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Abstract with three languages

Abstract

Missing data is a major issue in many applied problems. in our work we examine

data that are missing and . the aims of multiple imputation in comparison to single

imputation, we also studying the statistical inference by likelihood Maximum method

for sample with missing data with Maximization-Expectation algorithm. Finally, we

present the mains packages for imputation of missing data, and we applied the EM

algorithm for Mixture Gaussian model

Keywords: expectation maximization algorithm, missing data, imputation, maxi-

mum likelihood Method

Résumé

Les données manquantes sont un problème majeur dans de nombreux problèmes ap-

pliqués. Dans notre travail, nous avons examiné les données manquantes et les objec-

tifs de l’imputation multiple par rapport à l’imputation simple. Nous avons également

étudié l’inférence statistique en basant sur la méthode de la vraisemblance maximale

( maximum-likelihood estimation ) pour un exemple avec des données manquantes

en utilisant l’algorithme Espérance-maximisation. Finalement, nous avons présenté

la majorités des modules nécessaires pour l’imputation des données manquantes et

nous avons appliqué l’algorithme EM pour le modèle de mélange Gaussien ( Gaussian

Mixture Model )

Mots-clés: algorithme espérance maximisation, données manquantes, imputation,

vraisemblance maximale

viii Mémoire de Master



GENERAL INTRODUCTION

In most situations, simple techniques for handling missing data (such as complete case

analysis, overall mean imputation, and the missing-indicator method) produce biased

results, whereas imputation techniques yield valid results without complicating the

analysis once the imputations are carried out. Imputation techniques are based on the

idea that any subject in a study sample can be replaced by a new randomly chosen

subject from the same source population. Imputation of missing data on a variable is

replacing that missing by a value that is drawn from an estimate of the distribution of

this variable. In single imputation, only one estimate is used. In multiple imputation,

various estimates are used, reflecting the uncertainty in the estimation of this distribu-

tion. Under the general conditions of so-called missing at random and missing com-

pletely at random, both single and multiple imputations result in unbiased estimates

of study associations. But single imputation results in too small estimated standard

errors, whereas multiple imputation results in correctly estimated standard errors and

confidence intervals.Data that we plan to analyze are often incomplete. Study design

strategies should ideally be set up to obtain complete data in the first place through

questionnaire design, interviewer training, study protocol development, real-time data

checking, or re-contacting participants to obtain complete data. When obtaining com-

plete data is not feasible, proxy reports or the collection of characteristics associated

with the missing values can help. Missing data can be categorized in multiple ways.

Perhaps the most troubling are the data missing on entire observations (e.g., due to

selection bias) or on entire variables that have been omitted from the study design.

Somewhat more tractable, but still potentially problematic, are data missing on a sub-

set of variables that are missing for a subset of the observations. In this case, it can be

useful to label those observations without missing data as “complete cases” and those

with some missing data as “partial cases.” Ideally, we hope that the amount of missing

data is limited, in which case we will rely less heavily on our assumptions about the

pattern of missing data.
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Abstract with three languages

Missing data can bias study results because they distort the effect estimate of inter-

est . Missing data are also problematic if they decrease the statistical power by effec-

tively decreasing the sample size, or if they complicate comparisons across models that

differ in both the analysis strategy and the number of included observations.Researchers

usually address missing data by including in the analysis only complete cases those in-

dividuals who have no missing data in any of the variables required for that analysis.

However, results of such analyses can be biased. Furthermore, the cumulative effect of

missing data in several variables often leads to exclusion of a substantial proportion

of the original sample, which in turn causes a substantial loss of precision and power.

we used Expectation-Maximization (EM) algorithm, (EM) algorithm is a popular al-

gorithm for obtaining maximum likelihood (ML) estimates. in cases of missing data,

Here we present the main steps for exploring the EM algorithm for the factor anal-

ysis model. This algorithm extends a previously proposed EM algorithm to handle

problems with missing data. It is simple to implement and is the most storage effi-

cient among its competitors.the basic idea of the EM algorithm is to associate with the

given incomplete-data problem, a complete-data problem for which ML estimation is

computationally more tractable; for instance, the complete data problem chosen may

yield a closed form solution to the maximum likelihood estimate (MLE) or may be

amenable to MLE computation with a standard computer package. The methodology

of the EM algorithm consists in reformulating the problem in terms of this more eas-

ily solved complete-data problem, establishing a relationship between the likelihoods

of these two problems, and exploiting the simpler MLE computation of the complete-

data problem in the M-step of the iterative computing algorithm

our work are present as follow:

▶ chapter 1

We talk about causes of missing data,Ignorable Missing Value and the Missing-

ness Mechanism and patterns and we give in this chapter diffrent methods for

Handling Missing Data.

▶ chapter 2

In this chapter we present the EM algorithm and his history, also his properties.

and the relation between EM algorithm and Newton-Raphson method, we delve

into the details E- and M-Steps of the regular exponential family and take an

example of Censored Exponentially Distributed Survival Times,also Generalized

Expectation-Maximization Algorithm(GEM), And where is used EM Algorithm

by Newton-Raphson Step. Finally we show how to estimate the parameters of

a bivariate normal distribution based on a sample from this distribution even

when some of the data is missing

2 Mémoire de Master



GENERAL INTRODUCTION

▶ chapter 3

We give various examples of applications of the EM algorithm to the resolution

of some problems of missing data, we have list of 5 R packages popularly known

for missing value imputation. There might be more packages. But, we decided

to focus on these ones. we have tried to explain the concepts in simplistic man-

ner with practice examples of Imputation of missing data and Inference by EM

algorithm in R. We complete this work with a general conclusion.

3 Mémoire de Master



CHAPTER1

TREATMENT OF THE PROBLEM OF MISSING-DATA

1.1 Missing data

In statistics, missing data, or missing values, occur when no data value is stored for

the variable in an observation. Missing data are a common occurrence and can have a

significant effect on the conclusions that can be drawn from the data.

Missing data can occur because of non response: no information is provided for one

or more items or for a whole unit ("subject"). Some items are more likely to generate

a non response than others: for example items about private subjects such as income.

Attrition is a type of missingness that can occur in longitudinal studies for instance

studying development where a measurement is repeated after a certain period of time.

Missingness occurs when participants drop out before the test ends and one or more

measurements are missing.

Data often are missing in research in economics, sociology, and political science be-

cause governments or private entities choose not to, or fail to, report critical statistics,

or because the information is not available. Sometimes missing values are caused by

the researcher for example, when data collection is done improperly or mistakes are

made in data entry.

These forms of missingness take different types, with differents impacts on the va-

lidity of conclusions from research: Missing completely at random, missing at random,

and missing not at random. Missing data can be handled similarly as censored data.

Understanding the reasons why data are missing is important for handling the re-

maining data correctly. If values are missing completely at random, the data sample

is likely still representative of the population. But if the values are missing systemati-

cally, analysis may be biased. For example, in a study of the relation between IQ and

income, if participants with an above-average IQ tend to skip the question ‘What is

your salary?’, analyses that do not take into account this missing at random (MAR pat-

4



CHAPTER 1. TREATMENT OF THE PROBLEM OF MISSING-DATA

tern (see below)) may falsely fail to find a positive association between IQ and salary.

Because of these problems, methodologists routinely advise researchers to design stud-

ies to minimize the occurrence of missing values. Graphical models can be used to

describe the missing data mechanism in detail.

1.2 Missing values

1.2.1 Introduction

The problem of missing values exists since the earliest attempts of exploiting data as a

source of knowledge, as it lies intrinsically in the process of obtaining, recording, and

preparation of the data itself. Clearly, (citing Gertrude Mary Cox) “The best thing to

do with missing values is not to have any”, but in the contemporary world, considering

the increasingly growing amount of accessible data and demand in statistical justifica-

tion this is not always the case, nay never. Main references on missing values include

Schafer (1997) [1], Little and Rubin (1987, 2002) [2], van Buuren (2012) [3], Carpenter

and Kenward (2013) [4] and (Gelman and Hill, 2007)[chp25][5]

Missing values occur for plenty of reasons: machines that fail, individuals who for-

get or do not want to answer to some questions of a questionnaire, damaged plants,

etc. They are problematic since most statistical methods cannot be applied on a in-

complete dataset. In this chapter we review the different types of missing data and

statistical methods which allow their incorporation.

1.2.2 Ignorable missing values

Many statistical methods are based on estimating a parameter by maximizing the like-

lihood of the data. Assume that X has a density, parameterized by some parameter

θ that we want to estimate, if X is Gaussian for instance we simply have θ = (µ,Σ).

Assume that M also has a density parameterized by another parameter φ for example

the probability p of a Bernoulli distribution. In some cases, estimating θ from an in-

complete data can be done in a very simple way by ignoring, or “skipping” the missing

data, as detailed below.

We denote by f (X,M |θ,φ) the joint density of the observed and missing entries and

of the indicator of missingness conditioned on parameters θ and φ. In the context of

maximum likelihood estimation, we maximize with respect to θ the marginal density

of the observed data XOBS and we have the missing data XMIS

f (XOBS,M |θ,φ) =
∫
f (XOBS,XMIS,M |θ,φ)dXMIS.

5 Mémoire de Master



CHAPTER 1. TREATMENT OF THE PROBLEM OF MISSING-DATA

If the data are MAR (or MCAR), the following factorization holds

f (XOBS,XMIS,M |θ,φ) = f (XOBS,XMIS|θ)f (M |XOBS,φ).

Plugging this in the expression of the marginal density we obtain

f (XOBS,M |θ,φ) =
∫
f (XOBS,XMIS|θ)f (M |XOBS,φ)dXMIS,

f (XOBS,M |θ,φ) = f (M |XOBS,φ)
∫
f (XOBS,XMIS|θ)dXMIS,

f (XOBS,M |θ,φ) = f (M |XOBS,φ)f (XOBS|θ) (1.1)

If φ and θ are distinct (the joint parameter space of (θ, φ) is the product of the pa-

rameter space of θ and the parameter space of φ), as the term f (M |XOBS,φ) is respect

to θ, it is equivalent to maximize the likelihood f (XOBS|θ), i.e. to ignore the missing

data. It really means that when doing inference, i.e. to get the ML estimates for pa-

rameters from an incomplete set, one can “simply” maximizes the observed likelihood

while ignoring the process that have generated missing values. Consequently, most of

the methods used in practice relie on the assumption that the data are MAR.

1.3 Missing data mechanisms: MCAR, MAR, MNAR

There are several types of missing data, and explaining the reasons why part of the

data is missing is crucial to perform inference or any kind of statistical analysis. Deal-

ing with missing data boils down to considering that the observed data XOBS is only

a subset of a complete data model X = (XOBS,XMIS) which is not fully observable (i.e.

XMIS are the missing data). Assume X = (X1, . . . ,Xn); the missing values XMIS are char-

acterized by a set of indices IMIS ⊂ {1, . . . ,n} such thatXMIS = {Xi ; i ∈ IMIS}. We define the

indicator of missingness M ∈ {0,1}n such that Mi = 1 if i ∈ IMIS and Mi = 0 otherwise;

M defines the of missingness. Both X and M are modeled as random variables with

probability distributions PX and PM respectively. The different types of missing data

refer to different dependence relationships between XOBS,XMIS and M.

The observations are said to be Missing Completely At Random (MCAR) if the

probability that an observation is missing is independent of the variables and observa-

tions in the dataset:

the probability that an observation is missing does not depend on (XOBS,XMIS).

Formally:

PM(M |XOBS,XMIS) = PM(M). (1.2)

The observations are said to be missing at random (MAR) if the probability that an

6 Mémoire de Master



CHAPTER 1. TREATMENT OF THE PROBLEM OF MISSING-DATA

observation is missing only depends on the observed data XOBS. Formally:

PM(M |XOBS,XMIS) = PM(M |XOBS). (1.3)

The observations are said to be Missing Not At Random (MNAR) in all other cases.

1.3.1 Missing Completely at Random (MCAR)

The MCAR case is observed when the possibility of a feature variable having missing

data entries is independent of the feature variable itself or of any of the other feature

variables within the data set. Essentially, this means that the missing data entry does

not depend on the feature variable being considered or any of the other feature vari-

ables in the data set. This relationship is expressed mathematically as Little and Rubin

(2014) [6]

PM(M |XOBS,XMIS) = PM(M)

where M ∈ {0,1} represents an indication of the missing value. M = 1 if Y is known

and M = 0 if Y is unknown/missing. Yo represents the observed values in Y while

Ym represents the missing values of Y . From ??, the probability of a missing entry

in a variable is not related to Yo or Ym. For instance, let us assume that in modelling

software defects in relation to development time, if the missingness is in no way linked

to the missing values of the rate of defects itself and at the same time not linked to

the values of the development time, the data is said to be MCAR. Researchers have

successfully addressed cases where the data is MCAR.Silva-Ramirez et al. (2011)[7]

successfully applied multilayer perceptrons (MLPs) for missing data imputation in

datasets with missing values. Other research work done on this mechanism could be

found in Pigott (2001)[8], Nishanth and Ravi (2013)[9].

Example

We want to assess which are the main determinants of income (such as age). The

MCAR assumption would be violated if people who did not report their income were,

on average, younger than people who reported it. This can be tested by dividing the

sample into those who did and did not report their income, and then testing a differ-

ence in mean age. If we fail to reject the null hypothesis, then we can conclude that the

MCAR is mostly fulfilled (there could still be some relationship between missingness

of Y and the values of Y).

7 Mémoire de Master



CHAPTER 1. TREATMENT OF THE PROBLEM OF MISSING-DATA

1.3.2 Missing at random (MAR)

The MAR case is observed when the possibility of a specific feature variable having

missing data entries is related to the other feature variables in the data set. How-

ever,this missing data does not depend on the feature variable itself. MAR means the

missing data in the feature variable is conditional on any other feature variable in

the data set but not on that being considered (Scheffer 2000)[10]. For example, con-

sider a data set with two related variables, monthly expenditure and monthly income.

