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ABSTRACT 

 

  The main purpose of this project is to design an environmental 

general audio content description using text, where a system accepts as an 

input an audio signal and outputs the textual description of that signal.  

  This task has drawn lots of attention during the past several years 

as a result of quick devolvement of different methods that can provide 

captions for a general audio recording. To accomplish the automatic audio 

captioning task, we have performed multiple experiments using a Clotho 

dataset. Two deep neural networks have been employed in the 

construction of our systems Recurrent Neural Network and Gated 

Recurrent Unit, along with encoder-decoder architecture and a 

combination of feature representations based on audio processing 

techniques like Mel Spectrogram and text processing techniques used in 

text decoding from word embeddings like one-hot-encoding and BERT.   

Keywords: Audio Captioning, Machine Learning, Encoder Decoder 

Models, Signal Processing, Natural Language Processing. 
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RÉSUMÉ 

 

  L'objectif principal de ce projet est de concevoir une description de 

contenu audio général environnemental à l'aide de texte, où un système 

accepte en entrée un signal audio et produit la description textuelle de ce 

signal. 

  Cette tâche a attiré beaucoup d'attention au cours des dernières années en 

raison de l'évolution rapide des différentes méthodes qui peuvent fournir 

des sous-titres pour un enregistrement audio général. Pour accomplir la 

tâche de sous-titrage audio automatique, nous avons effectué plusieurs 

expériences à l'aide d'un ensemble de données Clotho. Deux réseaux de 

neurones profonds ont été utilisés dans la construction de nos systèmes 

Recurrent Neural Network et Gated Recurrent Unit, ainsi qu'une 

architecture d'encodeur-décodeur et une combinaison de représentations 

de caractéristiques basées sur des techniques de traitement audio telles que 

Mel Spectrogram et des techniques de traitement de texte utilisées dans le 

décodage de texte à partir des incorporations de mots comme l'encodage 

à chaud et le BERT.  

Mots-clés : Traduction vocale, Apprentissage Automatique, modèles de 

décodage, traitement du signal, Traitement du langage naturel 
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 ملخص 

 

الصوتي     للمحتوى  عام  بيئي  وصف  تصميم  هو  المشروع  هذا  من  الرئيسي  الغرض 

النص   لتلك   الحر،باستخدام  النصي  الوصف  ويخرج  صوتية  إشارة  كمدخل  النظام  يقبل  حيث 

 .الإشارة

للانتقال   نتيجة  الماضية  العديدة  السنوات  الاهتمام خلال  من  الكثير  المهمة  هذه  جذبت 

السريع للطرق المختلفة التي يمكن أن توفر تسميات توضيحية لتسجيل صوتي عام. لإنجاز مهمة 

.  كلوتوأجرينا تجارب متعددة باستخدام مجموعة بيانات    التلقائية،ة  التسميات التوضيحية الصوتي

تم استخدام شبكتين عصبيتين عميقتين في بناء أنظمتنا الشبكة العصبية المتكررة والوحدة المتكررة 

جنبًا إلى جنب مع بنية وحدة فك التشفير ومجموعة من تمثيلات الميزات القائمة   البوابات،ذات  

وتقنيات معالجة النصوص المستخدمة  Mel Spectrogram جة الصوت مثلعلى تقنيات معال

  ONE-HOT-ENCODING.او BERT مثلفي فك تشفير النص من حفلات الزفاف كلمة 

 .   الإشارات،معالجة  التشفير،نماذج فك  الآلي،التعلم  الصوتية،الترجمة  الرئيسية: تالكلما 

 معالجة اللغة الطبيعية 
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Introduction 

In this introduction, we aim to present the tasks that our dissertation aims to 

address and the broader field related to them. Firstly, we discuss how linguistics, 

Natural Language Processing and Artificial Intelligence are intertwined in our view. 

We present our motivation and our main research topic. Lastly, we present our main 

contributions to the field and memory organization. 

1. AI and Language  

Language is on each own a very complex system. According to Descartes, 

language is power only we humans possess, a power that sets us apart, in a qualitative, 

unbridgeable way from everything else there is, notably from animals and machines. 

in 1950, Alan Turing wrote a paper describing a test for a “thinking” machine. He 

argued that if a machine could have a conversation through the use of a teleprinter, and 

it imitated a human without noticeable differences then the machine could be 

considered capable of thinking. Many different paradigms have been proposed in the 

field of linguistics to approach a broader understanding of language. In the early 1900s, 

a Swiss linguistics professor named Ferdinand de Saussure aimed to attack the concept 

of language as a product of human speech, describing languages as "systems of 

difference". He argued that words are just acoustic images unhinged on themself of 

any particular meaning. Recent progress in Artificial Intelligence and Natural 

Language Processing has produced models that perform surprisingly well at 

generating text, textual descriptions of images, answering questions, summarizing 

large documents, etc. 

Nonetheless, we are fascinated by AI systems. Their capability of generating 

natural language shifts our understanding of reality and how we experience the world. 

Besides language their other modalities that play a crucial role in the human 

understanding of the world such as images and sounds. We are interested in the ways 

these modalities are intertwined with language and how machines are able to mutually 

process and understand them. 

In this dissertation, we research a multi-modal task called Automated Audio 

Captioning. It can be viewed as a cross-modal translation task that aims to generate 
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natural language descriptions of sound and audio events. It is a task that has received 

increasing attention in recent years, but is still largely unexplored, compared to other 

multimodal tasks such as Image Captioning. 

2. Motivations 

  Artificial intelligence with its popularization and gradual emergence as a core 

technology that drives tremendous developments in many fields, the use of machine 

learning and deep learning has grown tremendously[1]. According to numerous 

surveys and studies, AI and machine learning are expected to be among the best 

rewarding and most lucrative career paths in the coming years.  

Like all other areas that are constantly developing and preparing for the future, 

the area of Automated audio captioning also benefits from deep learning. Similar to 

image captioning, audio captioning is mostly based on an encoder-decoder 

architecture. For Automated audio captioning who rely on general audio content 

description using free text, deep learning can be a solution for exploring and 

developing different methods that can provide some kind of captions for a general 

audio recording. 

3. Problems 

 Automated audio captioning (AAC) is an inter-modal task describing an audio 

signal using textual descriptions (referred to as captions). Like other natural language-

related tasks, an appropriate caption should match the contents present in the audio 

and aligns with the descriptions provided by a human. The example captions are "many 

birds are chirping in the trees as cars drive by" or "many birds are chirping in the trees 

as cars drive by". AAC does not simply detect and classify sounds but explores the 

inner relationships between events and associates them with high-level concepts and 

information. Being an inter-modal task, AAC is exposed to the challenges related to 

audio and natural language processing (NLP). 

• First, an event may sound significantly in different environments, devices, and 

settings.  

• Second, real-life audios usually contain mixtures of overlapped sounds.  
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• Third, the language model needs to be sufficiently good to generate close-to-

human created captions. 

Finally, the language model plays an important role during the caption generation 

phase. The modelled language needs to describe relationships between sound events 

(e.g., "A jet sound roars continuously and then gets a bit louder"), discriminate source 

locations (e.g., "Birds chirping outside while people are talking in the background"), 

the properties of sounds and environments (e.g., "on a hard surface", "a wooden cutting 

board") and sound characteristics (e.g., "a loud banging of a metal material"). This 

requires building a diverse vocabulary set that the language model can utilize to 

formulate descriptive texts. 

4. Contributions 

  Automated audio captioning is a new and challenging task that involves 

different modalities. It could be described as generating a textual description given an 

audio signal, where the caption should be as close as possible to a human-assigned 

one. In contrast to automatic speech recognition which just converts speech to text, 

AAC converts environmental sound to text[2]. It is also different from sound event 

detection and audio tagging tasks, which output exact labels with start and end time or 

not. Generating accurate captions needs more information, including identification of 

sound events, acoustic scenes, foreground versus background discrimination, 

concepts, and physical properties of objects and environment. This report proposes an 

audio captioning system for the Detection and Classification of Acoustic Scenes and 

events (DCASE) 2021 challenge task. Our audio captioning system consists of a Gated 

Recurrent Units audio encoder and a Recurrent Neural Networks text decoder.  

  The main goal of this work is to design an audio captioning system trained on 

the newly publicly available dataset Clotho v2T[3]. The proper use of such information 

can considerably improve the captioning performance. The second goal would be to 

test the impact of various semantic embeddings; and to perform a comparative study 

among several encoder-decoder architectures. 

Our main contributions are the following: 
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• We propose a novel architecture for Automated Audio Captioning utilizing 

state-of-the-art strategies to reduce the computational complexity of our model. 

• We investigate the quality vs diversity trade of language generation in our 

proposed model. 

• We propose an application of Automated Audio Captioning in generating 

textual descriptions of sound events in Audios.  

• We propose a novel evaluation metric in order to evaluate the performance 

of our system. 

5. Memory organization 

a. Chapter 1 

In the 1rst part we delve into Artificial Intelligence in Machine 

Learning and we explained some of the most frequently used methods of 

classification. 

In The 2rd part is devoted to deep learning, we explain what a Neural 

network is and how it works and lastly, we dive into some of Neural network 

architectures that we have used in our encoder-decoder model.  

b. Chapter 2 

In the 1rst part we provide an overview of Audio Processing and 

deferent concepts that are relevant for audio feature extraction. 

 In the 2nd part we present text processing. We provide a description 

for the tools and setup that we frequently used for text feature extraction, then 

we present and discuss the deferent methods used in Natural Language 

Processing 

c. Chapter 3 

  This chapter is devoted to the presentation of the experimental results 

as well as their interpretations we showed the deferent models we used as well 

as their architecture. 
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d. Chapter 4 

 In this chapter we present the results. We provide a description for the 

tools and setup that we used in our project, then we end it with desktop 

interface representation and future work. 
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Chapter 1: Machine learning and 

Deep learning 

Introduction 

As mentioned in the Introduction, in this chapter we present our theoretical 

background, regarding Machine Learning (ML) literature and especially the Deep 

Learning (DL) subfield.  

Part 1: Machine learning 

1. Introduction  

  Machine learning has enjoyed a diverse history finding its roots in many 

interdisciplinary fields including artificial intelligence, neuroscience, cognitive 

science and various other areas as it eventually connected more closely with the field 

statistics. As early as 1921, when Capek coined the term Robot [4], the idea that a 

machine could be intelligent and potentially learn from observations began emerging. 

  Machine learning has shown great success in building models for pattern 

recognition in domains ranging from computer vision over speech recognition and text 

understanding to Game AI[5]. It’s an artificial intelligence area that assists computers 

in estimating future events and modelling based on experiences gained from previous 

information. Compared to the classical methods, the process of obtaining information 

is much more accurate and faster[6]. 

2. Machine learning tasks 

  Machine learning takes different forms, depending on the algorithm and its 

objectives. You can divide machine learning algorithms into three main groups based 

on their purpose as showed in the figure 1 [7]. 
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Figure 1: Machine Learning algorithms[7] 

 In machine learning we have multiple methods of learning and showing a 

computer how to make deferent predictions with deferent cases, which we will all 

explain in the next parts[7]. 

3. Supervised learning 

  Supervised learning algorithms take direct feedback for the prediction. the 

machine already knows the answers that are expected of it[8]. It works from labelled 

data. Supervised learning can be categorized in classification and regression methods. 

In supervised learning: the goal is to use input-label pairs, (x; y) to learn a function 𝐹 

that predicts a label given the input, ^y = f (x). 

KNN, SVM [9], are some popular algorithms of supervised learning. This next 

figure 2 shows an example of supervised learning algorithm. 

 

Figure 2: Supervised Learning Example[10] 
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 A supervised learning algorithm always has a target or outcome variable, which 

is detected from a provided set of predictors. The algorithm uses this set of variables 

to create a function that maps inputs to desired outputs. This training process is 

repeated for as long as it takes for the model to achieve a high level of accuracy this 

figure 3 illustrates how a supervised learning algorithm works. 

 

Figure 3: How Supervised Learning Works[11] 

3.1. Classification 

  These tasks consist of assigning a class to objects[6]. Classification algorithms 

utilize input training data for the purpose of predicting the likelihood or probability 

that the data that follows will fall into one of the predetermined categories as shown 

in the figure 4. 
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Figure 4: Classification Example[12] 

After the system has been trained to identify a category of an input X, when 

new inputs are added, it’ll automatically be classified in their categories. 

Classification problems, requires items to be divided into different categories, 

based on past data.  

Classification can be multi label as well as shown in this next figure 5. 

 

Figure 5: multi label classification[13] 

3.2. Regression 

  In this case, we are not assigning a class but a mathematical value: a percentage 

or an absolute value. Regression is a process of finding the correlations between 

dependent and independent variables. Now with regression problem, the system 

attempts to predict a value for an input based on past data. Unlike classification, 

we are predicting a value based on past data, rather than classifying them into 

different categories. This figure 6 shows how in regression we don’t have multiple 

categories classes. 



24 

 

 

Figure 6: Regression example[14] 

 The task of the Regression algorithm is to find the mapping function to map 

the input variable(x) to the continuous output variable(y). 

4. Unsupervised learning 

 In unsupervised learning is that the answers we are trying to predict are not 

available in the datasets. The algorithm uses an unlabeled dataset[15]. The machine is 

then asked to create its own responses. the algorithm seeks to maximize on the one 

hand the homogeneity of the data within the groups of data and to form groups as 

distinct as possible. In unsupervised learning no label or another target is provided. 

