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Abstract

Audio tagging, also known as Sound Event Recognition, is concerned with the develop-
ment of systems that are able to recognize sound events. A sound event is perceived as a
separate individual entity that we can name and recognize, such as helicopter, glass breaking,
baby crying, speech, etc. Considerable attention has been geared towards audio tagging for
various applications, such as information retrieval, music tagging, and acoustic monitoring.
The general framework for audio tagging usually involves two major steps: feature extraction
and classification. Clearly, obtaining well-annotated, strongly labeled data is an expensive and
time-consuming process. Therefore, a large portion of recent development has been devoted
to effectively using weakly labeled data extracted from websites like Youtube, Freesound, or
Flickr. Various semi-supervised learning approaches have been proposed in the literature. We
can cite Mean Teacher, Pseudo Labeling, Mix Match, and most recently, Deep Co-training. The
purpose of this project consists of devising an audio tagging system within the semi-supervised
learning paradigm, specifically the Deep Co-training framework. Such systems essentially use
both labeled and unlabeled audio data. In addition, our system is trained on two different
datasets :Urban8k and Environmental Sound Classification, based on a deep residual neural
network (ResNet) and a wide residual neural network (WideResNet). We supported our analy-
sis and discussion with numerous statistical tests to analyze and compare our results. We have
investigated the impact of differentiating the supervised ratio on the system’s performance
and have tested the impact of various variants of DCT systems based on different adversarial
attacks. The results demonstrate the efficacy of the Deep Co-training SSL strategy that signif-
icantly boosts the overall performance.

Keywords:

Audio Tagging, Semi-supervised learning, Deep Co-training, Feature Extraction, Statistical
Tests.



Résumé

L’étiquetage audio, également connu sous le nom de reconnaissance d’événements sonores,
est concerné par le développement des systèmes capables de reconnaître les événements sonores.
Un événement sonore est perçu comme une entité individuelle distincte que nous pouvons nom-
mer et reconnaître, comme l’hélicoptère, le bris de verre, les pleurs de bébé, la parole, etc.
Plusieurs recherches ont montré l’importance et l’utilité de l’étiquetage audio dans diverses ap-
plications nommées: la recherche d’informations, l’étiquetage de la musique et la surveillance
acoustique. Cette technique est basée sur deux étapes majeures: l’extraction des caractéris-
tiques et la classification. C’est clair que l’acquisition de données bien annotées et fortement éti-
quetées est un processus coûteux et long. Dès lors, une grande partie du développement récent
a été consacrée à l’utilisation efficace des données faiblement étiquetées extraites de sites Web
tels que Youtube, Freesound ou Flickr. Pour ce fait, diverses approches d’apprentissage semi-
supervisé ont été proposées, nous pouvons citer: Mean Teacher, Pseudo Labeling, Mix Match,
et Deep Co-training. L’objectif de ce projet consiste à concevoir un système d’étiquetage audio
dans le paradigme d’apprentissage semi-supervisé, en particulier dans le cadre de Deep co-
training. Notre système utilise des données audio étiquetées et non étiquetées, et il est entraîné
sur deux ensembles de données différents : Urban8k et Environmental Sound Classification,
basés sur un réseau de neurones résiduels profonds (ResNet) et un vaste réseau de neurones
résiduels (WideResNet). Nous avons soutenu notre analyse et notre discussion par nombreux
tests statistiques pour examiner et comparer nos résultats. Nous avons étudié l’impact de la
différenciation du ratio surveillé sur les performances du système et nous avons testé l’impact
de diverses variantes de systèmes DCT basés sur différentes attaques adversaires. Les résultats
obtenus démontrent l’efficacité de la stratégie SSL de Deep Co-Training qui a augmenté la
performance globale.

Mots Clés:

Étiquetage Audio, Apprentissage semi-supervisé, Deep Co-training, Extraction des caractéris-
tiques, Testes Statistique.



الملخص

علىالقادرةالأنظمةبتطویر)،SERالصوت(حدثعلىالتعرفباسمأیضاالمعروفالصوتیة،العلاماتوضعیھتم
المروحیةمثلعلیھ،والتعرفتسمیتھیمكننامنفصلافردیاكیاناالصوتحدثیعتبرالصوتیة.الأحداثعلىالتعرف
مثلالتطبیقات،لمختلفصوتیةعلاماتوضعنحوكبیراھتمامتوجیھتموقدإلخ.والكلام،الطفلوبكاءالزجاجيوالكسر

مشروحةبیاناتعلىالحصولأنالواضحمن.الصوتیةوالمراقبةالموسیقىعلىعلاماتووضعالمعلوماتاسترجاع
الحدیثالتطویرمنكبیرجزءتخصیصتملذلك،للوقت.ومستھلكةمكلفةعملیةقويبشكلوموصفةجیدبشكل

FlickrأوFreesoundأوYouTubeمثلویبمواقعمناستخراجھاتموالتيالضعیفةالعیناتذوالبیاناتلاستخدام
الخاضعشبھالتعلمنموذجإطارفيالصوتیةالعلاماتلوضعنظاموضعفيالمشروعھذامنالغرضیتمثلفعال.بشكل

استخدامعلىقادراالنظامیكونأنیجب).DCT(العمیقالمشتركالتدریبإطارالتحدیدوجھوعلى)،SSL(للإشراف
مختلفتین:بیاناتمجموعتيعلىنظامناتدریبیتمذلك،إلىبالإضافةالمسماة.وغیرالمصنفةالصوتبیاناتمنكل

Urban8k ESC-10،متبقیةعمیقةعصبیةشبكةإلىاستنادا)ResNet(متبقیةكبیرةعصبیةوشبكة)WideResnet.(
النسبةبینالتمییزتأثیربدراسةقمنالقدومقارنتھا.نتائجنالتحلیلالإحصائیةالاختباراتمنالعدیدمعمناقشتناأیدنالقد

SSLاستراتیجیةفعالیةالنتائجتظھر.DCTأنظمةأنواعمختلفتأثیرواختبرناالنظام،أداءعلىللإشرافالخاضعة
كبیر.بشكلالعامالأداءتعززالتي)DCT(العمیقالمشتركللتدریب

الكلمات المفتاحیة
الاختبارات،المیزاتاستخراج،العمیقالمشتركالتدریب،للإشرافالخاضعشبھالتعلم،الصوتیةالعلاماتوضع

الإحصائیة.
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Introduction

Context and problem statement/Background

The sounds in our everyday environment carry a huge amount of information. We are able

to recognize and discern many different sound events surrounding us (e.g., streets, factories,

cars passing by, car horns,... etc.). Our actions rely on the perception of these sounds ( move

when hearing a car honk, enter the class when the bell rings, run away when the fire alarm goes

off, etc.). This task is not considered crucial for normal human beings since recognizing audio is

an inborn ability that doesn’t require any effort. On the other hand, state-of-the-art automatic

processing of sounds by machines is still far behind. Further research is needed to develop

robust systems capable of recognizing a wide range of sound events in realistic audio streams

[1]. In recent years, huge amounts of multimedia recordings are generated and uploaded to the

web every day. These recordings, such as music, field sounds, broadcast news, and television

shows, contain sounds from a wide variety of sources. The demand for analyzing these sounds

is increasing, and includes: audio segmentation [2], audio context classification [3], and audio

tagging [4, 5]. The goal behind building audio tagging based systems is to develop more general

machine listening systems capable of identifying and recognizing a wide range of acoustic events

and audio scenes of an audio recording.

This task will provide insight towards the development of broadly applicable sound event clas-

sifiers. Potential applications include automatic description of multimedia content, acoustic

information, acoustic surveillance, cataloging, searching in audio archives, or recognizing sound

events happening in real time. Audio tagging has many applications, such as audio information

retrieval [6], audio classification [7], acoustic scene recognition [8], industry sound [9], and music

tagging [10].

The process of Audio Tagging consists of two main stages: Feature Extraction and Classifica-

tion. The feature extraction process involves dividing the audio signal into equal overlapping

frames in order to get a feature vector per frame. Each vector of data is associated with its
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corresponding event label. Next, the deep neural network model maps the extracted feature

vector to a corresponding event (class) label. However, such a task requires a large amount of

labeled data to produce efficient predictions and high performance. Still, these datasets have

to be hand-labeled by specialists, which is a very costly and time-consuming process since it

involves a lot of human interaction [11]. Developing tagging systems is difficult due to this

limitation. To address this issue, there is a large amount of audio data on-line, e.g. from

YouTube or Freesound, which is either poorly labeled or unlabeled, which makes the ability to

use them, predict them, and further add some new tags to the related audio quite a challenge,

and it may also negatively impact the performance. Therefore, a wise solution would be to

apply a semi-supervised learning approach such as the Deep Co-training technique that uses

both labeled and unlabeled data and enhances the system’s performance.

Contributions

The increasing availability of audio content through a vast distribution of channels has re-

sulted in many researchers performing comparative studies between sound analysis systems [12].

Audio Tagging systems are actually much more challenging to design and evaluate, and they

need to be carried out properly to ensure their performance significance. Therefore, researchers

have focused on extracting relevant features, finding suitable classifiers, and applying recent

techniques to enhance the overall performance. Moreover, a wide range of semi-supervised

learning techniques were applied to audio data. However, a detailed evaluation of the recently

presented approaches is required in order to determine the optimal solutions for performing

the Audio Tagging task. We have created and examined the behavior of several systems in

response to these requirements. In what follows, we summarize our main contributions:

• We have carried out experiments on the Environmental Sound Classification (ESC-10)

and the URBAN8K(UBS8K) datasets. The audio clips were extracted from freesound.

which are very diverse in terms of acoustic content, recording techniques, clip duration,

etc.

• We have trained our labeled and unlabeled data on two semi-supervised (SSL) methods:

Deep Co-training (DCT) and Mean Teacher (MT). We discussed their major steps and

compared them to a simple baseline that was trained on the same model that the two

techniques were trained on.

• We explored two different deep neural architectures consisting of residual neural net-

works(Resnets) and wide residual neural networks (WideResnets).
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• We have analyzed the impact of the hyperparameter epsilon on the adversarial example

and the whole model itself.

• We studied the behavior of different adversarial attacks and their impacts on the perfor-

mance. We conducted our experiment analysis based on different statistical tests.

Thesis structure

This thesis covered four chapters. In Chapter 1, we cover some of the fundamentals behind

sound signals. Specifically, we describe the several representations of sound signals and the

most frequently used feature extraction methods in literature. In Chapter 2, we introduce

some semi-supervised learning methodologies, some of which have been widely used for audio

tagging. We provide in Chapter 3 a detailed description of the Deep Co-training methods

along with the adversarial attacks used in our experiments. Chapter 4 consists of a detailed

description of the experimental setup, including feature extraction and parameter setting; and

along with experimental results and discussion, where we present the obtained results through

performance tables and plots based on statistical tests. Finally, we conclude by summarizing

the contributions of this thesis, the lines of limitation, and future work.
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PART I: FUNDAMENTALS OF AUDIO
TAGGING

This section explains the concepts needed to understand the ideas developed in this thesis.

It consists of three chapters. Chapter 1 is divided into two main parts; the first one gives an

overview of audio signals. Specifically, we describe data required for the development of Audio

Tagging systems and highlight the importance of feature extraction to convert the signal into

a convenient representation. As for the second part of this chapter we review some relevant

concepts of classification providing a brief description of the fundamentals of classification,

evaluation metrics and statistical tests used in this work. For Chapter 2 we provide a com-

prehensive overview of the notion of semi supervised learning along with its main assumptions

and techniques. In Chapter 3 we have detailed explanations on the Deep-Co training methods

along with the different attacks and previous application on it.
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Chapter 1
OVERVIEW OF SOUND SIGNALS IN

AUDIO TAGGING

1.1 Introduction

Sound carries a lot of information about our everyday environment and the actions that

occur within it. Acoustic sensors capture sounds that allow computers to perceive the envi-

ronment as humans do. Furthermore, the popularity of sound event recognition has increased

and gained a lot of attention due to its great potential, and the widespread use of machine

learning and deep learning in many fields. This has given computers the power to learn nu-

merous solutions to change people’s lives for the better. Sound recognition includes tasks such

as acoustic scene classification [13], sound event detection [14], and audio tagging [4]. This

latter task has become one of the most functional tasks nowadays since it has a diverse and

wide range of applications such as surveillance [15], monitoring [16] and health care [17]. Audio

tagging systems aim to predict acoustically relevant tags from the audio signal. Examples of

tags can be acoustic events (e.g., air conditioner, car horn, drilling, gunshot, siren), animal

sounds (e.g., dog bark, birds chirping, pig oink), human sounds (e.g., male or female speech),

acoustic scenes (e.g., lakeside beach, forest path, metro-station), or even music sounds (e.g.,

guitar, trumpet). Audio tagging consists of two major steps: audio signal processing and; in

our case, single-label audio classification [18]. Audio processing involves transforming the signal

into a suitable representation that is relevant for a single-label audio classification task. As a

result, a trained classifier is used to assign a label to every audio instance.

In this chapter, we provide the fundamental concepts of audio tagging in order to allow

further understanding of our thesis. We initiate with a profound definition of audio signals and

their components. Then, we briefly discuss time and frequency representations, and we explain

the different feature extraction techniques that are widely used in literature.

Next, we present a few fundamental concepts of deep learning in the context of audio tagging,
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including : neural network architectures, evaluation measures and statistical testing.

And finally, we summarize the main concepts that we have learned.

1.2 Single-label Audio Tagging

Audio tagging aims to identify sound events that occur in a given audio recording and

enables a variety of artificial intelligence-based systems to disambiguate sounds and understand

the acoustic environment [19]. The audio tagging task has been adopted in various fields,

including music tagging [20], domestic audio tagging [21], and acoustic scene classification [22].

Audio tagging has a wide range of applications, including surveillance, monitoring, health care,

and safety in the home, office, industry, and transportation. It has become one of the most

researched topics in the field of acoustic signal processing [19, 8]. There are two main steps in

the audio tagging process: audio signal processing and single-label classification. First, audio

preprocessing is the main focus of signal processing where this process is used for removing

silence, reducing noise in the audio, and making each sample of audio files the same duration

[23]. After this operation, a feature extraction step is generally needed to transform the audio

signal into a representation that highlights its physical properties. This provides the necessary

information that is used in the single-label classification process, which takes the extracted

feature as an input to train the classifier and test its performance on unseen data by predicting

accurate event labels known as class labels. given a set of n labels L = {l1, l2, .....ln} and a set

of m Items I = {i1, i2, .....lm}, in single-label classification, the goal is to associate one label

l to every item i [24, 8]. The overall Audio Tagging process is illustrated in Figure 1.1.

Figure 1.1: Audio Tagging process
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1.3 Audio Signals

An audio signal is the representation of sound, which is a vibration that propagates through

air by the movement of air molecules over time. These sounds can be broadly categorized into

artificial sounds, speech, and music. For example, music can be viewed as the evolving pattern

of notes [25]. Sound is a signal since it holds information about each vibration. These vibrations

cause molecules to rattle against each other, producing what is called a sound wave. Air itself

does not travel with the wave; each air molecule moves away from a rest point and eventually

returns to it. When we hear a sound, we are sensing the vibrations in the air. The number of

vibrations per second is known as the frequency [26]. The human auditory system is responsive

to sounds in the frequency range of 20 Hz to 20 kHz as long as the intensity lies above the

frequency-dependent "threshold of hearing" [25].

1.3.1 Audio Signal Components

In order to understand the different elements that represent an audio signal, we illustrate

the audio wave of a sound as an example. Figure 1.2 shows the sine wave representation of our

example that illustrates a periodic signal that is repeated after a fixed length of time, known

as the period [27].

Figure 1.2: Plot of sine wave from a recording of a dog barking.

Periodic signals are characterized by the following components:

Amplitude: the amplitude is defined as the maximum displacement of vibrating particles in

a medium from their mean position when the sound is created; in other words, it represents

the magnitude of an air pressure disturbance [25].
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Cycle: cycle is one repetition of the pattern. The instantaneous displacement waveform in

Figure 1.2 shows five cycles, or five repetitions of the pattern. Since the wave has a frequency

of 500 Hz, one cycle of the wave takes 0.002 seconds. This means that the first 0.01 seconds of

the waveform contain 5 full cycles of the wave [25].

