
People's Democratic Republic of Algeria

 Ministry of Higher Education and Scientific Research

Academic year: 2021/2022

UNIVERSITY OF SAAD DAHLEB BLIDA

Faculty of sciences

Department of computer science

Graduation Project

Report submitted for the fulfillment of the master degree in Computer Science

Option: Software Engineering

Realized by: CHITA Ramzi & BOUCHELARAM Ishak

Project

On 25/9/2022 before the jury composed of:

- Supervisor: Mr A. KAMECHE, Computer Science Department, Blida1.

- President : Mme BERRAMDANE, Computer Science Département, Blida1.

- Examiner : Mme GUESSOUM, Computer Science Département, Blida1.

ENCODER-DECODER NEURAL

NETWORK ARCHITECTURES FOR

AUTOMATIC AUDIO CAPTIONING

2

ABSTRACT

 The main purpose of this project is to design an environmental

general audio content description using text, where a system accepts as an

input an audio signal and outputs the textual description of that signal.

 This task has drawn lots of attention during the past several years

as a result of quick devolvement of different methods that can provide

captions for a general audio recording. To accomplish the automatic audio

captioning task, we have performed multiple experiments using a Clotho

dataset. Two deep neural networks have been employed in the

construction of our systems Recurrent Neural Network and Gated

Recurrent Unit, along with encoder-decoder architecture and a

combination of feature representations based on audio processing

techniques like Mel Spectrogram and text processing techniques used in

text decoding from word embeddings like one-hot-encoding and BERT.

Keywords: Audio Captioning, Machine Learning, Encoder Decoder

Models, Signal Processing, Natural Language Processing.

3

RÉSUMÉ

 L'objectif principal de ce projet est de concevoir une description de

contenu audio général environnemental à l'aide de texte, où un système

accepte en entrée un signal audio et produit la description textuelle de ce

signal.

 Cette tâche a attiré beaucoup d'attention au cours des dernières années en

raison de l'évolution rapide des différentes méthodes qui peuvent fournir

des sous-titres pour un enregistrement audio général. Pour accomplir la

tâche de sous-titrage audio automatique, nous avons effectué plusieurs

expériences à l'aide d'un ensemble de données Clotho. Deux réseaux de

neurones profonds ont été utilisés dans la construction de nos systèmes

Recurrent Neural Network et Gated Recurrent Unit, ainsi qu'une

architecture d'encodeur-décodeur et une combinaison de représentations

de caractéristiques basées sur des techniques de traitement audio telles que

Mel Spectrogram et des techniques de traitement de texte utilisées dans le

décodage de texte à partir des incorporations de mots comme l'encodage

à chaud et le BERT.

Mots-clés : Traduction vocale, Apprentissage Automatique, modèles de

décodage, traitement du signal, Traitement du langage naturel

4

 ملخص

الصوتي للمحتوى عام بيئي وصف تصميم هو المشروع هذا من الرئيسي الغرض

النص لتلك الحر،باستخدام النصي الوصف ويخرج صوتية إشارة كمدخل النظام يقبل حيث

 .الإشارة

للانتقال نتيجة الماضية العديدة السنوات الاهتمام خلال من الكثير المهمة هذه جذبت

السريع للطرق المختلفة التي يمكن أن توفر تسميات توضيحية لتسجيل صوتي عام. لإنجاز مهمة

. كلوتوأجرينا تجارب متعددة باستخدام مجموعة بيانات التلقائية،ة التسميات التوضيحية الصوتي

تم استخدام شبكتين عصبيتين عميقتين في بناء أنظمتنا الشبكة العصبية المتكررة والوحدة المتكررة

جنبًا إلى جنب مع بنية وحدة فك التشفير ومجموعة من تمثيلات الميزات القائمة البوابات،ذات

وتقنيات معالجة النصوص المستخدمة Mel Spectrogram جة الصوت مثلعلى تقنيات معال

 ONE-HOT-ENCODING.او BERT مثلفي فك تشفير النص من حفلات الزفاف كلمة

 . الإشارات،معالجة التشفير،نماذج فك الآلي،التعلم الصوتية،الترجمة الرئيسية: تالكلما

 معالجة اللغة الطبيعية

5

Acknowledgement

 First, we thank ALLAH Sobhanou for giving us the will and

courage to undertake and complete this work. We would like to express

our deepest and most sincere gratitude to our promoter and coach

ABDALLAH HICHAM KAMECHE, ASSISTANT PROFESSOR B,

University of Blida, for guiding and enriching our work. We thank him

for his availability, his valuable advice, his confidence despite our rather

light knowledge in the field of audio processing. We also thank him for

his attention to detail and for giving us the opportunity to conduct this

research and providing us invaluable guidance throughout our work that

led to this work been completed.

 Our thanks also go to the members of the jury for agreeing to

examine our work and enrich it with their proposals. We would also like

to thank the faculty and administrative staff at BLIDA University who

have contributed to the success of our university studies.

Finally, many thanks go to all the people who have contributed to the

completion of our research work directly or indirectly.

Thanks again.

6

Contents
Introduction .. 15

1. AI and Language ... 15

2. Motivations ... 16

3. Problems .. 16

4. Contributions ... 17

5. Memory organization .. 18

Chapter 1: Machine learning and Deep learning.. 20

Part 1: Machine learning .. 20

1. Introduction ... 20

2. Machine learning tasks .. 20

3. Supervised learning ... 21

3.1. Classification ... 22

3.2. Regression .. 23

4. Unsupervised learning ... 24

4.1. Clustering ... 24

5. Model evaluation ... 25

5.1. Confusion matrix ... 25

5.4. Overfit and Underfit... 27

Part 2: Deep learning .. 28

1. Introduction ... 28

2. Neural network .. 28

2.1. Neural network layer ... 30

2.2. Forward and backward propagation .. 31

3. Optimization algorithms.. 31

4. Neural networks architectures ... 33

7

4.1. Recurrent neural networks ... 33

4.2. Gated Recurrent Units ... 36

5. Encoder-Decoder... 39

5.1. Encoder .. 40

5.2. Decoder .. 41

6. Transformer ... 41

6.1. Deferent transformers models .. 43

6.2. Transformer Architecture .. 43

6.3. The Attention mechanism .. 45

6.4. Self-attention .. 46

6.5. Multi-head attention ... 46

7. Conclusion .. 46

Chapter 2: Audio processing / Text processing ... 47

Part 1: Audio processing .. 47

1. Introduction ... 47

2. Sound wave ... 47

3. Wave form ... 48

4. Sound envelope ... 50

5. Audio signal Representation ... 50

6. Phases of an audio signal .. 51

7. Digital audio processing .. 52

7.1. Audio signal pre-processing .. 52

7.2. Digital audio signal .. 52

7.3. Sampling .. 53

7.4. How is sound sampled and stored in digital form? 54

7.5. Signal sampling.. 54

8

7.6. Audio signal quantization .. 55

7.7. The Fourier transforms .. 56

7.8 The Short-Time Fourier Transform ... 57

8. Feature Extraction ... 58

8.1 The amplitude envelope ... 58

9. Spectrogram .. 59

9.1. Mel scale .. 59

9.2. Mel spectrograms ... 59

Part 2: Text Processing... 60

1. Introduction ... 60

2. Natural language ... 60

3. Natural language processing tasks .. 61

4. Challenges of natural language processing ... 61

5. Text preprocessing .. 62

5.1. Lowercasing ... 62

5.2. Stemming ... 62

5.3. Lemmatization ... 63

5.4. Stop word Removal ... 63

5.5. Normalization .. 63

5.6. Tokenization .. 64

6. Different word representations .. 64

6.1. Word Embedding ... 64

7. Word processing with BERT .. 67

8. Conclusion .. 69

Chapter 3: Proposed approach .. 70

1. Introduction ... 70

9

2. Global architecture .. 70

3. Related works .. 71

4. Our proposed models .. 72

5. Pre-processing ... 75

6. Encoder part .. 76

6.1. Audio encoding .. 76

6.2. Audio features .. 76

6.3. RNNs ... 76

6.4. Audio pre-processing ... 76

6.5. MEL-SPECTOGRAM ... 77

7. Decoder Part .. 78

7.1. Text decoding .. 78

7.2. Word Embeddings ... 79

7.3. One hot vector .. 79

7.4. Sentence embedding .. 80

7.5. Sentence BERT .. 81

8. Conclusion .. 81

Chapter 4: Achievement ... 83

1. Introduction ... 83

2. Used Tools .. 83

3. Development Software .. 84

4. Data acquisition procedure .. 87

4.1. Audio Dataset for Audio Captioning ... 87

4.2. Audio samples in Clotho.. 87

4.3. Captions in Clotho ... 88

4.4. Data splits of Clotho dataset .. 89

10

5. Evaluation Metrics .. 89

6. Experiments parameters .. 94

7. Evaluation and result ... 94

8. Conclusion .. 99

Conclusion ... 100

Future work .. 101

11

List of acronyms and abbreviations

AAC Automated audio captioning

ADC Analogue-to-digital-Converter

AE Amplitude Enveloppe

AI Artificiel intelligence

BERT Bidirectionnel Encoder Représentations frome Transformers

CNN Convolution neural network

DAC digital-to-analogue-Converter

DFT Discreet Fourier transform

DL DEEP Learning

FN False Negative

FP False Positive

FT Fourier transform

GRU Gated Recurrent Units

KNN k-nearest neighbors

MIR Music Information Retrieval

MLP multiple layers prediction

NL natural language

NLP natural language processing

NN Neural network

RELU Rectified Linear Units

RMS Root-mean-square

RMSE Root-Mean-Square-Energy

RNN recurrent Neural Networks

STFT short-time Fourier transform

SVM support Vector Machine

TDSP Team Data Science Process

TN True Negative

TP True Positive

ZCR The Zero-Crossing Rate

12

List of figures

FIGURE 1: MACHINE LEARNING ALGORITHMS[7] ____________________ 21

FIGURE 2: SUPERVISED LEARNING EXAMPLE[10] ____________________ 21

FIGURE 3: HOW SUPERVISED LEARNING WORKS[11] _________________ 22

FIGURE 4: CLASSIFICATION EXAMPLE[12] __________________________ 23

FIGURE 5: MULTI LABEL CLASSIFICATION[13] ______________________ 23

FIGURE 6: REGRESSION EXAMPLE[14] ______________________________ 24

FIGURE 7: CLUSTERING EXEMPLE[17], [18] __________________________ 25

FIGURE 8: NEURON ANATOMY _____________________________________ 29

FIGURE 9: NEURAL NETWORK LAYERS _____________________________ 29

FIGURE 10: ARTIFICIAL NEURONS[27] ______________________________ 29

FIGURE 11: DROPOUT EXEMPLE ____________________________________ 32

FIGURE 12: SEARCH ENGINE _______________________________________ 33

FIGURE 13: RECURRENT CELL ARCHITECTURE ______________________ 34

FIGURE 14: DIFFERENT TIME STEPS OF RNN[37] _____________________ 35

FIGURE 15: RNN MODEL [36] _______________________________________ 36

FIGURE 16: RESET GATE AND UPDATE GATE[39] ____________________ 37

FIGURE 17: GRU MODEL[40] __ 39

FIGURE 18: THE ENCODER-DECODER ARCHITECTURE _______________ 40

FIGURE 19: ENCODER ARCHITECTURE ______________________________ 40

FIGURE 20: DECODER ARCHITECTURE ______________________________ 41

FIGURE 21: TRANSFORMER ARCHITECTURE [44] ____________________ 42

FIGURE 22: TRANSFORMER ARCHITECTURE [45] ____________________ 44

FIGURE 23: DISTRIBUTION OF ATTENTION BETWEEN TWO

SEQUENCES[46] ___ 45

FIGURE 24: LONGITUDINAL SOUND WAVE SHOWING COMPRESSION

AND RAREFACTION OF AIR PARTICLES _________________________ 48

FIGURE 25: A SIMPLE SINE WAVE, SHOWN AS A TRANSVERSE WAVE _ 48

FIGURE 26: WAVEFORM DIAGRAM SHOWING THE WAVELENGTH AND

AMPLITUDE OF A SOUNDWAVE ________________________________ 49

FIGURE 27: LOW-FREQUENCY WAVE IN COMPARISON TO A HIGH-

FREQUENCY WAVE ___ 50

13

FIGURE 28: VISUAL REPRESENTATION OF A SINE WAVE _____________ 51

FIGURE 29: GRAPH REPRESENTING THE DIFFERENT PHASES OF A WAVE

 __ 51

FIGURE 30: AUDIO PROCESSING SYSTEM[54] ________________________ 53

FIGURE 31: TIME AND SOUND PRESSURE PLOT ______________________ 55

FIGURE 32:TIME AND SOUND PRESSURE PLOT ______________________ 55

FIGURE 33: THE FOURIER TRANSFORMS PLOT _______________________ 56

FIGURE 34: MEL SPECTROGRAMS PLOT _____________________________ 59

FIGURE 35: EXAMPLE OF SENTENCE TOKENIZATION ________________ 64

FIGURE 36:EXAMPLE OF WORD TOKENIZATION _____________________ 64

FIGURE 37:EXAMPLE OF EMBEDDINGS IN A GRAPH[73] ______________ 65

FIGURE 38: CBOW AND SKIP-GRAM EXAMPLES[74] __________________ 66

FIGURE 39:BERT EXAMPLE[76] _____________________________________ 67

FIGURE 40: PRE TRAINING BERT EXAMPLE [78] ______________________ 68

FIGURE 41: EXAMPLE OF AUTOMATED CAPTIONING SYSTEM [2] _____ 71

FIGURE 42: ILLUSTRATION OF ENCODER DECODER AAC

ARCHITECTURE[79] ___ 73

FIGURE 43: FIRST MODEL ENCODER DECODER ARCHITECTURE ______ 74

FIGURE 44: SECOND MODEL WITH THE USE OF S-BERT ______________ 75

FIGURE 45: WAVEFORM PRE-PROCESSING EXAMPLE ________________ 77

FIGURE 46: EXAMPLE OF A SIMPLE SPECTROGRAM AND A MALE

SPECTROGRAM ___ 78

FIGURE 47: WORD EMBEDDING EXAMPLE __________________________ 79

FIGURE 48:SENTENCE EMBEDDING EXAMPLE _______________________ 80

FIGURE 49: S-BERT SENTENCE TRANSFORMER EXAMPLE ____________ 81

FIGURE 50:AUDIO DURATION DISTRIBUTION FOR CLOTHO DATASET _ 88

FIGURE 51: DESKTOP APPLICATION INTERFACE _____________________ 97

FIGURE 52:DESKTOP APPLICATION INTERFACE EXAMPLE OF

EXECUTION___ 98

14

List of Tables

TABLE 1 - CONFUSION MATRIX [18] ... 26

TABLE 2- EVALUATION METRICS FOR CLASSIFICATION [18] 27

TABLE 3- ACTIVATION FONCTIONS FOR CLASSIFICATION[28] 30

TABLE 4- LAGUNAGE MODEL EXEMPLE ... 43

TABLE 5- FREQUENCIES PRESENT IN THE SOUND WAVE 57

TABLE 6- LOWE CASING EXAMPLE .. 62

TABLE 7- PORTERS ALGORITHME EXAMPLE ... 63

TABLE 8- TEXT STOP WORD REMOVAL EXAMPLE 63

TABLE 9- TEXT NORMALIZATION EXAMPLE ... 64

TABLE 10- RELATED WORKS TABLE .. 72

TABLE 11- ONE HOT VECTOR EXAMPLE ... 80

TABLE 12- UTILITY LIBRARIES USED FOR DEEP LEARNING 86

TABLE 13- CLOTHO DATA SPLIT.. 89

TABLE 14-METRICS USED IN THE EVALUATION OF THE MODEL 90

TABLE 15-TRAINING HYPERPARAMETERS FOR ALL EXPERIMENTS 94

TABLE 16- PRE-TRAINED WIGHTS EVALUATION RESULTS 95

TABLE 17- POST FULL TRAINING EVALUATION RESULTS 96

TABLE 18- COMPARISON BETWEEN THE RESULT WE OBTAINED AND

RELATED WORKS RESULTS .. 96

15

Introduction

In this introduction, we aim to present the tasks that our dissertation aims to

address and the broader field related to them. Firstly, we discuss how linguistics,

Natural Language Processing and Artificial Intelligence are intertwined in our view.

We present our motivation and our main research topic. Lastly, we present our main

contributions to the field and memory organization.

