

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

Saad Dahleb University of Blida

Faculty of Sciences

Computer Science Department

Master Thesis In

Information System Security

Design and Implementation of an Automated Security

Hardening and Management System for Linux Servers

Realized By

Yacine Bendou

Mohamed Islam Benoaie

Supervisor:

Dr. Zakaria Sahnoune

Hosting Organization

ELIT-Groupe Sonelgaz

Supervisor:

Mr. Abdelghani Benkoulal

Academic Year: 2022-2021

Abstract

Cybersecurity is an emerging field in computer science with the goal of develop-

ing robust and secure systems. System hardening is a cybersecurity term that

refers to the process of adding more protection for a system by mitigating vul-

nerabilities in the system. This process is based on an international guidelines

and working on them can take a day for just one system. With the growth and

widespread use of digital information, The scenarios of attacks became daily

and the solution of the systems founders is to make updates for the editions so

this process became a time consumer more an more. In order to automate and

facilitate the work, we offered a web based application for ELIT to manage the

data centers in a quicker and more efficient way by getting all the information

of the process.

Résumé

La cybersécurité est un domaine émergent de l’informatique dont l’objectif est

de développer des systèmes robustes et sécurisés. Le durcissement du système

est un terme de cybersécurité qui fait référence au processus d’ajout de plus de

protection pour un système en atténuant les vulnérabilités du système. Ce pro-

cessus est basé sur des directives internationales et travailler sur celles-ci peut

prendre une journée pour un seul système. Avec la croissance et la généralisation

de l’information numérique, les scénarios d’attaques sont devenus quotidiens et

la solution des fondateurs de systèmes est de faire des mises à jour pour les

éditions donc ce processus est devenu de plus en plus consommateur de temps.

Afin d’automatiser et de faciliter le travail, nous avons proposé une application

Web pour ELIT afin de gérer les centres de données de manière plus rapide et

plus efficace en obtenant toutes les informations du processus.

P�l�

Tm\�� r§wW� �dh� r�wybmk�� �wl� ¨� A¾A·JA� A¾¯A�� ¨��rbys�� ��±� d`§

T�AR� Tylm� Y�� ryK§ ¨��rbys�� ��°� �lWO� w¡ �A\n�� 	lO� .Tn��¤ T§w�

.�A\n�� ¨� �`S�� ªAq� �� �yf�t�� �§rV �� A� �A\n� T§Am��� �� d§zm��

A¾A�w§ Ahyl� �m`�� �r�ts§ � �km§¤ Ty�¤ �� AJC� Y�� Tylm`�� £@¡ dnts�

, �F�¤ �AW� Yl� Ah��d�tF�¤ Tym�r�� �A�wl`m�� wm� �� .Xq� d��¤ �A\n�

º�r�� w¡ Tm\�±� ¨sF¥m� ���� A�¤ Ty�w§ �Am�h�� �A¡w§CAnyF �b}�

.r���¤ r��� �wl� A¾Aklhts� Tylm`�� £@¡ �b}� Yt� ��C�d}²� �A�§d��

C� ³ ELITþ� 	§w�� Yl� A¾Am¶A� A¾AqybW� An�d� , ¢lyhs�¤ �m`�� Ttm�� ��� ��

�ym� Yl� �wO��� �®� �� ºAf� r���¤ �rF� Tq§rW� �A�Ayb�� z��r�

.Tylm`�A� T}A��� �A�wl`m��

Contents

I Theoretical Background 1

1 Linux Systems 2

1.1 Introduction . 2

1.2 The POSIX Standard . 5

1.2.1 What is POSIX . 5

1.2.2 POSIX Defined Standards 5

1.3 LINUX Architecture . 8

1.3.1 Hardware Basics . 9

1.3.2 The Kernel . 13

1.3.3 Commands and Utilities 14

1.3.4 Files and Directories . 15

1.4 World of The Open Source . 15

1.4.1 Open Source Software 15

1.5 Conclusion . 18

2 Linux System Administration 19

2.1 Introduction . 19

2.2 Package Manager . 20

2.2.1 What is a Package . 20

2.2.2 RPM Package manager 22

2.2.3 RPM & YUM . 23

2

2.2.4 Debian Package manager 24

2.2.5 dpkg & Apt . 24

2.3 Managing Disks and file systems 25

2.3.1 Linux Files Types . 25

2.3.2 Linux File system structure 29

2.3.3 Linux File system Types 34

2.3.4 Ext, Ext2, Ext3 and Ext4 34

2.4 Managing System Users . 36

2.4.1 The Identification The authentication 36

2.4.2 Users . 36

2.4.3 Groups . 37

2.4.4 Passwords . 38

2.4.5 Users Authentication . 40

2.5 Conclusion . 46

3 Linux Server Administration 47

3.1 Introduction . 47

3.2 Managing Services . 49

3.2.1 Init & Systemd . 49

3.2.2 Units . 50

3.3 Network Management . 54

3.3.1 Desktop . 54

3.3.2 Entreprise . 55

3.3.3 Remote Access . 57

3.4 Virtual Servers . 65

3.4.1 Types of Virtual Servers 66

3.4.2 Advantages disadvantages 68

3.4.3 Virtual Server vs. Virtual Machine (VM) 68

3

3.5 Conclusion . 69

4 Linux System Security & Hardening 70

4.1 Introduction . 70

4.2 Type of Attacks against the system 71

4.2.1 Reading data . 71

4.2.2 Changing data . 72

4.2.3 Denial of service . 72

4.2.4 Access to computer . 73

4.3 System Hardening . 73

4.3.1 System Hardening Types 74

4.3.2 System Hardening Process 76

4.3.3 Server Auditing . 77

4.3.4 Benchmarks . 79

4.3.5 Logs System . 82

4.4 System hardening Automation 85

4.4.1 Monitoring Architectures 86

4.4.2 Available solutions . 88

4.4.3 Ansible Architecture . 89

4.5 Conclusion . 91

II Management System and Automation of The Linux servers Hardening 93

5 Conception 94

5.1 Diagram of Classes . 94

5.1.1 Description . 97

5.2 Use Cases Diagram . 103

5.2.1 Description . 105

4

6 Development and Implementation 107

6.1 Introduction . 107

6.2 Tools Used: . 107

6.2.1 Visual Studio Code : . 107

6.2.2 XAMP Server : . 107

6.2.3 Laravel v9: . 108

6.2.4 Node JS . 110

6.2.5 YAML . 111

6.2.6 Bootstrap . 111

6.2.7 GitHub . 111

6.2.8 AdminLte . 111

6.2.9 Ansible . 112

6.3 Architecture of the Solution . 112

6.4 How the Application works . 114

6.5 The Process of Creation . 115

5

List of Figures

0.1 company organization chart . 6

0.2 The Mind map of the project 8

1.1 The Principle of the operating system[1] 3

1.2 UNIX logical architecture [1] . 8

1.3 UNIX architecture[9] . 9

2.1 mimetype command results . 28

2.2 file command results . 29

2.3 Linux File Hierarchy Structure [10] 31

2.4 Linux file system structure[13] 34

2.5 PAM Diagram [14] . 42

2.6 Permissions List . 43

2.7 Portions of the permissions . 43

3.1 Types of server virtualization [25] 66

4.1 Ansible Inventory . 90

4.2 Ansible Playbook . 91

4.3 Ansible Architecture [28] . 91

5.1 Diagram of classes . 96

5.2 Diagram of classes / permission / Role / User 97

5.3 Diagram of classes / Playbook / Regex / Expressions 98

6

5.4 Diagram of classes / ScanEng / Audit / Playbook / Template/

user . 99

5.5 Diagram of classes / Server/ Audit / Tags 101

5.6 Diagram of classes / File / Results /Audit server 102

5.7 Diagram of the use cases . 104

6.1 Project Architecture . 113

7

List of Tables

2.1 Absolute mode guide . 44

2.2 Absolute mode references . 44

2.3 Symbolic mode guide . 45

2.4 Symbolic mode identity guide 45

2.5 Symbolic mode relationship . 45

3.1 Telnet Advantages Disadvantages 60

8

Appreciations

First of all, we would like to thank God for giving us the Courage and pa-

tience to develop our work, and thus accomplish our studies.

We sincerely, want to Thank our promoters Mr.Zakaria Sahnoune and Mr.

Abdelghani Benkoulal, who have shown themselves to be attentive and always

available throughout the realization of this project as well for the inspiration,

the help and the time that they kindly shared with us.

We express our gratitude and appreciation to the department professors of

computer science that have given us so much to be what we are today.

Dedications of Bendou Yacine

It is with genuine gratitude and warm regard that I dedicate this work for my

Family, Dad Abdelkader, Mom Nacera, my Lovely Khalti Ouahiba and Ami

Mustapha Considered as my second parents, my siblings, my sister Sara, my

brothers Mahdi and Ibrahim and my brother in law Abdelouahab,the beloved

Yanis and Dania.

I’d like to dedicate my work to many brothers Younes Hamid, Merouane,Tahar,

Fady, Hicham, and my friends Ghofrane ,Saya and the beloved ones.

This project is dedicated to my greatful teacher Mr. Derdiche and Ms. Bacha

for having a the great impact on my life.

I also dedicate this Thesis To My Doctors Dr.Gouichiche, Dr.Ghezali,

Dr.Lyazidi, Dr.Meftah, Dr.Guemri.

”Yacine”

Dedications of Benoaie Islam

I dedicate my work to ; My Mother who has always supported me and pushed

me to do and be better.

My brother who always makes me smile and cheerful ,My grandmother to

whom i wish a long and healthy life ,My dearest Friends who are always by my

side.

To my teachers Ms Bacha and Mr Zahar who helped me understand getting

better at Computer Science . And to my dearest cousin Mr Belkorane Hedjala

Mohamed who stood by my side to get involved in this project .

”Islam”

General introduction

The Hosting Organization

Specialized in information and communication technologies, El Djazäır In-

formation Technology ”ELIT” is an Algerian company with more than 300

computer engineers, more than 40 customers, and highly available and secure

infrastructures.

Beyond the aspects recognized in the IT field, computer networks, website de-

velopment, electronic messaging, etc., ELIT ensures the security of information

systems via a state-of-the-art security platform, with a 100% Algerian human

resource. With Multiple approved running solutions for the management like

Finance and Accounting Management System ”HISSAB”, Commitment Man-

agement System ”ILTIZAMATE”, Cash Management System ”MALIYA”,

Human Resources and Payroll Management System ”NOVA”, Supply and In-

ventory Management System ”ATTAD”, Occupational Medicine Management

System ”GMT”, Billing management system ”FAWTRA”, Electronic Doc-

ument Management System ”GED”, Mail management system ”BARIDI”,

Mandate management system ”ELIT Mandats”, Workplace risk prevention

system ”AMLT”, Legal Cases Management System ”SAAJ”, Management

System for cars parks ”Parc Auto”.

2

Even more in the It security as being a specialized community in it. ELIT

offers a platform for the IS security awareness ”ELIT Security Awareness”,

A project Compliance Audit ”AUDELIT” measuring the performance and

ensuring the protection, monitoring, and controlling of information and network

security is a primary necessity for each company. Another project was offered

to ensure upstream security monitoring and the analysis and processing of inci-

dents downstream thanks to a multidisciplinary team of experts responsible for

reacting in the event of IT security incidents already named as Security Incident

Alert and Response Center ”CSIRT Sonelgaz”.To Monitor the environment:

detect threats, opportunities, and trends; Ellit offers ELIT VEILLE.

Context

Hardening in the computing field is usually referring to the process of secur-

ing a system focusing on reducing the surfaces of vulnerabilities that are more

known and exploitable when a system is set to serve multiple functions; in gen-

eral, a mono-function or a single function system is safer and more secure than

a multipurpose one. Changing default passwords, removing new software, min-

imizing usernames or logins, and removing unwanted and none helpful services

are typical ways to reduce the risk of attacks.

There are various methods of hardening Unix, Linux, and Windows systems.

Applying patches and updates to the Kernel; correctly managing the network

by closing and opening only the needed ports, with all the development in the

field intrusion-detection systems are one of the recommended ways, firewalls

and making in place an intrusion-prevention system which can alarm for any

attacks on the system. There are also hardening scripts and tools like Lynis,

Bastille Linux, JASS for Solaris systems, and Apache/PHP Hardener that can,

3

for example, deactivate unneeded features in configuration files or perform var-

ious other protective measures.

While system hardening requires a great and continuous effort, it provides

substantial benefits for organizations, such as a higher level of security, the main

purpose of system hardening techniques and mechanisms is to reduce the attack

surface; this offers a significantly lower risk of malware attacks, unauthorized

access, data leaks, or other malicious undesired activity. In addition, this pro-

cedure offers better system functionality. System hardening best practices often

involve reducing the number of programs and functionality. This translates into

fewer operational issues, a reduced chance of misconfiguration, which can affect

user operations, fewer incompatibilities, and a reduced chance of cyber-attacks

that hurt the user functionality. More than that, simplified compliance and

auditing are one of the gains; those techniques can help in turning a complex

environment into a simpler one with fewer programs and accounts and a sta-

ble, predictable configuration; this translates into a more straightforward and

transparent environment which is simpler to monitor and audit.

Nowadays, with the huge increase of the IT domain and the connection of

all the types of people with different mindsets and purposes in this life, system

hardening has become an obligation before moving to the production level for

any organization or company or even simple users with an information system

based infrastructure or a simple computer with some sensitive data. For a

simple user with one operating system or even two, the heaviness of the process

can not be felt. Still, for organizations with multiple systems, physical or

virtual, the process costs a loss of time for the employees and a massive break

in the financial level.

4

This project is part of the strategy of the ELIT to satisfiy the clients and

Saving Money and time of the organization. The project took place within the

department of the Information systems security working on a mission of being in

charge of the security of the information assets, of the information systems of the

Sonelgaz Group and of guaranteeing the integrity, confidentiality, availability

and traceability of the data of all the information systems of the company.

Our goal in this project is to propose a solution and implementing it for the

automation management of the Linux systems hardening.

5

Figure 0.1: company organization chart

6

Problematic

ELIT is an enterprise owning two datacenters with a large number of servers

that offers informatics solutions to the group Sonelgaz and multiple ministries.

Given the strategic importance of the group Sonelgaz and the importance of

the information systems provided, ELIT is obliged to secure its infrastructure

against any risk. Therefore, one of the principal axes is the hardening and the

tracking of the servers after passing to the production; this mission becomes

more and more complex given the increasing number of the hosted servers in

the datacenters and the absence of an automated tool.

Objectifs

Intending to alleviate the pain from the department IT responsible for the hard-

ening and retrieve the lost time in this process, ELIT planned these objectives

to be realized:

Implementing a system of automation Linux systems hardening

Implementing a system of auditing Linux systems hardening

Approach Adopted

To achieve the goals already mentioned before and develop the systems in the

desired way, a well-defined mind map was created, illustrating an iterative and

agile path to reach the end.

Organization of the Document

This document is divided into two parts. The first one describes state of the

art of system hardening and automation: The first chapter is designed for the

7

Figure 0.2: The Mind map of the project

general view of the Linux system and its architecture. The second chapter is

for the Linux systems Administrator, which is essential to understand how they

work. The third one is made for the Linux servers to understand the connection

and multiple services offered by the Linux servers. The fourth one is for the

security of the Linux systems to know how the Linux is made safe. the last one

is for the hardening and the available tools of automation of the configuration

8

Part I

Theoretical Background

1

Chapter 1

Linux Systems

1.1 Introduction

Pressing on the starting button of the computer makes the electrical power flow

inside the hardware, which starts the working space and makes the computer

usable. For the machine to be functional, a process is completed to charge the

programs in the computer’s memory and then executed. The aim is to simplify

the use of the machine for both the power and non-power users. The whole of

these programs forms an operating system whose purpose, based on its name, is

performing specific operations on the system. It is a transitional layer between

the user and the material.

The Application Programming Interface, or API for short, is provided by

the Operating system for the programmers to help them be more productive

by ignoring some basic task management, some of which can be listed below

• Memory

• Devices access

• Disk access

2

Chapter 1 Linux Systems 1.1 Introduction

Figure 1.1: The Principle of the operating system[1]

• Programs

• Security

• Gathering of the information

When speaking about the Graphical User Interface, it is worth mentioning that

historically, this tool was not packed with the operating system out of the box

as it was not considered mandatory. It is a group of programs bundled together

to simplify the use for all users, professionals and non-professionals alike. It

was considered an unnecessary hardware resource consumption layer until the

Windows system entered the field as a law breaker where Graphical User In-

terfaces were shipped out of the box. Of course, the Linux system offers GUIs,

but on the contrary, users need to install them as optional programs [1].

Linux falls into is one of the Multi-tasking and Multi-user based operating

systems. These traits are considered two of this system’s primary features, in

addition to being Portable, Secure and Open source, having a hierarchical file

system, and supporting a powerful Shell. The roots of the Linux system can be

traced back to Unix.