Period: period is the time required to complete one cycle of vibration. For our previous

example, 5 cycles are completed in 0.01 second. The period is 0.01/5th of a second (s), or 0.002s

(ie 2ms), since the most commonly used unit of measurement for period is the millisecond (ms)

[25]:

1ms =
1

1, 000s
= 0.001s = 10− 3s (1.1)

A somewhat less commonly used unit is the microsecond (µs):

1µs =
1

1, 000, 000s
= 0.000001s = 10− 6s (1.2)

Frequency: frequency is the number of cycles completed in one second. Its unit of mea-

surement is the hertz (Hz). Fundamentally, frequency refers to the rate of vibration. The

most crucial function of the auditory system is to serve as a frequency analyzer—a system that

determines how much energy is present at different signal frequencies [25]. The formula for

frequency is:

f =
1

t
(1.3)

where f is the frequency in hertz and t is the period in seconds. So, for a period of 0.002 s:

f =
1

t
=

1

0.002
= 500Hz (1.4)

1.3.2 Audio Signal acquisition

Audio signals are the representation of sound, which is generated and processed by a trans-

ducer. A transducer is an electronic device that takes physical energy as input and converts it

into a signal. For example, a microphone takes physical sound waves and converts them into

an electrical signal, which has a continuous range of values for both time and amplitude. Since

a computer can only store and process a finite number of values, one has to convert the wave-

form into a discrete representation, i.e the acquisition is the process of converting the physical

phenomenon we call sound into a representation suitable for digital processing. This process is

commonly known as digitization, which involves sampling and quantization processes [26].
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1.3.2.1 Audio signal sampling

Sampling a continuous time signal implies taking snapshots of the signal at specific instances

of time, as shown in Figure 1.3 [5]. One important parameter is the sampling rate, which

is the number of samples taken per second, measured in Hertz (Hz). For example, if we

sample at a rate similar or higher than that shown in Figure 1.2, it is possible to reproduce

a waveform almost identical to the original waveform. Therefore, we need to determine a

convenient sampling rate, which is generally required to be higher than twice the frequency of

the sampled signal [5].

Figure 1.3: The sampling process.

1.3.2.2 Audio signal quantization

Quantization refers to the process of converting a continuous amplitude to a discrete one

[5] by replacing the continuous values with a limited set of values separated by discrete steps.

Usually, the number of steps is chosen to be a power of two, as this yields the most economical

representation in binary digital electronics [28]. It is possible for quantization to be done by

rounding to the nearest quantization level. Each level is coded using 2 bits in a four-level

quantization system. The output of this process is therefore binary, as shown in Figure 1.4 [5].
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Figure 1.4: Analog to digital conversion.

1.3.3 Audio Signal Representation

Objects move or evolve; electrical signals change all along a continuous time-line and get

converted into a discrete time-line as mentioned earlier. The observation of processes along

this time-line is called the time-domain observation of the process [29]. However, it can not

be interpreted in a straightforward way. It is nearly impossible to identify or localize sound

events from a waveform and to distinguish between sound scenes [24]. Although time domain

representation has been useful for years since it lines up with the human perception of sounds,

unfortunately, it does not allow us to observe several characteristics of the signal. Therefore, it

needs to be converted into a frequency with a pair of operators called transforms. Moreover ,a

perfect example of a transform is the Fourier transform [29].

1.3.4 Fourier Transform

A signal is defined as any physical quantity that varies as a function of time; it conveys

information in its patterns of variation. The manipulation of this information involves the

acquisition, storage, transmission, and transformation of it. In order to find the different

frequencies that are present in a signal, we apply the fourier transform that allows the passage

from the temporal representation that shows the way the overall sound amplitude changes over

time to the frequency representation that shows how much of the signal lies within each given

frequency band over a range of frequencies [30]. We take, for example, this signal (Figure 1.5a)

with a 10-ms section, behaving in a nearly periodic way. The main idea of Fourier analysis

is to compare the signal with sinusoids of various frequencies (measured in Hz). Each such

sinusoid may be thought of as a prototype oscillation. As a result, we obtain for each frequency

a magnitude along with a phase. In the case where the magnitude is large, there is a high

similarity between the signal and the sinusoid of frequency, and the signal contains a periodic

oscillation at that frequency (see Figure 1.5b). In the case where the magnitude is small, the
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signal does not contain a periodic component at that frequency (see Figure 1.5c).

Figure 1.5: : (a) Zoom into a 10-ms section of a waveform. (b-d) Comparison of the waveform
with sinusoids of various frequencies.

Furthermore, as illustrated by Figure 1.5d , we can observe a high similarity between the

signal and the sinusoid with a frequency equal to 523 Hz. With this example, we can conclude

that the fourier transform breaks up a signal into frequency components. For each frequency,

it yields a magnitude and a phase that tells us to which extent the given signal matches a

sinusoidal prototype oscillation of that frequency [31], Figure 1.6 displays a representation of

the time-domain and frequency-domain applied with the fourier transform function.

(a) Time-domain representation. (b) Frequency-domain representation.

Figure 1.6: : Time-domain and frequency-domain representations of a dog barking recording
applied with the fourier transform function .

1.3.5 Short Time Fourier Transform

The Fourier transform assumes that the signal is analyzed over all time, i.e., an infinite

duration, which implies that there can be no concept of time in the frequency domain and,

likewise, no concept of frequency changing over time. The two domains can not be mixed to-

gether; they are orthogonal to each other. The Fourier transform does convert the audio from

the time-domain to the frequency-domain, but it does not cover the change of the frequency
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over time, which is a must for an audio tagging system. That is why the concept of Short-Time

Fourier transform (i.e., STFT) solves this issue by evaluating the frequency changes of a signal

over time. To achieve this, we need to perform framing and windowing [32].

Framing allows the decomposition of a sound signal into a series of frames. In other words,

the signal is cut into blocks of finite length, and then the Fourier transform of each block is

computed, to end up with a time-dependent representation, which depicts how the spectrum

changes over time, but the issue with applying framing is that there is often a discontinuity

at the frame boundaries and that would corrupt the frequency spectrum estimation, and that

would cause what is called spectral leakage. The solution to this problem is by multiplying

a hamming window function by each short time frame signal, which would smooth the dis-

continuities of each beginning and end of the signal frame boundaries [32, 33]. Hann window

function is shown in Figure 1.7 [34].

Figure 1.7: Windowing a sinusoidal signal with Hann window.

It is clear that some information is lost along the frame boundaries when windowing func-

tions are applied to the signal. For this reason, overlapping the frames would be an additional

improvement to the STFT by analyzing each part of the signal in more than one frame; there-

fore, lost information would be recovered within the next frame boundary as illustrated in

Figure 1.8 [35, 33].

Figure 1.8: STFT procedure with overlap–add method.
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1.3.6 Pre-Processing

Many real-world applications rely on machine learning. One of the important applications

of machine learning is audio processing, which aims to extract meaningful information from

audio [36, 37]. However, the signal would undergo some preprocessing before the machine

learning process begins, with the goal of preparing it for the primary processing or improving

certain features and characteristics of the signal for further analysis in order to maximize audio

analysis performance in the later phases of the analysis system. In some cases, this is achieved

by reducing the effects of noise or by emphasizing the target sounds of the signal [38].

1.3.7 Feature Extraction

Any machine learning system requires performing an in-depth analysis of the incoming audio

signal, aiming at making the most of its particular characteristics. This analysis starts with the

extraction of appropriate parameters of the audio signal that contain information about its most

significant traits, a process that usually goes by the name of audio feature extraction. Logically,

extracting the right features from an audio signal is a key issue in guaranteeing the success of

machine learning applications. Indeed, the extracted features should provide a compact yet

descriptive view of the signal, highlighting those signal characteristics that are most useful to

accomplish the task at hand [39, 40]. These extracted features reflect the characteristics of the

signal from a Temporal or physical point of view [41].

• Temporal features

Temporal features, or time amplitude, are represented as amplitude fluctuations with time

(waveform signal). Temporal audio features are extracted directly from raw audio signals

with no preceding data. Representative instances of temporal features are zero-crossing

rate, amplitude-based features, and power-based features. Such features normally suggest

a simple tactic to investigate audio signals [42].

• Physical features

Physical features are low-level signal parameters that can be calculated directly from the

relative amplitudes of audio waveforms or from their short-time spectral values [43, 44].

1. SPECTROGRAMS

A spectrogram is a visual way of representing the signal strength as each individual

frequency changes over time. In essence, spectrograms are two-dimensional graphs

with a third dimension represented by colors. Time is displayed along the x-axis;

frequency is displayed along the y-axis, which can also be thought of as pitch or tone,
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with the lowest frequencies at the bottom and the highest frequencies at the top;

and the amount of the amplitude or energy (loudness) of a particular frequency at a

particular time is represented by the third dimension, level of gray. During regions of

silence and at frequency regions where there is little energy, the spectrogram appears

white, whereas, on the other hand, dark regions indicate areas of high energy [31, 45]

. The Figure below shows the spectrogram of a dog barking recording.

Figure 1.9: Spectrogram of a dog barking recording.

2. MEL SPECTROGRAMS

Audio data usually has complex features, so it is necessary to extract useful features

to recognize the audio. The Mel-spectrogram is one of the efficient methods for

audio processing. Therefore, each audio wave would be transformed into its own

Mel spectrogram representation [46]. The Mel scale is based on a unit of pitch

proposed by Stevens, Volkmann, and Newmann in 1937. The Mel scale provides a

linear scale for the human auditory system below 1000 Hz [47], and is related to

Hertz by the following formula, where m represents Mels and f represents Hertz:

m(f) = 2595 log10(1 +
f

700
) (1.5)

The inverse transform can be readily derived as:

f(m) = 700(10m/2595 − 1) (1.6)

The Mel spectrogram is used to provide classifiers with sound information similar to

what a human would perceive. The raw audio waveforms are passed through filter

banks to obtain the Mel spectrogram [48, 49]. Figure 1.10 displays a mel frequency

representation of a dog barking recording used earlier.
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Figure 1.10: Mel-Spectrogram of a dog barking recording.

3. LOG MEL SPECTROGRAMS

The logarithmic spectrum is a much more intuitive representation compared to the

mel spectrogram, but it is still considered another visual representation of mel Spec-

trograms where it is converted from power to decibels. The log-scaled spectrogram is

not only more visual but also motivated by the human perception of loudness, which

has a logarithmic relationship with the physical energy of sound [49, 50]. Despite

the fact that learning a logarithmic function is a trivial task for neural networks,

it can be difficult to implicitly learn an optimal nonlinear compression when it is

embedded in a complicated task [50]. But still, Log-Mel Spectrograms are consid-

ered one of the best variants of the visual features that could be used as an input

feature to convolutional neural networks nowadays [51]. Figure 1.11 illustrates a Log

Mel-Spectrogram of a dog barking recording.

Figure 1.11: Log Mel-Spectrogram of a dog barking recording.
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1.4 Machine Learning Essentials

Machine learning is the capability of a machine to imitate intelligent human behavior. Ma-

chine learning is based on designing models that are typically trained to recognize certain

types of patterns in data and providing them with an algorithm that can be used to learn and

understand in a way to automatically find patterns and structure in data by optimizing the

parameters of the model. The purpose of it is to find good models that generalize well to yet

unseen data, which we may care about in the future [52].

The field of machine learning has branched into several subfields dealing with different types

of learning tasks [53]. Learning methods fall into three major categories: supervised learning,

which uses labeled data to train models to classify new data or predict outcomes accurately [54].

Whereas in unsupervised learning, no labels are given to the learning algorithm, leaving it on its

own to identify patterns and find structure in the input set [55]. A half-way between supervised

and unsupervised learning that overcomes their drawbacks is Semi-Supervised Learning (SSL),

where the data is partially labeled and the model is built with a few labeled patterns as a

training set and treating the rest of the patterns as test data [56].

1.4.1 Classification

Classification is one of the most widely used tasks in machine learning and, in our case, audio

analysis. It is used to identify the class of unseen instances on the basis of labeled training

data. The sample (instance) is characterized by a feature vector x and its class label y, where

classes can be called as labels or categories. For example, in an audio tagging task, the process

would involve a model to classify sounds and predict the category of the output . In which we

can distngwich two main types [57]:

• crisp label : where the label is unique and symbolic y appartien Y.

• probability distribution : the model would return a probability vector that represents the

likelihood of the predicted class label and the expected class label over the k class labels,

µ = [µ1, µ2, ...., µk]
T ∈ [0, 1]k

In our Audio Tagging task, we will mainly focus on the probability distribution since we

work with k classes. The classification process is correspondingly divided into two phases:

training, when a classification model is built from the training set, and testing, when the model

is evaluated on the test set. One of the major goals of a classification algorithm is to maximize

and give a high predictive performance obtained by the classification model when classifying
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unseen test sets. One important measurement of performance is accuracy which describes how

the model performs across all classes. We will discuss the most well-known evaluation metrics

in one of the following sections.

Evaluating a machine learning model is as important as building it. We are creating models

to perform on new unseen data. Hence, it is necessary to create a robust model. When it comes

to classification models, deep learning models take the lead, and that is due to the efficiency of

analysis that this latter has that we will discuss in the next section [58].

1.4.2 Deep Learning For Audio Tagging

Audio Tagging mainly aims at determining the presence of events in the acoustic scene [59].

It has been addressed with different deep learning approaches, such as deep convolutional neural

networks (CNNs), that achieve state-of-the-art performance for the Audio Tagging task [60].

CNNs are a particular type of neural networks, which use the convolution operation in one or

more layers for the learning process. These networks are inspired by the primal visual system,

and are therefore extensively used with image and video inputs. CNNs are comprised of three

types of layers. These are convolutional layers, pooling layers and fully-connected layers. When

these layers are stacked, a CNN architecture has been formed. A simplified CNN architecture

is illustrated in Figure 1.12 [61].

Figure 1.12: The overall architecture of the Convolutional Neural Network (CNN).

The basic functionality of the example CNN above can be broken down into four key areas

[62].

• As found in other forms of artificial neural networks (ANN) the input layer will hold

information of the data.

• The convolutional layer will determine the output of neurons of which are connected

17



to local regions of the input through the calculation of the scalar product between their

weights and the region connected to the input volume. The rectified linear unit (commonly

shortened to ReLu1activation ) aims to apply an ’elementwise’ activation function to the

output of the activation produced by the previous layer.

• The pooling layer will then simply perform downsampling along the spatial dimensionality

of the given input, further reducing the number of parameters within that activation.

• The fully-connected layers will then perform the same duties found in standard ANNs

and attempt to produce class scores from the activations,to be used for classification in

which which it outputs the probability of the input belonging to each of the classes. It is

also suggested that ReLu may be used between these layers, as to improve performance.

Through this simple method of transformation, CNNs are able to transform the original

input layer by layer using convolutional and downsampling techniques to produce class scores

for classification purposes [62].

The reason why we used CNNs in our approach is due to the intrinsic nature of audio

signals. CNNs are extensively used with images and, since the spectrum of the audio is an

actual image of the signal, it is straightforward to see why CNNs are the best fit for such kinds

of input, being able to exploit the adjacency properties of audio signals and recognize patterns

in the spectrum images that can properly represent each of the classes taken into consideration

[63]. But one drawback of traditional CNNs states that training the neural networks becomes

more difficult with the increase in the number of added layers, and in some cases, the accuracy

decreases as well. The solution to this drawback is using the residual neural networks that will

be explained in one of the next chapters.

1.5 Statistical Tests

Given multiple learning algorithms, model evaluation aims at identifying which algorithm

produces the most accurate classifiers. In fact, this is one of the most fundamental concerns in

machine learning, and that’s when statistical tests were introduced by many domain experts,

who tried different statistical and logical techniques to decide whether the differences between

the algorithms were real or random [64]. That’s when Demsar [65], Garca et al [66], introduced

several statistical tests. which are used in hypothesis testing where they can determine whether

a predictor variable has a statistically significant relationship with an outcome variable or

estimate the difference between two or more groups [65].
1ReLU stands for rectified linear unit which is a piecewise linear function that will output the input directly

if it is positive, otherwise it will output zero.
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1.5.1 Wilcoxon signed-ranks test

Wilcoxon signed-ranks test is a non-parametric test and is considered the best strategy

to compare two algorithms over multiple domains [67]. This test is expressed as follows.

We designate by di the difference between the performance scores of two techniques on N

datasets. i ∈ {1, ...., N}. We first rank these differences according to their absolute values; in

case of ties, average ranks are attributed. Then, we compute the sum of ranks for the positive

and the negative differences, which are denoted as R+ and R−, respectively. Their formal

definitions are given by: (1.9) (1.10)

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di) (1.7)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di) (1.8)

Notice that the ranks of di = 0 are split evenly between R+ and R−. Finally, the statistics

Tw is computed as Tw = min(R+, R−). For small N , the critical values for Tw can be found

in any textbook on general statistics [68], whereas for larger N , the statistics:

z =
T − 1

4
N(N + 1)√

1
24
N(N + 1)(2N + 1)

(1.9)

follows the normal distribution with 1 mean and 0 variance. For instance, the hypothesis which

states that two approaches perform equally is rejected if z ⪯ −1.96 at a 5% significance

level[65].