1. AI and Language

Language is on each own a very complex system. According to Descartes,

language is power only we humans possess, a power that sets us apart, in a qualitative,

unbridgeable way from everything else there is, notably from animals and machines.

in 1950, Alan Turing wrote a paper describing a test for a “thinking” machine. He

argued that if a machine could have a conversation through the use of a teleprinter, and

it imitated a human without noticeable differences then the machine could be

considered capable of thinking. Many different paradigms have been proposed in the

field of linguistics to approach a broader understanding of language. In the early 1900s,

a Swiss linguistics professor named Ferdinand de Saussure aimed to attack the concept

of language as a product of human speech, describing languages as "systems of

difference". He argued that words are just acoustic images unhinged on themself of

any particular meaning. Recent progress in Artificial Intelligence and Natural

Language Processing has produced models that perform surprisingly well at

generating text, textual descriptions of images, answering questions, summarizing

large documents, etc.

Nonetheless, we are fascinated by AI systems. Their capability of generating

natural language shifts our understanding of reality and how we experience the world.

Besides language their other modalities that play a crucial role in the human

understanding of the world such as images and sounds. We are interested in the ways

these modalities are intertwined with language and how machines are able to mutually

process and understand them.

In this dissertation, we research a multi-modal task called Automated Audio

Captioning. It can be viewed as a cross-modal translation task that aims to generate

16

natural language descriptions of sound and audio events. It is a task that has received

increasing attention in recent years, but is still largely unexplored, compared to other

multimodal tasks such as Image Captioning.

2. Motivations

 Artificial intelligence with its popularization and gradual emergence as a core

technology that drives tremendous developments in many fields, the use of machine

learning and deep learning has grown tremendously[1]. According to numerous

surveys and studies, AI and machine learning are expected to be among the best

rewarding and most lucrative career paths in the coming years.

Like all other areas that are constantly developing and preparing for the future,

the area of Automated audio captioning also benefits from deep learning. Similar to

image captioning, audio captioning is mostly based on an encoder-decoder

architecture. For Automated audio captioning who rely on general audio content

description using free text, deep learning can be a solution for exploring and

developing different methods that can provide some kind of captions for a general

audio recording.

3. Problems

 Automated audio captioning (AAC) is an inter-modal task describing an audio

signal using textual descriptions (referred to as captions). Like other natural language-

related tasks, an appropriate caption should match the contents present in the audio

and aligns with the descriptions provided by a human. The example captions are "many

birds are chirping in the trees as cars drive by" or "many birds are chirping in the trees

as cars drive by". AAC does not simply detect and classify sounds but explores the

inner relationships between events and associates them with high-level concepts and

information. Being an inter-modal task, AAC is exposed to the challenges related to

audio and natural language processing (NLP).

• First, an event may sound significantly in different environments, devices, and

settings.

• Second, real-life audios usually contain mixtures of overlapped sounds.

17

• Third, the language model needs to be sufficiently good to generate close-to-

human created captions.

Finally, the language model plays an important role during the caption generation

phase. The modelled language needs to describe relationships between sound events

(e.g., "A jet sound roars continuously and then gets a bit louder"), discriminate source

locations (e.g., "Birds chirping outside while people are talking in the background"),

the properties of sounds and environments (e.g., "on a hard surface", "a wooden cutting

board") and sound characteristics (e.g., "a loud banging of a metal material"). This

requires building a diverse vocabulary set that the language model can utilize to

formulate descriptive texts.

4. Contributions

 Automated audio captioning is a new and challenging task that involves

different modalities. It could be described as generating a textual description given an

audio signal, where the caption should be as close as possible to a human-assigned

one. In contrast to automatic speech recognition which just converts speech to text,

AAC converts environmental sound to text[2]. It is also different from sound event

detection and audio tagging tasks, which output exact labels with start and end time or

not. Generating accurate captions needs more information, including identification of

sound events, acoustic scenes, foreground versus background discrimination,

concepts, and physical properties of objects and environment. This report proposes an

audio captioning system for the Detection and Classification of Acoustic Scenes and

events (DCASE) 2021 challenge task. Our audio captioning system consists of a Gated

Recurrent Units audio encoder and a Recurrent Neural Networks text decoder.

 The main goal of this work is to design an audio captioning system trained on

the newly publicly available dataset Clotho v2T[3]. The proper use of such information

can considerably improve the captioning performance. The second goal would be to

test the impact of various semantic embeddings; and to perform a comparative study

among several encoder-decoder architectures.

Our main contributions are the following:

18

• We propose a novel architecture for Automated Audio Captioning utilizing

state-of-the-art strategies to reduce the computational complexity of our model.

• We investigate the quality vs diversity trade of language generation in our

proposed model.

• We propose an application of Automated Audio Captioning in generating

textual descriptions of sound events in Audios.

• We propose a novel evaluation metric in order to evaluate the performance

of our system.

5. Memory organization

a. Chapter 1

In the 1rst part we delve into Artificial Intelligence in Machine

Learning and we explained some of the most frequently used methods of

classification.

In The 2rd part is devoted to deep learning, we explain what a Neural

network is and how it works and lastly, we dive into some of Neural network

architectures that we have used in our encoder-decoder model.

b. Chapter 2

In the 1rst part we provide an overview of Audio Processing and

deferent concepts that are relevant for audio feature extraction.

 In the 2nd part we present text processing. We provide a description

for the tools and setup that we frequently used for text feature extraction, then

we present and discuss the deferent methods used in Natural Language

Processing

c. Chapter 3

 This chapter is devoted to the presentation of the experimental results

as well as their interpretations we showed the deferent models we used as well

as their architecture.

19

d. Chapter 4

 In this chapter we present the results. We provide a description for the

tools and setup that we used in our project, then we end it with desktop

interface representation and future work.

20

Chapter 1: Machine learning and

Deep learning

Introduction

As mentioned in the Introduction, in this chapter we present our theoretical

background, regarding Machine Learning (ML) literature and especially the Deep

Learning (DL) subfield.

Part 1: Machine learning

1. Introduction

 Machine learning has enjoyed a diverse history finding its roots in many

interdisciplinary fields including artificial intelligence, neuroscience, cognitive

science and various other areas as it eventually connected more closely with the field

statistics. As early as 1921, when Capek coined the term Robot [4], the idea that a

machine could be intelligent and potentially learn from observations began emerging.

 Machine learning has shown great success in building models for pattern

recognition in domains ranging from computer vision over speech recognition and text

understanding to Game AI[5]. It’s an artificial intelligence area that assists computers

in estimating future events and modelling based on experiences gained from previous

information. Compared to the classical methods, the process of obtaining information

is much more accurate and faster[6].

2. Machine learning tasks

 Machine learning takes different forms, depending on the algorithm and its

objectives. You can divide machine learning algorithms into three main groups based

on their purpose as showed in the figure 1 [7].

21

Figure 1: Machine Learning algorithms[7]

 In machine learning we have multiple methods of learning and showing a

computer how to make deferent predictions with deferent cases, which we will all

explain in the next parts[7].

3. Supervised learning

 Supervised learning algorithms take direct feedback for the prediction. the

machine already knows the answers that are expected of it[8]. It works from labelled

data. Supervised learning can be categorized in classification and regression methods.

In supervised learning: the goal is to use input-label pairs, (x; y) to learn a function 𝐹

that predicts a label given the input, ^y = f (x).

KNN, SVM [9], are some popular algorithms of supervised learning. This next

figure 2 shows an example of supervised learning algorithm.

Figure 2: Supervised Learning Example[10]

22

 A supervised learning algorithm always has a target or outcome variable, which

is detected from a provided set of predictors. The algorithm uses this set of variables

to create a function that maps inputs to desired outputs. This training process is

repeated for as long as it takes for the model to achieve a high level of accuracy this

figure 3 illustrates how a supervised learning algorithm works.

Figure 3: How Supervised Learning Works[11]

3.1. Classification

 These tasks consist of assigning a class to objects[6]. Classification algorithms

utilize input training data for the purpose of predicting the likelihood or probability

that the data that follows will fall into one of the predetermined categories as shown

in the figure 4.

23

Figure 4: Classification Example[12]

After the system has been trained to identify a category of an input X, when

new inputs are added, it’ll automatically be classified in their categories.

Classification problems, requires items to be divided into different categories,

based on past data.

Classification can be multi label as well as shown in this next figure 5.

Figure 5: multi label classification[13]

3.2. Regression

 In this case, we are not assigning a class but a mathematical value: a percentage

or an absolute value. Regression is a process of finding the correlations between

dependent and independent variables. Now with regression problem, the system

attempts to predict a value for an input based on past data. Unlike classification,

we are predicting a value based on past data, rather than classifying them into

different categories. This figure 6 shows how in regression we don’t have multiple

categories classes.

24

Figure 6: Regression example[14]

 The task of the Regression algorithm is to find the mapping function to map

the input variable(x) to the continuous output variable(y).

4. Unsupervised learning

 In unsupervised learning is that the answers we are trying to predict are not

available in the datasets. The algorithm uses an unlabeled dataset[15]. The machine is

then asked to create its own responses. the algorithm seeks to maximize on the one

hand the homogeneity of the data within the groups of data and to form groups as

distinct as possible. In unsupervised learning no label or another target is provided.

The data consists of a set of examples x and the objective is to learn about the statistical

structure of x itself.

4.1. Clustering

 The machine group objects into data sets that are as homogeneous as

possible[16]. This technique may seem close to that of classification in supervised

learning, but unlike the latter, the classes are not pre-filled by a human, it is the

machine that creates its own classes.

From this figure 7 we can see how the machine makes prediction on what

object to be grouped to gather given the same labels.

25

Figure 7: Clustering exemple[17], [18]

5. Model evaluation

 To be able to estimate the performance of a machine learning model First, we

feed the training data to our learning algorithm to learn a model. Second, we predict

the labels of our test set. Third, we count the number of wrong predictions on the test

dataset to compute the model’s prediction accuracy[21]. The evaluation metric is a

crucial element in achieving the optimal classifier during the training process. Thus, a

selection of a suitable evaluation metric is an important key for discriminating and

obtaining the optimal classifier.

For classification problems, the evaluation of the optimal solution during the

training stage can be defined based on confusion matrix.

5.1. Confusion matrix

 A confusion matrix presents a table layout of the different outcomes of the

prediction and results of a classification problem[22], it helps visualize its

outcomes. As shown in the table 1 The row of the table represents the predicted

class, while the column represents the true class.

26

From this confusion matrix, TP and TN denote the number of positive and

negative instances that are correctly classified. Meanwhile, FP and FN denote the

number of misclassified negative and positive instances, respectively. It plots a

table of all the predicted and actual values of a classifier.

Table 1 - Confusion matrix [18]

• True Positive: The Numbers of times our actual positive values are equal to the

predicted positive. You predicted a positive value, and it is correct.

• False Positive: The Numbers of times our model wrongly predicts negative

values as positives. You predicted a negative value, and it is actually positive.

• True Negative: The Numbers of times our actual negative values are equal to

predicted negative values. You predicted a negative value, and it is actually

negative.

• False Negative: The Numbers of times our model wrongly predicts negative

values as positives. You predicted a negative value, and it is actually positive.

From this table, several measures can be derived to assess the performance of the

classifier with different evaluation objectives, as shown in Table 2.

Metrics Formula

Accuracy

(ac)

𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛

Sensitivity

(se)

𝑡𝑝

𝑡𝑝 + 𝑓𝑛

 Predicted: NO Predicted: YES

Actual: NO TN FP

Actual: YES FN TP

27

Specificity

(SP)

𝑡𝑛

𝑡𝑛 + 𝑓𝑝

Error Rate

(err)

𝑓𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛

Precision

(p)

𝑡𝑝

𝑡𝑝 + 𝑓𝑝

Recall

(r)

𝑡𝑝

𝑡𝑝 + 𝑡𝑛

F-Measure

(FM)

2 ∗
𝑝 ∗ 𝑟

𝑝 + 𝑟

Table 2- Evaluation metrics for Classification [18]

5.2. Bias

The term bias refers to the statistical bias. In general terms, the bias of an

estimator ˆβ is the difference between its expected value E[ˆβ] and the true value

of a parameter β being estimated, we compute the prediction bias as the difference

between the expected prediction accuracy of a model and its true prediction

accuracy[23].

5.3. Variance

The variance is a measure of the variability of a model’s predictions if we

repeat the learning process multiple times with small fluctuations in the training

set. The more sensitive the model-building process is towards these fluctuations,

the higher the variance.

5.4. Overfit and Underfit

A key balancing act in machine learning is choosing an appropriate level of

model complexity, if the model is too complex, it will fit the data used to construct

the model very well but generalize poorly to unseen data there for the term Overfit.

28

If the complexity is too low the model won't capture all the information in the data

there for the term underfitting. since a complex model exhibits large variance while

an overly simple one is strongly biased[24]. Most general-purpose methods feature

hyperparameters to control this trade-off.

Part 2: Deep learning

 In this part, we discuss Deep Learning approaches to Natural Language

Processing and Audio Signal Processing and focus on models such as the

Transformer which is the backbone of our proposed approach, and its usage in

sequence-to-sequence modelling.

1. Introduction

Since 2012, deep neural networks have revolutionized machine learning. Although

relatively old, this technique has made very significant progress in recent years,

especially for the recognition of texts, sounds, images and videos. Understand the

issues of these methods raises questions at the interface between mathematics and

algorithms.

 In this part, we will explain the structure of these networks as well as the key

concepts of their learning.

2. Neural network

 An artificial neural network is built around a biological metaphor. We know

relatively well the structure of the primary visual cortex. Thus, in an extremely

simplified view of the functioning of the brain, neurons are organized in layers, each

neuron retrieves information from a previous layer, performs a very simple calculation,

and communicates its result to neurons in the next layer.

Figure 8 details an example of such an artificial network. This type of neuron

was introduced in 1943 by McCulloch and Pitts[26].

29

Figure 8: Neuron Anatomy

The transition from one layer to another is done through a set of artificial

neurons. A neuron layers are represented in figure 9.

Figure 9: Neural network layers

The transition from one layer to another is done through a set of

artificial neurons wish is represented in figure 10.

Figure 10: Artificial Neurons[27]

30

It's the first neuron, the one that calculates the first value that composes the

layer. This neuron connects a number of elements from the first layer to a single

element from the second[28]. The formula calculated by the neuron is:

𝑦1 = max(𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑤3 ∗ 𝑥3 + 𝑤4,0)

 The neuron thus performs a weighted sum of the three inputs, with three

weights w1, w2, w3, and we also add w4, which is a bias. Then the neuron calculates

the maximum between this sum and zero. We can also use another activation function

than the maximum function[28].

 Thus, if the weighted sum w1x1 + w2x2 + w3x3 + w4 is less than 0, then the

neuron returns the value y1 = 0, otherwise it returns the value of this sum and places

it in u1. Several activation functions can be considered in the classification task. Table

3 shows the most commonly used activation functions.

Activation Function Formula

Sigmoid 𝜑(𝑥) =
1

1 + 𝑒−𝑥

Hyperbolic tangent 𝜑(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1

SoftMax 𝜑(𝑥)
𝑒𝑥𝑖

∑ 𝑗𝑒𝑥𝑗

Rectified Linear Unit 𝜑(𝑥) = max(0, 𝑥)

Table 3- Activation fonctions for classification[28]

2.1. Neural network layer

 A neural network is made up of neurons that are organized in layers. There are

three types of layers: an input layer, an output layer, and a hidden layer. In most

cases, there will be multiple hidden layers in a neural network[28]. The neurons in

the input layer receive the input objects. When a neuron is activated, it activates

the neurons in the next layer. Every neuron in one layer passes an output to the

neurons in the next layer. This output is defined by two factors: weight and bias.

31

 The weight defines how important a particular input is to the next neuron, and

it also directs the flow of values from input to output. In the figure 10, the black

arrows represent weights. On the other hand, bias is an added constant value that

defines how easy it is for a neuron to get fired.

2.2. Forward and backward propagation

 The process of sending data from one layer to the next is called propagation.

There are two types of propagation: forward propagation and backward

propagation. In forward propagation the data moves from input to hidden layer to

output. It ends in a prediction based on the input, which can be accurate or

inaccurate. In backward propagation, a prediction from the output layer is back-

tracked from the output to the input layer, which shows the error rate. This is then

used to modify the weights and biases of each neuron, giving the neurons with a

higher error rate and greater adjustment[29]. It is important to constantly readjust

the weights to minimize errors and gain higher accuracy.

 The key is to get started quickly and then adjust weights to optimize for more

accurate outputs. adjusting the weight at the end of each batch (known as learning

rate optimization), and also change how much influence the errors from the

previous batches have on the current one (which is called the momentum). In

addition, it’s possible to use algorithms to tune the neural networks, including

gradient descent or stochastic gradient descent, as well as, Adam. More about these

algorithms later in the chapter.

3. Optimization algorithms

 Gradient descent is one of the most popular algorithms to perform optimization

and by far the most common way to optimize neural networks. At the same time, every

state-of-the-art deep learning library contains implementations of various algorithms

to optimize gradient descent[30].

