une approche data-centric, 

c'est-à-dire comprendre les données d'apprentissage en entrée et les prétraiter. 

 

Mots clés : Détection d’anomalies, Décharge partielle, Apprentissage ensembliste, Réseau de 

Neurones Récurrents, Traitement de signal. 

 

 

 

 



 
 

 

 ملخص

ي ، أصبح وبالتال .صناعتها ، وخاصة شركات الكهرباءتحتاج الشركات الكبيرة إلى دمج نظام اكتشاف الأعطال الكامل في 

فريغ الجزئي هو مؤشر الت .دالاكتشاف التلقائي للأعطال ذا أهمية قصوى لتقييم حالة المكونات الكهربائية وكان يمثل تحدياً طويل الأم

صلاحات مكلفة وانقطاع إي النهاية إلى يمكن أن تؤدي هذه الحالات الشاذة ف .شائع لأعطال أنظمة الطاقة ، مثل المولدات والكابلات

ي فلتفريغ الجزئي يتمثل الهدف الرئيسي لهذا العمل في تصميم نظام مراقبة قادر على اكتشاف أنماط ا .كبير للتيار الكهربائي

ت على الميزالمدربة لإنجاز هذه المهمة ، قمنا ببناء ومقارنة العديد من أجهزة الكشف ا .الإشارات المكتسبة من خطوط الكهرباء

غذية هذه الميزات إلى يتم ت .المصنوعة يدوياً المستخرجة باستخدام الإحصائيات الأساسية والأساليب القائمة على معالجة الإشارات

عة أرب وجه التحديد استخدمنا على .التعلم المتسلسل والتعلم القائم على المجموعة :وحدة التعلم ؛ لقد استعملنا  نوعين من نماذج التعلم

   ,LSTM-Biلاتجاهثنائية ا ، الذاكرة طويلة المدى قصيرة المدىLSTMالذاكرة طويلة المدى قصيرة المدى  :نماذج متسلسلة عميقة

و  AdaBoost ، وأربعة مناهج تعلم المجموعات وهيRNN ، الشبكة العصبية المتكررة GRU الوحدة المتكررة ذات البوابات

Random Forest و LightGBM  وoostXGB . لقد أجرينا تجاربنا على مجموعة بيانات تحدي اكتشاف أعطال خط الطاقة 

. VSB تشير النتائج التجريبية التي توصلنا إليها إلى أن الميزات القائمة على معالجة الإشارات لا تعمل على تحسين الأداء وأن

بالإضافة إلى ذلك ، وجدنا أن النماذج  .استخراج الميزات الأخرىإشارات المعالجة المسبقة بكفاءة تحقق أداءً متطورًا مقارنةً بتقنيات 

 LightGBM علاوة على ذلك ، يكشف تحليلنا أن آلة تعزيز التدرج  .أظهرت نتائج جيدة GRUsو  LSTMsالمبوبة 

، XGBoost يجب أن ينتقل  الأهم من ذلك ، من أجل بناء كاشف خطأ ناجح ،. ىردرجات عالية مقارنة بنماذج التعلم الأخ هرتظ

 التركيز من النموذج إلى التركيز على البيانات ، أي فهم بيانات تدريب الإدخال ومعالجتها مسبقاً.

 

 
. معالجة الاشارات  , الذاكرة طويلة المدى قصيرة المدى   , اكتشاف الاعطال    , مجموعة التعلم  , تفريغ الجزئي ال   كلمات المفاتيح :
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Introduction 

  
1. Background and problem definition 

 
          Researchers have been paying close attention to the rise of Industry 5.0 [1]. It is concerned 

with the fifth industrial revolution in manufacturing, in which technologies such as automation and 

artificial intelligence are completely altering traditional manufacturing processes. The main goal of 

Industry 5.0 is to strike a balance whereby machine-human interaction can offer the highest benefits. 

Industrial machinery and heavy equipment manufacturing is becoming more complex with the 

increasing requirements of embedded software and electronics content. Many manufacturers are 

challenged with these new and ever-changing needs. Industrial equipment generates various types of 

time-series data, including power-line signals, heart rate monitoring (EKG), brain monitoring (EEG), 

sensor data like Weather data and Rainfall measurements, Temperature readings, and even sounds 

signals. As such data continues to increase, analyzing it and identifying patterns from it can become 

a challenging task, which requires an adequate treatment [2]. This problem has led to the 

introduction of machine learning to extract information from data that would otherwise be 

impossible to obtain even by human experts [3]. It has successfully been applied to a number of 

problems, including speech enhancement [4], acoustic sound [5], many other issues or even fault 

detection in power line signals [6] which is our interest. 

         Anomaly detection, also known as fault detection, aims to discover unexpected events or rare 

items in data[7]. It is popular in many industrial applications and is an important research area in 

data mining [8]. Accurate anomaly detection can trigger prompt troubleshooting, help to avoid loss 

in revenue, and maintain the reputation and branding for a company. When anomalies are detected, 

alerts will be sent to the operators to make timely decisions related to incidents. 

             One of the most common challenge is to detect partial discharge in the overhead power lines. 

So how can we define a partial discharge ? The overhead power lines transfer power from one 

region to another over hundreds of kilometers. These distances make it difficult and expensive to 

manually inspect for any damages caused to the power lines. These damages lead to a phenomenon 

called Partial Discharge (PD) in the insulators of the power line [9]. Basically, partial discharge is 

an electrical discharge that does not bridge the electrodes between the insulation systems [9].  

     In fact, the presence of partial discharge can be indicative of anomalies in many electrical systems 

and can cause further degradation of the insulation. The high-voltage discharges deteriorate the 

insulation materials and can have impacts on the entire system. The PD will slowly damage the 

power line if it is not detected and repaired promptly, causing power outages or even a fire. Their 

detection is, therefore, of utmost importance to assess the condition of electrical components and has 
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been a long-standing challenge [10]. As such, the literature is extremely vast. PD detection has been 

studied in many systems such as in transformers [11], gas-insulated high-voltage switchgear [12], 

power plants [13], and power lines [14]. 

         The overarching goal of this thesis is to find or construct a model for anomaly detection and 

evaluate its applicability in detecting Partial Discharge in power lines signals. Anomaly detection 

falls into two main categories: Unsupervised and Supervised Anomaly Detection. Unsupervised 

anomaly detection techniques do not need training data. Alternatively, it is the most flexible setup 

which does not require any labels, whereas Supervised Anomaly Detection, in which supervised 

methods (also known as classification methods) requires a labeled training set containing both 

normal and anomalous samples to construct the predictive models. Since our training set comes 

labeled, we will focus only on Supervised Anomaly Detection.  

 
            The general framework for building a partial discharge detector is usually categorized into 

two major steps. (1) Feature extraction: a representation of power signals is obtained via multiple 

signal processing-based methods or basic statistics like the mean and the standard deviation. This 

representation is then fed to the model for the training process. (2) Machine Learning: the extracted 

features are employed to achieve recognition using a classification model. We can distinguish two 

types of modeling namely the sequential models and traditional machine learning techniques. 

Sequence Modeling is a technique in machine learning that is used for analyzing sequence data. It is 

the task of predicting what data is coming next. In sequence modeling, the current output is 

dependent on the previous input and the length of the input is not fixed. Sequence models can be 

used in different applications such as image captioning, smart replies on chat tools etc. Multiple 

traditional machine learning models can be used for anomaly detection, since they provide a simple 

learning process. (ML) methods contributed highly in the advancement of prediction systems 

providing better performance and cost-effective solutions. Due to the vast benefits and potential of 

ML. These two categories of learning models have a different implementation and they are distinct 

from each other in some points: Machine learning programs tend to be less complex than sequential 

modes and can often run on conventional computers, but deep learning systems require far more 

powerful hardware and resources. Traditional systems can be set up and operate quickly but may be 

limited in the power of their results. Whereas sequential systems take more time to set up but can 

generate results instantaneously. 

        Many developers have tackled this challenge. Ming Dong [15] developed a unique method 

based on Seasonal and Trend decomposition using Loess (STL) and Support Vector Machine (SVM) 

to recognize PD activities on insulated overhead conductors. Different SVM kernels were tested and 

compared. Also Gabriel Michau and Chi-Ching Hsu proposed a novel end-to-end framework based 

on convolutional neural networks [16]. They implemented a framework with two contributions: 

First, it does not require any feature extraction and enables robust partial discharge detection. 
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Second, it devises the pulse activation map. It provides interpretability of the results for the domain 

experts with the identification of the pulses that led to the detection of the PDs. There exists many 

other challengers who have implemented different strategies in the VSB Power line challenge that 

main to detect the presence of the PD [17]. 

 

2. Thesis contributions    

       The main goal of our work consists of devising a monitoring system capable of detecting partial 

discharge patterns in signals acquired from power lines. To accomplish this task, we formulate the 

partial discharge detection as a binary classification problem. Given an input signal, the output of the 

detector is restricted to two classes: 1 or 0; if the output is 1, it indicates the presence of a partial 

discharge, 0 indicates no partial discharge. This problem can be tackled using a classification 

technique that is able to learn a mapping from the input signal to the output, its associated class. In 

our work, we have devised several detectors using various well-known ensemble learning technique, 

namely: AdaBoost, Random Forest and two variants of the successful Gradient Boosting Machine 

LightGBM and XGBoost. In addition, since the data of interest comprises signals that evolve over 

time, sequential models like RNNs and LSTMs can be also used to design fault detectors. We have 

specifically explored four different architectures: RNN, LSTM, GRU and Bi-LSTM. 

The contributions of this work are highlighted as follows: 

1. We extract a variety of features using basic statistical measures and multiple signal processing 

techniques. 

2. We explore several memory unit-based systems LSTMs, GRUs, Bi-LSTMs, while varying some 

hyper-parameters like the number of stacked layers, the attention mechanism, and analyze the 

behavior of these architectures. 

3. We invoke diverse ensemble learning algorithms and compare their detection scores. 

 

3. Thesis organization 

        The thesis is organized as follows. In Chapter 1, we cover some fundamentals behind partial 

discharge. Specifically, we describe various representations of power lines signals and the most 

frequently used feature extraction techniques in literature. In Chapter 2, we review some relevant 

classification concepts, providing a brief description of machine learning models, state-of-the-art 

deep learning architectures along with the evaluation metrics invoked in this work. We provide in 

Chapter 3, a detailed description of the experimental setup, hyper-parameters tuning and evaluation 

procedure that we have used. Finally in the last chapter, Chapter 4, we lay out the obtained results 

through performance tables and statistics-based plots and discuss these findings. To conclude we 

summarized the contributions of this thesis, the lines of limitations and future work. 
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Chapter 1 : Generalities on 

Partial Discharge  
 

 

1.1 Introduction  

       Many important services in our society, including healthcare, transportation and security, require 

a robust, reliable and undisrupted supply of electricity. This requires on the one hand a reliable and 

redundant infrastructure, and on the other hand, the ability to maintain the performance of the 

infrastructure. As such, the ability to detect faults. Many components of the power generation and 

distribution network can be directly monitored with specific sensors. However, it is not possible nor 

cost efficient for all the components and all the fault types. Therefore, for some of the components, 

the monitoring can only be performed indirectly through the behavior of the electrical current. For 

example, insulation damages in power systems, such as generators or defects in medium-voltage 

cables. Medium voltage overhead power lines run for hundreds of miles to supply power to cities. 

These great distances make it expensive to manually inspect the lines for damage that does not 

immediately lead to a power outage, such as a tree branch hitting the line or a flaw in the insulator. 

An electrical discharge caused by these modes of damage, known as partial discharge, occurs when 

the electrodes between the insulation systems are not fully bridged. In the long run, partial discharges 

will cause a power outage or start a fire if left unrepaired. In this chapter, we introduce a few 

fundamental concepts behind partial discharge and power line signal processing that will be required 

to perform our work. 