1.5.2 Kruskal-Wallis Test

The Kruskal-Wallis is a nonparametric statistical test that assesses the differences among

three or more independently sampled groups. All the data are pooled and ranked from smallest

(1) to largest (N), then the sums of ranks in each subgroup are added up, and the probability

is calculated. The statistic H is:

H =
12

N(N + 1)

∑ R2
i

n2
i

− 3(N + 1) (1.10)

where N is the total number, ni is the number in the i-th group, and Ri is the total sum

of ranks in the i-th group. The value of H is tested against the chi-square distribution for

k− 1 degrees of freedom, where k is the number of groups. If there are tied ranks a correction

is used but makes very little difference [69].
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1.5.3 Bonferroni-Dunn Test

The Bonferroni-Dunn test shows that the power of the post-hoc test is much greater when

all techniques are compared only to a control algorithm and not between themselves. The

Bonferroni-Dunn test controls the family-wise error rate by dividing α by the number of

comparisons made (k − 1). The performance of two classifiers is significantly different if the

corresponding average ranks differ by at least the critical difference (CD).

CD = qα

√
k(k + 1)

6N
(1.11)

where critical values qα are based on the Studentized range statistic divided by
√
2 .

Therefore an alternative way to compute the same test is to calculate CD but using the

critical values for α/(k − 1) [65].

1.6 Conclusion

In this chapter, we covered the fundamental basics of sound and audio signal pre-

sentation that play an important role in our thesis. We have presented numerous types of

feature extraction techniques since they are needed as input for the learning stage. Although

one particular problem consists of the shortage of audio data. The goal of the next chapter is

to present a solution that involves creating an audio tagging system based on semi-supervised

learning approaches.
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Chapter 2
SEMI-SUPERVISED AUDIO TAGGING

2.1 Introduction

Data collection is one of the most difficult processes in machine learning, especially for

producing an Audio Tagging system where the challenge lies in using only a small amount

of supervised data. Therefore, we introduce the semi-supervised learning approach, which is

concerned with using labeled as well as unlabeled data. SSL aims to understand how pairing

labeled and unlabeled data impacts the learning behavior and design algorithms that take

advantage of such a combination. In this chapter, we present the semi-supervised paradigm,

explaining some popular semi-supervised learning methods and highlighting the underlying

assumptions that SSL methods should rely on.

2.1.1 Motivation

Countless tasks have been solved using machine learning algorithms in a variety of fields.

However, the different tasks require the use of various machine learning techniques. On one

hand, there is supervised learning that helps to solve many types of real-world computation

problems because its methods are more accurate and reliable since they use labeled data,

whereas the process of data annotation (labeling the dataset) is a time-consuming and laborious

task when done manually as it requires humans to review each training example before assigning

a label to it. Meanwhile, in the case of unsupervised learning, the machine takes unlabeled

training data as an input, where one of its advantages is that it extracts the essential information

from the data and barely needs human interaction. However, it is a very time-consuming process

where the learning phase might take a lot of time as it analyzes all possibilities. Also, the model

would be learning from raw data without any prior knowledge, which wouldn’t serve our audio

tagging task. Therefore, a middle ground exists that consists of semi-supervised learning that

uses both labeled and unlabeled data to create an Audio Tagging system. The process would
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start with training a model that would be used to assign labels to the unlabeled data. The

unlabeled data would be added to the labeled set when its confidence is sufficiently large. The

main research question in using SSL is how much unlabeled data is required to have an efficient

model with accurate results for an audio tagging system [24] .

2.2 Main Assumptions in Semi Supervised Learning

SSL algorithms only work under some assumptions about the structure of the data they need

to hold. The ability to generalize from a finite training set to an infinite number of potentially

untested cases is not possible without such assumptions. The main assumptions in SSL are:

2.2.1 The Smoothness Assumption

If two points x1, x2 in a high-density region are close, then so should be their corresponding

outputs y1, y2 [70]. This means that if two inputs are of the same class and belong to the same

cluster, which is a high-density region of the input space, then their corresponding outputs need

to be close. The inverse also holds true; if the two points are separated by a low-density region,

the outputs must be far from each other. This assumption covers a classification task, which is

the case for our Audio Tagging system [71].

2.2.2 Cluster Assumption

Consider the possibility that the points of each class tend to form a cluster. Then the

unlabeled data could aid in finding the boundary of each cluster and using the labeled points

to assign a class to each cluster. If points are in the same cluster, they are likely to be of

the same class. The cluster assumption can easily be seen as a special case of the smoothness

assumption, given that clusters are usually described as groups of points connected by short

curves that only pass through high-density areas [70].

2.2.3 The Low-Density Assumption

The low-density assumption states that a classifier’s decision boundary should preferably

pass through low-density input space areas. The assumption is defined over p (x), the input

data’s true distribution. When only a few samples from this distribution are considered, this

essentially suggests that the decision boundary should lie in a region where few data points

are observed. Therefore, the low-density assumption is closely related to the smoothness as-

sumption; in fact, it can be considered the counterpart of the smoothness assumption for the

underlying data distribution [72].
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2.2.4 The Manifold Assumption

The (high-dimensional) data lies (roughly) on a low-dimensional manifold. In high-dimensional

spaces, where the volume grows exponentially with the number of dimensions, it can be quite

hard to estimate the true data distribution considering it is represented in Euclidean space.

The observed data points in the high-dimensional input space are usually concentrated along

lower-dimensional substructures. These substructures are known as manifolds. In particular,

considering a 3-dimensional input space where many points lie along the surface of a sphere,

the data is considered to lie on a 2-dimensional manifold. For semi-supervised learning, the

manifold assumption holds that (a) the input space is composed of multiple lower-dimensional

manifolds on which all data points lie and (b) data points lying on the same manifold have the

same label. Therefore, by determining the data points that lie on a certain manifold, the class

of the unlabeled data can be inferred from the labeled data that lies on the same manifold.

Figure 2.1: Illustrations of (a) Smoothness and low-density assumptions (b) Manifold assump-
tion, and Cluster assumption depicted as the colors.

The Figure above [72] illustrates all the explained assumptions. The cluster assumption

is represented by the different colors; each cluster has a different color where the dots of the

same color, e.g. orange, belong to the same cluster. In (a) and (b), a reasonable supervised

decision boundary is depicted, as well as the optimal decision boundary, which could be closely

approximated by a semi-supervised learning algorithm relying on the respective assumptions

[71, 72].

2.3 Semi-Supervised Learning Approaches

Xiangli Yang et al. [73] classified the semi-supervised learning approaches into 5 categories,

i.e., generative methods, consistency regularization, graph-based methods, pseudo-labeling, and

hybrid methods. This section summarizes some of the well-known semi-supervised techniques
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that have been shown to work efficiently under audio tagging and in audio analysis in general.

Hybrid methods consist of integrating two or more machine learning and/or soft computing

technologies for better performance and optimum results[74]. While consistency regularization

aims to encourage the prediction of the network to be similar in the vicinity of the observed

training samples [75]. Generative methods are a powerful way of automatically discovering

and learning the regularities or patterns in an input data in such a way that the model can

be used to generate or output new instances [76]. Pseudo-labeling-based methods generate

pseudo-labels for unlabeled samples with a model trained on labeled data [72, 77]. We will

introduce some of the algorithms that have effectively achieved remarkable results in the audio

analysis field.

2.3.1 Hybrid methods

Hybrid approaches combine distinct single techniques to generate a method with greater flex-

ibility and capacity than single methods [74] . As is the case when generating a semi-supervised

hybrid model that would be composed of an unsupervised learner (cluster) to preprocess the

training data and a supervised learner (classifier) to learn the clustering result or vice versa

[78]. In addition, a learning principle known as "mixup" is introduced in such hybrid methods.

It is a convex combination of paired samples and their associated labels that may be thought

of as a basic data augmentation strategy. Formally, Mixup constructs virtual training exam-

ples that would be used in the mixmatch algorithm [73]. The most well-known algorithms are

Interpolation Consistency Training (ICT), MixMatch, FixMatch, ReMixMatch and DivideMix.

We will give a brief explanation of MixMatch since it is the most commonly used algorithm for

audio tagging tasks.

• MixMatch

MixMatch [79] (MM) is an SSL approach that uses entropy minimization and standard

regularization, namely pseudo-labeling, mixup, and weak data augmentation, to leverage

the unlabeled data and provide better generalization capabilities. The different steps

are detailed in the following paragraphs. During the learning phase, each minibatch is

composed of labeled xs and unlabeled xu samples in equivalent proportions. The first

step consists of applying an augmentation to the labeled part of the mini-batch and k

augmentations to the non-labeled part. In the second step, pseudo-labels yu are generated

for the non-labeled files using the model’s prediction averaged on these k variants as

24



shown in Eq 2.1 , where x
′
u,i denotes the i-th variant of an unlabeled augmented file.

Ŷu =
1

k

k∑
i=1

f
(
x

′

u,i

)
(2.1)

For encouraging the model to produce confident predictions, a post-processing step is

necessary to decrease the output’s entropy. This process is called ”sharpening” by the

method authors, and it is defined as:

sharpen (p, T )i := p
1/T
i /

|p|∑
j=1

p
1/T
i (2.2)

The sharpen function is applied on to the pseudo-labels p = Ŷu. The parameter T , called

Temperature, controls the strength of the sharpen function. When T tends towards zero,

the entropy of the distribution produced is lowered. Finally, the labeled and unlabeled

augmented samples are concatenated and shuffled into a W set then used as a pool of

training samples used by the asymmetric mixup function [80].

2.3.2 Consistency regularization

One of the most widely used semi-supervised learning approaches in audio analysis is consis-

tency regularization which is based on the manifold assumption or the smoothness assumption,

and describes a category of methods that the realistic perturbations of the data points should

not change the output of the model. Consequently, consistency regularization can be regarded

to find a smooth manifold on which the dataset lies by leveraging the unlabeled data [73].

Consistency regularization employs various algorithms such as Ladder Network, Temporal En-

sembling, Mean Teacher, VAT, Dual Student, SWA, UDA.

• Mean Teacher

The MT algorithm is designed for semi-supervised consistency regularization tasks. The

asset of this method is that it uses the Exponential Moving Average (EMA) of the model

parameters instead of predictions. The key idea is to have two models called "Student"

f and "Teacher" g. The student model is a regular model, and the teacher model has

the same architecture as the student model, but its weights are set using an exponential

moving average of the student model’s weights.

Figure 2.2 [80] illustrates that both the student and the teacher model evaluate the input

by applying random noise within their computation (i.e. η for student, η
′ for teacher),

in which two cost functions play an important role while backpropagating, in which they

are classification cost and consistency cost.
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Figure 2.2: The Mean Teacher technique.

The classification cost (C (θ)) is calculated as cross-entropy between label predicted by

student model and the original label, where the consistency cost cost (J (θ)) is the mean

squared difference between the predicted outputs of the student (weights θ and noise η)

and teacher model (weights θ
′ and noise η

′). Noise is one of the important factors that

play a crucial role in adding robustness to the model in which it would fool models by

not being biased towards a particular target and also can perform well while predicting

unseen data. The mathematical declaration of consistency cost is as follows:

J (θ) = Ex, η
′
, η

[
||f

(
x, θ

′
, η

′
)
− f (x, θ, η) ||2

]
(2.3)

– (x, θ, η) is the prediction of the student model

–
(
x, θ

′
, η

′) is the prediction of the teacher model

The final loss function is the sum of the supervised loss function and the consistency cost

weighted by a factor λ which controls its influence.

O (θ) = C (θ) + λJ (θ) (2.4)

For the student model, the weights are updated using the standard gradient descent al-

gorithm, whereas the weights of the teacher model are the Exponential Moving Average

(EMA) of the student weights that are assigned at every step, and the proportion of

weights assigned is controlled by smoothing coefficient hyperparameter (α). While as-

signing weights, the teacher model holds its previous weights in the (α) proportion and

(1− α) portion of student weights.

θt′ = αθt′−1 + (1− α) θt′ (2.5)
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The moving average methods are used with time series data to smooth the random short-

term variations and to highlight other components present in the data. It is used to filter

out noise. The weight of each element decreases progressively over time, meaning the ex-

ponential moving average gives greater weight to recent data points (i.e., for EMA, recent

data is more relevant than old data). Because of that, EMA reacts faster to changes since

it is more sensitive to recent movements.

Finally, both model outputs can be used for prediction, but at the end of the training, the

teacher model performs better than the student model. However, the convergence of the

teacher model depends on epoch, batch size, train data size, and smoothing coefficient

hyperparameter α. Therefore parameter adjustments are required to get better results

[81].

2.3.3 Generative Methods

Generative methods, also known as generative paradigms, have achieved tremendous success

in just a few years. All types of generative models aim at learning the true data distribution of

the training set to generate new data points with some variations. Two of the most commonly

used and efficient approaches are Variational Autoencoders (VAE) and Generative Adversarial

Networks (GAN) [70, 82].

• Generative Adversarial Networks (GAN)

Generative adversarial networks (GANs) have become a research focus in artificial intel-

ligence. They have been widely studied due to their enormous prospects for applications,

including image and vision computing, speech and language processing, etc. GANs com-

prise a generator and a discriminator, both trained under the adversarial learning idea.

The goal of GANs is to estimate the potential distribution of real data samples and gen-

erate new samples from that distribution. The generator tries to capture the potential

distribution of real samples and generates new data samples. The discriminator is often

a binary classifier, discriminating real samples from generated samples as accurately as

possible [76].

Figure 2.3 [83] illustrates the architecture of a generative adversarial network. Suppose

the samples from the training data have their own distribution of features. The task of

the generative model is to try to simulate the features of the real data and generate fake

samples with random input noise as close to the real thing as possible. The task of the
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discriminative model is to estimate the probability of the input, which contains samples

both from real data and generated fake data from the generator, being real. In other

words, the generator attempts to deceive the discriminator [84].

Figure 2.3: Architecture of the GAN.

The main idea of GAN comes from the Nash equilibrium in game theory. It assumes two

game participants: one generator and one discriminator. The generator aims to learn the

distribution of real data, while the discriminator aims to correctly determine whether the

input data is from the real data or from the generator. In order to win the game, the two

participants need to continuously optimize themselves to improve their generation ability

and discrimination ability, respectively [76].

2.3.4 Pseudo-Labeling-based method

Pseudo-Labeling-based methods select unlabeled samples with high confidence as training

targets; this can be considered as a form of entropy minimization, which minimizes the density of

data points at the decision boundaries. One of the benefits of pseudo-labeling over consistency

regularization is that it does not require augmentations and can be used in a wide range

of domains. The goal of pseudo-labeling methods is to generate pseudo-labels for unlabeled

samples with a model trained on labeled data. (i.e., created from the predictions of a trained

neural network). Pseudo-labeling based methods have two main parts: disagreement-based

models and self-training models [72, 77].

2.3.4.1 Self-Training Models

Self-training algorithm is one of the simplest general algorithms in SSl based methods. It

leverages the model’s own confident predictions to produce the pseudo labels for unlabeled

data. In other words, it can add more training data by using existing labeled data to predict

the labels of unlabeled data. It chooses the most confident named entity recognition predictions

from the unlabeled data as the additional targets to boost the performance [72].
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• Pseudo Labeling

Pseudo-labeling is one of the most simple and efficient self-training models. It aims at

using the labeled data model to predict labels for unlabelled data. This method follows

some basic steps, as shown in Figure 2.4 [85].

Figure 2.4: Schematic diagram of pseudo-labeling steps.

The process begins by training a supervised model on labeled data with the use of cross

entropy loss. Then the trained model would predict labels for the unlabeled data. After

that, the model would be retrained on both the labeled data and the pseudo labeled

data (i.e., guessed labels), and then the supervised classifier would be retrained on both

the original labeled data and the newly obtained pseudo labeled data (most confident

predictions) [72, 85].

2.3.4.2 Disagreement-Based Models

The idea of disagreement-based SSL is to train multiple learners for the task and exploit the

disagreement during the learning process. In such model architectures , two or three different

networks are trained simultaneously and classify unlabeled data for each other. Disagreement-

based methods differ in whether the data has a single view, i.e., Tri-Net or Co-training for

multiview data [86, 87].

• Deep Co-Training

The fundamental principle of co-training is based on the assumption that two independent

views on a training dataset are allowed to train two models separately. The two models

are then used to make predictions on the non-labeled data subset. The most confident
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predictions are selected and added to the labeled subset, and this process will iterate

for a certain amount of time. Deep Co-training (DCT) is an adaptation of Co-training

(CT) in the context of deep learning. Instead of relying on views of the data that are

different, DCT makes use of adversarial examples to ensure the independence of the

"view" presented to the models. We will cover this section in detail in the next chapter

[72].