3

Chapter 1 Linux Systems 1.1 Introduction

Multi Processing: The ability to manage multiple processes and needs phys-

ical conditions which are served by having multiple microprocessors or log-

ically by using technologies like Hyperthreading.[1]

Multi-user: Multiple users can access systems with different levels of permis-

sions with the state of being connected or not. [1]

Portable: The Linux OS can run on different types of hardware, and the Linux

kernel supports the installation of any hardware environment. [1]

Open source: The source code of the Linux operating system is freely avail-

able, and multiple teams are working together to improve the performance

of the Linux operating system. [1]

Hierarchical file system: The Linux operating system provides a typical file

structure in which user files or system files are arranged. [1]

Security: The Linux operating system facilitates user security systems with

various authentication features such as controlled access to specific files,

password protection, or data encryption. [1]

Shell The Linux operating system allows a unique interpreter. Users can em-

ploy such programs to execute operating system commands. It can be

applied to perform different types of tasks. [1]

Ken Thompson made the starting point in 1969 of the Research Group at

Bell Laboratories began experimenting on a multi-user, multi-tasking operat-

ing system using an otherwise idle. After Dennis Richie joined the project and

other members of the Research Group, the early versions of Unix were pro-

duced. An earlier project was the stronger base point for Richie, MULTICS

and the Unix is itself based on the name MULTICS. The early versions were

written in assembly code, but the third version was rewritten in a new pro-

4

Chapter 1 Linux Systems 1.2 The POSIX Standard

gramming language, C. C was designed and written by Richie expressly as a

programming language for writing operating systems. Unix moved out of the

laboratory and into mainstream computing, and soon most major computer

manufacturers were producing their own versions.[2]

For simple needs, the operating system Linux was offered by Linus Torvalds

to serve. Unix was the reference of the author, and it is important to mention

that the Linux contains no UNIX code; it is a rewrite based on published

POSIX standards.

1.2 The POSIX Standard

1.2.1 What is POSIX

POSIX stands for Portable Operating System Interface. It is a series of stan-

dards specified by the IEEE to maintain compatibility between operating sys-

tems. Therefore, any POSIX-compliant software should be compatible with

otherPOSIX-compliant operating systems. Because of this, most of the tools

we use on Linux and Unix-like operating systems behave almost the same. For

example, if we use the ps command, it should behave the same on OpenBSD,

Debian, and macOS.

1.2.2 POSIX Defined Standards

The C API

In terms of the C languages, standards are defined by the POSIX. Therefore,

source code level programs can be ported to other operating systems. However,

it can also be implemented in any standardized language.

5

Chapter 1 Linux Systems 1.2 The POSIX Standard

In addition to the C API, POSIXhas also added rules for writing programs

such as Pointer-type initialization and execution concurrency. It also enhances

rules for the synchronization of the memory, such as minimizing memory modi-

fication when it’s already in use. More than that, security mechanisms are also

stated for directory protection and file access. [3]

File Formats

POSIX defines the format of strings used in files, standard output, standard

error, and standard input rules as shown in the following expression .[4]

<format>, <arg1>, ...,<argN>

Environment Variables

The environment file that the login shell processes when the login is successful.

By convention, variable names should only contain uppercase letters and un-

derscores. The name can also include a digit, although the POSIX standard

does not recommend putting the digit at the start of the name.[5]

Locale

An environment variable is a variable that we can define in an environment file,

which the login shell will process upon successful login. The locale defines the

language and cultural conventions used in the user’s environment. Each locale

consists of categories that define the behavior of software components, such as

DateTime formats, currency formats, and number formats.

6

Chapter 1 Linux Systems 1.2 The POSIX Standard

Character Set

A character set is a collection of characters consisting of the code and bit pattern

for each character. As we all know, computers can only understand binary

characters, so a character set represents the symbols a computer can handle...

For that, a standard character set that conforms to the one defined by POSIX

is needed.

Regular Expressions

A regular expression or RE is a string that defines a search pattern for find-

ing text. The standard C library implements RE and is used as a backend by

programs like awk, sed, and grep.A POSIX-compliant implementation can

use either Basic Regular Expressions (BRE) or Extended Regular Expressions

(ERE). BRE provides basic text search symbols, while ERE supports more

symbols. Most POSIX-compliant utilities rely heavily on BRE, although ad-

vanced text editing utilities also support ERE[7].Additionally, both BRE and

ERE have several requirements:

• BRE and ERE should use NULL-terminated strings.

• Literal escape sequences and newlines produce undefined results. Therefore,

our program should treat them as normal characters.

• POSIX does not allow explicit NULL characters in REs or text to match.

• By default, our implementation should be able to do case-insensitive searches.

• The length of our RE should not exceed 256 bytes

7

Chapter 1 Linux Systems 1.3 LINUX Architecture

Directory Structure

Most major Linux distributions conform to the File System Hierarchy (FHS)

standard. FHS defines a configurable tree-like directory structure. The first

directory in the Hierarchy is the root directory from which all other directories,

files, and special files branch.[8].

1.3 LINUX Architecture

Unix has been around for nearly five years, shaping the modern operating sys-

tem, key software technologies and development practices. As Linux being

based on the Unix Architecture the last figure represents a simplified diagram

of the internal structure of a UNIX operating system.

Figure 1.2: UNIX logical architecture [1]

The top layer, named application, is the user layer, and the bottom one,

Materiel, is the hardware. Between the two, we can find the work offered by an

operating system which can be listed below:[2]

• System Calls

• Management of the Processes

8

Chapter 1 Linux Systems 1.3 LINUX Architecture

• management of the Input/output of files

• Cache management

• Drivers

Here is a basic block diagram of a Unix system:

Figure 1.3: UNIX architecture[9]

1.3.1 Hardware Basics

An operating system must work closely with the hardware system on which

it is based. The operating system requires certain services that can only be

provided by hardware. to finish, To understand the Linux operating system,

you need to understand the basics of the underlying hardware.

When looking at the PC from the outside, the most visible components are

the system box, keyboard, mouse, and video monitors. There are several but-

tons on the front of the system box and a small display showing some Digital

and floppy disk drives. Most systems these days come with a CD-ROM if you

feel you must protect your data, and then there’s also a tape drive for backups.

These devices are collectively referred to as Like the periphery.

9

Chapter 1 Linux Systems 1.3 LINUX Architecture

While the CPU can take full control of the system, it’s not the only smart

device. All Peripheral controllers, such as IDE controllers, have a certain level

of intelligence. Inside the computer, You will see one that contains a CPU or

microprocessor, memory, and a number of slots for ISA or PCI peripheral con-

trollers. Some controllers like IDEs, The hard disk controller, can be installed

directly on the system board.

The CPU

The CPU, or rather the microprocessor, is the heart of every computer system.

Microprocessor computing Perform logical operations and manage data flow

by reading instructions from memory, then executing them. In the early days

of computing, the functional component was the microprocessor, A separate

(and physically large) unit. At that time, the term central processing unit was

coined. Modern microprocessors combine these components into an integrated

circuit etched in very small dimensions, a piece of silicone. Registers of the

microprocessor are Internal memory used to store data and perform operations

on it. Actions performed can push the processor to stop and jump to some-

where else in memory. These tiny building blocks give modern microprocessors

nearly limitless capabilities, Millions or even billions of instructions per second.

Instructions must be fetched from memory when executed. Instructions can

help themselves Reference data in memory, and that data must be fetched from

and stored in memory suitable. The size, number, and type of registers in a

microprocessor depend entirely on their type.

The Memory

All systems have a memory hierarchy with different speeds and sizes of memory

in different places Hierarchy. The fastest memory is called cache memory, and

10

Chapter 1 Linux Systems 1.3 LINUX Architecture

that’s what it sounds like - memory Used to save or cache the contents of main

memory temporarily. However, this type of memory is very fast and Expensive,

so most processors have a small amount of on-chip cache and more systems

Based on the (integrated) cache. Some processors have caches that contain

instructions and data. But others have two, one for instructions and one for

data.

Cache and main memory must be coherent (coherent). In other words, if

a noun memory is cached in one or more locations, then the system must

ensure that Caching and storage are the same. The task of cache coherence is

partially done by hardware, Partly determined by the operating system. This

also applies to many important system tasks, where hardware and software

must work closely together to achieve their goals.

Buses

The various components of the system board are connected to each other

through multiple connection systems called the bus. The system bus is divided

into three logical functions; the address bus, the data bus, and the control bus.

The address bus specifies the storage location (address) of the data transfer

that the data bus holds the transmitted data. The data bus is bidirectional; it

allows data to be read into the CPU and written by the CPU. The control bus

contains various lines for timing and control signals of the entire system. There

are many kinds of buses, such as ISA and PCI bus are popular A method of

connecting peripherals to the system.

Controllers and Peripherals

Peripherals are real devices controlled by a controller chip in the system, such

as a graphics card or hard drive on a circuit board or a card inserted into it.

11

Chapter 1 Linux Systems 1.3 LINUX Architecture

IDE hard disk is controlled by IDE controller chip and SCSI. The hard disk

passes through the SCSI hard disk controller chip and so on. These controllers

are connected to the CPU and to each other through various buses. Most

systems built today use PCI and ISA buses to connect them together, The

most important system component. Controllers are processors like the CPU

itself. They can be thought of as Smart assistants for CPUs. The CPU has

overall control over the system.

All controllers are different, but they usually have registers that control them.

Software running on The CPU must be able to read and write these control

registers. Registers can contain status. Describe an error. Another one can be

used for control purposes; changing the mode of the controller. Each controller

on the bus can be individually addressed by the CPU, making it a software

device. The driver can control it by writing to its registers. The IDE Ribbon

is a good example because it gives you. Each driver on the bus can be accessed

individually. Another good example is the PCI bus that, which makes it possible

for Each device, such as a graphics card, can be accessed independently.

Address Spaces

The system bus connects the CPU to the main memory and is separate from the

connection bus, The CPU, and the system’s hardware peripherals. In summary,

the storage space owned by the hardware I/O space is called I/O space. The

I/O space itself can be further subdivided, but we won’t be too worried right

now. The CPU can access system memory and I/O memory space, while the

controller itself can only access system memory indirectly. Then only with

the help of the CPU. Sometimes the controller needs to read or write large

amounts of data directly from the system memory. For example, when user

data is written to disk. In this case, Direct Memory Access (DMA) controllers

12

Chapter 1 Linux Systems 1.3 LINUX Architecture

are used to allow hardware peripherals to directly access system memory, but

This access is strictly controlled and monitored by the CPU.

Timers

All operating systems need to know the time, which is why modern PCs include

a special peripheral called Real-Time Clock (RTC). This provides two things:

a reliable time of day and an accurate time interval. The RTC has its own

battery, so it can continue to run even when the PC is not turned on. The

PC always gets the correct date and time. Interval timer enables operation A

system for precisely planning important work.

1.3.2 The Kernel

The kernel is the base of the operating system. It interacts with the hardware

and most tasks such as memory management, task scheduling, and file manage-

ment [9]. Linux kernel development is closely monitored by the Linux kernel

development team [11].

On a purely technical level, the kernel is the middle layer between hardware

and software. Its purpose is to pass application requests to the hardware and

act as the low-level driver to be addressed equipment and components of the

system. However, there is another interesting point core. The kernel can be

regarded as an enhanced machine that, in the view of the application, abstracts

the computer on a high level. For example, when the kernel addresses a hard

disk, it must decide which path to use to copy data from disk to memory, where

the data reside, which commands must be sent to the disk via which path, and

so on. Applications, on the other hand, need only issue the command that data

are to be transferred. How this is done is irrelevant to the application — the

13

Chapter 1 Linux Systems 1.3 LINUX Architecture

details are abstracted by the kernel. Application programs have no contact with

the hardware itself, only with the kernel, which for them, represents the lowest

level in the Hierarchy they know — and is, therefore, an enhanced machine.

The kernel and shell are the heart and soul of the operating system.

User vs Kernel mode

Kernel component code runs in a unique privileged mode called kernel mode

and has full access to all computer resources. This code demonstrates a single

process, runs in a single address space, and does not require context switching.

Therefore, it is very fast and efficient. The kernel runs all processes and enables

these processes to perform various services in the system. It also facilitates

secure access to processes on the hardware. Support code that is not required

to run in kernel mode is in the system library. User programs and other types of

system programs are implemented in user mode. It does not include access to

kernel mode and system hardware. User utilities/programs use system libraries

to access kernel functions for low-level system tasks.[13]

1.3.3 Commands and Utilities

When using an operating system, the user must learn how to use the system

command. ls, mv, cat, and mkdir, etc., are a few examples of commands

and utilities. There are over 250 standard commands, plus many others avail-

able through third-party software. All the commands come along with various

options.[9]

14

Chapter 1 Linux Systems 1.4 World of The Open Source

1.3.4 Files and Directories

Files are the only way to organize the data in the Unix. All files are then

organized into directories. These directories are further organized into a tree-

like structure called the filesystem with different types of files. Directory files,

Non-directory files, REGULAR files, SPECIAL files, Symbolic LINK files.[11]

1.4 World of The Open Source

When evoking the term ”Open Source”, the mainstream is of this concept is

that it refers to a category of software that offers an abundance of freedom in

the usage and reimplementation of both the effort and its source code, but in

reality, this interpretation deprives ”Open Source” from an important quantity

of what it really stands by delimiting it to one of its various fields, ”Open

Source Software”, the concept itself originated in the field, but is nowadays

broader and includes every project, be it in the field of computer science or not,

following what is called ”the open source way”.

1.4.1 Open Source Software

It is agreed on that Open Source Software is software with source code that

anyone can inspect, modify, and enhance, but in addition to this criteria, it is

software whose distribution terms must comply with The Debian Free Software

Guidelines (DFSG) present on the official Debian website

Free Redistribution

The license of a Debian component may not restrict any party from selling or

giving away the software as a component of an aggregate software distribution

15

Chapter 1 Linux Systems 1.4 World of The Open Source

containing programs from several different sources. The license may not require

a royalty or other fee for such a sale.

Source Code

The program must include source code and must allow distribution in source

code as well as compiled form.

Derived Works

The license must allow modifications and derived works and must allow them

to be distributed under the same terms as the license of the original software.

Integrity of The Author’s Source Code

The license may restrict source code from being distributed in modified form

only if the license allows the distribution of patch files with the source code for

the purpose of modifying the program at build time. The license must explicitly

permit the distribution of software built from modified source code. The license

may require derived works to carry a different name or version number from

the original software. (This is a compromise. The Debian group encourages all

authors not to restrict any files, source or binary, from being modified.)

No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons. No

Discrimination Against Fields of Endeavor The license must not restrict anyone

from making use of the program in a specific field of endeavor. For example, it

may not restrict the program from being used in a business or from being used

for genetic research.

16

Chapter 1 Linux Systems 1.4 World of The Open Source

Distribution of License

The rights attached to the program must apply to all to whom the program is

redistributed without the need for execution of an additional license by those

parties.

License Must Not Be Specific to Debian

The rights attached to the program must not depend on the program’s being

part of a Debian system. If the program is extracted from Debian and used or

distributed without Debian, but otherwise within the terms of the program’s

license, all parties to whom the program is redistributed should have the same

rights as those that are granted in conjunction with the Debian system.

License Must Not Contaminate Other Software

The license must not place restrictions on other software that is distributed

along with the licensed software. For example, the license must not insist that

all other programs distributed on the same medium must be free software.

Example Licenses

The GPL, BSD, and Artistic licenses are examples of licenses that we consider

free.

As mentioned in the guidelines, Open Source manifests itself in the form of

different licenses adhering to the previous criteria. For instance, the Gnu Public

License, or GPL for short, follows the Open Source requirements in addition to

new criteria, which are Copyleft licenses. Non-permissive or Copyleft software is

basically software that forces the one benefiting from the Open Source program

to make the source code available to the user so that they are also able to benefit

17

Chapter 1 Linux Systems 1.5 Conclusion

from it and so on. Adhering to Permissive or Non-copyleft licenses makes it so

that the project can be made Proprietary.

1.5 Conclusion

Linux is a free operating system, which allows you to regain control over your

computer. For this reason it is widely used on web servers, but it is of course

perfectly suited for personal use. To discover it, several methods exist, depend-

ing on the use you want to make of it, for its usage general way will be discussed

in the up coming section

18

Chapter 2

Linux System Administration

2.1 Introduction

Starting from the linguistic side with the word administration and exploring

it, it refers to the arrangements and tasks needed to control the operation of a

plan or organization [15], in another way, it is the management of any office,

business, or organization; direction [16]. As an abstract of those definitions,

the word administering is all about managing the given physical and moral re-

sources in the right way to accomplish the tasks in order to achieve the set goals

Defining that word from a technical side and specifically in the domain of

informatics administration or the role of administrator refers to the notion of

managing some specific processes (installation, maintenance, improving, super-

vising, security). The administrator gets some personal roles and permissions

to the data and functions of the system that other simple users can not have,

and these last give the opportunities to manage the system in the desired way.

After getting the access, the Linux systems have on them a tool that helps

the worker to facilitate the tasks, and it is known as the Package Manager.