Assume for instance that all high-income earners deny revealing their monthly expen-

ditures while low-income earners do provide this information. This implies that in

the data set, there is no monthly expenditure entry for high-income earners, while for

low-income earners, the information is available. The missing monthly income en-

try is linked to the income earning level of the individual. This relationship can be

expressed mathematically as Marwala (2009)[11]:

PM(M |XOBS,XMIS) = PM(M |XOBS).

whereM ∈ {0,1} is the missing data indicator, andM = 1, if Y is known, withM = 0.

if Y is unknown/missing. Yo represents the observed values in Y while Ym represents

the missing values of Y . Equation ?? indicates that the probability of a missing en-

try given an observable entry and a missing entry is equivalent to the probability of

the missing entry given the observable entry only. the software defects might not be

revealed because of a certain development time. Such a scenario points to the data

being MAR. Several studies have been conducted in the literature where the missing

data mechanism is MAR., for example Nelwamondo et al. (2007b)[12] performed a

study to compare the performance of expectation maximization and a GA-optimized

AANN and it was revealed that the AANN is a better method than the expectation

maximization. Further research on this mechanism was performed in Garca-Laencina

et al. (2009)[13], Poleto et al. (2011)[14], Liu and Brown (2013)[15]

The probability of missing data on Y is unrelated to the value of Y after controlling

for other variables in the analysis (say X). Formally:

P (Ymissing |Y ,X) = P (Ymissing |X).[16]

Example: The MAR assumption would be satisfied if the probability of missing

data on income depended on a person’s age, but within age group the probability of

missing income was unrelated to income. However, this cannot be tested because we

do not know the values of the missing data, thus, we cannot compare the values of

those with and without missing data to see if they systematically differ on that variable.
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1.3.3 Not missing at random (NMAR)

The third missing data mechanism is the missing not at random or non-ignorable case.

The MNAR case is observed when the possibility of a feature variable having a missing

data entry depends on the value of the feature variable itself irrespective of any alter-

ation or modification to the values of other feature variables in the datasets (Allison

2000)[17]. In scenarios such as these, it is impossible to estimate the missing data by

making use of the other feature variables in the dataset since the nature of the miss-

ing data is not random. MNAR is the most challenging missing data mechanism to

model and these values are quite tough to estimate (Rubin 1978)[18]. Let us consider

the same scenario described in the previous subsection. Assume for instance that some

high-income earners do reveal their monthly expenditures while others refuse, and the

same for low-income earners. Unlike the MAR mechanism, in this instance the miss-

ing entries in the monthly expenditure variable cannot be ignored because they are not

directly linked to the income variable or any other variable. Models developed to esti-

mate this kind of missing data are very often not biased. A probabilistic formulation

of this mechanism is not easy because the data in the mechanism is neither MAR nor

MCAR

Example 1:

we can imagine that patients with low blood pressure are more likely to have their

blood pressure measured less frequently (the missing data for the variable “blood pres-

sure” partially depends on the values of the blood pressure).

Example 2:

The NMAR assumption would be fulfilled if people with high income are less likely

to report their income.

1.3.4 Missing by Natural Design (MBND)

This is a mechanism whereby the missing data occurs because it cannot be measured

physically (Marwala 2009)[11]. It is impossible to measure these data entries; how-

ever, they are quite relevant in the data analysis procedure. Overcoming this problem

requires that mathematical equations be formulated. This missing data mechanism

mainly applies to mechanical engineering and natural science problems. Therefore, it

will not be used in this thesis for the problem under consideration

1.4 Missing Data Patterns

The way in which missing data occurs can be grouped into three patterns given by

Tables 1.1, 1.2, 1.3. Table 1.1 depicts a univariate pattern which is a scenario described

by the presence of missing data in only one feature variable as seen in column I7. Table
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1.2 depicts an arbitrary missing data pattern, which is a scenario whereby the missing

data occurs in a distributed and random manner. The last pattern is the monotone

missing data pattern which is shown in Table 1.3. This pattern is also referred to as

a uniform pattern as it occurs in cases whereby the missing data can be present in

more than one feature variable and, it is easy to understand and recognize (Ramoni

and Sebastiani 2001)[19].

Table 1.1: Univariane missing data pattern
sample 11 12 13 14 15 16 17

1 0.38 0.18 0.20 0.19 0.75 0.67 0.96
2 0.69 0.11 0.08 0.41 0.65 0.63 ?
3 0.17 0.79 0.66 0.53 0.95 0.43 ?
4 0.19 0.24 0.15 0.91 0.46 0.82 ?

Table 1.2: Arbitary missing data pattern
sample 11 12 13 14 15 16 17

1 0.38 ? 0.20 0.19 0.75 0.67 0.96
2 0.69 0.11 0.08 0.41 ? 0.63 0.04
3 0.17 0.79 ? 0.53 0.95 0.43 0.054
4 ? 0.24 0.15 0.91 0.46 0.82 ?

Table 1.3: Monotone missing data pattern
sample 11 12 13 14 15 16 17

1 0.38 0.18 0.20 0.19 0.75 0.67 ?
2 0.69 0.11 0.08 0.41 0.65 ? ?
3 0.17 0.79 0.66 0.53 ? ? ?
4 0.19 0.24 0.15 ? ? ? ?

1.5 Methods for handling missing data

1.5.1 Deletion

The Deletion method is used when the probability of missing variable is same for all

observations.

Example:

Respondents of data collection process decide that they will declare their earning

after tossing a fair coin. If an head occurs, respondent declares his/her earnings & vice

versa. Here each observation has equal chance of missing value.

Deletion can be performed in two types: List Wise Deletion and Pair Wise Deletion.
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a) In list wise deletion, we delete observations where any of the variable is missing.

Simplicity is one of the major advantage of this method, but this method reduces

the power of model because it reduces the sample size. For simplicity we can

say that, this method deletes the whole row of observations in which the data is

missing.

b) In pair wise deletion, we perform analysis with all cases in which the variables of

interest are present. Advantage of this method is, it keeps as many cases available

for analysis. One of the disadvantage of this method, it uses different sample size

for different variables.

Advantages: It can be used with any kind of statistical analysis and no special

computational methods are required.

Limitations: It can exclude a large fraction of the original sample. For example,

suppose a data set with 1,000 people and 20 variables. Each of the variables has miss-

ing data on 5 of the cases, then, you could expect to have complete data for only about

360 individuals, discarding the other 640.

It works well when the data are missing completely at random (MCAR), which

rarely happens in reality (Nakai & Weiming, 2011) [20].

Table 1.4: List wise deletion
Gender manpower sales

M 25 343
F . 280
M 33 332
M . 272
F 25 .
M 29 326
. 26 259

M 32 297
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Table 1.5: pair wise deletion
Gender manpower sales

M 25 343
F . 280
M 33 332
M . 272
F 25 .
M 29 326
. 26 259

M 32 297

1.5.2 Imputation methods

Substitute each missing value for a reasonable guess, and then carry out the analysis

as if there were not missing values.

There are two main imputation techniques:

♦ Marginal mean imputation: Compute the mean of X using the non-missing val-

ues and use it to impute missing values of X. Limitations: It leads to biased esti-

mates of variances and covariances and, generally, it should be avoided.

♦ Conditional mean imputation: Suppose we are estimating a regression model

with multiple independent variables. One of them, X, has missing values. We

select those cases with complete information and regress X on all the other in-

dependent variables. Then, we use the estimated equation to predict X for those

cases it is missing.

If the data are MCAR, least-squares coefficients are consistent (i.e. unbiased as

the sample size increases) but they are not fully efficient (remember, efficiency is

a measure of the optimality of an estimator. Essentially, a more efficient estima-

tor, experiment or test needs fewer samples than a less efficient one to achieve a

given performance). Estimating the model using weighted least squares or gener-

alized least squares leads to better results (Graham, 2009[21] (Allison, 2001)[16]

and (Briggs et al., 2003)[22].

1.5.3 Mean/ Mode/ Median Imputation

Imputation is a method to fill in the missing values with estimated ones. The objective

is to employ known relationships that can be identified in the valid values of the data

set to assist in estimating the missing values. Mean / Mode / Median imputation is

one of the most frequently used methods. It consists of replacing the missing data for
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a given attribute by the mean or median (quantitative attribute) or mode (qualitative

attribute) of all known values of that variable. It can be of two types:

1. Generalized Imputation: In this case, we calculate the mean or median for all

non missing values of that variable then replace missing value with mean or me-

dian. Like in above table, variable “Manpower” is missing so we take average

of all non missing values of “Manpower” (28.33) and then replace missing value

with it.

2. Similar case Imputation: In this case, we calculate average for gender “Male”

(29.75) and “Female” (25) individually of non missing values then replace the

missing value based on gender. For “Male“, we will replace missing values of

manpower with 29.75 and for “Female” with 25.

1.5.4 Prediction Model

Prediction model is one of the sophisticated method for handling missing data. Here,

we create a predictive model to estimate values that will substitute the missing data.

In this case, we divide our data set into two sets: One set with no missing values for

the variable and another one with missing values. First data set become training data

set of the model while second data set with missing values is test data set and variable

with missing values is treated as target variable. Next, we create a model to predict

target variable based on other attributes of the training data set and populate missing

values of test data set.We can use regression, ANOVA, Logistic regression and various

modeling technique to perform this. There are 2 drawbacks for this approach:

1. The model estimated values are usually more well-behaved than the true values

2. If there are no relationships with attributes in the data set and the attribute with

missing values, then the model will not be precise for estimating missing values.

1.5.5 K-Nearest Neighbour(KNN) Imputation

In this method of imputation, the missing values of an attribute are imputed using

the given number of attributes that are most similar to the attribute whose values are

missing. The similarity of two attributes is determined using a distance function. It is

also known to have certain advantage and disadvantages.

Advantages:

1. k-nearest neighbour can predict both qualitative & quantitative attributes

2. Creation of predictive model for each attribute with missing data is not required
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3. Attributes with multiple missing values can be easily treated

4. Correlation structure of the data is taken into consideration

Disadvantage:

1. KNN algorithm is very time-consuming in analyzing large database It searches

through all the dataset looking for the most similar instances.

2. Choice of k-value is very critical. Higher value of k would include attributes

which are significantly different from what we need whereas lower value of k

implies missing out of significant attributes.

1.5.6 Multiple Imputation

The imputed values are draws from a distribution, so they inherently contain some

variation. Thus, multiple imputation (MI) solves the limitations of single imputation

by introducing an additional form of error based on variation in the parameter esti-

mates across the imputation, which is called “between imputation error”. It replaces

each missing item with two or more acceptable values, representing a distribution of

possibilities (Allison, 2001)[16].

MI is a simulation-based procedure. Its purpose is not to re-create the individual

missing values as close as possible to the true ones, but to handle missing data to

achieve valid statistical inference (Schafer, 1997)[1]

It involves 3 steps:

a) Running an imputation model defined by the chosen variables to create imputed

data sets. In other words, the missing values are filled in m times to generate m

complete data sets. m = 20 is considered good enough. Correct model choices

require considering:

⋆ Firstly, we should identify which are the variables with missing values.

⋆ Secondly, we should compute the proportion of missing values for each vari-

able.

⋆ Thirdly, we should assess whether different missing value patterns exist in

the data (SAS [23] helps us doing this) , and try to understand the nature of

the missing values. Some key questions are:

– Are there a lot of missing values for certain variables? (E.g. Sensitive

question, data entry errors?)

– Are there groups of subjects with very little information available? (E.g.

Do they have something in common?)
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– Which is the pattern of missingness? Monotone or arbitrary?

b) The m complete data sets are analyzed by using standard procedures

c) The parameter estimates from each imputed data set are combined to get a final

set of parameter estimates.

Advantages:

It has the same optimal properties as ML, and it removes some of its limitations.

Multiple imputation can be used with any kind of data and model with conventional

software. When the data is MAR, multiple imputation can lead to consistent, asymp-

totically efficient, and asymptotically normal estimates.

Limitations:

It is a bit challenging to successfully use it. It produces different estimates (hope-

fully, only slightly different) every time you use it, which can lead to situations where

different researchers get different numbers from the same data using the same method

(Nakai & Weiming, 2011)[24], (Allison, 2001)[16].

1.5.7 Maximum Likelihood

We can use this method to get the variance-covariance matrix for the variables in the

model based on all the available data points, and then use the obtained variance- co-

variance matrix to estimate our regression model (Schafer, 1997)[1].Compared to MI,

MI requires many more decisions than ML (whether to use Markov Chain Monte Carlo

(MCMC) method or the Fully Conditional Specification (FCS)[25], how many data sets

to produce, how many iterations between data sets, what prior distribution to use-the

default is Jeffreys-, etc.). On the other hand, ML is simpler as you only need to specify

your model of interest and indicate that you want to use ML ( SAS Institute, 2005)[26].

There are two main ML methods:

a) Direct Maximum Likelihood: It implies the direct maximization of the multi-

variate normal likelihood function for the assumed linear model.

Advantage: It gives efficient estimates with correct standard errors.

Limitations: It requires specialized software (it may be challenging and time

consuming).

b) Expectation-maximization algorithm: It provides estimates of the means and

covariance matrix, which can be used to get consistent estimates of the parame-

ters of interest. It is based on an expectation step and a maximization step, which

are repeated several times until maximum likelihood estimates are obtained. It

requires a large sample size and that the data are missing at random (MAR).

15 Mémoire de Master



CHAPTER 1. TREATMENT OF THE PROBLEM OF MISSING-DATA

Advantage: We can use SAS[23], since this is the default algorithm it employs for

dealing with missing data with Maximum Likelihood.

Limitations: Only can be used for linear and log-linear models (there is nei-

ther theory nor software developed beyond them). (Allison, 2001)[16] (Graham,

2009)[21] (Enders & Bandalos, 2001)[27] and (Allison, 2003)[28].