1.2 Partial discharge 

        The formal definition is “A localized electrical discharge that only partially bridges the 

insulation between conductors and which can or cannot occur adjacent to a conductor” [18] [19]. In 

fact, the presence of the partial discharge (PD) can be indicative of anomalies in many electrical 

systems and can cause further degradation of the insulation. The high-voltage discharges deteriorate 

the insulation materials and can have impacts on the entire system. Their detection is, therefore, of 

utmost importance to assess the condition of electrical components and has been a long-standing 

challenge. As such, the literature is extremely vast [20]. PD detection has been studied in many 

systems such as in transformers, gas-insulated high-voltage switchgear, power plants, and power 

lines [21]. The main challenge lies in the detection of extremely short and temporally localized 

events: their wavelength is at the microsecond scale. It requires, therefore, extremely high-frequency 

data (several tens of MHz) [22]. 
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1.3 Electrical signal  

        An electrical signal is a function that transmits data about a phenomenon. Any number that may 

change over time or space can be used as a signal to communicate between observers [23]. Audio, 

video, voice, sonar, and radar are all examples of signals. The information contained in a signal is 

often representative of another physical phenomenon or a result of calculations (or measurements). 

As a rule, a signal varies continuously because the information is in motion or undergoes slow or 

rapid variations or disturbances. The signal can easily be measured with measuring devices such as 

voltmeters and oscilloscopes, for the most common, sometimes vectors copes or spectral analyzers 

[24]. 

1.3.1 Disruptive elements 

Noise in electronics represents any kind of disturbing signal that is not derived from or associated 

with the input signal of a system [25]. The greater the noise, the less information there is. We can 

distinguish three main types of noise in case of electric signals: 

Electromagnetic noise is produced mainly by sparks from electric motors, lightning storms, neon 

signs, etc. It can be reduced by shielding cables or circuits or by electronic devices such as circuits 

with capacitors or VDR varistors. It can be reduced by shielding cables or circuits or by electronic 

devices such as circuits with capacitors or VDR varistors. 

Ripple noise produced by power supplies that convert AC voltage to DC voltage is really noise 

because it is independent of the wanted signal and is superimposed on it. It can easily be reduced to 

negligible quantities by electronic circuits such as Zener stabilization, regulation, etc. 

Thermal noise is due to the random displacement in different directions of the valence electrons 

from one atom to another contained in an electrical material. This displacement is due to the 

temperature and its consequence, which is the agitation of the atoms between them. 

1.3.2 Periodic signal 

          We call a signal periodic if it contains a pattern that repeats after a certain amount of time 

[26].The time it takes for this signal to repeat itself is called the period T, and the distance this 

period travels is called the wavelength. The frequency of a periodic phenomenon corresponds to the 

number of repetitions of the latter during one second. The legal unit of frequency is the hertz, symbol 

Hz. It is also possible to use derived units such as millihertz, centihertz, decihertz. The period T and 

the frequency f are linked by the relation:  𝑓 =  1 𝑇 ⁄ . The frequency is therefore simply the inverse 

of the period [23] [27].Figure 1.1 illustrates an example of a periodic signal. 
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Figure 1.1: Periodic signal representation. 

1.3.3 Signals with continuous and discrete support  

          There are two kinds of signals; signals with continuous support, denoted 𝑥(𝑡) and signals with 

discrete support, denoted 𝑥(𝑛) [28]. A continuous signal is defined for any value t of the support. It 

has an independent variable which is continuous in nature, i.e. it is present at each time-step within 

its domain, as shown in Figure 1.2. In contrast, the discrete signal is only known for certain values of 

t: it is a list of support-value pairs. In nature, the vast majority of signals are analog (continuous); for 

example, electrical signals in our body, human speech, any other sounds we hear, light during the 

day, atmospheric pressure, etc. Digitizing these analog signals for analysis and visualization on a 

computer turns them into discrete signals. 

 

Figure 1.2: Continuous vs Discrete Signals. 

 

1.4 Development pipeline for partial discharge detection 

          The development process consists of two major steps: feature extraction, and machine 

learning. In the first step we extract a variety of features that can define the partial discharge 

anomaly by using different techniques. Then, we feed the extracted features to a learning model. In 

this step, machine learning and deep learning models are used, both traditional machine learning 
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classifiers and deep sequential models. The main goal of our work is to thoroughly explore and study 

different models by numerous parameters in order to obtain detectors with high detection rates.  

Then at the end of our investigations, we have submitted our systems to the VSB competition in 

order to get the final scores. Figure 1.3 summarizes this pipeline. 

 

Figure 1.3: Development pipeline for partial discharge detection. 

 

1.5  Feature Engineering 

        Anomaly detection operates in two stages: developing the right features, and then feeding these 

features into a statistical system that detects anomalies in the features [18]. Most literature on 

anomaly detection focuses on the second part. Our goal is to illustrate the importance of the first part 

and to explain what feature engineering is. Feature engineering involves extracting features from raw 

data, with two principal goals of improving the performance of machine learning algorithms: first, 

providing the machine learning algorithm with the right input dataset, and second, enhancing the 

performance of machine learning models. 

1.5.1 Framing  

        Framing, also known as frame blocking, is a fundamental signal processing technique that 

allows the decomposition of the original signal into a series of overlapping blocks, often called 

frames with the same length [29]. Overlapping the frames helps avoiding information loss in 

between adjacent frames. The main purpose of this technique is to capture a chunk of a signal that 

contains an anomaly.   
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1.5.2 Fourier transform  

        The Fourier transform is a mathematical method of transforming a signal from a functional 

representation to a Fourier representation. This is done by summarizing its sinusoidal or complex 

exponential components. It allows the passage from the temporal representation that shows the way 

the overall signal waves amplitude changes over time to the frequency representation that shows how 

much of the signal lies within each given frequency band over a range of frequencies [30]. When the 

Fourier transform is applied to a signal expressed as a function of time, it provides a complex value 

whose imaginary part represents the phase off-set of the pure sinusoidal component and the real part 

value represents the corresponding frequency component. Fourier Transform is useful in signal 

processing because signals are usually defined over time and Fourier Transform is useful for 

further analysis of time series [31]. 

         The ordinary Fourier Transform is for a continuous function. The continuous Fourier 

Transform is difficult to use in real time and to be implemented on signals with continuous support. 

For this reason, the Discrete Fourier Transform (DFT) was invented [31]. The discrete Fourier 

transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-

length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT) [31]. 

        The Fast Fourier Transform (FFT) is an algorithm that increases the computation speed of 

the DFT of a sequence by simplifying its complexity. Fourier analysis converts a signal from its 

original domain (time or space) into the frequency domain and vice versa. Each frame having N 

samples is converted into the frequency domain [32]. Fast Fourier transform is a fast algorithm to 

apply DFT on the given set of N samples. FFT manages to minimize the difficulty of computing the 

DFT from 𝑂(𝑁2) which arises if the concept of DFT is simply applied to 𝑂(N log 𝑁), where N is the 

data size. 

         Power spectral density (PSD) is a mathematical quantity that defines the spectral content of a 

signal. The PSD describes how a signal’s power is distributed in frequency [33]. Traditionally, PSD 

has been used to quantify vibration characteristics of a system. It also has many electronics 

applications to quantify noise characteristics [34] Similar to the FFT, it describes the frequency 

spectrum of a signal. But in addition to the FFT it also takes the power distribution at each frequency 

(bin) into account. The surface below the peaks corresponds with the power distribution at that 

frequency. Calculation of the Power Spectral density is a bit easier using Welch function which not 

only return a vector of amplitudes, but also a vector containing the tick-values of the frequency-axis 

[35]. 

1.5.3 Feature extraction  

            We can distinguish two primary categories of feature extraction techniques: statistics-based 

and signal processing-based features. 
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A. Statistical Features: The main idea of these types of features is to frame our signal into 

chunks and extract from each segment a number of features (this step is applied only on 

sequential models). In general, these features are determined by directly analyzing the temporal 

waveform. They are usually quite straightforward to compute. We illustrate some these features 

as follows:  

Maximum: it defines the highest value in the current signal. The plot below (Figure1.4) is 

obtain over analyzing the max values on the training set. If the maximum of signal is less than 

50 there's more probability of no partial discharge. 

 

Figure 1.4: Max values for anomalous/non-anomalous signals. 

Minimum: it describes the signal’s lowest point. If the minimum of signal is greater than -50 

there's more probability of no partial discharge as the plot below shows.   

 

Figure 1.5: Min values for PD/non-PD training signals. 

 

Mean (𝑿̅): it defines as the average of the values of the signal. 

𝑿̅ =
𝟏

𝑵
∑ 𝒙𝒊

𝑵
𝒊=𝟏 ,                                               (1.1) 
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where 𝒙𝒊 is the magnitude of the signal at a discrete time instance and N is the length of the 

signal. The average of the training set of the VSB data base shows that If the mean of the signal 

is between less than -2 or more than 0.5 it is more likely that there is no partial discharge. 

 

Figure 1.6: Average of PD/non-PD training signals. 

Standard-Deviation (σ): it is used to represent the dispersion of signal values in a statistical 

sample.  

𝛔 =  √
∑ (𝒙𝒊−𝑿̅)𝟐𝑵

𝒊=𝟏

𝑵
   ,                                     (1.2) 

where 𝑿̅ denotes the mean,  𝒙𝒊 is the magnitude of the signal at a discrete time instance and N is 

the length of the signal. Note that it is more probable that STD is greater than 15 if there is no 

partial discharge. From both mean and STD it can be said that the signal is spread more if there 

is no partial discharge. As shown in Figure 1.7.  

 

Figure 1.7: Standard-deviation of PD/non-PD training signals. 

 

 

 

Bandwidth: it is defined by  𝑿̅ - σ.  
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Percentile: a percentile of a vector V defines the value q/100 of the way from the minimum to 

the maximum in a sorted copy of V; this function is the same as the median if q=50, the same as 

the minimum if q=0 and the same as the maximum if q=100. 

B. FFT features: The FFT features are obtained through transforming the time-based signal to 

the frequency domain using the Fourier Transform. Other features can also be obtained such 

as standard deviation, the maximum and minimum at each frequency. It is also considered the 

power density distribution according to variate frequencies. It is concluded that the exact 

extraction of features has become the most crucial aspect in the current anomaly detection 

methods [19]. 

C. Other features : 

Empirical Mode Decomposition (EMD), proposed by Huang et al., is a novel self-adapting 

method especially for non-linear analysis and processing non-stationary signals [36]. 

Sample Entropy (SamEn), proposed by Richman, was used to evaluate the complexity of a 

time series [36]. 

1.6 Temporal domain representation vs frequency domain representation 

      Electrical signals have representations in the time and frequency domains [37]. In the time 

domain, the voltage or current is expressed in terms of time, and signals measured on an oscilloscope 

are displayed in the time domain [38]. The time-domain representation 𝑆(𝑡) reveals information 

about the actual presence of the signal, its start and end times, its strength and temporal evolution, 

and it indicates how the signal energy is distributed along the T axis [39]. 

       The signals can also be represented by the amplitude and a phase as a function of frequency. The 

frequency domain is an analysis of signals or mathematical functions with reference to frequency 

instead of time. Moreover, you can convert a designated signal between the time or frequency 

domain with a pair of operators called the Fourier transform 
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Figure 1.8:A signal (black) consisting of multiple component signals (blue) with different 

frequencies (red). 

 

 

1.7 Conclusion  

       In this chapter, we have reviewed the basics of Partial discharge representation and some signal 

processing notions that are necessary for the comprehension of this work. We have also presented 

several types of features that exist in literature. These features are required to be an input for the 

learning stage. In The next chapter we will give an overview of some learning models that have been 

frequently used for addressing partial discharge detection. 
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Chapter 2 : Machine Learning 

Fundamentals 
 

 

2.1 Introduction  

       In the previous chapter we have discussed the notions of power line signals acquisition and we 

have also defined the fundamental concept and notions behind the partial discharge anomaly and 

listed their most substantial feature, including numerous representations and preprocessing 

techniques required to prepare the power line signal for the machine learning task. Machine learning 

is the field of study that gives computers the ability to learn without been explicitly programed. In 

the other hand, deep learning is a subset of machine learning. It consists of a set of models known as 

neural networks that unlike the machine learning models are hungry which means they need a large 

amount of data to perform well. Different categories of machine learning approaches have been 

introduced in the literature. They fall into three primary categories: Supervised Learning, 

Unsupervised Learning, and Semi-Supervised Learning. We undertake supervised learning approach 

to address scene classification problem. ML has successfully evolved into deep learning (DL), which 

addresses complex and large-scale problems with robust, adaptable, and efficient solutions.  