19

Chapter 2 Linux System Administration 2.2 Package Manager

2.2 Package Manager

In the starting days of Linux, adding software was not an easy process. Doing

it was based on surfing the web and getting the source code from the group that

made it, compiling it to a runnable version, and saving it on your computer.

With some luck finding it already compiled is not a miracle, and it would run

on your computer.

2.2.1 What is a Package

For different operating systems, none UNIX/Linux based, there is no given in-

teractive installation program (no install.exe). Some editors try to facilitate

this process by providing scripts for the installation, and also, these last just

based on decompressing and unarchiving files.

In Linux, it is traditional to get the tools and the products in the form of

packages. A package is a file that contains the product to install and the rules

defined by the creator. Rules can be different :

Dependencies Management

The installation of a program depends on other programs, so the presence of

these lasts is mandatory for the begging of the setting up. In the case of absence,

the process will be directed to fail.

Pre-Installation

Before starting, predefined tasks must be done to prepare the infrastructure,

like loading the file’s permissions, creating the needed files and directories, and

20

Chapter 2 Linux System Administration 2.2 Package Manager

other tasks that need to be accomplished before.

Post-Installation

After finishing the installation with success, state other actions and processes

must be done, such as setting the settings of the configuration file. The differ-

ent Linux distributions have a diversity of package managers. Each one and its

derivatives has its specific manager. Highlighting the point on the form of the

packages, they could be defined as a tarball containing executable files which

are considered as commands in Linux, documentation, configuration files, and

libraries. The construction of a tarball is made by gathering multiple files in one

file for convenient storage or distribution. Installing a software from a tarball

each file will be spread in the appropriate directory (/usr/share/man, /etc,

/bin, and /lib, to name a few).

Even if creating a tarball and dropping a set of programs onto the system is

considered doable in an easy way, the following tasks are considered mountain

climbing: software dependencies, documentation of the software, default files of

the program, and Updates of the software.[1]

Finding solutions to These difficulties was one of the major interests of the

editors. In this evolution, the packages developed from simple tarballs to more

complex packaging formats. RPM And DEB are the main references of the

Linux distributions.[1]

DEB (.deb) packaging: the focus of The Debian GNU/Linux project was

on creating .deb packaging which is used by Debian and other distributions

based on Debian (Ubuntu, Linux Mint, KNOPPIX, and so on). Linux dis-

tributions could install, manage, upgrade, and remove softwares by using tools

21

Chapter 2 Linux System Administration 2.2 Package Manager

such as apt-get and dpkg[1]

RPM (.rpm) packaging:the other manager was originally named Red Hat

Package Manager renamed after to RPM Package Manager, RPM is the pre-

ferred package format for Red Hat distributions (RHEL and Fedora), SUSE

and others based on Red Hat distributions (CentOS, Oracle Linux, and so

on). At first rmp command was the command to manage the RPM manager

and was updated and replaced after by the yum command in order to improve

the RPM facility.

2.2.2 RPM Package manager

An RPM package is a collection of files needed to provide functionality, such

as word processors, Photo viewers, or file servers. In RPM, commands, con-

figuration files, and documentation constitute the functionality of the software.

However, RPM files also contain metadata. It stores information about the

contents of that packet, where the packet came from, what It must be running,

along with other information.

Before diving intoRPMs, you can learn a lot fromRPM’s name the package

itself. Find the name of the RPM package currently installed on the system

(like the Firefox web browser) You can type the following into Fedora’s shell,

or Red Hat Enterprise Linux:

The command: # rpm -q firefox

The result: firefox24.7.01.el7 x0.86 64

The last result can show that the basename of the package is Firefox. The

release number is 24.7, the version number is 1. The firefox package was built

for Red Hat Enterprise Linux 7.0 (el7 0) and is compiled for the x86 64-bit

architecture (x86 64).

22

Chapter 2 Linux System Administration 2.2 Package Manager

2.2.3 RPM & YUM

Yellowdog Updater Modified (YUM) project aims to solve management prob-

lems RPM package dependencies. His main contribution is to stop thinking

about RPM Packages as separate components and treat them as part of a

larger software repository.[17]

With repositories, the problem of dealing with dependencies doesn’t fall on

the runner’s software installed but on a Linux distribution or third-party soft-

ware provider provided by the software. For example, the Fedora Project is

important. Make sure every package in their Linux distribution requires every

component to be Resolved by another package in the repository.

Repositories can also be built on top of each other. For example, the reposi-

tory rpmfusion.org It is assumed that the user already has access to the Fedora

main repository. So if a package rpmfusion.org installation requires libraries or

commands from the main Fedora Repository, Fedora packages can be down-

loaded and installed at the same time as you Install the rpmfusion.org package.

This is the basic syntax of the yum command:

yum [options] command

The result of the yum install package command is to copy the requested

package From yum repository to the local system. The files in the package are

converted to Necessary filesystems (/etc, /bin, /usr/share/man, etc.). Re-

lated Information Packages are stored in the local RPM database, where they

can be queried.

23

Chapter 2 Linux System Administration 2.2 Package Manager

2.2.4 Debian Package manager

The manager of this Linux distribution is the dpkg which refers to DEBIAN

PACKAGE, it is the rpm responsible for the Debian distributions and all the

derivatives of it. The same or similar role listed before of rpm is done by the

dpkg. The Debian packages are defined by the .deb extension, they dispose

of the same information and ways like the rpm package. The dpkg command

is responsible for the installation, creation, removal, and management of the

Debian packages.

There are various tools for managing Debian packages, ranging from graphical

or text-based interfaces to low-level tools for installing packages. All available

tools depend on lower-level tools to function properly and are presented here in

order of decreasing complexity. It’s important to understand that higher-level

package management tools like aptitude or synaptic depend on apt, which in

turn relies on dpkg to manage packages on the system.[17]

2.2.5 dpkg & Apt

Whether it be for the rpm and the dpkg, the problem is the same: the two

manage the dependencies of the packages, authorize or not their use, but do not

resolve them here, the use of apt occurs it resolves the problems. APT refers

to Advanced Packaging Tool. Without specifying a local or distant package the

apt takes in consideration the packages in the CD,DVD, in a local repository,

in internet (FTP,HTTP) ,etc. [1]

24

Chapter 2 Linux System Administration 2.3 Managing Disks and file systems

2.3 Managing Disks and file systems

A Linux file system is a structure that stores all information on a computer. In

fact, this is one of the defining characteristics of the UNIX system on which

Linux is based. Almost everything you need to identify on your system (data,

commands, symlinks, devices, and directories) are represented by elements in

the file system. Knowing where things are and knowing how to bypass file sys-

tems from the shell is a key skill in Linux.

In other terms, a Linux file system is a structured collection of files on a drive

or partition. A partition is a segment of storage that contains some specific

data. We can have different memory partitions in our machine. Typically, each

partition contains a file system. General computer systems need to store data in

a systematic way so that we can easily access files in less time. It stores data on

a hard disk drive (HDD) or equivalent storage type. File system maintenance

can be due to the following reasons:

Computers store data primarily in RAM memory; data may be lost when

you shut down. However, non-volatile RAM (flash RAM and SSD)

can be used to save data after a power outage.

Storing data on a hard drive is preferable to standard RAM because

RAM costs more than disk space. Compared with memory, the cost

of hard disks is gradually decreasing.

2.3.1 Linux Files Types

The file type helps us identify the type of content stored in the file. Linux

supports seven different file types. These file types are regular files, directory

25

Chapter 2 Linux System Administration 2.3 Managing Disks and file systems

files, link files, special character files, block special files, socket files, and named

pipe files.

Regular or ordinary files

Regular or normal files store data of various content types such as text, audio,

video, images, scripts, and programs. There are hundreds of content types. On

Linux, plain files can be created with or without extensions. An extension is a

set of characters used with a filename to give it a special identity or to group

it with files of a similar content type. Files of various content types often use

well-known file extensions for easy identification and handling.

Although file extensions are not required for Linux filesystems, you should

still use them. They help us identify the type of content stored in the file. For

example, if a file has a .mp4 extension, you probably know it’s a video file.

Directory files

The hierarchy of the directories, which is presented in the section after, file

systems are based on the directories which organize files in a suited way. Direc-

tories are also files, but instead of storing data, they are where other files are

stored. The directory uses directory entries to store the location of files placed

in the directory. Each directory entry stores a unique name and location for a

specific file.

Special files

For the hardware devices such as hard drivers, monitors, terminal emulators,

printers, and the CD/DVD drives are treated by the Linux as special files. So

this makes the access to files and devices the same way for the applications.

26

Chapter 2 Linux System Administration 2.3 Managing Disks and file systems

This feature makes developing programs on Linux easier and more flexible.

This type presents two subtypes, the first one a special character file which is

specific for devices that transfer data in bytes, such as a monitor or a printer.

The second one concerns the devices that transfer data in blocks, and this type

is called special block file.

Link files

This type of file is the key to using files with a different filename and from

different locations. A link file is considered a pointer to another file, and here

we can find two types of links. The first one is the Hard Link, whose purpose is

to create a mirror copy of the file. This type can not be created for a directory

or a file on another filesystem. The second type, named the symbolic link or

soft link, can manage the lack of the previous type. It creates a pointer to the

original file.

Socket files

Sockets are communication endpoints that applications use to exchange data.

For example, when an application wants to communicate with another appli-

cation, it connects to that application’s socket. Any application that provides

services to other applications or remote clients uses sockets to accept connec-

tions. Each socket has an associated IP address and port number, allowing it

to accept connections from clients.

Sockets are very complicated. To simplify the communication process be-

tween local applications, Linux uses socket files. Socket files allow local system

applications to exchange data without having to go through the complicated

process of networking and sockets.

27

Chapter 2 Linux System Administration 2.3 Managing Disks and file systems

Socket files are the special files that use a file name as their address instead of

an IP address and port number. sendmsg() and recvmsg() are the methods

used for system calls to enable communication between local applications.

Named pipe files

Linux allows us to send the output of any process or command as input to

another process or command. This function is called Pipe. Pipes only work

if both processes are started by the same user and in the same parent process

space.

In the case of not executing processes under the same permissions and same

user names, standard pipes do not respond. For these circumstances, named

pipes are the solution. They are similar to the standard pipes, except that they

can be accessed as part of the filesystem.Named pipe files are also named as

the FIFO (First In First Out) files. They are empty pipe files. The kernel

processes named pipe files without writing them to the file system and can be

found anywhere in the file system.

How to identify the type of a file

For a complete list of content types and file extensions supported by Linux

systems, see the /etc/mime.types file. MIME (Multipurpose Internet Mail

Extensions) provides uniform names and classifications for file content types.

Figure 2.1: mimetype command results

28

Chapter 2 Linux System Administration 2.3 Managing Disks and file systems

There are many ways to identify the type of file in Linux. The easiest way

is to use the ”file”command. To find the type of file, provide the name of the

file as a parameter. For example, to determine the file type of an ”abc”file,

use the following command. The output of this command displays not only the

type of the specified file but also the type of content stored in the specified file.

Figure 2.2: file command results

You can also identify the file type by looking at the output of the”ls -l”

command. The ”ls -l”command lists the contents of the specified file. The

following command lists the contents of the current directory.

2.3.2 Linux File system structure

The Linux file system has a hierarchical file structure because it contains the

root directory and its subdirectories. All other directories are accessible from

the root directory. A partition usually has only one file system but can have

multiple file systems.

File systems are designed to manage and provide storage space for persistent

data storage. All filesystems require namespaces, which are a way of naming

and organizing. A namespace defines the naming process, the length of a file-

name, or the subset of characters that can be used in a filename. It also defines

the logical structure of files in a memory segment, e.g., Using directories to or-

ganize specific files. Once the namespace is described, a metadata description

must be defined for that particular file.

The data structure must support a hierarchical directory structure; this struc-

29

Chapter 2 Linux System Administration 2.3 Managing Disks and file systems

ture is used to describe the free and used space for a given block. It also contains

other details about the file, such as file size, creation date and time, update,

and last modified time. It also holds extended information about parts of the

hard disk, such as partitions and volumes. Extended data and the structures

represent information about the file system stored on the drive; it is unique and

independent of file system metadata.

The Linux File Hierarchy or File System Hierarchy Standard (FHS) defines

the directory structure and directory contents in Unix-like operating systems.

It is maintained by the Linux Foundation. In FHS, all files and directories

appear under root / even if they are stored on different physical or virtual

devices. Most of these directories exist on all UNIX operating systems and are

generally used in the same way. Under these, we can find the representation of

the directories in the system.

Root Directory – / –

Everything on your Linux system is located under the – / – directory. In

another way, a Linux file system starts with a directory called root -/-. All

files and directory files are created under this directory. Except for the root

directory, each directory has a parent directory.

Bin Directory – /bin/ –

Contains basic user binaries (programs) that must exist when the system is

mounted in single-user mode. Applications such as Firefox are stored in /usr/bin,

while important system programs and utilities such as the bash shell are stored

in /bin

30

Chapter 2 Linux System Administration 2.3 Managing Disks and file systems

Figure 2.3: Linux File Hierarchy Structure [10]

Boot Directory – /boot/ –

Contains the files needed to boot the system. For example, this is where the

GRUB boot loader files and the Linux kernel are stored. However, the boot-

loader configuration files are not there; they are in /etc along with other con-

figuration files.

Dev Directory – /dev/ –

Linux exposes devices as files, and the /dev directory contains a number of spe-

cial files that represent devices. These aren’t actually files as we know them, but

31

Chapter 2 Linux System Administration 2.3 Managing Disks and file systems

they appear as files. For example, /dev/sda represents the first SATA drive

in the system. If you want to partition it, you can start the partition editor and

tell it to edit /dev/sda. This directory also contains pseudo-devices, virtual

devices that don’t actually correspond to any hardware. In this directory, all

the special files of the system are stored.

Etc Directory – /etc/ –

Contains configuration files that can usually be edited manually in a text editor.

Home Directory – /home/ –

Contains each user’s home folder. For example, if your username is bob, your

home folder is at /home/bob. This home folder contains the user’s data files

and user-specific configuration files. Each user only has to write access to their

own home folder and must be elevated (became root) to modify other files on

the system.

Lib Directory – /lib/ –

Contains the libraries needed by the base binaries in the /bin and /sbin folders.

Libraries required by binaries in the /usr/bin folder are in /usr/lib.

Media Directory – /media/ –

Contains subdirectories for mounting removable media devices plugged into the

computer.

Opt Directory – /opt/

Contains subdirectories for optional packages.

32

Chapter 2 Linux System Administration 2.3 Managing Disks and file systems

Proc Directory – /proc/ –

It is similar to the /dev directory in that it does not contain any standard files.

It contains special files that represent system and process information.

root Directory – /root/ –

The /root directory is the home directory of the root user. It’s not under

/home/root, but under /root. This is not the same as the system root / .

Sbin Directory – /sbin/ –

It is similar to the /bin directory. It contains important binaries that are

usually designed to be run by the root user for system administration.

Usr Directory – /usr/ –

The /usr directory contains applications and files used by the user, not the

system. For example, non-essential applications are located in the /usr/bin

directory instead of the /bin directory, and non-essential system management

binaries are located in the /usr/sbin directory instead of the /sbin directory

Var Directory – /var/ –

The /var directory is a writable copy of the /usr directory and must be write-

protected during normal operation. Log files and everything else that would

normally be written to /usr during normal operation are written to the /var

directory. For example, you can find log files in /var/log.

Those are the most important directories that build the structure of the file

system. Some of these directories exist only on certain systems when certain

33

Chapter 2 Linux System Administration 2.3 Managing Disks and file systems

subsystems (such as the X Window System) are installed.

2.3.3 Linux File system Types

By default, after a fresh installation of the system, Linux proposes the choice of

multiple file systems Ext, Ext2, Ext3, Ext4, JFS, ReiserFS, XFS, btrfs,

and swap.

Figure 2.4: Linux file system structure[13]

2.3.4 Ext, Ext2, Ext3 and Ext4

The file system Ext stands for Extended File System, Ext2 was the first Linux

filesystem that allowed the management of 2 TB of data. Ext3 was developed

by Ext2; it is an updated version of Ext2, including backward compatibility.

The main disadvantage of Ext3 is that it does not support servers, as the file

system does not support file recovery and disk snapshots. The Ext4 filesystem

is the fastest of all Ext filesystems. It is a very compatible option for SSD (Solid

State Drive) hard drives and the default file system in Linux distributions.

JFS File System

JFS stands for Journaled File System and was developed by IBM for AIX

Unix. It is a replacement for the Ext file system. It can also be used in place

34

Chapter 2 Linux System Administration 2.3 Managing Disks and file systems

of Ext4 when stability with a small amount of resources is required. It’s a

handy filesystem when CPU power is limited.

ReiserFS File System

ReiserFS is a replacement for the Ext3 file system. It has improved perfor-

mance and advanced features. In the early days, ReiserFS was used as the

default file system in SUSE Linux, but then some policies changed, so SUSE

reverted to Ext3. The filesystem supports file extensions dynamically, but

there are some performance disadvantages.