32

3.1. Dropout

 One frequently used method of optimizing neural networks is called dropout.

This reduces the problem of over-fitting, where statistical noise enters a neural

network that is too large for a small data set[31].

 Dropout works by randomly dropping out certain outputs from a layer, which

makes the previous layer look like it has fewer neurons. This reduces noise and

improves the accuracy of the neural network. The exact amount of dropout you

need will vary based on the dataset and the architecture of the neural network.

Figure 11: Dropout exemple

3.2. Adam

 Adaptive Moment Estimation Adam is another method that computes adaptive

learning rates for each parameter. In addition to storing an exponentially decaying

average of past squared gradients Adam also keeps an exponentially decaying

average of past gradients. We compute the decaying averages of past and past

squared gradients[32].

3.3. Learning rate scheduling

 Learning rate schedules seek to adjust the learning rate during training by

reducing the learning rate according to a pre-defined schedule. Common learning

rate schedules include time-based decay, step decay and exponential decay[33].

33

 So far, we focused on optimization algorithms for how to update the weight

vectors rather than on the rate at which they are being updated. Nonetheless,

adjusting the learning rate is often just as important as the actual algorithm. There

are a number of aspects to consider:

• Most obviously the magnitude of the learning rate matters. If it is too large,

optimization diverges, if it is too small, it takes too long to train or we end

up with a suboptimal result.

• Secondly, the rate of decay is just as important. If the learning rate remains

large, we may simply end up bouncing around the minimum and thus not

reach optimality.

• Lastly it is equally important is initialization. This pertains both to how the

parameters are set initially and also how they evolve initially.

4. Neural networks architectures

4.1. Recurrent neural networks

 Deep learning models are built on the idea of neural networks, and this is what

allows the models to learn from raw data where information is propagated forward.

However, this ‘feed-forward’ type of model is not always applicable, and their

fundamental architecture makes it difficult to apply them to sequential problem[2].

Figure 12: Search Engine

The figure 12 shows an example of sequential task where the most appropriate next

word depends on the words which came before it.

 The best way to overcome this problem is to have an entirely new network

structure, one that can update information over time. This is a Recurrent Neural

34

Network. This is similar to a perceptron in that over time, information is being forward

through the system by a set of inputs, x, and each input has a weight, w. Each

corresponding input and weight are then multiplied, and the sum of products is

calculated. The sum then passes through a non-linear activation function, and an

output, y, is generated as shown in the figure 13.

Figure 13: Recurrent Cell Architecture

 The difference in this architecture is that, in addition to the output, the network

is also generating an internal state update, U. This update is then used when analyzing

the next set of input information and provides a different output that is also dependent

on the previous information. This is ideal because information persists throughout the

network over time. As the name suggests, this update function is essentially a

recurrence relation that happens at every step of the sequential process, where u is a

function of the previous u and the current input, x.

 The RNN as a set of singular feed-forward models, where each model is linked

together by the internal state update as shown in the figure 14. At each step of the

sequence, there is an input, a process being performed on that input, and a related

output. For the next step of the sequence, the step before must have some influence

does not affect the input but affects the related output[36].

35

Figure 14: Different time steps of RNN[37]

 As demonstrated in the figure 14 we input one example at a time and produce

one result, both of which are single words. The difference with a feedforward network

comes in the fact that we also need to be informed about the previous input words

before evaluating the result[36].

 Since plain text cannot be used in a neural network, we need to encode the

words into vectors. The best approach is to use word embeddings word2vec or Glove

for this examples we will go for the one-hot encoded vectors. These are (V,1) vectors

V is the number of words in our vocabulary where all the values are 0, except the one

at the 𝑖𝑡ℎ position[36].

 Typically, the vocabulary contains all English words. That is why it is

necessary to use word embeddings. This is the equations needed for training:

ℎ𝑡 = 𝑓(𝑤ℎℎℎ𝑡−1 + 𝑤ℎ𝑥𝑥𝑡)

• ℎ𝑡 holds information about the previous words in the sequenceℎ𝑡 is calculated

using the previous ℎ𝑡−1 vector and current word vector𝑥𝑡 . We also apply a

non-linear activation function f to the final summation.

𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑠ℎ𝑡)

• 𝑦𝑡calculates the predicted word vector at a given time step t. We use

the SoftMax to produce a (V,1) vector with all elements summing up to 1. This

probability distribution gives us the index of the most likely next word from

the vocabulary.

https://www.tensorflow.org/tutorials/word2vec
https://nlp.stanford.edu/projects/glove/

36

𝑗𝑡 =∑(𝑦𝑡𝑖′𝑙𝑜𝑔𝑦𝑡𝑖)

|𝑣|

𝑖=1

• 𝑗𝑡uses the cross-entropy loss function at each time step t to calculate the error

between the predicted and actual word.

• 𝑤𝑥 represent the weights of the network at a certain stage.

 The weights are initialized with random elements, adjusted using the error from

the loss function. We do this adjusting using back-propagation algorithm which

updates the weights. Once we have obtained the correct weights, predicting the next

word in the sentence is quite straightforward, this figure 15 represents a summary of

what we just explain:

Figure 15: RNN model [36]

4.2. Gated Recurrent Units

GRUs are improved version of standard recurrent neural network. They were

introduced to solve the vanishing gradient problem of a standard RNN, GRU uses

update gate and reset gate. Basically, these are two vectors which decide what

information should be passed to the output. they can be trained to keep information

from long ago, without washing it through time or remove information which is

irrelevant to the prediction[38].

https://www.youtube.com/watch?v=tRsSi_sqXjI

37

a. Gated Hidden State

 The key distinction between vanilla RNNs and GRUs is that the latter support

gating of the hidden state. This means that we have dedicated mechanisms for when a

hidden state should be updated and also when it should be reset. For instance, if the

first token is of great importance, we will learn not to update the hidden state after the

first observation. Likewise, we will learn to skip irrelevant temporary observations.

Last, we will learn to reset the latent state whenever needed. We discuss this in detail

below.

b. Reset Gate and Update Gate

The first thing we need to introduce are the reset gate and the update gate, a

reset gate would allow to control how much of the previous state we might still want

to remember. Likewise, an update gate would allow to control how much of the new

state is just a copy of the old state.

 Figure 16 illustrates the inputs for both the reset and update gates in a GRU,

given the input of the current time step and the hidden state of the previous time step.

The outputs of two gates are given by two fully-connected layers with a sigmoid

activation function.

Figure 16: Reset Gate and Update Gate[39]

38

 Mathematically, for a given time step t, the input is a minibatch 𝑥𝑡 and the

hidden state of the previous time step is ℎ𝑡−1.Then, the reset gate 𝑅𝑡 and update

gate 𝑈𝑡 are computed as follows:

𝑅𝑡 = 𝜃(𝑥𝑡𝑊𝑥 + ℎ𝑡−1𝑊ℎ + 𝑏)

𝑈𝑡 = 𝜃(𝑥𝑡𝑊𝑥 + ℎ𝑡−1𝑊ℎ + 𝑏)

Where 𝑊𝑥 are weight parameters and b are bias.

c. Hidden State

 Hidden states are a new memory content which will be used in the reset gate

to store the relevant information from the past. It is calculated as follows:

1. Multiply the input 𝑥𝑡 with a weight W and ℎ𝑡−1 with a weight U.

2. Calculate the product between the reset gate 𝑅𝑡 and 𝑈ℎ𝑡−1 .That determines what to

remove from the previous time steps.

3. If vector close to 0 the past input is deleted and only focus on the last entered input.

And if the vector is close to 1, the old state is retained.

4. Sum up the results of step 1 and 2.

5. Apply the nonlinear activation function tanh.

𝐻𝑡′ = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑡 + 𝑅𝑡 ∗ 𝑈ℎ𝑡−1)

d. Final memory at current time step

 As the last step, the network needs to calculate 𝐻𝑡 vector which holds

information for the current unit and passes it down to the network. In order to do that

the update gate is needed. It determines what to collect from the current memory

content 𝐻𝑡′ and from the previous steps 𝐻𝑡−1. That is done as follows:

𝐻𝑡 = 𝑈𝑡 ∗ 𝐻𝑡−1 + (1 − 𝑈𝑡) ∗ 𝐻𝑡′

1. Apply element-wise multiplication to the update gate 𝑈𝑡and 𝐻𝑡−1.

2. Apply element-wise multiplication to (1-z_t) and𝐻𝑡′.

3. Sum the results from step 1 and 2.

39

 The model can learn to set the vector 𝑈𝑡 close to 1 and keep a majority of the

previous information. Since 𝑈𝑡 will be close to 1 at this time step, 1 − 𝑈𝑡 will be close

to 0 which will ignore big portion of the current content.

Here is a figure 17 which explains where and at what time step the above equations

happen:

Figure 17: GRU model[40]

 This is how GRUs are able to store and filter the information using their update

and reset gates. That eliminates the vanishing gradient problem since the model is not

washing out the new input every single time but keeps the relevant information and

passes it down to the next time steps of the network.

5. Encoder-Decoder

 In audio Captioning Encoder decoder models allow for a process in which a

machine learning model generates a sentence describing an audio. It receives the audio

as the input and outputs a sequence of words describing this audio. It is a major

problem for sequenced-data based models, whose input and output are both variable-

length sequences. To handle this type of inputs and outputs, we can design an

architecture with two major components[41].

 The first component is an encoder: it takes a variable-length sequence as the

input and transforms it into a state with a fixed shape.

 The second component is a decoder: it maps the encoded state of a fixed shape

to a variable-length sequence.

40

This is called an encoder-decoder architecture, which is depicted in the figure 18

Figure 18: The encoder-decoder architecture

5.1. Encoder

 Encoding means to convert data into a required format. For example, we

convert an audio into a two-dimensional vector, this two-dimensional vector[42]. For

this example, the encoder is built by stacking GRUs. We use this type of layers

because its structure allows the model to understand context and temporal

dependencies of the sequences. The output of the encoder, the hidden state, is the state

of the last GRU timestep. The output of the encoder, a two-dimensional vector that

encapsulates the whole meaning of the input sequence[41]. The length of the vector

depends on the number of cells in the GRU as demonstrated in the figure 19.

Figure 19: Encoder architecture

41

5.2. Decoder

 To decode means to convert a coded message into intelligible language. In the

machine learning model, the role of the decoder will be to convert the two-dimensional

vector into the output sequence, the English sentence[43]. It is built with RNN layers

and a dense layer to predict the English word as demonstrated in the figure 20.

Figure 20: Decoder architecture

 In the end, the encoder-decoder architecture contains both an encoder and a

decoder, with optionally extra arguments. In the forward propagation, the output of the

encoder is used to produce the encoded state, and this state will be further used by the

decoder as one of its inputs. One of the major advantages of this model is that the

length of the input and output sequences may differ[43]. The major limit of this simple

encoder decoder model is that all the information needs to be summarized in one

dimensional vector, for long input sequences that can be extremely difficult to achieve.

6. Transformer

 The game-changing part for sequencer data was developed when a new

architecture was introduced called Transformers and which was 1rst time shown in an

article that based on a concept called Attention Is Everything. The document Attention

is all you need [44] presents an architecture called Transformers. Transformers is an

architecture for turning a sequence into an antidote while helping two other parts,

namely encoders and decoders, but it differs from the sequence described earlier in

RNN or GRUs. It therefore does not implement recurrent neural networks[44].

42

 The recurrent neural network was so far one of the best ways to capture the

small dependency on a sequence. However, the team presenting this paper titled

specified above proves that the architecture with only an attention mechanism does not

use RNN can improve its results in the task of translation and other NLP tasks. In

transformers both encoder and decoder are made up of modules that can talk to each

other multiple times.

 First, we have to encode our inputs. A small but important part of this model

is the position and coding of different inputs. Since we don't have a recurrent neural

network that can remember how sequence is fed into the model, we have to somehow

give each input or part of a sequence a relative position since a sequence depends on

the order of elements[44]. These positions are added to the embedded representation

of each word. The figure 21 below represents the detailed architecture of transformer

model[44].

Figure 21: Transformer architecture [44]

43

6.1. Deferent transformers models

 These are some of the most language models based on the transformer’s

architecture illustrated in the table 4.

Table 4- lagunage model exemple

6.2. Transformer Architecture

 The Transformer architecture inherited the Encoder-Decoder pattern. The

encoding part contains 6 encoders mounted one after the other. The decoding part

consists of 6 decoders also mounted one after the other but each taking, as an

additional input, the output of the 6th encoder[44].

language

models
Description

GPT3

(Open-AI)

 The most controversial pre-trained models, by Open-AI, the large-scale

transformer-based language model was trained on 175 billion

parameters, which is 10 times more -sparse language model. The model

was trained to perform well on many NLP datasets.

language

models
Description

BERT

(Google)

 These are the bi-directional encoder representations of Transformers.

Is a pre-trained NLP model, which is developed by Google in 2018.

BERT has been pre-trained on 250 million Wikipedia words and 800

million book corpus words. anyone working with BERT can train their

own module with up to 30 minutes.

ELMO

(Alan LP)

 ELMO is also known as integration for the language model is a deep

contextualized word representation that model’s syntax and semantic

words, as well as logistical context. The model has been pre-trained on

a huge corpus of text and learns functions from bidirectional models.

44

 The input of one encoder is the output of the previous one. The input of the

first encoder is embedding vector. Also, the input of a decoder is the output of the

previous decoder plus the words already encoded as shown in the figure 1-23. The

last decoder is connected to a Linear neural network and a SoftMax block. The role

of this block is to make it possible to identify which words of the vocabulary

correspond to the outputs of the last encoder[44]. The elementary blocks of the

Transformer are the encoders and the decoders.

 Let's take a closer look at these two elements, the figure 22 shows how

transformer architecture is built.

Figure 22: Transformer Architecture [45]

 The encoder consists of two blocks which are both neural networks: A Self-

attention layer and a forward propagation network or Feed-forward Neural

Network as demonstrated in the figure 23. The Self-Attention layer is the central

element of the Transformer architecture. Its role is to maintain the interdependence

of words in the representation of sequences. We will see the attention mechanism

45

in more detail below. The decoder is also composed of a Self-attention block and

a Feed-forward but it also contains an Encoder-Decoder Attention layer which

aims to allow the decoder to implement the attention mechanism between the input

sequence encoded and output sequence being decoded.

6.3. The Attention mechanism

 The concept of attention is to measure how closely two elements of two

sequences are related. In a sequence-to-sequence context in NLP, the aim of the

attention mechanism will be to tell the rest of the model which words of sequence

B should be paid the most attention to when processing a word of sequence A.

 In the figure 23 we show an example, the clearer a cell the stronger the link

between the two words to which it corresponds. we see that, a word has a strong

link with its literal translation [44].

Figure 23: Distribution of attention between two sequences[46]

46

6.4. Self-attention

 Self-attention is the mechanism of attention applied to a single sequence. The

self-attention layer determines the interdependence of the different words of the

same sequence in order to associate a relevant representation encoding with it.

 The self-attention process will therefore aim to detect the link between two

words in the same sentence[44].

6.5. Multi-head attention

 Multi-head Attention is intended to have multiple representation subspaces that

prevent the representation from being fully biased if one (head) layer of attention

is. The self-attention vector in multi-head is nothing but the concatenation of the

output vectors of each head[44]. The Transformer was clearly a revolution when it

was released in that it was both very efficient as a translation model and much

faster to train compared to its predecessors. But especially by the influence he has

on the NLP through the pre-trained models.

7. Conclusion

 This chapter was split between two parts in each part we presented some

definitions and some frequently used methods.

 Details of the first part was that we represented what are the basic machine

learning definitions and tasks, we also dive into some evaluation models and

parameters.

 Second part was about deep learning we presented the basic architecture of a

neuron network then we dive deeper to some NN based models that are frequently

used in deep learning and we ended this part with introduction to transformers and

their attention mechanism.

 In the next chapter expect to see more about data pre-processing in specific the

deferent tools and methods the handle both types of the data that we need in our work

audio and text.

47

Chapter 2: Audio processing / Text

processing

Introduction

 In this Chapter, we introduce a few fundamental concepts behind audio signal

processing and text processing that will be required to perform our work.

Part 1: Audio processing

1. Introduction

 Sound is one of our primary means of perceiving the world around us. It is

essential to communicate with our environment and our peers. It can also be a vehicle

for artistic expression and experience, for example music. Our thesis includes sound

as a component.

2. Sound wave

 Sound is frequently defined as either an auditory sensation or a disturbance in

a medium that produces an auditory sensation. Sound is a physical phenomenon that

describes waves that originate in one location and travel through a medium to another

location where they can be heard or measured[48].