2.4 Conclusion

In this chapter, we have presented an overview of the field of semi-supervised learning,

addressing the issues of supervised and unsupervised learning approaches and covering the

most important methods from the semi-supervised learning paradigms with a combination of

other dominant methods. In the next chapter, we will explore the Deep Co-Training Technique

and adversarial examples in further detail.
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Chapter 3
DEEP CO-TRAINING

3.1 Introduction

In the previous chapter, we have addressed the importance of semi-supervised learning and

a few of its techniques and briefly introduced the deep co training (DCT) algorithm. Since

our main interest revolves around the DCT algorithm, this chapter will cover its fundamentals

as follows: in section 3.2 we will explain the SSL algorithm co-training where the DCT was

adapted from. In the following section, we will explore DCT in greater detail, covering the

different aspects and types of adversarial examples, and finally in section 3.6 we will analyze

the empirical and theoretical findings related to the DCT algorithm.

3.2 Co-training

Co-training is a self-training extension that includes many supervised classifiers. In Co-

training, two or more supervised classifiers are iteratively trained on the labeled data, adding

their most confident predictions to the labeled data set of the other supervised classifiers in

each iteration. It’s crucial that the base learners’ predictions are not too strongly correlated

for Co-training to be successful. If they are, their ability to share useful information with

one another is limited. This requirement is frequently referred to as the "diversity criterion".

Zhou et al. [88] provided a survey of semi-supervised learning methods relying on multiple

base learners. They jointly refer to these methods as disagreement-based methods, referring to

the observation that co-training approaches exploit disagreements between multiple learners;

they exchange information through unlabeled data, for which different learners predict different

labels.

The Co-training algorithm relies on two main assumptions to succeed: (1) each individual

subset of features should be sufficient to obtain good predictions on the given data set, and
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(2) Given the class label, features should be conditionally independent. The first assumption

states that if one of the two feature subsets is insufficient to form good predictions, a classifier

based on that set can never contribute positively to the overall performance of the combined

approach. The second assumption is related to the diversity criterion: if the feature subsets

are conditionally independent given the class label, the predictions of the individual classifiers

are unlikely to be strongly correlated.

In practice, the second assumption is generally not satisfied even if a natural split of features

exists, it is unlikely that information contained in one view provides no information about the

other view when conditioned on the class label [72].

3.3 Multi-view Co-training

In an audio tagging task, we are provided with an audio dataset D = S ∪ U where audio

files in S are labeled however in U are not. The goal is to build classifiers on the categories

C in S using the data in D. The test data contains only the categories that appear in S.

There has been extensive research done on learning models from supervised datasets, and the

state-of-the-art methods are deep convolutional networks [89]. The core problem is how to use

the unlabeled U to help learning on S.

Co-Training assumes that each data x in D has two views, i.e. x is given as x = (v1, v2),

and each view vi is sufficient for learning an effective model. Let X be the distribution that

D is drawn from. Co-Training assumes that f1 and f2 trained on view v1 and v2 respectively

have consistent predictions on X, i.e., f(x) = f1(v1) = f2(v2) ∀x = (v1, v2) ∼ X (Co-Training

Assumption) (1) .

Based on this assumption, Co-Training proposes a dual-view self-training algorithm where

two independent views on a training dataset are available to train two models separately.

Ideally, the two views are conditionally independent given the class. The two models are then

used to make predictions on the non-labeled data subset. The most confident predictions are

selected and added to the labeled subset for a specific number of iterations.
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Figure 3.1: Representation of Co-training algorithm.

Given the superior performance of deep neural networks on audio analysis, it is interesting to

extend the Co-training framework to apply deep learning to semi-supervised audio recognition

and audio tagging. A simple implementation is to train two neural networks simultaneously

on D . But this method suffers from a critical drawback: there is no guarantee that the views

provided by the two networks will give different and complementary information about each

data point. Although, Co-training is only beneficial if the two views are different. After all,

training two identical networks serves no purpose. Moreover, the Co-training assumption pushes

the two models to make similar predictions on both S and U , which can lead to collapsed

neural networks. Therefore, For the Co-training framework to take advantage of deep learning,

there must be a force that pushes networks apart to balance the co-training assumption [87].

3.4 Deep Co-Training

Deep co-training (DCT) has been recently proposed by Qiao and colleagues [87]. DCT

is an adaptation of Co-Training (CT) in the context of deep learning without the drawbacks

discussed above. Specifically, we model the co-training assumption by minimizing the expected

loss between the predictions of the two networks on U. To avoid the neural networks from

collapsing into each other and encouraging them to be different, DCT makes use of adversarial

examples to ensure the independence of the "view" presented to the models. Therefore, we

impose the view difference constraint formulated by Eq. 3.1 by training each network to be

resistant to the adversarial examples of the other.

∃X ′
: f1(v1) ̸= f2(v2),∀x = (v1, v2) ∼ X

′
(3.1)
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The result of the training is that each network can maintain its predictions unaffected on

the examples that the other network fails on. In other words, the two networks provide different

and complementary information about the data because they are trained not to make errors at

the same time on the adversarial examples for them.

The goal for building an Audio Tagging system based on DCT, is by starting with the

dual-view case where we are interested in Co-training two deep neural networks. Therefore we

use S and U to denote the labeled and the unlabeled dataset. Let D = S ∪ U denote all the

provided data. Let v1(x) and v2(x) denote the two views of data x which are convolutional

representations of x before the final fully-connected layer fi(.) that classifies vi(x) to one of

the categories in S.

On the supervised dataset S, we use the standard cross entropy loss which measures the

performance of a model whose output is a probability value between 0 and 1. Cross-entropy

loss increases as the predicted probability diverges from the actual label [90].

Lsup(x, y) = H(y, f1(v1(x))) +H(y, f2(v2(x))) (3.2)

The standard supervised classification loss function.

as eq 3.2 shows for any data (x, y) in S where y is the label for x and H(p, q) is the cross

entropy between distribution p (target) and q (predicted).

The two classifiers are expected to provide consistent and similar predictions on both the

labeled and unlabeled data. Co-Training assumes that on the distribution X where x is

drawn from, f1(v1(x)) and f2(v2(x)) agree on their predictions. In other words, the two

classifiers p1(x) = f1(v1(x)) and p2(x) = f2(v2(x)) are expected to provide consistent and

similar predictions on unlabeled data U . To encourage this behavior, we use a natural measure

of similarity, the Jensen-Shannon divergence between p1(x) and p2(x), that quantifies how

distinguishable p1(x) and p2(x),are from each other. Eq.3.3 gives the JS analytical expression.

Lcot(x) = H(
1

2
(p1(x) + p2(x)))−

1

2
(H(p1(x)) +H(p2(x))) (3.3)

The Jensen-Shannon divergence between p1(x) and p2(x) .

Where x ∈ U and H(p) is the entropy of p. Training neural networks based on the

Co-training assumption minimizes the expected loss E [Lcot] on the unlabeled set U . As for

the labeled set S, minimizing loss Lsup already encourages them to have close predictions on

S since they are trained with labels; therefore, minimizing Lcot on S is unnecessary, and we
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only implement it on U (i.e., not on S).

For Co-training to be successful, the two views must differ and provide complementary

information about each data x. But minimizing Eq. 3.2 and 3.3 only encourages the neural

networks to output the same predictions on D = S∪U . Therefore, it is necessary to encourage

the networks to be different and complementary. To achieve this, we create another set of data

D
′ where p1(x) ̸= p2(x) , ∀x ∈ D

′ , which we will generate by adversarial examples. Since Co-

Training assumes that p1(x) = p2(x), ∀x ∈ D, we know that D∩D′
= ∅. But D is all the data

we have; therefore, D
′ must be built up by a generative method. We consider a simple form

of generative method g(x) which takes data x from D to build D
′ , i.e. D

′
= {g(x)|x ∈ D}.

For any x ∈ D, we want g(x) − x to be small so that g(x) also looks like the original data.

But when g(x) − x is small, it is very possible that p1(g(x)) = p1(x) and p2(g(x)) = p2(x).

Since Co-Training assumes p1(x) = p2(x), ∀x ∈ D and we want p1(g(x)) ̸= p2(g(x)) , when

p1(g(x)) = p1(x), it follows that p2(g(x)) ̸= p2(x). These considerations imply that g(x) is

an adversarial example of p2 that fools the network p2 but not the network p1. Therefore,

in order to prevent the deep networks from collapsing into each other, we propose to train the

network p1 (or p2) to be resistant to the adversarial examples g2(x) of p2 (or g1(x) of p1) by

minimizing the cross entropy between p2(x) and p1(g2(x)) (or between p1(x) and p2(g1(x)),

i.e.,

Ldif (x) = H(p1(x), p2(g1(x))) +H(p2(x), p1(g2(x))) (3.4)

To summarize the Co-Training with the view difference constraint in a sentence, we want the

models to have the same predictions on D but make different errors when they are exposed

to adversarial attacks. By minimizing Eq. dif on D, we encourage the models to generate

complementary representations, each is resistant to the adversarial examples of the other.

In Deep Co-Training, the objective function is of the form :

L = E(x,y)∈SLsup(x, y) + λcotEx∈µLcot(x) + λdifEx∈DLdif (x) (3.5)

which linearly combines Eq. 3.3, Eq. 3.4 and Eq. 3.5 with hyperparameters λcot and λdif

where it calculated as follow

λ(epoch) = λmax(1− e−5×(1−(epoch/w1))) (3.6)

• w1 represents the warm up length

Finally Compute the gradients with respect to L by backpropagation and update the

parameters of p1 and p2 using gradient descent.
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3.5 Adversarial attacks on neural networks

As neural networks have found their way from labs to the real world, the security and in-

tegrity of the applications pose great concern. Recent work has demonstrated that deep neural

networks are vulnerable to adversarial examples. Adversarial attacks can craftily manipulate

inputs by adding perturbations that are imperceptible to the human eye and are almost in-

distinguishable from natural data, leading trained models to produce incorrect results [91, 92].

These perturbations are far from considered noises since noise is a random or uncontrolled

interference. On the other hand, perturbations are controllable and measurable and aren’t

detectable by standard noise filters. The security of any machine learning model is measured

concerning the adversarial goals and capabilities. We begin with the identification of the attack

surface of systems built on deep learning models in order to identify potential vulnerabilities

caused by the adversary.

3.5.1 The Attack Surface

A system built based on a deep Learning task can be viewed as a generalized data processing

pipeline. For illustration, consider a generic pipeline of an automated vehicle system as shown

Figure 3.2 [92].

Figure 3.2: Generic pipeline of an Automated Vehicle System.

The system collects sensor inputs (images using camera) from which model features are

extracted and used by the models. Following that a decision is then made based on the output

(probability of stop sign), and takes a proper action (stopping the car). In this case an adversary

can attempt to manipulate either the collection or the processing of data to corrupt the target

model, hence tampering the original output. The fundamental attack scenarios set by the

attack surface are:

• Evasion Attack: which is the most popular type of attack in the adversarial setting. The

adversary tries to evade the system by adjusting and setting malicious samples through

the testing phase. This setting does not imply any impact over the training data. The

Figure below [92] illustrates the process of an evasion attack.
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Figure 3.3: A schematic representation of an evasion attack.

• Poisoning Attack: this type of attack takes place on the training time of the model. An

adversary tries to corrupt the training data by injecting malicious designed samples to

compromise the whole learning process eventually. The Figure below [92] illustrates the

process of a poisoning attack.

Figure 3.4: A schematic representation of a poisoning attack.

3.5.2 Adversarial Goals

An adversary tries to provide an input x to a classification system that results in an incorrect

output classification. The objective of the adversary is concluded from the incorrectness of the

model. Based on the influence on the classifier output integrity, the adversarial goals can be

classified as follows:

1. Confidence Reduction: The adversary tries to minimize the confidence of prediction for

the target model. For example, an audio of a "siren" can be predicted with a lower

confidence having a lesser probability of class belongingness.
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2. Misclassification: The adversary tries to change the output classification of an input

example to any class distinct from the original class. For example, the audio of a "siren"

will be predicted as any other class different from a "siren".

3. Targeted Misclassification: The adversary tries to make inputs that force the output of

the classification model to be a specific target class. For example, any input audio to the

classification model will be predicted as a class of a "siren".

4. Source/Target Misclassification: The adversary tries to force the output of classification

for a specific input to be a particular target class. For example, an audio of a ‘siren’ will

be predicted as a ‘helicopter’ by the classification model.

3.5.3 The Adversarial Capabilities

The term adversarial capabilities refer to the amount of information available to an adversary

about the system.

• Training Phase Capabilities

Attacks during training time attempt to impact or corrupt the model directly by changing

the dataset used for training. The most straightforward and weakest attack on the training

phase is by directly accessing partial or full training data. There are three attack strategies

for altering the model based on the adversarial capabilities.

1. Data Injection: The adversary does not have access to the training data nor the

learning algorithm but has the ability to insert adversarial samples into the training

dataset, therefore corrupting the target model.

2. Data Modification: The adversary does not have access to the learning algorithm

but has total access to the training data. By corrupting the training data directly by

affecting and manipulating the data before it is used for training the target model.

3. Logic Corruption: The adversary is capable of intervening with the learning algo-

rithm. These attacks are called "logic corruption”. Apparently, it becomes very

difficult to purposefully implement counter strategies against these adversaries who

can change the learning logic, thereby controlling the model itself.

• Testing Phase Capabilities

Adversarial attacks at the testing time do not manipulate the targeted model but rather

force it to make incorrect outputs. The efficiency of such attacks is determined funda-

mentally by the amount of information available to the adversary about the model.
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Attacks are classified by knowledge where they are classified by black box and white box attacks.

1. Black box attack

Black-box adversarial attacks describe scenarios in which the attacker does not have access

to the network. In other words, the attacker does not have any information about the

parameters of the model nor does he have access to the training stage and mainly uses

information about the settings or past inputs to study and analyze the vulnerability of

the model. Black Box attacks can be classified into the following categories:

(a) Non-Adaptive Black-Box Attack: For a target model (f), a non-adaptive black-box

adversary can only get access to the target model’s training data distribution (µ).

The adversary then selects a procedure train for a model architecture f and trains a

local model over samples from the data distribution (µ) to approximate the model

learned by the target classifier. The adversary crafts adversarial examples on the

local model f using white-box attack strategies and then applies these crafted inputs

to the target model to force mis-classifications. The Figure below shows this kind of

attacks[93].

(b) Adaptive Black-Box Attack: For a target model (f), an adaptive black-box adversary

does not have any information concerning the training procedure but can access the

target model as an oracle. The adversary issues adaptive oracle queries to the target

model and labels a carefully selected dataset, i.e., for any arbitrarily chosen x the

adversary gets its label y by querying the target model f . The adversary then selects

a procedure train and model architecture f to train a surrogate model over tuples

(x,y) obtained from querying the target model. The surrogate model then produces

adversarial samples by pursuing white-box attack techniques for forcing the target

model to misclassify malicious data.
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Figure 3.5: Block-box attack representation.

The primary objective of a black-box adversary is to train a local model with the data

distribution (µ) in the case of a non-adaptive attack and with a carefully selected

dataset by querying the target model in the case of an adaptive attack.

2. White box attack

In a white-box attack on a deep learning model, an adversary has the entire knowledge

about the model (f) used for classification. The attacker has information about the algo-

rithm used in training (e.g., gradient-descent optimization), can access the training data

distribution (µ) and is also familiar with the parameters ( θ) of the fully trained model

architecture. The adversary utilizes available information to recognize the feature space

where the model may be vulnerable. Then the model is employed by altering an input

using an adversarial example crafting method. To explore how adversaries craft adver-

sarial samples in a white-box setup. Papernot et al [93],introduced a general framework

which builds on the attack approaches discussed in recent literature. The framework is

divided into two phases: a) direction sensitivity estimation and b) perturbation selection,

as shown in Figure 3.6 [93].
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Figure 3.6: adversarial crafting framework in awhite-box attack.

The Figure proposes an adversarial example crafting process for an audio classification

using a CNN, which can be generalized for any supervised learning algorithm. Suppose

X is as Log Mel spectrogram of a dog recording, and F is a trained CNN classification

model. The objective of an adversary is to craft a malicious example X∗ = X + δX by

adding a perturbation δX with the sample X, so that F (X∗) = Y ∗ where Y ∗ ≠ F (X)

is the target output, which depends on the objective of the adversary.

The adversary use a two-step process for the adversarial sample crafting, which is dis-

cussed below:

(a) Direction Sensitivity Estimation: The adversary estimates the sensitivity of a class

change to each input feature by identifying directions in the data manifold around

sample X in which the model F , learned by the CNN, is most sensitive to result in

a class change.

(b) Perturbation Selection: The adversary then uses the knowledge of sensitive infor-

mation to choose a perturbation δX between the input dimensions in order to get

an adversarial perturbation that is most effective. Both the steps are repeated by

substituting X with X+ δX before the start of each new iteration, until the adver-

sarial purpose is satisfied by the perturbed sample. The point to be remembered in

this situation is that the total perturbation used for crafting the adversarial sample

from a valid example needs to be as small as possible. As mentioned before, this is

necessary for the adversarial samples to remain undetected in human eyes.