The data consists of a set of examples x and the objective is to learn about the statistical 

structure of x itself. 

4.1. Clustering 

  The machine group objects into data sets that are as homogeneous as 

possible[16]. This technique may seem close to that of classification in supervised 

learning, but unlike the latter, the classes are not pre-filled by a human, it is the 

machine that creates its own classes. 

From this figure 7 we can see how the machine makes prediction on what 

object to be grouped to gather given the same labels. 
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Figure 7: Clustering exemple[17], [18] 

5. Model evaluation 

  To be able to estimate the performance of a machine learning model First, we 

feed the training data to our learning algorithm to learn a model. Second, we predict 

the labels of our test set. Third, we count the number of wrong predictions on the test 

dataset to compute the model’s prediction accuracy[21]. The evaluation metric is a 

crucial element in achieving the optimal classifier during the training process. Thus, a 

selection of a suitable evaluation metric is an important key for discriminating and 

obtaining the optimal classifier.  

For classification problems, the evaluation of the optimal solution during the 

training stage can be defined based on confusion matrix. 

5.1. Confusion matrix  

 A confusion matrix presents a table layout of the different outcomes of the 

prediction and results of a classification problem[22], it helps visualize its 

outcomes. As shown in the table 1 The row of the table represents the predicted 

class, while the column represents the true class. 
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From this confusion matrix, TP and TN denote the number of positive and 

negative instances that are correctly classified. Meanwhile, FP and FN denote the 

number of misclassified negative and positive instances, respectively. It plots a 

table of all the predicted and actual values of a classifier. 

 

Table 1 - Confusion matrix [18] 

 

 

• True Positive: The Numbers of times our actual positive values are equal to the 

predicted positive. You predicted a positive value, and it is correct. 

• False Positive: The Numbers of times our model wrongly predicts negative 

values as positives. You predicted a negative value, and it is actually positive. 

• True Negative: The Numbers of times our actual negative values are equal to 

predicted negative values. You predicted a negative value, and it is actually 

negative. 

• False Negative: The Numbers of times our model wrongly predicts negative 

values as positives. You predicted a negative value, and it is actually positive. 

From this table, several measures can be derived to assess the performance of the 

classifier with different evaluation objectives, as shown in Table 2. 

Metrics Formula 

Accuracy 

(ac) 

𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

Sensitivity 

(se) 

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

 Predicted: NO Predicted: YES 

Actual: NO TN FP 

Actual: YES FN TP 
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Specificity 

(SP) 

𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 

Error Rate 

(err) 

𝑓𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

Precision 

(p) 

𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

Recall 

(r) 

𝑡𝑝

𝑡𝑝 + 𝑡𝑛
 

F-Measure 

(FM) 

2 ∗
𝑝 ∗ 𝑟

𝑝 + 𝑟
 

Table 2- Evaluation metrics for Classification [18] 

 

5.2. Bias 

The term bias refers to the statistical bias. In general terms, the bias of an 

estimator ˆβ is the difference between its expected value E[ˆβ] and the true value 

of a parameter β being estimated, we compute the prediction bias as the difference 

between the expected prediction accuracy of a model and its true prediction 

accuracy[23]. 

5.3. Variance 

The variance is a measure of the variability of a model’s predictions if we 

repeat the learning process multiple times with small fluctuations in the training 

set. The more sensitive the model-building process is towards these fluctuations, 

the higher the variance. 

5.4. Overfit and Underfit 

A key balancing act in machine learning is choosing an appropriate level of 

model complexity, if the model is too complex, it will fit the data used to construct 

the model very well but generalize poorly to unseen data there for the term Overfit. 
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If the complexity is too low the model won't capture all the information in the data 

there for the term underfitting. since a complex model exhibits large variance while 

an overly simple one is strongly biased[24]. Most general-purpose methods feature 

hyperparameters to control this trade-off. 

Part 2: Deep learning 

 In this part, we discuss Deep Learning approaches to Natural Language 

Processing and Audio Signal Processing and focus on models such as the 

Transformer which is the backbone of our proposed approach, and its usage in 

sequence-to-sequence modelling. 

1. Introduction  

Since 2012, deep neural networks have revolutionized machine learning. Although 

relatively old, this technique has made very significant progress in recent years, 

especially for the recognition of texts, sounds, images and videos. Understand the 

issues of these methods raises questions at the interface between mathematics and 

algorithms. 

  In this part, we will explain the structure of these networks as well as the key 

concepts of their learning. 

2. Neural network 

  An artificial neural network is built around a biological metaphor. We know 

relatively well the structure of the primary visual cortex. Thus, in an extremely 

simplified view of the functioning of the brain, neurons are organized in layers, each 

neuron retrieves information from a previous layer, performs a very simple calculation, 

and communicates its result to neurons in the next layer. 

Figure 8 details an example of such an artificial network. This type of neuron 

was introduced in 1943 by McCulloch and Pitts[26]. 
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Figure 8: Neuron Anatomy 

 

The transition from one layer to another is done through a set of artificial 

neurons. A neuron layers are represented in figure 9.  

 

Figure 9: Neural network layers 

The transition from one layer to another is done through a set of 

artificial neurons wish is represented in figure 10.  

 

Figure 10: Artificial Neurons[27] 
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It's the first neuron, the one that calculates the first value that composes the 

layer. This neuron connects a number of elements from the first layer to a single 

element from the second[28]. The formula calculated by the neuron is: 

𝑦1 = max(𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑤3 ∗ 𝑥3 + 𝑤4,0) 

 The neuron thus performs a weighted sum of the three inputs, with three 

weights w1, w2, w3, and we also add w4, which is a bias. Then the neuron calculates 

the maximum between this sum and zero. We can also use another activation function 

than the maximum function[28]. 

 Thus, if the weighted sum w1x1 + w2x2 + w3x3 + w4 is less than 0, then the 

neuron returns the value y1 = 0, otherwise it returns the value of this sum and places 

it in u1. Several activation functions can be considered in the classification task. Table 

3 shows the most commonly used activation functions. 

Activation Function Formula 

Sigmoid 𝜑(𝑥) =
1

1 + 𝑒−𝑥
 

Hyperbolic tangent 𝜑(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1
 

SoftMax 𝜑(𝑥)
𝑒𝑥𝑖

∑ 𝑗𝑒𝑥𝑗
 

Rectified Linear Unit 𝜑(𝑥) = max(0, 𝑥) 

Table 3- Activation fonctions for classification[28] 

2.1. Neural network layer 

 A neural network is made up of neurons that are organized in layers. There are 

three types of layers: an input layer, an output layer, and a hidden layer. In most 

cases, there will be multiple hidden layers in a neural network[28]. The neurons in 

the input layer receive the input objects. When a neuron is activated, it activates 

the neurons in the next layer. Every neuron in one layer passes an output to the 

neurons in the next layer. This output is defined by two factors: weight and bias. 
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 The weight defines how important a particular input is to the next neuron, and 

it also directs the flow of values from input to output. In the figure 10, the black 

arrows represent weights. On the other hand, bias is an added constant value that 

defines how easy it is for a neuron to get fired. 

2.2. Forward and backward propagation 

 The process of sending data from one layer to the next is called propagation. 

There are two types of propagation: forward propagation and backward 

propagation. In forward propagation the data moves from input to hidden layer to 

output. It ends in a prediction based on the input, which can be accurate or 

inaccurate. In backward propagation, a prediction from the output layer is back-

tracked from the output to the input layer, which shows the error rate. This is then 

used to modify the weights and biases of each neuron, giving the neurons with a 

higher error rate and greater adjustment[29]. It is important to constantly readjust 

the weights to minimize errors and gain higher accuracy. 

 The key is to get started quickly and then adjust weights to optimize for more 

accurate outputs. adjusting the weight at the end of each batch (known as learning 

rate optimization), and also change how much influence the errors from the 

previous batches have on the current one (which is called the momentum).  In 

addition, it’s possible to use algorithms to tune the neural networks, including 

gradient descent or stochastic gradient descent, as well as, Adam. More about these 

algorithms later in the chapter. 

3. Optimization algorithms 

 Gradient descent is one of the most popular algorithms to perform optimization 

and by far the most common way to optimize neural networks. At the same time, every 

state-of-the-art deep learning library contains implementations of various algorithms 

to optimize gradient descent[30]. 
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3.1. Dropout 

 One frequently used method of optimizing neural networks is called dropout. 

This reduces the problem of over-fitting, where statistical noise enters a neural 

network that is too large for a small data set[31].  

 Dropout works by randomly dropping out certain outputs from a layer, which 

makes the previous layer look like it has fewer neurons. This reduces noise and 

improves the accuracy of the neural network. The exact amount of dropout you 

need will vary based on the dataset and the architecture of the neural network. 

 

Figure 11: Dropout exemple 

3.2. Adam 

 Adaptive Moment Estimation Adam is another method that computes adaptive 

learning rates for each parameter. In addition to storing an exponentially decaying 

average of past squared gradients Adam also keeps an exponentially decaying 

average of past gradients. We compute the decaying averages of past and past 

squared gradients[32]. 

3.3. Learning rate scheduling 

 Learning rate schedules seek to adjust the learning rate during training by 

reducing the learning rate according to a pre-defined schedule. Common learning 

rate schedules include time-based decay, step decay and exponential decay[33]. 
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 So far, we focused on optimization algorithms for how to update the weight 

vectors rather than on the rate at which they are being updated. Nonetheless, 

adjusting the learning rate is often just as important as the actual algorithm. There 

are a number of aspects to consider:  

• Most obviously the magnitude of the learning rate matters. If it is too large, 

optimization diverges, if it is too small, it takes too long to train or we end 

up with a suboptimal result.  

• Secondly, the rate of decay is just as important. If the learning rate remains 

large, we may simply end up bouncing around the minimum and thus not 

reach optimality.  

• Lastly it is equally important is initialization. This pertains both to how the 

parameters are set initially and also how they evolve initially.  

4. Neural networks architectures  

4.1. Recurrent neural networks 

 Deep learning models are built on the idea of neural networks, and this is what 

allows the models to learn from raw data where information is propagated forward. 

However, this ‘feed-forward’ type of model is not always applicable, and their 

fundamental architecture makes it difficult to apply them to sequential problem[2]. 

 

Figure 12: Search Engine 

The figure 12 shows an example of sequential task where the most appropriate next 

word depends on the words which came before it. 

 The best way to overcome this problem is to have an entirely new network 

structure, one that can update information over time. This is a Recurrent Neural 
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Network. This is similar to a perceptron in that over time, information is being forward 

through the system by a set of inputs, x, and each input has a weight, w. Each 

corresponding input and weight are then multiplied, and the sum of products is 

calculated. The sum then passes through a non-linear activation function, and an 

output, y, is generated as shown in the figure 13. 

 

Figure 13: Recurrent Cell Architecture 

 The difference in this architecture is that, in addition to the output, the network 

is also generating an internal state update, U. This update is then used when analyzing 

the next set of input information and provides a different output that is also dependent 

on the previous information. This is ideal because information persists throughout the 

network over time. As the name suggests, this update function is essentially a 

recurrence relation that happens at every step of the sequential process, where u is a 

function of the previous u and the current input, x. 

 The RNN as a set of singular feed-forward models, where each model is linked 

together by the internal state update as shown in the figure 14. At each step of the 

sequence, there is an input, a process being performed on that input, and a related 

output. For the next step of the sequence, the step before must have some influence 

does not affect the input but affects the related output[36]. 
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Figure 14: Different time steps of RNN[37] 

 As demonstrated in the figure 14 we input one example at a time and produce 

one result, both of which are single words. The difference with a feedforward network 

comes in the fact that we also need to be informed about the previous input words 

before evaluating the result[36].  

 Since plain text cannot be used in a neural network, we need to encode the 

words into vectors. The best approach is to use word embeddings word2vec or Glove 

for this examples we will go for the one-hot encoded vectors. These are (V,1) vectors 

V is the number of words in our vocabulary where all the values are 0, except the one 

at the 𝑖𝑡ℎ position[36].  

 Typically, the vocabulary contains all English words. That is why it is 

necessary to use word embeddings. This is the equations needed for training: 

ℎ𝑡 = 𝑓(𝑤ℎℎℎ𝑡−1 + 𝑤ℎ𝑥𝑥𝑡) 

• ℎ𝑡 holds information about the previous words in the sequenceℎ𝑡 is calculated 

using the previous ℎ𝑡−1 vector and current word vector𝑥𝑡 . We also apply a 

non-linear activation function f to the final summation.  

𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑠ℎ𝑡) 

• 𝑦𝑡calculates the predicted word vector at a given time step t. We use 

the SoftMax to produce a (V,1) vector with all elements summing up to 1. This 

probability distribution gives us the index of the most likely next word from 

the vocabulary. 

https://www.tensorflow.org/tutorials/word2vec
https://nlp.stanford.edu/projects/glove/


36 

 

𝑗𝑡 =∑(𝑦𝑡𝑖′𝑙𝑜𝑔𝑦𝑡𝑖)

|𝑣|

𝑖=1

 

• 𝑗𝑡uses the cross-entropy loss function at each time step t to calculate the error 

between the predicted and actual word. 

• 𝑤𝑥 represent the weights of the network at a certain stage. 