 A sound wave is a pressure vibration caused by the movement of energy

traveling through a medium e.g., air as it propagates away from its source. As sound

passes through the air, the air particles move left and right due to the energy of the

sound wave passing through it. It's the vibrating air molecules that cause the human

eardrum to vibrate, which the brain then interprets as sound. Air molecules do not

travel from the noise source to the ear[47]. Each individual molecule only moves a

small distance as it vibrates, which causes the adjacent molecules to vibrate in a

rippling effect all the way to the ear as shown in the figure 24.

48

Figure 24: Longitudinal sound wave showing compression and rarefaction of air

particles

 Compression happens in the region in a longitudinal wave where the particles

are closest together. Rarefaction is a region in a longitudinal wave where the particles

are furthest apart. Sound waves are longitudinal and should not be confused

with transverse waves. Most waves are transverse, including light and the ripples we

see on water.

 Transverse waves vibrate at 90 degrees to the direction of the wave. In contrast,

longitudinal waves have vibrations along the same axis as the direction in which the

wave is traveling [48] .this figure 25 below shows how a transverse wave looks.

Figure 25: A simple sine wave, shown as a transverse wave

3. Wave form

 A waveform is a graphical representation of a sound wave as it moves through

a medium over time. A waveform is a two-dimensional representation of a sound. The

two dimensions in a waveform display are time and intensity[47].

 Waveforms are also known as time domain representations of sound as they

are representations of changes in intensity over time. The intensity dimension actually

displays sound pressure. Sound pressure is a measure of the tiny variations in air

pressure that we are able to perceive as sound. The greater the change in pressure, the

louder the sound that we hear as demonstrated in the figure 26.

49

Figure 26: Waveform diagram showing the wavelength and amplitude of a soundwave

 Any waveform has four fundamental characteristics: Wavelength, Amplitude,

Frequency, Velocity.

3.1. Wavelength

 The wavelength of a wave is the length in meters from the start to the end of

one full cycle of the waveform from crest to crest.

3.2. Amplitude

 The amplitude is the maximum displacement of a wave from the centerline to

the peak, not from peak to peak. The greater the distance from the centerline of a

waveform the more intense the pressure variation will be within a medium, hence

the louder it is perceived.

Amplitude is measured in two ways:

• Zero to peak value which measures the maximum positive or negative signal

level

• RMS value measures a more meaningful average level, like that at which

humans can hear.

3.3. Frequency

 Frequency is how many complete waves there are per second passing a certain

point. The frequency indicates the rate of pressure variations or cycles per second of a

wave. Frequency is measured in Hertz[49]. The frequency of a sound determines

the pitch, the sensation of how low or how high a sound is. Lower frequency sound

50

waves have longer wavelengths and lower pitch. Higher frequency sound waves have

shorter wavelengths and a higher pitch as demonstrated in the next figure 27.

Figure 27: Low-frequency wave in comparison to a high-frequency wave

 The frequency range in which humans can hear is 20Hz to 20,000Hz and is

called the audible range. The formula for frequency is:

𝑓=1⁄ 𝑡

• where: 𝑓 represents the frequency in Hertz and 𝑡 represents the period in

seconds. So, for our bell striking example, for a period of 0.0023𝑠:

𝑓= 1/𝑡=1/0.0023=434.7 𝐻𝑧.

 The frequency of the sound generated by striking a bell is about 435 Hz.

3.4. Velocity

 The velocity is the speed and direction of a soundwave. Soundwaves travel at

different speeds through different mediums. Through the air, sound travels at 344

meters per second. Generally speaking, the denser the medium the faster sound travels

through it[50]. To find the velocity of a wave the following equation is used:

Velocity (V) = Frequency (f) x Wavelength (λ)

4. Sound envelope

 The envelope of a sound displays how the level of a sound wave changes over

time. The envelope of a wave helps establish the sound’s unique individual quality; it

has a significant influence on how we interpret sound[48].

5. Audio signal Representation

 waveforms make up the basic ingredients of sound; sine wave, square wave,

triangle wave, and sawtooth wave.

51

5.1 Sine wave

 A sine wave is the simplest of all waveforms and contains only a single

fundamental frequency and no harmonics or overtones as shown in the figure 28.

 It is the fundamental frequency that determines the pitch of a sound. Virtually

all musical sounds have waves that are more complex than a sine wave. It is the

addition of harmonics and overtones to a wave that makes it possible to distinguish

between different sounds and instruments.

Figure 28: Visual representation of a sine wave

6. Phases of an audio signal

 Sound waves occur in cycles, they proceed through repetitions. Phase is

defined as how far along a waveform is in its current cycle the deferent wave phases

are defined in the figure 29. The starting point of a wave is 0 degrees, the peak of a

wave is 90 degrees, the next neutral pressure point is 180 degrees, the peak low-

pressure zone is 270 degrees, and the pressure rises to zero again at 360 degrees.

Figure 29: Graph representing the different phases of a wave

52

7. Digital audio processing

This Part is about the different steps for audio signal processing, we will define

sampling and quantization and explain how they work. This thesis revolves around

audio signal processing, which is the theory and methods of processing audio signals.

Audio signals are simply audible audio signals, while a signal is something that is

measured in time[53]. In this context, that thing is pressure, because what we perceive

with our ear’s changes with pressure. We may wish to manipulate audio signals for

technical purposes, such as creating music, or we may wish to compress audio or music

signals. Before we start processing audio, we must first understand the nature of audio

signals.

7.1. Audio signal pre-processing

 If needed, the audio data is pre-processed. The role of this step is to enhance

certain characteristics of the signal for further analysis. This is achieved by

reducing the effects of noise or by emphasizing the target sounds in the signal.

 Knowledge about the recording conditions and characteristics of target sounds

can be utilized in the pre-processing stage to enhance the signal. In the case where

the audio data is captured in non-uniform recording settings, down-mixing the

audio signal into a fixed number of channels along with re-sampling it into fixed

sampling frequency will result in converting the input data into a uniform format

for further analysis. After the pre-processing phase, the audio data is now

appropriate to be used in the feature extraction phase.

7.2. Digital audio signal

 As previously stated, sound can refer to either an auditory sensation in the air

or a disturbance in a medium that causes such a sensation. As a physical

phenomenon, sound can be understood as vibration, or the movement of molecules

that causes pressure changes in a medium. These air vibrations can then be

measured using a microphone, where changing pressure causes a diaphragm to

move. A voice coil and a magnet convert this movement into a voltage signal. So,

we now understand how a signal transforms from the movement of molecules in a

53

gas to an electrical signal. A microphone's voltage signal is a continuous signal,

which means it can take on a value, just like pressure at a point in space.

Furthermore, even if the range is limited, it can take on an infinite number of

different values at any given time[53].

 A computer can only store a limited number of numbers, and those numbers

can only have a limited number of values. As a result, we must transition from

measuring an infinite number of time values that can take on an endless number of

different values to that. To put it another way, we must convert analog signals to

digital signals. An ADC is a device or chip that converts analog signals to digital

signals through sampling and quantization. A DAC, on the other hand, reconstructs

digital signals into analog ones. Figure 30 depicts an example of an audio

processing system.

Figure 30: Audio processing system[54]

 Vibrations in the air are converted from a pressure signal to an electrical signal

by the microphone. The analog signal from the microphone is converted into a digital

signal by the ADC, and then the digital signal can be processed by the computer. The

processed digital signal can then be converted into an analog signal by a DAC, and

finally, it can be converted back into a compression signal by an active amplifier.

7.3. Sampling

 Samples are created by recording an analog signal at evenly spaced points in

time. Sampling is the process of recording an analog signal at regular discrete moments

of time. The sampling rate f s represents the number of samples taken per second[55].

54

The sampling interval:

T s=1/fs

 Is the time interval between samples. Although any sampling frequency above

40 kHz would be sufficient to capture the entire range of audible frequencies, 44,100

Hz (or 44.1 kHz) is a widely used sampling rate. When sampling at higher rates, more

samples are generated, resulting in a much higher demand for memory to store the

samples.

7.4. How is sound sampled and stored in digital form?

 To do this, sound is captured usually by a microphone and then converted into

a digital signal. An ADC converter will capture a sound wave at regular time intervals.

This recording is known as a sample. This data is then stored in a file for later use.

7.5. Signal sampling

 When a computer records digital audio, it measures the sound pressure level

multiple times per second. These measurements are often called samples. Being

digital, the samples are quantized that is, they can only take on certain discrete values

as compared to the continuous range of possible values in the actual analog sound

wave. Commonly, the samples can take on the integer values between -32768 and

+32767 the range of numbers representable with 16 bits with positive values

representing the sound pressure level being above the ambient atmospheric pressure

and negative values representing the sound pressure level being below the ambient

atmospheric pressure[55].

 We could plot the samples on a graph represented in the figure 0-3. The X axis

would represent time and the Y axis the sound pressure level (the value of the sample).

In the graph below, the distance between adjacent peaks represents 100 samples with

a sampling rate of 44,100 Hz. Thus, the sound has a fundamental frequency of 441 Hz

(44,100 / 100 = 441). Listening to it would sound like the A above middle C which

has a fundamental frequency of 440 Hz0

55

Figure 31: Time and sound pressure plot

 The sound wave shown above in the figure 40 looks somewhat like a square

wave. If you compare it to a 441 Hz pure tone shown below in the figure 32, it is

obvious that it is not a pure sinusoid and not a pure tone.

Figure 32:Time and sound pressure plot

7.6. Audio signal quantization

 The digitization of a sampled signal with continuous amplitude is called

quantization. A quantizer is a signal processing block, that maps a continuous

amplitude to a discrete amplitude. The output of the quantizer is discrete, meaning that

it can only output Q different values[53]. Practically, the quantizer is an ADC, since it

56

maps the continuous input amplitude to a digital representation of this value. Formally,

the quantized output Q[x] of some input value x, is given by:

𝑄[𝑥] = argmin 1 ∈ |1 − 𝑥|

 In order for a signal to be suitable for treatment by numerical circuitry, it must

first be represented in a numerical format, or quantized. That is, a continuous range of

values is replaced by a limited set of values separated by discrete steps. Usually, the

number of steps is chosen to be a power of two, for the reason that it yields the most

economical representation in binary digital electronics. Naturally, the quality of the

approximation depends on the number of steps used to approximate the original signal.

7.7. The Fourier transforms

 The Fourier transform converts a set of time-domain data to frequency-

domain data and vice versa. It means that it can be used to take samples and

determine the sinusoids that could be used to create the samples. This is known

as a Fourier analysis. The Fourier transform can also be used to reverse the

process, taking the sinusoids and recreating the samples[56]. This is known as

Fourier synthesis. When you perform a Fourier analysis on the samples in the

first graph, you get the following results in figure 33.

Figure 33: The Fourier Transforms Plot

 Looking at the results of the Fourier analysis tells us that there are four

frequencies present in the sound wave shown in the table 5:

57

Frequency Amplitude

441 Hz 1

1323 Hz = 3 X 441 Hz 1/3

2205 Hz = 5 * 441 Hz 1/5

3087 Hz = 7 * 441 Hz 1/7

Table 5- frequencies present in the sound wave

It is important to note that we will be translating the audio from the time domain

to the frequency domain by using this transformation. Here are some key differences

between the two:

1. The time-domain examines the amplitude variation of the signal over time.

This is useful for comprehending its physical form. We'll need time on the x-

axis and amplitude on the y-axis to plot this. The shape helps us predict how

loud or quiet the sound will be.

2. The frequency domain examines the constituent signals in our recording. This

allows us to find a fingerprint of the sound. We need frequency on the x-axis

and magnitude on the y-axis to plot this. The greater the magnitude, the more

significant the frequency. The magnitude is simply the absolute value of our

FFT results.

7.8 The Short-Time Fourier Transform

 The Fourier transform tells us how much of each frequency is present in a

signal. If the spectral content of the signal does not change significantly over time.

However, if the signal changes over time, the Fourier transform will be unable to

distinguish between the various spectral content changes[56].

The STFT attempts to address the classic Fourier transform's lack of time resolution.

The input data is divided into many small sequential pieces called frames, and the

Fourier transform is applied sequentially to each of these frames. The result is a time-

dependent representation that shows how the spectrum changes as the signal

progresses.

58

As a result, at the frame boundaries, there is frequently a discontinuity or break in the

signal. This introduces spectral components into the transform that were not present in

the original signal, which is known as spectral leakage. The solution is to apply a

windowing function to the frame, which gently scales the signal's amplitude to zero at

each end, reducing discontinuity at frame boundaries. When these windowing

functions are applied to a signal, some information near the frame boundaries is clearly

lost. As a result, overlapping the frames is a further improvement to the STFT[56].

Information that is lost at a frame boundary is picked up between the boundaries of the

next frame when each part of the signal is analyzed in more than one frame.

8. Feature Extraction

 Most real-world data, and in particular sound data, is very large and contains

much redundancy, and important features are lost in the cacophony of unreduced

data. The data reduction stage is often called feature extraction, and consists of

discovering a few important facts about each data item. The features that are

extracted from each case are the same, so that they can be compared.

8.1 The amplitude envelope

 AE aims to extract the maximum amplitude within each frame and

string them all together. It is important to remember that the amplitude

represents the volume of the signal.

 First, we split up the signal into its constituent windows and find the

maximum amplitude within each window. From there, we plot the maximum

amplitude in each window along time[57]. We can use the AE for onset

detection, or the detection of the beginning of a sound. In various speech

processing applications this could be someone speaking or external noise,

whereas in Music Information Retrieval this could be the beginning of a note

or instrument. The main downfall of the AE is that is not as robust to outliers

RMSE which will we see next in this chapter. Here is how we can formalize

this concept:

59

9. Spectrogram

 A spectrogram is a detailed view of audio, able to represent time, frequency,

and amplitude all on one graph [60] .Sound spectrum is a representation of a sound

usually a short sample of a sound around 10 to 30s of length in terms of the amount

of vibration at each individual frequency. It is usually presented as a graph of either

power or pressure as a function of frequency. A spectrogram is built from a

sequence of spectra by stacking them together. The final graph has time along the

horizontal axis, frequency along the vertical axis, and the amplitude of the signal

at any given time and frequency.

9.1. Mel scale

The Mel Scale is a logarithmic transformation of a signal’s frequency. The core

idea of this transformation is that sounds of equal distance on the Mel Scale are

perceived to be of equal distance to humans[61]. For example, most human beings

can easily tell the difference between a 100 Hz and 200 Hz sound. However, it is

actually much harder for humans to be able to differentiate between higher

frequencies, and easier for lower frequencies.

9.2. Mel spectrograms

 Mel Spectrograms are spectrograms that visualize sounds on the Mel scale as

opposed to the frequency domain. We can see in the next figure 34 how each sound

takes a unique shape based off of the sound it actually produces[62].

Figure 34: Mel Spectrograms Plot

60

Part 2: Text Processing

1. Introduction

 In this part, five levels of representations for texts are defined. will provide

background information on NLP and descriptions on the different levels of language

processing an NLP system can employ. NLP is a subfield of Artificial Intelligence

which tries to accomplish human-like language processing of naturally occurring texts

by computer systems.

 Humans utilize different levels of processes in order to understand language.

Similarly, NLP applications utilize different levels of language processing to achieve

their goals.

2. Natural language

 A natural language does not define a language in the strict sense of the term,

but it is the natural way of expressing humans, unlike binary and the languages used

in programming. It is the language of emails, descriptions, chat...

 NL is a symbolic system that is embodied externally as voice and consists of

vocabulary and grammar. The biggest difference between natural and artificial

languages lies in ambiguity.

 NLP is a technology that uses computers as tools to perform various processing

on human specific written and verbal natural language information. NLP is a branch

discipline in the fields of AI. It studies various theories and methods for effective

communication between human beings and computers using natural languages[64].

 NLP needs to develop models that express language capability and language

application, establish a computing framework to implement such language models,

propose corresponding methods to continuously improve the models, design various

practical systems based on the models, and explore evaluation technologies of these

systems.

 NLP combines computational linguistics rule-based modeling of human

language with statistical, machine learning, and deep learning models. Together, these

technologies enable computers to process human language in the form of text or voice

data and to understand its full meaning,

61

3. Natural language processing tasks

 NLP is used to understand the structure and meaning of human language by

analyzing different aspects like syntax, semantics, pragmatics, and morphology. Then,

computer science transforms this linguistic knowledge into rule-based, machine

learning algorithms that can solve specific problems and perform desired tasks[64].

 Human language is filled with ambiguities that make it incredibly difficult to

write software that accurately determines the intended meaning of text or voice

data[65].

 Several NLP tasks break down human text and voice data in ways that help the

computer make sense of what it's ingesting. Some of these tasks include the following:

1. Speech recognition, also called speech-to-text, is the task of reliably converting

voice data into text data

2. Part of speech tagging, also called grammatical tagging, is the process of

determining the part of speech of a particular word or piece of text based on its

use and context.