In the direction sensitivity estimation step, the adversary considers a sample X, an n-

dimensional input vector. The goal here is to find those dimensions of X which will

produce an expected adversarial performance with the smallest chosen perturbation. This

can be accomplished by changing the input components of X and evaluating the sensitivity
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of the trained CNN model F to these alterations. Developing the knowledge of the model

sensitivity can be achieved in several ways [92]. Some of the well-known techniques

mentioned in the recent literature are discussed below:

• L-BFGS :

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) is a non-linear gradient-

based numerical optimization algorithm. However, since Szegedy et al [94] defined

the problem as an optimization problem which can be solved using L-BFGS; the

attack is now often referred to as the L-BFGS attack. where this latter was one of

the very first adversarial attack approaches. It is designed to fool models for dif-

ferent tasks. Its end goal is to find a perceptually minimal input perturbation arg

minr ∥ r ∥2 i.e., r = x
′ − x, within bounds of the input space, that is adversarial,

i.e., ŷ(x
′
) ̸= y. They used the L-BFGS method to find an adversarial sample x

′

that satisfies the following box-constrained optimization problem [92, 95]:

min c ∥ r ∥2 +L(x
′
, t), x

′ ∈ [0, 1] (3.7)

Where elements of x
′are normalized to [0, 1], L(x

′
, t) is the true loss function of

the targeted model, and t is the target misclassification label. Considering an image

related task m is presented as m = hw (height*width) if the image is gray scaled

and m = 3hw if the image is colored. Since this objective does not guarantee that

x
′ will be adversarial for any specific value of c ≻ 0, the above optimization process

is iterated for increasingly large values of c via line search until an adversary is

found. Because of this computational intensive linear searching method for optimal

c, the L-BFGS attack is time consuming and impractical [95, 96].

L-BFGS produces adversaries that are perceptually alike to the original input x.

Moreover, the key advantage of crafting the adversarial example generation process

as a general optimization issue is that it allows for flexibility in folding additional

standards into the objective function. For instance, one may select to employ per-

ceptual similarity metrics where instead of computing distances in the image space,

we compute distances between image features extracted by deep neural networks

depending on the requirements of a given application domain[95].

• Fast gradient sign method:

The Fast Gradient Sign Method (FGSM) combines a white-box approach with a

misclassification goal where it tricks a neural network model into making wrong

predictions. This method works by using the gradients of the neural network to
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create an adversarial example. Given a simple linear classifier ωTx where ω is the

weight vector , Let’s denote the perturbation as η. This latter causes a change

that is non-perceivable and ostensibly innocuous to the human eye, yet destructive

and adverse enough for the classifier to the extent that its predictions are no longer

accurate.

x̂ = x+ η (3.8)

where we apply a constraint such that

∥ η ∥∞≤ ϵ (3.9)

The infinity norm is defined as

∥ A ∥∞= max1≤i≤m

n∑
j=1

| aij | (3.10)

which means the largest absolute value of the element in the vector. In this context,

it means that the largest magnitude of the element in η does not exceed the precision

constraint ϵ . Consider the dot product between a weight vector ω and an adversarial

example x̂:

ω⊤x̂ = ω⊤x+ ω⊤η (3.11)

Hence the addition of ω⊤η should not cause the model to behave any different in

the absence of any perturbation.

The adversarial perturbation causes the activation to grow by ω⊤η. We can max-

imize this increase subject to the max norm constraint on η by assigning η =

sign(w). If w has n dimensions and the average magnitude of an element of the

weight vector is m, then the activation will grow by mn. Since ∥ η ∥∞ does not

grow with the dimensionality of the problem but the change in activation caused by

perturbation by η can grow linearly with n, then for high dimensional problems, we

can make many infinitesimal changes to the input that add up to one large change

to the output.

The idea behind FGSM specifically is that instead of doing a typical gradient de-

scent, we would do the opposite in order to maximize the loss, since confusing the

model is the goal of an adversarial attack.

Let θ be the parameters of a model, x the input to the model, y the targets asso-

ciated with x and J(θ, x, y) be the cost used to train the neural network. Add the
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gradient to its original input variable to create a perturbation. Where the required

gradient can be computed efficiently using backpropagation. Mathematically, this

can be expressed as follows:

η = ϵ · sign(▽xJ(w, x, y)) (3.12)

Then, we can create an adversarial example via

x̂ = x+ ϵ · sign(▽xJ(w, x, y)) (3.13)

FGSM aims to encourage perceptual similarity between x and x̂. Under the infinity

norm constraint, the sign of the gradient vector maximizes the magnitude of the

input perturbation, which consequently also amplifies the adversarial change in the

model’s output [95, 82].

• Deep Fool

The DeepFool algorithm estimates the distance of an input instance x0 to the clos-

est decision boundary of a multi-class classifier. This result can be used both as a

measure of the robustness of the model to attacks, and as a minimal adversarial per-

turbation direction. As motivation, the authors note that in order to have a binary

linear classifier misclassify an input x0, the label of x0 needs to be projected orthog-

onally onto the decision boundary (which is simply a line). This can be analytically

computed using the point-to-line distance formula. Iteratively, this process would be

performed until the shortest distance was found from the input point to the decision

boundary to give the total perturbation r̂ . This readily generalizes to a multi-class

linear classifier, where the desired measure can be computed as the distance to the

nearest of the decision boundary lines that are presented as a polyhedron formed

by classifiers as shown in the green region in Figure 3.7 [97], and then projected x0

onto that decision boundary and extends it further, thus misclassifying it with the

minimal perturbation possible.
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Figure 3.7: Hyperplanes are depicted in solid lines and the boundary of P is shown in green
dotted line.

To illustrate furthermore this procedure we explore the associated algorithm illus-

trated below:

Where x represents the input image and f the associated classifier, resulting in a

minimum perturbation. We initialize the perturbed image with the original image

and iterate the algorithme uptil the outputs are different. Then consider going

through each of the kth classes besides k̂(x0) where we store the minimum difference

between the original gradients and the gradients of each of these classes ωk and the

difference in the labels fk. Afterward the inner loop stores the minimum ω
′

k and

f
′

k to calculate the closest hyperplane for the input x0, Formally, l̂(x0) can be
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computed as follows:

l̂(x0) = argmink ̸=k̂(x0)

| fk(x0)− fk̂(x0)
(x0) |

∥ wk − wk̂(x0)
∥2

(3.14)

We calculate the minimal perturbation vector with the use of l̂(x0) where it can be

computed as:

r∗(x0) =
| fl̂(x0)

(x0)− fk̂(x0)
(x0) |

∥ wl̂(x0)
− wk̂(x0)

∥22
(wl̂(x0)

− wk̂(x0)
) (3.15)

Adding the minimal perturbation to the image and determining if it has been mis-

classified, if not an iteration would occur until the output class is changed. Finally

return the total perturbation, which is a sum over all the calculated perturbations.

The size of the resulting perturbation can be interpreted as a measure of the model’s

robustness to adversarial attacks. DeepFool can compute this measure using a va-

riety of different lp distance metrics including p = 2 Euclidean norm and p = ∞

supremum norm. In practice, once an adversarial perturbation r̂ is found it would

be multiplied by a constant 1 + η, with η ≫ 1, where the adversarial example is

nudged further beyond the decision boundary to guarantee misclassification [95, 97].

• CW

Carlini and Wagner introduced a family of attacks for finding adversarial pertur-

bations that minimize diverse similarity metrics: l0, l2, and l∞ They relied on

the initial formulation of adversarial examples and formally defined the problem of

finding an adversarial instance for an image x as follows:

minimize D(x, x,+δ)

such that C(x+ δ) = t ..... constraint 1

x+ δ ∈ [0, 1]n .... constraint 2

(3.16)

Where x = input image, δ= perturbations, D = distance metric between the

adversarial and the original image, C = Classifier function, n= dimensions, t =

target class.

The distance metric is usually specified in terms of Lp norms ( l0, l2, l∞). Constraint

1 makes sure that the image is indeed misclassified and constraint 2 makes sure that

the adversarial image is valid i.e. it lies within the normalized dimensions of x.

But since C(x + δ) = t is highly non-linear (the classifier is not a straightforward

linear function). Carlini and wagner expresses constraint 1 in a different form as an
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objective function f such that when C(x + δ) = t is satisfied f(x + δ) ≤ 0 is also

satisfied.

The authors evaluated 7 different objective functions f (all of them are loss functions)

and selected the best one among them that is given by:

f(x
′
) = max(maxi ̸=t

{
Z(x

′
)(i)

}
− Z(x

′
)(t),−k) (3.17)

Where Z(x
′
)(i) denotes the ith component of the classifier’s logits, t denotes the

target label, and represents a tuning parameter that allows to steer the confidence of

the function. Conceptually, this loss function minimizes the distance in logit values

between class t and the second most-likely class. If t currently has the highest logit

value, then the difference of the logits will be negative, and so the optimization will

stop when this logit difference between t and the runner-up class exceeds . On the

other hand, if t does not have the highest logit value, then minimizing f(x
′
) brings

the gap between the logits of the winning class and the target class closer together,

i.e., either reducing the highest class prediction confidence and/or increasing the

target class confidence. Finally, Equation 2 can be alternatively represented as:

minimize ∥ δ ∥p +cf(x+ δ) subject to x+ δ ∈ [0, 1]n (3.18)

Where c is a constant that controls both the effectiveness of the attack and the

success rate of the attack. The attack is more effective when the adversarial instance

is similar to the original image. The attack is accurate if it successfully misguides

the model to classify the adversarial instance to the target class t. The tradeoff

is measured by the magnitude of c. The authors experimentally found that the

best way to choose value of c is use the smallest value of c using the binary search

algorithm, for which the misclassification occurs ( f(x+ δ) ≤ occurs).

Now, expressing the formulation in terms of Lp norm instead as distance D, it

becomes:
minimize ∥ δ ∥p +c · f(x+ δ)

such that x+ δ ∈ [0, 1]n
(3.19)

To ensure the modification yields a valid image, constraint 2 must have an upper

and lower bound 0 ≤ xi + δi ≤ 1 for all i. In the optimization literature, this is

known as a “ box constraint ” Carlini evaluated 3 methods and select one method

known as “ change of variables ” in which instead of optimizing over variable δ in
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constraint 2, they optimized over , which is given by:

δi =
1

2
(tanh(wi + 1)− xi (3.20)

since −1 ≤ tanh(wi) ≤ 1, it follows that 0 ≤ xi + δi ≤ 1, so the solution will

automatically be valid.

The final form of the optimization problem using L2 distance metric [95, 98] is:

minimize ∥ 1

2
(tanh(w) + 1)− x ∥22 +c · f(1

2
(tanh(w) + 1) (3.21)

with f defined as

f(x
′
) = max(max

{
Z(x

′
)i : i ̸= t

}
− Z(x

′
)t,−k) (3.22)

3.6 Related works on DCT

Table 3.1 presents some literature works that have employed the Deep Co-training approach

in both computer vision tasks; such as Image segmentation, image recognition and in audio-

related tasks, such as audio tagging. These studies analyze the behavior and give a general

overview of both the visual and audio fields. Since Deep Co-training is a recent adaptation of

Co-training only a few studies have been conducted based on it.

For instance, In 2018 S Qiao et al [87], studied the problem of semi-supervised image recog-

nition, which involves training a convolutional neural network (CNN) based on
∏

model. and

a resent18 model using both labeled and unlabeled images .They applied the Deep Co-training

algorithm by using the adversarial attack FGSM to generate adversarial examples. Their ex-

periments have shown that this additional force has pushed their models away, was very helpful

for training and improved accuracy significantly. The researchers have tested their method

on SVHN, CIFAR-10/100 and ImageNet datasets, where they extend the dual-view DCT to a

scalable multi-view DCT method where the hyperparameters for two views are also suitable for

increased numbers of views. Their method outperforms the previous state-of-the-art methods

by a large margin.

In 2019, the purpose of Peng, J et al. [99] was to improve the performance of semantic image

segmentation in a semi-supervised setting where they trained a U-net model on both annotated

data and non-annotated images to exchange information with each other. They conducted their

work on three clinically-relevant benchmark datasets for medical image segmentation: Auto-

48



mated Cardiac Diagnosis Challenge (ACDC), Spinal Cord Gray Matter Challenge (SCGM) and

Spleen sub-task dataset of the Medical Segmentation Decathlon Challenge. They used the Deep

Co-training algorithm based on the FGSM attack to generate adversarial samples to enforce

the diversity across models. In which their results outperformed recent approaches.

Recently, Cances, L. et al [81], adapted the Deep Co-training algorithm (DCT) to per-

form an audio tagging task while using an FGSM attack to improve the performance of their

classifier. They conducted their experiments on three standard audio datasets: Environmen-

tal Sound Classification (ESC-10), UrbanSound8K (UBS8K), and Google Speech Commands

(GSC). While using a fraction of the labeled data available, and the remaining data as unlabeled

data, they would be transformed into a log mel spectrogram to be fed into their wideResnet28

model. In almost all configurations, DCT consistently outperformed another SSL approach

called Mean Teacher (MT).

S Qiao et al. [87] have conducted their work on Imagenet, SVHN, CIFAR 10 and CIFAR 100

which are natural real world images, and have used the Deep-Co training algorithm to generate

adversarial examples using FGSM with 0.02 of magnitude of perturbation to fool the models and

since this latter have shown promising results, Peng, J et al. [99] tested the DCT algorithm on

an image segmentation task in which it used ACDC, SCGM, and spleen datasets, consisting of

different MRI and CT scans, and also used the FGSM adversarial attack with a 0.01 magnitude

of perturbation to deceive the U-net model and achieved remarkable results. Since this SSL

approach has been shown to achieve state-of-the-art results on image datasets while using a

small limited amount of labeled data and SSL methods in general applied to audio data are

still sparse, Cances, L. et al. [81], have tested audio datasets such as Urban8k, Environmental

Sound Classification (ESC-10) and Google Speech Commands Datasets to determine whether

the DCT method would perform as well as it did on an image dataset. They fooled the wide

residual network using FGSM since it gave fast and promising results with a magnitude of

perturbation of 0.02. This latter has shown the effectiveness of Deep Co-training applied to

audio tagging, in which promising results were obtained.
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Table 3.1: Summary of related work results.

Ref Type Dataset Dataset Architecture Performance

[87] Image Imagenet Resnet18 Error rate = 22.73

Image SVHN CNN Error rate = 3.61

Image CIFAR 100 CNN Error rate = 38.77

Image CIFAR 10 CNN Error rate = 9.03

[99] Image ACDC U-net DSC1= 86%

Image SCGM U-net DSC =72.76%

Image Spleen U-net DSC = 91.81%

[81] Audio ESC-10 WideResnet28 Accuracy = 91.72%

Audio UBS8K WideResnet28 Accuracy = 76.85%

Audio GSC WideResnet28 Accuracy = 94.87%

3.7 Conclusion

Throughout this chapter, we have reviewed the importance of semi-supervised learning

by explaining the classic Co-Training and highlighting the main feature of the Deep-Co training

algorithm by using adversarial attacks on neural networks in order to obtain reliable and robust

audio tagging systems. Furthermore, we summarized some empirical and theoretical findings

based on the DCT approach. In the next part, we will first introduce the experimental setup

and describe the overall pipeline that we followed in conducting the thesis. Then, we will

present and discuss the obtained results based on robust statistical tests.

1The Dice similarity coefficient (DSC) is a validation metric to evaluate the performance of automated
probabilistic fractional segmentation of MR images, its range is between 0 and 1.
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PART II: DESIGN AND
EXPERIMENTATIONS

In this part we describe the methodology that we have followed for evaluating and comparing

different Audio Tagging systems. It consists of two chapter. Chapter 4 covers the design to

build the Audio Tagging system, whereas in Chapter 5 we analyze and discuss the results of

our experiments.
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Chapter 4
DESIGN OF A SEMI-SUPERVISED

AUDIO TAGGING SYSTEM

4.1 Introduction

In this chapter, we present the full design used to carry out the objective of our thesis. In

Section 4.2, we describe our implemented Audio Tagging system, providing the pre-processing

step along with feature extraction techniques, an overview of both Resnet and WideResnet,

along with their variation architectures that were used in training our systems,also the ad-

vrasarial attacks used and finally the evaluation measures used to measure the performance of

the Audio Tagging system.

4.2 Audio Tagging System Description

Figure 4.1: The overall Audio Tagging System pipeline.
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The Figure above represents the overall pipeline of our Audio Tagging system that is able

to recognize and identify a wide variety of sound events that occur in audio recordings (such as

human sounds, domestic sounds, animals, tools, etc.). The process of Audio Tagging consists

of two main stages: Feature Extraction and Classification. The feature extraction process

includes transforming the audio signal into a relevant time-frequency representation. Next, a

deep neural network model classifies the extracted features into a corresponding event label.