 The weights are initialized with random elements, adjusted using the error from 

the loss function. We do this adjusting using back-propagation algorithm which 

updates the weights. Once we have obtained the correct weights, predicting the next 

word in the sentence is quite straightforward, this figure 15 represents a summary of 

what we just explain: 

 

Figure 15: RNN model [36] 

4.2. Gated Recurrent Units 

GRUs are improved version of standard recurrent neural network. They were 

introduced to solve the vanishing gradient problem of a standard RNN, GRU uses 

update gate and reset gate. Basically, these are two vectors which decide what 

information should be passed to the output. they can be trained to keep information 

from long ago, without washing it through time or remove information which is 

irrelevant to the prediction[38]. 

 

https://www.youtube.com/watch?v=tRsSi_sqXjI
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a. Gated Hidden State 

 The key distinction between vanilla RNNs and GRUs is that the latter support 

gating of the hidden state. This means that we have dedicated mechanisms for when a 

hidden state should be updated and also when it should be reset. For instance, if the 

first token is of great importance, we will learn not to update the hidden state after the 

first observation. Likewise, we will learn to skip irrelevant temporary observations. 

Last, we will learn to reset the latent state whenever needed. We discuss this in detail 

below. 

b. Reset Gate and Update Gate 

The first thing we need to introduce are the reset gate and the update gate, a 

reset gate would allow to control how much of the previous state we might still want 

to remember. Likewise, an update gate would allow to control how much of the new 

state is just a copy of the old state. 

 Figure 16 illustrates the inputs for both the reset and update gates in a GRU, 

given the input of the current time step and the hidden state of the previous time step. 

The outputs of two gates are given by two fully-connected layers with a sigmoid 

activation function. 

 

Figure 16: Reset Gate and Update Gate[39] 
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 Mathematically, for a given time step t, the input is a minibatch 𝑥𝑡 and the 

hidden state of the previous time step is ℎ𝑡−1.Then, the reset gate 𝑅𝑡 and update 

gate 𝑈𝑡 are computed as follows: 

𝑅𝑡 = 𝜃(𝑥𝑡𝑊𝑥 + ℎ𝑡−1𝑊ℎ + 𝑏) 

𝑈𝑡 = 𝜃(𝑥𝑡𝑊𝑥 + ℎ𝑡−1𝑊ℎ + 𝑏) 

Where  𝑊𝑥 are weight parameters and b are bias. 

c. Hidden State 

 Hidden states are a new memory content which will be used in the reset gate 

to store the relevant information from the past. It is calculated as follows: 

1. Multiply the input 𝑥𝑡 with a weight W and ℎ𝑡−1 with a weight U. 

2. Calculate the product between the reset gate 𝑅𝑡 and 𝑈ℎ𝑡−1 .That determines what to 

remove from the previous time steps.  

3. If vector close to 0 the past input is deleted and only focus on the last entered input. 

And if the vector is close to 1, the old state is retained. 

4. Sum up the results of step 1 and 2. 

5. Apply the nonlinear activation function tanh.  

𝐻𝑡′ = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑡 + 𝑅𝑡 ∗ 𝑈ℎ𝑡−1) 

 

d. Final memory at current time step 

 As the last step, the network needs to calculate 𝐻𝑡 vector which holds 

information for the current unit and passes it down to the network. In order to do that 

the update gate is needed. It determines what to collect from the current memory 

content  𝐻𝑡′ and from the previous steps 𝐻𝑡−1. That is done as follows: 

𝐻𝑡 = 𝑈𝑡 ∗ 𝐻𝑡−1 + (1 − 𝑈𝑡) ∗ 𝐻𝑡′ 

1. Apply element-wise multiplication to the update gate 𝑈𝑡and 𝐻𝑡−1. 

2. Apply element-wise multiplication to (1-z_t) and𝐻𝑡′. 

3. Sum the results from step 1 and 2. 
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 The model can learn to set the vector 𝑈𝑡 close to 1 and keep a majority of the 

previous information. Since 𝑈𝑡  will be close to 1 at this time step, 1 − 𝑈𝑡 will be close 

to 0 which will ignore big portion of the current content. 

Here is a figure 17 which explains where and at what time step the above equations 

happen: 

 

Figure 17: GRU model[40] 

 This is how GRUs are able to store and filter the information using their update 

and reset gates. That eliminates the vanishing gradient problem since the model is not 

washing out the new input every single time but keeps the relevant information and 

passes it down to the next time steps of the network. 

5. Encoder-Decoder 

 In audio Captioning Encoder decoder models allow for a process in which a 

machine learning model generates a sentence describing an audio. It receives the audio 

as the input and outputs a sequence of words describing this audio. It is a major 

problem for sequenced-data based models, whose input and output are both variable-

length sequences. To handle this type of inputs and outputs, we can design an 

architecture with two major components[41].  

 The first component is an encoder: it takes a variable-length sequence as the 

input and transforms it into a state with a fixed shape.  

 The second component is a decoder: it maps the encoded state of a fixed shape 

to a variable-length sequence.  
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This is called an encoder-decoder architecture, which is depicted in the figure 18 

 

Figure 18: The encoder-decoder architecture 

5.1. Encoder  

 Encoding means to convert data into a required format. For example, we 

convert an audio into a two-dimensional vector, this two-dimensional vector[42]. For 

this example, the encoder is built by stacking GRUs.  We use this type of layers 

because its structure allows the model to understand context and temporal 

dependencies of the sequences. The output of the encoder, the hidden state, is the state 

of the last GRU timestep. The output of the encoder, a two-dimensional vector that 

encapsulates the whole meaning of the input sequence[41]. The length of the vector 

depends on the number of cells in the GRU as demonstrated in the figure 19. 

 

Figure 19: Encoder architecture 
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5.2. Decoder 

 To decode means to convert a coded message into intelligible language. In the 

machine learning model, the role of the decoder will be to convert the two-dimensional 

vector into the output sequence, the English sentence[43]. It is built with RNN layers 

and a dense layer to predict the English word as demonstrated in the figure 20. 

 

Figure 20: Decoder architecture 

 In the end, the encoder-decoder architecture contains both an encoder and a 

decoder, with optionally extra arguments. In the forward propagation, the output of the 

encoder is used to produce the encoded state, and this state will be further used by the 

decoder as one of its inputs. One of the major advantages of this model is that the 

length of the input and output sequences may differ[43]. The major limit of this simple 

encoder decoder model is that all the information needs to be summarized in one 

dimensional vector, for long input sequences that can be extremely difficult to achieve.  

6. Transformer 

 The game-changing part for sequencer data was developed when a new 

architecture was introduced called Transformers and which was 1rst time shown in an 

article that based on a concept called Attention Is Everything. The document Attention 

is all you need [44] presents an architecture called Transformers. Transformers is an 

architecture for turning a sequence into an antidote while helping two other parts, 

namely encoders and decoders, but it differs from the sequence described earlier in 

RNN or GRUs. It therefore does not implement recurrent neural networks[44].  
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 The recurrent neural network was so far one of the best ways to capture the 

small dependency on a sequence. However, the team presenting this paper titled 

specified above proves that the architecture with only an attention mechanism does not 

use RNN can improve its results in the task of translation and other NLP tasks. In 

transformers both encoder and decoder are made up of modules that can talk to each 

other multiple times.  

 First, we have to encode our inputs. A small but important part of this model 

is the position and coding of different inputs. Since we don't have a recurrent neural 

network that can remember how sequence is fed into the model, we have to somehow 

give each input or part of a sequence a relative position since a sequence depends on 

the order of elements[44]. These positions are added to the embedded representation 

of each word. The figure 21 below represents the detailed architecture of transformer 

model[44]. 

 

Figure 21: Transformer architecture [44] 
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6.1. Deferent transformers models 

 These are some of the most language models based on the transformer’s 

architecture illustrated in the table 4. 

 

Table 4- lagunage model exemple 

6.2. Transformer Architecture 

 The Transformer architecture inherited the Encoder-Decoder pattern. The 

encoding part contains 6 encoders mounted one after the other. The decoding part 

consists of 6 decoders also mounted one after the other but each taking, as an 

additional input, the output of the 6th encoder[44]. 

language 

models 
Description 

GPT3 

(Open-AI) 

 The most controversial pre-trained models, by Open-AI, the large-scale 

transformer-based language model was trained on 175 billion 

parameters, which is 10 times more -sparse language model. The model 

was trained to perform well on many NLP datasets. 

language 

models 
Description 

BERT 

(Google) 

 These are the bi-directional encoder representations of Transformers. 

Is a pre-trained NLP model, which is developed by Google in 2018. 

BERT has been pre-trained on 250 million Wikipedia words and 800 

million book corpus words. anyone working with BERT can train their 

own module with up to 30 minutes. 

ELMO 

(Alan LP) 

 ELMO is also known as integration for the language model is a deep 

contextualized word representation that model’s syntax and semantic 

words, as well as logistical context. The model has been pre-trained on 

a huge corpus of text and learns functions from bidirectional models. 
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 The input of one encoder is the output of the previous one. The input of the 

first encoder is embedding vector. Also, the input of a decoder is the output of the 

previous decoder plus the words already encoded as shown in the figure 1-23. The 

last decoder is connected to a Linear neural network and a SoftMax block. The role 

of this block is to make it possible to identify which words of the vocabulary 

correspond to the outputs of the last encoder[44]. The elementary blocks of the 

Transformer are the encoders and the decoders. 

  Let's take a closer look at these two elements, the figure 22 shows how 

transformer architecture is built. 

 

Figure 22: Transformer Architecture [45] 

 The encoder consists of two blocks which are both neural networks: A Self-

attention layer and a forward propagation network or Feed-forward Neural 

Network as demonstrated in the figure 23. The Self-Attention layer is the central 

element of the Transformer architecture. Its role is to maintain the interdependence 

of words in the representation of sequences. We will see the attention mechanism 
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in more detail below. The decoder is also composed of a Self-attention block and 

a Feed-forward but it also contains an Encoder-Decoder Attention layer which 

aims to allow the decoder to implement the attention mechanism between the input 

sequence encoded and output sequence being decoded. 

6.3. The Attention mechanism 

 The concept of attention is to measure how closely two elements of two 

sequences are related. In a sequence-to-sequence context in NLP, the aim of the 

attention mechanism will be to tell the rest of the model which words of sequence 

B should be paid the most attention to when processing a word of sequence A. 

 In the figure 23 we show an example, the clearer a cell the stronger the link 

between the two words to which it corresponds. we see that, a word has a strong 

link with its literal translation [44].  

 

Figure 23: Distribution of attention between two sequences[46] 
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6.4. Self-attention 

 Self-attention is the mechanism of attention applied to a single sequence. The 

self-attention layer determines the interdependence of the different words of the 

same sequence in order to associate a relevant representation encoding with it.  

 The self-attention process will therefore aim to detect the link between two 

words in the same sentence[44]. 

6.5. Multi-head attention 

 Multi-head Attention is intended to have multiple representation subspaces that 

prevent the representation from being fully biased if one (head) layer of attention 

is. The self-attention vector in multi-head is nothing but the concatenation of the 

output vectors of each head[44]. The Transformer was clearly a revolution when it 

was released in that it was both very efficient as a translation model and much 

faster to train compared to its predecessors. But especially by the influence he has 

on the NLP through the pre-trained models. 

7. Conclusion 

 This chapter was split between two parts in each part we presented some 

definitions and some frequently used methods. 

 Details of the first part was that we represented what are the basic machine 

learning definitions and tasks, we also dive into some evaluation models and 

parameters. 

 Second part was about deep learning we presented the basic architecture of a 

neuron network then we dive deeper to some NN based models that are frequently 

used in deep learning and we ended this part with introduction to transformers and 

their attention mechanism. 

 In the next chapter expect to see more about data pre-processing in specific the 

deferent tools and methods the handle both types of the data that we need in our work 

audio and text. 

 



47 

 

Chapter 2: Audio processing / Text 

processing 
 

Introduction 

 In this Chapter, we introduce a few fundamental concepts behind audio signal 

processing and text processing that will be required to perform our work. 

Part 1: Audio processing 

1. Introduction 

 Sound is one of our primary means of perceiving the world around us. It is 

essential to communicate with our environment and our peers. It can also be a vehicle 

for artistic expression and experience, for example music. Our thesis includes sound 

as a component. 

2. Sound wave 

 Sound is frequently defined as either an auditory sensation or a disturbance in 

a medium that produces an auditory sensation. Sound is a physical phenomenon that 

describes waves that originate in one location and travel through a medium to another 

location where they can be heard or measured[48].  

 A sound wave is a pressure vibration caused by the movement of energy 

traveling through a medium e.g., air as it propagates away from its source. As sound 

passes through the air, the air particles move left and right due to the energy of the 

sound wave passing through it. It's the vibrating air molecules that cause the human 

eardrum to vibrate, which the brain then interprets as sound. Air molecules do not 

travel from the noise source to the ear[47]. Each individual molecule only moves a 

small distance as it vibrates, which causes the adjacent molecules to vibrate in a 

rippling effect all the way to the ear as shown in the figure 24. 
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Figure 24: Longitudinal sound wave showing compression and rarefaction of air 

particles 

 Compression happens in the region in a longitudinal wave where the particles 

are closest together. Rarefaction is a region in a longitudinal wave where the particles 

are furthest apart. Sound waves are longitudinal and should not be confused 

with transverse waves. Most waves are transverse, including light and the ripples we 

see on water. 

 Transverse waves vibrate at 90 degrees to the direction of the wave. In contrast, 

longitudinal waves have vibrations along the same axis as the direction in which the 

wave is traveling [48] .this figure 25 below shows how a transverse wave looks. 