1.5.8 Bayesian simulation methods

There are two main methods:

a) Schafer algorithms: It uses Bayesian iterative simulation methods to impute

data sets assuming MAR. Precisely, it splits the multivariate missing problem

into a series of univariate problems based on the assumed distribution of the

multivariate missing variables (e.g. multivariate normal for continuous variables,

multinomial loglinear for categorical variables). In other words, it uses an itera-

tive algorithm that draws samples from a sequence of univariate regressions.

b) Van Buuren algorithm: It is a semi-parametric approach. The parametric part

implies that each variable has a separate imputation model with a set of predic-

tors that explain the missingness. The non-parametric part implies the specifica-

tion of an appropriate form (e.g. linear), which depends on the kind of variables

(Briggs et al., 2003)[22] (Kong et al., 1994)[29].

1.5.9 Hot deck imputation methods

It is used by the US Census Bureau[30]. This method completes a missing observa-

tion by selecting at random, with replacement, a value from those individuals who

have matching observed values for other variables. In other words, a missing value

is imputed based on an observed value that is closer in terms of distance.SAS macro

developed by Lawrence Altmayer, of the U.S. Census Bureau[30]. Can be found in

(Ahmed Kazi et al; 2009)[31]. (Briggs et al., 2003)[22]
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CHAPTER2

EXPECTATION MAXIMISATION ALGORITHM

2.1 Introduction

The EM algorithm is used to find (local) maximum likelihood parameters of a statis-

tical model in cases where the equations cannot be solved directly. Typically these

models involve latent variables in addition to unknown parameters and known data

observations. That is, either missing values exist among the data, or the model can be

formulated more simply by assuming the existence of further unobserved data points.

For example, a mixture model can be described more simply by assuming that each

observed data point has a corresponding unobserved data point, or latent variable,

specifying the mixture component to which each data point belongs.

Finding a maximum likelihood solution typically requires taking the derivatives of

the likelihood function with respect to all the unknown values, the parameters and

the latent variables, and simultaneously solving the resulting equations. In statistical

models with latent variables, this is usually impossible. Instead, the result is typically

a set of interlocking equations in which the solution to the parameters requires the

values of the latent variables and vice versa, but substituting one set of equations into

the other produces an unsolvable equation.

The EM algorithm proceeds from the observation that there is a way to solve these

two sets of equations numerically. One can simply pick arbitrary values for one of the

two sets of unknowns, use them to estimate the second set, then use these new values

to find a better estimate of the first set, and then keep alternating between the two until

the resulting values both converge to fixed points. It’s not obvious that this will work,

but it can be proven in this context. Additionally, it can be proven that the derivative

of the likelihood is (arbitrarily close to) zero at that point, which in turn means that

the point is either a local maximum or a saddle point.

In general, multiple maxima may occur, with no guarantee that the global maximum
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will be found. Some likelihoods also have singularities in them, i.e., nonsensical max-

ima. For example, one of the solutions that may be found by EM in a mixture model

involves setting one of the components to have zero variance and the mean parameter

for the same component to be equal to one of the data points.

2.2 history of the EM algorithm

The EM algorithm was explained and given its name in a classic 1977 paper by Arthur

Dempster Nan Laird, and Donald Rubin[32]. They pointed out that the method had

been "proposed many times in special circumstances" by earlier authors[33]. One of

the earliest is the gene-counting method for estimating allele frequencies by Cedric

Smith. Another was proposed by H.O. Hartley in 1958[34], and Hartley and Hock-

ing in 1977[35], from which many of the ideas in the Dempster-Laird-Rubin paper

originated[36]. Hartley’s ideas[37] can be broadened to any grouped discrete distribu-

tion. A very detailed treatment of the EM method for exponential families was pub-

lished by Rolf Sundberg in his thesis and several papers following his collaboration

with Per Martin-Löf and Anders Martin-Löfd–Rubin paper in 1977[38] generalized

the method and sketched a convergence analysis for a wider class of problems. The

Dempster–Laird–Rubin[32] paper established the EM method as an important tool of

statistical analysis.

The convergence analysis of the Dempster–Laird–Rubin algorithm[32] was flawed

and a correct convergence analysis was published by C. F. Jeff Wu in 1983[39]. Wu’s

proof established the EM method’s convergence outside of the exponential family, as

claimed by Dempster–Laird–Rubin[32]

2.3 EM algorithm

We let Y be the random vector corresponding to the observed data y, having p.d.f.

postulated as g(y;ψ), where ψ = (ψ1, ...,ψd)T is a vector of unknown parameters with

parameter space Ω.

The EM algorithm is a broadly applicable algorithm that provides an iterative pro-

cedure for computing MLE’s in situations where, but for the absence of some addi-

tional data, ML estimation would be straightforward. Hence in this context, the ob-

served data vector y is viewed as being incomplete and is regarded as an observable

function of the so-called complete data. The notion of ’incomplete data’ includes the

conventional sense of missing data, but it also applies to situations where the com-

plete data represent what would be available from some hypothetical experiment. In

the latter case, the complete data may contain some variables that are never observ-

able in a data sense. Within this framework, we let x denote the vector containing the
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augmented or so-called complete data, and we let z denote the vector containing the

additional data, referred to as the unobservable or missing data.

As will become evident from the many examples of the EM algorithm discussed

in this book, even when a problem does not at first appear to be an incomplete-data

one, computation of the MLE is often greatly facilitated by artificially formulating it

to be as such. This is because the EM algorithm exploits the reduced complexity of ML

estimation given the complete data. For many statistical problems the complete-data

likelihood has a nice form.

We let gc(x;ψ) denote the p.d.f. of the random vector X corresponding to the com-

plete data vector x. Then the complete data log likelihood function that could be

formed for ψ if x were fully observable is given by

logLc(ψ) = loggc(x;ψ) (2.1)

Formally, we have two samples spaces X and Y and a many to one mapping fromX
to Y . Instead of observing the complete-data vector x in X , we observe the incomplete

data vector y = y(x) in Y . It follows that

g(y;ψ) =
∫
x(y)

gc(x;ψ)dx (2.2)

where X (y) is the subset of X determined by the equation y = y(x).

The EM algorithm approaches the problem of solving the incomplete data likeli-

hood equation

∂ logL(ψ)/∂ψ = 0 (2.3)

indirectly by proceeding iteratively in terms of the complete data log likelihood func-

tion, logLc(ψ). As it is unobservable, it is replaced by its conditional expectation given

y, using the current fit for ψ.

More specifically, let ψ(0) be some initial value for ψ. Then on the first iteration, the

E-step requires the calculation of

Q(ψ;ψ(0)) = Eψ(0){logLc(ψ)|y} (2.4)

The M-step requires the maximization of Q(ψ,ψ(0)) with respect to ψ over the pa-

rameter space Ω. That is, we choose ψ(1) such that

Q(ψ(1);ψ(0) ≥Q(ψ;ψ(0)) (2.5)

for all ψ ∈Ω.

The E- and M-steps are then carried out again, but this time with ψ(0) replaced by
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the current fit . On the (k + 1)th iteration, the E- and M-steps are defined as follows:

E-Step. Calculate Q(ψ;ψ(k)), where

Q(ψ;ψ(k)) = Eψ(k){logLc(ψ)|y}. (2.6)

M-Step. Choose ψ(k+1) to be any value of ψ ∈Ω that maximizes Q(ψ;ψ(k)); that is,

Q(ψ(k+1);ψ(k) ≥Q(ψ;ψ(k)) (2.7)

for all ψ ∈Ω
The E- and M-steps are alternated repeatedly until the difference

L(ψ(k+1))−L(ψ(k)) (2.8)

changes by an arbitrarily small amount in the case of convergence of the sequence

of likelihood values {L(ψ(k))} . DLR show that the (incomplete-data) likelihood func-

tion L(ψ) is not decreased after an EM iteration; that is,

L(ψ(k+1)) ≥ L(ψ(k))

for k = 0,1,2, . . .. Hence convergence must be obtained with a sequence of likeli-

hood values that are bounded above.

Another way of expressing 2.7 is to say that ψ(k+1) belongs to

M(ψ(k)) = argmax
ψ

Q(ψ;ψ(k)) (2.9)

which is the set of points that maximize Q(ψ;ψ(k)).

We see from the above that it is not necessary to specify the exact mapping from X
to Y , nor the corresponding representation of the incomplete-data density g in terms

of the complete-data density gc . All that is necessary is the specification of the com-

plete data vector x and the conditional density of X given the observed data vector y.

Specification of this conditional density is needed in order to carry out the E-step. As

the choice of the complete data vector x is not unique, it is chosen for computational

convenience with respect to carrying out the E- and M-steps. Consideration has been

given to the choice of x so as to speed up the convergence of the corresponding EM

algorithm.

As pointed out by a referee of the DLR paper, the use of the term “algorithm” to

describe this procedure can be criticized, “because it does not specify the sequence of

steps actually required to carry out a single E- or M-step.” The EM algorithm is really a

generic device. Hunter (2003)[40] goes so far as to suggest the usage “EM algorithms”

or “an EM algorithm” because many different examples fall under the EM umbrella.
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2.4 EM algorithm and Newton-Raphson method

The EM algorithm is an alternative to Newton–Raphson or the method of scoring for

computing MLE in cases where the complications in calculating the MLE are due to

incomplete observation and data are MAR, missing at random, with separate parame-

ters for observation and the missing data mechanism, so the missing data mechanism

can be ignored.

Data (X, Y ) are the complete data whereas only incomplete data Y = y are observed.

(Rubin uses Y = Yobs and X =Ymis).

The complete data log-likelihood is:

L(ψ) = logL(ψ;x,y) = logf (x,y;ψ) (2.10)

The marginal log-likelihood or incomplete data log-likelihood is based on y alone

and is equal to

Ly(ψ) = logL(ψ;y) = logf (y;ψ) (2.11)

We wish to maximize ly in ψ but ly is typically quite unpleasant

Ly(ψ) = log
∫
f (x,y;ψ)dx. (2.12)

The EM algorithm is a method of maximizing the latter iteratively and alternates

between two steps, one known as the E-step and one as the M-step, to be detailed

below. We let ψ∗ be and arbitrary but fixed value, typically the value of ψ at the current

iteration.

The E-step calculates the expected complete data log-likelihood ratio q(ψ | ψ∗):

q(ψ|ψ∗) = Eψ∗[log
f (X,y;ψ)
f (X,y;ψ∗)

/Y = y]

=
∫

log
f (X,y;ψ)
f (X,y;ψ∗)

f (x/y;ψ∗)dx (2.13)

The M-step maximizes q(ψ/ψ∗) in ψ for for fixed ψ∗,i.e calculates

θ∗∗ = argmax(ψ;ψ∗)

After an E-step and subsequent M-step, the likelihood function has never decreased.

The picture on the next overhead should show it all.
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2.5 The properties of the EM algorithm

The EM algorithm has enjoyed wide popularity in many scientific fields from the 1970s

onwards[41]. This is primarily due to easy implementation and stable convergence. As

the previous paragraph illustrates, the EM algorithm is often easy to program and use.

Although the algorithm may take many iterations to converge relative to other opti-

mization routines (e.g., Newton–Raphson)[42], each iteration is often easy to program

and quick to compute. Moreover, the EM algorithm is less sensitive to poor starting

values, and can be easier to use with many parameters since the iterations necessarily

remain in the parameter space and no second derivatives are required. Finally, the EM

algorithm has the very important property that the objective function is increased at

each iteration. That is, by the definition of f(φ|θ),

log
∫
f (θ,φ)dφ = logf (θ,φ)− logf (φ/θ)

= Q(θ/θ(k))−
∫

logf (φ/θ)f (φ/θ(k)dφ (2.14)

where the second equality follows by averaging over φ according to f(φ/θ(t)). Since the

first term of 2.14 is maximized by θ(t+1), and the second is minimized by θ(t) (under

the assumption that the support of f(φ/θ) does not depend on θ), one obtains

log
∫
f (θ(t+1),φ)dφ ≥ log

∫
f (θ(t),φ)dφ (2.15)

for t=0,1,. . . . This property not only contributes to the stability of the algorithm, but

also is very valuable for diagnosing implementation errors.

Although the EM algorithm is not guaranteed to converge to even a local mode ,

this can easily be avoided in practice by using several "overdispersed" starting values.

Running the EM algorithm with several starting values is also recommended because

it can help one to find multiple local modes of
∫
f (θ,φ)dφ, an important advantage for

statistical analysis.

2.6 E- and M-Steps for the Regular Exponential Family

The complete-data p.d.f. gc(x;ψ) is from an exponential family if

gc(x;ψ) = exp{aT (ψ)t(x)− b(ψ) + c(x)} (2.16)

where the sufficient statistic t(x) is a k x 1 (k ≥ d) vector and a(ψ) is a k x 1 vector

function of the d x 1 parameter vector ψ, and b(ψ) and c(x) are scalar functions. The

parameter space Ω is a d-dimensional convex set such that 2.16 defines a p.d.f. for all
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ψ in Ω that is,

Ω = {ψ :
∫
x

exp{aT (ψ)t(x) + c(x)}dx <∞} (2.17)

If k = d and the Jacobian of a(ψ) is of full rank, then gc(x;ψ) is said to be from a

regular exponential family. The coefficient a(ψ) of the sufficient statistic t(x) in 2.16 is

referred to as the natural or canonical parameter (vector). Thus if the complete-data

p.d.f. gc(x;ψ) is from a regular exponential family in canonical form, then

gc(x;ψ) = exp{ψT t(x)− b(ψ) + c(x)} (2.18)

The parameter ψ in 2.18 is unique up to an arbitrary nonsingular d x d linear transfor-

mation, as is the corresponding choice of t(x). The expectation of the sufficient statistic

t(X) in 2.18 is given by

Eψ{t(X)} =
∂b(ψ)
∂ψ

(2.19)

Another property of the regular exponential family, which we shall use in a later

section, is that the expected information matrix for the natural parameter vector equals

the covariance matrix of the sufficient statistic t(X). Thus we have for the regular ex-

ponential family in the canonical form 2.18 that

covψt(X) = Ic(ψ) (2.20)

where since the second derivatives of 2.20 do not depend on the data,

Ic(ψ) = −∂2 logLc(ψ)/∂ψ∂ψT

= ∂2b(ψ)/∂ψ∂ψT (2.21)

On taking the conditional expectation of logLc(ψ) given y. we have from 2.18 that

Q(ψ;ψk) is given by, ignoring terms not involving ψ,

Q = (ψ;ψ(k)) = ψT t(k) − b(ψ) (2.22)

where

t(k) = Eψ(k){t(X)/y} (2.23)

and where ψ(k) denotes the current tit for ψ.