Following that, the system is then evaluated through an evaluation procedure.

4.2.1 Pre-Processing

Audio is highly dimensional and contains redundant and often unnecessary information.

Therefore, a preprocessing stage is highly needed in which audio is prepared and processed for

machine learning algorithms in the audio processing phase of the overall system design. Pre-

processing is applied to the audio signal before the machine learning process starts. The main

goal of this step is to enhance certain characteristics and properties of the incoming signal

in order to maximize audio analysis performance in the later phases of the analysis system.

Prepossessing audio data includes tasks like resampling audio files to a consistent sample rate,

removing regions of silence, and trimming audio to a consistent duration to make the audio

files fairly equal.

During our thesis, we have converted the audio data into two channels when needed, for

example, when some of the sound files are mono (i.e., 1 audio channel) while most of them are

stereo (i.e., 2 audio channels). It is one necessary step since our model expects all items to

have the same dimensions, and therefore we will duplicate the first channel of the mono files to

create a stereo file. Another important point is standardizing the sampling rate, since sound

files are sampled at different rates. Once again, we must standardize and convert all audio to

the same sampling rate in order to have the same dimensions. Also, we need to resize all the

audio samples to have the same length by either extending their duration by padding them

with silence or by truncating them.
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4.2.2 Feature Extraction

Figure 4.2: The overall process of feature extraction.

Feature extraction is a crucial process in which the audio signal is transformed from a

waveform into representations that maximize the sound recognition performance [24] in our

case a Log-mel spectrogram. The first step of feature extraction as Figure 4.3 shows, consists

of converting an audio recording from an analog to a digital time signal. However, the time-

domain representation of a sound signal is not easy to interpret. For that reason, using a

frequency-domain representation is a must, where the digital signal is converted from the time

domain to the frequency domain by the use of the Fourier transform, more precisely, the short

time Fourier transform (STFT). This later has two techniques: framing, which divides the

signal into several chunks in which the frames will overlap each other as they slide across the

audio signal. After slicing the signal into frames, a Hamming windowing function is applied

to smooth the edges of each chunk to avoid spectral leakage. Afterwards, applying triangular

filters is a crucial step in which filters are applied on a Mel-scale to the power spectrum to

extract frequency bands. The Mel-scale aims to imitate the non-linear human ear’s perception

of sound, specifically, the ability to discriminate lower frequencies from higher frequencies. After

applying the filter bank to the power spectrum of the signal, we finally compute the logarithmic

energy of each filter bank output to obtain the Log-mel spectrogram features that would be fed

to the model.
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4.2.3 Neural Network Architectures

Deep neural network architecture can solve complex problems by stacking additional hidden

layers to improve accuracy and performance, but this achievement comes with its drawbacks,

like the vanishing gradient problem that arises during backpropagation and is caused only in

deeper networks. In this regard, residual networks (ResNet) can be helpful since they overcome

this latter difficulty. The gradient norm of earlier layers decreased to zero and almost vanished

as the training proceeded [100]. In ResNet, the yield of each residual layer is convolved with

its input to be the input of the next layer. Let H(x), represents the residual mapping to build

a residual learning block as shown in Figure 4.4 residual learning block [101].

Figure 4.3: Building block of the Residual Neural Network

This ResNet block approximately calculates H(x) := F(x) + x . The formulation of F(x)

+ x is recognized by feedforward neural systems with “skip connections” also known as the

shortcut connection which is the core of residual blocks. This latter combines the input and

the output of the stacked layer through an identity mapping operation without any additional

parameters. Therefore, the gradients can easily flow back, resulting in faster training and many

more layers [100]. However, a slight problem appears within this approach. When the dimen-

sions of F(x) are different from x, a projection method needs to be used to match the dimension

which is done by adding 1×1 convolutional layers to the input. In such a case, the output is :

H(x)=f(x)+w1.x given w1 is an additional parameter. Two main types of blocks are used in a

ResNet, an identity block, which refers to the standard block used in ResNets and corresponds

to the case where the input activation has the same dimension as the output activation, whereas

a convolutional block is used when the input and output dimensions don’t match up [102].

Three of the most well-known variations of ResNets based on the number of layers are

namely: Resnet18, Resnet34, and Resnet50. Table 4.1 illustrates a summary of the output size
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at every layer and the dimension of the convolutional kernels at every point in the structure.

Table 4.1: Summary of ResNet variation architectures

Layer name Output Size Resnet18 Resnet34 Resnet50

Conv1 216 × 216 7×7, 64, stride 2

Conv2 x 108 × 108
3×3 MaxPool, stride 23× 3 64

3× 3 64

× 2

3× 3 64

3× 3 64

× 3


1× 1 64

3× 3 64

1× 1 256

× 3

Conv3 x 54 × 54

3× 3 128

3× 3 128

× 2

3× 3 128

3× 3 128

× 4


1× 1 128

3× 3 128

1× 1 512

× 4

Conv4 x 27 × 27

3× 3 256

3× 3 256

× 2

3× 3 256

3× 3 256

× 6


1× 1 256

3× 3 256

1× 1 1024

×6

Conv5 x 14 × 14

3× 3 512

3× 3 512

× 2

3× 3 512

3× 3 512

× 3


1× 1 512

3× 3 512

1× 1 2048

× 3

1 × 1 average pool, 10 fc

Params 11,181,642 21,289,802 23,528,522

Deep residual networks were shown to be able to scale up to thousands of layers and still

improve performance. However, each fraction of a percent of improved accuracy costs nearly

doubled the number of layers, which made it very slow to train. To tackle this problem, another

architecture was proposed, in which we decrease the depth and increase the width of residual

networks. We call the resulting network structures wide residual networks (WideResnets) [103].

This network architecture has proven that shallow networks with increased width are able to

provide similar or better results than those obtained with very deep neural networks [104].

Figure 4.5 shows the building block of a wide residual network (WideResnets) [103].
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Figure 4.4: Building block of the Wide Residual Neural Network

Essentially, to increase the representational power of residual blocks, it is needed to add

more convolutional layers per block, to widen the convolutional layers by adding more feature

planes (maps) and to increase filter sizes in convolutional layers by applying two factors, deep-

ening factor l and widening factor k, where l is the number of convolutions in a block and k

multiplies the number of features in convolutional layers, thus the baseline “basic” block cor-

responds to l= 2, k = 1. We refer to original residual networks with k = 1 as “thin” and to

networks with k > 1 as “wide”. WideResnet architectures consists of an initial convolutional

layer conv1 that is followed by 3 groups (each of size N) of residual blocks conv2, conv3 and

conv4, followed by average pooling and a final classification layer [103].

To further explain the inside of the wide residual network, we take WRN28_2 model ar-

chitecture as an example in which is illustrated in Figure 4.6, in which it has a depth of 28

deep layers and a width of 2. It consists of Conv1, which is based on a convolution, batch

normalization (BN) that normalizes the input of the activation functions, and a max pooling

operation with a stride of 2. Afterward, we can observe in the Figure below that WRN28_2

has three groups and each group is composed of four blocks (basic block), which includes two

layers. A layer here refers to a convolution, a batch normalization, and a ReLU except the last

operation of a block, which lacks the ReLU. The next step is to escalate from a block to a block

of the next group. This involves increasing the stride by the down sampling of the volume

through the network. In addition to that, we see another pattern repeating over the groups of

WRN28_2 , where the first layer of each group is reducing the dimension, so we also need to

resize the volume that goes through the skip connection, by applying 1×1 convolution(stride2)

to ensure the volumes at this addition operation are the same size. The behavior is exactly the

same for the following layer, changing only the dimensions of the incoming volumes.
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Figure 4.5: The WRN28_2 architecture.58



Table 4.2 shows the WideResnets variation architectures used during our thesis.

Table 4.2: Summary of WRN variation architectures.

Layer name Output Size Wideresnet28_2 (WRN2) Wideresnet28_4 (WRN4)
Wideresnet28_8

(WRN8)

Conv1 431 × 431 3×3, 32, stride 1

Conv2 x 216 × 216
3×3 MaxPool, stride 23× 3 32

3× 3 32

× 4

3× 3 64

3× 3 64

× 4

3× 3 128

3× 3 128

× 4

Conv3 x 108 × 108

3× 3 64

3× 3 64

× 4

3× 3 128

3× 3 128

× 4

3× 3 256

3× 3 256

× 4

Conv4 x 54 × 54

3× 3 128

3× 3 128

× 4

3× 3 256

3× 3 256

× 4

3× 3 512

3× 3 512

× 4

1 × 1 average pool, 10 fc

Params 1,472,554 5,877,834 23,486,602

4.2.4 Adversarial Attacks

Recently, a variety of deep learning tasks have relied on adversarial attacks to enhance

their performance. For that reason, we have introduced the semi-supervised Deep Co-training

technique that makes use of adversarial examples that would be generated using adversarial

attacks. The latter offers a variety of attacks for a variety of purposes. We have conducted our

work using four well-known attacks, namely:

• L-BFGS : Szegedy et al [94]. first introduced adversarial examples against deep neural

networks in 2014. They showed that the generated adversarial examples could also be

generalized to different models and different training datasets. Which is favorable to our

case since we are dealing with audio-type data. The Limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) is a non-linear gradient-based numerical optimization algo-

rithm in which the L-BFGS attack aims to generate adversarial examples that look very

similar to their real counterparts according to a distance metric, but one that causes a

classifier to misclassify it. In other words, it aims to find a perturbation r with the goal

of making the classifier misclassify the perturbed input (x + r) as class l, where the loss

function used here is the cross-entropy loss. To find a suitable minimum constant c, L-

BFGS Attack calculates approximate values of adversarial examples by line-searching c

> 0 until an adversary is found.

min c ∥ r ∥2 +L(x
′
, t), x

′ ∈ [0, 1] (4.1)
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• FGSM : L-BFGS Attack used an expensive linear search method to find the optimal

value, which was time-consuming and impractical. Goodfellow et al [82]. proposed a fast

method called the Fast Gradient Sign Method to generate adversarial examples . This

attack is remarkably powerful and yet intuitive in that it searches for the direction in

which the loss function increases fastest for a target deep learning model. FGSM is an

example of a whitebox attack because the attacker needs to know the model’s architecture

and parameters to perform backpropagation. It is designed to attack neural networks

by leveraging the way they learn gradients. The idea is that rather than working to

minimize the loss by adjusting the weights based on the back-propagated gradients, the

attack adjusts the input data to maximize the loss based on the same back-propagated

gradients. There is no guarantee that the generated adversarial examples by this method

are similar to their real counterparts. Practically, one needs to make a tradeoff between

small perturbations that are visually similar to the original input and whether the model

actually misclassifies the perturbed input.

• CW : Carlini Wagner [98] extended the L-BFGS attack by modifying the objective

function instead of using the standard cross-entropy loss; they use another loss function

that was mentioned in chapter 3 in equation 3.17. The intuition for that objective function

is to optimize for the distance between the target class and the most-likely class. If the

target class currently has the highest logit value, then the difference between the logit

values will be negative, and the optimization will stop when the logit difference between

the target class and the runner-up class is at most k. In other words, k controls the

desired confidence for the adversarial example (e.g., when k is small, the adversarial

example generated will be a low-confidence adversarial example). On the other hand, if

the target class does not have the highest logit, then minimizing the loss function brings

the gap between the highest class’ logit and the target class’ logit closer together, i.e.,

either reducing the highest class’ confidence or increasing the target class’ confidence.

Carlini Wagner actually proposed three different attacks under three different perceptual

similarity metrics. We have used the L2 norm in view of the fact that it is more beneficial

to our case.

• Deep Fool : Moosavi-Dezfooli et al. [97] propose the Deep Fool algorithm, which

searches for the shortest distance to cross the decision boundary using an iterative lin-

ear approximation of the classifier and orthogonal projection of the sample point onto

it, which sets a small vector to perturb input data and push them out of the classifica-

tion boundary gradually until misclassification occurs. This untargeted attack generates
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adversarial examples with a smaller perturbation compared with L-BFGS and FGSM.

4.2.5 Evaluation

Evaluation is usually framed as estimating the performance of a system under test when

confronted with new data. The system output is then compared to the reference to calculate

measures of its performance. We can measure accuracy to reflect how often the system correctly

classifies or detects a sound, or we can measure error rates to reflect how often the system makes

mistakes. By using the same data and the same methodology to evaluate different systems

(perhaps in different places and/or at different times), a fair and direct comparison can be

made of system performance [29].

4.2.5.1 Cross Validation

Cross validation is a statistical method used to estimate the effectiveness of a machine learn-

ing model on a limited data sample. In other words, it is a procedure used to evaluate a model

by learning a hypothesis from a training set and measuring its generalization error on a test set

[105]. This approach requires a large amount of data in order to obtain a reliable estimate of the

generalization error, which is rare in most situations [106]. Noumoureus resampling techniques

such as k-fold cross validation and leave-one-out have been introduced [105].

The K Fold cross validation is an iterative approach during iteration i. It randomly divides

the set of observations into K folds of equal size. Fold i is treated as a testing set and the

remaining k-1 folds are assigned as a training set. This process would be repeated K times

[105]. Figure 4.7 illustrates a 5-cross validation technique.

Figure 4.6: 5-Fold Cross Validation .

The performance scores from the k-fold cross validation are then averaged. Generally, 5 or
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10 fold cross validation is the most widely used value, but there’s no formal rule for determining

it [24]. It’s highly recommended that the data process a rearrangement in a way that each fold

has a good representation of the whole dataset. It forces each fold to have at least m instances

of each class and makes sure that one class of data is not overrepresented [105].

4.2.5.2 Evaluation Measures

Evaluation is done by comparing the system output with the reference annotations available

for the test data. Metrics used in detection and classification of sound events include mainly

accuracy, precision, recall, F-score, There is no consensus over which metric is universally good

for measuring the performance of sound event detection, as they each reflect different perspec-

tives on the ability of the system [24].

Metrics

• Confusion Matrix :A confusion matrix is a performance measurement for machine

learning classification. In other words, it is a simple cross-tabulation of the actual and

predicted classes for the data. It is a matrix of n ∗ n when n represents the number of

classes. The row dimension contains the actual values,while the column dimension consists

of the predicted label. The Figure 4.8 illustrates a representation of the confusion matrix

with n = 2 [24, 107, 108].

Figure 4.7: Confusion Matrix.

• True Positives (TP) are the cases where the actual class of the data point is 1 (True) and

the predicted class is also 1 (True).
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• True Negatives (TN) are the cases where the actual class of the data point is 0 (False),

while the predicted class is 0 (False).

• False Positives (FP) are the cases where the actual class of the data point is 0 (False),

while the predicted class is 1 (True).

• False Negatives (FN) are the cases where the actual class of the data point is 1 (True),

while the predicted class is 0 (False).

Accuracy/Error Rate: Accuracy is the ratio between the number of correct predictions made

by the model and the total number of instances. calculate the proportion of true positive and

true negative in all evaluated cases. Mathematically, this can be stated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.2)

F1 Score: The F1 score is the average between precision and recall. It measures how precise

the classifier is. The higher the F1 score, the more efficient the model becomes. Mathematically,

this can be stated as:

F1 = 2× Precision+ recall

Precision× recall
(4.3)

4.3 Conclusion

In this chapter, we have described the overall pipeline used to conduct an Audio Tagging

system. We have presented the pre-processing stage and features and have proposed two mod-

els, Resnet and Wideresnet along with dvrasarial attacks, that were used to train our system.

In the following chapter, we will present the experimental setup along with the results of our

experiments and analyze them in order to derive guidelines from multiple statistical compar-

isons.
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Chapter 5
EXPERIMENTAL RESULTS AND

DISCUSSION

5.1 Introduction

This chapter covers theused datasets, the development tools and environments used for con-

ducting our work and mainly describes both the experimental design and the results that have

been obtained during our research. In the training phase, we aim to compare the performances

of different audio tagging systems, varying techniques, their hyperparameters, and amounts of

data to observe their impact on different models. We have used accuracy, the F1-score, and the

confusion matrix on the test set to evaluate our systems. Moreover, we have relied on various

statistical tests to draw our conclusions. Our case study consists of four experiments:

• Experiment 1: Comparison between supervised, DCT and Mean Teacher.

• Experiment 2: Impact of Supervised Ratio.

• Experiment 3: Impact of the network architectures.

• Experiment 4: Adversarial attacks on DCT.

5.2 Dataset

To build our system or any system, the dataset is the core of the entire process since the

proposed model, or in our case, the classification model, is trained and tested on it. During

this thesis, we have chosen two datasets that both have an environmental background, namely:

Environmental Sound Classification (ESC-10), and UrbanSound8K (UBS8K).
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5.2.1 ESC-10 Dataset

The ESC-10 is a selection of 10 classes ( 40 clips per class) from the bigger ESC-50 dataset,

representing three general groups of sounds:

• transient/percussive sounds, with very meaningful temporal patterns (clock ticking, dog

barking, sneezing).