 

Figure 25: A simple sine wave, shown as a transverse wave 

3. Wave form 

 A waveform is a graphical representation of a sound wave as it moves through 

a medium over time. A waveform is a two-dimensional representation of a sound. The 

two dimensions in a waveform display are time and intensity[47].  

 Waveforms are also known as time domain representations of sound as they 

are representations of changes in intensity over time. The intensity dimension actually 

displays sound pressure. Sound pressure is a measure of the tiny variations in air 

pressure that we are able to perceive as sound. The greater the change in pressure, the 

louder the sound that we hear as demonstrated in the figure 26.  
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Figure 26: Waveform diagram showing the wavelength and amplitude of a soundwave 

 Any waveform has four fundamental characteristics: Wavelength, Amplitude, 

Frequency, Velocity. 

3.1. Wavelength 

 The wavelength of a wave is the length in meters from the start to the end of 

one full cycle of the waveform from crest to crest. 

3.2. Amplitude 

 The amplitude is the maximum displacement of a wave from the centerline to 

the peak, not from peak to peak. The greater the distance from the centerline of a 

waveform the more intense the pressure variation will be within a medium, hence 

the louder it is perceived.  

Amplitude is measured in two ways: 

• Zero to peak value which measures the maximum positive or negative signal 

level 

• RMS value measures a more meaningful average level, like that at which 

humans can hear. 

3.3. Frequency 

 Frequency is how many complete waves there are per second passing a certain 

point. The frequency indicates the rate of pressure variations or cycles per second of a 

wave. Frequency is measured in Hertz[49]. The frequency of a sound determines 

the pitch, the sensation of how low or how high a sound is. Lower frequency sound 
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waves have longer wavelengths and lower pitch. Higher frequency sound waves have 

shorter wavelengths and a higher pitch as demonstrated in the next figure 27. 

 

Figure 27: Low-frequency wave in comparison to a high-frequency wave  

 The frequency range in which humans can hear is 20Hz to 20,000Hz and is 

called the audible range. The formula for frequency is: 

𝑓=1⁄ 𝑡 

• where: 𝑓 represents the frequency in Hertz and 𝑡 represents the period in 

seconds. So, for our bell striking example, for a period of 0.0023𝑠: 

𝑓= 1/𝑡=1/0.0023=434.7 𝐻𝑧. 

 The frequency of the sound generated by striking a bell is about 435 Hz.  

3.4. Velocity 

 The velocity is the speed and direction of a soundwave. Soundwaves travel at 

different speeds through different mediums. Through the air, sound travels at 344 

meters per second. Generally speaking, the denser the medium the faster sound travels 

through it[50]. To find the velocity of a wave the following equation is used: 

Velocity (V) = Frequency (f) x Wavelength (λ) 

4. Sound envelope 

 The envelope of a sound displays how the level of a sound wave changes over 

time. The envelope of a wave helps establish the sound’s unique individual quality; it 

has a significant influence on how we interpret sound[48].  

5. Audio signal Representation 

 waveforms make up the basic ingredients of sound; sine wave, square wave, 

triangle wave, and sawtooth wave. 



51 

 

5.1 Sine wave 

 A sine wave is the simplest of all waveforms and contains only a single 

fundamental frequency and no harmonics or overtones as shown in the figure 28. 

 It is the fundamental frequency that determines the pitch of a sound. Virtually 

all musical sounds have waves that are more complex than a sine wave. It is the 

addition of harmonics and overtones to a wave that makes it possible to distinguish 

between different sounds and instruments. 

 

Figure 28: Visual representation of a sine wave 

6. Phases of an audio signal 

 Sound waves occur in cycles, they proceed through repetitions. Phase is 

defined as how far along a waveform is in its current cycle the deferent wave phases 

are defined in the figure 29. The starting point of a wave is 0 degrees, the peak of a 

wave is 90 degrees, the next neutral pressure point is 180 degrees, the peak low-

pressure zone is 270 degrees, and the pressure rises to zero again at 360 degrees. 

 

Figure 29: Graph representing the different phases of a wave 
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7. Digital audio processing 

This Part is about the different steps for audio signal processing, we will define 

sampling and quantization and explain how they work. This thesis revolves around 

audio signal processing, which is the theory and methods of processing audio signals.  

Audio signals are simply audible audio signals, while a signal is something that is 

measured in time[53]. In this context, that thing is pressure, because what we perceive 

with our ear’s changes with pressure. We may wish to manipulate audio signals for 

technical purposes, such as creating music, or we may wish to compress audio or music 

signals. Before we start processing audio, we must first understand the nature of audio 

signals. 

7.1. Audio signal pre-processing 

 If needed, the audio data is pre-processed. The role of this step is to enhance 

certain characteristics of the signal for further analysis. This is achieved by 

reducing the effects of noise or by emphasizing the target sounds in the signal. 

 Knowledge about the recording conditions and characteristics of target sounds 

can be utilized in the pre-processing stage to enhance the signal. In the case where 

the audio data is captured in non-uniform recording settings, down-mixing the 

audio signal into a fixed number of channels along with re-sampling it into fixed 

sampling frequency will result in converting the input data into a uniform format 

for further analysis. After the pre-processing phase, the audio data is now 

appropriate to be used in the feature extraction phase. 

7.2. Digital audio signal 

 As previously stated, sound can refer to either an auditory sensation in the air 

or a disturbance in a medium that causes such a sensation. As a physical 

phenomenon, sound can be understood as vibration, or the movement of molecules 

that causes pressure changes in a medium. These air vibrations can then be 

measured using a microphone, where changing pressure causes a diaphragm to 

move. A voice coil and a magnet convert this movement into a voltage signal. So, 

we now understand how a signal transforms from the movement of molecules in a 
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gas to an electrical signal. A microphone's voltage signal is a continuous signal, 

which means it can take on a value, just like pressure at a point in space. 

Furthermore, even if the range is limited, it can take on an infinite number of 

different values at any given time[53]. 

 A computer can only store a limited number of numbers, and those numbers 

can only have a limited number of values. As a result, we must transition from 

measuring an infinite number of time values that can take on an endless number of 

different values to that. To put it another way, we must convert analog signals to 

digital signals. An ADC is a device or chip that converts analog signals to digital 

signals through sampling and quantization. A DAC, on the other hand, reconstructs 

digital signals into analog ones. Figure 30 depicts an example of an audio 

processing system. 

 

Figure 30: Audio processing system[54] 

 Vibrations in the air are converted from a pressure signal to an electrical signal 

by the microphone. The analog signal from the microphone is converted into a digital 

signal by the ADC, and then the digital signal can be processed by the computer. The 

processed digital signal can then be converted into an analog signal by a DAC, and 

finally, it can be converted back into a compression signal by an active amplifier. 

7.3. Sampling  

 Samples are created by recording an analog signal at evenly spaced points in 

time. Sampling is the process of recording an analog signal at regular discrete moments 

of time. The sampling rate f s represents the number of samples taken per second[55].  
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The sampling interval: 

T s=1/fs 

 Is the time interval between samples. Although any sampling frequency above 

40 kHz would be sufficient to capture the entire range of audible frequencies, 44,100 

Hz (or 44.1 kHz) is a widely used sampling rate. When sampling at higher rates, more 

samples are generated, resulting in a much higher demand for memory to store the 

samples. 

7.4. How is sound sampled and stored in digital form? 

 To do this, sound is captured usually by a microphone and then converted into 

a digital signal. An ADC converter will capture a sound wave at regular time intervals. 

This recording is known as a sample. This data is then stored in a file for later use. 

7.5. Signal sampling 

 When a computer records digital audio, it measures the sound pressure level 

multiple times per second. These measurements are often called samples. Being 

digital, the samples are quantized that is, they can only take on certain discrete values 

as compared to the continuous range of possible values in the actual analog sound 

wave. Commonly, the samples can take on the integer values between -32768 and 

+32767 the range of numbers representable with 16 bits with positive values 

representing the sound pressure level being above the ambient atmospheric pressure 

and negative values representing the sound pressure level being below the ambient 

atmospheric pressure[55]. 

 We could plot the samples on a graph represented in the figure 0-3. The X axis 

would represent time and the Y axis the sound pressure level (the value of the sample). 

In the graph below, the distance between adjacent peaks represents 100 samples with 

a sampling rate of 44,100 Hz. Thus, the sound has a fundamental frequency of 441 Hz 

(44,100 / 100 = 441). Listening to it would sound like the A above middle C which 

has a fundamental frequency of 440 Hz0 



55 

 

 

Figure 31: Time and sound pressure plot 

 The sound wave shown above in the figure 40 looks somewhat like a square 

wave. If you compare it to a 441 Hz pure tone shown below in the figure 32, it is 

obvious that it is not a pure sinusoid and not a pure tone. 

 

Figure 32:Time and sound pressure plot 

7.6. Audio signal quantization 

 The digitization of a sampled signal with continuous amplitude is called 

quantization. A quantizer is a signal processing block, that maps a continuous 

amplitude to a discrete amplitude. The output of the quantizer is discrete, meaning that 

it can only output Q different values[53]. Practically, the quantizer is an ADC, since it 
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maps the continuous input amplitude to a digital representation of this value. Formally, 

the quantized output Q[x] of some input value x, is given by: 

𝑄[𝑥] = argmin 1 ∈ |1 − 𝑥| 

 In order for a signal to be suitable for treatment by numerical circuitry, it must 

first be represented in a numerical format, or quantized. That is, a continuous range of 

values is replaced by a limited set of values separated by discrete steps. Usually, the 

number of steps is chosen to be a power of two, for the reason that it yields the most 

economical representation in binary digital electronics. Naturally, the quality of the 

approximation depends on the number of steps used to approximate the original signal. 

7.7. The Fourier transforms 

 The Fourier transform converts a set of time-domain data to frequency-

domain data and vice versa. It means that it can be used to take samples and 

determine the sinusoids that could be used to create the samples. This is known 

as a Fourier analysis. The Fourier transform can also be used to reverse the 

process, taking the sinusoids and recreating the samples[56]. This is known as 

Fourier synthesis. When you perform a Fourier analysis on the samples in the 

first graph, you get the following results in figure 33. 

 

Figure 33: The Fourier Transforms Plot 

 Looking at the results of the Fourier analysis tells us that there are four 

frequencies present in the sound wave shown in the table 5: 
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Frequency Amplitude 

441 Hz 1 

1323 Hz = 3 X 441 Hz 1/3 

2205 Hz = 5 * 441 Hz 1/5 

3087 Hz = 7 * 441 Hz 1/7 

Table 5- frequencies present in the sound wave 

It is important to note that we will be translating the audio from the time domain 

to the frequency domain by using this transformation. Here are some key differences 

between the two: 

1. The time-domain examines the amplitude variation of the signal over time. 

This is useful for comprehending its physical form. We'll need time on the x-

axis and amplitude on the y-axis to plot this. The shape helps us predict how 

loud or quiet the sound will be. 

2. The frequency domain examines the constituent signals in our recording. This 

allows us to find a fingerprint of the sound. We need frequency on the x-axis 

and magnitude on the y-axis to plot this. The greater the magnitude, the more 

significant the frequency. The magnitude is simply the absolute value of our 

FFT results. 

7.8 The Short-Time Fourier Transform 

 The Fourier transform tells us how much of each frequency is present in a 

signal. If the spectral content of the signal does not change significantly over time. 

However, if the signal changes over time, the Fourier transform will be unable to 

distinguish between the various spectral content changes[56].  

The STFT attempts to address the classic Fourier transform's lack of time resolution. 

The input data is divided into many small sequential pieces called frames, and the 

Fourier transform is applied sequentially to each of these frames. The result is a time-

dependent representation that shows how the spectrum changes as the signal 

progresses. 
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As a result, at the frame boundaries, there is frequently a discontinuity or break in the 

signal. This introduces spectral components into the transform that were not present in 

the original signal, which is known as spectral leakage. The solution is to apply a 

windowing function to the frame, which gently scales the signal's amplitude to zero at 

each end, reducing discontinuity at frame boundaries. When these windowing 

functions are applied to a signal, some information near the frame boundaries is clearly 

lost. As a result, overlapping the frames is a further improvement to the STFT[56]. 

Information that is lost at a frame boundary is picked up between the boundaries of the 

next frame when each part of the signal is analyzed in more than one frame. 

8.  Feature Extraction 

 Most real-world data, and in particular sound data, is very large and contains 

much redundancy, and important features are lost in the cacophony of unreduced 

data. The data reduction stage is often called feature extraction, and consists of 

discovering a few important facts about each data item. The features that are 

extracted from each case are the same, so that they can be compared.  

8.1 The amplitude envelope 

 AE aims to extract the maximum amplitude within each frame and 

string them all together. It is important to remember that the amplitude 

represents the volume of the signal. 

 First, we split up the signal into its constituent windows and find the 

maximum amplitude within each window. From there, we plot the maximum 

amplitude in each window along time[57]. We can use the AE for onset 

detection, or the detection of the beginning of a sound. In various speech 

processing applications this could be someone speaking or external noise, 

whereas in Music Information Retrieval this could be the beginning of a note 

or instrument. The main downfall of the AE is that is not as robust to outliers 

RMSE which will we see next in this chapter. Here is how we can formalize 

this concept: 
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9. Spectrogram 

 A spectrogram is a detailed view of audio, able to represent time, frequency, 

and amplitude all on one graph [60] .Sound spectrum is a representation of a sound 

usually a short sample of a sound around 10 to 30s of length in terms of the amount 

of vibration at each individual frequency. It is usually presented as a graph of either 

power or pressure as a function of frequency. A spectrogram is built from a 

sequence of spectra by stacking them together. The final graph has time along the 

horizontal axis, frequency along the vertical axis, and the amplitude of the signal 

at any given time and frequency. 