On differentiation of 2.22 with respect to ψ and noting 2.19, it follows that the

M-step requires ψ(k+1) to be chosen by solving the equation

Eψ{t(X)} = t(k) (2.24)
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If equation 2.24 can be solved for ψ(k+1) in Ω, then the solution is unique due to the

well-known convexity property of minus the log likelihood of the regular exponential

family. In cases where the equation is not solvable, the maximizer ψ(k+1)n of L(ψ) lies

on the boundary of Ω.

2.7 Censored Exponentially Distributed Survival Times

We suppose W is a non negative random variable having an exponential distribution

with mean p Thus its probability density function is given by

f (ω;µ) = µ−1 exp(−ω/µ)I(O,∞)(ω), (µ > 0), (2.25)

where the indicator function I(o,∞)(w) = 1 for µ > 0 and is zero elsewhere. The

distribution function is given by

F(ω;µ) = 1− exp(−ω/µ)I(O,∞)(ω) (2.26)

In survival or reliability analyses, a study to observe a random sample W1, ...,Wn,

from 2.25 will generally be terminated in practice before all of these random variables

are able to be observed. We let

y = (yT1 , .....y
T
n )T

denote the observed data, where

yj = (cj ,δj)
T

and δ = 0 or 1 according as the observation Wj is censored or uncensored at cj(j =

1....,n). That is, if the observation Wj is uncensored, its realized value wj is equal to cj
whereas if it is censored at cj then wj is some value greater than cj(j = 1, ....n).

In this example, the unknown parameter vector ψ is a scalar, being equal to µ.

We suppose now that the observations have been relabeled so that W1, ...,Wr denote

the r uncensored observations and Wr+1, ...,Wnthe n- r censored observations. The log

likelihood function for µ formed on the basis of y is given by

logL(µ) = −r logµ−
n∑
j=1

cj /µ, (2.27)

In this case, the MLE of µ can be derived explicitly from equating the derivative of

(2.27) to zero to give

µ =
n∑
j=1

cj , (2.28)

Thus there is no need for the iterative computation of µ. But in this simple case, it
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is instructive to demonstrate how the EM algorithm would work.

The complete-data vector x can be declared to be

x = (W1, ...,Wn)T = (W1, ...,Wr , z
T )T

where

z = (Wr+1, ...,Wn)T

contains the unobservable realizations of the n - r censored random variables. In

this example, the so-called unobservable or missing vector z is potentially observable

in a data sense, as if the experiment were continued until each item failed, then there

would be no censored observations.

The complete-data log likelihood is given by

logLc(µ) =
n∑
j=1

loggc(wj ;µ)

= −n logµ−µ−1
n∑
j=1

wj (2.29)

It can be seen that Lc(µ) belongs to the regular exponential family. We shall proceed

now without making explicit use of this property, but in the next section, we shall show

how it can be exploited to simplify the implementation of the EM algorithm.

As LC(µ) can be seen to be linear in the unobservable data Wr+1, ...,Wn the calcula-

tion of Q(µ;µ(k) on the E-step (on the (k + 1) th iteration) simply requires each such

Wj to be replaced by its conditional expectation given the observed data y, using the

current fit µ(k) for µ. By the lack of memory of the exponential distribution, the con-

ditional distribution of Wj − cj given that Wj > cj is still exponential with mean µ.

Equivalently, the conditional p.d.f of Wj given that it is greater than cj is

µ−1 exp−(wj − cj)/µI(cj ,∞)(wj), (µ > 0) (2.30)

From 2.30 we have that

Eu(k (Wj /y) = Eu(Wj /Wj > cj)

= cj +Eu(k)(Wj)

= cj +µ(k) (2.31)

for j=r+l, ... ,n.

we using 2.31 to take the current conditional expectation of the complete-data log
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likelihood logLc(µ), we have that

Q(µ;µk) = −n logµ−µ−1
n∑
j=1

cj +
n∑

j=r+1

(cj + (n− r)µ(k)

= − log(µ)−µ−1
n∑
j=1

cj + (n− r)µ(k) (2.32)

Concerning the M-step on the (k + 1)th iteration, it follows from 2.32 that the value

of µ that maximizes Q(µ;µ(k)) is given by the MLE of p that would be formed from

the complete data, but with each unobservable wj replaced by its current conditional

expectation given by 2.31. Accordingly,

µ(k+1) = {
n∑
j=1

cj +
n∑

j=r+1

Eµ(k)(Wj /y)}/n

= {
n∑
j=1

cj +
n∑

j=r+1

(cj +µ(k))}/n

= {
n∑
j=1

cj + (n− r)µ(k)}/n (2.33)

On putting µ(k+1) = µ(k) = µ∗ in 2.33 and solving for µ∗, we have for r < n that µ∗ = µ̂.

That is, the EM sequence {µ(k)} has the MLE µ̂ as its unique limit point, as k →∞ In

order to demonstrate the rate of convergence of this sequence to µ̂, we can from 2.33

express µ(k+1) in terms of the MLE µ̂ as

µ(k+1) = {rµ̂+ (n− r)µ(k)}/n

= µ̂+n−1(n− r)(µ(k) − µ̂)

which gives

µ(k+1) − µ̂ = (1− r/n)(µ(k) − µ̂) (2.34)

This establishes that µ(k) converges to µ̂ as k→∞ co, provided r < n. It can be seen

for this problem that each EM iteration is linear. We shall see later that in general the

rate of convergence of the EM algorithm is essentially linear. The rate of convergence

here is (1 - r/n), which is the proportion of censored observations in the observed

sample. This proportion can be viewed as the missing information in the sample

It can be seen in this example that the complete-data distribution has the exponen-
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tial family form 2.18 with natural parameter p-1 and sufficient statistic

t(X) =
n∑
j=1

Wj .

Hence the E-step requires the calculation of

t(k) = Eψ(k){t(x)/y}

=
n∑
j=1

cj +
n∑

j=r+1

(cj +µ(k))

=
n∑
j=1

cj + (n− r)µ(k)

from 2.31 The M-step then yields µ(k+l) as the value of p that satisfies the equation

t(k) = Eµ{t(X)}

= nµ

This latter equation can be seen to be equivalent to 2.33, as derived by direct differ-

entiation of the Q-function Q(ψ;ψ(k)).

2.8 Generalized EM Algorithm

Often in practice, the solution to the M-step exists in closed form. In those instances

where it does not, it may not be feasible to attempt to find the value of ψ that globally

maximizes the function Q(ψ;ψ(k)). For such situations, DLR defined a generalized EM

algorithm (GEM algorithm)[39] for which the M-step requires ψ(k+1) to be chosen such

that

Q(ψ(k+l);ψ(k)) ≥Q(ψ(k);ψ(k)) (2.35)

holds. That is, one chooses ψ(k+1) to increase the Q-function Q(ψ;ψ(k)) over its

value at ψ = ψ(k) rather than to maximize it over all ψ ∈Ω a. As to be shown in Section

3.3[43], the above condition on ψ(k+l) is sufficient to ensure that

L(ψ(k+1)) ≥ L(ψ(k))

Hence the likelihood L(ψ) is not decreased after a GEM iteration, and so a GEM

sequence of likelihood values must converge if bounded above. In Section 3.3[43],

we shall discuss what specifications are needed on the process of increasing the Q-

function in order to ensure that the limit of {L(ψ(k))} is a stationary value and that the
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sequence of GEM iterates { ψ(k)} converges to a stationary point.

2.9 GEM Algorithm Based on One Newton-Raphson Step

In those situations where the global maximizer of the Q-function Q(ψ;ψ(k)) does not

exist in closed form, consideration may be given to using the Newton-Raphson proce-

dure to iteratively compute ψ(k+1) on the M-step. As remarked above, it is not essential

that ψ(k+1) actually maximizes the Q-function for the likelihood to be increased. We

can use a GEM algorithm where ψ(k+1) need satisfy only 2.35, which is a sufficient con-

dition to guarantee the monotonicity of the sequence of likelihood values {L(ψ(k)}. In

some instances, the limiting value ψ(k+1) of the Newton-Raphson method[44] may not

be a global maximizer. But if condition 2.35 is confirmed to hold on each M-step, then

at least the user knows that {ψ(k)} is a GEM sequence.

Following Wu (1983)[39] and Jargensen (1984)[45], Rai and Matthews (1993)[46]

propose taking ψ(k+1) to be of the form

ψ(k+1) = ψ(k) + a(k)∂(k) (2.36)

where

∂(k) = −[∂2Q(ψ;ψ(k))/∂ψ∂ψT ]−1
ψ=ψ(k)[∂Q(ψ;ψ(k))/∂ψ]ψ=ψ(k) (2.37)

and where 0 < a(k) < 1.

It can be seen that in the case of a(k) = 1, 2.36 is the first iterate obtained when using

the Newton-Raphson procedure to obtain a root of the equation

∂Q(ψ;ψ(k))/∂ψ = 0

The idea is to choose a(k) so that 2.37 defines a GEM sequence, that is, so that 2.35

holds. It can be shown that

Q(ψ(k+1);ψ(k))−Q(ψ(k);ψ(k)) = a(k)S(y;ψ(k))TA(k)S(y;ψ(k)) (2.38)

where

A(k) = I−1
c (ψ(k);y){Id −

1
2
a(k)Î

(k)
c (y)I−1

c (ψ(k);y)} (2.39)

and where

Î
(k)
c (y) = −[∂2Q(ψ;ψ(k))/∂ψ∂ψT ]ψ=ψ̂(k)

= E(ψ(k))
(
Ic(ψ̂

(k);X)/y
)

and ψ̂(k) is a point on the line segment from ψ(k) to ψ(k+1); Id denotes the dxd iden-
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tity matrix. Thus the left-hand side of 2.38 is nonnegative if the matrix A(k) is positive

definite.

Typically in practice, Ic(ψ(k);y) is positive definite and so then we have a GEM se-

quence if the matrix

Id −
1
2
a(k)Î−1

c (y)I−1
c (ψ(k);y) (2.40)

is positive definite, which can be achieved by choosing the constant a(k) sufficiently

small. Suppose that the sequence {ψ(k)} tends to some limit point as k→ ∞. Then it

can be seen from 2.39 that, as k→∞, a(k) < 2 will ensure that 2.40 holds.

The derivation of 2.38 is to be given in Section 4.12, where the use of this GEM

algorithm in an attempt to reduce the computation on the M-step, is to be considered

further.

2.10 EM Gradient Algorithm

The algorithm that uses one Newton-Raphson[47] step to approximate the M-step of

the EM algorithm (that is, uses 2.36 with a(k) = 1 is referred to by Lange (1995a)[48] as

the EM gradient algorithm. It forms the basis of the quasi-Newton approach of Lange

(1995b)[49] to speed up the convergence of the EM algorithm, as to be considered in

Section 4.14[43]. But as pointed out by Lange (1995b)[49], it is an interesting algorithm

in its own right, and is to be considered further in Section 4.13[43].

2.11 EM Mapping

Any instance of the EM (GEM) algorithm as described above implicitly defines a map-

ping ψ→M(ψ), from the parameter space off ψ,Ω, to itself such that

ψ(k+1) =M(ψ(k))(k = 0,1,2,3, ....) (2.41)

If ψ(k) converges to some point ψ∗ and M(ψ) is continuous, then ψ∗ must satisfy

ψ∗ =M(ψ∗)

Thus ψ∗ is a fixed point of the map M.

It is easy to show that if the MLE ψ̂ of ψ is the unique global maximizer of the

likelihood function, then it is a fixed point of the EM algorithm (although there is

no guarantee that it is the only one). To see this, we note that the M-step of the EM

algorithm (or a GEM algorithm) implies that

L(M(ψ̂) ≥ L(ψ̂) (2.42)
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Thus M(ψ∗)= ψ̂ ,as otherwise 2.42 would contradict the assertion that

L(ψ̂) > L(ψ) (2.43)

for all ψ (not equal to ψ̂ ) ∈Ω.

2.12 EM algorithm for bivariate normal data with miss-

ing values

The purpose of this problem is to use the EM algorithm to estimate the mean of a

bivariate normal dataset with missing entries in one of the two variables. We first gen-

erate synthetic data and then implement the EM algorithm to compute the estimator

of the mean.

library(mvtnorm)

We consider a bivariate normal random variable Y =

Y1

Y2

 and denote the mean vec-

tor and covariance matrix of its distribution µ =

µ1

µ2

 and Σ =

σ11 σ12

σ12 σ22

: Y ∼ N (µ,Σ).

We observe a sample of size n that contains some missing values in the variable Y2,

such that for some r ≤ n, we observe (yi1 , yi2) for i = 1, ..., r and yi1 for i = r + 1, ...n. The

goal is to estimate the mean µ. We will compare two strategies:

1) direct computation of the maximum likelihood estimator and

2) estimation of the mean with the EM algorithm.