• sound events with strong harmonic content ( crowing rooster, crying baby ).

• more or less structured noise/soundscapes (rain, sea waves, fire crackling, helicopter,

chainsaw).

The ESC-10 dataset is a collection of 400 short environmental recordings that are 5-second-

long (shorter events were padded with silence as needed). All clips have been extracted from

public field recordings available through the Freesound.org project. The extracted samples

were reconverted to a unified format (44.1 kHz, single channel, Ogg Vorbis compression at 192

kbit/s). The labeled datasets were consequently arranged into 5 uniformly sized cross-validation

folds, ensuring that clips originating from the same initial source are always contained in a single

fold [109].

5.2.2 UrbanSound8K

The Urban8k dataset contains 8732 labeled sounds excerpts that range from 0.0008s to

4s, that were extracted from urban sounds. Of these, 1798 are less than 4 s, accounting for

20.59% of the total number of samples (shorter sounds were padded with silence as needed)[110].

The classes of UBS8K are drawn from the urban sound taxonomy including air conditioner

(1000), car horn (429), children playing (1000), dog bark (1000), drilling (1000), engine idling

(1000), gunshot (374), jackhammer (1000), siren (929) and street music (1000). All excerpts

are taken from field recordings uploaded to freesound [111]. The files are pre-sorted into ten

folds, the Figure below shows the class distribution of each fold, where it is slightly imbalanced

towards the car horn and shotgun classes [112].
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Figure 5.1: The class distribution of each fold of UBS8K

5.3 Development Tools and Environments

Smarter applications are making better use of the insights extracted from data, having an

impact on every industry and research discipline. At the core of this revolution lie the tools

and the methods that are driving it, from processing the massive piles of data generated each

day to learning from and taking useful action [113].

Deep learning systems are one of the most important consumer systems for graphics process-

ing units (GPU) nowadays. Their training algorithm involves many large matrices of production

operations. By accelerating the matrix operations via thousands of processing units in parallel,

the GPU enables us to train complex deep neural networks (DNN) models efficiently, speeding

up the training. Numerous studies have shown that larger and deeper DNNs can significantly

increase the model accuracy for computer vision and natural language processing applications

[114].

But since there is a high cost associated with these components, making them not accessible

to everyone, many companies took the gesture to make them available on online platforms based

on the cloud, providing a pay-by-hour manner with GPUs and a runtime fully configured for

deep learning [115].

• Kaggle

Kaggle is the world’s largest community of data scientists and is owned by Google, Inc.

It originally offered data science competitions for business problems, recruiting, and aca-

demic research purposes, but now also offers a public data platform, a cloud-based work-
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bench on Nvidia Tesla P100 for data science and AI related tasks[116]. Kaggle allows to

host datasets where it supports a variety of dataset publication formats (CSVs, JSON,

SQLite, HDF5. . . , ect), with a maximum storage capacity of 100GB per dataset. This

platform provides its users with two different types of notebooks: scripts and notebooks

with an interface based on a Jupyter notebook that allows you to write and execute di-

rectly from the browser. This environment has pre installed libraries such as Numpy,

Pandas, Skit-learn, Skit-image, Tensorflow, Seaborn, etc.

One of the main advantages of Kaggle is that it provides free access to a certain amount

of GPU time. The Table below illustrates the essential information about Kaggle’s offers.

Table 5.1: Technical Specifications for a free kaggle notebook.

Number of Cores RAM(Gigabytes) Time Execution (Hours)

CPU GPU TPU CPU GPU TPU CPU GPU TPU

4 2 4 16 13 16 12 12 9
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The Figure 5.2 shows a screenshot of Kaggle notebook.

Figure 5.2: Screenshot of Kaggle notebook.

5.3.1 Libraires

The amount of data being collected and generated today is massive, and the numbers con-

tinue to grow at record rates, increasing the demand for highly efficient and intuitive tools.

Python continues to be the most preferred language for scientific computing, data science, and

machine learning, and the most common approach for leveraging its strengths while ensuring

computational efficiency is to develop efficient python libraries. In recent years, substantial

efforts are being spent on the development of such performant yet user-friendly libraries for

scientific computing and machine learning [114]. Our work has been conducted using on the

following libraries:

Pytorch: PyTorch is an open-source tensor library based on Python and Torch, mainly used

for applications using GPUs and CPUs. It specializes in automatic differentiation tensor com-

putations, and GPU acceleration, which makes it preferred over other deep learning frameworks

like TensorFlow and Keras [117, 118].

Torchaudio: Torchaudio is a toolkit that provides building blocks for machine learning appli-

cations in the audio and speech domains within the PyTorch ecosystem. It provides important

low-level functionalities like audio input/output, spectrogram computation, and a unified in-

terface for accessing datasets[119].

Advertorch: Advertorch is a toolbox for adversarial robustness research. It contains many

implementations for attacks, defenses and robust training methods. advertorch is built on Py-

Torch and leverages the advantages of the dynamic computational graph to provide concise and
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efficient reference implementations [120].

Torchattacks: Torchattacks is a PyTorch library that contains adversarial attacks to gen-

erate adversarial examples and to verify the robustness of deep learning models [121].

We have also used some other libraries such as numpy that manipulate operations using arrays

and stock data as a numpy file , an easy-to-use format[122]. Pandas is mainly used for data

analysis and tabular data manipulation, as in csv files [123]. The matplotlib library for data

visualization and graphical plotting[124], and the scikit-image library that offers a selection of

image processing algorithms [125]. Table 5.2 provides the versions of the libraries used in our

research.

Table 5.2: Version of libraries used in our study.

Library Version

Torch 1.8.1

Advertorch 0.2.3

Torchattacks 3.2.7

Torchaudio 0.8.1

Numpy 1.20.3

Scikit-Image 0.17.2

Pandas 1.2.5

5.4 Experimental Design

The steps to build our Audio Tagging system consist of using cross validation on both

datasets and transforming them into a Log-mel spectrogram representation to feed the residual

and wide residual neural networks while varying their parameters along the way. We have used

the F1-score, accuracy metrics, and confusion matrix when evaluating our systems and relied

on statistical tests during our analysis and discussion.

5.4.1 Cross Validation

We have performed a 5-cross validation on the Environmental Sound Classification dataset

(ESC-10), and a 10-cross validation on the UrbanSound8K dataset (UBS8K). Cross-validation

consists of shuffling the dataset randomly in order to generate different combinations to ensure

that the events are present in the testing set. Then split the dataset into 5 and 10 folds, and

take one fold as a testing set and the remaining as a training set. Repeat this process until we
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cover all the folds, and finally calculate the overall performance score by taking the average of

the results over 5 and 10 folds. We have performed 5-fold and 10-fold cross validation using

the Scikit-Learn library.

5.4.2 Feature Extraction

For Audio Tagging, a significant amount of information is contained in the relative distri-

bution of energy in the frequency of an audio signal. The information stored in the frequencies

allows for making comparisons between audio files while paying attention to the most relevant

characteristics of the audio. The provided audio samples in our UBS8K dataset are resampled

at 22kHz since the audio files have different sample rates (varies from 8kHz to 192kHz) while

adapting to a mono format. As for the ESC-10 dataset, the files are sampled at 44 kHz in mono

format. We handled the problem of different audio time durations by padding silence into each

audio file for equal time lengths.

The first step of feature extraction consists of converting an audio recording from an analog

to a digital time signal. Afterward, the digital signal is converted from the time domain to the

frequency domain by the use of the short time Fourier transform (STFT) with 2048 FFT points

to each of the 4-sec and 5-sec UBS8K and ESC-10 datasets, respectively. It has two techniques:

framing and applying the hamming window function with a 75% overlap (since the hop size is

512) to specify the number of sample rates a frame should slide across. Next, a 64-mel filter

bank is applied to the calculated power spectrum to finally calculate the logarithmic energy of

each filter bank output to obtain a Log-mel spectrogram. The Table 5.3 illustrates the Log-Mel

Spectrogram setup.

Table 5.3: Log-Mel Spectrogram setup.

Parameters Value

Sampling Rate ESC-10 = 44kHz UBS8K = 22kHz

Frame Length ESC-10 = 46 ms UBS8K = 93 ms

Window Size 2048

Hop Size 512

Mel Bands 64
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5.4.3 Training Stage

In order to carry out the semi-supervised approach, we have conducted a baseline to compare

our SSL techniques with , which does not require much expertise and time to build. Our baseline

was trained on 100% of labeled data, using 5 folds of cross validation for the ESC-10 dataset

(10 folds of cross validation for UBS8K). Then we applied feature extraction to transform our

audio samples into a Log-mel spectrogram ( feature vector) and fed it to our WRN28_2 model

that would create a probability distribution over 10 classes and produce an output vector. Each

element of the vector is the probability that the input belongs to the corresponding class. The

most likely class is chosen by selecting the index of that vector having the highest probability.

The supervised baseline was trained on a 64-batch size and a 0.003 learning rate on 100 epochs.

The Figure below illustrates the pipeline of our baseline for an audio tagging system.
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Figure 5.3: The pipeline of our baseline for an Audio Tagging system.72



We used two semi-supervised approaches, namely Deep Co-training to train our main Audio

Tagging system, and the Mean Teacher Approach to compare it with our main system. Where

the whole process can be broken down as follows: To simplify the Deep Co-training method,

we have illustrated Figure 5.4 to show a straightforward example. The process starts with

taking two audio samples from a labeled data batch and one audio sample from an unlabeled

data batch, where we apply feature extraction to get the feature vectors ( L1 , L2 present the

labeled samples and LU presents the unlabeled sample) to feed to both WRN28_2 models

M1 (view1) and M2 (view2). Then we would compute the cross entropy loss (Loss sup) to

ensure that network predictions for labeled data are consistent with the ground truth for both

models M1 and M2. On the other hand, the Jensen-Shannon divergence loss function (Loss

cot) is applied to the unlabeled examples in order to force the two models to agree with each

other. For the essential idea of the DCT, we have used the fast gradient sign method (FGSM)

to generate adversarial examples with a magnitude of perturbation (epsilon) is equal to 0.02

for most experiments, where it can fool the model but doesn’t display any perceivable changes

on the sample. The cross entropy loss function (Loss div) then is used to force a network to

agree with the predictions of the other network’s adversarial examples (ex: PL1 and AdvL1

(M2)) [126].

In the mean teacher approach, we make use of labeled (L) and unlabeled data (LU) and

feed them to both the student and the teacher model (WRN28_2 ). In which only the student

model is trained. And, a very minimal number of weights from the student model are assigned

to the teacher model at every step, called exponential moving average weights (EMA). As shown

in Figure 5.4, two cost functions were used, namely : classification cost and consistency cost.

Here, classification cost is calculated as a binary cross-entropy between the label predicted by

the student model ( PL) and the ground truth. Consistency cost is the mean squared difference

between the predicted outputs of the student ( PLS
) and the teacher model ( PLT

). Consistency

cost is actually the distribution difference between two predictions, and the original label is not

required. So, instead of labeled data, we may utilize unlabeled data, but no classification cost

would be applied. One of the important factors that plays a crucial role in adding robustness

to the model is the introduction of noise during training [80].
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The Table below shows the different parameters that our SSL approaches used during the

experiments.

Table 5.4: MT and DCT parameters setup.

Technique Alpha Batch size Lr Epoch Supervised ratio warmup Length Epsilon λcot λdiff

MT 0.999 64 0.001 100 0.8 50 – 1 –

DCT – 100 0.0005 100 0.8 100 0.02 1 0.5
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Figure 5.4: The pipeline of DCT and MT approaches for an Audio Tagging system.75



5.4.4 Evaluation Procedure

This study aims to compare the performances of different Audio Tagging systems while

varying the techniques and their parameters. We have evaluated the overall performance of

each system using the accuracy metric and an F1-score when performing class-wise evaluation.

Also, we made use of a confusion matrix to define the performance of the classification algorithm

and were able to make observations on the model’s behavior over all the classes. For some

experiments, we have chosen some graphical representations such as a bar plot and a line plot

to observe and analyze the evolution of the systems. For other experiments, we have relied on

strong statistical tests, namely the Wilcoxon signed-ranks test, which compares the classifiers

in a pairwise manner over multiple datasets. The Kruskal-Wallis Test assesses the differences

among three or more groups, along with a post hoc test that is the Bonferroni-Dunn Test, to

compare all classifiers with a control system.

5.5 EXPERIMENTAL RESULTS

5.5.1 FIRST EXPERIMENT : Comparison between supervised, DCT
and Mean Teacher

In this experiment, we used two semi-supervised approaches for Audio Tagging, namely:

Mean Teacher (MT) and Deep Co-Training (DCT). We have conducted our work using two

residual neural networks, Wideresnet28_2 ( 28 layers in depth and a width of 2) and a resnet34

that consists of 34 layers deep. Our models have been evaluated against supervised baseline

systems built on the same network architecture. We have trained these two models on two well-

known datasets: the Urban8k dataset (UBS8K) and the Environmental Sound Classification

dataset (ESC-10). For evaluating our models, we have resampled each dataset following K1-fold

cross validation, resulting in 2 sets of train(i) and test(i), i ∈ {1, ...., k}. We have trained our

two SS1 approaches on two subsets of data: the supervised subset S and the unsupervised set U.

The supervised ratio was fixed at 0.8, which means that the supervised subset consists of 80%

of train_i, while the remaining 20% is from the unsupervised set U. whereas, the supervised

baseline consists of 100% of train(i) . We have evaluated our systems on test(i) for each fold

i ∈ {1, ...., k}, and we have reported the mean of these K measurements in Table 5.5.

1K=5 is the number of folds in the ESC-10 dataset, K=10 is the number of folds in the UBS8K dataset.
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Table 5.5: Average F1-score results of DCT, MT and baseline system on UBS8K and USC-10.

UBS8K ESC-10

Sound Events
DCT MEAN TEACHER FULL SUPERVISED

Sound Events
DCT MEAN TEACHER FULL SUPERVISED

WRN28_2 resnet 34 WRN28_2 resnet 34 WRN28_2 resnet 34 WRN28_2 resnet 34 WRN28_2 resnet 34 WRN28_2 resnet 34

Air conditioner 0,57 0,52 0,52 0,53 0,57 0,49 Dog 0,87 0,91 0,91 0,90 0,85 0,93

Car horn 0,88 0,83 0,90 0,88 0,92 0,86 Rooster 0,96 0,93 0,95 0,95 0,94 0,95

Children playing 0,75 0,75 0,82 0,72 0,83 0,75 Clock Tick 0,96 0,86 0,86 0,83 0,95 0,77

Dogbark 0,83 0,85 0,88 0,82 0,87 0,82 Helicopter 0,84 0,78 0,70 0,70 0,83 0,76

Drilling 0,71 0,66 0,72 0,65 0,75 0,64 Chainsaw 0,86 0,88 0,84 0,79 0,87 0,83

Engine idling 0,66 0,60 0,61 0,61 0,62 0,63 Rain 0,76 0,78 0,78 0,77 0,78 0,75

Gunshot 0,95 0,95 0,94 0,94 0,98 0,94 Sea waves 0,87 0,85 0,87 0,85 0,85 0,87

Jackhammer 0,65 0,60 0,58 0,58 0,55 0,57 Crackling fire 0,91 0,88 0,82 0,82 0,90 0,79

Siren 0,85 0,81 0,85 0,80 0,87 0,80 Crying baby 0,99 0,95 0,96 0,90 0,96 0,99

Street music 0,75 0,74 0,80 0,74 0,79 0,72 Sneezing 0,91 0,89 0,90 0,87 0,90 0,96

Average F1-score 0,76 0,73 0,76 0,73 0,77 0,72 Average F1-score 0,89 0,87 0,86 0,84 0,88 0,86
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The results in Table 5.5 show that the semi-supervised systems and the baseline yield an

average F1-score landing in the range of 72% to 89%. Aside from that, all the compared systems

outperform each other across all audio tags. However, our initial analysis does not reveal any

considerable differences. In addition, according to numerous papers on statistical machine

learning, when the results on different categories of data are not comparable, their averages

are meaningless [127]. To cope with this shortcoming, appropriate statistical tests should be

conducted thoroughly [128]. To this end, we have statistically compared the performances of

these techniques using the Wilcoxon signed-ranks test. For further analysis of these results, we

have compared the performances of these systems in a pairwise manner based on the Wilcoxon

test in Table 5.6 The first row of each cell specifies the number of Win/Tie/Loss of the system

in the column over the system in the row; whereas, the second row shows the p-values for

the Wilcoxon test. If the entry is bold, this means that the number of wins/losses over 10 is

statistically significant using the Wilcoxon test.

Table 5.6: Wilcoxon signed-rank test results.