3. Word sense disambiguation is the selection of the meaning of a word with

multiple meanings through a process of semantic analysis that determine the

word that makes the most sense in the given context.

4. Natural language generation is sometimes described as the opposite of speech

recognition or speech-to-text; it's the task of putting structured information into

human language.

4. Challenges of natural language processing

 There are a number of challenges of natural language processing and most of

them boil down to the fact that natural language is ever evolving and always somewhat

ambiguous[65]. They include:

1. Precision. Computers traditionally require humans to speak to them in a

programming language that is precise, unambiguous and highly structured or

through a limited number of clearly enunciated voice commands. Human

speech, however, is not always precise; it is often ambiguous and the linguistic

structure can depend on many complex variables, including slang, regional

dialects and social context.

62

2. Tone of voice and inflection. Other difficulties include the fact that the abstract

use of language is typically tricky for programs to understand

3. Evolving use of language. Natural language processing is also challenged by

the fact that language and the way people use it is continually changing.

5. Text preprocessing

 There are different ways to preprocess text. Here are some of the approaches

that are widely used.

5.1. Lowercasing

Lowercasing ALL your text data, is one of the simplest and most effective form

of text preprocessing[66]. Here is an example of how lowercasing solves the

sparsity issue, where the same words with different cases map to the same

lowercase form. Showed in this table 6.

Raw Lowercased

Canada

CanadA

CANADA

canada

Raw Lowercased

TOMCAT

Tomcat

tomcat

tomcat

Table 6- Lowe casing Example

5.2. Stemming

 Stemming is the process of reducing inflection in words to their root

form. Stemming uses a crude heuristic process that chops off the ends of words

in the hope of correctly transforming words into its root form. There are

different algorithms for stemming[66]. The most common algorithm, which is

also known to be empirically effective for English, is Porters Algorithm. Here

is an example of stemming in action shown in the table 7.

63

 Original Word Stemmed Words

0 Connect Connect

1 Connected Connect

2 Connection Connect

3 Connections Connect

4 Connects Connect

0 Trouble Trouble

1 Troubled Trouble

2 Troubles Trouble

Table 7- Porters Algorithme Example

5.3. Lemmatization

 Lemmatization on the surface is very similar to stemming, where the goal is to

remove inflections and map a word to its root form. The only difference is that,

lemmatization tries to do it the proper way. It may use a dictionary such as

WordNet for mappings[67].

5.4. Stop word Removal

 Stop words are a set of commonly used words in a language. Examples of stop

words in English are “a”, “the”, “is”, “are” and etc. The intuition behind using stop

words is that, by removing low information words from text, we can focus on the

important words instead[68]. Here is an example of stop word removal in table 8.

Original Sentence = this is a text full of content and we need to clean it up

Sentence with stop words removed = w w w text full w content w w w w clean w w

Table 8- Text Stop word removal example

5.5. Normalization

 Text normalization is the process of transforming a text into a standard form.

For example, the word “cats” and “cuts” can be transformed to “cat”[66]. Here’s

an example of words before and after normalization in this next table 9.

64

Raw Normalized

2morow

2moro

2mrw

tomrw

tomorrow

b4 before

Table 9- Text Normalization Example

5.6. Tokenization

 Is the first step in any NLP pipeline. A tokenizer breaks unstructured data and

NL text into chunks of information that can be considered as discrete elements.

 The token occurrences in a document can be used directly as a vector representing

that document[66]. Tokenization can separate sentences, words, characters, or sub

words. When the text is split into sentences, it is called sentence tokenization.

Figure 35: Example of sentence tokenization

 For words, it is called word tokenization.

Figure 36:Example of word tokenization

6. Different word representations

6.1. Word Embedding

 It is an approach for representing words. Word Embedding or Word Vector is

a numeric vector input that represents a word in a lower-dimensional space. It

allows words with similar meaning to have a similar representation. They can also

approximate meaning. A word vector with 300 values can represent 300 unique

features[69].

65

6.1.1. One-Hot Encoding

 One hot encoding means converting words of a document in a V-dimension

vector and by combining all this we get a single document so at the end we have a two-

dimensional array. This technique is very simple[70].

6.1.2. Bag Of Words

 Bag of words is a little bit similar to one-hot encoding where we enter each

word as a binary value and in a Bag of words, we keep a single row and entry the count

of words in a document. So, we create a vocabulary and for a single document, we

enter one entry of which words occur how many times in a document[71].

6.1.3. Word2Vec

 Word2Vec creates vectors of the words that are distributed numerical

representations of word features these word features could comprise of words

that represent the context of the individual words present in our

vocabulary[72].

 As seen in the figure below 37 where word embeddings are plotted, similar

meaning words are closer in space, indicating their semantic similarity.

Figure 37:example of embeddings in a graph[73]

 Two different model architectures that can be used by Word2Vec to create the

word embeddings are the Continuous Bag of Words (CBOW) model and the Skip-

Gram model both explain below.

66

6.1.4. CBOW

 Even though Word2Vec is an unsupervised model where you can give a corpus

without any label information and the model can create dense word embeddings,

Word2Vec internally leverages a supervised classification model to get these

embeddings from the corpus. The CBOW architecture comprises a deep learning

classification model in which we take in context words as input, X, and try to predict

our target word, Y.

6.1.5. Skip-gram

 In the skip-gram model, given a target word, the context words are predicted

since the skip-gram model has to predict multiple words from a single given word, we

feed the model pairs of (X, Y) where X is our input and Y is our label. This is done by

creating positive input samples and negative input samples. Positive Input Samples

will have the training data in this form: [(target, context)1] where the target is the target

or center word, context represents the surrounding context words, and label 1 indicates

if it is a relevant pair. Negative Input Samples will have the training data in the same

form: [(target, random),0]. In this case, instead of the actual surrounding words,

randomly selected words are fed in along with the target words with a label of 0

indicating that it’s an irrelevant pair. These samples make the model aware of the

contextually relevant words and consequently generate similar embeddings for similar

meaning words. This figure 38 shows the deference between CBOW and Skip-gram:

Figure 38: CBOW and Skip-gram examples[74]

67

7. Word processing with BERT

 BERT is a model which is quite bidirectional. Bidirectional indicates that

during the training phase, BERT learns information from both the left and right sides

of a token’s context. A model’s bidirectionality is essential for completely

comprehending the meaning of a language.

 In order to pre-train deep bidirectional representations from unlabeled text, the

system uses context conditioning on both the left and right sides of the sentence. As a

result, the pre-trained BERT model could also be fine-tuned by adding only one more

output layer to produce cutting-edge models for a wide range of NLP tasks[75]. To

learn the contextual relationships between words in a text, BERT uses Transformer, a

mechanism of attention explained in part 2 of chapter 1.

 The transformer implementation has two mechanisms: an encoder that receives

a text input and a decoder that predicts the task. Only the encoder mechanism is

required because the purpose of BERT is to build a language model. The Transformer

encoder reads the entire sequence of words at a time, unlike directional versions that

read the text entry sequentially. It is classified as bidirectional as a result of this, while

the real term is non-directional. This feature allows the model to learn the context of a

word according to its environment this next figure 39 shows an example of this

functionality [75].

Figure 39:BERT example[76]

68

 During the BERT training process, pairs of sentences are provided as input into

the model, and learn how to predict whether or not the second sentence in the pair is

the next sentence in the original document. Half of the inputs during training are pairs

where the second sentence is the next sentence in the original document while the other

half is a random sentence from the group. During training, as described above, the

[CLS] code is inserted at the beginning of the first sentence and the [SEP] code is

presented at the end of each sentence, with each code containing the insertion sentence

indicating the sentence A or sentence B[77].

 Finally, topical embedding is customized for each distinctive code that

corresponds to its place in the sequence. Before introducing word sequences into

BERT, a part of each sequence is replaced by a [MASK] token. The model then

attempts to predict the original value of the masked words using the context provided

by the other unmasked sentences in the sequence. This is followed by multiplying the

encoder output vectors by the integration matrix, transforming them into a vocabulary

dimension and calculating the probability of each word of the vocabulary using

SoftMax all of this is well represented in the figure 40 [77].

Figure 40: Pre training BERT Example [78]

69

8. Conclusion

 This chapter is split between two parts in the first part we represented audio

signal in every form and some of the tools to extracted features from digital audio data.

 Second part was about text processing and the deferent methods of feature

extraction we ended this part we the most resent developed text processing method

wish is BERT.

 In the next chapter we will be defining the model we used and the deferent

architectures we developed as well as some experiments.

70

Chapter 3: Proposed approach

1. Introduction

 Automated audio captioning (AAC) is an intermodal translation task, where

the system receives as an input an audio signal and outputs a textual description of the

contents of the audio signal. In this chapter we will show an example of related works

for the AAC task as well as our proposed architecture, we will be presenting two

model. First model with one-hot-encoding as text feature, second model with sentence

BERT as text feature.

 Finally, we will show the details of how to two models work and represent each

audio and text features that is used in both models.

2. Global architecture

 In the past years this field has received increasing attention due to freely

available datasets released and being held as a task in DCASE Challenges in 2020 and

2021 A number of papers have been published and the encoder-decoder framework

has been adopted as a standard recipe for solving this translation task.

 Encoder and decoder are the two components that make up our model. To

thoroughly illustrate the reasoning behind the model. Encoder Decoder architecture is

sequence-to-sequence model. a sequence-to-sequence model aims to map a fixed-

length input with a fixed-length output where the length of the input and output may

differ[41].

 In the figure 41 we gave an example of AAC system basic architecture, more

details will be provided later in the chapter.

71

Figure 41: Example of Automated Captioning System [2]

3. Related works

 Throw-out our research we have look into deferent architectures that were

proposed for the automated audio captioning task, in the past 3 years the most

frequently used architecture in DCASE Challenges 2020 and 2021 is an encoder

decoder architecture that used an encoder part for encoding the audio and a decoding

part for decoding text. The encoder decoder architectures have proven good results for

AAC task, this next table 10 represents four deferent encoder decoder architecture that

we have researched each using deferent methods to best solve the audio captioning

problem.

 Encoder

Neuron

network

Decoder

Neuron

Network

Audio

Feature

Text Feature Loss

function

Learning

set-up

First

Model

CNN RNN Log-Mel-

Energies

Numeric

representation

Cross-

entropy

Adam

72

 Encoder

Neuron

network

Decoder

Neuron

Network

Audio

Feature

Text Feature Loss

function

Learning

set-up

Second

Model

LSTM RNN Log-Mel-

Energies

Embedding Cross-

entropy

Adam

Third

Model

CNN LSTM Log-Mel-

Energies

Embedding Cross-

entropy

Adam

Forth

Model

RNN Transformer Log-Mel-

Energies

One-hot-

Encoding

Cross-

entropy

Adam

Table 10- Related Works Table

 In all these architectures we noticed that the most used architectures are RNNs

and CNNs, they all seem to use the same audio feature which is Log-Mel-Energies but

deferent text features wish tells us to experiment more with the text features instead of

changing the audio features, later in this chapter we will be representing our two

deferent features that we experimented with as our text features.

 Because the AAC problem is a sequence-to-sequence problem we chose to

experiment with two different model both using recurrent neuron network as encoders

and decoder architecture both models will be explained later in the chapter.

4. Our proposed models

 In this section we present the models architecture that we use in our

experiments. The proposed method for the AAC task is a transformer model, which is

based on the traditional sequence-to-sequence architecture. The model takes the log-

Mel-spectrogram of an audio clip as input and outputs the probabilities of the predicted

words.

 For our 1rst model in order to train such a model with limited resources we

experiment with 3 layered GRU as the encoder as represented in the next figure where

(e) is the feature vector and (w) is the word. Our deep neural network method in the

baseline model is a sequence-to-sequence system, consisting of an encoder and a

decoder. The encoder takes as an input 64 log Mel-band energies, consists of three bi-

directional RNN layers, and outputs the summary of the input sequence of features.

Each GRU of the encoder has 256 output features.

73

 The input sequence to the encoder has different length from the targeted output

sequence. For that reason, there has to be some kind of alignment between these two

sequences. Our system does not employ any alignment mechanism. Instead, the

encoder outputs the summary vector of the input sequence, and this summary vector

is then repeated as an input to the decoder. The decoder consists of two RNN layers it

accepts the output of the encoder, and outputs a probability for each of the unique

words. The decoder iterates for 22-time, which is the length of the longer caption, this

figure 42 shows how it all works.

Figure 42: Illustration of encoder decoder AAC architecture[79]

 The model we present here is trained to implement the following mapping

where A is an audio clip and c is a caption:

𝑓: 𝑨 →c

It is composed of an encoder with parameters θe and a decoder with parameters θd and

it models the conditional probability distribution:

𝑝𝜗𝑒𝜗𝑑(𝐜|𝐀)

The encoder part encodes the input sequence of patches P1: k to a new sequence X1:

n, thus defining the mapping:

f: P1: k → X1: k

74

where X1:h are the audio features. The audio features function as compressed

representation of the input audio. This next figure 43 illustrates Our proposed encoder-

decoder architecture.

Figure 43: First model encoder decoder architecture

 For our 2nd model, we used the same architecture represented in the figure 52

with the exception of changing the word embedding to sentence embedding

specifically S-BERT. This time the model takes the same encoder decoder architecture

but change the input of the decoder to a 384-dimensional vector, this proved a bit

difficult to train and obtain good evaluation result. This next figure 44 represents the

above explained model.

75

Figure 44: Second model with the use of S-BERT

5. Pre-processing

 As mention in the previewed section the dataset contains 4982 audio samples,

15 to 30 seconds long, collected from the Freedsound platform. Each sample is

annotated by human annotators with five different captions, 8 to 20 words in length,

summing up to a total of 24905 captions in the whole dataset. There are three splits

available: development (14465 captions, 2893 audios), evaluation (5225 captions,

1045 audios), and testing (5215 captions, 1025 audios), where only the development

and evaluation splits are public and freely available[3].

 For the audios, F = 64 log Mel-band energies are extracted using Hamming

window of 1024 sampled-long window (around 23ms) with 50% overlap, resulting to

1292 ≤ Ta ≤ 2584 feature vectors. For simplicity, no further pre-processing steps or

data augmentation techniques are employed in this process. For captions processing,

<SOS> (start-of-sentence) and <EOS> (end-of-sentence) tokens are appended at the

start and end positions of the captions. The captions are then tokenized -mapped to a

pre-built dictionary to from word vectors. Specifically, the dictionary associates each

unique word in the development split to a unique number, in which all words are

treated equally without any specific set of rules. Since the words are uniformly

76

distributed, there are no exclusive words in development or evaluation splits. For batch

processing, all word vectors are concatenated into Y ∈ RB×L, where B is the batch

size, and L is the length of the longest caption in the batch and left-pad other shorter

sentences with < SOS > tokens.

6. Encoder part

6.1. Audio encoding

 Analyzing the content of an audio clip largely depends on obtaining an

effective feature representation for it, which is the aim of the encoder in an AAC

system. Current popular approaches for acoustic encoding consist of two steps. In our

model we first extract acoustic features, and then passing them into an encoder to

obtain compact audio features.

6.2. Audio features

 Time-frequency representations, such as spectrograms, are widely used as the

acoustic features. The spectrogram is a 2-D representation whose horizontal axis is

time and vertical axis is frequency, the value at each point of the spectrogram

represents the energy at a specific time and frequency.

6.3. RNNs

 RNNs are designed to process sequential data with variable lengths. Audio is

a time series signal, therefore RNNs initial works adopted RNN’s. In a simple recipe,

a RNN is used to model temporal relationships between acoustic features, and the

hidden states of the last layer of the RNN is regarded as the audio feature sequence[36].

6.4. Audio pre-processing

 Some audios are get recorded at a different rate-like 44KHz or 22KHz. Using

LIBROSA, we can turn it into whatever form we would like and then as showed in the

figure 45.

77

Figure 45: waveform pre-processing example

 We can see the data in a normalized pattern. Now, our task is to extract some

important information, and keep our data in the form of independent (and dependent

features. We will use Mel spectrogram to extract independent features from audio

signals. the audio data is pre-processed to enhance certain characteristics of the signal

for analysis. This is achieved by reducing the effects of noise or by emphasizing the

target sounds in the signal[55].

 Clotho data are WAV and CSV files. In order to be used in our model, we had

to extract features from the audio clips (WAV files) and the captions in the CSV files

have to be turned to a more computational form. Finally, the extracted features and

processed words, have to be matched and used as input-output pairs for optimizing the

parameters of an audio captioning method. That where we chose to use Mel

spectrogram as an input to our audio encoding method.