2.12.1 Data generation

Request 1:

Generate a bivariate normal sample of size 100 of mean

µ1

µ2

 =

 5

−1

 and covariance

matrix

σ11 σ12

σ12 σ22

 =

1.3 0.4

0.4 0.9

 containing 30% of missing values in the variable y2.

set.seed(100)

n <- 100

r <- floor(n*0.3)

mu <- c(5, -1)

Sigma <- matrix(c(1.3, 0.4,0.4,0.9), nrow=2)

Y <- rmvnorm(n, mean=mu, sigma=Sigma)
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missing_idx <-sample(100, r, replace = FALSE)

Y[missing_idx, 2] <- NA

2.12.2 Maximum likelihood estimator

We denote by f1,2(y1, y2;µ,Σ), f1(y1;µ1,σ11) and f2|1(y2|y1;µ,Σ) the probability density

functions of the joint (y1, y2), y1 and y2|y1 respectively. The likelihood of the observed

data can be written as

f1,2(y1, y2;µ,Σ) =
n∏
i=1

f1(yi1)
r∏
j=1

f2|1(yj2|yj1),

and the log-ikelihood is written (up to an additional constant that does not appear in

the maximization and that we therefore drop)

l(µ,Σ|y1, y2) = −n
2

log(σ2
11)− 1

2

n∑
i=1

(yi1 −µ1)2

σ2
11

− r
2

log((σ22 −
σ2

12

σ11
)2)

−1
2

r∑
i=1

(yi2 −µ2 −
σ12
σ11

(yi1 −µ1))2

(σ22 −
σ2

12
σ11

)2

We skip the computations and directly give the expression of the closed form max-

imum likelihood estimator of the mean:

µ̂1 = n−1
n∑
i=1

yi1

µ̂2 = β̂20.1 + β̂21.1µ̂1,

β̂21.1 = s12/s11, β̂20.1 = ȳ2 − β̂21.1ȳ1,

and

ȳj = r−1
r∑
i=1

yij , j = 1,2, sjk = r−1
r∑
i=1

(yij − ȳj)(yik − ȳk), j,k = 1,22

Request 2:

Compute the maximum likelihood estimates of µ1 and µ2.

hat_mu1_ML <- (1/n)*sum(Y[,1])

bar_y1 <- mean(Y[setdiff(1:n,missing_idx), 1])

# mean(Y[!((1:n)%in%missing_idx), 1])

bar_y2 <-mean(Y[setdiff(1:n,missing_idx), 2])

s_11 <- mean((Y[setdiff(1:n,missing_idx),1]-bar_y1)^2)

s_22 <- mean((Y[setdiff(1:n,missing_idx),2]-bar_y2)^2)
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s_12 <- mean((Y[setdiff(1:n,missing_idx),1]-bar_y1)*

(Y[setdiff(1:n,missing_idx),2]-bar_y2))

hat_beta_21.1 <- s_12/s_11

hat_beta_20.1 <- bar_y2-hat_beta_21.1*bar_y1

hat_mu2_ML <- hat_beta_20.1+hat_beta_21.1*hat_mu1_ML

resML <- c(hat_mu1_ML=hat_mu1_ML,hat_mu2_ML=hat_mu2_ML

2.12.3 EM algorithm

In this simple setting, we have an explicit expression of the maximum likelihood es-

timator despite missing values. However, this is not always the case but it is possible

to use an EM algorithm which allows to get the maximum likelihood estimators in the

cases where data are missing.

The EM algorithm consists in maximizing the “observed likelihood”

l(µ,Σ|y1, y2) = −n
2

log(σ2
11)− 1

2

n∑
i=1

(yi1 −µ1)2

σ2
11

− r
2

log((σ22 −
σ2

12

σ11
)2)

−1
2

r∑
i=1

(yi2 −µ2 −
σ12
σ11

(yi1 −µ1))2

(σ22 −
σ2

12
σ11

)2
,

through successive maximization of the “complete likelihood” (if we had observed all

n realizations of y1 and y2). Maximizing the complete likelihood

lc(µ,Σ|y1, y2) = −n
2

log(det(Σ))− 1
2

n∑
i=1

(yi1 −µ1)TΣ−1(yi1 −µ1)

would be straightforward if we had all the observations. However elements of this

likelihood are not available. Consequently, we replace them by the conditional ex-

pectation given observed data and the parameters of the current iteration. These two

steps of computation of the conditional expectation (E-step) and maximization of the

completed likelihood (M step) are repeated until convergence.

The update formulas for the E and M steps are the following

E step:

The sufficient statistics of the likelihood are:

s1 =
n∑
i=1

yi1, s2 =
n∑
i=1

yi2, s11 =
n∑
i=1

y2
i1, s22 =

n∑
i=1

y2
i2, s12 =

n∑
i=1

yi1yi2.

Since some values of y2 are not available, we fill in the sufficient statistics with:
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E[yi2|yi1,µ,Σ] = β20.1 + β21.1yi1

E[y2
i2|yi1,µ,Σ] = (β20.1 + β21.1yi1)2 + σ22.1

E[yi2yi2|yi1,µ,Σ] = (β20.1 + β21.1yi1)yi1.

M step:

The M step consists in computing the maximum likelihood estimates as usual.

Given s1, s2, s11, s22,and s12, update µ̂ and σ̂ with

µ̂1 = s1/n, µ̂2 = s2/n,

σ̂1 = s11/n− µ̂2
1, σ̂2 = s22/n− µ̂2

2, σ̂12 = s12/n− µ̂1µ̂2

Note that s1, s11, µ̂1 and σ̂1 are constant accross iterations since we do not have

missing values on y1.

Request 3:

Write two functions called Estep and Mstep that respectively perform the E step

and the M step. The Estep function can take as an input µ and Σ. Then, you can

compute β21.1 = σ12/σ11, β20.1 = µ2 − β21.1µ1, and σ22.1 = σ22 − σ2
12/σ11 and update the

sufficient statistics sij .

The Mstep function consists in updating the update the µ and Σ given the sij .

Estep=function(Y, mu, Sigma, missing_idx)

{

n=nrow(Y)

sigma_22.1=Sigma[2,2]-Sigma[1,2]^2/Sigma[1,1]

beta_21.1=Sigma[1,2]/Sigma[1,1]

beta_20.1=mu[2]-beta_21.1*mu[1]

E_y2=rep(0, n)

E_y2[missing_idx]=rep(beta_20.1, length(missing_idx))+beta_21.1*Y[missing_idx,1]

E_y2[setdiff(1:n, missing_idx)]=Y[setdiff(1:n, missing_idx),2]

E_y1=Y[,1]

E_y2_y2=rep(0, n)

E_y2_y2[missing_idx]=E_y2[missing_idx]^2+rep(sigma_22.1, length(missing_idx))

E_y2_y2[setdiff(1:n, missing_idx)]=E_y2[setdiff(1:n, missing_idx)]^2

E_y1_y1=Y[,1]^2

E_y1_y2=rep(0, n)

E_y1_y2=E_y2*E_y1

return(structure(list(s1=sum(E_y1), s2=sum(E_y2), s11=sum(E_y1_y1),

s22=sum(E_y2_y2), s12=sum(E_y1_y2))))
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}

Mstep=function(Y, s1, s2, s11, s22, s12)

{

n=nrow(Y)

mu1=s1/n

mu2=s2/n

sigma1=s11/n-mu1^2

sigma2=s22/n-mu2^2

sigma12=s12/n-mu1*mu2

mu=c(mu1,mu2)

Sigma=matrix(c(sigma1, sigma12,sigma12,sigma2), nrow=2)

return(structure(list(mu=mu, Sigma=Sigma)))

}

Question:
How could we initialize the algorithm ?

request 4:
Implement a function called initEM that returns initial values for µ̂ and Σ̂.

initEM=function(Y, missing_idx)

{n=nrow(Y)

r=n-length(missing_idx)

mu1=mean(Y[,1])

mu2=mean(Y[,2], na.rm=T)

sigma1=mean(Y[,1]^2)-mu1^2

sigma2=mean(Y[,2]^2, na.rm=T)-mu2^2

sigma12=mean(Y[,1]*Y[,2], na.rm=T)-mu1*mu2

mu=c(mu1,mu2)

Sigma=matrix(c(sigma1, sigma12,sigma12,sigma2), nrow=2)

return(structure(list(mu=mu, Sigma=Sigma)))

}

request 5:
Implement the EM algorithm over 15 iterations and plot the value of

∥∥∥µ− µ̂∥∥∥2
over

iterations. Comment your results briefly.

init=initEM(Y, missing_idx)

hat_mu=init$mu

hat_Sigma=init$Sigma
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error_mu=rep(0,50)

for(i in 1:50)

{

error_mu[i]=sqrt(sum((hat_mu-mu)^2))

# E step

E=Estep(Y, hat_mu, hat_Sigma, missing_idx)

s1=E$s1

s11=E$s11

s2=E$s2

s22=E$s22

s12=E$s12

M=Mstep(Y, s1, s2, s11, s22, s12)

hat_mu=M$mu

print(hat_mu)

hat_Sigma=M$Sigma

}

plot(error_mu)

Figure 2.1: error mu

request 6: Check that the EM estimator µ is equal to the maximum likelihood
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estimator.

finally we get

µ̂ =

µ̂1

µ̂2

 =

 4.8505341

−0.7984072
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SIMULATIONS AND APPLICATIONS

3.1 Two recommended methods: EM / Multiple imputa-

tion

Under the classical missing at random mechanism (MAR) assumption, the parameters

can thus be estimated by maximizing the observed likelihood. To do so, it is possi-

ble to use an Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin,

1977)[32] as detailled in the next paragraph - The standard error of the parameters can

be estimated using a supplemented Expectation-Maximization (SEM) algorithm (Meng

and Rubin, 1991)[50]. This is the first main startegy to do inference with missing val-

ues. In fact, it consists in adapting the statistical analysis (the estimation process) so

that it can be applied on an incomplete data set. It is tailored to a specific statistical

method but it has two drawbacks:

1. it can be difficult to establish(EM algorithm can involve integral not easy to com-

pute)

2. a specific algorithm has to be derived for each statistical method that we would

like to apply.

This is why the second strategy, namely multiple imputation (MI) (Rubin, 1987, Little

and Rubin, 1987, 2002)[51] seems to have taken the lead. The principle of MI consists

in predicting M different values for each missing value, which leads to M imputed

data sets. The variability across the imputations reflects the variance of the prediction

of each missing entry. Then, MI consists in performing the statistical analysis on each

imputed data set to estimate the parameter θ and consists of combining the results

(θm)1≤m≤M to provide a unique estimation for θ and for its associated variability using

Rubin’s rules (Rubin, 1987)[52]. This ensures that the variance of the estimator is not
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underestimated and thus good coverage properties. What is important is that the aim

of both approaches is to estimate as well as possible the parameters and their variance

despite missing values, i.e. taking into account the supplementary variability due to

missing values. The goal is not to impute the entries as accurately as possible.

3.2 Expectation Maximization algorithm

In the case where we are interested in estimating some unknown parameter θ ∈ R
d

characterizing the model (such as µ and Σ in the Gaussian example), the Expectation

Maximization (EM) algorithm (Dempster et al. 1977) [32] can be used when the joint

distribution of the missing data XMIS and the observed data XOBS is explicit. For all

θ ∈Rd let fθ be the probability density function of (XOBS,XMIS) with respect to a given

reference measure µ. The EM algorithm aims at iteratively maximizing the likelihood

of the observations, i.e. the probability density function of the observations, where y

refers to XOBS and x to XMIS:

Lθ(y) =
∫
fθ(x,y)λ(dx) .

As this quantity cannot be computed explicitly in general cases, the EM algorithm

relies on the surrogate intermediate quantity:

Q(θ,θ′) = Eθ′ [logfθ(XOBS,XMIS)|XOBS] ,

where Eθ′ is the expectation under the law of the model parameterized by θ′. The

following crucial property motivates the EM algorithm: for all θ,θ′,

logLθ(Y )− logLθ′ (Y ) ≥Q(θ,θ′)−Q(θ′,θ′) .

Therefore, any value θ such that Q(θ,θ′) is greater than the reference value Q(θ′,θ′)

increases the log likelihood of the observations. Based on this inequality, the EM algo-

rithm produces iteratively a sequence of parameter estimates (θp)p≥0. Each iteration is

decomposed into two steps:

E-step: compute θ 7→Q(θ,θp) ,M-step: set θp ∈ argmax
θ

Q(θ,θp) .

The practical interest of this algorithm can be assessed only in cases where Q(θ,θp)

can be computed (or estimated) with a reasonable computational cost (see for instance

the special case where fθ belongs to the exponential family) and when θ 7→ Q(θ,θp)

can be maximized (at least numerically).
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3.3 Conditional distributions in the Gaussian case

Assume first that the complete data (X,Y ) has a multivariate normal distributionN (µ,Σ).

The parameters µ and Σ may be estimated using maximum likelihood based proce-

dures for incomplete data models such as the Expectation Maximization algorithm

detailed above. Then, the conditional distribution of the missing data XMIS given the

observations XOBS can be derived using Schur complements. If ΣMIS ∈ R
m×m is the

covariance of XMIS, ΣOBS ∈ Rp×p is the covariance of XOBS and CMIS,OBS ∈ Rm×p is the

covariance matrix between XMIS and XOBS then Σ is given by:

Σ =

 ΣMIS CMIS,OBS

C′MIS,OBS ΣOBS

 .
Conditionally onXOBS,XMIS has a normal distribution with covariance matrix ΣXMIS|XOBS

given by the Schur complement of ΣOBS in Σ:

ΣMIS|OBS = ΣMIS −CMIS,OBSΣ
−1
OBSC

′
MIS,OBS .

Note also that the mean µMIS|OBS of the distribution of XMIS given XOBS is:

µMIS|OBS = E[XMIS] +CMIS,OBSΣ
−1
OBS (XOBS −E[XOBS]) .