Dataset Baseline DCT WRN28_2 DCT Resnet34 MT WRN28_2 MT Resnet34

UBS8K

Sup WRN28_2
W/T/L 3/0/7 1/0/9 3/0/7 1/0/9

p-value 0.38 0.02 0.16 0.009

Sup Resnet34
W/T/L 10/0/0 7/0/3 9/0/1 7/0/3

p-value 0.005 0.38 0.01 0.38

ESC-10

Sup WRN28_2
W/T/L 8/0/2 3/0/7 6/0/4 2/0/8

p-value 0.047 0.13 0.57 0.03

Sup Resnet34
W/T/L 6/1/3 5/0/5 5/0/5 3/1/6

p-value 0.22 0.50 0.95 0.22

According to the above statistical analysis, we can derive the following inferences:

• Taking a closer look at the UBS8K dataset, we can observe that DCT+WRN28_2 and

MT+WRN28_2 are significantly better than the supervised WRN28_2 baseline with

a confidence level of 0.005 and 0.013, respectively. On the other hand, the ResNet34-

based systems exhibit the opposite behavior, as we can see that both DCT+Resnet34

and MT+Resnet34 perform significantly worse than the supervised WRN28_2 baseline

with a p-value of 0.02 and 0.009, respectively.

• A close examination of the ESC-10 Table reveals that the DCT+WRN28_2 yields sig-

nificantly better scores compared to the supervised WRN28_2 baseline, with a p-value

of 0.047. But it is worth noting that MT+resnet34 also exhibits very low performance
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compared to the supervised WRN28_2 baseline, with a p-value of 0.037.

Based on the above discussion, we can conclude that the semi-supervised methods successfully

boost the performance of WRN28_2 -based systems. As compared to ResNet34-based systems,

they show totally different behavior.

In order to get better insight on how DCT and MT improve the performance of the WRN28_2

based model, we display in Figure 5.5 (a), (b), and (c) the confusion matrices of and the super-

vised WRN28_2 baseline ,DCT+WRN28_2 and MT+WRN28_2 , respectively, as computed

on the test set.

79



Figure 5.5: Confusion Matrices of the supervised baseline (a) ,DCT (b) and MT (c) on WRN28_2 model.
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The matrices indicate appreciable diagonals, meaning that many classes are correctly clas-

sified. However, we observe that some classes are easier to classify while others are not; for

instance, the matrix of WRN28_2 shows an appreciable diagonal, meaning that several classes

are correctly classified. However, some classes are misrecognized as others; for instance, "sea

waves" are classified as "rain" and "chansaw" are classified as "helicopter" and vice versa.

which indicates that most misclassified classes are quite similar, making it difficult even for

humans to distinguish between them. To address this issue, Deep Co-training makes use of ad-

versarial examples to encourage the models to generate complementary representations. Each

is resistant to the adversarial examples of the other. It is worth noting that the adversarial

examples of some events, such as "cracking fire", "sneezing" and "crying baby", significantly

improve the performance of WRN28_2 as illustrated in Figure 5.5. Mean Teacher, however,

was unable to produce comparable outcomes.

5.6 SECOND EXPERIMENT : Impact of Supervised Ra-
tio on Audio Tagging Systems

In this experiment, we have built our audio tagging systems while varying the ratios of

labeled data. The aim is to explore the impact of the amount of labeled data when training

our WRN28_2 models on both the DCT and MT approaches. To be precise, we have changed

the supervised ratio each time from a range of 0.1 to 0.9 and trained the models on the first

K-1 folds and tested them on the remaining fold (fold K) for both ESC-10 and UBS8K. Note

that we have only conducted one iteration of K-fold CV due to a lack of dedicated training

resources. The results are depicted in Figure 5.6.

Figure 5.6: Effect of the supervised ratio.
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The curves shown in Figure 5.6 indicate that the performance of the semi-supervised ap-

proaches progressively increases as the supervised ratio grows. Also, DCT shows superior

performance over MT in most cases. It yields better scores than the supervised model while

using only a small fraction (30%) of the labeled data on the UBS8K dataset while using about

(65%) of the labeled data on the ESC-10K dataset. On the other hand, the MT requires a

slightly larger fraction of labeled data from UBS8K to reach a higher performance than the

baseline in the range of (38% to 46%) and (80% to 95%), while for the ESC-10 it necessitates

a large fraction (95%) of the labeled data.

5.7 THIRD EXPERIMENT : Impact of the network ar-
chitecture

According to the first experiment, the WRN28_2 model provides better performance scores

when compared to Resnet34. In order to further investigate the impact of the network ar-

chitecture, we have carried out the following experiment. We have trained 6 different network

architectures with DCT on both the UBS8K and ESC-10 datasets for the purpose of designating

the architecture that yields the highest results. In which the light blue indicates the resnet18

model, the dark blue indicates the resnet34 model, the light green indicates the resnet50 model,

the dark green indicates the WRN28_2 model, the pink indicates the WRN28_4 model, and

the red indicates the WRN28_8 model. Figure 5.7 gives the obtained accuracy results on the

test fold.
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Figure 5.7: Impact of different network architecture.

The analysis of the above bar plot can be summarized by two main observations:

• We observe that the models perform better when trained on the ESC-10 dataset than

on the UBS8K dataset, and that’s due to the fact that the UBS8K dataset is considered

slightly imbalanced, where different classes have an uneven distribution of observations

compared to ESC-10, which has the same amount of data in each class. For example, in

the UBS8K dataset, the air conditioner class has about 1000 instances (audio files), while

the gunshot class hardly reaches 374 instances.

• We note that WRN models yield the best performance as the accuracy scores vary be-

tween 0.93 and 0.98 for ESC-10 and 0.84 and 0.87 for UBS8K. Whereas the performance

of the Resnet models varies between 0.775 and 0.80 for UBS8K and 0.9 and 0.91 for

ESC-10 Therefore, WRNs are far superior to their commonly used thin and very deep

counterparts, Resnets. A possible cause of this behavior might be related to the training

process of Resnets. As suggested by many authors [103], training very deep residual net-

works has a problem of diminishing feature reuse, which makes these networks very slow

to train.
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5.8 FOURTH EXPERIMENT : Analysis of adversarial at-
tacks on DCT

The purpose of this experiment is to explore the impact of adversarial attacks on DCT. This

experiment is divided into two parts. The first experiment is devoted to varying the adversarial

example magnitude of perturbation (epsilon) using the FGSM attack. The second experiment

revolves on comparing different adversarial attacks and to analyze their impact on the behavior

of DCT-based systems.

5.8.1 EXPERIMENT 4A : Varying the magnitude of perturbation

We have implemented this experiment with various different values of the perturbation

magnitude epsilon ∈ [0, 50]. Figure 5.8 illustrates the change in accuracy scores for each

dataset.

Figure 5.8: Impact of different network architecture.
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According to Figure 5.8, both curves display similar observable behaviors. When epsilon <

1, the performance of DCT on both datasets is stable having a small variation here and then.On

the other hand, as epsilon gets larger, performance stability is compromised, as we notice a

significant decrease in accuracy. which implies that greater values of the magnitude of pertur-

bation badly influence the performance of DCT, whereas setting the magnitude perturbation

in range [0,1] generates adversarial examples that fools the models to provide different and

complementary information about the data, thus, the models would be resistant to adversarial

examples and as a result it would enhance the models performance.

5.8.2 EXPERIMENT 4B : Varying the adversarial attack strategy

We have performed this experiment using four attacks, namely: L-BFGS, FGSM, DEEP

FOOL and CW. The hyperparameter settings of each attack are provided in Table 5.7.

Table 5.7: MT and DCT parameters setup.

parameters L-BFGS FGSM DEEP FOOL CW

Clip min 0 0 – –

Clip max 1 1 – –

initial const 0.01 – – 0.001

Epsilon/Overshoot – 0.02 0.02 –

kappa – – – 0

According to the previous experiments, FGSM attack has shown remarkable performance

along different models. In order to further explore this matter, we have conducted this ex-

periment where we have built numerous audio tagging systems based on DCT approach using

different adversarial attacks, where the most common magnitude of perturbation was assigned

to each attack. But in fact we are only interested in comparing an unperturbed system with

the other alternatives. In other words the unperturbed system would be treated as a baseline

against the other perturbed systems to see the impact and the performance of applying an

adversarial attack on an audio distribution.

The results of this experiment on ESC-10 and UBS8k are shown in Table 5.8. The last row

specifies the average ranks of each system tested on the attack computed using the Kruskal

Wallis test.
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Table 5.8: Average Ranks and F1-scores of DCT variants.

UBS8K

Dataset
No perturbation FGSM L-BFGS CW DEEP FOOL

ESC-10

Dataset
No perturbation FGSM L-BFGS CW DEEP FOOL

Air conditioner 0.56 0.87 0.78 0.00 0.59 Dog 0,88 0,94 0,93 0,8 0,94

Car horn 0.92 0.95 0.87 0.56 0.79 Rooster 1 0,93 0,89 0,7 0,77

Children playing 0.75 0.87 0.81 0.46 0.81 Clock Tick 0,94 1 1 0,71 0,82

Dog bark 0.77 0.87 0.82 0.70 0.75 Helicopter 0,8 0,93 0,93 0,77 0,93

Drilling 0.70 0.75 0.74 0.21 0.69 Chainsaw 0,8 0,93 1 0,71 0,77

Engine idling 0.75 0.80 0.73 0.64 0.63 Rain 0,86 0,89 0,8 0,77 0,8

Gunshot 0.97 0.96 0.96 0.72 0.95 Seawaves 0,94 1 0,82 0,82 0,67

jackhammer 0.92 0.90 0.93 0.42 0.84 Crackling fire 0,94 0,88 1 0,93 0,93

Siren 0.85 0.93 0.91 0.70 0.90 Crying baby 1 1 0,93 0,82 0,7

Street music 0.84 0.91 0.81 0.38 0.70 Sneezing 0,82 1 0,94 0,38 0,8

Average

F1-score
0,8 0,88 0,84 0,48 0,77

Average

F1-score
0,9 0,95 0,92 0,74 0,81

Average Rank 28.35 37.15 31.4 7.4 23.15 Average Rank 30 36.45 32.7 11.5 16.9
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Starting with the ESC-10 , the Kruskal Wallis test rejects the null hypothesis where H

statistic = 22.1 ≻ critical chi-square = 7.78 for k − 1 = 5 − 1 degrees of freedom and

α = 0.1 and since the p-value = 1.9.10 − 4 ≺ α = 0.1 where there exists at least one pair

of systems with significantly different performances. In other words, the difference between

the mean ranks of some groups is big enough to be statistically significant. Because we are

only interested in testing whether DCT systems based on different attacks has a significant

performance we have conducted a Bonferroni-Dunn test at a 10% significance level with the

critical value q0.10 = 16.65 and the critical difference CD = 11.77. The results of this test

are shown by Figure 5.9. On the horizontal axis, we represent the average ranks of each DCT

variant and mark using a thick line an interval of 2×CD one on the right and the other to the

left of no perturbation system mean rank.

Figure 5.9: Comparison of the baseline system against the 4 other systems with the Bonferroni-
Dunn test on the ESC-10 dataset.

Based on the Bonferroni analysis, the following conclusions can be drawn:

DEEPP FFOL and CW fall outside the marked interval and while CW has the lowest rank,

these two have significant difference mean ranks compared to the baseline. On the other hand

FGSM and LBFGS have a Mean Rank difference of 6.55 and 2.85 outperforming the baseline

scores.

For the UBS8K dataset , the Kruskal Wallis test also rejects the null hypothesis where

H statistic = 24.05 ≻ critical chi-square = 7.78 for k − 1 = 5 − 1 degrees of freedom and

α = 0.1 and since the p-value = 7.10− 5 ≺ α = 0.1 where it exist at least one pair of systems

with significantly different performances. We have conducted a Bonferroni-Dunn test at a 10%

significance level with the critical value q0.10 =16.87 and the critical difference CD = 11.86.

The results of this test are shown by Figure 5.10 based on the same creatia of Figure 5.9.
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Figure 5.10: Comparison of the baseline system against the 4 other systems with the Bonferroni-
Dunn test on the ESC-10 dataset.

Based on the Bonferroni analysis, the significance difference between the baseline and CW

is marked outside of the interval and has the lowest rank. whereas DEEP FOOL has increased

its performance compared to the ESC-10 dataset since it has a mean rank difference of 5.2.

While FGSM and LBFGS have again exceeded the baseline.

In conclusion L-BFGS and FGSM show very promising results on audio based systems.

Where for DEEP FOOL we can’t make any conclusion since the attack shows different behavior.

On the other hand, CW provides the worst performance of them all.

Table 5.9 illustrates the time execution during the training phase for different adversarial attacks

for both ESC-10 and UBS8K datasets.

Table 5.9: Time execution for different adversarial attacks.

Dataset/Attack FGSM L-BFGS CW DEEP FOOL

ESC-10 15m 1h 11m 17m 25m

UBS8K 1h 21m 11h 24m 3h 18m 9h 8m
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5.9 Conclusion and summary of experimental findings

In this chapter, we have presented the results of our experimental enquiries. Several lessons

can be derived from our analysis:

• Training models based on a semi-supervised learning approach with both labeled and

unlabeled data is highly efficient in terms of performance and time.

• Some adversarial attacks improve the prediction performance of an Audio Tagging system,

although they are not always beneficial and can negatively affect the performance of such

systems.

• The hyperparameter epsilon is a crucial factor that has an extreme influence on the

adversarial example and the model’s performance. For that reason, it should be defined

carefully and values should not surpass 1.

• Wide residual-based models yield better scores than the standard residual networks since

they have fewer layers and faster timing.

89



Conclusion

Contributions and summary of experimental findings

The primary goal of this thesis was to conduct an empirical analysis and make comparisons

among Audio Tagging systems. To this end, we built numerous audio tagging systems, and

conducted several experiments based on UBS8K and ESC-10 datasets. We made use of two deep

learning-based models: Residual Neural Network (ResNet) and Wide Residual Neural Network

(WideResNet) to train our audio data. Most of our experiments focused on the WideResnt

model. We used two semi-supervised approaches :Deep Co-Training and Mean Teacher, in

which they held to account both labeled and unlabeled data. To avoid deriving conclusions

affected by chance, we have used three statistical tests, namely: the Wilcoxon signed rank test,

the Kruskal-Wallis test, and the Bonferroni-Dunn test.

From this experimental study, we can derive the following conclusions:

• Using both labeled and unlabeled audio data in a semi-supervised approach augments

the performance of an Audio Tagging system.

• Wide Residual models outperform the old-fashioned residual models since they are better

in terms of complexity and time.

• Applying semi-supervised learning approaches to train an Audio Tagging system demon-

strates a noticeable superiority over systems trained in a supervised fashion ( 100% labeled

data).

• Deep Co-training based systems (DCT) outperform Mean Teacher based systems (MT)

since DCT works with adversarial examples in which they enhance the models’ perfor-

mance.

• In DCT, the magnitude of perturbation epsilon should be chosen carefully in such a way

that it fools the models but isn’t perceivable by humans. We highly suggest choosing an

ϵ < 1.
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• Not all adversarial attacks have a positive impact on the model’s performance. For in-

stance, on one hand, FGSM and L-BFGS attacks showed great performance when applied

to generate adversarial examples on the model. But Deep fool made a conflicted behavior

and where CW had the worst results.

• Analyzing the obtained scores statically is an excellent way of comparing and identifying

differences between Audio Tagging systems.

Limits and Future work

This thesis has revealed several interesting areas for improvements, and can be further

explored in the near future. We have achieved noticeable improvements in the performance of

our audio tagging systems. It is possible, however, to further improve these performances by:

• Applying an augmentation technique to the UBS8K dataset is recommended since it

has slightly imbalanced data. The most common data augmentation techniques vary

depending on whether we are handling a raw audio augmentation, in which we can simply

Time Shift, Pitch Shift, Time Stretch , or apply Noise Injection, but when handling a

Spectrogram Augmentation, a method known as SpecAugment is used.

• Another promising solution would be to test the hyperparameters of the adversarial at-

tacks that performed badly and analyze the results to come up with a convincing conclu-

sion.

• Train models on the Universal Adversarial Perturbations and compare the results with

an old-fashioned adversarial attack.

• We can use other feature extraction techniques such as Mel-frequency cepstral coefficients

(MFCC), In addition, future work should consider also using raw audio signals as inputs

to train the audio tagging systems.

• Since WideResnet has shown great results, it would be interesting to compare it with

other deep residual networks such as EfficientNet or Alexnet.

During this project, we have encountered a few struggles because of the long training time since

we lack robust hardware to perform deep learning tasks. which prevented us from conducting

more experiments . Nonetheless, this experience has taught us many useful skills, such as how

a machine perceives audio, thesis writing, the main steps of implementing machine learning

experiments using Pytorch, and developing systems on a cloud-based platform such as Kaggle.
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