6.5. MEL-SPECTOGRAM

 Deep learning models rarely take raw audio directly as input. In our work we

converted the audio into a spectrogram. The spectrogram is a snapshot of an audio

wave and since it can be translated to a sequence, it is well suited to being input to

RNN-based architectures developed for handling sequenced data. Spectrograms are

generated from sound signals using Fourier Transforms. A Fourier Transform

decomposes the signal into its constituent frequencies and displays the amplitude of

each frequency present in the signal.

 A Spectrogram chops up the duration of the sound signal into smaller time

segments and then applies the Fourier Transform to each segment, to determine the

78

frequencies contained in that segment. It then combines the Fourier Transforms for all

those segments into a single plot.

 It plots Frequency (y-axis) vs Time (x-axis) and uses different colors to indicate

the Amplitude of each frequency. The brighter the color the higher the energy of the

signal[60].

 A Mel Spectrogram makes two important changes relative to a regular

Spectrogram that it plots Frequency vs Time. It uses the Mel Scale instead of

Frequency on the y-axis. For deep learning models, we usually use this rather than a

simple Spectrogram.

 This figure 46 below shows an example of our Spectrogram using the Mel

Scale then using frequency.

Figure 46: Example of a simple spectrogram and a male spectrogram

7. Decoder Part

7.1. Text decoding

 The aim of the language decoder is to generate caption-given audio features

from the encoder. All existing work we are aware of adopts an auto-regressive model,

where each predicted word is conditioned on previous predictions. In addition to the

main decoder block, there is often a word embedding layer before the main decoder

block, which embeds each input word into a fixed-dimension vector. In this section,

79

we first introduce popular word embeddings and then discuss main text decoding

approaches.

7.2. Word Embeddings

 In natural language processing, word embedding is a term used for the

representation of words for text analysis, typically in the form of a real-valued vector

that encodes the meaning of the word such that the words that are closer in the vector

space are expected to be similar in meaning. This next figure 47 shows an example of

how word embedding works when we introduce a full sentence as an input and how it

extracts vectors from it.

Figure 47: Word embedding example

 Pre-trained word embeddings are trained using neural networks with a large

corpus and could capture semantic information, that is, semantically similar words are

close to each other in the embedding. Word2Vec GLOVE are widely used in existing

audio captioning works. In our model we have chosen to use two deferent methods for

text embedding to be used in our model.

7.3. One hot vector

 The machine cannot understand words and therefore it needs numerical values

so as to make it easier for the machine to process the data. To apply any type of

algorithm to the data, we need to convert the categorical data to numbers. To achieve

this, one hot ending is one way as it converts categorical variables to binary vectors.

Suppose we have a sentence we want to get the one hot encoding vector for this, we

80

convert the text to lower case and then sort the words in ascending form A-Z. Now

we’ll have an alphabetically organized array filled with our words then we give each

word a numerical label as we can see in the table 11 below.

Apple Chicken Broccoli Calories

1 0 0 95

0 1 0 231

0 0 1 50

Table 11- One hot vector example

 This is not the most optimal method that can be used there is another method

with Bert word embedding that gives a better representation of each word and the

embedding of that word.

7.4. Sentence embedding

 To have better results in our models we have also changed the text decoding

part by switching from Word embedding to full sentence embedding. Word

embeddings are in fact a class of techniques where individual words are represented

as real-valued vectors in a predefined vector space. Each word is mapped to one vector

and the vector values are learned in a way that resembles a neural network.

Figure 48:sentence embedding example

81

 From this figure 48 we can see that similar to regular word embeddings,

sentence embeddings embed a full sentence into a vector space.

7.5. Sentence BERT

 S-BERT is a pre-trained transformer network, which set for various NLP tasks,

including question answering, sentence classification, and sentence-pair regression. To

derive sentence embeddings from BERT we pass single sentences through BERT and

then derive a fixed sized vector by either averaging the outputs similarly to word

embeddings or by using the output of the special CLS. Sentence embeddings are a

well-studied area with dozens of proposed methods trains an encoder-decoder

architecture to predict the surrounding sentences. In our work we have used sentence-

transformers MiniLM-L6-v2 model. This is a sentence transform model, it maps

sentences & paragraphs to a 384-dimensional dense vector space and can be used for

tasks like AAC. This figure 49 illustrates an example of how SBERT works.

Figure 49: S-BERT sentence transformer example

 BERT maps sentence to a vector space that is rather unsuitable to be used with

common similarity measures like cosine-similarity. To overcome this shortcoming, we

presented Sentence-BERT fine-tunes BERT in a triplet network architecture. where it

could achieve a significant improvement over Word embeddings methods.

8. Conclusion

 In this chapter, we presented the experimental models for the AAC TASK. At

the beginning, we made a presentation of the global encoder decoder architecture and

82

then we show in detail how it works. Subsequently, we presented the inputs and

outputs used in our experiments and the models we used.

 We have presented the different steps necessary for extracting both the audio

features and the text features that we have used and also showed the deferent methods

that we have chosen to use in our model for pre-processing both type data audio and

text. The Details of how transformers and Bert works are provided in a separate section

in chapter 3. Our approach proves its interest by providing good solutions in a fairly

reasonable time.

83

Chapter 4: Achievement
1. Introduction

 This chapter presents the setup defined to conduct our experiments. In chapter

3 we present our approach method for the AAC task. Next, in chapter 4, we lay out the

numerous tools that we have used in the development of our systems. we describe our

implemented AAC system and present the features used to train the system as well as

the model topology, we represent the deferent evaluation tools used to evaluate our

models. Finally, we explain the procedure that we have followed in order to analyses

and discuss our results we obtained and also, we compare our results. This chapter also

describes the supported development tools and the programming language used. We

end this chapter with a conclusion.

2. Used Tools

 Deep learning research relies on exhaustive datasets and heavy computations

during training which is generally time-consuming and resource-hungry. Thus, the use

of parallel computing is necessary given that it considerably accelerates the training

process[80]. For this purpose, Graphics Processing Units GPU is considered to be the

leading parallel computing device used to conduct deep learning experiments. A GPU

is an integrated single-chip processor, consisting of a highly parallel structure designed

to perform extensive graphical and mathematical computations[81]. The structure of

GPUs allows parallel computing through thousands of threads at a time hence giving

this category of hardware the upper hand in deep learning executions[82].

 However, the use of such hardware resources can be not only costly in terms

of purchase and maintenance, but also risky if events such as over utilization or

equipment depreciation occur, making the deep learning project very cost effective.

 That is why we have chosen to use COLAB which is a product from Google

Research. COLAB allows anybody to write and execute arbitrary python code through

the browser, and is especially well suited to machine learning[82].

84

3. Development Software

 In this part, we will present the development tools that we used for the

realization of our platform for AAC.

Python: Python is a general-purpose, interactive, object-oriented, high-level

interpreted programming language. It was created by programmer 'Guido van Rossum'

in 1991. Python's elegant syntax and dynamic typing, along with its interpreted nature,

make Python an ideal language for rapid application development in many fields.

Python is a free language placed under the PSFL license Python Software Foundation

License, which can be used in many contexts and can be adapted to any type of use

thanks to specialized libraries[83].

IDE PYCHARM: PyCharm is a dedicated Python integrated development

environment IDE that provides a wide range of essential tools for Python developers,

tightly integrated to create a convenient environment for productive Python, web, and

data science development. It offers intelligent code entry, code inspections, error

highlighting, and quick fixes[84].

QT Designer: Qt Designer is Qt's tool for designing and building GUI graphical

user interfaces with Qt Widgets. You can compose and customize your windows or

dialogs, and test them using different styles and resolutions. Widgets and forms created

with Qt Designer integrate seamlessly with programmed code, using Qt's signals and

slots mechanism, so you can easily assign behavior to graphical elements. All

properties defined in Qt Designer can be changed dynamically in code. Additionally,

features like widget promotion and custom plugins allow you to use your own

components with Qt Designer[85].

Google Drive Storage: Regarding the storage of our data, we have chosen Google

Drive. It is an online storage, synchronization and sharing service that offers 15GB of

free space, and several packages for different storage spaces. This way, the dataset is

easier to access and load in the chosen runtime environment which is Google

Collaboratory for this we chose to porches the 5 £ package which we have been paying

85

for the last 7 months since the start of our project this offers us 200 gigabytes of storage

to work with the only problem, we have faced is that we need to keep buying this

package every month or all our data would be lost.

Google Collaboratory: Google Collab or is a cloud service, offered by Google,

based on JUPYTER Notebook and intended for training and research in machine

learning[86]. This platform makes it possible to train Machine Learning models

directly in the cloud. Without therefore needing to install anything on our computer

except a browser. The free package provides fully configured runtime for deep

learning using Python and free access to Tensor Processing Unit (TPU); which offers

up to 35 GB of RAM and 107 GB of disk space, and a TESLA k80 GPU. We have

made use of the provided TPU to perform audio feature extraction taking into account

that this process is costly in terms of RAM, while we have performed training of our

models using the provided GPU[87][88]. After testing with the free collab we

discovered that the amount off ram and space offered was not effective that’s why we

chose to update that further robust resources by upgrading to a professional version of

Google Collaboratory. This upgrade guarantees priority access to highly powerful

GPUs such as Tesla T4 and Tesla P100 and provides additional disk space and RAM

capacity this cost 10 £ for every month (7 months), which we have been purchasing

each time we wanted to test the model or do another evaluation.

Utility Libraries: Another bright spot for Google Collaboratory is the availability

of all the necessary python libraries used for audio processing and deep learning

experiments[88]. These libraries do not require any installation or configuration. The

following are a few of the most relevant libraries that we have used in our work.

LIBROSA: LIBROSA is a Python package for audio and music signal analysis and

processing[89]. It provides implementations of a variety of common functions that fall

into four categories that are audio and time-series operations, spectrogram calculation,

time and frequency conversion, and pitch operations. These functions are heavily used

throughout our experiments.

PYTORCH: PYTORCH is an open-source library developed by Facebook that

performs instantaneous dynamic tensor computations with automatic differentiation

86

and GPU acceleration, while maintaining performance comparable to the fastest

modern libraries for deep learning[90].

Sentence Transformers: Sentence Transformers is a Python framework for state-

of-the-art sentence, text and image embeddings. The initial work is described in

chapter 3 Sentence-BERT Sentence Embeddings using Siamese BERT-Networks. this

framework can be used to compute sentences or text embeddings for more than 100

languages.

 In addition to the above mentioned deep learning libraries we have made use

of the NUMPY library to perform manipulation operations on our data, the

MATPLOTLIB library for plotting and graphical representations, the PICKLE module

for serialization of python objects for storing purposes and the PYTHON package to

store our trained models for testing. Table 12 provides additional information about

the libraries we have used in our work.

UTILITY LIBRARY VERSION

PYTHON 3.9

LIBROSA 0.7.1

LOGURU 0.3.2

PYYAML 5.4.0

PYTORCH 1.3.1

MATPLOTLIB 2.0.2

NUMPY 1.17.4

PICKLE 5 0.0.12

Table 12- Utility libraries used for deep learning

87

4. Data acquisition procedure

4.1. Audio Dataset for Audio Captioning

 Clotho is a freely available audio captioning dataset, is an extension of the

original Clotho dataset v1 and consists of audio samples of 15 to 30 seconds duration,

each audio sample having five captions of eight to 20 words length. There is a total of

6974 (4981 from version 1 and 1993 from v2) audio samples in Clotho, with 34 870

captions (6974 audio samples * 5 captions per each sample). All audio samples are

from the Free sound platform, and captions are crowdsourced using Amazon

Mechanical Turk and annotators from English speaking countries. Unique words,

named entities, and speech transcription are removed with post-processing[3].

 Clotho v2 has a total of around 4500 words and is divided in four splits:

development, validation, evaluation, and testing. Audio samples are publicly available

for all four splits, but captions are publicly available only for the development,

validation, and evaluation splits. There are no overlapping audio samples between the

four different splits and there is no word that appears in the evaluation, validation, or

testing splits, and not appearing in the development split. Also, there is no word that

appears in the development split and not appearing at least in one of the other three

splits. All words appear proportionally between splits (the word distribution is kept

similar across splits) 55% in the development, 15% in the and validation, 15% in the

evaluation, and 15% in the testing split.

4.2. Audio samples in Clotho

 They have durations ranging from 10s to 300s, no spelling errors in the first

sentence of the description on Free sound, good quality (44.1kHz and 16-bit), and no

tags on Free sound indicating sound effects, music or speech. Before extraction, all

12k files were normalized and the preceding and trailing silences were trimmed. The

content of audio samples in Clotho greatly varies, ranging from ambiance in a

forest (animal sounds, and crowd yelling to machines and engines

operating or revving[3].

 In the following figure 50 is the distribution of the duration of audio files in

Clotho and similar distribution is expected in Clotho v2.

88

Figure 50:Audio duration distribution for Clotho dataset

4.3. Captions in Clotho

 The captions in the Clotho dataset range from 8 to 20 words in length, and were

gathered by a three-step framework. The three steps are:

a. Audio description,

b. Description Editing,

c. Description scoring.

 In step 1, five initial captions were gathered for each audio clip from distinct

annotators. In step 2, these initial captions were edited to fix grammatical errors.

Grammatically correct captions were instead rephrased, in order to acquire diverse

captions for the same audio clip. In step 3, the initial and edited captions were scored

based on accuracy how well the caption describes the audio clip. The initial and edited

captions were scored by three distinct annotators. The scores were then summed

together and the captions were sorted by the total accuracy score first, total fluency

score second. The top five captions, after sorting, were selected as the final captions

of the audio clip[3].

 Then manually sanitized the final captions of the dataset by removing

apostrophes, making compound words consistent, removing phrases describing the

content of speech, and replacing named entities. We used in-house annotators to

89

replace transcribed speech in the captions. If the resulting caption were under 8 words,

we attempt to find captions in the lower-scored captions. The same in-house annotators

were used to also replace unique words that only appeared in the captions of one audio

clip. Since audio clips are not shared between splits, if there are words that appear only

in the captions of one audio clip, then these words will appear only in one split.

 In the next section we have a better representation of how the data was split.

4.4. Data splits of Clotho dataset

 Clotho was divided into a development split of 2893 audio clips with 14465

captions, an evaluation split of 1045 audio clips with 5225 captions, and a testing split

of 1043 audio clips with 5215 captions. These splits are created by first constructing

the sets of unique words of the captions of each audio clip. These sets of words are

combined to form the bag of words of the whole dataset, from which we can derive

the frequency of a given word. With the unique words of audio files as classes.

Clotho.v2.1

├─clotho_captions_development.csv

├─clotho_captions_validation.csv

├─clotho_captions_evaluation.csv

├─development

│ └─... (3839 wavs)

├─validation

│ └─... (1045 wavs)

└─evaluation

└─... (1045 wavs)

Table 13- Clotho data split

Table 13 shows how the Clotho data set was split to be used in our ACC task.

5. Evaluation Metrics

 In this section, we present the standard evaluation metrics used to evaluate the

quality of captions generated by AAC models. Many of these metrics were introduced

and are also used to evaluate other tasks such as Machine Translation, Summarization,

and Image Captioning.

 The proposed method was evaluated according to the following metrics used

in the machine translation and image captioning fields. These metrics were calculated

90

for 10 different training and testing runs for each run, the parameters of the neural

network were re-initialized according to the initialization functions and the neural

network was re-trained on the training split. Caption evaluation is performed using the

tools provided by the organizer of this challenge. This table14 sum up the metrics used.

Metrics What’s measuring

BLEUN Measures a modified n-gram precision.

ROUGEL Measures a score based on the longest

common subsequence.

METEOR Measures a harmonic mean of weighted

unigram precision and recall.

CIDER measures a weighted cosine similarity of n-

grams.

SPICE Measures the F-score of semantic

propositions extracted from caption and

reference.

SPIDER Measures the arithmetic mean between the

SPICE score and the CIDER score.

Table 14-metrics used in the evaluation of the model

BLEU: BLEU (Bilingual Evaluation Understudy) is an algorithm for

evaluating the quality of text in many NLP tasks and was originally used to evaluate

machine translation [91]. BLEU uses a modified form of precision to compare a

candidate text against multiple reference texts. The metric calculates the precision for

n-grams. To calculate precision, the matching words in the actual sentence and the

predicted sentence are calculated. BLEU does not consider the context of the word in

the sentence. The metric range is between [0,1]. If the actual sentence and the predicted

sentence are totally the same, then the score is 1. BLEU-1 (B-1) represents 1-gram,

whereas BLEU-4 (B-4) represents 4-grams.

91

METEOR: METEOR [92] unlike BLEU incorporates both precision and

recall in the evaluation score. The algorithm has two stages. First given a ground truth

and a predicted sentence METEOR creates an alignment between them i.e., a mapping

between unigrams, such that every unigram in each string maps to zero or one unigram

in the other string. If there are two alignments with the same number of mappings, the

alignment is chosen with the fewest crosses, that is, with fewer intersections of two

mappings. Then METEOR calculates unigram recall and unigram precision together

and takes a harmonic mean score. Finally, the harmonic mean score is multiplied with

a penalty calculated as follows: The first fewest possible number of chunks is

calculated such that the unigrams in each chunk are in adjacent positions in the system

translation, and are also mapped to unigrams that are in adjacent positions in the

reference translation. The penalty is then computed by the following.