In R, we can estimate the mean and covariance matrix with EM and then impute

missing values with the previous formulae with:

library(norm)

pre <- prelim.norm(as.matrix(don))

thetahat <- em.norm(pre)

so we get the iterations of EM:

1...2...3...4...5...6...7...8...9...10...11...12...13...14...15...16...17...18...19...20...21...22...23...24...

getparam.norm(pre,thetahat)

Table 3.1: Values of µ
[,1] [,2] [,3] [,4] [,5] ]

[1,] 2.001076e+07 9.074487e+01 1.814555e+01 2.124103e+01 2.247745e+01
[,6] [,7] [,8] [,9] [,10] [,11]

[1,] 4.882849e+00 4.893095e 4.735842e -1.174023e -1.625259e -1.654785e

39 Mémoire de Master



CHAPTER 3. SIMULATIONS AND APPLICATIONS

Table 3.2: Values of σ
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 12024.62747 -701.50386 -84.3314880 -53.173896 -52.334905 30.031060
[2,] -701.50386 799.97281 57.7080103 87.833518 98.556827 -41.753582
[3,] -84.33149 57.70801 9.5010995 10.746927 11.626659 -2.449068
[4,] -53.17390 87.83352 10.7469268 15.920412 16.752532 -4.568836
[5,] -52.33490 98.55683 11.6266593 16.752532 20.435781 -5.534268
[6,] 30.03106 -41.75358 -2.4490682 -4.568836 -5.534268 6.042519
[7,] 52.92496 -43.73738 -2.6048132 -5.323420 -6.238921 4.102274
[8,] 46.69286 -32.08293 -1.9842688 -3.486077 -5.632869 2.959156
[9,] -20.57684 38.06663 1.2604022 4.163887 5.160051 -2.895176

[10,] 13.24623 35.80373 1.0361158 2.812798 4.171018 -3.659578
[11,] 42.35594 28.35067 0.1733737 1.934071 2.826757 -2.948763

[,7] [,8] [,9] [,10] [,11]
[1,] 52.924960 46.692859 -20.576838 13.246228 42.3559379
[2,] -43.737382 -32.082933 38.066629 35.803727 28.3506673
[3,] -2.604813 -1.984269 1.260402 1.036116 0.1733737
[4,] -5.323420 -3.486077 4.163887 2.812798 1.9340706
[5,] -6.238921 -5.632869 5.160051 4.171018 2.8267575
[6,] 4.102274 2.959156 -2.895176 -3.659578 -2.9487626
[7,] 5.057694 3.670474 -2.888070 -3.122882 -2.5286569
[8,] 3.670474 5.304180 -2.407587 -2.567052 -2.2318395
[9,] -2.888070 -2.407587 6.734501 5.553650 4.7461342

[10,] -3.122882 -2.567052 5.553650 7.964083 6.4291709
[11,] -2.528657 -2.231839 4.746134 6.429171 7.5462185

imp <- imp.norm(pre,thetahat,don)

3.3.1 Bootstrap

The bootstrap method is another way to estimate unknown parameters characterizing

the statistical model: confidence intervals, estimation of the standard error etc. It is

used when the unknown quantity to be estimated can be written as a functional of the

unknwon distribution function f of interest. For instance, in the case of incomplete

data models, the bootstrap method is a solution to estimate any quantity which can be

expressed as a functional of the unknown conditional distribution π of the latent data

XMIS given the observations.

Assume that (Xi)1≤i≤n are i.i.d. with common unknown distribution function f

and let θ ∈ R
d be any parameter characterizing f . The parameter θ is estimated by

θ̂(X1, . . . ,Xn). Then, the variance of the estimator is given by:

Vf [θ̂(X1, . . . ,Xn)] = Ef

[(
θ̂(X1, . . . ,Xn)−Ef [θ̂(X1, . . . ,Xn)]

)2
]
,

where Ef is the expectation under the law of (X1, . . . ,Xn). The bootstrap estimator of
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Vf [θ̂(X1, . . . ,Xn)] is obtained then by replacing the unknwon distribution function f in

this expression by its empirical estimate given, for any x, by:

fn(x) =
1
n

n∑
i=1

1(−∞,x](Xi) .

For any integrable function h,

Efn[h(Z)] =
1
n

n∑
i=1

h(Xi) .

Replacing f by fn can lead to highly involved estimates but in some common situations

the bootstrap estimate of Vf [θ̂(X1, . . . ,Xn)] can be derived easily.

For instance, assume that θ̂(X1, . . . ,Xn) = X̄n is the empirical estimate of the mean

of f .

Then

Vf [θ̂(X1, . . . ,Xn)] = Vf [X̄n] =
1
n

(
Ef [X2

1 ]−Ef [X1]2
)
.

Therefore, the bootstrap estimator of Vf [θ̂(X1, . . . ,Xn)] is given by

Vfn[θ̂(X1, . . . ,Xn)] =
1
n

(
Efn[X

2
1 ]−Efn[X1]2

)
=

1
n

1
n

n∑
i=1

X2
i − X̄

2
n

 .
3.4 Gibbs sampling

In the case where the complete data (XOBS,XMIS) is not assumed to be a Gaussian vec-

tor, we may be interested in estimating or sampling from the (usually unknwon) condi-

tional distribution π of the missing data X given the observations Y . A widely spread

technique to do so is to use Markov Chain Monte Carlo (MCMC) methods[53] which

naturally provide simulation based methods which have been successfully applied to

many disciplines such as signal processing, biology, target tracking etc. . . One of the

main objectives of these MCMC algorithms is to produce a Markov chain (ξ i)i≥0 tar-

getting the unknown target distribution π. Using ergodic theory for Markov chains, it

is expected for instance that N−1∑N
i=1 f (ξ i) is a good estimate of∫

f (x)π(dx) = E[f (XMIS)|XOBS]

for a large class of functions f .

Many MCMC algorithms have been developed to sample the chain (ξ i)i≥1, this sec-

tion details the popular Gibbs sampler which may be used when the conditional distri-

bution of each latent variable given all the other variables has a simple form. Assume
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that the missing data may be decomposed into several components (X1, . . . ,Xm) and for

all 1 ≤ k ≤ m let π−k be the conditional distribution of Xk given the observations and

the other missing data. Then, starting with any initial state ξ1 = (ξ1
1 , . . . ,ξ

1
m), for all

i ≥ 1, conditionally on ξ i , the Gibss sampler samples ξ i+1 as follows. For all 1 ≤ k ≤m,

ξ i+1
k is sampled accodind to π−k(·|ξ i+1

1 , . . . ,ξ i+1
k−1,ξ

i
k+1,ξ

i
m). All components of the new

state ξ i+1 are sampled iteratively according to the conditional distribution given the

observations and the other components. A nice feature of this conditional sampler is

that at each iteration i ≥ 1, every component update 1 ≤ k ≤ m (which produces ξ i+1
k )

is reversible with respect to π which implies that the Markov kernel associated with

each component update admits π as a stationary probability distribution. The Gibbs

sampler convergence may be established for the complete update of all components at

each iteration and several procedures have been proposed to combine the individual

moves (not necessarily with a systematic update of each component in a row).

3.5 R Packages used for imputing missing values

Overview Learn the methods to impute missing values in R for data cleaning and ex-

ploration Understand how to use packages like amelia, missForest, hmisc, mi and mice

which use bootstrap sampling and predictive modeling

Introduction Missing values are considered to be the first obstacle in predictive

modeling. Hence, it’s important to master the methods to overcome them. Though,

some machine learning algorithms claim to treat them intrinsically, but who knows

how good it happens inside the ‘black box’.

The choice of method to impute missing values, largely influences the model’s pre-

dictive ability. In most statistical analysis methods, listwise deletion is the default

method used to impute missing values. But, it not as good since it leads to information

loss.

Do you know R has robust packages for missing value imputations?

Yes! R Users have something to cheer about. We are endowed with some incredible

R packages for missing values imputation. These packages arrive with some inbuilt

functions and a simple syntax to impute missing data at once. Some packages are

known best working with continuous variables and others for categorical. With this

article, you can make a better decision choose the best suited package.

In this article, I’ve listed 5 R packages popularly known for missing value imputa-

tion. There might be more packages. But, I decided to focus on these ones. I’ve tried

to explain the concepts in simplistic manner with practice examples in R.

Loading Image India’s Largest Data Science Hiring Event

missing values imputation, powerful R packages Tutorial on 5 Powerful R Packages

used for imputing missing values

42 Mémoire de Master



CHAPTER 3. SIMULATIONS AND APPLICATIONS

List of mains R Packages:

▶ MICE

▶ Amelia

▶ missForest

▶ Hmisc

▶ mi

3.5.1 MICE package

MICE (Multivariate Imputation via Chained Equations) is one of the commonly used

package by R users. Creating multiple imputations as compared to a single imputation

(such as mean) takes care of uncertainty in missing values.

MICE assumes that the missing data are Missing at Random (MAR), which means

that the probability that a value is missing depends only on observed value and can be

predicted using them. It imputes data on a variable by variable basis by specifying an

imputation model per variable.

For example:

Suppose we have X1, X2. . . .Xk variables. If X1 has missing values, then it will be

regressed on other variables X2 to Xk. The missing values in X1 will be then replaced

by predictive values obtained Similarly, if X2 has missing values, then X1, X3 to Xk

variables will be used in prediction model as independent variables. Later, missing

values will be replaced with predicted values.

By default, linear regression is used to predict continuous missing values. Logistic

regression is used for categorical missing values. Once this cycle is complete, multiple

data sets are generated. These data sets differ only in imputed missing values. Gener-

ally, it’s considered to be a good practice to build models on these data sets separately

and combining their results.

Precisely, the methods used by this package are:

• PMM (Predictive Mean Matching) – For numeric variables

• logreg(Logistic Regression) – For Binary Variables( with 2 levels)

• polyreg(Bayesian polytomous regression) – For Factor Variables (>= 2 levels)

• Proportional odds model (ordered, >= 2 levels)
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3.5.2 Amelia

This package (Amelia II) is named after Amelia Earhart, the first female aviator to

fly solo across the Atlantic Ocean. History says, she got mysteriously disappeared

(missing) while flying over the pacific ocean in 1937, hence this package was named to

solve missing value problems.

This package also performs multiple imputation (generate imputed data sets) to

deal with missing values. Multiple imputation helps to reduce bias and increase effi-

ciency. It is enabled with bootstrap based EMB algorithm which makes it faster and

robust to impute many variables including cross sectional, time series data etc. Also,

it is enabled with parallel imputation feature using multicore CPUs.

It makes the following assumptions:

All variables in a data set have Multivariate Normal Distribution (MVN). It uses

means and covariances to summarize data. Missing data is random in nature (Missing

at Random) It works this way. First, it takes m bootstrap samples and applies EMB

algorithm to each sample. The m estimates of mean and variances will be different.

Finally, the first set of estimates are used to impute first set of missing values using

regression, then second set of estimates are used for second set and so on.

On comparing with MICE, MVN lags on some crucial aspects such as:

MICE imputes data on variable by variable basis whereas MVN uses a joint model-

ing approach based on multivariate normal distribution. MICE is capable of handling

different types of variables whereas the variables in MVN need to be normally dis-

tributed or transformed to approximate normality. Also, MICE can manage imputa-

tion of variables defined on a subset of data whereas MVN cannot. Hence, this package

works best when data has multivariable normal distribution. If not, transformation is

to be done to bring data close to normality.

3.5.3 missForest

As the name suggests, missForest is an implementation of random forest algorithm.

It’s a non parametric imputation method applicable to various variable types.

So, what’s a non parametric method ?

Non-parametric method does not make explicit assumptions about functional form

of f (any arbitary function). Instead, it tries to estimate f such that it can be as close to

the data points without seeming impractical.

How does it work ?

In simple words, it builds a random forest model for each variable. Then it uses the

model to predict missing values in the variable with the help of observed values.

It yield OOB (out of bag) imputation error estimate. Moreover, it provides high

level of control on imputation process. It has options to return OOB separately (for
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each variable) instead of aggregating over the whole data matrix. This helps to look

more closely as to how accurately the model has imputed values for each variable.

3.5.4 Hmisc

Hmisc is a multiple purpose package useful for data analysis, high – level graphics,

imputing missing values, advanced table making, model fitting & diagnostics (linear

regression, logistic regression and cox regression) etc. Amidst, the wide range of func-

tions contained in this package, it offers 2 powerful functions for imputing missing

values. These are impute() and aregImpute(). Though, it also has transcan() function,

but aregImpute() is better to use.

impute() function simply imputes missing value using user defined statistical method

(mean, max, mean). It’s default is median. On the other hand, aregImpute() al-

lows mean imputation using additive regression, bootstrapping, and predictive mean

matching.

In bootstrapping, different bootstrap resamples are used for each of multiple impu-

tations. Then, a flexible additive model (non parametric regression method) is fitted

on samples taken with replacements from original data and missing values (acts as

dependent variable) are predicted using non-missing values (independent variable).

Then, it uses predictive mean matching (default) to impute missing values. Predic-

tive mean matching works well for continuous and categorical (binary & multi-level)

without the need for computing residuals and maximum likelihood fit.

Here are some important highlights of this package:

It assumes linearity in the variables being predicted. Fisher’s optimum scoring

method is used for predicting categorical variables.

3.5.5 mi

mi (Multiple imputation with diagnostics) package provides several features for deal-

ing with missing values. Like other packages, it also builds multiple imputation mod-

els to approximate missing values. And, uses predictive mean matching method.

Though, I’ve already explained predictive mean matching (pmm) above, but if you

haven’t understood yet, here’s a simpler version: For each observation in a variable

with missing value, we find observation (from available values) with the closest pre-

dictive mean to that variable. The observed value from this “match” is then used as

imputed value.

Below are some unique characteristics of this package:

It allows graphical diagnostics of imputation models and convergence of imputa-

tion process. It uses bayesian version of regression models to handle issue of separa-

tion. Imputation model specification is similar to regression output in R It automati-
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cally detects irregularities in data such as high collinearity among variables. Also, it

adds noise to imputation process to solve the problem of additive constraints.

3.6 Application

3.6.1 Lecture questions

When you suggest methods to deal with missing values to users, the recurrent question

is “What is the percentage of missing values that I can have in my data set, is 50% too

much but 20% OK?” What is your answer to this question?

• the answer:

The percentage of missing values is not the only thing which is important. If the

variables are highly correlated, we can predict the missing values precisely even

with a high fraction of missing values. On the contrary, if the data set is very

noisy to begin with, even a small fraction of missing values can be troublesome.

Multiple imputation can always be performed and enables to measure precisely

the variability of the predictions, which evaluates how much we can trust the

results obtained from a (very) incomplete dataset.

Explain the aims of multiple imputation in comparison to single imputation.

• the answer:

Single imputation leads to underestimating the variability of the parameters es-

timators because it does not account for the variability due to missing values.

Multiple imputation aims at providing an estimation of the parameters of inter-

est as well as their variability, taking into account the variability due to missing

values.