XFS File System

The XFS file system is considered a high-speed JFS designed for parallel I/O

processing. NASA still uses this filesystem with their high storage servers

(300+ TB servers).

Btrfs Filesystem

Btrfs stands for B-tree file system. It is used for fault tolerance, repairing sys-

tems, fun management, extensive memory configuration, etc. It is not suitable

for production systems.

Swap File System

The paging file system is used by the Linux operating system to perform mem-

ory paging when the system sleeps. A system that never sleeps must have swap

space equal to the size of its RAM.

35

Chapter 2 Linux System Administration 2.4 Managing System Users

2.4 Managing System Users

Adding and managing users is a common task for Linux system administrators.

User account Maintain boundaries between the people who use your systems

and the processes that use them run on your system. Groups are a way to

assign assignable permissions to your system Simultaneously for multiple users.

2.4.1 The Identification The authentication

That process depends on two procedures: the first one is identificationwhich

is the operation of knowing the who in order to retrieve the permissions of the

person. A user is defined by login, and the second one is authentication which

consists of grabbing the proof of who we are. As an easy example, a user is

authenticated by a password in a system.[?]

Everyone who uses your Linux system should have a separate user account.

Having a user account Gives you an area to securely store your files and ways to

customize your users. The user interface (GUI, paths, environment variables,

etc.) adapts to the way you use your computer.

2.4.2 Users

A user is an entity in the Linux operating system that can manipulate files and

perform other operations. Each user is assigned an ID that is unique to each

user in the operating system. In this article, we will learn about users and the

commands used to get user information. After installing the operating system,

the root user has an ID of 0, and system users have IDs from 1 to 999 (both

inclusive), so local user IDs start at 1000 and above (max 65535 = 216 − 1 [?].

36

Chapter 2 Linux System Administration 2.4 Managing System Users

The user must be associated with at least one GID in addition to the UID. In

the system, the user entity is defined by a set of attributes :

• a Name for the connexion

• a password

• an UID

• a GID referring to the main group of the user

• a description

• repository of connexion

• command of connexion

All those parameters can be updated on the /etc/login.defs file. Adding

users to the system is always based on some rules concerning the format of the

login listed on the POSIX standards.[?]

2.4.3 Groups

Linux systems can divide multiple users into many groups. These groups are

collections of users who have the same permissions (such as read, write, or

execute permissions) to a specific file or resource shared by users in the group.

Linux allows you to add new or existing users to an existing group to take

advantage of the group-specific permissions it grants. We will learn about

different Linux groups and how to list all the members of that group. Linux is

developed with two types of groups :

Primary or Login Group: It is a group associated with files created by

a specific user. The name of this primary group is the same as the name

37

Chapter 2 Linux System Administration 2.4 Managing System Users

of the user who created this particular file. Each user must belong to

exactly one group.

Secondary or Supplementary Group: You can use this type of group

to grant permissions to a group of users who belong to the group. Users

cannot be assigned to one or more subgroups.[19]

The /etc/group file contains the description of the groups in the system.

Each line is defined by four fields:

Group: password: GID: user1: user2: . . .

1 Name of the group

2 Password

3 GID

4 List of users

2.4.4 Passwords

Password management has become a hot topic over the past decade. A quick

Google search revealed several options for a tool to choose a string that pro-

tects your personal information being shared. Some of these applications sim-

ply run on your computer and store your passwords offline in an encrypted

format(SHA-256, SHA-512, Blowfish).

Additional features are richer, offering online synchronization with multi-

ple devices, password sharing, two-factor authentication (2FA), and more. For

some of these services, the simplicity of password management has been lost in

the sea of features offered. Also, due to the convenience of online vaults that

many of these services offer, you lose control of your data as your credentials

38

Chapter 2 Linux System Administration 2.4 Managing System Users

are synced to servers that you have no control over.[20]

The passwords are saved in the system. Two files are responsible for achieving

the process starting by the /etc/passwd. A file that contains public informa-

tion about the users of the local system, each line of the file represents a user,

and it is composed of seven fields:

Login : password : UID : GID: comment: homedir: shell

1 User Name

2 Password: for the old version the crypted password. “x” the password

is in the /etc/shadow file. “?” The account is locked.

3 UID

4 GID

5 Description for more informations

6 The Home folder to land in after a login

7 the default shell

For the second file /etc/shadow , it is the file responsible for stoking the en-

crypted passwords of the users. in this file, passwords are well defined; each

line contains nine fields

alpha:yj9T$VzMKF3ud3QQnlQixq1/Dl0$IhMxSch0gu6Rv.FoVTfE/

Vgmi4pOUZM2BfaiazWVIb1:19052:0:99999:7:::

1 Login

2 The encrypted password “y” indicates the encryption type password.

For this field of encryption the most used values are the listed below:

39

Chapter 2 Linux System Administration 2.4 Managing System Users

1 : MD5

$2a$: Blowfish

$5 : SHA-256

$ SHA-512

Other DES

3 The number says after the last modification from the 1st January 1970

4 Number of days of no changing ”0” changing is permitted anytime

5 Number of days for the new change

6 Number of days before the expiration of the password

7 Number of days to deactivate the account after the expiration of the

password

8 Number of days of the account deactivation starting from the1st January

1970

9 Reserved

In some Linux distributions, not all of them, we can find an additional file

/etc/gshadow. In this file the encrypted passwords of the groups are found.[?]

2.4.5 Users Authentication

Standard Authentication

Authentication is the official sysadmin term for logging into a system. This

is the process by which users prove to the system that they are whom they

say they are. This is usually done with a password but can also be done with

40

Chapter 2 Linux System Administration 2.4 Managing System Users

other methods such as fingerprints, PINs, etc. The process starts with the login

screen. The user must have a valid account and know the correct password.

When he enters his password, the system performs two checks:

Ensures the availability of the account (is not locked)

Confirms the entered password is correct by checking the /etc/passwd file.

If these two checks are completed successfully, he will be logged into the sys-

tem. Another element that comes into play when logging in is the etc/login.defs

file. The system refers to this file to determine password restriction parameters,

in particular, how long passwords can be retained before needing to be reset.

PAM Authentication

The sensitive role of the passwords makes the game more attractive for no

authorized users to break the encryption. For that, a module was made to

make the game harder. PAM(Pluggable Authentication Module) is a set of

modules that provides severe constraints for the creation and the modification

of the passwords for a more robust authentication environment .[] PAM is mostly

involved when you log into the system from the console or from the network

using SSH or Cockpit. PAM separates the standard and specialized tasks of

authentication from applications.

PAM is considered as a guard between standard, specialized tasks of au-

thentication and the applications. Programs like login, gdm, ssh, ftp, etc., all

want to know who the users are and whom they say they are, but there are

many ways to do this. Users can provide username and password as credentials,

which can be stored locally or remotely using LDAP or Kerberos. Users can

also provide fingerprints or certificates as credentials. It would be tedious to

require every application developer to override authentication checks for every

41

Chapter 2 Linux System Administration 2.4 Managing System Users

new method. Calling the PAM library leaves checking to the authentication

expert. PAM is pluggable in that we can have different applications run dif-

ferent tests and modular in that we can add new methods with new libraries.

Figure 2.5: PAM Diagram [14]

From an application developer’s perspective, the information contained in

the local configuration of the PAM library should not matter. In effect, ap-

plications are designed to treat the functionality documented here as a ”black

box” that handles all aspects of user authentication. ”All aspects” include user

authentication, account management, session initialization/termination, and

password (authentication token) reset

Permissions management

16

When managing Linux permissions, administrators should be able to see at

a glance object types and permissions assigned to user owners, groups, and

others.

After the first character in the first column, we have nine characters that

define all required permissions for a given object. The first three characters of

42

Chapter 2 Linux System Administration 2.4 Managing System Users

Figure 2.6: Permissions List

the group are associated with the user owner, the other three are associated

with the group owner, and the remaining three are associated with others.

Permissions are presented in two ways. We can use letters, which are called

symbols, and they are represented by r (read), w (write), and execute (x). They

can also be represented numerically, where they are read as four, written as two,

and executed as one, a representation called octal, both work.

Figure 2.7: Portions of the permissions

The permissions management is based on the ”chmod” which means ”change

mode”command using either symbolic or octal methods. The syntax is the fol-

lowing:

chmod permissions resource-name

43

Chapter 2 Linux System Administration 2.4 Managing System Users

Access level Octal value

Read 4

Write 2

Execute 1

Table 2.1: Absolute mode guide

Identity Position

User First or left-most

Group Middle

Others Last or right-most

Table 2.2: Absolute mode references

To get the idea in a better way, here are two examples of manipulating permis-

sions for a file named ”txt file”:

chmod 740 txtf ile

chmod u=rwx,g=r,o-rwx txtf ile

In the last two examples, some numbers and characters appeared, and the

two commands appear different, but in reality, they end with the same goal,

and to get the difference, we need to present the two modes the ”absolute mode”

and the ”symbolic mode”

Starting with the first mode listed, the ”absolute mode” is one of the two

methods of defining permissions, and it is referred to it as the octal mode of

the numeric mode. in this type, each access level (read, write, execute) has a

specific octal value, as it is listed in the following table:

Each identity (user, group, others) has a position:

The three permissions values are associated with identities in the following

way:

44

Chapter 2 Linux System Administration 2.4 Managing System Users

UGO

740

Moving to the second mode, the Symbolic mode is known more as the friendly

mode or the kiddy mode, which uses more symbols, and the symbols are easier

to understand. In the three following tables, the guides to use this method is

listed.

For the Access level, each one has a referring symbol:

Access level Symbol

Read r

Write w

Execute x

Table 2.3: Symbolic mode guide

For the identity is set in a clear way as bellow:

Identity Symbol

User u

Group g

Others o

Table 2.4: Symbolic mode identity guide

Finishing by the relationship between the operations and the tasks:

Task Operator

Grant a level of access +

Remove a level of access -

Set a level of access =

Table 2.5: Symbolic mode relationship

45

Chapter 2 Linux System Administration 2.5 Conclusion

Since Linux is a multi-user system, permissions and ownership are used for

security reasons. There are three types of users on a Linux system Users,

groups, and others. Linux divides file permissions to read, write, and execute,

denoted by r, w, and x, respectively. A file’s permissions can be changed us-

ing the ”chmod” command, which can be further broken down into absolute

and symbolic modes, and the ”chmod” command can change the ownership

of a file/directory. Use the following commands: chown user file or chown

user:group file The chgrp command can change What does group ownership

chrgrp group filename x mean - run directory? Permission to ”go into” the

directory and possible access to subdirectories.

2.5 Conclusion

The job of a Linux systems administrator is to manage the operations of a

computer system like maintain, enhance, create user account/report, taking

backups using Linux tools and command-line interface tools. Most computing

devices are powered by Linux because of its high stability, high security, and

open-source environment for this work Linux is a major strength in computing

technology. Most of the mobile phones, personal computers, supercomputers,

and cloud-servers, webserver are powered by Linux. The general work of Linux

in servers can be found in the following section.

46

Chapter 3

Linux Server Administration

3.1 Introduction

Managing a Linux server is different from managing a Linux workstation, and

managing a Linux server is very different from running a desktop operating sys-

tem like Windows or Mac OS X. To start in Linux server management, the first

point to understand is that the available Linux distributions to serve the work-

station or desktop uses are more different than the Linux servers. The Linux

servers’ editions are more powerful; they are fabricated to handle high demands.

Linux Server includes additional features to simplify network management.

These management tools include advanced system administration functions and

the ability to manage databases. Your Linux server version can also run ad-

vanced web applications and other services. A high level of security and solid

stability while maintaining a high degree of flexibility are the benefits of choos-

ing a Linux server. As the name suggests, servers exist to serve. The data they

provide can include web pages, files, database information, emails, and many

other types of content. As a server administrator, some additional challenges

to your system administration skills are as follows:

47

Chapter 3 Linux Server Administration 3.1 Introduction

Remote access To use a desktop system, you usually sit at its console. The

server system, By contrast, tends to be locked in air-conditioned environ-

ments. In most cases, most of the administrative work is done once the

physical computer is in place. Some of these machines are done using re-

mote access tools. Usually, no GUI is available, so you have to rely on

command-line tools for things like remote logins, Remote Copy and Re-

mote Execution. The most common of these tools are based on Secure

Shell (SSH) settings.

Diligent security To be useful, the server must be able to accept requests

content from remote users and systems. Not unlike desktop systems, Clos-

ing all network ports that allow incoming access requests to the server Must

make itself vulnerable by allowing some access to its ports.

Continuous monitoring You usually turn off your laptop or desktop. When

you’re not using it, the system typically keeps the server running 24 hours a

day, 365 days a year. Because you don’t want to sit next to each server and

monitor them yourself all the time, you can configure tools to monitor each

server, collect log messages, etc. you can Enable System Activity Reporter

to collect 24/7 CPU usage data, Storage usage, network activity, and disk

access.

The subdomains and tools helping to do the work will be discussed clearly

in the next sections to get how things are done clearly in the administration.

48

Chapter 3 Linux Server Administration 3.2 Managing Services

3.2 Managing Services

Services are programs or processes that run continuously on your server, usually

from when the server starts. They continuously support requests and monitor-

ing from other processes or external clients. In another way, services are basic

processes that typically run in the background, not under the direct control

of an interactive user, waiting for requests from other software programs, or

performing basic tasks at the right time. Many services are implemented as

daemons.

On Linux, a daemon is a program that runs as a background process. Tra-

ditionally, the process name of a daemon process ends with the letter ”d” to

make it clear that the process is a daemon process and to distinguish it from

a normal computer program. For example, ”syslogd” is a daemon that im-

plements ”syslog” functionality, and ”sshd” is a daemon that serves incoming

”SSH” connections.

3.2.1 Init & Systemd

All services work with multiple scripts, which are stored in the ”/etc/init.d”directory,

this init.d is a daemon process which is the first process of a Linux system. Then

other processes, services, daemons, and threads are started by init. So init.d is

the configuration database for the init process. Now let’s check some daemon

scripts by printing some processes. Daemon scripts contain start, stop, status,

and restart functions. Let’s take ssh as an example. Systemd is generally

considered more powerful than traditional init systems.[21]

In recent years with all the new development, Linux distributions have in-

creasingly switched from other init systems to ”systemd”. The systemd tool

suite provides a fast and flexible initialization model for managing an entire

49

Chapter 3 Linux Server Administration 3.2 Managing Services

machine from boot. However, before getting on it, the term ”Units” needs to

be clarified in the case of this newly adopted solution.

3.2.2 Units

A Unit is any resource the system can process and manage and is the main

object the systemd tools can handle. These resources are defined using con-

figuration files called unit files. It is similar to a service or job in other init

systems. However, a unit has a broader definition as it can be used to abstract

services, network resources, devices, filesystem mounts, and isolated resource

pools. Ideas that can be handled in other init systems with unified service

definitions can be broken down into component units according to their con-

cerns which are organized by function, allowing you to easily enable, disable

or add functionality without changing the core behavior of the unit. The ba-

sic objects that systemd manages and responds to are ”Units”. Units can be

of many types, but the most common type is a ”service” (represented by a

unit file ending in .service). Some of the functions that the unit can easily

implement are socket-based activation,bus-based activation,path-based

activation, device-based activation, implicit dependency mapping, in-

stances and templates, easy security hardening, drop-ins, and snip-

pets[22]

Systemd classifies Units according to the type of resource they describe. The

easiest way to determine the unit type is to look at its type suffix, which is

appended to the end of the resource name. The following list describes the unit

types available to systemd

.service: A service unit describes how a service or application is managed

on the server. It includes how the service is started or stopped when

50

Chapter 3 Linux Server Administration 3.2 Managing Services

you would like it to start automatically and dependencies and ordering

information for related software.

.socket: A socket unit file describes the network, IPC sockets, or FIFO

buffers that systemd uses for socket-based activation. These always

have an associated .service file that is started when activity is seen on

the socket defined by that unit.

.device: An Unit describing a device designated by a udev or sysfs filesys-

tem as managed by systemd. Not all devices have .device files. Some

scenarios that might require a .device unit are ordering, assembling,

and accessing devices.

.mount: This unit defines the mount points on the system to be man-

aged by systemd. They are named after the mount path and change

slashes to hyphens. Units can be automatically created for entries in

/etc/fstab.

.automount: The .automount unit configures the mount point for auto-

mounting. These must be named after the mount point they refer to

and must have the appropriate .mount unit to define the details of the

mount point.

.swap: This unit describes the swap space on the system. The names of

these units must reflect the scoped device or file path.

.target: Target devices provide synchronization points for other devices

when they power up or change state. They can also be used to bring

the system into a new state. Other units specify their relationship to

the target to bind to its action.

.path: This unit defines the paths available for path-based activation. By

51

Chapter 3 Linux Server Administration 3.2 Managing Services

default, when the path reaches the specified state, a .service unit with

the same base name is started, and it uses inotify to monitor paths for

changes.