 

2.2 Generalities on machine learning 

       Artificial intelligence (AI) is a scientific discipline that aims to create intelligent machines 

[40].  Machine learning is a form of (AI) that allows a system to learn from data and not from 

explicit programming [41]. Particularly, it enables computers to perform various tasks by learning 

from past experience rather than being explicitly programmed. It can be defined as the study of the 

construction of computer programs that automatically improve and/or adapt their performance 

through experience; it can be thought of as “programming by example"[40]. A machine learning 

model is the output generated when a machine learning model is trained on data A trained model 

takes data samples as input and produces the output result [42]. Depending on the nature of the 

problem being addressed, there are different approaches that vary depending on the type and volume 

of the data .These approaches can be classified into three primary categories: Supervised learning, 

unsupervised learning and semi-supervised learning [42]. Supervised learning entails learning a 

mapping between a set of input variables X and an output variable Y and applying this mapping to 

predict the outputs for unseen data. Supervised learning creates a knowledge base that enables the 

classification of new patterns. Supervised learning is the most important methodology in machine 

learning and it also has a central importance in anomaly detection tasks [43]. Unsupervised methods 

receive unlabeled input training data. However, the issue with unlabeled data is that we do not have a 
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correct result to match, which means there are no error or reward signals to evaluate a potential 

solution. Therefore, the learning algorithm will try to discover persistent patterns and find hidden 

structures to link results that are close to each other in order to group them into classes using 

clustering algorithms [44][45]. Semi-Supervised Learning (SSL) is half way between supervised and 

unsupervised learning [46]. The main objective of SSL is to overcome the drawbacks of 

both supervised and unsupervised learning. It can learn with a small amount of training data to label 

the unknown (or) test data. SSL builds a model with few labeled patterns as training data and treats 

the rest of the patterns as test data [47]. 

 

2.2.1 Classification   

         The classification problem is one of the main problems in the machine learning area. It entails 

categorizing examples into a discrete set of classes [48]. A classification algorithm falls under the 

category of Supervised Learning, in which the input data is labeled before processing. This process 

involves predicting class labels for a given set of data points (called samples or instances) using a 

feature vector 𝑥 ∈ 𝑋 and its class label 𝑦 ∈ 𝑌 [48]. An input-output association T is taken into 

account by the classification algorithms {(𝑥1, 𝑦1), (𝑥2, 𝑦2), …… , (𝑥𝑚 , 𝑦𝑚)}where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, 

and learn a mapping function / from a feature vector 𝑥 ∈ 𝑋. 

            Binary classification is the term used to describe the problem with two classes. It can be 

defined as follows: Given a set of m examples (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,2, …𝑚  ( the training data set of vectors 

𝑥 ∈ ℝ), the output is a function 𝐶: ℝ → {0,1}, where C is a classifier and 𝐶(𝑥) represents the 

predicted output of sample x. Binary classification, is used in many different data science 

applications, such as: Medical Diagnosis, Email Analysis ,anomaly classification[49]. 

In our work, we formulate the problem of detecting partial discharge within power line signals as a 

Binary classification problem. 

2.2.2 Performance measures 

          During the training phase, the evaluation measure is a critical component in getting the best 

classifier. Thus, selecting an appropriate assessment measure is of paramount importance for 

differentiating and choosing the best classifier [50]. In the case of classification, there are numerous 

forms of performance evaluation metrics such as confusion matrix, accuracy, and others. 

However, most of these metrics are not useful when the dataset of the task suffers from the 

imbalanced class problem [50]. This issue arises when one class has more instances than another, 

which frequently occurs in real life scenarios. As a result, accuracy gives low performance statistic. 

If class A appears in 90% of our samples and class B appears in 10%, we can simply attain 90% 

accuracy by building a model that only predicts class A, one metric that helps with this problem is 

Matthew’s Correlation Coefficient (MCC), which was introduced in the binary setting by Matthews 
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in 1975 [50]. Before we present the formula of MCC, we first introduce the concept of a confusion 

matrix. As shown in Figure 2.1, a confusion matrix has 4 cells, created by a combination of the 

predicted values against the real values. Two of those cells represent correct predictions (True 

Positives and True Negatives), and the other represent incorrect predictions (False Positives and 

False Negatives). 

 

Figure 2.1: Confusion matrix [50]. 

 

Matthew’s correlation coefficient is calculated as follows: 

𝑀𝐶𝐶 =
𝑇𝑃 ×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  (2.1) 

The MCC measures the agreement between the predictions and the true class labels. It takes values 

between -1 and 1. A score of 1 indicates perfect agreement; whereas a score of -1 indicates a worst 

prediction 

2.2.3 Cross validation  

          Cross-validation is a statistical method, also known as resampling procedure, used to estimate 

the performance of a machine learning model on a limited data sample. It is commonly used to 

compare and select a model for a given problem. Several resampling approaches have been 

introduced in the literature; we can cite 5x2 cross validation, generally k-fold cross validation [51].  

           K-Fold Cross-validation is an iterative approach. During iteration 𝑖, it randomly divides the 

set of observations, usually a development set, into 𝐾 groups or folds, of approximately equal size. 

Fold 𝑖 is treated as a validation set, and the remaining 𝐾 − 1 folds assigned as a training set. This 

procedure is repeated 𝐾 times, as shown in Figure 2.2. 
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Figure 2.2: Cross validation [51]. 

 

 

2.3 Anomaly detection   

        Anomaly detection, also known as outlier detection is the process of identifying extreme points 

or observations that are significantly deviating from the remaining data. It is a vast area of data 

analytics [52]. The approach to Anomaly Detection depends on which problem area use case is 

focusing on, in our case Time Series Anomaly Detection is our interest. This latter is concerned with 

Time Series data, or data that evolves over time. For example, with our personal computer, CPU 

usage, network usage, and memory usage all increase over time. Anomaly detection falls into two 

main categories [52]. 

2.3.1 Unsupervised Anomaly Detection  

          These techniques do not need training data. Alternatively, Unsupervised Anomaly Detection is 

the most flexible setup which does not require any labels. Furthermore, there is also no distinction 

between training and a test dataset. The idea is that an unsupervised anomaly detection algorithm 

scores the data solely based on intrinsic properties of the dataset. Typically, distances or densities are 

used to give an estimation of what is normal and what is an outlier [52]. 

2.3.2 Supervised Anomaly Detection 

          Supervised methods (also known as classification methods) required a labeled training set 

containing both normal and anomalous samples to construct the predictive model. Theoretically, 

supervised methods provide better detection rate than semi-supervised and unsupervised methods, 

since they have access to more information. However, there exist some technical issues, which make 

these methods seem not accurate as they are supposed to be. The first issue is the shortage of a 

training data set that covers all areas. Moreover, obtaining accurate labels is a challenge and the 
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training sets usually contain some noises that result in higher false alarm rates. The most common 

supervised algorithms used for anomaly detection are, Supervised Neural Networks, Support Vector 

Machines (SVM), k-Nearest Neighbors, Bayesian Networks and Decision Tree and Ensembles like 

Random Forest or Gradient Boosting Machines and Random Forest [53]. For the remainder of this 

manuscript, we will focus only on Supervised Anomaly Detection, since our training set comes 

labeled. 

2.3.3  Supervised Learning for Partial Discharge Detection 

          To solve the problem of partial discharge detection, two ML approaches have been employed: 

“sequential modeling” and “traditional modeling”. 

 

 Sequential modeling: Sequence models are machine learning models that input or output 

data sequences, such as text streams, audio snippets, video clips and time series data. The 

crucial element to remember about sequence models is that the data we are working with 

rely on one another due to their sequential order. For time series prediction and anomaly 

classification, sequence models that are popular are: Recurrent neural network (RNN), Long 

Short Time Memory (LSTM), Bidirectional Long Short Time Memory (Bi-LSTM) etc. 

 Traditional modeling: Multiple machine learning algorithms can be used for anomaly 

detection depending on the dataset size and the type of the problem. Most common models 

are Random Forest and boosting models.   

 
In the following two sections, we present some relevant classifiers and their concepts that are 

necessary for understanding the ideas developed in this work. 

2.4 Common machine learning classifiers  

       Ensemble learning, also known as multiple classifiers and committee-based learning, imitates 

our second nature to seek several opinions before making a crucial decision [54]. It refers to the 

process of creating a collection (also called team, committee, ensemble, and pool) of learning models 

whose predictions are merged together to produce the final decision. Numerous experimental and 

theoretical studies have demonstrated that a combination of multiple learning models reaches higher 

prediction performance and usually generalizes better than a single classifier [55]. 

        In what follows, we review some major ensemble learning approaches that have been frequently 

invoked to address the anomaly detection problem. We start with, Random Forest, then, we present 

AdaBoost and two variants of the recently acknowledged Gradient Boosting Machine, namely 

XGBoost and LightGBoost. 
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Random Forest 

      Random Forest is an ensemble classifier that consists of many decision trees and the final 

classification of the test sample is decided by majority votes of every individual decision tree [54] 

[56].A decision tree is a classifier expressed as a recursive partition of the instance space. It has three 

types of nodes: a node called “root” and a node with outgoing edge is called an internal node and leaf 

node. Each node corresponds to a certain property and a leaf node which makes a prediction [56].Let 

us consider a binary classification problem formalized as 𝛤 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚, 𝑦𝑚)} 

where 𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝑌 = {0,1}.The classification of training samples begins at the root node which 

takes Γ as an input and asks for the value of a particular feature of the samples that can split Γ into 

different possible subsets. Different links from the root node correspond to the different possible 

subsets of Γ and based on the answer we follow the appropriate link to a descendent node. The links 

must be distinct i.e. one and only one link will be followed. The next step is to ask for the value of a 

particular feature that can split the chosen subset of Γ into other different subsets. We continue this 

way until we reach a leaf node, which has no further questions. Each leaf node bears a class label and 

the test samples are assigned to the class of the leaf node reached [57].The way 𝛤 is split is based on 

two important concepts that form our objective function that we are optimizing for to improve the 

performance of our model. These concepts are: entropy and information gain. 

         The entropy measures the impurity of the node to find the best value of the feature 𝑥𝑖 that 

allows splitting 𝛤 into different subsets. These subsets should minimize their entropies. This process 

is repeated reclusively until we reach a leaf. Impurity means that each subset of features represents 

one type of class, in this case the 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 0 and the information gain reaches its maximum value 

of 1. However, some percentage of impurity is tolerated in order to stop further division to reduce the 

training time. The entropy 𝐻 and information gain are computed using the following mathematical 

formulas. 

H(x) = ∑ −𝒙𝒊𝒍𝒐𝒈𝟐
𝒎
𝒊=𝟏 (𝒙𝒊)   (2.2) 

Information gain= H (parent)-(weighted average).H (children)       

AdaBoost  

         AdaBoost, abbreviation of Adaptive boosting, is the first practical boosting classifier [54]. It 

was initially proposed by Freund and Schapire as an ensemble method for improving the 

performance of a weak learner. It combines multiple base classifiers, generally decision trees, to 

produce a strong classifier that achieves accurate classification. The main idea behind this algorithm 

is to give more focus to patterns that are harder to classify. The amount of focus is quantified by a 

weight that is assigned to every pattern in the training set .At stage t, every training sample 𝑥𝑖 

receives a weight 𝑤𝑖(𝑡) that indicates its probability of being selected to train a new weak classifier. 