9.1. Mel scale 

The Mel Scale is a logarithmic transformation of a signal’s frequency. The core 

idea of this transformation is that sounds of equal distance on the Mel Scale are 

perceived to be of equal distance to humans[61]. For example, most human beings 

can easily tell the difference between a 100 Hz and 200 Hz sound. However, it is 

actually much harder for humans to be able to differentiate between higher 

frequencies, and easier for lower frequencies. 

9.2. Mel spectrograms 

 Mel Spectrograms are spectrograms that visualize sounds on the Mel scale as 

opposed to the frequency domain. We can see in the next figure 34 how each sound 

takes a unique shape based off of the sound it actually produces[62]. 

 

Figure 34: Mel Spectrograms Plot 
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Part 2: Text Processing 

1. Introduction 

 In this part, five levels of representations for texts are defined. will provide 

background information on NLP and descriptions on the different levels of language 

processing an NLP system can employ. NLP is a subfield of Artificial Intelligence 

which tries to accomplish human-like language processing of naturally occurring texts 

by computer systems. 

 Humans utilize different levels of processes in order to understand language. 

Similarly, NLP applications utilize different levels of language processing to achieve 

their goals.  

2. Natural language 

 A natural language does not define a language in the strict sense of the term, 

but it is the natural way of expressing humans, unlike binary and the languages used 

in programming. It is the language of emails, descriptions, chat... 

 NL is a symbolic system that is embodied externally as voice and consists of 

vocabulary and grammar. The biggest difference between natural and artificial 

languages lies in ambiguity.  

 NLP is a technology that uses computers as tools to perform various processing 

on human specific written and verbal natural language information. NLP is a branch 

discipline in the fields of AI. It studies various theories and methods for effective 

communication between human beings and computers using natural languages[64].   

 NLP needs to develop models that express language capability and language 

application, establish a computing framework to implement such language models, 

propose corresponding methods to continuously improve the models, design various 

practical systems based on the models, and explore evaluation technologies of these 

systems.  

 NLP combines computational linguistics rule-based modeling of human 

language with statistical, machine learning, and deep learning models. Together, these 

technologies enable computers to process human language in the form of text or voice 

data and to understand its full meaning,  
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3. Natural language processing tasks 

 NLP is used to understand the structure and meaning of human language by 

analyzing different aspects like syntax, semantics, pragmatics, and morphology. Then, 

computer science transforms this linguistic knowledge into rule-based, machine 

learning algorithms that can solve specific problems and perform desired tasks[64]. 

 Human language is filled with ambiguities that make it incredibly difficult to 

write software that accurately determines the intended meaning of text or voice 

data[65].  

 Several NLP tasks break down human text and voice data in ways that help the 

computer make sense of what it's ingesting. Some of these tasks include the following: 

1. Speech recognition, also called speech-to-text, is the task of reliably converting 

voice data into text data 

2. Part of speech tagging, also called grammatical tagging, is the process of 

determining the part of speech of a particular word or piece of text based on its 

use and context.  

3. Word sense disambiguation is the selection of the meaning of a word with 

multiple meanings through a process of semantic analysis that determine the 

word that makes the most sense in the given context.  

4. Natural language generation is sometimes described as the opposite of speech 

recognition or speech-to-text; it's the task of putting structured information into 

human language. 

4. Challenges of natural language processing 

 There are a number of challenges of natural language processing and most of 

them boil down to the fact that natural language is ever evolving and always somewhat 

ambiguous[65]. They include: 

1. Precision. Computers traditionally require humans to speak to them in a 

programming language that is precise, unambiguous and highly structured or 

through a limited number of clearly enunciated voice commands. Human 

speech, however, is not always precise; it is often ambiguous and the linguistic 

structure can depend on many complex variables, including slang, regional 

dialects and social context. 



62 

 

2. Tone of voice and inflection. Other difficulties include the fact that the abstract 

use of language is typically tricky for programs to understand 

3. Evolving use of language. Natural language processing is also challenged by 

the fact that language and the way people use it is continually changing. 

 

5. Text preprocessing 

 There are different ways to preprocess text. Here are some of the approaches 

that are widely used. 

5.1. Lowercasing 

Lowercasing ALL your text data, is one of the simplest and most effective form 

of text preprocessing[66]. Here is an example of how lowercasing solves the 

sparsity issue, where the same words with different cases map to the same 

lowercase form. Showed in this table 6. 

Raw Lowercased 

Canada 

CanadA 

CANADA 

canada 

Raw Lowercased 

TOMCAT 

Tomcat 

tomcat 

tomcat 

Table 6- Lowe casing Example 

5.2. Stemming 

 Stemming is the process of reducing inflection in words to their root 

form.  Stemming uses a crude heuristic process that chops off the ends of words 

in the hope of correctly transforming words into its root form. There are 

different algorithms for stemming[66]. The most common algorithm, which is 

also known to be empirically effective for English, is Porters Algorithm. Here 

is an example of stemming in action shown in the table 7. 
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 Original Word Stemmed Words 

0 Connect Connect 

1 Connected Connect 

2 Connection Connect 

3 Connections Connect 

4 Connects Connect 

0 Trouble Trouble 

1 Troubled Trouble 

2 Troubles Trouble 

Table 7- Porters Algorithme Example 

5.3. Lemmatization 

 Lemmatization on the surface is very similar to stemming, where the goal is to 

remove inflections and map a word to its root form. The only difference is that, 

lemmatization tries to do it the proper way. It may use a dictionary such as 

WordNet for mappings[67].  

5.4. Stop word Removal 

 Stop words are a set of commonly used words in a language. Examples of stop 

words in English are “a”, “the”, “is”, “are” and etc. The intuition behind using stop 

words is that, by removing low information words from text, we can focus on the 

important words instead[68]. Here is an example of stop word removal in table 8. 

Original Sentence = this is a text full of content and we need to clean it up 

Sentence with stop words removed = w w w text full w content w w w w clean w w 

Table 8- Text Stop word removal example 

5.5. Normalization 

 Text normalization is the process of transforming a text into a standard form. 

For example, the word “cats” and “cuts” can be transformed to “cat”[66]. Here’s 

an example of words before and after normalization in this next table 9. 
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Raw Normalized 

2morow 

2moro 

2mrw 

tomrw 

tomorrow 

b4 before 

Table 9- Text Normalization Example 

5.6. Tokenization  

 Is the first step in any NLP pipeline. A tokenizer breaks unstructured data and 

NL text into chunks of information that can be considered as discrete elements. 

 The token occurrences in a document can be used directly as a vector representing 

that document[66].  Tokenization can separate sentences, words, characters, or sub 

words. When the text is split into sentences, it is called sentence tokenization.  

 

Figure 35: Example of sentence tokenization 

 For words, it is called word tokenization. 

 

Figure 36:Example of word tokenization 

6. Different word representations 

6.1. Word Embedding 

 It is an approach for representing words. Word Embedding or Word Vector is 

a numeric vector input that represents a word in a lower-dimensional space. It 

allows words with similar meaning to have a similar representation. They can also 

approximate meaning. A word vector with 300 values can represent 300 unique 

features[69]. 
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6.1.1. One-Hot Encoding 

 One hot encoding means converting words of a document in a V-dimension 

vector and by combining all this we get a single document so at the end we have a two-

dimensional array. This technique is very simple[70]. 

6.1.2. Bag Of Words 

 Bag of words is a little bit similar to one-hot encoding where we enter each 

word as a binary value and in a Bag of words, we keep a single row and entry the count 

of words in a document. So, we create a vocabulary and for a single document, we 

enter one entry of which words occur how many times in a document[71].  

6.1.3. Word2Vec 

 Word2Vec creates vectors of the words that are distributed numerical 

representations of word features   these word features could comprise of words 

that represent the context of the individual words present in our 

vocabulary[72].  

 As seen in the figure below 37 where word embeddings are plotted, similar 

meaning words are closer in space, indicating their semantic similarity. 

 

Figure 37:example of embeddings in a graph[73] 

 Two different model architectures that can be used by Word2Vec to create the 

word embeddings are the Continuous Bag of Words (CBOW) model and the Skip-

Gram model both explain below. 
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6.1.4. CBOW  

 Even though Word2Vec is an unsupervised model where you can give a corpus 

without any label information and the model can create dense word embeddings, 

Word2Vec internally leverages a supervised classification model to get these 

embeddings from the corpus. The CBOW architecture comprises a deep learning 

classification model in which we take in context words as input, X, and try to predict 

our target word, Y. 

6.1.5. Skip-gram  

 In the skip-gram model, given a target word, the context words are predicted 

since the skip-gram model has to predict multiple words from a single given word, we 

feed the model pairs of (X, Y) where X is our input and Y is our label. This is done by 

creating positive input samples and negative input samples. Positive Input Samples 

will have the training data in this form: [(target, context)1] where the target is the target 

or center word, context represents the surrounding context words, and label 1 indicates 

if it is a relevant pair. Negative Input Samples will have the training data in the same 

form: [(target, random),0]. In this case, instead of the actual surrounding words, 

randomly selected words are fed in along with the target words with a label of 0 

indicating that it’s an irrelevant pair. These samples make the model aware of the 

contextually relevant words and consequently generate similar embeddings for similar 

meaning words. This figure 38 shows the deference between CBOW and Skip-gram: 

 

Figure 38: CBOW and Skip-gram examples[74] 
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7. Word processing with BERT 

 BERT is a model which is quite bidirectional. Bidirectional indicates that 

during the training phase, BERT learns information from both the left and right sides 

of a token’s context. A model’s bidirectionality is essential for completely 

comprehending the meaning of a language.  

 In order to pre-train deep bidirectional representations from unlabeled text, the 

system uses context conditioning on both the left and right sides of the sentence. As a 

result, the pre-trained BERT model could also be fine-tuned by adding only one more 

output layer to produce cutting-edge models for a wide range of NLP tasks[75]. To 

learn the contextual relationships between words in a text, BERT uses Transformer, a 

mechanism of attention explained in part 2 of chapter 1.  

 The transformer implementation has two mechanisms: an encoder that receives 

a text input and a decoder that predicts the task. Only the encoder mechanism is 

required because the purpose of BERT is to build a language model. The Transformer 

encoder reads the entire sequence of words at a time, unlike directional versions that 

read the text entry sequentially. It is classified as bidirectional as a result of this, while 

the real term is non-directional. This feature allows the model to learn the context of a 

word according to its environment this next figure 39 shows an example of this 

functionality [75]. 

 

Figure 39:BERT example[76] 
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 During the BERT training process, pairs of sentences are provided as input into 

the model, and learn how to predict whether or not the second sentence in the pair is 

the next sentence in the original document. Half of the inputs during training are pairs 

where the second sentence is the next sentence in the original document while the other 

half is a random sentence from the group. During training, as described above, the 

[CLS] code is inserted at the beginning of the first sentence and the [SEP] code is 

presented at the end of each sentence, with each code containing the insertion sentence 

indicating the sentence A or sentence B[77].  

 Finally, topical embedding is customized for each distinctive code that 

corresponds to its place in the sequence. Before introducing word sequences into 

BERT, a part of each sequence is replaced by a [MASK] token. The model then 

attempts to predict the original value of the masked words using the context provided 

by the other unmasked sentences in the sequence. This is followed by multiplying the 

encoder output vectors by the integration matrix, transforming them into a vocabulary 

dimension and calculating the probability of each word of the vocabulary using 

SoftMax all of this is well represented in the figure 40  [77]. 

 

 

Figure 40: Pre training BERT Example [78] 
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8. Conclusion 

 This chapter is split between two parts in the first part we represented audio 

signal in every form and some of the tools to extracted features from digital audio data. 

 Second part was about text processing and the deferent methods of feature 

extraction we ended this part we the most resent developed text processing method 

wish is BERT. 

 In the next chapter we will be defining the model we used and the deferent 

architectures we developed as well as some experiments. 
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Chapter 3:  Proposed approach 

1. Introduction 

 Automated audio captioning (AAC) is an intermodal translation task, where 

the system receives as an input an audio signal and outputs a textual description of the 

contents of the audio signal. In this chapter we will show an example of related works 

for the  AAC task as well as our proposed architecture, we will be presenting two 

model. First model with one-hot-encoding as text feature, second model with sentence 

BERT as text feature. 

 Finally, we will show the details of how to two models work and represent each 

audio and text features that is used in both models. 

2. Global architecture  

 In the past years this field has received increasing attention due to freely 

available datasets released and being held as a task in DCASE Challenges in 2020 and 

2021 A number of papers have been published and the encoder-decoder framework 

has been adopted as a standard recipe for solving this translation task.  

 Encoder and decoder are the two components that make up our model. To 

thoroughly illustrate the reasoning behind the model. Encoder Decoder architecture is 

sequence-to-sequence model. a sequence-to-sequence model aims to map a fixed-

length input with a fixed-length output where the length of the input and output may 

differ[41]. 

 In the figure 41 we gave an example of AAC system basic architecture, more 

details will be provided later in the chapter. 
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Figure 41: Example of Automated Captioning System [2] 

3. Related works 

 Throw-out our research we have look into deferent architectures that were 

proposed for the automated audio captioning task, in the past 3 years the most 

frequently used architecture in DCASE Challenges 2020 and 2021 is an encoder 

decoder architecture that used an encoder part for encoding the audio and a decoding 

part for decoding text. The encoder decoder architectures have proven good results for 

AAC task, this next table 10 represents four deferent encoder decoder architecture that 

we have researched each using deferent methods to best solve the audio captioning 

problem. 