.timer: The .timer unit defines a timer managed by systemd, similar to a

delayed or scheduled activation of a cron job. The matchmaking session

will start when the timer is reached.

.snapshot: snapshot units are automatically created by the systemctl

snapshot command. It allows you to rebuild the current state of the

system after changes. Snapshots do not exist in the session and are

used to reset temporary state.

.slice: A .slice unit is associated with a Linux control group node, so re-

sources can be limited or allocated to any process associated with a

slice. The name reflects its hierarchical position in the cgroup tree. By

default, cells are placed in specific segments based on their type.

.scope: Scope units are automatically created by systemd based on infor-

mation received from its bus interface. These are used to manage the

set of externally created system processes.

Units Management

Files that define how systemd handles units can be found in many places, each

with different priorities and meanings. System copies of unit files are typically

stored in the ”/lib/systemd/system” directory. When installing software

unit files on a system, this is where they are placed by default. Unit files stored

here can be started and stopped as needed during a session. Files in this current

directory should not be modified. You should not edit files in this directory.

52

Chapter 3 Linux Server Administration 3.2 Managing Services

Instead, consider overwriting the file with a different unit file Location that

replaces the file at that place.

If you want to change a unit’s work, the best place to go is the ”/etc/systemd/system”

directory. Unit files found in this directory take precedence over any other in

the file system. Placing a replacement file in this directory is the safest and

most flexible method if you need to change the system copy of a unit file. If

you only want to override specific directives in system unit files, you can pro-

vide unit file snippets in subdirectories. These will append or modify system

replication instructions, so you can only specify the options you want to change.

To manage services on a systemd-enabled server, our primary tool is the ”sys-

temctl” command. Using this command, a service can be started, stopped,

restarted, reloaded, enabled, and disabled. By default, most systemd unit files

are not started automatically at boot. This tool must be executed with a ”root”

privilege, and the syntax of the command is the following:

sudo systemctl option name-of the service

This command is also usable to check the system’s status, view basic Log

information, and stop and reboot the server.

systemctl list-units

systemctl list-units –all

systemctl list-unit-files

journalctl

By default, this will show you entries from the current and previous boots if

the journal is configured to save previous boot records. Some distributions

53

Chapter 3 Linux Server Administration 3.3 Network Management

enable this by default, while others do not (to enable this, either edit the

/etc/systemd/journald.conf file and set the Storage= option to ”persistent”,

or create the persistent directory by typing sudo mkdir -p /var/log/journal).

3.3 Network Management

3.3.1 Desktop

NetworkManager runs on desktop systems Network interfaces are managed by

default. With NetworkManager, you can automate. Usually accepts address

and server information needed to connect to the Internet. However, you can

also set the address information manually. You can configure a proxy server

or a virtual private network connection that can enable your Desktops to be

behind an organization’s firewall or through a firewall. Whether you connect to

the Internet from Linux, Windows, smartphone, or any other device, The type

of device that supports the network, this connection must have certain condi-

tions to work. The computer must have a network interface (wired or wireless),

IP address, Assigned DNS servers, and routes to the Internet (identified by the

gateway device).

In the desktop case, the graphical and command-line tools are available for

checking about the information of the connection. In this document, the in-

terest will be on the command-line tool; It provides more detailed information

about the network interfaces. The main commands used in this context are

ip addr show ip a

54

Chapter 3 Linux Server Administration 3.3 Network Management

Another common command that displays network interface information is

the ifconfig command. By default, ifconfig displays similar information to ip

addr, but also ifconfig Displays the number of received (RX) and transmitted

(TX) packets and the number of packets data and any erroneous or dropped

packets

if config wlan0 results

Whether you use Network Manager or the command line to change network

configuration, most Update the same configuration file to set up routes in files

in the /etc/sysconfig/network-scripts directory. Other network settings

are stored in other files in the /etcdirectory of the host file. If you edit these

files directly, consider disabling the network manager service and enabling the

network service due to the Network Manager sometimes overwriting files you

manually configured.

3.3.2 Entreprise

So for the last one, it describes setting up a single system to connect to a

network. Linux offers more than that. A Linux configuration can handle and

manage all the hosting systems connected. A general overview of the infras-

tructure will be presented in this section.

Starting by configuring Linux as a router, If your computer has multiple

network interfaces (usually two or more NICs), You can configure Linux as a

router. All it takes to get there is to change the Kernel parameter to enable

packet forwarding. To turn on the ip forward parameter, Immediately and tem-

porarily type the following as root:

55

Chapter 3 Linux Server Administration 3.3 Network Management

cat /proc/sys/net/ipv4/ip forward

0

echo 1 /proc/sys/net/ipv4/ip forward

cat /proc/sys/net/ipv4/ip forward

Packet forwarding (routing) is disabled by default, and the value of ip forward

is set to 0. Setting it to 1 enables packet forwarding immediately. Make this

change permanent. Finally, you need to add this value to the /etc/sysctl.conf

file so that it looks like this:

net.ipv4.ipforward = 1

When a Linux system is used as a router, it is often used as a firewall between

private systems Networks and public networks, such as the Internet. If so, us-

ing the same system as the firewall that performs network address translation

(NAT) is also desirable. and provides DHCP services so that systems on the

private network can use Linux systems with private IP addresses.

The other infrastructure configuration consists of configuring the DHCP sys-

tem. A Linux system cannot just use a DHCP server to obtain its IP address and

other information. It can also be configured to act as a DHCP server itself. In

its simplest form, a DHCP server can distribute IP addresses from the address

pool to any system that requests them. Usually, however, the DHCP server

also distributes the DNS servers and default gateways. Configuring a DHCP

server should not be done lightly. Don’t add a DHCP server on a network you

don’t control but already own A working DHCP server. Many clients are set

56

Chapter 3 Linux Server Administration 3.3 Network Management

up to receive address information from any DHCP The server that distributes it.

The primary configuration file is /etc/dhcp/dhcpd.conf for IPv4 networks

(there is a dhcpd6.conf file in the same directory to provide DHCP service for

IPv6 networks). By default, the dhcp daemon listens on UDP port 67, so re-

member to keep that port open on your firewall. To configure a DHCP server,

you could copy the dhcpd.conf.sample file from the /usr/share/doc/dhcp-

4* directory and replace the /etc/dhcp/dhcpd.conf file. Then modify it as

you like

Another configuration for this type is Configuring theDNS server. Most pro-

fessional DNS servers (Domain Name System) are implemented under Linux

Berkeley Internet Domain Name (BIND) Service. Hostname to IP Address

mapping is done in zone files located in the ”/var/named” directory. When

you install, Bind the chroot package and move the binding configuration file

to ”/var/named/” chroot directory, trying to copy files from /etc, and /var

Configure bind is required to configure the named daemon (provide services).

Stored in the directory structure “/etc/named/chroot”.

3.3.3 Remote Access

A remote desktop, according to Wikipedia, is ”a software or operating sys-

tem feature that allows a personal computer’s desktop environment to be run

remotely on one system (usually a PC, but the concept applies equally to a

server) while being displayed on a separate client device.” Remote access can

also be interpreted as the remote control of a computer from other devices con-

nected via the Internet or other networks. This is commonly used by many

57

Chapter 3 Linux Server Administration 3.3 Network Management

computer manufacturers and the help desks of large corporations for techni-

cal troubleshooting of customer issues. To achieve this process, services are

available known as the telnet and the SSH.

Telnet

Telnet is a client-server protocol for character-based data exchange over a TCP

connection. Telnet allows remote control of computers through text-based input

and output. For this, a client-server connection is established by default using

the TCP protocol and TCP port 23, and the remotely controlled device acts

as a server and waits for commands. The telnet client, the controlling entity in

this process, also known as remote access or remote login can be installed on

either special devices or ordinary computers. However, according to different

terminal devices, the presentation of the transmitted data information will be

different. Protocols of the TCP/IP protocol suite can also be used to control

applications without a graphical user interface.

Telnet is required whenever you need to connect to another computer or

network component. Everything is done via a text-based command line. This

has been especially useful in the past for shared mainframe services. But even

today, telnet is still used, albeit less and less, to manage networks, run applica-

tions, and share databases. Nowadays, with multiple databases, telnet has also

played a vital role in organizations using large databases over the years. For

example, library protocols were a fundamental part of online catalogs published

in the 1980s, better known as OPAC (Online Public Access Catalog). These

digital publication databases will initially be accessible through the library’s

local network terminals. With the increasing success of the Internet, it can also

be accessed through a locally available web interface, whose communication is

58

Chapter 3 Linux Server Administration 3.3 Network Management

usually supported by the Telnet protocol.

For Interaction with programs on application servers, a typical use case for

a Telnet client is to access text-based programs on an application server. For

example, free Internet chess servers are still available today through a Telnet

connection. You can choose from available opponents or move your pieces

around the board by entering text. At the same time, graphical interfaces such

as Jin Applet (Jin is an open-source, cross-platform, graphical client for chess

servers, written in Java.) or Javaboard, which can move game pieces with the

mouse, have replaced text-based input.

For the main use we need in our case, which consists of administering net-

works and servers, The telnet got the lion’s share before the SSH protocol. Tel-

net has long been a convenient protocol for network and server administrators.

The ability to remotely manage devices in a network is great for administrative

tasks, especially since nearly all devices support the protocol. It can also be

used to check the availability of a specific port or to detect errors on the email

server (SMTP, port 25) by sending an email directly from the server [24]. Telnet

solutions are an efficient way to configure servers, such as web servers. Change

directory structures, file access permissions, or passwords quickly and easily.

For Telnet connections being standard TCP connections, clients can be used

for testing or other services that use TCP as the transport protocol. For exam-

ple, with a simple request, you can check the functionality of an HTTP server or

(as mentioned) the status of an email server. This versatility is complemented

by the fact that the connection protocol can be used across platforms. Only

a few devices do not support official IETF standards. It also doesn’t matter

whether the client and server machines are based on the same operating system.

59

Chapter 3 Linux Server Administration 3.3 Network Management

Another benefit of telnet is that, if authorized, it allows unrestricted access to

the resources of the controlled system. However, telnet presents a high-security

risk: when using the Telnet protocol, neither connection establishment nor data

transmission is encrypted. Therefore, any information you send may be inter-

cepted in plain text by third parties, including credentials required for remote

access. This means that hackers won’t have much trouble taking over the sys-

tem. A secure alternative to Telnet is Secure Shell (SSH).

Advantages Disadvantages

Telnet client is versatile Unencrypted data exchange

It can be used cross-platform Full access makes it easier for hackers

Unlimited access to target resources Only few servers can be reached via Telnet

Table 3.1: Telnet Advantages Disadvantages

SSH (Secure Shell)

This protocol was released after the telnet to complete the lacks of the previous

protocol. The ssh command provides a secure encrypted connection between

two hosts over an insecure network. This connection can also be used for

terminal access, file transfer, and tunneling other applications. Graphical X11

applications (The X Window System (X11, or simply X) is a windowing system

for bitmap displays, common on Unix-like operating systems.[23]) can also be

run securely from remote Locations via SSH. Almost every Unix and Linux

system includes the ssh command. This command is used to start an SSH client

program that allows a secure connection to an SSH server on a remote computer.

The ssh command is used for logging into a remote computer, transferring files

between two computers, and running commands on the remote computer. In

our case of research, the SSH wins the use, and all the focus will be on it.

Linux typically uses the OpenSSH client, which is an open-source imple-

60

Chapter 3 Linux Server Administration 3.3 Network Management

mentation of the SSH protocol. It is based on the free version by Tatu Ylonen

and further developed by the OpenBSD team and the user community. The

ssh command to log into a remote machine is very simple [26]. To log in to

a remote computer named sample.ssh.com, enter the following command at a

shell prompt:

For the use cases of the SSH, it replaced the telnet, so it is the same already

discussed in the previous section of telnet, and in order to know how to use this

command, we will first get to know the building blocks of it. and to start, we

need to know about the client-side.

The OpenSSH client program is called ssh. SSH clients typically use in-

formation from the .ssh directory in the user’s home directory. It also reads

/etc/ssh/ssh config, which contains its system-wide configuration. Moving

to the OpenSSH server program, it is called sshd. As already discussed in the

services section, The server is usually started during boot, and it is considered

as a daemon service running in the background of the system and reads its con-

figuration from the /etc/ssh directory. Its main configuration file is usually

/etc/ssh/sshd config.

The SSH provides an encryption key-based authentication mechanism called

public-key authentication. One or more public keys can be configured as autho-

rization keys; the private key corresponding to the authorization key is used for

authentication to the server. Typically, both the authorization key and the pri-

vate key are stored in the .ssh directory of the user’s home directory. Basically,

such keys are like fancy passwords, except that the password cannot be stolen

from the network, and the private key can be encrypted locally. The SSH is

61

Chapter 3 Linux Server Administration 3.3 Network Management

based on the SSL protocol, which uses asymmetric cryptography to exchange

the key(ensures the data that is transferred between a client and a server re-

mains private). SSH keys provide the same level of access as a username and

password and are typically used for privileged accounts that have access to the

operating system. The number of SSH keys is usually ten times the number of

passwords. To get it clear the explanation of the encryption, SSH uses three

data encryption types during the communication between the machines:

symmetric encryption starting with symmetric encryption, it generates

a single key exchanged by the two machines. The machines then use

the key for encryption and decryption. This method is fast, takes no

resources, and SSH uses it for every session. Whenever a client and

server negotiate an algorithm to use for an SSH session, they always

choose the first algorithm in the list of clients supported by the server.

Symmetric encryption is often referred to as shared key or shared

secret encryption. Usually, only one key is used, or sometimes a pair

of keys, one of which can be easily computed with the other. Symmetric

keys are used to encrypt all communications during an SSH session.

Both client and server use an agreed method to derive the key, and the

generated key is never shared with anyone.

asymmetric encryption Discussing Asymmetric encryption, data is asym-

metrically encrypted when the machine uses two different but mathe-

matically related keys (public and private keys) to perform encryption.

Client computers involved in setting up encryption can use the private

key to decrypt the information. Contrary to popular belief, asymmetric

encryption is not used to encrypt the entire SSH session. Instead, it

is used during a symmetric encryption key exchange algorithm. Before

initiating a secure connection, both parties generate an ephemeral pub-

62

Chapter 3 Linux Server Administration 3.3 Network Management

lic/private key pair and share their respective private keys to create a

shared secret. Once a secure symmetric communication is established,

the server generates it using the client’s public key, queries it, and trans-

mits it to the client for authentication. If the client can successfully

decrypt the message, it has the private key needed to connect - the SSH

session begins.

hashing One-way hashing is another form of encryption used in Secure

Shell connections. One-way hash functions differ from the above two

forms of encryption in that they are never decrypted. They generate

a unique, fixed-length value for each input with no clear trend that

can be exploited. This makes them almost irreversible. Generating a

cryptographic hash from a given input is easy, but generating input

from a hash is impossible. This means that if the client has the correct

input, it can generate a cryptographic hash and compare its values

to verify that it has the correct input. SSH uses hashes to verify the

authenticity of messages. This is done using HMAC or hash-based

message authentication codes. This ensures that received commands

cannot be tampered with in any way.[26]

How It works The way SSH works are that it uses a client-server model

to allow authentication of two remote systems and encryption of data

transmitted between them. SSH works by default on TCP port 22, and

the host (server) listens on port 22 for incoming connections. It orga-

nizes secure connections by authenticating clients and opens the correct

shell environment upon successful authentication. The client must initi-

ate the SSH connection by initiating a TCP handshake with the server,

ensuring a secure symmetric connection, verifying that the identity pro-

vided by the server matches a previous record (usually recorded in an

63

Chapter 3 Linux Server Administration 3.3 Network Management

RSA Keystore file), and verifying the required user credentials. There

are two steps to establishing a connection - first, the two systems must

agree on an encryption standard to protect future communications,

and second, the user must authenticate themselves. If the credentials

match, the user is granted access.

Now after knowing how the system works in a general view, discussing

session encryption negotiation is a must. When a client tries to connect

to a server over TCP, the server provides the encryption protocol and

the specific version it supports. If the client has a similar matching

protocol and version pair, then an agreement is reached, and the con-

nection is started using the accepted protocol. The server also uses an

asymmetric public key, which clients can use to verify the authenticity

of the host. Once set up, both parties use the so-called Diffie-Hellman

key exchange algorithm to create a symmetric key. This algorithm al-

lows both client and server to obtain a common encryption key that

will be used to encrypt the entire communication session from now on.

The algorithm works in the way listed below:

1 Both client and server agree on a very large prime number, which

of course, has no common factor. This prime value is also called

the starting value.

2 Next, the two parties agree on a common encryption mechanism

that manipulates the seed value in a specific algorithmic way to

generate another set of values. These mechanisms, also known as

crypto generators, perform a wide range of operations on the seed.

An example of such a generator is AES

64

Chapter 3 Linux Server Administration 3.4 Virtual Servers

3 Both parties independently generate another prime number. This

is used as the secret private key for the Interaction.

4 This newly generated private key with a shared number and en-

cryption algorithm (such as AES) is used to calculate the public

key that is distributed to another computer.