The first classifier is built by fixing these weights to 1⁄m, where m indicates the number of training 

samples i.e. all patterns initially have the same importance. In each iteration, the weight of each 
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misclassified instance is increased while the weight of correctly classified instances is decreased i.e. 

if a training sample is accurately identified, it has a lower chance of being employed in the next 

stage, but if a sample is misclassified, the likelihood of it being reselected increases. As a result, the 

succeeding classifiers concentrate on difficult-to-classify cases. AdaBoost assigns to the new trained 

classifier a weighting coefficient αi: accurate members receive higher weights. This process 

continues until the desired number of base learners or the overall accuracy has been reached. The 

final classification decision of a test sample is based on the weighted linear combination of these 

weak classifiers. AdaBoost algorithm is given by: 

Training phase  

1: Input        I : a weak learner. 

                     T: number of iterations. 

                     Γ: a set of m labeled training samples. 

 
2: Initialization : t=1; 

 𝑤𝑡
(1)

= 1/𝑚 , i=1...m ;  

Ω = ϕ;  
3:     Repeat  

4:        -Learn hypothesis  h(t) from  Γ  using  I 

5:           Ɛ𝑡= ∑ 𝑊𝑖
𝑡

𝑥𝑖,𝑦𝑖∈𝛤   ×  𝕀(ℎ𝑡  (𝑥𝑖)≠𝑦𝑖) 

6:       if  Ɛ𝑡 > 0.5 

7:               T=t-1 

8:         Break; 
9:      End if  

 

10:  β𝑡 =  Ɛ𝑡/(1- Ɛ𝑡) 

11:  

      𝑤𝑖
𝑡+1 =

 𝑤𝑖
𝑡

𝑍𝑡
  ×   {

β𝑡  𝑖𝑓 ℎ𝑡  (𝑥𝑖) = 𝑦𝑖

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

       Where  𝑍𝑡  denotes a normalization which enable 𝑤𝑖
𝑡+1  to be a distribution i.e. ∑ 𝑊𝑖

𝑡+1𝑚
𝑡=1 =1;  

12:   Ω = Ω ∪{ℎ𝑡} ;  

13:   𝛼𝑡 = log 1 /βt ;  

14:     t=t+1;  

15: Until t ≥ T 

16: Output: The ensemble members h1 .... h𝑡  and their voting weight 𝛼 1 .... 𝛼𝑡  

Classification phase  

17: Input     x: a feature vector characterizing a pattern. 

18: Output   

Ω(x) = argmax𝑐𝑖∈𝓎 ∑ 𝛼𝑗
𝑇
𝑗=1  × 𝕀 (ℎ𝑗 (x) =𝑐𝑡) 
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2.4.1 Gradient boosting machine 

          The main goal of “boosting” is the conversion of a set of weak learners to a strong and robust 

classifier [58]. It can be used for regression and classification problems. To make a strong learner, 

the predictions of a number of independent weak learners have to be combined. This is achieved by 

taking the majority vote or calculating average of every weak learner's prediction as the final 

prediction. Iteratively add a weak learner to the ensemble until it offers the right classification [59]. 

In a gradient boosting machine, each training model is based on previously trained models. It 

includes a learning procedure with the goal of building base models that are maximally correlated. 

The steps of the gradient boosting are the following:   

First we have the data input where 𝑥𝑖 refers to training dataset and 𝑦𝑖  refers to target and 

L(𝑦𝑖 , 𝐹(𝑥)) is the loss function LikelyHood wich is a function of the predicted probability p 

which can be convert to a function of predicted log(odds) knowing that : 

P=
𝒆𝒍𝒐𝒈(𝒐𝒅𝒅𝒔)

𝟏+𝒆𝒍𝒐𝒈(𝒐𝒅𝒅𝒔)         (2.3) 

 

 

 Then the loss function is:      

𝑳 = 𝒚𝒊 𝐥𝐨𝐠(𝒐𝒅𝒅𝒔) + 𝐥𝐨𝐠 (𝟏 + 𝒆𝐥𝐨𝐠(𝒐𝒅𝒅𝒔)).   (2.4) 

 

 The first step consists in initialize model with a constant value: 
 

                            𝑭𝟎(x)=argmin ∑ 𝑳(𝒚𝒊, 𝜹
𝒏
𝒊=𝟏 )  ,  (2.5) 

 

where 𝑦𝑖 is the observed values, L is the loss function, and δ is the value for log(odds). This 

is the summation of the Loss Function for each observed value, and argmin over δ means 

that we need to find a log(odds) value that minimizes this sum. Then take the derivative of 

each loss function. The second step consists in calculating the pseudo residual with the 

following formula :  

 

                              Residual   = − [
𝝏𝑳(𝒚𝒊,𝑭(𝒙𝒊))

𝝏𝑭(𝒙𝒊)
]  𝑭(𝒙)=𝑭𝒎−𝟏(𝒙)

     (2.6) 

 

Thereafter, Fit a regression tree to the residual values and create terminal regions. For each 

leaf in the new tree, we calculate 𝛿, the output value of each leaf is the value for 𝛿 that 

minimizes the summation where : 

                    𝜹   = 
∑ 𝑹𝒆𝒔𝒊𝒅𝒖𝒂𝒍

∑[𝒑∗(𝟏−𝒑)]
         (2.7) 

 

 As the last making a new prediction for each simple where the new prediction 𝐹𝑚(𝑥) is 

based on the last prediction using the following formula:  

 

   𝑭𝒎(𝒙) =Old tree +Learning rate*New tree   (2.8) 
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The learning rate determines the contribution of each tree on the final outcome and controls 

how quickly the algorithm learns. Similarly, we substitute and find the new log (odds) for 

each instance and hence find the probability. Using the new probability, we will calculate the 

new residuals. This process repeats until we have made the maximum number of trees 

specified or the residuals get super small. When training a gradient boosting model, selecting 

the appropriate number of models (i.e., iterations) is important. Setting it too high can result 

in overfitting, while setting it too low can result in under fitting [54]. 

 

Gradient boosting algorithm is given by: 

Input : Data{𝑥𝑖 , 𝑦𝑖} , i=1..,n and differentiable Loss Function L(𝑦𝑖,F(x)) 

 
1: initialize model with a constant value : 

𝐹0(x)=argmin ∑ 𝐿(𝑦𝑖 , 𝛿
𝑛
𝑖=1 ). 

 

2: For m=1 to M : 

3: Compute 

                    𝑟𝑖𝑚   = −[
𝜕𝐿(𝑦𝑖,𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]  𝐹(𝑥)=𝐹𝑚−1(𝑥)

 for i=1…n. 

 

4: Fit a regression tree to the 𝑟𝑖𝑚   values and create a terminal region. 

 

5: For j=1.. 𝑗𝑚 compute 

                                    𝛾𝑗𝑚=argmin ∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖)𝑥𝑖∈𝑅𝑖𝑗
+ 𝛾 ) 

 

6: Update    𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥)+𝜈 ∑  𝛾𝑚
𝑗𝑚 
𝑗=1  𝛪(𝓍 ∈ 𝑅𝑗𝑚) 

 

Output : 𝐹𝑚(𝑥) 

 

 

LightGBM 

        LightGBM is a specific instance of the Gradient Boosting Decision Tree algorithm. It is a very 

simplistic algorithm yet became one of the most successful nonlinear algorithms due to its superb 

performance and flexibility [60]. LightGBM uses a new technique: Gradient-based one side 

sampling (GOSS).  It is used to make the model perform better and give it a competitive advantage 

over alternative Gradient Boosting Decision Tree (GBDT) frameworks. This technique allows us to 

focus on instances with a higher gradient which will accelerate the learning process (i.e. the under-

trained instances) will contribute more to the information gain. GOSS keeps those instances with 

large gradients (e.g. larger than a predefined threshold) and just drops those occurrences with a small 

gradient to retain the accuracy of information gain estimation. LightGBM is an excellent choice for 

faster training, adequate efficiency, optimal memory, satisfactory accuracy, parallelism, and large-

scale data processing features are achieved [61].  
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XGBoost 

         The XGBoost (Extreme Gradient Boosting) algorithm is a machine learning algorithm for 

classifying and predicting data. XGBoost is another implementation of gradient boosted trees 

designed for high speed and accuracy, which has been proven to be very effective and widely used in 

machine learning competitions. XGBoost has high predictive power and is nearly ten times faster 

than other gradient boosting techniques since it supports distributed platforms such as Apache 

Hadoop and can be distributed across multiple machines. The algorithm also includes various 

regularization parameters that can reduce overfitting and improve the overall performance by 

creating ensembles that are simpler and more generative. Therefore, this technique is also known as 

the regularized boosting technique [62] [63]. 

2.5 Deep learning for sequential models 

2.5.1 Overview of deep learning  

         Deep learning is a part of machine learning that deals with artificial neural networks (ANNs). 

These latter are algorithms inspired by the structure and the function of the brain. It drives 

many  applications and services that improve automation, performing analytical and physical tasks 

without human intervention, such as digital assistants, voice-enabled TV remotes, and credit card 

fraud detection as well as emerging technologies (such as self-driving cars). In recent years, deep 

learning has seen tremendous growth in its popularity and usefulness, largely as the result of more 

powerful computers and many processing units like Graphics Processing Unit (GPU), Neural 

Processing Unit (NPU) and TPU (Tensor Processing Unit) [64].  

 

Artificial neural network 

       An artificial neural network (ANN), also known as neural network, or feed-forward neural 

network, is a computational model that is capable of processing information in order to tackle tasks 

such as classification and regression [65]. One of the reasons for the familiarity it has gained is the 

ability of its network’s self-learning capability to solve complex problems which are difficult or 

unfulfillable for humans and even bring out better results than statistical methods. 

  

ANN architecture  

        ANN is a group of several neurons (nodes) at each layer, refer to Figure 2.3. A neural network 

is based on an input layer, an output layer and a hidden layer. The input layer accepts signals and 

data from the outside world. However, the output layer realizes the output of the system processing 

results. Moving to the hidden layer that is located between the input and the output layers, it cannot 

be observed from outside the device because of the number of neurons in both layers surrounding it 

that are often fixed. The number of hidden layers and the number of neurons in each layer determine 

the complexity of the neural network. A single neuron generally has multiple inputs. After some 
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calculations (i.e., weighted addition), the output will be used as the input of subsequent neurons. In a 

neural network, every connection between two neurons represents a weight to reflect the strength of 

the connection. Finally, neurons are combined layer by layer to form a neural network [66]. 

 

 

Figure 2.3: ANN architecture [66]. 

A perceptron consists of a single node. It is formally defined as a function 𝑓𝑗  of N input 𝑥 =

(𝑥1, 𝑥2, … 𝑥𝑁)weighted by a vector of connection weights 𝑤𝑗 = (𝑤𝑗1, 𝑤𝑗2 , …𝑤𝑗𝑁) completed by a 

neuron bias 𝑏𝑗, and coupled with an activation function 𝜑. 

𝑦𝑗 = 𝑓𝑗(𝑥) = 𝜑((𝑤𝑗 , 𝑥) + 𝑏𝑗)                   (2.9) 

The NN equation is defined by the formula:  

𝑦𝑗 = 𝜑[∑ (𝑤𝑖𝑗𝑥𝑖) + 𝑏𝑗
𝑁
𝑖=1 ]  ,          (2.10) 

         
where 𝑥𝑖  is the inputs, 𝑤𝑖𝑗  is the weight of connection, 𝑏𝑗 is the bias.  

 
Figure 2.4: perceptron [66]. 

 

Several activation functions have been introduced in the literature. The most widely used activation 

functions are shown in Table 2.1. 
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Table 2.1: Activation functions formulas. 

Activation Function Formula 2D plot  

 

Sigmoid (logistic) 
 

 

𝜑(𝑥)  =   
1

1 + exp (−𝑥)
 

 

 

 

 

The Rectified Linear Unit (ReLU) 
 

𝜑(𝑥) =  𝑀𝑎𝑥(0, 𝑥) 
 

 

  
 

 
Hyperbolic tangent (tanh) 

 

 

 

 

𝜑(𝑥) = 
𝑒𝑥𝑝(2𝑥) − 1

𝑒𝑥𝑝(2𝑥) + 1
 

 

 

For the output layer, the activation function is generally different from the one used on the hidden 

layers. In the case of binary classification which coincides with our goals, the output predicts P(Y = 

1|X). Because this value is in the range [0, 1], the sigmoid activation function is commonly used.  