3.6.2 Continuous data with missing values-Regression with miss-

ing data via Multiple Imputation

First of all you will need to install the following packages

install.packages("VIM")

install.packages("missMDA")

install.packages("Amelia")

Air pollution is currently one of the most serious public health worries world-

wide. Many epidemiological studies have proved the influence that some chemical

compounds, such as sulphur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3) can

have on our health. Associations set up to monitor air quality are active all over the
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world to measure the concentration of these pollutants. They also keep a record of

meteorological conditions such as temperature, cloud cover, wind, etc.

We have at our disposal 112 observations collected during the summer of 2001 in

Rennes. The variables available are

• maxO3 (maximum daily ozone)

• maxO3v (maximum daily ozone the previous day)

• T12 (temperature at midday)

• T9

• T15 (Temp at 3pm)

• Vx12 (projection of the wind speed vector on the east-west axis at midday)

• Vx9 and Vx15 as well as the Nebulosity (cloud) Ne9, Ne12, Ne15

Here the final aim is to analyse the relationship between the maximum daily ozone

(maxO3) level and the other meteorological variables. To do so we will perform regres-

sion to explain maxO3 in function of all the other variables. This data is incomplete

(there are missing values). Indeed, it occurs frenquently to have machines that fail one

day, leading to some information not recorded. We will therefore perform regression

via multiple imputation.

Import the data:

data.ozo<-read.table("data/ozone.xlsx",header=TRUE,sep=",",row.names=1)

WindDirection <- ozo[,12]

don <- ozo[,1:11] #### keep the continuous variables

summary(don)

Table 3.3: Description parameters for all variables of ozone dataset
Min 1st Qu Median Mean 3rd Qu Max NA’s

maxO3 42.00 71.00 81.50 91.24 108.25 166.00 16
t9 11.30 16.00 17.70 18.22 19.90 25.30 37

T12 14.30 18.60 20.40 21.46 23.60 33.50 33
T15 14.90 18.90 21.40 22.41 25.65 35.50 37
Ne9 0.000 3.000 5.000 4.987 7.000 8.000 34

Ne12 0.000 4.000 5.000 4.986 7.000 8.000 42
Ne15 0.00 3.00 5.00 4.60 6.25 8.00 32
Vx9 -7.8785 -3.0000 -0.8671 -1.0958 0.6919 5.1962 18

Vx12 -7.8785 -3.6941 -1.9284 -1.6853 -0.1302 6.5778 10
Vx15 -9.000 -3.759 -1.710 -1.830 0.000 3.830 21

maxO3v 42.00 70.00 82.50 89.39 101.00 166.00 12
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The head of the ozone dataset are given by the following commande

head(don)

Table 3.4: Head values of the ozone dataset
maxO3 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 maxO3v

0601 87 15.6 18.5 NA 4 4 8 0.69 -1.71 -0.69 84
0602 82 NA NA NA 5 5 7 -4.33 -4.00 -3.00 87
0603 92 15.3 17.6 19.5 2 NA NA 2.95 NA 0.52 82
0604 114 16.2 19.7 NA 1 1 0 NA 0.35 -0.17 92
0605 94 NA 20.5 20.4 NA NA NA -0.50 -2.95 -4.33 114
0606 80 17.7 19.8 18.3 6 NA 7 -5.64 -5.00 -6.00 94

dim(don)

dimension are 112 row and 11 column

Load the libraries.

library(VIM)

library(FactoMineR)

library(missMDA)

When could it be a good idea to delete rows or columns with missing values to work

with a complete data set?

dim(na.omit(don))

dimension are 13 row and 11 column

First, we perfom some descriptive statistics (how many missing? how many vari-

ables, individuals with missing?) and try to inspect and vizualize the pattern of miss-

ing entries and get hints on the mechanism that generated the missingness.

For this purpose, we use the R package VIM (Visualization and Imputation of Miss-

ing Values - Mathias Templ) as well as Multiple Correspondence Analysis (FactoMineR

package).

The package VIM provides tools for the visualization of missing or imputed values,

which can be used for exploring the data and the structure of the missing or imputed

values. Depending on this structure, they may help to identify the mechanism generat-

ing the missing values or errors, which may have happened in the imputation process.

You should install the package VIM, then you can check the documentation by execut-

ing

VIM: The VIM function aggr calculates and plots the amount of missing entries in

each variables and in some combinations of variables (that tend to be missing simulta-

neously).
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res<-summary(aggr(don, sortVar=TRUE))combinations
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Figure 3.1: the number of missing

Table 3.5: Variables sorted by number of missings
Count Ne12 T9 T15 Ne9 T12

Variable 0.37500000 0.33035714 0.33035714 0.30357143 0.29464286 5
Ne15 Vx15 Vx9 maxO3 maxO3v Vx12

0.28571429 0.18750000 0.16071429 0.14285714 0.10714286 0.08928571

head(res[rev(order(res[,2])),])

Table 3.6: the combination
Combinations Count Percent

1 0:0:0:0:0:0:0:0:0:0:0 13 11.607143
45 0:1:1:1:0:0:0:0:0:0:0 7 6.250000
10 0:0:0:0:0:1:0:0:0:0:0 5 4.464286
35 0:1:0:0:0:0:0:0:0:0:0 4 3.571429
41 0:1:0:0:1:1:1:0:0:0:0 3 2.678571
28 0:0:1:0:0:0:0:0:0:0:0 3 2.678571

We can see that the combination which is the most frequent is the one where all the

variables are observed (13 values). Then, the second one is the one where T9, T12 and

T15 are simultaneously missing (7 rows) (1 is missing, 0 is observed there is a 1 for

49 Mémoire de Master



CHAPTER 3. SIMULATIONS AND APPLICATIONS

the second, third and fourth variables). The graph on the right panel represents the

pattern, with blue for observed and red for missing.

The VIM function matrixplot creates a matrix plot in which all cells of a data ma-

trix are visualized by rectangles. Available data is coded according to a continuous

color scheme (gray scale), while missing/imputed data is visualized by a clearly dis-

tinguishable color (red).

If you use Rstudio the plot is not interactive (thus the warnings), but if you use R

directly, you can click on a column of your choice, this will result in sorting the rows

in the decreasing order of the values of this column. This is useful to check if there is

an association between the value of a variable and the missingness of another one.

matrixplot(don, sortby = 2)

Figure 3.2: additional information on the missing values

Q2 Do you observe any associations between the missing entries ? When values are

missing on a variable does it correspond to small or large values on another one ?

The VIM function marginplot creates a scatterplot with additional information on

the missing values. If you plot the variables (x,y), the points with no missing values

are represented as in a standard scatterplot. The points for which x (resp. y) is missing

are represented in red along the y (resp. x) axis. In addition, boxplots of the x and y

variables are represented along the axes with and without missing values (in red all

variables x where y is missing, in blue all variables x where y is observed).
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marginplot(don[,c("T9","maxO3")])

Figure 3.3: scatterplot with additional information on the missing values

We can see that the distribution of T9 is the same when maxO3 is oberved and when

maxO3 is missing. If the two boxplots (red and blue) would have been very different

it would imply that when maxO3 is missing the values of T9 can be very high or very

low which lead to suspect the MAR hypothesis.

Create a categorical dataset with “o” when the value of the cell is observed and “m”

when it is missing, and with the same row and column names as in the original data.

Then, you can perform Multiple Correspondence Analysis to visualize the association

with the MCA function.

?MCA

data_miss<-data.frame(is.na(don))

data_miss<-apply(X=data_miss, FUN=function(x) if(x) "m" else "o", MARGIN=c(1,2))

res.mca<-MCA(data_miss, graph = F)

plot(res.mca,invis="ind", title="MCA graph of the categories", cex=0.5)
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Figure 3.4: Outputs of the PCA function graph of individuals

Then, before modeling the data, we perform a PCA with missing values to explore

the correlation between variables. Use the R package missMDA dedicated to perform

principal components methods with missing values and to impute data with PC meth-

ods.

Determine the number of components ncp to keep using the estimncpP CA func-

tion. Perform PCA with missing values using the imputePCA function and ncp com-

ponents. Then plot the correlation circle.

$?estim_ncpPCA$

$?imputePCA$

Could you guess how cross-validation is performed to select the number of compo-

nents? Then, to run the regression with missing values, we use Multiple Imputation.

We impute the data either assuming 1) a Gaussian distribution (library Amelia) or 2)

a PCA based model (library missMDA). Note that there are two ways to impute either

using a Joint Modeling (one joint probabilitisc model for the variables all together) or

a Condional Modeling (one model per variable) approach. We refer to the references

given in the slides for more details.
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We use the R package Amelia. We generate 100 imputed data sets with the amelia

method:

library(Amelia): Loading required package: Rcpp

Amelia II: Multiple Imputation

(Version 1.8.0, built: 2021-05-26)

Copyright (C) 2005-2022 James Honaker, Gary King and Matthew Blackwell

Refer to http://gking.harvard.edu/amelia/ for more information

-

?amelia

res.amelia <- amelia(don, m=100)

– Imputation 1–

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37

– Imputation 2 –

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

– Imputation 3 –

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37

– Imputation 4 –

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42

– Imputation 5 –

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

88 89 90 91 92 93 94 95

...ect

#names(res.amelia$imputations)

#res.amelia$imputations$imp1# the first imputed data set

then

library(mice)

imp.mice <- mice(don, m=100, defaultMethod="norm.boot")

# the variability of the parameters is obtained
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the first imputed data set. Now generate 100 imputed data sets with the MIPCA

method and 2 components. Store the result in a variable called res.MIPCA.

?MIPCA\\

?plot.MIPCA\\

res.MIPCA<-MIPCA(don, ncp=2, nboot=100) # MI with PCA using 2 dimensions

We will inspect the imputed values created to know if the imputation method

should require more investigation or if we can continue and analyze the data. A com-

mon practice consists in comparing the distribution of the imputed values and of the

observed values.

Check the compare.density function and apply it to compare the distributions of

the T12 variable.

?compare.density

Figure 3.5: Imputation multiple T-12 Faction Missing

The quality of imputation can also be assessed with cross-validation using the over-

impute function. Each observed value is deleted and for each one 100 values are pre-

dicted (using the same MI method) and the mean and 90% intervals are computed for
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these 100 values. Then, we inspect whether the observed value falls within the ob-

tained interval. On the graph, the y=x line is plotted (where the imputations should

fall if they were perfect), as well as the mean (dots) and intervals (lines) for each value.

Around ninety percent of these confidence intervals should contain the y = x line,

which means that the true observed value falls within this range. The color of the line

(as coded in the legend) represents the fraction of missing observations in the pattern

of missingness for that observation (ex: blue=0-2 missing entries).

?overimpute

overimpute(res.amelia, var = "maxO3")

Figure 3.6: Imputation multiple Observed Values

Comment the quality of the imputation.

We can also examine the variability by projecting as supplementary tables the im-

puted data sets on the PCA configuration (plot the results of MI with PCA).

plot(res.MIPCA,choice= "ind.supp")
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Figure 3.7: supplementary projection

plot(res.MIPCA,choice= "var")

Figure 3.8: Outputs of the PCA function correlation circle
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Apply a regression model on each imputed data set of the amelia method. Hint: a

regression with several variables can be performed as follows

‘lm(formula=“maxO3 ~ T9+T12”, data =don)’.

You can also use the function with Amelia package

resamelia <- lapply(res.amelia$imputations, as.data.frame)

# A regression on each imputed data-set

fitamelia<-lapply(resamelia, lm,

formula="maxO3~T9+T12+T15+Ne9+Ne12+Ne15+Vx9+Vx12+Vx15+maxO3v")

fitamelia <- lapply(resamelia, with,

lm(maxO3 ~T9+T12+T15+Ne9+Ne12+Ne15+Vx9+Vx12+Vx15+maxO3v))

Now do the same with the imputed data-sets of the MIPCA method. The package

mice (Multiple Imputation by Chained Equations) allows to aggregate the results from

some simple models.

library(mice)

# Loading required package: lattice

# ?mice

# pool is a function from mice to aggregate the results according to Rubin’s rule

# ?pool

Aggregate the results of Regression with Multiple Imputation according to Rubin’s

rule (slide “Multiple imputation”) for MI with amelia with the pool function from the

mice package.

poolamelia<-pool(as.mira(fitamelia))

summary(poolamelia)

Table 3.7: the results of Regression with Multiple Imputation and Amelia package
estimate std.error statistic df p.value

Intercept 19.3008802 20.4269267 0.9448744 9.156416 0.36334317
T9 1.0365941 3.7064439 0.2796735 3.725997 0.78448590

T12 1.3936132 3.1734209 0.4391517 4.852282 0.66834788
T15 0.6400731 1.9088331 0.3353217 6.137191 0.74316648
Ne9 -1.2425404 1.6724030 -0.7429671 5.934270 0.47178381

Ne12 -2.7872454 2.9442641 -0.9466696 5.307437 0.36246397
Ne15 0.8739977 1.3634798 0.6410052 12.011132 0.53355926
Vx9 0.8666599 1.6405449 0.5282756 7.015473 0.60693100

Vx12 0.4887195 2.1687298 0.2253482 6.209202 0.82549695
Vx15 0.4964256 1.4392222 0.3449263 9.386397 0.73611455

maxO3v 0.2981957 0.1203265 2.4782219 7.689351 0.02903622
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Now do the same with the MIPCA results.

poolMIPCA<-pool(as.mira(fitMIPCA))

summary(poolMIPCA)

Table 3.8: the results of Regression with Multiple Imputation and MIPCA package
estimate std.error statistic df p.value

Intercept 12.7547158 18.44444620 0.6915207 62.65724 0.491533365
T9 1.0124513 1.32664563 0.7631663 43.94939 0.447937301

T12 1.5481541 1.02177779 1.5151573 53.57541 0.134250639
T15 0.8270436 0.90466203 0.9142018 56.48618 0.363759801
Ne9 -1.0669031 1.18182976 -0.9027553 56.20932 0.369762308