5 The parties then use their personal private key, the other machine’s

shared public key, and the original prime number to create the

final shared key. This key is computed independently by the two

computers, but the same encryption key is generated on both sides.

6 Since both parties now have a shared key, they can symmetrically

encrypt the entire SSH session. The same key can be used to en-

crypt and decrypt messages.

Nonetheless, SSH keys are ignored in most identity and access management

projects. They require the same type of configuration and termination proce-

dures and audit attention as passwords or other authentication methods.

3.4 Virtual Servers

A virtual server has the same functionality as a physical server but lacks the

underlying physical mechanisms. A physical server can use virtualization’s hy-

pervisor or container engine to create multiple separate virtual servers, and the

instances share physical server resources such as CPU and memory. Virtual-

ization requires an abstraction layer between server hardware and software to

create multiple virtual instances on a single physical server. On modern com-

puters and servers with hypervisors or container engines, this can be achieved

with just a few clicks. For medium to large organizations, administrators can

65

Chapter 3 Linux Server Administration 3.4 Virtual Servers

implement virtualization strategically to optimize space and performance re-

quirements. Broadly speaking, with collocation and private data centers, virtual

servers are available to everyone in remote Locations. Network administrators

can remotely control the functionality of virtual servers without physical access

to the host server.

3.4.1 Types of Virtual Servers

Figure 3.1: Types of server virtualization [25]

All virtualization methods can help companies optimize the availability and

agility of physical servers. These approaches differ in the resources and goals

of the network to be virtualized.

Full Virtualization

Full virtualization uses a hypervisor to intercept and simulate virtual servers.

The software-assisted method implements the hypervisor using a directly exe-

cuted binary translation (BT). Hardware-assisted virtualization can be imple-

66

Chapter 3 Linux Server Administration 3.4 Virtual Servers

mented with current x86 processors, known as bare metal (hypervisor type 1)

or a hosted method on the operating system (hypervisor type 2).

OS-Level Virtualization

Operating system-level virtualization is the latest approach in this field due

to the virtualization capabilities embedded in modern operating systems. Like

paravirtualization, virtual servers do not emulate the host’s hardware at the

operating system level. With appropriate software, the operating system core

creates separate lightweight instances, so-called containers. Virtualization and

containerization are slightly different processes.

Para-Virtualization

Paravirtualization also uses a hypervisor, but virtual servers cannot fully em-

ulate the hardware of a physical host. Instead, APIs (often built into modern

servers) directly exchange calls to the host and virtual server operating systems.

The resulting virtual server sees its environment as an extension of the host and

adjacent virtual server resources.

Para-virtualization vs. Full Virtualization

In general, paravirtualization is safer and faster than full virtualization. By

communicating directly with the hypervisor through APIs and drivers, paravir-

tualization is known for better performance. When considering virtual server

migration, full virtualization has the advantages of portability and compatibil-

ity.

67

Chapter 3 Linux Server Administration 3.4 Virtual Servers

3.4.2 Advantages disadvantages

Starting with the positive side of this solution. It Reduces costs by reducing

power, cooling, and overhead costs. Space optimization by compressing tradi-

tional physical servers into virtual servers. Increased scalability as administra-

tors can create new virtual servers as needed. Backup and restore capabilities

enable fast and reliable recovery. Setup, configuration, and maintenance tech-

nical support from the virtualization vendor. Improve workload efficiency and

load balancing for network demands. Easily deploy new updates and software

to a set of virtual servers.

In having the positives, the negatives also exist, and they can be listed in this

way: Technical management for creating, configuring, monitoring, and securing

virtual instances. Performance lags when the host’s virtual server is at a high

activity level. The upfront cost of purchasing a physical host and licensing vir-

tualization software. Compared to cloud platforms, scalability is poor. Older

applications may not be compatible with virtualization. Limited disk space is

usually limited to a single virtual machine or multiple containers. Less control

than managing an internal server fleet; tied to vendor SLAs.

3.4.3 Virtual Server vs. Virtual Machine (VM)

Virtual servers and virtual machines (VMs) are often combined, but there are

differences. While a virtual server can be accessed in several ways, a virtual

machine is a virtual server that uses full virtualization. Likewise, a container

is a virtual server that uses OS-level virtualization.

68

Chapter 3 Linux Server Administration 3.5 Conclusion

3.5 Conclusion

The open source movement has grown to become a significant force in today’s

computing environment. In some sectors of the software industry, open source

programs have become popular enough to provide real competition to propri-

etary alternatives; in others, they have emerged as the dominant standard.

Linux is becoming increasingly popular as the operating system for servers,

gradually eating away at the market share of Windows NT. Apache has long

been, and will remain in the foreseeable future, the most popular web server

program. And for those developing UNIX-compatible software, the GNU de-

velopment tools have become almost universally standard. In addition of all

this the security The Hardening point in this field is the major thing to be

discussed in the following section.

69

Chapter 4

Linux System Security & Hardening

4.1 Introduction

As Linux users, we have some inherent advantages over our Windows counter-

parts regarding security (or lack thereof). Like gamblers, hackers use the laws

of probability and averages to find vulnerable computer systems to hack into.

They typically target the types of systems with the most security holes. They’ll

also focus primarily on areas where unprotected systems have the greatest op-

portunity, such as the most prevalent types of systems on the Internet. In both

cases, Windows is the primary operating system. The security community says

that Windows has a larger attack surface in terms of vulnerabilities and the

number of systems.

Linux is more secure and rarer than Windows-based systems, which means

that attacks on Linux systems are less common than Windows systems. How-

ever, it would be foolish to be complacent about protecting every system,

whether running Windows, Linux, or any other operating system.

Security should be one of the most important considerations in all stages

70

Chapter 4 Linux System Security & Hardening 4.2 Type of Attacks against the system

of setting up a Linux computer. Implementing a good security policy on a

computer requires a good understanding of the basics of Linux and some of

the applications and protocols used. Linux security is a huge topic, and many

complete books are on the subject. Although Linux users are less susceptible to

viruses than some other major operating systems, Linux users and administra-

tors still face many security concerns. One of the most important steps in any

task is figuring out why you’re doing it. Not only are you saying that we need

to make the system secure, but you also need to consider the implications of

security, the risks associated with available data, and the impact your security

measures will have on your users. How do you know if you’ve achieved your

goal of making the system secure without first considering any of these factors?

4.2 Type of Attacks against the system

There are many different types of attacks that take place. These may vary

depending on the services you offer or the type of attackers targeting you. These

are areas that will be considered later for establishing protection methods. This

list is not exhaustive but can give you an idea of which areas to focus on. New

methods are still emerging, and security administrators need to ensure they

don’t become obsolete.

4.2.1 Reading data

Computer systems commonly associated with espionage or theft often contain

information that must be kept secret or secure. This can range from emails

about project quotes to personal information or bank details. Disclosure of this

information could cause serious damage to the company or result in legal action.

Therefore, the legal principles state that personal data ”must have appropriate

71

Chapter 4 Linux System Security & Hardening 4.2 Type of Attacks against the system

security measures”.

4.2.2 Changing data

Possibly more serious, the attack could gain enough access to update the data.

This could be an act of vandalism that destroys the organization or leaves a

business card. One of the biggest risks is that data could be altered and ignored.

The field is particularly well-known cases of attackers replacing websites with

modified versions.

4.2.3 Denial of service

In a denial of service (DoS) attack, an attacker disables or makes a service

provided by the system unavailable. The previous DoS attack was ”Ping of

Death”. Creating an ICMP echo command larger than the maximum allowed

size can cause the computer to fail. The vulnerability was discovered on Win-

dows Vista and was originally fixed in earlier versions of Windows ten years later

(http://www.v3.co.uk/v3/news/2249151/ancient-flaw- hits -vista). Many past

DoS attacks have been addressed with bug fixes. However, a more problem-

atic threat is also known as distributed denial of service. The first known

examples were attacks on Altavista and Yahoo in early 2000. However, similar

attacks were launched in 2009 against various websites, including Twitter, and

more recently against websites responsible for filtering Pirate Bay and other

file-sharing sites. A distributed denial of service attack works by having an at-

tacker or would-be attacker install a Trojan horse on many different computers.

When these Trojans are triggered simultaneously, they directly attack a single

system. The combined effect of thousands of simultaneous attacks prevents

the system from functioning. This attack is becoming more sophisticated, and

72

Chapter 4 Linux System Security & Hardening 4.3 System Hardening

security administrators are devoting more resources to solving these types of

problems.

4.2.4 Access to computer

While some systems allow other users to access your system, these user accounts

can sometimes be compromised. Computers may not contain confidential ma-

terial, and users may be unable to write data, but they may use your system to

cause harm. For example, if someone manages to attack a computer between

a secure network and an unsecured network, they can use your computer as

a way to switch between the two networks. Another technique for using your

computer to attack another computer is a distributed denial-of-service attack.

When triggered, an attacker can inject a Trojan horse on your computer to at-

tack another computer. It can be embarrassing if someone finds out that your

organization’s systems are being used to commit any of these crimes. It may

even appear that someone in your organization committed the crime.

4.3 System Hardening

System hardening is a process to secure a computer system or server by elim-

inating the risks of cyberattacks. The process involves removing or disabling

system applications, user accounts, and other features that cyber attackers can

infiltrate to gain access to your network. These features, sometimes known as

the attack surface, often serve as the entry points for malicious cyber activities

or hackers.[27]

System hardening is important because the attack surface of a corporate or

personal network is one of the most vulnerable Locations for cyberattacks. At-

73

Chapter 4 Linux System Security & Hardening 4.3 System Hardening

tack surface entry points can enable hackers, malware, and other cyber threats

to access an organization’s sensitive information. Through system hardening,

organizations can reduce their vulnerability to cyber threats and the likelihood

that cyber threats will gain access to their networks.

4.3.1 System Hardening Types

System hardening protects not only a computer’s software applications (includ-

ing the operating system) but also its firmware, databases, networks, and other

critical elements of a given computer system that attackers can exploit.

• Server hardening

• Software application hardening

• Operating system hardening

• Database hardening

• Network hardening

Server hardening

Server hardening refers to protecting servers’ ports, features, data, and permis-

sions. A server is a powerful computer that provides resources, services, or data

storage to other devices on an authorized network. Server hardening techniques

include disabling USB ports when the system is turned on, regularly updating

or patching server software, and creating stronger passwords for all users who

have access to the server.

74

Chapter 4 Linux System Security & Hardening 4.3 System Hardening

Software application hardening

With software application hardening, users or organizations can add or update

security measures for all programs and applications on their network. These

applications may include web browsers, word processors, or spreadsheet pro-

grams. Users implementing software application hardening update their appli-

cation code or add more software-based network security policies.

Operating system hardening

Operating system (OS) hardening is securing the operating system of an end-

point device such as a computer or mobile phone on a network. In computing,

an operating system is a specific type of software that manages the basic func-

tions of a device, such as starting and running programs. Strategies for OS

hardening include installing or updating patches and reducing the number of

people authorized for an organization’s OS. Although related, operating system

hardening and software application hardening are different processes. Software

application hardening emphasizes protecting third-party programs, ie. H. Soft-

ware created by companies other than the company that manufactures your

device. At the same time, OS hardening focuses on improving the security of

the underlying software that allows these third-party applications to run.

Database hardening

With database hardening, users can protect their digital databases and database

management systems (DBMS). A database is a storage space for your com-

pany’s valuable information that can be accessed digitally through devices or

systems on a network. On the other hand, DBMS is the software users use

when they want to access, store, modify or evaluate the information stored

75

Chapter 4 Linux System Security & Hardening 4.3 System Hardening

in the database. Database hardening strategies include disabling unnecessary

functions, encrypting database resources, and reducing user privileges.

Network hardening

Network hardening refers to securing communication channels and systems be-

tween servers, end devices, and other technologies running on a shared network.

With all these systems and devices regularly interacting, one potential vulner-

ability could lead to a breach across the network. Businesses or individuals

can improve network hardening by installing intrusion detection systems that

detect suspicious activity, firewalls, and encrypting network traffic.

4.3.2 System Hardening Process

While IT infrastructure varies based on organizational needs and use cases,

the technologies used to build these systems are common across industries.

Whether it’s marketing excellence or the quality of these products/services,

this standardization makes it possible to create security configuration guide-

lines for each technology. Developed by cybersecurity experts, these guides

provide a checklist of system hardening that organizations can apply to every

technology that makes up their infrastructure.

These system hardening standards are freely available from entities such as

the National Institute of Standards and Technology and the Center for Internet

Security. Each repository contains a list of vendors, their technology offerings,

and the benchmarks used to secure each listed technology. Additionally, the

benchmark document contains recommendations and detailed instructions for

implementing security measures based on use cases. In this format, security

professionals can download documents applicable to their infrastructure and

76

Chapter 4 Linux System Security & Hardening 4.3 System Hardening

create a checklist of hardening steps specific to their technology stack. If we

look at an example of an organization that uses a Linux Server to host business

applications and manage system access. Typically, a hardening checklist for

securing such servers will include the following steps:

• Disable guest accounts and enforce strict password policies for all users.

• Regularly install updates, patches, and patches for the operating system.

• Restrict access to administrator accounts and set account lockout policies.

• Apply regular updates to third-party applications and antivirus software

definition updates.

• Configure Active Directory Group Policy restrictions and enforce role-based

access control.

• Disable unnecessary Windows services and close unused network ports.

• Configuring system of alerts.

The steps are more like a general checklist. A comprehensive system hard-

ening guide will include additional steps and detailed information on the

level of security each step provides and how to implement it.

4.3.3 Server Auditing

A system audit involves reviewing and evaluating control and computer systems

and their use, efficiency, and security within the organization that processes

information. By examining systems as an alternative to control, tracking and

verification, computer processes and technologies can be used more efficiently

and safely to ensure appropriate decisions are made.[29] In another way, Server

auditing is not like a tax or compliance audit; instead, it’s a way of tracking

77

Chapter 4 Linux System Security & Hardening 4.3 System Hardening

and reviewing activities on your server. The process starts with creating an

audit policy. These policies define the events you want to monitor and record,

which you can then examine for potential security threats

Importance of Server Auditing

Server auditing is important for security, but it also helps keep operations run-

ning at your company. Servers are typically used for heavy workloads and large

volumes of network traffic, and any impact to them can cause downtime, cor-

rupt information, or a security breach, all of which can negatively impact your

business.

With a defined audit policy, administrators can track changes or attempts

to access critical information through Windows server auditing, Windows file

server auditing, and SQL Server auditing. The results give administrators in-

sight into the impact of the change performance degradation, for example and

the ability to identify the level of the threat.

Auditing is also important from a compliance perspective. Many organi-

zations use SQL Server to store sensitive information, and this data may be

subject to HIPAA and SOX requirements, among others. If you have a SQL

Server audit policy to monitor changes and modifications, you can create re-

ports based on this information and demonstrate regulatory compliance.

Common Types of Audits

Although each business has its own audit needs, certain types of audits are

commonly conducted. These include the following:

78

Chapter 4 Linux System Security & Hardening 4.3 System Hardening

Account logins: Auditing account logins is essential to identify unau-

thorized login attempts. In addition, it’s important to track successful

logins to ensure only valid users are logged in.

Account management: Account management audits identify changes

to roles and user accounts, keeping you updated on which users are

authorized.

Object changes: Auditing object changes is necessary to see when a

database object has been created, copied, changed, or dropped.

Policy changes: Auditing policy changes allows you to identify changes

to the audit policy itself and confirm whether those modifications are

expected, which is critical for accurate audits.

4.3.4 Benchmarks

They are configuration baselines and best practices for securely configuring a

system. Each of the guidance recommendations references one or more Controls

that were developed to help organizations improve their cyberdefense capabil-

ities . They provide a clear set of standards for configuring common digital

assets everything from operating systems to cloud infrastructure. This removes

the need for each organization to ‘reinvent the wheel’ and provides organiza-

tions with a clear path to minimizing their attack surface.The best benchmarks

for auditing a server and highly recommended are CIS AND NIST

NIST

:The National Institute of Standards and Technology is a non-regulatory gov-

ernment agency that develops technology, metrics, and standards to drive inno-

vation and economic competitiveness at U.S.-based organizations in the science

79

Chapter 4 Linux System Security & Hardening 4.3 System Hardening

and technology industry. As part of this effort, NIST produces standards and

guidelines to help federal agencies meet the requirements of the Federal Infor-

mation Security Management Act (FISMA). NIST also assists those agencies

in protecting their information and information systems through cost-effective

programs.

CIS

The Center for Internet Security is a nonprofit entity whose mission is to ’iden-

tify, develop, validate, promote, and sustain best practice solutions for cyberde-

fense.’ It draws on the expertise of cybersecurity and IT professionals from gov-

ernment, business, and academia from around the world. To develop standards

and best practices, including CIS benchmarks, controls, and hardened images,

they follow a consensus decision-making mode.