 

2.5.2 Training a sequential model 

          Backpropagation refers to the method of calculating the gradient of neural network 

parameters. In short, the method traverses the network in reverse order, from the output to the input 

layer. Backpropagation uses the chain rule to calculate the derivative of the loss function L with 

respect to each parameter in the network. The Loss function 𝐿(𝑦,̂  𝑦) penalizes the distance between 

the output 𝑦 ̂ and the target y.  In general, it computes the difference between the algorithm's current 

output and its expected output. It is an evaluation of the algorithm's ability to model data. Many loss 

functions have been introduced in the literature depending on the task at hand: Classification or 

Regression. We can cite: Mean Squared Error (MSE) for regression and Binary Cross Entropy 

(BCE) for classification [67]. For sequence models, a variant of gradient descent namely 

backpropagation through time (BPTT) is commonly used. The BPTT is the application of 

Backpropagation training algorithm which is applied to the sequence data like the time series. It is 

widely used to train LSTMs and other recurrent models. 
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        In deep learning and machine learning, Gradient Descent (GD) optimization plays an 

important role. Several new variant algorithms have been developed in recent years to further 

enhance efficiency. Optimization aims to define the key parameters that make the solution easier. 

Many machine learning algorithms have issues with this. The Gradient algorithm is an example of an 

optimization algorithm that classifies weights by minimizing the cost function. In terms of 

performance algorithms, GD is by far the most popular and most commonly used method of 

optimizing neural networks. GD works to determine a distinct role at a local minimum. The purpose 

of it is to determine the parameter (W, b) values (coefficients) of a function which significantly 

decrease the loss function. The theory is to take repeated steps in the opposite direction of the 

gradient at the current stage (or an approximate gradient) of the function because this is considered 

the steepest descent direction [68]. The main steps are defined as follows: 

We start from a random initial point, and then measure the value of the gradient at that point. And 

how is a gradient measured in mathematics? By calculating the derivative of the loss function for 

both parameters 
𝑑𝐿

𝑑𝑏
,  

𝑑𝐿

𝑑𝑊
. Therefore, the second step consist to update the optimization parameters 

(W , b) so that we can minimize our derivative using this formula: 𝑊𝑡+1 = 𝑊𝑡 − 𝛼
𝑑𝐿

𝑑𝑊
, where 𝑊𝑡+1is 

the updated weight at instant t+1. 𝑊𝑡is the old one, and  is the learning rate .Finally, we repeat this 

process until we get the parameter values that decrease the loss function in order to achieve a global 

minimum. The goal of this algorithm is to adjust the value of all weights in order to minimize the 

loss function and get the neural network's prediction result for the input sample closer and closer to 

the real value as shown in Figure 2.5. There are also several variants dependent on the GD approach 

that can be used to maximize the algorithm's performance, such as Batch Gradient Descent (BGD), 

Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation (Adam). 

Adam optimizer algorithm was described in the 2014 [69]. Adam is a method of GD optimization 

that measures adaptable learning rates for each parameter. Adam is one of the most common step-

size strategies in the field of neural networks. The name was taken from Adaptive Moments [70]. 

The upgrade operation considers the smooth gradient variant and provides a better final result [71] 

[72]. Adam lowers computing costs, needs less execution memory, and is invariant to gradient 

diagonal rescaling. The results of the Adam optimizer are generally better than every other 

optimization algorithms, have faster computation time, and require fewer parameters for tuning. 

Because of all that, Adam is recommended as the default optimizer for most of the applications. 

Choosing the Adam optimizer for our application might give as the best probability of getting the 

best results. 
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Figure 2.5:Gradient descent graph. 

 
The general algorithm is given by these main steps  

1. Present the input pattern and propagate it through the network to get the output. 

2. Calculate the error by comparing the predicted output with the expected output using a loss 

function. 

3. Compute the derivatives of the error based on the weights of the network using BPTT. 

4. Adjust the weights so that the error is minimum using the Gradient Descent algorithm. 

 

 

2.5.3 Common sequential models  

Recurrent Neural Network    

        Recurrent Neural Networks (RNNs) are a type of neural networks that are beneficial to use with 

sequential data [73]. The structure of RNN is similar to that of the standard neural network, with a 

distinction that RNNs allow their neurons to share their outputs with previous layer neurons. The 

general form of RNNs is depicted in the following diagram (Figure 2.6): 

 

 

Figure 2.6: Recurrent neural network [73]. 
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          As we can see in the preceding diagram, data from previous time points goes into the training 

of the current time point. The recurrent architecture makes the models work well with time series and 

sequential data. In RNNs, the information is passed from the current state to the next, as shown in the 

unrolled version of the network in (Figure 2.7).  RNN also learns with training data. From there on, it 

does not process data on inputted data alone. Instead, it uses data from past inputs to make decisions 

too. (The same task is performed on each element of the sequence, and an output depends on the 

output of the previous calculations).Put simply, this architecture is built for having a 'memory'.  

 

Figure 2.7: RNN architecture [73]. 

        RNNs can be categorized into four architectures: many-to-one, one-to-many, many-to-many 

(Unequal Unit Size) and many-to-many (equal Unit Size) based on their input and output. Figure 2.8 

shows these categories attaching with some application examples.  

 

Figure 2.8: RNNs types and applications [73]. 
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        From the perspective of hidden layers, the most commonly used RNN architectures include the 

basic RNNs, and the bidirectional ones, LSTM and GRU. We will focus on these four architectures 

of RNNs, and will start by briefly presenting these architectures.  

Long Short-Term Memory 

        The Long Short-Term Memory (LSTM) unit was initially proposed in order to mitigate 

vanishing and exploding gradient problems [74]. Since then, a number of minor modifications to the 

original LSTM unit have been made [74]. The core idea of LSTMs is an introduction of memory 

cells with a self-loop connection with a constant value 1 (Figure 2.9). Because a memory cell only 

runs through linear operations, it can store a bit of information for an arbitrary long period without 

suffering too much from vanishing gradients [75]. The vanishing gradients problem refers to the 

large decrease in the norm of the gradient during backpropagation. Such events are due to the long 

term components going exponentially fast to norm 0, making it impossible for the model to learn 

correlation between temporally distant events [75]. 

 

Figure 2.9: Self-loop LSTM cell [74]. 

          LSTMs are far more sophisticated. The hidden state, as defined in LSTM, is decomposed as 

ℎ𝑡 = ℎ𝑡;𝐶𝑡 , where ℎ𝑡 is usually referred to as the hidden state and 𝐶𝑡  are called memory cells [76]. 

LSTMs deal with both Long Term Memory (LTM) and Short Term Memory (STM). The LSTM 

may delete or add information to the cell state, which is carefully controlled by structures called 

gates. The notion of gates is used to make computations easy and effective. A sigmoid neural net 

layer and a pointwise multiplication procedure are used to create them. Figure 2.10 illustrates the 

gate notion [74]. 

 

Figure 2.10: Gate Form [74]. 
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Each unit in LSTM is made up of four functional gate units:  

Forget gate”𝒇𝒕”: to filter the valuable information and to ignore the unhelpful ones from the 

previous cell  

Input gate”𝒊𝒕”: controlling what information is stored in the current candidate cell. 

Candidate gate “𝑪̌𝒕”:  calculate the current candidate state by using tanh layer to create a vector of 

new candidate values. 

Output gate “𝑶̃𝒕 “: controlling what information to release from the current candidate cell. 

 

Figure 2.11: LSTM Architecture [74]. 

LSTM computational unit is defined as follows: 

Function LSTM-𝑐𝑒𝑙𝑙𝑡(ℎ𝑡−1, 𝐶𝑡−1, 𝑥𝑡)  returns ( ℎ𝑡 , 𝐶𝑡) 
Input   

   

𝒉𝒕−𝟏:  The hidden vector at time step t-1.   

𝑪𝒕−𝟏:  The output vector of time step t - 1. 

𝒙𝒕 : is The input vector at time step t. 

 

Local variable  

 𝒇𝒕, 𝒊𝒕, 𝑪̌𝒕, 𝑶̃𝒕 : Gates. 

 𝑾𝒇, 𝑾𝒊, 𝑾𝒄, 𝑾𝒐 : Weights.  

 𝒃𝒇, 𝒃𝒊, 𝒃𝒄, 𝒃𝒐: Bias.  

begin  

 

 Firstly select which information from the cell state will 

be discarded by a sigmoid function  
 

 𝒇𝒕 = 𝝈(𝑾𝒇. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒇) 
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 Using a sigmoid layer and the tanh function to choose 

which values to update. 
 

                                𝒊𝒕 = 𝝈(𝑾𝒊. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒊) 

𝑪̌𝒕 = 𝒕𝒂𝒏𝒉(𝑾𝒄. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒄) 

 

 
 

 
 

 Applying this formula to update the old cell state  

(𝐶𝑡−1). 

𝑪𝒕 = 𝒇𝒕 × 𝑪𝒕−𝟏 + 𝒊𝒕 × 𝑪̌𝒕 

 

 

 

 Run the sigmoid layer to define the output. Then run it 

through the tanh function using these two equations. 

 

Õ𝒕 = 𝝈(𝑾𝒐. [𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒐) 

𝒉𝒕 = Õ𝒕 × 𝒕𝒂𝒏𝒉(𝑪𝒕) 
 

 

return (ℎ𝑡 , 𝐶𝑡) 

End. 

 

 

Bidirectional-Long Short-Term Memory  

        Bi-LSTM is a combination of two LSTM with their own parameters: one encodes the input 

sequence in the forward direction, the other encodes the input sequence in the backward direction. It 

returns two hidden vectors ℎ⃗ 𝑡 ⊕ ℎ⃖⃗𝑡  at time step t. We represent the hidden states ℎ𝑡 of Bi-LSTM by 

making a concatenation of two hidden states, which captures both previous and future information in 

the sequence [74]. 

                                                   ℎ𝑡 = ℎ⃗ 𝑡 ⊕ ℎ⃗⃖𝑡 ,      (2.11) 

where ⊕ is the concatenation operation. 
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Figure 2.12: Bidirectional-LSTM architecture [74]. 

 

Gated Recurrent Units  

          A Gated Recurrent Unit (GRU) is a lightweight version of an LSTM. Unlike LSTMs, GRUs 

does not have an explicit cell structure, and they are designed to adaptively reset or update the 

memory content. A GRU has a reset gate 𝒓𝒕 and an update gate 𝒛𝒕. Because a GRU does not have a 

memory cell, the context is fully exposed at each time step, and the new context is determined by 

performing leaky integration between the previous context and the new context. Figure 2.13 below 

shows a graphical view of a GRU [75]. 

 

Figure 2.13:GRU architecture diagram [75]. 

 

2.5.4 Deep sequential models  

          Stacking more than one sequence model qualifies it as a deep learner . Deep sequential 

models are deep learning techniques used when the input is a sequence of data. Sequences are made 

up of data points that can be arranged so that observations at one point in the sequence provide 

meaningful information about observations at other places in the sequence. 
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Figure 2.14: Deep sequential model. 

2.5.5 Attention mechanism 

          As a result of its ability to focus on the effective parts of features adaptively, the attention 

mechanism has demonstrated success in many tasks, such as image classification, anomaly detection, 

neural machine translation, multimedia recommendation, and others [77]. A particular region of an 

image, or video or signal can be selected adaptively by the proposed model's attention mechanism, 

and only those regions are processed at high resolution [77]. Recently the attention mechanism has 

also been widely applied in time series analysis r [78]. Attention mechanisms allow for a more direct 

dependence between the states of the model at different points in time.  