 Encoder 

Neuron 

network 

Decoder 

Neuron 

Network 

Audio 

Feature 

Text Feature Loss 

function 

Learning 

set-up 

First 

Model 

CNN RNN Log-Mel-

Energies 

Numeric 

representation 

Cross-

entropy 

Adam 
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 Encoder 

Neuron 

network 

Decoder 

Neuron 

Network 

Audio 

Feature 

Text Feature Loss 

function 

Learning 

set-up 

Second 

Model 

LSTM RNN Log-Mel-

Energies 

Embedding Cross-

entropy 

Adam 

Third 

Model 

CNN LSTM Log-Mel-

Energies 

Embedding Cross-

entropy 

Adam 

Forth 

Model 

RNN Transformer Log-Mel-

Energies 

One-hot-

Encoding 

Cross-

entropy 

Adam 

Table 10- Related Works Table 

 In all these architectures we noticed that the most used architectures are RNNs 

and CNNs, they all seem to use the same audio feature which is Log-Mel-Energies but 

deferent text features wish tells us to experiment more with the text features instead of 

changing the audio features, later in this chapter we will be representing our two 

deferent features that we experimented with as our text features. 

 Because the AAC problem is a sequence-to-sequence problem we chose to 

experiment with two different model both using recurrent neuron network as encoders 

and decoder architecture both models will be explained later in the chapter. 

4. Our proposed models 

 In this section we present the models architecture that we use in our 

experiments. The proposed method for the AAC task is a transformer model, which is 

based on the traditional sequence-to-sequence architecture. The model takes the log-

Mel-spectrogram of an audio clip as input and outputs the probabilities of the predicted 

words.  

 For our 1rst model in order to train such a model with limited resources we 

experiment with 3 layered GRU as the encoder as represented in the next figure where 

(e) is the feature vector and (w) is the word. Our deep neural network method in the 

baseline model is a sequence-to-sequence system, consisting of an encoder and a 

decoder. The encoder takes as an input 64 log Mel-band energies, consists of three bi-

directional RNN layers, and outputs the summary of the input sequence of features. 

Each GRU of the encoder has 256 output features. 
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 The input sequence to the encoder has different length from the targeted output 

sequence. For that reason, there has to be some kind of alignment between these two 

sequences. Our system does not employ any alignment mechanism. Instead, the 

encoder outputs the summary vector of the input sequence, and this summary vector 

is then repeated as an input to the decoder. The decoder consists of two RNN layers it 

accepts the output of the encoder, and outputs a probability for each of the unique 

words. The decoder iterates for 22-time, which is the length of the longer caption, this 

figure 42 shows how it all works. 

 

Figure 42: Illustration of encoder decoder AAC architecture[79] 

 The model we present here is trained to implement the following mapping 

where A is an audio clip and c is a caption: 

𝑓: 𝑨 →c 

It is composed of an encoder with parameters θe and a decoder with parameters θd and 

it models the conditional probability distribution: 

𝑝𝜗𝑒𝜗𝑑(𝐜|𝐀) 

The encoder part encodes the input sequence of patches P1: k to a new sequence X1: 

n, thus defining the mapping: 

f: P1: k → X1: k 
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where X1:h are the audio features. The audio features function as compressed 

representation of the input audio. This next figure 43 illustrates Our proposed encoder-

decoder architecture. 

 

Figure 43: First model encoder decoder architecture 

 For our 2nd model, we used the same architecture represented in the figure 52 

with the exception of changing the word embedding to sentence embedding 

specifically S-BERT. This time the model takes the same encoder decoder architecture 

but change the input of the decoder to a 384-dimensional vector, this proved a bit 

difficult to train and obtain good evaluation result. This next figure 44 represents the 

above explained model. 
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Figure 44: Second model with the use of S-BERT  

5. Pre-processing  

 As mention in the previewed section the dataset contains 4982 audio samples, 

15 to 30 seconds long, collected from the Freedsound platform. Each sample is 

annotated by human annotators with five different captions, 8 to 20 words in length, 

summing up to a total of 24905 captions in the whole dataset. There are three splits 

available: development (14465 captions, 2893 audios), evaluation (5225 captions, 

1045 audios), and testing (5215 captions, 1025 audios), where only the development 

and evaluation splits are public and freely available[3].  

 For the audios, F = 64 log Mel-band energies are extracted using Hamming 

window of 1024 sampled-long window (around 23ms) with 50% overlap, resulting to 

1292 ≤ Ta ≤ 2584 feature vectors. For simplicity, no further pre-processing steps or 

data augmentation techniques are employed in this process. For captions processing, 

<SOS> (start-of-sentence) and <EOS> (end-of-sentence) tokens are appended at the 

start and end positions of the captions. The captions are then tokenized -mapped to a 

pre-built dictionary to from word vectors. Specifically, the dictionary associates each 

unique word in the development split to a unique number, in which all words are 

treated equally without any specific set of rules. Since the words are uniformly 
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distributed, there are no exclusive words in development or evaluation splits. For batch 

processing, all word vectors are concatenated into Y ∈ RB×L, where B is the batch 

size, and L is the length of the longest caption in the batch and left-pad other shorter 

sentences with < SOS > tokens. 

6. Encoder part 

6.1. Audio encoding 

 Analyzing the content of an audio clip largely depends on obtaining an 

effective feature representation for it, which is the aim of the encoder in an AAC 

system. Current popular approaches for acoustic encoding consist of two steps. In our 

model we first extract acoustic features, and then passing them into an encoder to 

obtain compact audio features.  

6.2. Audio features 

 Time-frequency representations, such as spectrograms, are widely used as the 

acoustic features. The spectrogram is a 2-D representation whose horizontal axis is 

time and vertical axis is frequency, the value at each point of the spectrogram 

represents the energy at a specific time and frequency.  

6.3. RNNs 

 RNNs are designed to process sequential data with variable lengths. Audio is 

a time series signal, therefore RNNs initial works adopted RNN’s. In a simple recipe, 

a RNN is used to model temporal relationships between acoustic features, and the 

hidden states of the last layer of the RNN is regarded as the audio feature sequence[36].  

6.4. Audio pre-processing 

 Some audios are get recorded at a different rate-like 44KHz or 22KHz. Using 

LIBROSA, we can turn it into whatever form we would like and then as showed in the 

figure 45. 



77 

 

 

Figure 45: waveform pre-processing example 

 We can see the data in a normalized pattern. Now, our task is to extract some 

important information, and keep our data in the form of independent (and dependent 

features. We will use Mel spectrogram to extract independent features from audio 

signals. the audio data is pre-processed to enhance certain characteristics of the signal 

for analysis. This is achieved by reducing the effects of noise or by emphasizing the 

target sounds in the signal[55]. 

 Clotho data are WAV and CSV files. In order to be used in our model, we had 

to extract features from the audio clips (WAV files) and the captions in the CSV files 

have to be turned to a more computational form. Finally, the extracted features and 

processed words, have to be matched and used as input-output pairs for optimizing the 

parameters of an audio captioning method. That where we chose to use Mel 

spectrogram as an input to our audio encoding method. 

6.5. MEL-SPECTOGRAM 

 Deep learning models rarely take raw audio directly as input. In our work we 

converted the audio into a spectrogram. The spectrogram is a snapshot of an audio 

wave and since it can be translated to a sequence, it is well suited to being input to 

RNN-based architectures developed for handling sequenced data. Spectrograms are 

generated from sound signals using Fourier Transforms. A Fourier Transform 

decomposes the signal into its constituent frequencies and displays the amplitude of 

each frequency present in the signal. 

 A Spectrogram chops up the duration of the sound signal into smaller time 

segments and then applies the Fourier Transform to each segment, to determine the 
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frequencies contained in that segment. It then combines the Fourier Transforms for all 

those segments into a single plot.  

 It plots Frequency (y-axis) vs Time (x-axis) and uses different colors to indicate 

the Amplitude of each frequency. The brighter the color the higher the energy of the 

signal[60]. 

 A Mel Spectrogram makes two important changes relative to a regular 

Spectrogram that it plots Frequency vs Time. It uses the Mel Scale instead of 

Frequency on the y-axis. For deep learning models, we usually use this rather than a 

simple Spectrogram. 

 This figure 46 below shows an example of our Spectrogram using the Mel 

Scale then using frequency. 

 

Figure 46: Example of a simple spectrogram and a male spectrogram 

7. Decoder Part 

7.1. Text decoding 

 The aim of the language decoder is to generate caption-given audio features 

from the encoder. All existing work we are aware of adopts an auto-regressive model, 

where each predicted word is conditioned on previous predictions. In addition to the 

main decoder block, there is often a word embedding layer before the main decoder 

block, which embeds each input word into a fixed-dimension vector. In this section, 
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we first introduce popular word embeddings and then discuss main text decoding 

approaches. 

7.2. Word Embeddings 

 In natural language processing, word embedding is a term used for the 

representation of words for text analysis, typically in the form of a real-valued vector 

that encodes the meaning of the word such that the words that are closer in the vector 

space are expected to be similar in meaning. This next figure 47 shows an example of 

how word embedding works when we introduce a full sentence as an input and how it 

extracts vectors from it. 

 

Figure 47: Word embedding example 

 Pre-trained word embeddings are trained using neural networks with a large 

corpus and could capture semantic information, that is, semantically similar words are 

close to each other in the embedding. Word2Vec GLOVE are widely used in existing 

audio captioning works. In our model we have chosen to use two deferent methods for 

text embedding to be used in our model. 

7.3. One hot vector 

 The machine cannot understand words and therefore it needs numerical values 

so as to make it easier for the machine to process the data. To apply any type of 

algorithm to the data, we need to convert the categorical data to numbers. To achieve 

this, one hot ending is one way as it converts categorical variables to binary vectors. 

Suppose we have a sentence we want to get the one hot encoding vector for this, we 
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convert the text to lower case and then sort the words in ascending form A-Z. Now 

we’ll have an alphabetically organized array filled with our words then we give each 

word a numerical label as we can see in the table 11 below. 

Apple Chicken Broccoli Calories 

1 0 0 95 

0 1 0 231 

0 0 1 50 

Table 11- One hot vector example 

 This is not the most optimal method that can be used there is another method 

with Bert word embedding that gives a better representation of each word and the 

embedding of that word. 

7.4. Sentence embedding 

 To have better results in our models we have also changed the text decoding 

part by switching from Word embedding to full sentence embedding. Word 

embeddings are in fact a class of techniques where individual words are represented 

as real-valued vectors in a predefined vector space. Each word is mapped to one vector 

and the vector values are learned in a way that resembles a neural network. 

 

Figure 48:sentence embedding example 
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 From this figure 48 we can see that similar to regular word embeddings, 

sentence embeddings embed a full sentence into a vector space.  

7.5. Sentence BERT 

 S-BERT is a pre-trained transformer network, which set for various NLP tasks, 

including question answering, sentence classification, and sentence-pair regression. To 

derive sentence embeddings from BERT we pass single sentences through BERT and 

then derive a fixed sized vector by either averaging the outputs similarly to word 

embeddings or by using the output of the special CLS. Sentence embeddings are a 

well-studied area with dozens of proposed methods trains an encoder-decoder 

architecture to predict the surrounding sentences.  In our work we have used sentence-

transformers MiniLM-L6-v2 model. This is a sentence transform model, it maps 

sentences & paragraphs to a 384-dimensional dense vector space and can be used for 

tasks like AAC. This figure 49 illustrates an example of how SBERT works. 

 

Figure 49: S-BERT sentence transformer example 

 BERT maps sentence to a vector space that is rather unsuitable to be used with 

common similarity measures like cosine-similarity. To overcome this shortcoming, we 

presented Sentence-BERT fine-tunes BERT in a triplet network architecture. where it 

could achieve a significant improvement over Word embeddings methods.  

8. Conclusion 

 In this chapter, we presented the experimental models for the AAC TASK. At 

the beginning, we made a presentation of the global encoder decoder architecture and 
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then we show in detail how it works. Subsequently, we presented the inputs and 

outputs used in our experiments and the models we used. 

 We have presented the different steps necessary for extracting both the audio 

features and the text features that we have used and also showed the deferent methods 

that we have chosen to use in our model for pre-processing both type data audio and 

text. The Details of how transformers and Bert works are provided in a separate section 

in chapter 3. Our approach proves its interest by providing good solutions in a fairly 

reasonable time. 
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Chapter 4: Achievement 
1. Introduction 

 This chapter presents the setup defined to conduct our experiments. In chapter 

3 we present our approach method for the AAC task. Next, in chapter 4, we lay out the 

numerous tools that we have used in the development of our systems. we describe our 

implemented AAC system and present the features used to train the system as well as 

the model topology, we represent the deferent evaluation tools used to evaluate our 

models. Finally, we explain the procedure that we have followed in order to analyses 

and discuss our results we obtained and also, we compare our results. This chapter also 

describes the supported development tools and the programming language used. We 

end this chapter with a conclusion. 