Example of CIS benchmarks (CIS Debian Linux 10 Benchmark)

80

Chapter 4 Linux System Security & Hardening 4.3 System Hardening

Profile Applicability:

Level 1 - Server

Level 1 - Workstation

Description:

The /etc/ssh/sshd config file contains configuration specifications for sshd.

The command below sets the owner and group of the file to root.

Rationale:

The /etc/ssh/sshd config file needs to be protected from unauthorized changes

by non- privileged users.

Audit:

Run the following command and verify Uid and Gid are both 0/root and

Access does not grant permissions to group or other:

stat /etc/ssh/sshd config

Access: (0600/-rw——-) Uid: (0/ root) Gid: (0/ root)

Remediation:

Run the following commands to set ownership and permissions on

/etc/ssh/sshd config:

chown root:root /etc/ssh/sshd config

chmod og-rwx /etc/ssh/sshd config

CIS Controls:

Version 7

81

Chapter 4 Linux System Security & Hardening 4.3 System Hardening

Protect Information through Access Control Lists

Protect all information stored on systems with file system, network share,

claims, application, or database specific access control lists. These controls

will enforce the principle that only authorized individuals should have access

to the information based on their need to access the information as a part of

their responsibilities.

4.3.5 Logs System

A log file is a file that records events that occur during the execution of the

operating system or other software. This is where Linux servers have log files

that contain messages about the server, including the kernel, services, and ap-

plications running on it. Log files are located in the /var/log directory. There

are four main types of log files generated in the Linux environment:

• Application Logs.

• Event Logs.

• Service Logs.

• System Logs.

You can observe and find detailed information about server performance,

security, error messages, and potential problems from the log files. Therefore,

any problems encountered by the server can be notified through the detailed

view of the log file. Therefore, by looking at the log files, you can solve and

prepare for future problems. The different files existing in the Linux are all

with a specific task, as it is shown below :

82

Chapter 4 Linux System Security & Hardening 4.3 System Hardening

/var/log/messages

This file contains the information of generic system activity. This is the log

file which stores informational and non-critical system messages.This file stores

mainly the non-kernel boot errors, application-related service errors, and the

messages that are logged during system startup. If something goes wrong, then

one should have to check this file first! Like you are facing some issues with

the sound card. To check if something went wrong during the system startup

process, you can look at the messages stored in this log file.

/var/log/secure.log

This file contains the information about all user authentication details. This

log file is mainly used to get the usage of the authorization system. This file

stores all security-related messages, including the authentication failure. This

file saves the sudo logins, SSH logins, and other errors logged by the system

security service daemon. This file is very useful for detecting hacking attempts.

Also, this file stores the information about successful logins and can be used to

verify the activities of valid users.

/var/log/boot.log

This file contains the information of all bootup message details. This file saves

the messages of issues related to the improper shutdown, unplanned reboots,

or booting failures. Log entries from this file are useful to detect the duration

of system downtime caused by an unexpected shutdown.

83

Chapter 4 Linux System Security & Hardening 4.3 System Hardening

/var/log/kern.log

This file contains the information logged by the kernel. Entries of this file are

useful for solving kernel-related errors and warnings. Log entries of this file are

helpful to detect the issues with the custom-built kernel and are also used for

debugging hardware and connectivity issues.

/var/log/fail.log

This file contains the information of all failed login attempts.Entries of this log

file are used to find any attempted security breaches involving username/password

hacking and brute-force attacks.

/var/log/cron.log

This file contains the information of all cron jobs.If any of your cron has is-

sues, you can find related entries from this file.When a cron job runs, this log

file records all relevant information, including successful execution and error

messages, in case of failures.

/var/log/mail.log

This file contains the information of all mail server-related details.This file saves

the entries or information about postfix, smtp, MailScanner, SpamAssassin, or

any other email-related services running on the mail server.One can track all

the emails sent or received during a particular period.One can check failed mail

delivery issues from the entries of this file.Details regarding any possible spam-

ming attempts blocked by the mail server can be obtained from this file.One

can detect the origin of an incoming email by detailed checking the entries of

this file.

84

Chapter 4 Linux System Security & Hardening 4.4 System hardening Automation

/var/log/httpd/

This directory contains the information about the logs recorded by the Apache

server. This directory has two files – error log and access log which saves

the information from Apache server. The error log contains messages related

to httpd errors such as memory issues and other system related errors. If

something goes wrong with the Apache web server, check this log for diagnostic

information.

/var/log/mysqld.log

This file contains the information of all mail debug, failure, and success messages

related to the mysqld and mysqld safe daemon. Entries of this file are used

to identify problems while starting, running, or stopping mysqld. One can get

the details about client connections to the MySQL data directory from this file.

4.4 System hardening Automation

Automated system hardening solution reduces the manual effort for golden im-

age hardening by using Automation solutions that meet industry standards,

such as CIS, NIST, and Azure Baseline Security. There has always been a

constant battle between agent-based and agentless monitoring and manage-

ment technologies. Some vendors claim to be agentless and do not require

special agent deployment. At the same time, others require the use of propri-

etary proxies. Both methods have advantages and disadvantages. However,

most ITOps teams combine agentless and agentless monitoring and need to use

both most efficiently and cost-effectively.

85

Chapter 4 Linux System Security & Hardening 4.4 System hardening Automation

4.4.1 Monitoring Architectures

Agent-less Architecture

For agentless monitoring, implementing an integrated SNMP agent extends to

remote shell access, such as SSH. ”Agentless” is a bit misleading. All manage-

ment requires an agent, whether embedded in a management platform, managed

device, or separately installed software.

The industry has embraced the de facto definition of agentless, that is, a

management agent embedded in the device software or functions as a manager

that does not require a separate installation or license. Agentless monitoring

really means leveraging existing embedded capabilities. This type has some

pros and cons, starting with the pros:[30]

• Does not require the installation of agents.

• OpManager supports a wide range of monitor types for agentless monitor-

ing.

• Supports virtual hosts.

• Supports all kinds of servers.

And about the cons:

• Credentials must be shared.

• Dependent protocols like WMI/ SNMP must be enabled in the end

• system.

• Dependent ports in the end machine and OpManager server must be en-

abled.

• When OpManager is down, monitor data is not collected.

86

Chapter 4 Linux System Security & Hardening 4.4 System hardening Automation

Agent-based Architecture

Agent-based technology enables in-depth monitoring and management. Every

software vendor will tell you that their proxy is best for their platform. While

this may be true, it could also be because their management platform was only

built to work with their proprietary agent. The result is vendor lock-in, and

switching vendors can lead to costly, large-scale, and long-term deployment of

alternative technologies. As a result, when IT needs change, it can be very costly

to meet them. Generally speaking, open standards and flexibility are better in

the long run. Many providers will tell you that you have to choose between the

two. Agentless monitoring vendors see this as their value proposition but ignore

the fact that they have already invested heavily in agent-based technology. A

proxy-based provider wants to sell you a proxy. The pros are as the following[30]

• Dependent protocols like WMI/ SNMP don’t have to be enabled in the end

system.

• Single way HTTPS outbound connection from end machine to OpManager

server doesn’t call for inbound connection requests to the end machine.

• Enabling of necessary ports will suffice rather than enabling all the ports.

• Monitor data is collected even when OpManager is down.

• Public exposure activities such as opening ports and allowing outside net-

work requests are not needed.

• This monitoring technique is much more secure.

the cons of this type are as below:

• Agent must be installed on all monitoring servers.

• Only limited monitor types are supported for the time being in OpManager.

87

Chapter 4 Linux System Security & Hardening 4.4 System hardening Automation

4.4.2 Available solutions

There is a list of popular DevOps ”configuration management tools” on the

Internet. With these tools, you can easily deploy, configure, and manage servers.

They are easy to use and powerful enough to automate complex multi-tier IT

application environments. The top four tools include Chef, Puppet, Ansible,

and SaltStack. Choosing the right DevOps tool for your business needs and

environment can be a bit of a hassle.

Chef

Chef is an automation platform that provides an efficient way to configure and

manage infrastructure. The boss is using Ruby and a DSL language to write

the configuration. Its architecture is similar to Puppet’s master-agent model.

It also uses a pull-based approach with additional logical boss workstations to

drive configuration from host to agent. It provides a configuration in a Ruby

DSL with a client-server architecture.

Puppet

Puppet is full-featured configuration automation and deployment orchestration

solution. It is an open-source tool based on Ruby. In order to work, it relies on a

custom domain scripting language (DSL) that is closer to JSON. It operates as a

master client setup and uses a model-driven approach. Large enterprises often

use it to automate system administrators who spend long hours configuring,

deploying, troubleshooting, and maintaining server operations.

88

Chapter 4 Linux System Security & Hardening 4.4 System hardening Automation

SaltStack

The SaltStack configuration tool is based on a master client setup model or a

decentralized model. SaltStack provides the Python programming language to

run commands over the SSH protocol using a push model. The platform also

allows the grouping of clients and configuration templates for easy control of

the environment. It provides low-latency, high-speed communication for remote

execution and data collection in a system administrator environment.

Ansible

Ansible is an extremely simple IT automation engine that automates cloud pro-

visioning, configuration management, application delivery, in-service orchestra-

tion, and many other IT needs.It uses no proxies and no additional custom

security infrastructure, so it’s easy to deploy - best of all, it uses a very simple

language (YAML in the form of Ansible playbooks) that allows you to describe

your automated tasks in English.

4.4.3 Ansible Architecture

Ansible simplifies complex orchestration and configuration management tasks.

It uses the Python language and allows users to write commands using YAML as

a necessary programming paradigm. Ansible provides several push models for

sending command modules to nodes via SSH running sequentially. In the table

below, a comparison between the four solutions is made based on many factors.

and our choice goes for this solution and the architecture will be discussed in

the next section.

89

Chapter 4 Linux System Security & Hardening 4.4 System hardening Automation

Modules

Ansible works by connecting to your nodes and emitting scripts called ”Ansible

modules” to them. Most modules accept parameters that describe the desired

state of the system. Ansible then runs these modules (via SSH by default) and

removes them when done. Your module library can reside on any computer and

does not require a server, daemon or database.

Inventory

By default, Ansible represents the machines it manages in a file (INI, YAML,

and so on) that puts all of your managed machines in groups of your own

choosing. A basic YAML /etc/ansible/hosts/hosts.yaml might look like

this:

Figure 4.1: Ansible Inventory

Playbooks

An Ansible playbook is a model of automation tasks, which are complex com-

puting operations that occur with little or no human intervention. Ansible

playbooks run on a set, group, or classification of hosts, which together form an

inventory.A basic YAML /etc/ansible/playbook.yaml might look like this

90

Chapter 4 Linux System Security & Hardening 4.5 Conclusion

Figure 4.2: Ansible Playbook

Figure 4.3: Ansible Architecture [28]

4.5 Conclusion

A reasonable level of computer security is not difficult to maintain on a home

machine. More effort is required on business machines, but Linux can indeed be

a secure platform. Due to the nature of Linux development, security fixes often

come out much faster than they do on commercial operating systems, making

91

Chapter 4 Linux System Security & Hardening 4.5 Conclusion

Linux an ideal platform when security is a requirement.For a more secure Linux,

system Hardening the solution and to facilitate the process the practical side

of the project will be discussed in the following part.

92

Part II

Management System and Automation

of The Linux servers Hardening

93

Chapter 5

Conception

5.1 Diagram of Classes

Class diagram is the backbone of object-oriented modeling - it shows how dif-

ferent entities (people, things, and data) relate to each other. In other words,

it shows the static structures of the system. A class diagram describes the

attributes and operations of a class and also the constraints imposed on the

system. Class diagrams are widely used in the modeling of object-oriented sys-

tems because they are the only UML diagrams that can be mapped directly to

object-oriented languages.

A class is depicted in the class diagram as a rectangle with three horizontal

sections, as shown in the figure below. The upper section shows the class’s

name (Flight), the middle section contains the properties of the class, and the

lower section contains the class’s operations (or “methods”).The purpose of the

classes diagram can be summarized as:

• Analysis and design of the static view of an application;

• describing the responsibilities of a system;

• providing a base for component and deployment diagrams; and,

94

Chapter 5 Conception 5.1 Diagram of Classes

• Forward and reverse engineering.

95

Chapter 5 Conception 5.1 Diagram of Classes

Figure 5.1: Diagram of classes

96

Chapter 5 Conception 5.1 Diagram of Classes

5.1.1 Description

Entities

Figure 5.2: Diagram of classes / permission / Role / User

permission : entity that have (id,name,slug) the slug for permission and

name is for description of permission

role : Entity with (id,name) the benefits of this entity is to not declare for

every user a role but we can assign for users roles and they can have

the same role (get the same permissions).

user : entity have (id,password,username) in this entity it is normal user

with role id to define the role of this user (the user can’t has more than

one role).

97

Chapter 5 Conception 5.1 Diagram of Classes

Figure 5.3: Diagram of classes / Playbook / Regex / Expressions

Playbook : this entity has (id,name,system,user id,githuburl,description,tag id)

. The name is used to search for this playbook , system for every play-

book there is a specific system that we use . user id to know the user

who created this playbook ,githubUrl is the url of the playbook to use

. description is for describing the playbook and the function inside it .

a playbook can have 0 or n Regex .

Regex : Regex Entity has only (id,playbook id,user id) . regex can have

only one playbook , regex can has 1,n expressions .

Expressions : this Entity has (id,regex id,expression,selection) the selec-

tion is used for steps and where exactly we use this regex .

98

Chapter 5 Conception 5.1 Diagram of Classes

Figure 5.4: Diagram of classes / ScanEng / Audit / Playbook / Template/ user

ScanEng: this Entity needs (id,ipAddress,status,port) the status is used

to see if this ScanEng is working or resting . the port is used when we

send the data

Playbook : (id,name,system,user id,githuburl,description,tag id). The name

is used to search for this playbook , system for every playbook there is

a specific system that we use . user id to know the user who created

this playbook ,githubUrl is the url of the playbook to use . description

is for describing the playbook and the function inside it . a playbook

99

Chapter 5 Conception 5.1 Diagram of Classes

can only one tag.

Template : it is not 100 % completed but the function of template is

groupe of playbooks

user : entity has (id,password,username) in this entity it is normal user

with role id to define the role of this user (the user can’t has more than

one role). a user can have 1,n audited

Audit : this Entity has (id,status,scan eng id,description,user id) the sta-

tus is when audit is finished or still doing audit.

100

Chapter 5 Conception 5.1 Diagram of Classes

Figure 5.5: Diagram of classes / Server/ Audit / Tags

Audit server: in this Entity we need (id,ipAddress,audit id,Status,

playbook id,server id)

Server: (id, ip Addr, status, audited, system)

Tags: (id, tag)

101

Chapter 5 Conception 5.1 Diagram of Classes

Figure 5.6: Diagram of classes / File / Results /Audit server

File: in this entity we find the id,path,Audit id

Results: Results Status ,Module Executed ,Result ,Audit server id

102

Chapter 5 Conception 5.2 Use Cases Diagram

5.2 Use Cases Diagram

A use case diagram is a way to summarize details of a system and the users

within that system. It is generally shown as a graphic depiction of interactions

among different elements in a system. Use case diagrams will specify the events

in a system and how those events flow, however, use case diagram does not

describe how those events are implemented.The reasons why an organization

would want to use case diagrams include:

• Represent the goals of systems and users.

• Specify the context a system should be viewed in.

• Specify system requirements.

• Provide a model for the flow of events when it comes to user interactions.

• Provide an outside view of a system.

• Show’s external and internal influences on a system.

The general diagram of the use cases of our project is below:

103

Chapter 5 Conception 5.2 Use Cases Diagram

Figure 5.7: Diagram of the use cases

104

Chapter 5 Conception 5.2 Use Cases Diagram

5.2.1 Description

User : like we see in the Figure the user has the possibility to do the following

functions:

Management Of GitRepositories: this Function consists on creat-

ing and seeing what are the modification on this repository.

Creating Server : this Function is for the creation of servers and

showing the details of a server.

Creating PlayBook : This Function is for creating Playbooks with

showing the details of these playbooks

Executing Playbook: this function has another name it is creating

an audit.

Creating ScanEng : this function is for the creation,management and

showing details on the ScanEngine.

check Audit status : like the name suggests it is for the management

of the audit and seeing which Server is not Audited.

Update audit status: Update Status Of a Server From Not Audited

to audited or the opposite.

Admin : As We see that the admin is doing everything that user can do and

more

Audit Management : it is creation and update and delete and mod-

ification of audit

Scan Management : it is creation and update and delete and modi-

fication of scanEng Playbook or Server or tags

105

Chapter 5 Conception 5.2 Use Cases Diagram

Result Management : it is update and delete and modification for

status of audit and checking the results.

Roles Management : it is creation and update and delete and mod-

ification role or attaching it to a user .

privileges Management : it is creation and update and delete and

modification of the permissions or add permission to role.

Password Management : it is everything creation and update and

delete and modification of the users.

106

Chapter 6

Development and Implementation

6.1 Introduction

In this part, we will detail the stages of the development of the solution, the

choice of tools initially, and the demonstrations of the different useful features.