        Following the definition, given a model which produces a hidden state ℎ𝑡 at each time step, 

attention-based models compute a “context” vector  𝐶𝑡  as the weighted mean of the state sequence  

ℎ𝑗 by [79]: 

𝐶𝑡 = ∑ 𝛼𝑡𝑗ℎ𝑗
𝑇
𝑗=1 ,   (2.12) 

 
where T : is the total number of time steps in the input sequence, and  𝛼𝑡𝑗 : is a weight computed at 

each time step t for each state ℎ𝑗.These context vectors are then used to compute a new state 

sequence s, where  𝑠𝑡 depends on  𝑠𝑡−1, ct and the model output at t−1. The weightings 𝛼𝑡𝑗 are then 

computed by formula [79]: 

𝑒𝑡𝑗 = 𝑎(𝑠𝑡−1, ℎ𝑗), 𝛼𝑡𝑗 =
𝑒𝑡𝑗

∑ exp (𝑒𝑡𝐾)𝑇
𝐾=1

,    (2.13) 

 
where α is a training function which can be thought of as computing a scalar importance value for ℎ𝑗. 

given the value of ℎ𝑗 and the previous state st−1[80]. This approach provides more direct access to 

the whole state sequence h for the new state sequences.  
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Figure 2.15: Attention layer [80]. 

 

2.6 Conclusion  

        Across this Chapter, we have reviewed the crucial concepts of classification. The main goal of 

our work is to conduct Machine Learning experiments for partial discharge detection in power line 

signals. First, we presented what classification is, and then we highlighted the traditional and 

sequential models as the main models required for our work. We have also introduced famous 

measures to evaluate the efficiency of learning models. In the next Chapter, we will introduce the 

experimental setup and describe the general environment deployed that we have used for our 

experiments. 
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Chapter 3 : Experimental 

Framework 
 

 

3.1 Introduction 

        In this chapter, we present the framework that we have used to conduct our tests. We first define 

all the libraries and the development set that we have used; as well the VSB dataset. Then, we define 

the feature extraction setup we have used to provide a numerical representation of our signals. Next, 

we describe the learning models invoked for training our detectors; namely: RNN, GRU, LSTM, Bi-

LSTM, AdaBoost, XGBosst, LightBGM and Random Forest. Finally, we present the evaluation 

procedure that we have followed for assessing the performance of our detectors. 

3.2 Utility libraries  

        We have conducted our experiments using Python 3.7 on Kaggle [81]. Kaggle is a web platform 

organizing data science competitions owned by Google. On this platform, companies propose data 

science problems and offer a prize to the data scientists with the best performance. In addition to 

these contests, Kaggle also allows users to publish and search datasets, which they can use for their 

machine learning projects. Kaggle provides free access to NVidia K80 GPUs in kernels. This 

benchmark shows that enabling a GPU to your Kernel results in a 12.5X speedup during training of a 

deep learning model. 

Python: Another bright spot for Kaggle is the availability of all the necessary python 

libraries used for signal processing, deep and machine learning experiments. These 

libraries do not require any installation or configuration. The following are a few of the 

most relevant libraries that we have invoked in our work. 

Keras: Keras is a high-level API written in python that runs on a Tensorflow backend. It is 

a highly-productive interface for solving machine learning problems, with a focus on 

modern deep learning. Its simplicity helps users develop a deep learning model quickly and 

provides a ton of flexibility while still being a high-level API [82]. 

Tensorflow: Tensorflow was originally developed by researchers and engineers working 

on the Google Brain team within Google's Machine Intelligence Research organization to 

conduct machine learning and deep neural networks research [83]. 

Scikit-learn: Scikit-learn is an open source machine learning library that supports both 

supervised and unsupervised learning [84]. It also provides various tools for model fitting, 

data preprocessing, model selection, model evaluation and many other utilities. 
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3.3 Training data-Set  

        The VSB data-base is proposed by the cooperation of both VSB – Technical University of 

Ostrava and ENET center. Since the signal data originate from the real environment, rather than a 

laboratory, they contain a lot of background noise. The VSB dataset contains two sets of 

measurements: training and test sets. The training set contains 8712 samples with 3 labels: the 

measurement ID, the phase, and whether the power line insulation was damaged at the time of 

recording. These signals are three-phase signals acquired 2,903 times. Damaged power lines should 

contain partial discharge, however no additional information is provided on the partial discharge 

types, shapes, or location. In this set, 575 samples are labeled as damaged power lines and 8186 with 

no PD. The test set contains 20337 signals with two labels: signal-ID, the measurement ID and the 

phase. No ground truth is provided with respect to the presence of PD. However, the assessment of 

the anomaly score on the test set can be obtained through the challenge website upon submission. 

Further details can be found in Section 4.2.5. Figure 3.1 shows a sample of the metadata file. The 

metadata contains the following information about the signals: 

Signal id — a unique integer used to identify each signal. A signal id of ‘0’ corresponds to column 

‘0’ in the signal data. 

Phase id — 3 conductors are used to transfer the power from one region to another. Each conductor 

carries a signal. The phase of the signal in each conductor is different. The phase id mainly refers to 

the conductor in which the signal is being carried. Each signal id is associated with a unique phase id 

of 0, 1, or 2.  

Measurement id — since the signals are measured using a meter, each signal is associated with a 

measurement id. Each measurement id is associated with 3 signals corresponding to the 3 phases of 

the signal. 

Target — this field provides information on whether a given signal has a partial discharge pattern in 

it or not. A value of 0 corresponds to the partial discharge pattern not present and a value of 1 

corresponds to the partial discharge pattern present for the respective signal id. This field is present 

only for the training data and has to be determined for the test data. 
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Figure 3.1: Metadata of training set. 

 

3.4 Features engineering  

       We have trained our detectors on a set of features that can define and describe the presence of 

the partial discharge anomaly. In this section, we present the feature extraction setup used in the 

development of our systems. We have extracted two sets of features: Statistics-based and signal 

processing-based feature sets, which we denote, respectively, Stat and FFT. The following 

subsections describe the process of extracting these features. 

Preprocessing features 

        We have trained traditional models on preprocessed features to have a robust and efficient 

model. Each signal is preprocessed to identify the peaks and calculate the features. The following 

step describes the process: 

First Flatten the trace using the flatiron function, then identify local maxima using the local-maxima-

1d-window function to extract peaks once all peaks have been identified peaks caused by noise in a 

signal must be removed, this function is used using the get-peak function. Once the noisy peaks have 

been removed, features are computed for each of the remaining peaks. As a result we have 9 

preprocessed features. 

Statistical features “Stat” 

           For each signal in the training set  𝑥(𝑡), 𝑡 = 1…800000, we calculate the mean and 6 

percentile values [100,99,95,0,1,5] for every chunk of 1000 points,  resulting in a 2D array (A) of 

shape (8712, 800) . Recall that the training set is made of 8712 signals. Each entry of the previous 

array 𝐴𝑖𝑗corresponds to the mean of the 𝑗𝑡ℎ chunk of signal i. In addition, we have a percentile N-        
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Dim array (P) of shape (8712, 800, 6), each entry 𝑃𝑖𝑗
𝑘  corresponds to the 𝑘𝑡ℎ percentile value of the 

𝑗𝑡ℎ  chunk of signal i. When k=1 the entry 𝑃𝑖𝑗
𝑘  corresponds to the maximum value (100%) and for 

𝑃𝑖𝑗
4 , this cell represents the minimum value. Then, we have employed 1D convolution on P in order 

to smooth its values. As shown in Figure 3.2. 

 

Figure 3.2: Three-phase signal Smoothed with 1D convolution. 

       Then we have selected 3 main-features. First we have extracted the max value from P, also we 

have defined the peak interval; from that interval we extract the mean and the max values. These 

features could be helpful in detecting partial discharge to have at the end of this process an array of 

57 features for each 3-phases signal (2904, 57). 

Features "FFT"  

       The appellation “FFT” does not refer just to the Fast Fourier features, but also includes the PSD 

features and other common features. We have used this name just for   concise notation. We 

have extracted 19 FFT features; specifically:  

 8 features extracted using FFT.  

 8 features extracted using Welch power density function. 

 STD, Mean, Band-Width of the training signals. 

3.5 Learning models 

      In this section, we introduce the main learning models and hyperparameters that we have used to 

train our deep models and traditional models. First, we present the basic architectures that we have 

invoked in our implementation.  

3.5.1  Sequential models 

         The original LSTM model consists of a single hidden LSTM layer followed by a standard 

output layer, the Stacked LSTM is an extension to this model that has multiple hidden LSTM layers 

where each layer contains multiple memory cells, the number of cells is defined mathematically as 

the power of 2, the most common number of cells used is 128 and 64, too many can over fit and too 

few can under fit. The layers are organized in a decreasing manner according to the number of cells. 

The architecture below corresponds to the LSTM model that we have implemented with four stacked 
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layers.  As shown in Figure 3.3, the model takes an input of features of shape (160, N) the input 

shape varies according to the feature type; N ∈  {57,19,76}. If N=57, then the model is trained on the 

Stat features, while if N=19, then it takes as input FFT features, finally, if N=76, the model is trained 

on both feature sets. 

 

 

Figure 3.3: Sequential model implementation architecture. 

 

        In order to perform learning, we have used the common error estimation function Binary Cross 

Entropy / Log Loss: this method compares the predicted probabilities to the actual class output, 

which can be either 0 or 1. It then computes a penalty for each probability based on how near or far it 

was from the expected value. The function is given by the following formula: where N is the number 

of samples represents the predicted probability and 𝑝(𝑦𝑖) is the output. 

𝐿𝐿 =  −
1

𝑁
∑ 𝑦𝑖 . log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) log(𝑝(1 − 𝑦𝑖)).

𝑁
𝑖=1     (3.1) 

 

We have used a variant of gradient descent, the Adam optimizer in order to minimize the loss 

function. Finally, we perform thresholding on the output probability vector to produce the oracle 𝑌 =

{𝑦1, … , 𝑦𝑖 , . . } outputs, with 𝑦𝑖= 1 if the anomaly is present in signal i, and 𝑦𝑖= 0 otherwise.  

 

3.5.2 Traditional models 

         We have trained our models on various features ( FFT features , Stat features , FFT+ Stat and 

preprocessed ) using AdaBoost, Random forest, LightGBM and XGBoost classifier while varying 

some hyper-parameters such as learning rate, number of tree and number of leaves. We have invoked 

the Scikit-Learn library for implementing these models. Each model takes as input a vector of 

data with a size of 2904×N, with 𝑁 ∈  {57,19,76,9}. If N=57, then the model is trained on the Stat 

features, while if N=19, then it takes as input FFT features and if N=76, the model is trained on both 

feature sets, finally, if n=9 the model is trained on preprocessing features. The figure 3.4 shows the 

steps to train our models.  
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        Our classifier is divided into the learning phase and testing phase. In the learning phase, our 

model is trained to learn from our train set. First we apply cross validation with 5 splits then we fit 

our model. But in the test phase the model predicts the label of unseen signals from the test set. Table 

3.1 gives a summary of these learning algorithms and their hyper-parameter settings. 

Table 3.1:Traditional models parameters set. 

Classifiers Parameters values 

AdaBoost 

 

n-estimators 10000 

Random Forest 

 

 

 

n-estimators 
max_features 

max-depth 

10000 
19 

11 

LightGBM 

 

 

 

 

 

 

n-estimators 

learning rate 

num-leaves 
max-depth 

type-boosting 

early_stopping_rounds 

10000 

0.01 

30 
300 

GDBT 

100 

XGBoost n_estimators 

max_depth 

learning rate 

10000 

5 

0.01 
 

 

 

Figure 3.4: training traditional models process 

3.6 Performance evaluation 

            In order to assess the performance of our detectors, we have used one of the common 

performance metrics, the Matthew Correlation Coefficient; known as MCC score (please refer to 

section 2.2.2 for more details). In addition, we have performed a stratified 5-cross validation to split 

the training set into non overlapping training and validation sets. We have used the training set for 
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learning the models, whereas the validation set was employed for estimating the generalization 

performance, obtaining at the end 5 trained models and 5 MCC scores. In case of AdaBoost and 

Random Forest, we report the average over these five measurements, whereas in case of LightGBM, 

XGBoost, RNN and LSTM variants, we report the model with the best score, i.e. the validation set 

was used for model selection. 

In order to obtain a reliable estimate of the generalization performance and avoid scores affected by 

random behavior of certain libraries, we have repeated the above steps 10, and report the average and 

standard deviation of these 10 runs. 