Ne12 -1.8046512 1.56165049 -1.1556051 50.39130 0.251785274
Ne15 0.3818986 1.16884956 0.3267303 62.74103 0.744850124
Vx9 0.8234073 1.06833916 0.7707358 69.73461 0.443466007

Vx12 0.9935546 1.14848906 0.8650971 69.76246 0.389950634
Vx15 0.2081217 1.13987925 0.1825822 65.20298 0.855655377

maxO3v 0.2502536 0.09206577 2.7182051 67.67098 0.008273753

Write a function that removes the variables with the largest p-values step by step

(each time a variable is removed the regression model is performed again) until all

variables are significant.

don2 <- don

reg <- lm(maxO3 ~. , data = don2)

while(any(summary(reg)$coeff[-1, 4]>0.05)){

don2 <- don2[,!(colnames(don2)%in%names

(which.max(summary(reg)$coeff[-1, 4])))]

reg <- lm(maxO3 ~. , data = don2)}

We combine the results and performed the regression with missing values

# Submodel to compare

fitMIPCA<-lapply(res.MIPCA,lm, formula="maxO3~ T12+Ne9+Vx12+maxO3v")

poolMIPCA<-pool(as.mira(fitMIPCA))

summary(poolMIPCA)

Table 3.9: Coefficients of regression with MIPCA package
estimate std.error statistic df p.value

(Intercept) 9.4746829 14.26052896 0.6643991 66.39501 0.5085254775
T12 2.9522183 0.63368128 4.6588378 63.63925 0.0000139317
Ne9 -1.8307128 1.07180284 -1.7080686 61.45186 0.0918675454

Vx12 1.7929235 0.74833086 2.3958968 69.73607 0.0191404878
maxO3v 0.3286382 0.08415626 3.9050956 73.09463 0.0002079746
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#lm.mice.out <- with(imp.mice, lm(maxO3 ~ T12+Ne9+Vx12+maxO3v))

#pool.mice <- pool(lm.mice.out)

#summary(pool.mice)

fitamelia<-lapply(resamelia,lm, formula="maxO3~ T12+Ne9+Vx12+maxO3v")

poolamelia<-pool(as.mira(fitamelia))

summary(poolamelia)

Table 3.10: Coefficients of regression Amelia
estimate std.error statistic df p.value

(Intercept) 6.3208449 14.98158031 0.4219078 11.699053 6.767519e-01
T12 3.1149265 0.58410855 5.3327869 20.590983 1.653628e-05
Ne9 -2.0510525 1.52007385 -1.3493111 5.446113 1.895097e-01

Vx12 1.6882470 0.88284691 1.9122761 9.195620 6.753819e-02
maxO3v 0.3400338 0.07501389 4.5329447 24.632555 1.289599e-04

3.7 Gaussian Mixture Models Explained

This model is a soft probabilistic clustering model that allows us to describe the mem-

bership of points to a set of clusters using a mixture of Gaussian densities. It is a soft

classification (in contrast to a hard one) because it assigns probabilities of belonging to

a specific class instead of a definitive choice.

In essence, each observation will belong to every class but with different probabili-

ties.

In the world of Machine Learning, we can distinguish two main areas: Supervised

and unsupervised learning. The main difference between both lies in the nature of the

data as well as the approaches used to deal with it.

Clustering is an unsupervised learning problem where we intend to find clusters

of points in our data-set that share some common characteristics.

Let’s suppose we have a data-set that looks like this:
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Figure 3.9: data-set

Our job is to find sets of points that appear close together. In this case, we can

clearly identify two clusters of points which we will colour blue and red, respectively:

Figure 3.10: clustering data-set

Definitions

A Gaussian Mixture is a function that is comprised of several Gaussian; each identified

by k ∈ 1, . . . ,K , where K is the number of clusters of our data-set. Each Gaussian k in
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the mixture is comprised of the following parameters:

• A mean µ that defines its centre.

•A covariance
∑

that defines its width. This would be equivalent to the dimensions

of an ellipsoid in a multivariate scenario.

• A mixing probability π that defines how big or small the Gaussian function will

be.

Let us now illustrate these parameters graphically:

Figure 3.11: the clustering of three Gaussian functions

Here, we can see that there are three Gaussian functions, hence K = 3. Each Gaus-

sian explains the data contained in each of the three clusters available. The mixing

coefficients are themselves probabilities and must meet this condition:

K∑
k=1

πk = 1 (3.1)

Now how do we determine the optimal values for these parameters? To achieve this

we must ensure that each Gaussian fits the data points belonging to each cluster. This

is exactly what maximum likelihood does.

In general, the Gaussian density function is given by:

N (x|µ,Σ) =
1

(2π)D/2 |
∑
|1/2

exp
(
−1

2
(x −µ)TΣ−1(x −µ)

)
(3.2)

Where x represents our data points, D is the number of dimensions of each data point.

µ and Σ are the mean and covariance, respectively. If we have a dataset comprised of

N = 1000 three-dimensional points (D = 3), then x will be a 1000× 3 matrix. µ will be

a 1×3 vector, and Σ will be a 3×3 matrix. For later purposes, we will also find it useful

to take the log of this equation, which is given by:
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lnN (x|µ,Σ) = −D
2

ln2π − 1
2

ln
∑
−1

2
(x −µ)T (Σ)−1(x −µ) (3.3)

If we differentiate this equation with respect to the mean and covariance and then

equate it to zero, then we will be able to find the optimal values for these parameters,

and the solutions will correspond to the Maximum Likelihood Estimates (MLE) for

this setting. However, because we are dealing with not just one, but many Gaussian’s,

things will get a bit complicated when time comes for us to find the parameters for the

whole mixture.

3.7.1 Application 1

The galaxies data in the MASS package (Venables and Ripley, 2002)[40] is a frequently

used example for Gaussian mixture models. It contains the velocities of 82 galaxies

from a redshift survey in the Corona Borealis region. Clustering of galaxy velocities

reveals information about the large scale structure of the universe.

library(MASS)

data(galaxies)

X = galaxies / 1000

The Mclust function from the mclust package (Fraley et al., 2012)[54] is used to fit

Gaussian mixture models. The code below fits a model with G = 4 components to the

galaxies data, allowing the variances to be unequal (model="V").

library(mclust, quietly=TRUE)

fit = Mclust(X, G=4, model="V")

summary(fit)

figure 3.12 shows the resulting density plot.

plot(fit, what="density", main="", xlab="Velocity (Mm/s)")

rug(X)

Section 6.2 of Drton and Plummer (2017)[55] considers singular BIC for Gaussian

mixture models using the galaxies data set as an example. Singularities occur when

two mixture components coincide (i.e. they have the same mean and variance) or on

the boundary of the parameter space where the prior probability of a mixture compo-

nent is zero.
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Figure 3.12: Density estimate for galaxies data from a 4-component mixture model

The GaussianMixtures() function creates an object representing a family of mixture

models up to a specified maximum number of components (maxNumComponents=10

in this example). The phi parameter controls the penalty to be used for sBIC (See

below) and the restarts parameter determines the number of times each model is fitted

starting from randomly chosen starting points. Due to the multi-modal likelihood

surface for mixture models, multiple restarts are used to find a good (local) maximum.

library(sBIC)

gMix=GaussianMixtures(maxNumComponents=10, phi=1, restarts=100)

Learning coefficients are known exactly for Gaussian mixtures with known and

equal variances, but this model is rarely applied in practice. For unequal variances, the

learning coefficients are unknown, but upper bounds are given by Drton and Plummer

(2017, equation 6.11)[55]. These bounds are implemented by setting the penalty pa-

rameter phi=1 in the GaussianMixtures() function. We refer to the singular BIC using

these approximate penalties as sBIC1. It is calculated by supplying the data X and the

model set gMix to the sBIC() function. The RNG seed is set for reproducibility, due to

the random restarts.

set.seed(1234)
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m = sBIC(X, gMix)

print(m)

figure 3.12 compares BIC with sBIC1. Both criteria have been standardized so that

the value for the 1-component model is 0. This figures reproduces Figure 7 of Drton

and Plummer (2017)[32]. The reproduction is not exact because, in the interests of

speed, we have reduced the number of restarts from 5000 to 100. This mainly affects

the models with larger number of components.

matplot(

cbind(m$BIC - m$BIC[1], m$sBIC - m$sBIC[1]),

pch = c(1, 3),

col = "black",

xlab = "Number of components",

ylab = expression(BIC - BIC(M[1])),

las=1, xaxt="n"

)

axis(1, at = 1:10)

legend("topleft",

c(expression(BIC), expression(bar(sBIC)[1])),

pch = c(1, 3),

y.intersp = 1.2)

Figure 3.13: Comparison of singular BIC with BIC for choosing the number of com-
ponents in the galaxies data
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The BIC and singular BIC results for the galaxies data can be compared with the

posterior probabilities for the number of components derived by Richardson and Green

(1997, Table 1)[56] using reversible jump MCMC. Since Richardson and Green (1997)

[57] consider up to 14 components, we truncate the distribution up to 10 components

and renormalize

post.MCMC = c(0.000, 0.000, 0.061, 0.128, 0.182, 0.199, 0.160,

0.109, 0.071, 0.040, 0.023, 0.013, 0.006, 0.003)[1:10]

post.MCMC = post.MCMC / sum(post.MCMC)

The posterior probabilities from BIC and sBIC1 are derived by exponentiating and

then renormalizing using the helper function postBIC().

postBIC <- function(BIC) {

prob <- exp(BIC - max(BIC))

prob/sum(prob) }

normalizedProbs=rbind("BIC"=postBIC(m$BIC),

"sBIC1"=postBIC(m$sBIC), "MCMC"=post.MCMC)

3.14 compares the posterior densities from the three approaches. This reproduces

figure 8 from Drton and Plummer (2017) [55].

barplot(

normalizedProbs,

beside = TRUE,

col = c("white","grey","black"),

legend = c(expression(BIC), expression(bar(sBIC)[1]), expression(MCMC)),

xlab = "Number of components",

ylab = "Probability",

args.legend = list(y.intersp = 1.2),

names.arg = 1:10

)
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Figure 3.14: Posterior distribution of the number of components in a Gaussian mixture
model with unequal variances applied to the galaxies data

3.7.2 Application 2

In this example, we will assume our mixture components are fully specified Gaussian

distributions (i.e the means and variances are known), and we are interested in finding

the maximum likelihood estimates of the πk’s.

Assume we have K = 2 components, so that:

Xi |Zi = 0 ∼N (5,1.5)

Xi |Zi = 1 ∼N (10,2)

The true mixture proportions will be P (Zi = 0) = 0.25 and P (Zi = 1) = 0.75. First we

simulate data from this mixture model:
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# mixture components

mu.true = c(5, 10)

sigma.true = c(1.5, 2)

# determine Z_i

Z = rbinom(500, 1, 0.75)

# sample from mixture model

X <- rnorm(10000, mean=mu.true[Z+1], sd=sigma.true[Z+1])

hist(X,breaks=15)

Figure 3.15: Histogram of X

Now we write a function to compute the log-likelihood for the incomplete data,

assuming the parameters are known. This will be used to determine convergence:

l(θ) =
n∑
i=1

log(
2∑
k=1

πkN (xi ;µk ,σ
2
k )) (3.4)
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CHAPTER 3. SIMULATIONS AND APPLICATIONS

compute.log.lik <- function(L, w) {

L[,1] = L[,1]*w[1]

L[,2] = L[,2]*w[2]

return(sum(log(rowSums(L))))}

Since the mixture components are fully specified, for each sample Xi we can compute

the likelihood P (Xi |Zi = 0) and P (Xi |Zi = 1). We store these values in the columns of L:

L = matrix(NA, nrow=length(X), ncol= 2)

L[, 1] = dnorm(X, mean=mu.true[1], sd = sigma.true[1])

L[, 2] = dnorm(X, mean=mu.true[2], sd = sigma.true[2])

Finally, we implement the E and M step in the EM.iter function below. The mixture.EM

function is the driver which checks for convergence by computing the log-likelihoods

at each step.

mixture.EM <- function(w.init, L) {

w.curr <- w.init

# store log-likehoods for each iteration

log_liks <- c()

ll<-compute.log.lik(L, w.curr)

log_liks <- c(log_liks, ll)

delta.ll <- 1

while(delta.ll > 1e-5) {

w.curr <- EM.iter(w.curr, L)

ll <- compute.log.lik(L, w.curr)

log_liks <- c(log_liks, ll)

delta.ll <- log_liks[length(log_liks)] - log_liks[length(log_liks)-

1] }

return(list(w.curr, log_liks)) }

EM.iter <- function(w.curr, L, ...) {

# E-step: compute E_{Z|X,w0}[I(Z_i = k)]

z_ik <- L

for(i in seq_len(ncol(L))) {

z_ik[,i] <- w.curr[i]*z_ik[,i] }

z_ik<-z_ik / rowSums(z_ik)

# M-step

w.next <- colSums(z_ik)/sum(z_ik)

return(w.next) }

#perform EM
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CHAPTER 3. SIMULATIONS AND APPLICATIONS

ee <- mixture.EM(w.init=c(0.5,0.5), L)

print(paste("Estimate=(", round(ee[[1]][1],2), ",",

round(ee[[1]][2],2), ")", sep=""))

Estimate of µ et σ are given by (0.2748159,0.7251841).

Finally, we inspect the evolution of the log-likelihood and note that it is strictly in-

creases:

plot(ee[[2]], ylab=’incomplete log-likelihood’, xlab=’iteration’)

Figure 3.16: Iteration of EM algorithm
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CONCLUSION

The impact of missing data on quantitative research can be serious, leading to biased

estimates of parameters, loss of information, decreased statistical power, increased

standard errors, and weakened generalizability of findings. In this paper, we discussed

and we demonstrated expectation-maximization algorithm, applied to a real-world

data set. Results were contrasted with those obtained from the complete data set , We

give various examples of applications of the EM algorithm to the resolution of some

problems of missing data. We used with some incredible R packages for missing values

imputation. These packages arrive with some inbuilt functions and a simple syntax to

impute missing data at once. Some packages are known best working with continuous

variables and others for categorical.
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