2. Used Tools  

 Deep learning research relies on exhaustive datasets and heavy computations 

during training which is generally time-consuming and resource-hungry. Thus, the use 

of parallel computing is necessary given that it considerably accelerates the training 

process[80]. For this purpose, Graphics Processing Units GPU is considered to be the 

leading parallel computing device used to conduct deep learning experiments. A GPU 

is an integrated single-chip processor, consisting of a highly parallel structure designed 

to perform extensive graphical and mathematical computations[81]. The structure of 

GPUs allows parallel computing through thousands of threads at a time hence giving 

this category of hardware the upper hand in deep learning executions[82]. 

 However, the use of such hardware resources can be not only costly in terms 

of purchase and maintenance, but also risky if events such as over utilization or 

equipment depreciation occur, making the deep learning project very cost effective. 

 That is why we have chosen to use COLAB which is a product from Google 

Research. COLAB allows anybody to write and execute arbitrary python code through 

the browser, and is especially well suited to machine learning[82]. 
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3. Development Software 

 In this part, we will present the development tools that we used for the 

realization of our platform for AAC. 

Python: Python is a general-purpose, interactive, object-oriented, high-level 

interpreted programming language. It was created by programmer 'Guido van Rossum' 

in 1991. Python's elegant syntax and dynamic typing, along with its interpreted nature, 

make Python an ideal language for rapid application development in many fields. 

Python is a free language placed under the PSFL license Python Software Foundation 

License, which can be used in many contexts and can be adapted to any type of use 

thanks to specialized libraries[83]. 

IDE PYCHARM: PyCharm is a dedicated Python integrated development 

environment IDE that provides a wide range of essential tools for Python developers, 

tightly integrated to create a convenient environment for productive Python, web, and 

data science development. It offers intelligent code entry, code inspections, error 

highlighting, and quick fixes[84]. 

QT Designer: Qt Designer is Qt's tool for designing and building GUI graphical 

user interfaces with Qt Widgets. You can compose and customize your windows or 

dialogs, and test them using different styles and resolutions. Widgets and forms created 

with Qt Designer integrate seamlessly with programmed code, using Qt's signals and 

slots mechanism, so you can easily assign behavior to graphical elements. All 

properties defined in Qt Designer can be changed dynamically in code. Additionally, 

features like widget promotion and custom plugins allow you to use your own 

components with Qt Designer[85]. 

Google Drive Storage: Regarding the storage of our data, we have chosen Google 

Drive. It is an online storage, synchronization and sharing service that offers 15GB of 

free space, and several packages for different storage spaces. This way, the dataset is 

easier to access and load in the chosen runtime environment which is Google 

Collaboratory for this we chose to porches the 5 £ package which we have been paying 
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for the last 7 months since the start of our project this offers us 200 gigabytes of storage 

to work with the only problem, we have faced is that we need to keep buying this 

package every month or all our data would be lost. 

Google Collaboratory: Google Collab or is a cloud service, offered by Google, 

based on JUPYTER Notebook and intended for training and research in machine 

learning[86]. This platform makes it possible to train Machine Learning models 

directly in the cloud. Without therefore needing to install anything on our computer 

except a browser. The free package provides fully configured runtime for deep 

learning using Python and free access to Tensor Processing Unit (TPU); which offers 

up to 35 GB of RAM and 107 GB of disk space, and a TESLA k80 GPU. We have 

made use of the provided TPU to perform audio feature extraction taking into account 

that this process is costly in terms of RAM, while we have performed training of our 

models using the provided GPU[87][88]. After testing with the free collab we 

discovered that the amount off ram and space offered was not effective that’s why we 

chose to update that further robust resources by upgrading to a professional version of 

Google Collaboratory. This upgrade guarantees priority access to highly powerful 

GPUs such as Tesla T4 and Tesla P100 and provides additional disk space and RAM 

capacity this cost 10 £ for every month (7 months), which we have been purchasing 

each time we wanted to test the model or do another evaluation.   

Utility Libraries: Another bright spot for Google Collaboratory is the availability 

of all the necessary python libraries used for audio processing and deep learning 

experiments[88]. These libraries do not require any installation or configuration. The 

following are a few of the most relevant libraries that we have used in our work. 

LIBROSA: LIBROSA is a Python package for audio and music signal analysis and 

processing[89]. It provides implementations of a variety of common functions that fall 

into four categories that are audio and time-series operations, spectrogram calculation, 

time and frequency conversion, and pitch operations. These functions are heavily used 

throughout our experiments. 

PYTORCH: PYTORCH is an open-source library developed by Facebook that 

performs instantaneous dynamic tensor computations with automatic differentiation 
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and GPU acceleration, while maintaining performance comparable to the fastest 

modern libraries for deep learning[90]. 

Sentence Transformers: Sentence Transformers is a Python framework for state-

of-the-art sentence, text and image embeddings. The initial work is described in 

chapter 3 Sentence-BERT Sentence Embeddings using Siamese BERT-Networks. this 

framework can be used to compute sentences or text embeddings for more than 100 

languages. 

 In addition to the above mentioned deep learning libraries we have made use 

of the NUMPY library to perform manipulation operations on our data, the 

MATPLOTLIB library for plotting and graphical representations, the PICKLE module 

for serialization of python objects for storing purposes and the PYTHON package to 

store our trained models for testing. Table 12 provides additional information about 

the libraries we have used in our work. 

UTILITY LIBRARY VERSION 

PYTHON 3.9 

LIBROSA 0.7.1 

LOGURU 0.3.2 

PYYAML 5.4.0 

PYTORCH 1.3.1 

MATPLOTLIB 2.0.2 

NUMPY 1.17.4 

PICKLE 5 0.0.12 

Table 12- Utility libraries used for deep learning 
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4. Data acquisition procedure 

4.1. Audio Dataset for Audio Captioning 

 Clotho is a freely available audio captioning dataset, is an extension of the 

original Clotho dataset v1 and consists of audio samples of 15 to 30 seconds duration, 

each audio sample having five captions of eight to 20 words length. There is a total of 

6974 (4981 from version 1 and 1993 from v2) audio samples in Clotho, with 34 870 

captions (6974 audio samples * 5 captions per each sample). All audio samples are 

from the Free sound platform, and captions are crowdsourced using Amazon 

Mechanical Turk and annotators from English speaking countries. Unique words, 

named entities, and speech transcription are removed with post-processing[3]. 

 Clotho v2 has a total of around 4500 words and is divided in four splits: 

development, validation, evaluation, and testing. Audio samples are publicly available 

for all four splits, but captions are publicly available only for the development, 

validation, and evaluation splits. There are no overlapping audio samples between the 

four different splits and there is no word that appears in the evaluation, validation, or 

testing splits, and not appearing in the development split. Also, there is no word that 

appears in the development split and not appearing at least in one of the other three 

splits. All words appear proportionally between splits (the word distribution is kept 

similar across splits) 55% in the development, 15% in the and validation, 15% in the 

evaluation, and 15% in the testing split. 

4.2. Audio samples in Clotho 

 They have durations ranging from 10s to 300s, no spelling errors in the first 

sentence of the description on Free sound, good quality (44.1kHz and 16-bit), and no 

tags on Free sound indicating sound effects, music or speech. Before extraction, all 

12k files were normalized and the preceding and trailing silences were trimmed. The 

content of audio samples in Clotho greatly varies, ranging from ambiance in a 

forest (animal sounds, and crowd yelling to machines and engines 

operating or revving[3]. 

 In the following figure 50 is the distribution of the duration of audio files in 

Clotho and similar distribution is expected in Clotho v2. 
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Figure 50:Audio duration distribution for Clotho dataset 

4.3. Captions in Clotho 

 The captions in the Clotho dataset range from 8 to 20 words in length, and were 

gathered by a three-step framework. The three steps are: 

a. Audio description, 

b. Description Editing, 

c. Description scoring. 

 In step 1, five initial captions were gathered for each audio clip from distinct 

annotators. In step 2, these initial captions were edited to fix grammatical errors. 

Grammatically correct captions were instead rephrased, in order to acquire diverse 

captions for the same audio clip. In step 3, the initial and edited captions were scored 

based on accuracy how well the caption describes the audio clip. The initial and edited 

captions were scored by three distinct annotators. The scores were then summed 

together and the captions were sorted by the total accuracy score first, total fluency 

score second. The top five captions, after sorting, were selected as the final captions 

of the audio clip[3].  

 Then manually sanitized the final captions of the dataset by removing 

apostrophes, making compound words consistent, removing phrases describing the 

content of speech, and replacing named entities. We used in-house annotators to 
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replace transcribed speech in the captions. If the resulting caption were under 8 words, 

we attempt to find captions in the lower-scored captions. The same in-house annotators 

were used to also replace unique words that only appeared in the captions of one audio 

clip. Since audio clips are not shared between splits, if there are words that appear only 

in the captions of one audio clip, then these words will appear only in one split. 

 In the next section we have a better representation of how the data was split. 

4.4. Data splits of Clotho dataset 

 Clotho was divided into a development split of 2893 audio clips with 14465 

captions, an evaluation split of 1045 audio clips with 5225 captions, and a testing split 

of 1043 audio clips with 5215 captions. These splits are created by first constructing 

the sets of unique words of the captions of each audio clip. These sets of words are 

combined to form the bag of words of the whole dataset, from which we can derive 

the frequency of a given word. With the unique words of audio files as classes. 

Clotho.v2.1 

├─clotho_captions_development.csv 

├─clotho_captions_validation.csv 

├─clotho_captions_evaluation.csv 

├─development 

│ └─... (3839 wavs) 

├─validation 

│ └─... (1045 wavs) 

└─evaluation 

└─... (1045 wavs) 

Table 13- Clotho data split 

Table 13 shows how the Clotho data set was split to be used in our ACC task. 

5. Evaluation Metrics  

 In this section, we present the standard evaluation metrics used to evaluate the 

quality of captions generated by AAC models. Many of these metrics were introduced 

and are also used to evaluate other tasks such as Machine Translation, Summarization, 

and Image Captioning. 

 The proposed method was evaluated according to the following metrics used 

in the machine translation and image captioning fields. These metrics were calculated 
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for 10 different training and testing runs for each run, the parameters of the neural 

network were re-initialized according to the initialization functions and the neural 

network was re-trained on the training split. Caption evaluation is performed using the 

tools provided by the organizer of this challenge. This table14 sum up the metrics used. 

Metrics What’s measuring 

BLEUN Measures a modified n-gram precision. 

ROUGEL Measures a score based on the longest 

common subsequence. 

METEOR Measures a harmonic mean of weighted 

unigram precision and recall. 

CIDER measures a weighted cosine similarity of n-

grams. 

SPICE Measures the F-score of semantic 

propositions extracted from caption and 

reference. 

SPIDER Measures the arithmetic mean between the 

SPICE score and the CIDER score. 

Table 14-metrics used in the evaluation of the model 

BLEU: BLEU (Bilingual Evaluation Understudy) is an algorithm for 

evaluating the quality of text in many NLP tasks and was originally used to evaluate 

machine translation [91]. BLEU uses a modified form of precision to compare a 

candidate text against multiple reference texts. The metric calculates the precision for 

n-grams. To calculate precision, the matching words in the actual sentence and the 

predicted sentence are calculated. BLEU does not consider the context of the word in 

the sentence. The metric range is between [0,1]. If the actual sentence and the predicted 

sentence are totally the same, then the score is 1. BLEU-1 (B-1) represents 1-gram, 

whereas BLEU-4 (B-4) represents 4-grams. 
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METEOR: METEOR [92] unlike BLEU incorporates both precision and 

recall in the evaluation score. The algorithm has two stages. First given a ground truth 

and a predicted sentence METEOR creates an alignment between them i.e., a mapping 

between unigrams, such that every unigram in each string maps to zero or one unigram 

in the other string. If there are two alignments with the same number of mappings, the 

alignment is chosen with the fewest crosses, that is, with fewer intersections of two 

mappings. Then METEOR calculates unigram recall and unigram precision together 

and takes a harmonic mean score. Finally, the harmonic mean score is multiplied with 

a penalty calculated as follows: The first fewest possible number of chunks is 

calculated such that the unigrams in each chunk are in adjacent positions in the system 

translation, and are also mapped to unigrams that are in adjacent positions in the 

reference translation. The penalty is then computed by the following. 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 0.5 ×
#𝑐ℎ𝑢𝑛𝑘𝑠

#𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠_𝑚𝑎𝑡𝑐ℎ𝑒𝑑
 

The penalty increases as the number of chunks increases to a maximum of 0.5. 

As the number of chunks goes to 1, penalty decreases, and its lower bound is decided 

by the number of unigrams matched. Finally, the METEOR Score for the given 

alignment is computed as follows:   

𝑆𝑐𝑜𝑟𝑒 = 𝐹𝑚𝑒𝑎𝑛 × (1 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦) 

ROUGEL: ROUGE-L measures the longest common subsequence (LCS) 

between the ground truth and reference sentence. The idea is that a longer shared 

sequence would indicate more similarity between the two sequences. Then recall and 

precision calculations are applied as follows: 

𝑅𝐿𝐶𝑆 =
𝐿𝐶𝑆(𝑋, 𝑌)

𝑚
 

𝑃𝐿𝐶𝑆 =
𝐿𝐶𝑆(𝑋, 𝑌)

𝑛
 

Where m is the length of the reference sentence and n is the length of the ground truth 

sentence. Then finally ROUGEL is calculated as: 

𝐹𝑅𝑂𝑈𝐺𝐸𝑙 =
(1 + 𝑏2)𝑅𝐿𝐶𝑆𝑃𝐿𝐶𝑆
𝑅𝐿𝐶𝑆 + 𝑏2𝑃𝐿𝐶𝑆
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Where b = PLCS/RLCS. ROUGE-L is 1 when the sentences are the same, while 

ROUGE-L is zero when LCS (X, Y) = 0, i.e., there is no common sub-sequence in the 

sentences. 