 

3.7 Conclusion  

       In this chapter, we have described the setup used to devise our fault detectors. We have 

presented the VSB data set, the features and classifiers used in our development. In the following 

chapter, we will present the results of these experiments and analyze them in order to derive 

conclusions. 

 

. 
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Chapter 4 : Experimental Results and 

Discussion 

 

4.1 Introduction 

        In this Chapter, we present the partial discharge detection systems that we have implemented. 

We first investigate the sequential modeling of the power line signals. We have used namely: LSTM, 

Bi-LSTM, RNN and GRU, trained on various sets of features. Then, we examine traditional yet 

powerful learning algorithms; specifically, ensemble learning. We invoke AdaBoost, Random 

Forest, two Gradient Boosting Machines Light GBM and XGBoost. 

4.2 Experiment set 1: Sequential modeling  

4.2.1 Experiment 1: LSTM vs Bi-LSTM vs RNN vs GRU  

           The main goal of this experiment is to analyze the effect of the gating memory mechanism of 

the sequential models, namely GRU and LSTM. To this end, we have built four detection systems 

trained only on the statistical feature set using the ADAM optimizer with, LR=0.01, batch size = 

128. We have set the number of epochs to 50. Table 4.1 gives the averaged MCC results over 10 

runs of each system. We also report in Figure 4.1 the whisker plot of the compared models. 

Table 4.1: MCC score (%) of the gated memory systems. 

    Bi-LSTM     LSTM       GRU        RNN 

 

81.87% ± 2% 80.06% ± 4% 81.46% ± 3% 79.98% ± 4% 

 

 

 

Figure 4.1: LSTM vs Bi-LSTM vs RNN vs GRU Wicker plot representation. 
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The analysis of the above results indicates that, overall, all four systems yield comparable correlation 

scores, with some little variations. Specifically, the table reveals that Bi-LSTM performance is in the 

lead followed by GRU and LSTM, while RNN provides the worst scores. This latter observation is 

expected since RNNs suffer from the vanishing gradient problem [75], hence, they are not capable of 

modeling long sequences of data. Therefore, we can conclude that introducing the gating mechanism 

positively impacts the detection performance.  Furthermore, the whisker plot shows that the 10 Bi-

LSTM scores have less variations (condensed box) compared to its counterparts. Consequently, Bi-

LSTM provides a more stable behavior. 

4.2.2 Experiment 2: Impact of the number of stacked layers 

          Following our previous experiment, we have found that Bi-LSTM and GRU models yield the 

best predictive score. As a result, we have carried out the remaining investigations using only these 

models. Recall that the number of stacked layers defines the depth and complexity of sequential 

architectures. To further study how this hyper parameter affects the detection scores, we have trained 

several Bi-LSTM and GRU models, while varying the number of stacked layers from 2 to 4. Also, 

we have set the parameters of the optimizer to the same values as the previous experiment; and have 

conducted 10 runs of each system using the statistical feature set. The averaged-scores over these 

runs are shown by Table 4.2 and Figure 4.2.       

Table 4.2: MCC score (%) of Bi-LSTM/GRU for multiple stacked layers 

 Bi-LSTM GRU 

2 Layers 81.87%±2% 81.46%±3% 

3 Layers 82.75%±3% 80.60%±1% 

4 Layers 70.26%±9% 77.69%±3% 

 

 

Figure 4.2: multiple stacked-layers models bar-plots. 
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       The above plots indicate that systems with 2 and 3 stacked layers surpass 4-layer models for 

both Bi-LSTM and GRU. This latter observation suggests that deeper networks provide poor 

performance when compared to a shallower architecture. However, it is widely acknowledged that 

deep models usually generalize better [85], while requiring more training epochs. Note that in our 

experiment, we have set the number of epochs to 50. We believe that increasing the training epochs 

could improve the performance of 4-layer models (Bi-LSTM4 and GRU4).  

4.2.3 Experiment 3: Impact of the attention mechanism 

        Attention-equipped LSTM models have been extensively used to improve the performance on 

complex sequence modeling tasks, specifically Natural Language Processing [86]. They provide a 

weighted focus on a part of the text. Attention was originally introduced as a solution to address the 

main issue surrounding Seq-to-Seq models [86]. In case of power line signals, the attention 

mechanism provides the model with an ability to focus on the most effective parts of features that 

characterize a fault or a partial discharge. Anomaly frames should receive higher weights; hence, the 

model is able to detect a partial discharge present in one or fewer frames of the signal. To better 

understand the impact of the attention mechanism, we have compared 4 sequence models, namely 

GRU2, GRU3, Bi-LSTM2 and Bi-LSTM3, with and without introducing the attention layer using the 

same parameter settings as in the previous experiment. We report in the Table below and Figures 4.3, 

4.4 the results of this study. 

Table 4.3: MCC score (%) of sequential systems with/without Attention mechanism. 

 With Attention Without Attention 

Bi-LSTM 3 76.36% ±2% 82.75% ±3% 

Bi-LSTM2 78.66% ±3% 81.87% ±2% 

GRU2 82.86% ±1% 81.46% ±3% 

GRU3 78.58% ± 5% 80.60% ± 1% 
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Figure 4.3: Attention impact on Bi-LSTM variants. 

 

Figure 4.4: Attention impact on GRU variants. 

          Figure 4.3 reveals that Bi-LSTM3 yields the highest averaged correlation scores followed by 

Bi-LSTM2, while Bi-LSTM3+Attention produces the worst performance. Therefore, the 

introduction of Attention does not demonstrate a positive impact on Bi-LSTM. However, as shown 

by Figure 4.4, attention-equipped GRUs exhibits a different behavior. Specifically, on one hand, 

GRU2+Attention attain better scores than GRU2 (without Attention); on the other hand, GRU3 

surpasses (without attention) GRU3+Attention, by a 2% margin. In addition, the whisker plot shows 

that the 10 GRU3+Attention scores have more variations (large box) compared to its counterpart 

GRU3. Consequently, GRU3 without Attention delivers a more stable behavior. 

       The previous observations suggest that overall the non-attention models achieve better scores 

than the attention-equipped detectors. This behavior is not expected since attention models are 

complex but generally very effective and accurate [78]. Many reasons may cause this behavior. It 

can be related to the hyper parameters used for training such as the batch size, the learning rate, the 

number of epochs, etc. 
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     To further investigate this issue, we have conducted the following experiment. We have increased 

the number of training epochs of Bi-LSTM3+Attention, Bi-LSTM2+Attention, GRU3+Attention and 

GRU2+Attention from 50 to 200; and measured the MCC on the validation fold. The averaged-

results are given in Table 4.4. 

Table 4.4: MCC results (%) of Bi-LSTM/GRU trained for 200 epochs. 

Bi-LSTM2 Bi-LSTM3 GRU2 GRU3 

80.93%±3% 81.34%±1% 85.21%±1% 81.99%±4% 

 

       The analysis of the above table indicates the performance of attention models exhibits an 

improvement as the number of epochs increases. We observe a rise of 3% between epoch 50 and 

epoch 200. This latter finding coincides with our initial claim regarding the parameters setting for 

training attention-equipped detectors. We can conclude that attention-based systems need to be 

trained for longer runs in order to provide state-of-the-art performance.  

4.2.4 Experiment 4: Statistical vs FFT features  

          Recall that the main goal of this thesis is to design a system for detecting partial discharge in 

power line signals. In Chapter 1, we have introduced various categories of feature representation, 

namely statistical and FFT features. Please refer to Section 1.5.2 for additional details on this subject. 

So far, we have only considered the Statistical feature set to train our detection models. A natural 

extension to this would be to explore other feature representations. To this end, we have built 

numerous detection systems based on GRU and LSTM architectures, while varying some hyper 

parameters and the mechanism used for extracting the features. Specifically, we have trained four 

models, namely GRU2, GRU2+Attention, Bi-LSTM2 and Bi-LSTM2+Attention, on three sets of 

features: Statistical, FFT and Statistical + FFT, resulting in 12 systems. Note that we have set the 

parameters of the optimizer to the same values as the previous experiment; and have conducted 10 

runs of each system. The scores of these runs are shown by Figures 4.5, 4.6. Furthermore, the 

averaged-scores over these runs are reported in Table 4.5.       
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Figure 4.5: MCC scores for Bi-LSTM2 model trained on multiple features set. 

 

Figure 4.6: MCC scores for GRU models trained on multiple features set. 

Table 4.5:MCC score (%) of deep systems tested on different set of features. 

 Stat Features FFT-Features Stat +FFT  Features 

Bi-LSTM2 81.87%±2% 79.23% ±2% 80.38%±3% 

Bi-LSTM2 + Attention 78.66%±3% 75.74% ±2% 81.04%±3% 

GRU2 81.46%±3% 79.71% ±2% 
80.88%±2% 

GRU2 + Attention 82.86%±2% 75.01% ±2% 82.14%±2% 

 

         The examination of the above results can be summarized as follows. Systems that were 

designed using statistical features outperform those trained on the FFT feature set. Moreover, Bi-
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LSTM2 and GRU2 trained on Stat features achieve better scores than the ones built using both FFT 

and Stat features. Therefore, we can conclude that the introduction of the FFT features [does not 

demonstrate a positive impact] on the performance of non-attention based-models. However, in case 

of attention-equipped models, incorporating the FFT feature set maintains or even improves the 

detection scores. 

4.2.5 Summary: Evaluation on the test set (private / public score) 

         In order to evaluate the efficiency of our detection systems, we have measured the MCC scores 

on the challenge test set. Note that the true class labels of the test signals were not available for 

download during the development stage of our systems. In order to obtain the MCC scores on the 

test set, we have proceeded with submitting our models predictions on the test set through the VSB 

challenge website/evaluation module. This latter provides two types of scores: private and public 

scores. The private score 𝑷𝒓𝒊𝒗𝒂𝒕𝒆𝑴𝑪𝑪 is calculated with approximately 43% of the test data; while 

the public score 𝑷𝒖𝒃𝒍𝒊𝒄𝑴𝑪𝑪 uses 57% of the test set. The equation for measuring the final score is 

given by: 

𝑭𝒊𝒏𝒂𝒍𝑴𝑪𝑪 = 𝑷𝒓𝒊𝒗𝒂𝒕𝒆𝑴𝑪𝑪 * 0.43 +  𝑷𝒖𝒃𝒍𝒊𝒄𝑴𝑪𝑪  * 0.57.    (4.1) 

We have designed several systems, namely: Bi-LSTM2+Attention, Bi-LSTM2, GRU2, 

GRU2+Attention trained on 3 feature sets (stat, FFT, stat + FFT). For each system, we have first 

resampled the training (development) set following 5-fold cross-validation, resulting in 5 training 

and 5 validation sets, denoted 𝒕𝒓𝒂𝒊𝒏𝒊  and 𝑽𝒂𝒍𝒊, where 𝑖 = 1,… . ,5. Then, we have trained the 

models on the training fold 𝒕𝒓𝒂𝒊𝒏𝒊 for 50 epochs; and have selected the one with the highest score 

on the 𝑽𝒂𝒍𝒊 set. This process was repeated 5 times; and at the end, we obtained 5 best trained 

models.  Note that the output consists of a vector of probabilities assigned to each measurement of 

our input signals. In order to obtain both private and public scores on the test set and perform a 

challenge submission, we must compute class labels (labels i.e. 1 or 0). To do so, we have performed 

thresholding on the probability outputs. It is worth mentioning that we have determined the best 

threshold using the whole development set. The results of the submissions are given in Tables ( 4.6, 

4.7, 4.8) 

Table 4.6: Submission scores (%) of four sequential systems with Stat features. 

Stat Features 

 GRU2+Attention GRU2 Bi-LSTM2 + Attention Bi-LSTM2 

Private score 60.41% 60.6% 58.61% 63.43% 

Public score 63.84% 61.6% 63.81% 61.22% 

Final score 62.37% 61.17% 61.57% 62.17% 
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Table 4.7: Submission scores (%) of four sequential systems with FFT features. 