6.2 Tools Used:

6.2.1 Visual Studio Code :

s a source code editor developed by Microsoft for Windows, Linux, and macOS.

That Features include support for debugging, syntax highlighting, smart code

completion, code snippets, code refactoring, and Built-in Git, which can be used

with various programming languages such as Java, JavaScript, Go, Node.js,

Python, and C++.

6.2.2 XAMP Server :

XAMPP is an easy-to-install Apache distribution. It contains MySQL, PHP,

and Perl. Just download and run the installer. It’s that simple.[31]

107

Chapter 6 Development and Implementation 6.2 Tools Used:

6.2.3 Laravel v9:

Laravel is a web application framework written using expressive and elegant

syntax in PHP. Laravel tries to simplify development by simplifying common

tasks In most web projects, such as authentication, routing, sessions, and set-

tings hidden. Laravel is designed to allow developers to At the expense of app

functionality. It provides the powerful tools needed for Big and powerful appli-

cations. It’s hard to talk about frameworks without mentioning the following:

MVC (Model-View-Controler)

Models are responsible for managing data. Views are responsible for formatting

for the user. The controller is responsible for managing the whole. In general,

let’s summarize, the model manages the database, the view creates the page

HTML, and controllers do everything else.

ORM Eloquent

The PHP Laravel framework comes with the Eloquent Object Relational Map-

per (ORM), which refers to a high-level implementation of the PHP Active

Record pattern to make it easier Interaction with the application database.

Meet different business needs through faster development, And well-organized,

reusable, maintainable, and extensible code. It works. Customize the web ap-

plication as it can manage and run multiple databases General database opera-

tions. Developers can efficiently use multiple databases in Eloquent Data with

ActiveMethod implementation. It is an architectural model in which Models

are created in the Model-View-Controller (MVC) structure corresponding to

the database. The benefit is that the model performs common database oper-

ations without Writing long SQL query code. Models allow you to query your

108

Chapter 6 Development and Implementation 6.2 Tools Used:

data table and insert new data records into the table.

JSON Files:

is an open standard file format and data interchange format that uses Human-

readable text objects for storing and transmitting data consisting of pairs of

Property values and arrays. This is very Mainstream; there are various applica-

tions. An example is a web application Communicating with the Server. JSON

is a language-independent data format. It is derived from JavaScript but is

derived from Many modern programming languages that contain code for the

generation and parsing of data in JSON format.

Composer

A composer is a tool that includes all the dependencies and libraries. It allows a

user to create a project with respect to the mentioned framework (for example,

those used in Laravel installation). Third-party libraries can be installed easily

with the help of a composer.

All the dependencies are noted in the composer.json file, which is placed in the

source folder.

Artisan

Command-line interface used in Laravel is called Artisan. It includes a set of

commands which assists in building a web application. These commands are

incorporated from the Symphony framework, resulting in add-on features in

Laravel 5.1 (the latest version of Laravel).

Modularity: Laravel provides 20 built-in libraries and modules, which

109

Chapter 6 Development and Implementation 6.2 Tools Used:

helps in the enhancement of the application. Every module is inte-

grated with the Composer dependency manager, which eases updates.

Testability: Laravel includes features and helpers which help in testing

through various test cases. This feature helps in maintaining the code

as per the requirements.

Routing: Laravel provides a flexible approach for the user to define routes

in the web application. Routing helps to scale the application in a

better way and increases its performance.

Configuration Management: LA web application designed in Laravel

will be running on different environments, which means that there will

be a constant change in its configuration. Laravel provides a consistent

approach to handling the configuration in an efficient way.

Features of Laravel

Laravel offers the following key features, which make it an ideal choice for

designing web applications.

6.2.4 Node JS

NodeJS is a platform built on top of Google Chrome’s JavaScript executor for

developing scalable and modular web applications. This development can be

done easily, quickly, and efficiently. NodeJS uses event-driven programming

to encourage exchanges between client and Server. Also, input and output

are done in a non-blocking manner, making NodeJS a lightweight and efficient

tool. Applications that perform intensive data exchange in real-time will benefit

from this. Because NodeJS is based on JavaScript, all systems that support

JavaScript browsers are client-side compatible. On the server side, all you have

110

Chapter 6 Development and Implementation 6.2 Tools Used:

to do is install the node program, and then you can run it on the command

line.

6.2.5 YAML

YAML is an easy-to-digest data serialization language commonly used to create

configuration files in any programming language.

6.2.6 Bootstrap

It is a collection of useful tools for design creation (graphics, animation, and

Interaction) with pages in the browser, etc.) for websites and applications.

It’s a sentence that Contains HTML and CSS code, forms, buttons, navigation

tools, more Interactive elements, and optional JavaScript extensions. This is

the most Popular on the GitHub development management platform.

6.2.7 GitHub

is an open standard file format and data interchange format that uses text

Human-readable object for storing and transmitting data consisting of pairs

Property values and arrays (or other serializable values). This is a very Main-

stream, there are various applications, an example is a web application Com-

municate with the server. JSON is a language-independent data format. It

is derived from JavaScript, but is derived from Many modern programming

languages contain code for generation and parsing Data in JSON format.

6.2.8 AdminLte

is a popular open-source WebApp template for admin dashboards and control

panels. It is a responsive HTML template that is based on the CSS framework

111

Chapter 6 Development and Implementation 6.3 Architecture of the Solution

Bootstrap 3. It utilizes all of the Bootstrap components in its design and re-

styles many commonly used plugins to create a consistent design that can be

used as a user interface for backend applications. AdminLTE is based on a

modular design, which allows it to be easily customized and built upon. This

documentation will guide you through installing the template and exploring the

various components that are bundled with the template.[32]

6.2.9 Ansible

Ansible is an open-source software deployment, configuration management, and

application deployment tool that supports infrastructure as code. It runs on

many Unix-like systems and can be configured for Unix-like systems and Mi-

crosoft Windows.

6.3 Architecture of the Solution

Let’s say that we have an IT engineer who knows how to audit a server. Firstly

he needs to know the Server (system and historic, ipAddress, user, root user

. . .). The employee needs to know a lot of things about this Server to start an

audit. Not only is it very risky, repetitive, and Tiring. And that’s not all. After

that, he needs to know about the benchmark and what he needs to execute for

this Server. After that, he needs to start auditing the Server, and sometimes

auditing a server can take days or more. And As we see in big companies, Like

Elit has thousands or more than 10 thousand servers. Not only do they need

more IT engineers, but they need to know how to work with benchmarks. It is

very risky to give access to an employee that can do anything with that Server

and change and modify and delete. Like sometimes, employees need root access,

but not only that, the employee can forget the history of his audits. There are

112

Chapter 6 Development and Implementation 6.3 Architecture of the Solution

Figure 6.1: Project Architecture

a lot of problems in auditing a server. That’s why we made this solution With

Laravel nodejs and Ansible.

Like We see in the figure the three main objects Scan Eng , Server, Web-

Site.

WebSite: is for the management and services and communication between a

user and the other objects (ScanEng and Server) even between users,

ScanEng: it is Server, but with Ansible, git, and nodejs installed, all of these

installation needs to have successful ScanEng .

Server: As the name suggests, it is a server, and it is the most important ob-

ject in the project. The Server can be a Mysql server, Apache server, WebSite

. . .

113

Chapter 6 Development and Implementation 6.4 How the Application works

6.4 How the Application works

The process will be explained with an example of an employee who needs to do

an audit on the Mysql server.

1. Firstly, the employee needs to select the Server, and the selection is based

on a root user or user with privileges. He can select one or more.

2. Here, it is the time to select a free ScanEngine to scan the servers

3. lastly the selection of playbooks. The selection can be composed of one or

more than one playbook, but it needs to be arranged in a specific classifi-

cation because the order of execution of playbooks is important

4. the playbooks are made as a form and sent to the scanEngine.

Now the process of the ScanEngine must be explained below:

1. Inside the ScanEngine, a GitHub repository that contains a playbook is

cloned

2. then the mapping or in other way the classification of the playbooks is

made.

3. now it is the time of the hosts’ files that contain the IP addresses of the

servers and users that are used

4. after the execution of the first playbook, the results are being sent to the

user, and this process repeats for all the stack of the playbooks.

5. At the end of the execution, the status of the ScanEngine and the servers

are changed to resting.

114

Chapter 6 Development and Implementation 6.5 The Process of Creation

6.5 The Process of Creation

creation of playbook :

The playbook is a playbook of ansible which is stored inside github repository .

you ask why we did it inside github and not inside application because github

give us the management of playbook and to not duplicate anything we used it

for management and seeing what is inside , Example of Playbook. Like we see

in after every module there module and that module is used save the result of

the module before it inside list . Lastly we create a file for the result.

Creation of the scan Engine:

To create a scan Eng we just need an ip Address and port the ipAddress to let

us know which scanEng we are using because it is the server we need it to know

where to send the form of audit to if we are using it locally .

Creation of the scan Engine:

To create a scan Eng we just need an ip Address and port the ipAddress to let

us know which scanEng we are using because it is the server we need it to know

where to send the form of audit to if we are using it locally .

Creation of the Server

To create a server we just need an ip Address

creation of audit :

To create Audit we need to select a server playbook and scan which is resting

and not working . after the selection of these three and doing the mapping

115

Chapter 6 Development and Implementation 6.5 The Process of Creation

for each server with a playbook . The application created for us a model

audit server just to know where which playbook is executed now with what

server . and it attaches a regex expression with the playbook . After finishing

the audit it will make the status of audit server finished and see if it is audited

or not .

Creation of a Regex Expression :

the regex expression is for checking the results and seeing if there is a positive

result and it can predict how the result will be but with expression .

Creation result file :

after finishing a playbook on the scanning we just save the playbook results in

file and get it in the database to check the results later if we needed .

creation of report monthly of server :

for this function we added it to see where exactly a server is audited and some-

times a company needs to make sure that clients servers are aduit properly

.

116

Conclusion

System hardening aims to eliminate as many security risks as possible. This

is usually done by removing all non-essential software programs and utilities

from the computer. This process should take a lot of time for an engineer,

and the solution proposed aims to reduce this lost time. This last was at the

organization’s expectations.

This project gave us the opportunity to develop more our skills on the web

development and to know more about cybersecurity and the system adminis-

tration and becoming more familiar with the linux system and getting to know

the domain of the DevOps and the manipulation of servers.

We tried to do our best in this Short time we faced various types of problems

and we managed to solve them. We are planning to add more features and

develop our solution more and the detection of vulnerabilities system is one

of our major points to be added in the next versions. We Hope this project

should give a hint or a help for the upcoming projects and giving the courage

for Students to do such projects in the DevOps Domain

117

Bibliography

[1] Sebastien ROHAUT.LINUX Maitrisez l’administration du systeme.Editions

ENI.(2017).

[2] David A Rusling. The LINUX KERNEL -Version 0.8.3 . (2001)

[3] The Open Group Base Specifications Issue 7 2018 edition. Headers.

https://tinyurl.com/2p82s7sm

[4] The Open Group Base Specifications Issue 7 2018 edition. File Format No-

tation. https://tinyurl.com/566dn2za

[5] The Open Group Base Specifications Issue 7 2018 edition. Environment

Variables. https://tinyurl.com/5ynfus9k

[6] The Open Group Base Specifications Issue 7 2018 edition.Locale.

https://tinyurl.com/3pr77pfr

[7] The Open Group Base Specifications Issue 7 2018 edition. Regular Expres-

sions. https://tinyurl.com/yckzhxf2

[8] The Open Group Base Specifications Issue 7 2018 edition. Directory Struc-

ture and Devices. https://tinyurl.com/2xsen9bp

[9] tutorialspoint.(May 2022). Unix / Linux - Getting Started.

https://www.tutorialspoint.com/unix/unix-getting-started.htm

[10] Linux File Hierarchy Structure.(2022) https://cochiselinuxusergroup.org/Resources/Filesystem/

118

BIBLIOGRAPHY BIBLIOGRAPHY

[11] K. C. Wang. School of Electrical Engineering Washington State University

Pullman, WA, USA.Systems Programming in Unix/Linux. Springer Inter-

national Publishing (2018)

[12] Oreilly Edition. (1st Edition January 1999).Open Sources: Voices from the

Open Source Revolution

https://www.oreilly.com/openbook/opensources/book/appb.html

[13] javatpoint (April 2022).Architecture of Linux.

https://www.javatpoint.com/architecture-of-linux

[14] Oracle Documentation Introduction to the PAM Framework

https://docs.oracle.com/cd/E19120-01/open.solaris/819-2145/pam-

01/index.html

[15] Cambridge Dictionary.(2022).Définition de administration en anglais.

https://dictionary.cambridge.org/fr/dictionnaire/anglais/administration

[16] DICTIONARY.COM.(2022). Definition of administration.

https://www.dictionary.com/browse/administration

[17] Christopher Negus.Linux Bible. John Wiley & Sons, Inc.9th edition (2015)

[18] Debian Documentation.(2022) Chapter 8. The Debian package manage-

ment tools

https://www.debian.org/doc/manuals/debian-faq/pkgtools.en.html

[19] Simran Kaur.(september,2021). How do I List All Groups in Linux

https://linuxhint.com/list-all-groups-linux/

[20] Thomas Tuffin (Red Hat, Sudoer),(March 31, 2021). How to manage Linux

passwords with the pass command

https://www.redhat.com/sysadmin/management-password-store

119

BIBLIOGRAPHY BIBLIOGRAPHY

[21] Rimuhosting. Managing services in Linux

https://rimuhosting.com/knowledgebase/linux/managing-services

[22] Justin Ellingwood.(January 24, 2022).Understanding Systemd Units and

Unit Files

https://www.digitalocean.com/community/tutorials/understanding-

systemd-units-and-unit-files

[23] Diigital Guide IONOS.(April 22, 2022) What Telnet is and how do

you enable it? https://www.ionos.com/digitalguide/server/tools/telnet-

the-system-wide-remote-protocol/

[24] SSH Academy. OpenSSH: SSH key management needs attention

https://www.ssh.com/academy/ssh/openssh

[25] Sam Ingalls.(July 23, 2021)What Is A Virtual Server?

https://www.serverwatch.com/guides/virtual-server/

[26] Domantas G. (jun 01, 2022) How Does SSH Work

https://tinyurl.com/4nbvxref

[27] Indeed Editorial Team. (March 30, 2022) What Is System Hardening?

(Definition and How It Works)

https://www.indeed.com/career-advice/career-development/what-is-

system-hardening

[28] Shaik Rabbani. (May 2021). The Ansible Architecture

https://www.ecanarys.com/Blogs/ArticleID/401/The-Ansible-Architecture

[29] Richard Daniels. (August 8, 2020) .What is Systems Audit and What are

the Objectives of System Audit?.

https://www.businessstudynotes.com/finance/auditing/systems-audit/

120

BIBLIOGRAPHY BIBLIOGRAPHY

[30] ManageEngine OpManager.(2022) Agent-based vs Agentless mon-

itoring: A Comparison. https://www.manageengine.com/network-

monitoring/help/agent-based-vs-agentless-monitoring.html

[31] About Xampp. https://www.apachefriends.org/fr/download.html

[32] AdminLTE Documentation (Version 2.3)

https://adminlte.io/themes/AdminLTE/documentation/

121

	I Theoretical Background
	Linux Systems
	Introduction
	The POSIX Standard
	What is POSIX
	POSIX Defined Standards

	LINUX Architecture
	Hardware Basics
	The Kernel
	Commands and Utilities
	Files and Directories

	World of The Open Source
	Open Source Software

	Conclusion

	Linux System Administration
	Introduction
	Package Manager
	What is a Package
	RPM Package manager
	RPM & YUM
	Debian Package manager
	dpkg & Apt

	Managing Disks and file systems
	Linux Files Types
	Linux File system structure
	Linux File system Types
	Ext, Ext2, Ext3 and Ext4

	Managing System Users
	The Identification The authentication
	Users
	Groups
	Passwords
	Users Authentication

	Conclusion

	Linux Server Administration
	Introduction
	Managing Services
	Init & Systemd
	Units

	Network Management
	Desktop
	Entreprise
	Remote Access

	Virtual Servers
	Types of Virtual Servers
	Advantages disadvantages
	Virtual Server vs. Virtual Machine (VM)

	Conclusion

	Linux System Security & Hardening
	Introduction
	Type of Attacks against the system
	Reading data
	Changing data
	Denial of service
	Access to computer

	System Hardening
	System Hardening Types
	System Hardening Process
	Server Auditing
	Benchmarks
	Logs System

	System hardening Automation
	Monitoring Architectures
	Available solutions
	Ansible Architecture

	Conclusion

	II Management System and Automation of The Linux servers Hardening
	Conception
	Diagram of Classes
	Description

	Use Cases Diagram
	Description

	Development and Implementation
	Introduction
	Tools Used:
	Visual Studio Code :
	XAMP Server :
	Laravel v9:
	Node JS
	YAML
	Bootstrap
	GitHub
	AdminLte
	Ansible

	Architecture of the Solution
	How the Application works
	The Process of Creation