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 0.5 ×
#𝑐ℎ𝑢𝑛𝑘𝑠

#𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠_𝑚𝑎𝑡𝑐ℎ𝑒𝑑

The penalty increases as the number of chunks increases to a maximum of 0.5.

As the number of chunks goes to 1, penalty decreases, and its lower bound is decided

by the number of unigrams matched. Finally, the METEOR Score for the given

alignment is computed as follows:

𝑆𝑐𝑜𝑟𝑒 = 𝐹𝑚𝑒𝑎𝑛 × (1 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦)

ROUGEL: ROUGE-L measures the longest common subsequence (LCS)

between the ground truth and reference sentence. The idea is that a longer shared

sequence would indicate more similarity between the two sequences. Then recall and

precision calculations are applied as follows:

𝑅𝐿𝐶𝑆 =
𝐿𝐶𝑆(𝑋, 𝑌)

𝑚

𝑃𝐿𝐶𝑆 =
𝐿𝐶𝑆(𝑋, 𝑌)

𝑛

Where m is the length of the reference sentence and n is the length of the ground truth

sentence. Then finally ROUGEL is calculated as:

𝐹𝑅𝑂𝑈𝐺𝐸𝑙 =
(1 + 𝑏2)𝑅𝐿𝐶𝑆𝑃𝐿𝐶𝑆
𝑅𝐿𝐶𝑆 + 𝑏2𝑃𝐿𝐶𝑆

92

Where b = PLCS/RLCS. ROUGE-L is 1 when the sentences are the same, while

ROUGE-L is zero when LCS (X, Y) = 0, i.e., there is no common sub-sequence in the

sentences.

CIDER: Consensus-based Image Description Evaluation (CIDER) is a new

paradigm for the evaluation of image captions that are based on human consensus [93].

It aims to capture sentence similarity, grammatically, importance, saliency and

accuracy. To evaluate how well a generated caption ci matches the consensus of a set

of captions Si = si1, ..., sim, all words are first mapped to their stem forms and each

caption is represented using the set of n-grams ωk, that are present in it. Then, a Term

Frequency Inverse Document Frequency (TF-IDF) weighting is performed for each n-

gram to encode how often n-grams in the generated caption are present in the reference

ones, and how often n-grams not present in the reference captions are not in the

generated captions. Additionally, frequent n-grams are given low weight. The TF-IDF

gk(sij) for each n-gram ωk is:

𝑔𝑘(𝑠𝑖,𝑗) =
ℎ𝑘(𝑠𝑦)

Σ𝜔𝜖Ωℎ𝑙(𝑠𝑦)
log(

|𝑆|

Σ𝑆𝑝𝜖𝑆min(1, Σ𝑞ℎ𝑘(𝑆𝑞𝑝))
)

where ℎ𝑘 (c) is the frequency that an n-gram k occurs in the caption c, Ω is the

vocabulary of n-grams and S is the set of all samples. The 𝐶𝐼𝐷𝐸𝑟𝑛 score for n-length

n-grams is the average cosine similarity between the generated caption and the

reference captions and is given by:

𝐶𝐼𝐷𝐸𝑟𝑛(𝑐𝑖. 𝑆𝑖) =
1

𝑚
∑

𝐠𝑛(𝑐𝑖). 𝐠𝑛(𝑆𝑦)

||𝐠𝑛(𝑐𝑖)||||𝐠𝑛(𝑆𝑦)||
𝑗

where 𝐠𝑛 (ci) is a vector with elements gk(ci) that correspond to all n-length

n-grams. The final CIDER score combines the scores of variable length n-grams as

follows:

𝐶𝐼𝐷𝐸𝑟𝑛(𝑐𝑖, 𝑆𝑖) = ∑𝑤𝑛𝐶𝐼𝐷𝐸𝑟𝑛(𝑐𝑖, 𝑆𝑖)

𝑁

𝑛=1

SPICE: All the evaluation metrics mentioned above are primarily sensitive to

n-gram overlap. However, n-gram overlap is neither necessary nor sufficient for two

93

sentences to convey the same meaning. If we take for consideration the following

example, we observe that it produces a high similarity score to all of the above metrics:

• A dog is standing on top of a chair

• A woman is standing on top of a field

These two sentences describe very different events but would get a fairly good

similarity score with the all of the above metrics due to the phrase is standing on top

of a which is common in both sentences.

Spice addresses this issue with the following procedure. At first, the generated caption

c and the reference captions S = s1, ..., sm are transformed to the scene graphs G(c)

and G(S) respectively, where G(S) is the union of scene graphs G (si) for si ∈ S. The

semantic relations in a scene graph are considered to be a conjunction of logical

propositions or tuples and the function T returns these tuples from a scene graph as:

T(G(c)) ≜ O(c) ∪ E(c) ∪ K(c)

where O(c) is the set of object mentions in c, E(c) is the set of hyper-edges that

represent relations between objects and K(c) is the set of attributes associated with

objects. The precision P, recall R and SPICE score are defined as:

𝑃(𝑐, 𝑆) =
|𝑇(𝐺(𝑐))⊗ 𝑇(𝐺(𝑆))|

|𝑇(𝐺(𝑐))|

𝑅(𝑐, 𝑆) =
|𝑇(𝐺(𝑐))⊗ 𝑇(𝐺(𝑆))|

|𝑇(𝐺(𝑆))|

𝑆𝑃𝐼𝐶𝐸(𝑐, 𝑆) = 𝐹1(𝑐, 𝑆) =
2. 𝑃(𝑐, 𝑆). 𝑅(𝑐, 𝑆)

𝑃(𝑐, 𝑆) + 𝑅(𝑐, 𝑆)

where the binary matching operator ⊗returns the matching tuples in two scene

graphs. Since SPICE is an F-score, it is easily interpretable and its range is between 0

and 1. Moreover, it can be applied equally to both small and large datasets.

SPIDER: SPIDER [94] is used as the official ranking metric in the automatic

audio captioning task in DCASE Challenge. SPIDER is the average of SPICE and

CIDER. The SPICE score ensures captions are semantically faithful to the content,

while CIDER score ensures captions are syntactically fluent.

94

6. Experiments parameters

 This section describes and discusses the experimental parameters and findings

that we have obtained during our experiments. The main goal of our case study is to

compare the performances of several AAC models, varying the mechanism for

extracting features and the hyperparameters used for learning the models.

Parameter Value

Batch size 32

Optimizer Adam

Learning Rate 10−4

Weight Decay 10−4

Epochs 300

Table 15-Training hyperparameters for all experiments

 The table 15 shows the configuration we used for the training of our models.

We manage to use a batch size 4 times the mini-batch size by performing gradient

accumulation. We use gradient witch solves the exploding gradient problem and

smoothens the gradient landscape. The learning rate is linearly increased to 10−4 in

the first five epochs using warm-up, which is then multiplied by 0.1 every 5 epochs.

In order to conduct our experiments fast and more efficiently we use early stopping

policy with a patience of 5 epochs. If spider on the validation set hasn’t been unproved

beyond a threshold τ = 0.05 in the last 5 epochs we stop training.

7. Evaluation and result

 This section describes and discusses the experimental results and findings that

we have obtained during our experiments. The main goal of our case study is to

compare the performances of our AAC systems, varying the mechanism for extracting

features and the hyperparameters used for learning the models. Most importantly,

Specifically, we have conducted our experiments on CLOTHO v2 dataset. We have

trained our systems on Log-Mel Spectrogram features.

 For evaluating these systems, we have used a version of the caption evaluation

tools used for the MS COCO challenge. This version of the code has been updated in

95

order to be compliant with Python 3.6 and above and with the needs of the automated

audio captioning task.

Furthermore, we have based our discussions on various statistical tests, our case study

consists of 2 experiments:

 Experiment 1 investigates the impact of the LOG_MEL_SPECTOGRAME as

audio feature method and it effect on the evaluation results this figure below shows

the result, we optioned for all our 6 metrics with using the pre-trained wights there for

not doing any training on the model just creating the datasets splits and running the

evaluation steps. The table 16 show the result we got from the 1rst experiment.

Metrics Score

BLEU _1 0.4141

BLEU _2 0.0714

BLEU _3 0.0171

BLEU_4 0.0000

METEOR 0.0717

ROUGE_L 0.2635

CIDER 0.0238

SPICE 0.0055

SPIDER 0.146

Table 16- pre-trained wights evaluation results

 2nd Experiment we examines the impact of the new hyperparameters and

compares several metrics of evaluation that we obtained which gave us a better score

after a 300 epoch of training wish lasted for approximately 12 hours this figure below

demonstrates the result we obtained. This next table 17 shows the best result we

obtained after several experiments of parameters changes.

Metrics Score

BLEU _1 0.3966

BLEU _2 0.1402

BLEU _3 0.0662

BLEU_4 0.0000

96

Metrics Score

METEOR 0.0821

ROUGE_L 0.2779

CIDER 0.02791

SPICE 0.0326

SPIDER 0.0559

Table 17- Post full training evaluation results

 From this Table you can notice that all metrics got approximately 20 to 55%

better result than with using the pre trained wight, all metrics got better result except

the 1rst one blue_1 wish got slightly worst result.

 For more understanding of the results we obtained, we have compared them to

previse proposed architecture that was showed in chapter 3, this next table x is a

comparison between our results and the previse architectures results.

Model CNN

+

RNN

LSTM

+

RNN

RNN

+

RNN

RNN+

TRANSFORMER

First

Model

Second

Model

BLEU1 0.614 0.641 0.655 0.610 0.3966 0.4141

BLEU2 0.446 0.479 0.476 0.461 0.1402 0.0714

BLEU3 0.317 0.335 0.344 0.334 0.0662 0.0171

BLEU4 0.219 0.236 0.231 0.237 0.0000 0.0000

ROUGE_L 0.475 0.467 0.469 0.455 0.0821 0.0717

METEOR 0.203 0.221 0.229 0.206 0.2779 0.2635

CIDER 0.593 0.660 0.693 0.629 0.02791 0.0238

SPICE 0.114 0.195 0.168 0.144 0.0326 0.0055

SPIDER 0.369 0.414 0.426 0.386 0.0559 0.146

Table 18- Comparison between the result we obtained and related works results

97

 For the results of our second model, we could not reach them because of the

big amount of data that is involved on the training process. We could not finish the

training of the model because we did not have enough hardware capabilities for such

a task, therefore we could not achieve good scores that we can discuss or compare with

related work scores.

 In order to study these results and reveal significant differences, we have first

created a desktop application that allows us to do faster experiments with our audio

test files.

 For further analysis of these results, we have compared also used google collab

pro to make sure that we are getting the best result possible from our training. Because

this model is expensive on the hardware collab pro allows us to get more Ram and a

dedicated GPU to run our code with easy access to our data throw google drive.

 This figure 51 below shows our chosen interface that we created to perform

our experiments.

Figure 51: Desktop application interface

98

 This application allows us to read any audio file slows us to play the audio, it

also shows us the original caption of the file and after this file is processed and

classified it shows us the predicted caption as shown in the figure 52 below.

Figure 52:Desktop application interface example of execution

 This next table 19 represent the results we obtained after running the test data

part of Clotho with saved model wights, we did not obtain the most optimal results

possible, but this is related to the dataset the bigger the dataset the better the results.

Test audio Caption predicted

test_0087.wav birds are chirping chirping birds birds and in

test_0940.wav a person is a a a a a a

test_0646.wav a person is walking a a a

test_0276.wav a train is and a and and a a

Table 19-Post testing results

99

 This table 17 represent the results we obtained after running the test data part

of Clotho with saved model wights, we did not obtain the most optimal results possible,

but this is related to the dataset the bigger the dataset the better the results.

 It is also related the approach we selected to conducted this AAC system. From

the result we obtained we can say that the AAC system works it gives a far description

of the audio event that the audio describes but it does not give the perfect description.

For example, if we have an audio test_0276.wav that presents a “sound of a train in a

station” the AAC system recognizes the sound of the train but not the station or the

people so it gives as a result “a train is and a and and a a “

 This result would be more coherent in the desktop application that we have

developed around our model, it takes an input an audio file from the testing part of

CLOTHO dataset and it gives a result at what the audio event is, this figure below

shows an example of an experiment we tried with audio file that has bird sound.

8. Conclusion

 In this chapter, we presented the experimental results of the AAC task. At the

beginning, we made a presentation on the development software and the programming

languages used. Subsequently, we presented the dataset used in our experiments. We

have presented the different steps necessary for the implementation of the proposed

methods.

100

Conclusion
 The main purpose of this project is to design an AAC system, where the system

accepts as an input an audio signal and outputs the textual description of that signal.

we have performed multiple experiments using a Clotho dataset. We implemented two

deferent methods to construct our model the 1rst involved around word embedding

using one-hot-encoding method witch we obtained good result with it.

 The second method we changed the word embedding and replaced with

sentence embedding specifically sentence BERT. In this method it proved rather hard

to finish the training and get a proper wight to do evaluation with the model and get

some proper result, the difficulties we faced was not having good hardware to run the

entire code, the amount of ram we have purchased with google pro collab wasn’t what

we needed to do the full training this is due to the huge amount of data that we had to

feed to the model at each epoch of the training data.

 We also used a combination of feature representations based on audio

processing techniques like Mel Spectrogram and text processing techniques used in

text decoding from word embeddings like one-hot-encoding and BERT.

 Automated audio captioning is a new and challenging task that involves

different modalities. The main goal of our work was to design an audio captioning

system Clotho dataset. The proper use of such information can considerably improve

the captioning performance. our second goal was to test the impact of various

embeddings methods and to perform a comparative study with using encoder-decoder

architectures.

 Based on the insights gained from the experimental findings in this AAC task

we have learn new neural networks architectures, we learn new concepts on the natural

league processing, audio feature handling which exited us to research more and try

new experiments.

Our approach proves its interest by providing good solutions in a fairly reasonable

time.

101

Future work

 For Future work we would like to change the decoder to a CNN based

architecture and measure the new performance of the model, integrate this model into

a new platform for example a website, we would like to improve on our results and try

new architectures that allow real time automated audio captioning.

 Over all we would like to make this model as efficient as possible and make it

less dependent on time and the type of hard ware a possible user might have, by

implementing new methods for audio and text processing.

102

REFERENCES

[1] F. Lo, F. Su, S. Chen, J. Qiu, and J. Du, “Artificial Intelligence Aided Innovation

Education Based on Multiple Intelligence,” in 2021 IEEE International Conference on

Artificial Intelligence, Robotics, and Communication (ICAIRC), 2021, pp. 12–15. doi:

10.1109/ICAIRC52191.2021.9544874.

[2] K. Drossos, S. Adavanne, and T. Virtanen, “Automated audio captioning with

recurrent neural networks,” in 2017 IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (WASPAA), 2017, pp. 374–378. doi:

10.1109/WASPAA.2017.8170058.

[3] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: an Audio Captioning Dataset,” in

ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2020, pp. 736–740. doi: 10.1109/ICASSP40776.2020.9052990.

[4] K. Capek, Rur rossum’s univ ersal robo ts. 1920.

[5] L. von Rueden et al., “Informed Machine Learning - A Taxonomy and Survey of

Integrating Prior Knowledge into Learning Systems,” IEEE Trans Knowl Data Eng, p.

1, 2021, doi: 10.1109/TKDE.2021.3079836.

[6] H. I. Bulbul and Ö. Unsal, “Comparison of Classification Techniques used in Machine

Learning as Applied on Vocational Guidance Data,” in 2011 10th International

Conference on Machine Learning and Applications and Workshops, 2011, vol. 2, pp.

298–301. doi: 10.1109/ICMLA.2011.49.

[7] R. & T. F. Bunker, “A Machine Learning Framework for Sport Result Prediction,”

Aplied Computing and Informatics, 2017.

[8] M. Schwab, Ed., “Supervised Learning,” in Encyclopedia of Cancer, Berlin,

Heidelberg: Springer Berlin Heidelberg, 2017, p. 4398. doi: 10.1007/978-3-662-

46875-3_102213.

[9] T. Chauhan, S. Rawat, S. Malik, and P. Singh, “Supervised and Unsupervised Machine

Learning based Review on Diabetes Care,” in 2021 7th International Conference on

Advanced Computing and Communication Systems (ICACCS), 2021, vol. 1, pp. 581–

585. doi: 10.1109/ICACCS51430.2021.9442021.