FFT features 

 GRU2 + Attention GRU2 Bi-LSTM2 + Attention Bi-LSTM2 

Private score 63.21% 55.19% 60.34% 54.43% 

Public score 53.60% 60.43% 55.31% 52.60% 

Final score 57.73% 58.17% 57.47% 53.39% 

 

Table 4.8: Submission scores (%) of four sequential systems with Stat+FFT features. 

Stat + FFT features 

 

 

GRU2 + Attention GRU2 Bi-LSTM2 + Attention Bi-LSTM2 

Private score 50.28% 51.01% 59.92% 56.35% 

Public score 50.07% 55.54% 55.10% 54.43% 

Final score 50.16% 53.59% 57.18% 55.25% 

         The analysis of the final scores indicates that GRU2+Attention and Bi-LSTM2 (without 

Attention) trained on the Stat features outperform the other alternatives by a large margin. This 

observation confirms our previous results: (1) FFT features deteriorate the generalization 

performance; (2) GRU performs better when equipped with the attention mechanism, while Bi-

LSTM provides higher scores without incorporating the attention layer. 

      We observe that the best two models GRU2+Attention and Bi-LSTM2, trained on Stat features, 

provide complementary scores. Therefore, it would be beneficial to create an ensemble that 

combines the predictions of several models. To this end, we have first selected four models having 

the highest scores; then, we have tested some pairwise combinations:  GRU2+Attention & Bi-

LSTM2, GRU2 & Bi-LSTM + Attention. In order to produce the ensemble outputs, we have 

averaged the predictions of both learners and performed thresholding; we have set the threshold 

value TH to 0.5. Note that each learner was trained 5 times since we have followed 5-fold CV, 

resulting in a committee made of 10 classifiers. The results are summarized in the following table:  
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Table 4.9: Submission scores (%) of combined systems. 

 GRU2+Attention & Bi-LSTM2 GRU2 & Bi-LSTM2 + Attention 

Private score 63.07% 61.94% 

Public score 65.50% 65.29% 

Final score 64.45% 63.85% 

 

4.3 Experiment set 2: Traditional machine learning models  

4.3.1 Experiment 1: Comparison AdaBoost, Random Forest, LightGBM and XGBoost 

          The main purpose of this experiment is to investigate traditional machine learning for partial 

discharge detection.  To accomplish the ensuing task, we have invoked 4 classifiers namely: 

AdaBoost, Random Forest, LightGBM and XGBoost, trained on a combination of feature 

representations based on signal processing techniques and statistics. In Particular, we have examined 

4 feature sets: Stat, FFT, Stat + FFT and Preprocessing. Note that this latter feature set has been 

inspired from the work of the challenge winners [87]. We obtain at the end 16 detection systems. 

Tables 4.10 gives the averaged MCC results over 10 runs of each system. We also report in Figure 

4.7 and 4.8 the whisker plot of the compared models. 

Table 4.10:MCC scores (%) of Boosting machines. 

 AdaBoost LightGBM Random-Forest XGBoost 

FFT-features 51.1%±2% 70.85%±3% 63.25%±1% 71.76%±3% 

Stat-features 62.27%±2% 75.68%±4% 67.88%±0.4% 75.81%±2% 

FFT+Stat features 64.22%±2% 76.15%±4% 71.20%±1% 77.24%±4% 

Preprocessing features 64.22±1% 77.98%±4% 72.37%±1% 79.61%±2% 
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Figure 4.7:MCC Score for AdaBoost and Random Forest. 

 

Figure 4.8: MCC Score for LightGBM and XGBoost. 

 

Figure 4.9: MCC Score for all classifiers trained on preprocessing and FFT+Stat. 

After examining the whisker plots given in Figure 4.7 and 4.8, we can derive the following main 

observations:  
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1. Gradient Boosting Machines (LightGBM and XGBoost) yield the best MCC scores 

compared to their counterparts AdaBoost and Random Forest. This is rather expected since 

Gradient Boosting Machines are simple yet powerful learning algorithms that provide state-

of-the-art performance in many applications [88]. 

2. FFT feature set negatively impacts the performance of all detection systems, whereas 

systems trained on Stat achieve the highest performance results.   Similar findings were also 

reported in our previous experiments on sequential modeling. A possible cause of this 

peculiar behavior might be related to the process of extracting the FFT features. In our 

experiments (3.4), in the case of Stat features, we have divided each signal into chunks of 

1000 values, and then extracted various statistics from each chunk separately, whereas in 

case of FFT feature set, we have applied the fast fourier transform and Welch’s method on 

the entire signal to extract 19 signal features. Note that an anomaly, i.e. a partial discharge, 

might occur within a single chunk only; therefore, extracting FFT and Welch from the whole 

signal can lead to a feature representation that does not efficiently express the characteristics 

of an anomaly.   

3. FFT+ Stat feature set-based detectors achieve comparable results to systems trained on Stat 

features; thus, the combined feature sets maintain the performance of Stat-based detectors. 

However, AdaBoost exhibits a different behavior. When trained on both Stat and FFT 

feature sets, its performance drops drastically. 

4. Models trained on the preprocessed feature set exceed the other alternatives by a large 

margin. 

Based on the above observations, we can conclude that Gradient Boosting Machines trained on Stat 

or pre-processed feature sets produce the best detection rates. 

4.3.2 Summary: Evaluation on the test set (private / public score) 

In order to evaluate the efficiency of our traditional machine learning-based detectors, we have 

measured the MCC scores on the challenge test set. To achieve this, we have followed the same steps 

discussed in Section (4.2.5). The results of the submissions are given in Tables 4.11, 4.12, 4.13, 

4.14).             Table 4.11: Submission scores (%) of AdaBoost with four diffrent feature sets. 

Adaboost 

 FFT features Stat features FFT + Stat features Preprocessing features 

Private score 41.02% 34.66% 44.96% 50.5% 

Public score 17.62% 37.75% 30.77% 46.64% 

Final score 27.6% 36.42% 36.42% 50.19% 
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Table 4.12: Submission scores (%) of Random Forest with four diffrent feature sets. 

Random Forest 

 FFT features Stat features FFT + Stat features Preprocessing features 

Private score 43.77% 54.39% 52.80% 66.18% 

Public score 21.44% 45.92% 37% 54.84% 

Final score 31.04% 49.56% 43.77% 59.72% 

 

Table 4.13 : Submission scores (%) of LightGBM with four diffrent feature sets. 

LightGBM 

 FFT Features Stat features FFT + Stat features Preprocessing features 

Private score 58.74% 54.88% 55.29% 68.44% 

Public score 34.16% 51.75% 47.98% 67.36% 

Final score 44.72% 53.09% 51.12% 67.82% 

 

Table 4.14: Submission scores (%) of XGBoost with four diffrent feature sets. 

XGBoost 

 FFT Features Stat features FFT + Stat features Preprocessing Features 

Private score 42.31% 35.93% 42.60% 57.42% 

Public score 14.03% 35.98% 29.16% 55.61% 

Final score 26.19% 35.95% 34.93% 59.38% 

The submission scores given in the above table indicate that detectors that use the pre-processed 

feature set demonstrate superiority over the other alternatives, which coincides with our previous 

findings.  

4.4 Summary of experimental findings 

Table 4.15 gives the submission scores of the top 3 detectors. 

Table 4.15: Top 3 submitted scores. 

 GRU2+Attention & Bi-LSTM2 GRU2 & Bi-LSTM2 + Attention LightGBM 

Private score 63.07% 61.94% 68.44% 

Public score 65.50% 65.29% 67.36% 

Final score 64.45% 63.85% 67.82% 
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        The results indicate that LightGBM trained on preprocessed features achieves superiority over 

sequence models Bi-LSTM. Note that gradient boosting machine is a powerful yet simple learning 

algorithm that does not require dedicated hardware like GPUs, NPUs or TPUs. This finding 

coincides with the Data-centric AI principle [89]. Data-centric AI is the discipline of systematically 

engineering the data needed to successfully build an AI system. Consequently, the focus has to shift 

from big data to good data, i.e. extracting meaningful features can considerably boost the overall 

performance. 

4.5 Chapter summary 

        In this chapter, we have presented the results of our experimental enquiries. Several lessons can 

be derived from our analysis:  

 Gate mechanism models (GRU and Bi-LSTM) demonstrated superiority over 

simple recurrent networks (RNN) on the detection performance.  

 Attention-based systems need to be trained for longer runs in order to provide state-of-the-art 

performance.   

 Classifiers trained on preprocessed features achieve a significant improvement in the 

detection performance compared to the other features.  

 FFT features negatively impact all detection systems (sequence and traditional models), in 

contrast to statistical features. 

 LightGBM achieves the best MCC score when compared to the other alternatives. Most 

importantly, when trained on preprocessed features, LightGBM even surpasses the 

ensemble of sequence models Bi-LSTM (any feature set). 

 

In order to build a successful fault detector, the focus has to shift from model-centric to 

data-centric, i.e. understand the input training data and preprocess it. 

 

 

 

 

 

 

 

 



54 
 

 
 

Conclusion  

 

1. Contributions and summary of experimental findings 

      In this thesis, the primal objective was to conduct an analysis and comparison among 

classification systems able to recognize partial discharge anomalies in power line signals. To this 

end, we conducted multiple experiments to analyze the behavior of anomaly detection systems. In 

particular, we have carried out 2 sets of experiments. First, we examined four sequential models: 

Recurrent neural network, Gated recurrent unit, Long short-time memory and Bidirectional long 

short-time memory. We trained these models on 3 different features, namely: statistical, signal 

processing-based features and a combination of these two sets of features. We also examined varying 

some of these learning models parameters. Second, we investigated four ensemble learning 

classifiers for building our detectors, namely: AdaBoost, Random Forest, LightGBM and XGBoost 

trained on the aforementioned feature sets. Most importantly, we analyzed the effect of some 

preprocessing strategies on the overall detection performance. The experimental investigation 

indicates the following: 

 The training of sequential and ensemble learning models on FFT features deteriorates the 

detection scores, while statistical features demonstrate a positive impact. 

 The partial discharge detectors trained using LSTM and its variants give very good results 

compared to RNN. Moreover, increasing the number of layers of these architectures does not 

significantly improve the overall detection rates. 

 The attention-based architectures usually are complex and encompass many parameters that 

need to be trained. Therefore, we can conclude that attention-based detectors need to be 

trained for longer runs in order to improve the MCC scores. 

 The anomaly detection system based on gradient boosting machine classifiers (LightGBM 

and XGBoost) trained on preprocessed signals yields the best performance in terms of both 

detection scores and training time. Consequently, we can conclude that a higher number of 

features is not always beneficial and can negatively affect the performance of the 

classification system. Most importantly, LightGBM even surpasses the ensemble of 

sequence models Bi-LSTM (any feature set). We can conclude that in order to build a 

successful fault detector, the focus has to shift from model-centric to data-centric, i.e. 

understand the input training data and preprocess it. 

2. Limits and future work  

      One extension of this work would be testing other advanced neural network architectures such as 

Convolutional Recurrent Neural Network (CRNN), which involves a CNN (Convolutional Neural 
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Network) followed by a RNN. CRNNs have demonstrated state-of-the-art performance in many 

time-series applications like Sound event detection [90] and Video monitoring [91], since 

convolution layers learn complex feature representations that well characterize partial discharge 

faults [92]. Another future work direction involves testing dimensionality reduction techniques like 

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) [93]. Dimensionality 

reduction is one of the techniques widely used by data scientists while performing feature 

engineering. The goal is to provide a better representation of the feature space, hence, a proper 

characterization of faults. Another appealing work direction would be to study other feature selection 

techniques like Wavelets [94].  

       During this work, we have faced several difficulties. The training of the learning models took a 

very long time since we trained them using Kaggle GPU. Unfortunately, the platform provides us 30 

hours of GPU per week, which prevents us from conducting further experimental investigations. In 

addition, we have had difficulties in all the electronic field (signal processing, fast fourier transform, 

etc.) as it was the first time we worked on it.  

      We have gained extensive knowledge and skills working on this project. We have discovered the 

Kaggle platform and its interesting competitions. In addition, we have improved our programming 

skills in Python. Moreover, we have learned the most important steps to conduct machine learning 

and deep learning projects, while performing tests using many classifiers. 
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