CIDER: Consensus-based Image Description Evaluation (CIDER) is a new 

paradigm for the evaluation of image captions that are based on human consensus [93]. 

It aims to capture sentence similarity, grammatically, importance, saliency and 

accuracy. To evaluate how well a generated caption ci matches the consensus of a set 

of captions Si = si1, ..., sim, all words are first mapped to their stem forms and each 

caption is represented using the set of n-grams ωk, that are present in it. Then, a Term 

Frequency Inverse Document Frequency (TF-IDF) weighting is performed for each n-

gram to encode how often n-grams in the generated caption are present in the reference 

ones, and how often n-grams not present in the reference captions are not in the 

generated captions. Additionally, frequent n-grams are given low weight. The TF-IDF 

gk(sij) for each n-gram ωk is: 

𝑔𝑘(𝑠𝑖,𝑗) =
ℎ𝑘(𝑠𝑦)

Σ𝜔𝜖Ωℎ𝑙(𝑠𝑦)
log(

|𝑆|

Σ𝑆𝑝𝜖𝑆min(1, Σ𝑞ℎ𝑘(𝑆𝑞𝑝))
) 

where ℎ𝑘 (c) is the frequency that an n-gram k occurs in the caption c, Ω is the 

vocabulary of n-grams and S is the set of all samples. The 𝐶𝐼𝐷𝐸𝑟𝑛  score for n-length 

n-grams is the average cosine similarity between the generated caption and the 

reference captions and is given by: 

𝐶𝐼𝐷𝐸𝑟𝑛(𝑐𝑖. 𝑆𝑖) =
1

𝑚
∑

𝐠𝑛(𝑐𝑖). 𝐠𝑛(𝑆𝑦)

||𝐠𝑛(𝑐𝑖)||||𝐠𝑛(𝑆𝑦)||
𝑗

 

where 𝐠𝑛 (ci) is a vector with elements gk(ci ) that correspond to all n-length 

n-grams. The final CIDER score combines the scores of variable length n-grams as 

follows: 

𝐶𝐼𝐷𝐸𝑟𝑛(𝑐𝑖, 𝑆𝑖) = ∑𝑤𝑛𝐶𝐼𝐷𝐸𝑟𝑛(𝑐𝑖, 𝑆𝑖)

𝑁

𝑛=1

 

 

SPICE: All the evaluation metrics mentioned above are primarily sensitive to 

n-gram overlap. However, n-gram overlap is neither necessary nor sufficient for two 
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sentences to convey the same meaning. If we take for consideration the following 

example, we observe that it produces a high similarity score to all of the above metrics:  

• A dog is standing on top of a chair 

• A woman is standing on top of a field 

These two sentences describe very different events but would get a fairly good 

similarity score with the all of the above metrics due to the phrase is standing on top 

of a which is common in both sentences.  

Spice addresses this issue with the following procedure. At first, the generated caption 

c and the reference captions S = s1, ..., sm are transformed to the scene graphs G(c) 

and G(S) respectively, where G(S) is the union of scene graphs G (si) for si ∈ S. The 

semantic relations in a scene graph are considered to be a conjunction of logical 

propositions or tuples and the function T returns these tuples from a scene graph as: 

T(G(c)) ≜ O(c) ∪ E(c) ∪ K(c) 

where O(c) is the set of object mentions in c, E(c) is the set of hyper-edges that 

represent relations between objects and K(c) is the set of attributes associated with 

objects. The precision P, recall R and SPICE score are defined as: 

𝑃(𝑐, 𝑆) =
|𝑇(𝐺(𝑐))⊗ 𝑇(𝐺(𝑆))|

|𝑇(𝐺(𝑐))|
 

𝑅(𝑐, 𝑆) =
|𝑇(𝐺(𝑐))⊗ 𝑇(𝐺(𝑆))|

|𝑇(𝐺(𝑆))|
 

𝑆𝑃𝐼𝐶𝐸(𝑐, 𝑆) = 𝐹1(𝑐, 𝑆) =
2. 𝑃(𝑐, 𝑆). 𝑅(𝑐, 𝑆)

𝑃(𝑐, 𝑆) + 𝑅(𝑐, 𝑆)
 

where the binary matching operator ⊗returns the matching tuples in two scene 

graphs. Since SPICE is an F-score, it is easily interpretable and its range is between 0 

and 1. Moreover, it can be applied equally to both small and large datasets. 

SPIDER: SPIDER [94] is used as the official ranking metric in the automatic 

audio captioning task in DCASE Challenge. SPIDER is the average of SPICE and 

CIDER. The SPICE score ensures captions are semantically faithful to the content, 

while CIDER score ensures captions are syntactically fluent. 
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6. Experiments parameters 

 This section describes and discusses the experimental parameters and findings 

that we have obtained during our experiments. The main goal of our case study is to 

compare the performances of several AAC models, varying the mechanism for 

extracting features and the hyperparameters used for learning the models. 

Parameter Value 

Batch size 32 

Optimizer Adam 

Learning Rate 10−4 

Weight Decay 10−4 

Epochs 300 

Table 15-Training hyperparameters for all experiments 

 The table 15 shows the configuration we used for the training of our models. 

We manage to use a batch size 4 times the mini-batch size by performing gradient 

accumulation. We use gradient witch solves the exploding gradient problem and 

smoothens the gradient landscape. The learning rate is linearly increased to 10−4 in 

the first five epochs using warm-up, which is then multiplied by 0.1 every 5 epochs. 

In order to conduct our experiments fast and more efficiently we use early stopping 

policy with a patience of 5 epochs. If spider on the validation set hasn’t been unproved 

beyond a threshold τ = 0.05 in the last 5 epochs we stop training. 

7. Evaluation and result 

 This section describes and discusses the experimental results and findings that 

we have obtained during our experiments. The main goal of our case study is to 

compare the performances of our AAC systems, varying the mechanism for extracting 

features and the hyperparameters used for learning the models. Most importantly, 

Specifically, we have conducted our experiments on CLOTHO v2 dataset. We have 

trained our systems on Log-Mel Spectrogram features.  

 For evaluating these systems, we have used a version of the caption evaluation 

tools used for the MS COCO challenge. This version of the code has been updated in 
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order to be compliant with Python 3.6 and above and with the needs of the automated 

audio captioning task.  

Furthermore, we have based our discussions on various statistical tests, our case study 

consists of 2 experiments:  

 Experiment 1 investigates the impact of the LOG_MEL_SPECTOGRAME as 

audio feature method and it effect on the evaluation results this figure below shows 

the result, we optioned for all our 6 metrics with using the pre-trained wights there for 

not doing any training on the model just creating the datasets splits and running the 

evaluation steps. The table 16 show the result we got from the 1rst experiment. 

Metrics Score 

BLEU _1 0.4141 

BLEU _2 0.0714 

BLEU _3 0.0171 

BLEU_4 0.0000 

METEOR 0.0717 

ROUGE_L 0.2635 

CIDER 0.0238 

SPICE 0.0055 

SPIDER 0.146 

Table 16- pre-trained wights evaluation results 

 2nd Experiment we examines the impact of the new hyperparameters and 

compares several metrics of evaluation that we obtained which gave us a better score 

after a 300 epoch of training wish lasted for approximately 12 hours this figure below 

demonstrates the result we obtained. This next table 17 shows the best result we 

obtained after several experiments of parameters changes. 

Metrics Score 

BLEU _1 0.3966 

BLEU _2 0.1402 

BLEU _3 0.0662 

BLEU_4 0.0000 
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Metrics Score 

METEOR 0.0821 

ROUGE_L 0.2779 

CIDER 0.02791 

SPICE 0.0326 

SPIDER 0.0559 

Table 17- Post full training evaluation results 

 From this Table you can notice that all metrics got approximately 20 to 55% 

better result than with using the pre trained wight, all metrics got better result except 

the 1rst one blue_1 wish got slightly worst result. 

 For more understanding of the results we obtained, we have compared them to 

previse proposed architecture that was showed in chapter 3, this next table x is a 

comparison between our results and the previse architectures results. 

Model CNN

+ 

RNN 

LSTM

+ 

RNN 

RNN

+ 

RNN 

RNN+ 

TRANSFORMER 

First 

Model 

Second  

Model 

BLEU1 0.614 0.641 0.655 0.610 0.3966 0.4141 

BLEU2 0.446 0.479 0.476 0.461 0.1402 0.0714 

BLEU3 0.317 0.335 0.344 0.334 0.0662 0.0171 

BLEU4 0.219 0.236 0.231 0.237 0.0000 0.0000 

ROUGE_L 0.475 0.467 0.469 0.455 0.0821 0.0717 

METEOR 0.203 0.221 0.229 0.206 0.2779 0.2635 

CIDER 0.593 0.660 0.693 0.629 0.02791 0.0238 

SPICE 0.114 0.195 0.168 0.144 0.0326 0.0055 

SPIDER 0.369 0.414 0.426 0.386 0.0559 0.146 

Table 18- Comparison between the result we obtained and related works results 
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 For the results of our second model, we could not reach them because of the 

big amount of data that is involved on the training process. We could not finish the 

training of the model because we did not have enough hardware capabilities for such 

a task, therefore we could not achieve good scores that we can discuss or compare with 

related work scores. 

 In order to study these results and reveal significant differences, we have first 

created a desktop application that allows us to do faster experiments with our audio 

test files. 

 For further analysis of these results, we have compared also used google collab 

pro to make sure that we are getting the best result possible from our training. Because 

this model is expensive on the hardware collab pro allows us to get more Ram and a 

dedicated GPU to run our code with easy access to our data throw google drive. 

 This figure 51 below shows our chosen interface that we created to perform 

our experiments. 

 

Figure 51: Desktop application interface 
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 This application allows us to read any audio file slows us to play the audio, it 

also shows us the original caption of the file and after this file is processed and 

classified it shows us the predicted caption as shown in the figure 52 below. 

 

Figure 52:Desktop application interface example of execution 

 This next table 19 represent the results we obtained after running the test data 

part of Clotho with saved model wights, we did not obtain the most optimal results 

possible, but this is related to the dataset the bigger the dataset the better the results. 

Test audio Caption predicted 

test_0087.wav birds are chirping chirping birds birds and in 

test_0940.wav a person is a a a a a a 

test_0646.wav a person is walking a a a 

test_0276.wav a train is and a and and a a 

Table 19-Post testing results 
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 This table 17 represent the results we obtained after running the test data part 

of Clotho with saved model wights, we did not obtain the most optimal results possible, 

but this is related to the dataset the bigger the dataset the better the results. 

 It is also related the approach we selected to conducted this AAC system. From 

the result we obtained we can say that the AAC system works it gives a far description 

of the audio event that the audio describes but it does not give the perfect description. 

For example, if we have an audio test_0276.wav that presents a “sound of a train in a 

station” the AAC system recognizes the sound of the train but not the station or the 

people so it gives as a result “a train is and a and and a a “ 

 This result would be more coherent in the desktop application that we have 

developed around our model, it takes an input an audio file from the testing part of 

CLOTHO dataset and it gives a result at what the audio event is, this figure below 

shows an example of an experiment we tried with audio file that has bird sound. 

8. Conclusion 

 In this chapter, we presented the experimental results of the AAC task. At the 

beginning, we made a presentation on the development software and the programming 

languages used. Subsequently, we presented the dataset used in our experiments. We 

have presented the different steps necessary for the implementation of the proposed 

methods. 

 

 

 

 

 

 

 

 



100 

 

Conclusion 
 The main purpose of this project is to design an AAC system, where the system 

accepts as an input an audio signal and outputs the textual description of that signal.   

we have performed multiple experiments using a Clotho dataset. We implemented two 

deferent methods to construct our model the 1rst involved around word embedding 

using one-hot-encoding method witch we obtained good result with it. 

 The second method we changed the word embedding and replaced with 

sentence embedding specifically sentence BERT. In this method it proved rather hard 

to finish the training and get a proper wight to do evaluation with the model and get 

some proper result, the difficulties we faced was not having good hardware to run the 

entire code, the amount of ram we have purchased with google pro collab wasn’t what 

we needed to do the full training this is due to the huge amount of data that we had to 

feed to the model at each epoch of the training data. 

 We also used a combination of feature representations based on audio 

processing techniques like Mel Spectrogram and text processing techniques used in 

text decoding from word embeddings like one-hot-encoding and BERT.   

 Automated audio captioning is a new and challenging task that involves 

different modalities. The main goal of our work was to design an audio captioning 

system Clotho dataset. The proper use of such information can considerably improve 

the captioning performance. our second goal was to test the impact of various 

embeddings methods and to perform a comparative study with using encoder-decoder 

architectures.  

 Based on the insights gained from the experimental findings in this AAC task 

we have learn new neural networks architectures, we learn new concepts on the natural 

league processing, audio feature handling which exited us to research more and try 

new experiments.  

Our approach proves its interest by providing good solutions in a fairly reasonable 

time. 
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Future work 

 For Future work we would like to change the decoder to a CNN based 

architecture and measure the new performance of the model, integrate this model into 

a new platform for example a website, we would like to improve on our results and try 

new architectures that allow real time automated audio captioning.  

 Over all we would like to make this model as efficient as possible and make it 

less dependent on time and the type of hard ware a possible user might have, by 

implementing new methods for audio and text processing.  
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