[10] “https://towardsdatascience.com/supervised-vs-unsupervised-learning-in-2-

minutes-72dad148f242”.

[11] “https://towardsdatascience.com/machine-learning-for-beginners-d247a9420dab”.

[12] “https://towardsdatascience.com/supervised-vs-unsupervised-learning-

14f68e32ea8d”.

103

[13] “https://learnai1.home.blog/2019/12/13/classification-in-machine-learning/”.

[14] “https://towardsdatascience.com/supervised-vs-unsupervised-learning-

14f68e32ea8d”.

[15] “Unsupervised Learning,” in Encyclopedic Reference of Genomics and Proteomics in

Molecular Medicine, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, p. 1972.

doi: 10.1007/3-540-29623-9_9085.

[16] A. Y. Al-Omary and M. S. Jamil, “A new approach of clustering based machine-

learning algorithm,” Knowl Based Syst, vol. 19, no. 4, pp. 248–258, 2006, doi:

https://doi.org/10.1016/j.knosys.2005.10.011.

[17] “https://www.powerbitraining.com.au/clustering-using-tables-in-power-bi/”.

[18] Z. & C. X. & Z. Y. & Q. L. & Y. R. & P. G. & Z. H. Zhou, “Brain Network Construction

and Classification Toolbox ,” 2019.

[19] jaden wu, Reinforcement learning Machine Learning. 1998.

[20] Y. Guo, X. Wu, and X. Shu, “Data Acquisition and Preparation for Dual-Reference

Deep Learning of Image Super-Resolution,” IEEE Transactions on Image Processing,

vol. 31, pp. 4393–4404, 2022, doi: 10.1109/TIP.2022.3184819.

[21] D. Goularas and S. Kamis, “Evaluation of Deep Learning Techniques in Sentiment

Analysis from Twitter Data,” in 2019 International Conference on Deep Learning and

Machine Learning in Emerging Applications (Deep-ML), 2019, pp. 12–17. doi:

10.1109/Deep-ML.2019.00011.

[22] D. E. Zomahoun, “A Semantic Collaborative Clustering Approach Based on Confusion

Matrix,” in 2019 15th International Conference on Signal-Image Technology &

Internet-Based Systems (SITIS), 2019, pp. 688–692. doi: 10.1109/SITIS.2019.00112.

[23] V. N. Mandhala, D. Bhattacharyya, and D. Midhunchakkaravarthy, “Need of

Mitigating Bias in the Datasets using Machine Learning Algorithms,” in 2022

International Conference on Advances in Computing, Communication and Applied

Informatics (ACCAI), 2022, pp. 1–7. doi: 10.1109/ACCAI53970.2022.9752643.

[24] S. Sehra, D. Flores, and G. D. Montañez, “Undecidability of Underfitting in Learning

Algorithms,” in 2021 2nd International Conference on Computing and Data Science

(CDS), 2021, pp. 591–594. doi: 10.1109/CDS52072.2021.00107.

[25] M. P. Ranjit, G. Ganapathy, K. Sridhar, and V. Arumugham, “Efficient Deep Learning

Hyperparameter Tuning Using Cloud Infrastructure: Intelligent Distributed

Hyperparameter Tuning with Bayesian Optimization in the Cloud,” in 2019 IEEE 12th

International Conference on Cloud Computing (CLOUD), 2019, pp. 520–522. doi:

10.1109/CLOUD.2019.00097.

104

[26] Warren S McCulloch and Walter Pitts, “A logical calculus of the ideas immanent in

nervous activity,” Bull Math Biophys, pp. 115–133, 1943.

[27] “https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-

neural-networks-fab22249cbfc”.

[28] Z. Hong, “A preliminary study on artificial neural network,” in 2011 6th IEEE Joint

International Information Technology and Artificial Intelligence Conference, 2011,

vol. 2, pp. 336–338. doi: 10.1109/ITAIC.2011.6030344.

[29] P. de Chazal, J. Tapson, and A. van Schaik, “A comparison of extreme learning

machines and back-propagation trained feed-forward networks processing the mnist

database,” in 2015 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2015, pp. 2165–2168. doi: 10.1109/ICASSP.2015.7178354.

[30] A. A. Karcioğlu and H. Bulut, “Performance Evaluation of Classification Algorithms

Using Hyperparameter Optimization,” in 2021 6th International Conference on

Computer Science and Engineering (UBMK), 2021, pp. 354–358. doi:

10.1109/UBMK52708.2021.9559003.

[31] J. Xie, Z. Ma, G. Zhang, J.-H. Xue, Z.-H. Tan, and J. Guo, “Soft Dropout And Its

Variational Bayes Approximation,” in 2019 IEEE 29th International Workshop on

Machine Learning for Signal Processing (MLSP), 2019, pp. 1–6. doi:

10.1109/MLSP.2019.8918818.

[32] A. Kumar, V. Bali, and S. Pandey, “Improving the efficiency of Plant-Leaf Disease

detection using Convolutional Neural Network optimizer-Adam Algorithm,” in 2022

12th International Conference on Cloud Computing, Data Science & Engineering

(Confluence), 2022, pp. 362–367. doi: 10.1109/Confluence52989.2022.9734132.

[33] J. Konar, P. Khandelwal, and R. Tripathi, “Comparison of Various Learning Rate

Scheduling Techniques on Convolutional Neural Network,” in 2020 IEEE

International Students’ Conference on Electrical,Electronics and Computer Science

(SCEECS), 2020, pp. 1–5. doi: 10.1109/SCEECS48394.2020.94.

[34] P. Samudre, P. Shende, and V. Jaiswal, “Optimizing Performance of Convolutional

Neural Network Using Computing Technique,” in 2019 IEEE 5th International

Conference for Convergence in Technology (I2CT), 2019, pp. 1–4. doi:

10.1109/I2CT45611.2019.9033876.

[35] “https://www.upgrad.com/blog/basic-cnn-architecture/”.

[36] W. Yang, D. Zhang, and Y. Fu, “Research of a Diagonal Recurrent Neural Network and

Artificial Neural Networks,” in 2016 International Symposium on Computer,

Consumer and Control (IS3C), 2016, pp. 374–377. doi: 10.1109/IS3C.2016.103.

105

[37] “https://towardsdatascience.com/growing-your-own-rnn-cell-simplified-

b68ba2c0f082”.

[38] Md. E. Karim and S. Ahmed, “A Deep Learning-Based Approach for Stock Price

Prediction Using Bidirectional Gated Recurrent Unit and Bidirectional Long Short

Term Memory Model,” in 2021 2nd Global Conference for Advancement in

Technology (GCAT), 2021, pp. 1–8. doi: 10.1109/GCAT52182.2021.9587895.

[39] “https://ikyathvarmadantuluri.gitbook.io/rnns/gated-recurrent-unit/architecture-of-

gru”.

[40] “https://d2l.ai/chapter_recurrent-modern/gru.html”.

[41] S. Wu and Y. Wang, “Attention-based Encoder-Decoder Recurrent Neural Networks

for HTTP Payload Anomaly Detection,” in 2021 IEEE Intl Conf on Parallel &

Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable

Computing & Communications, Social Computing & Networking

(ISPA/BDCloud/SocialCom/SustainCom), 2021, pp. 1452–1459. doi: 10.1109/ISPA-

BDCloud-SocialCom-SustainCom52081.2021.00196.

[42] P. Xiaosheng, W. Bo, Y. Fan, F. Gaofeng, W. Zheng, and C. Kai, “A Deep Learning

Approach for Wind Power Prediction Based on Stacked Denoising Auto Encoders

Optimized by Bat Algorithm,” in 2018 China International Conference on Electricity

Distribution (CICED), 2018, pp. 945–948. doi: 10.1109/CICED.2018.8592384.

[43] E. Kavvousanos and V. Paliouras, “Optimizing Deep Learning Decoders for FPGA

Implementation,” in 2021 31st International Conference on Field-Programmable

Logic and Applications (FPL), 2021, pp. 271–272. doi:

10.1109/FPL53798.2021.00053.

[44] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information

Processing Systems, 2017, vol. 30. [Online]. Available:

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845

aa-Paper.pdf

[45] “https://ledatascientist.com/a-la-decouverte-du-transformer/”.

[46] “http://keeganhin.es/blog/attn.html”.

[47] M. Abe, K. Fujii, Y. Nagata, T. Sone, and K. Kido, “Estimation of the waveform of a

sound source by using an iterative technique with many sensors,” IEEE Transactions

on Speech and Audio Processing, vol. 6, no. 1, pp. 24–35, 1998, doi:

10.1109/89.650307.

[48] H. Purwins, B. Li, T. Virtanen, J. Schlüter, S.-Y. Chang, and T. Sainath, “Deep learning

for audio signal processing,” IEEE J Sel Top Signal Process, vol. 13, no. 2, pp. 206–

219, 2019.

106

[49] A. Härmä, M. Karjalainen, L. Savioja, V. Välimäki, U. K. Laine, and J. Huopaniemi,

“Frequency-warped signal processing for audio applications,” Journal of the audio

engineering society, vol. 48, no. 11, pp. 1011–1031, 2000.

[50] U. Illindala, R. A. Grimm, A. Morehead, S. Chandra, N. L. Greenberg, and J. D.

Thomas, “Automated analysis of transmitral and aortic Doppler velocity profiles

using audio signal processing,” in Computers in Cardiology 1996, 1996, pp. 189–192.

[51] D.-J. Liu and C.-T. Lin, “Fundamental frequency estimation based on the joint time-

frequency analysis of harmonic spectral structure,” IEEE Transactions on Speech and

Audio Processing, vol. 9, no. 6, pp. 609–621, 2001.

[52] “https://www.teachmeaudio.com/recording/sound-reproduction”.

[53] U. Zölzer, Digital audio signal processing. John Wiley & Sons, 2022.

[54] “https://processing.org/tutorials/sound”.

[55] K. Nguyen, K. Drossos, and T. Virtanen, “Temporal sub-sampling of audio feature

sequences for automated audio captioning,” arXiv preprint arXiv:2007.02676, 2020.

[56] I. N. Sneddon, Fourier transforms. Courier Corporation, 1995.

[57] U. Goswami et al., “Amplitude envelope onsets and developmental dyslexia: A new

hypothesis,” Proceedings of the National Academy of Sciences, vol. 99, no. 16, pp.

10911–10916, 2002.

[58] R. Javaid, R. Besar, and F. S. Abas, “Performance evaluation of percent root mean

square difference for ecg signals compression,” Signal Processing: An International

Journal (SPIJ), vol. 48, pp. 1–9, 2008.

[59] R. G. Bachu, S. Kopparthi, B. Adapa, and B. D. Barkana, “Voiced/unvoiced decision

for speech signals based on zero-crossing rate and energy,” in Advanced techniques

in computing sciences and software engineering, Springer, 2010, pp. 279–282.

[60] L. Wyse, “Audio spectrogram representations for processing with convolutional

neural networks,” arXiv preprint arXiv:1706.09559, 2017.

[61] S. Umesh, L. Cohen, and D. Nelson, “Frequency warping and the Mel scale,” IEEE

Signal Process Lett, vol. 9, no. 3, pp. 104–107, 2002.

[62] H. Meng, T. Yan, F. Yuan, and H. Wei, “Speech emotion recognition from 3D log-mel

spectrograms with deep learning network,” IEEE access, vol. 7, pp. 125868–125881,

2019.

[63] B. Logan, “Mel frequency cepstral coefficients for music modeling,” 2000.

107

[64] Y. Kang, Z. Cai, C.-W. Tan, Q. Huang, and H. Liu, “Natural language processing (NLP)

in management research: A literature review,” Journal of Management Analytics,

vol. 7, no. 2, pp. 139–172, 2020.

[65] E. D. Liddy, “Natural language processing,” 2001.

[66] J. Levine, Flex & Bison: Text Processing Tools. “ O’Reilly Media, Inc.,” 2009.

[67] H. Liu, T. Christiansen, W. A. Baumgartner, and K. Verspoor, “BioLemmatizer: a

lemmatization tool for morphological processing of biomedical text,” J Biomed

Semantics, vol. 3, no. 1, pp. 1–29, 2012.

[68] C. Silva and B. Ribeiro, “The importance of stop word removal on recall values in text

categorization,” in Proceedings of the International Joint Conference on Neural

Networks, 2003., 2003, vol. 3, pp. 1661–1666.

[69] Y. Li and T. Yang, “Word embedding for understanding natural language: a survey,”

in Guide to big data applications, Springer, 2018, pp. 83–104.

[70] P. Rodr\’\iguez, M. A. Bautista, J. Gonzalez, and S. Escalera, “Beyond one-hot

encoding: Lower dimensional target embedding,” Image Vis Comput, vol. 75, pp. 21–

31, 2018.

[71] E. M. Voorhees, “Natural language processing and information retrieval,” in

International summer school on information extraction, 1999, pp. 32–48.

[72] K. W. Church, “Word2Vec,” Nat Lang Eng, vol. 23, no. 1, pp. 155–162, 2017.

[73] “https://openclassrooms.com/fr/courses/4470541-analysez-vos-donnees-

textuelles/4855006-effectuez-des-plongements-de-mots-word-embeddings”.

[74] “Belkacem, Thiziri & Dkaki, Taoufiq & Moreno, Jose & Mohand, —. (2017).

Apprentissage de représentations de documents et leur exploitation en recherche

d’information.”.

[75] M. v Koroteev, “BERT: A review of applications in natural language processing and

understanding,” arXiv preprint arXiv:2103.11943, 2021.

[76] “https://towardsml.wordpress.com/2019/09/17/bert-explained-a-complete-guide-

with-theory-and-tutorial/”.

[77] F. Sun et al., “BERT4Rec: Sequential recommendation with bidirectional encoder

representations from transformer,” in Proceedings of the 28th ACM international

conference on information and knowledge management, 2019, pp. 1441–1450.

[78] “https://medium.com/analytics-vidhya/how-to-fine-tune-bert-on-text-classification-

task-723f82786f61”.

108

[79] X. Xu, M. Wu, and K. Yu, “A Comprehensive Survey of Automated Audio Captioning,”

arXiv preprint arXiv:2205.05357, 2022.

[80] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli, “State-

of-the-art in heterogeneous computing,” Sci Program, vol. 18, no. 1, pp. 1–33, 2010.

[81] B. S. H. Michel, “General-purpose gpu computing: practice and experience,” in

Proceedings of the 2006 ACM/IEEE conference on Supercomputing, 2006, pp. 233–

es.

[82] T. Carneiro, R. V. M. da Nóbrega, T. Nepomuceno, G.-B. Bian, V. H. C. de

Albuquerque, and P. P. Reboucas Filho, “Performance analysis of google

colaboratory as a tool for accelerating deep learning applications,” IEEE Access, vol.

6, pp. 61677–61685, 2018.

[83] Python, “Python,” https://www.python.org/downloads/release/python-394/, Apr.

04, 2021.

[84] Fonctionnalités de PyCharm, “https://www.jetbrains.com/help/pycharm/quick-

start-guide.html.”

[85] Qt Designer Manual, “https://doc.qt.io/qt-5/qtdesigner-manual.html ,” 2022.

[86] Henri Michel, “https://ledatascientist.com/google-colab-le,” Le guide Ultime.

[87] T. Carneiro, R. V. M. da Nóbrega, T. Nepomuceno, G.-B. Bian, V. H. C. de

Albuquerque, and P. P. Reboucas Filho, “Performance analysis of google

colaboratory as a tool for accelerating deep learning applications,” IEEE Access, vol.

6, pp. 61677–61685, 2018.

[88] T. Carneiro, R. V. M. da Nóbrega, T. Nepomuceno, G.-B. Bian, V. H. C. de

Albuquerque, and P. P. Reboucas Filho, “Performance analysis of google

colaboratory as a tool for accelerating deep learning applications,” IEEE Access, vol.

6, pp. 61677–61685, 2018.

[89] B. Mcfee et al,

“http://conference.scipy.org/proceedings/scipy2015/pdfs/brian_mcfee.pdf,”

Librosa - audio processing Python library, 2015.

[90] E. Stevens, L. Antiga, and T. Viehmann, Deep learning with PyTorch. Manning

Publications, 2020.

[91] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic

evaluation of machine translation,” in Proceedings of the 40th annual meeting of the

Association for Computational Linguistics, 2002, pp. 311–318.

[92] S. Banerjee and A. Lavie, “METEOR: An automatic metric for MT evaluation with

improved correlation with human judgments,” in Proceedings of the acl workshop on

109

intrinsic and extrinsic evaluation measures for machine translation and/or

summarization, 2005, pp. 65–72.

[93] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “Cider: Consensus-based image

description evaluation,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2015, pp. 4566–4575.

[94] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy, “Optimization of image

description metrics using policy gradient methods,” arXiv preprint arXiv:1612.00370,

vol. 5, 2016.

