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Abstract 

 

Pattern mining consists of finding interesting, useful and pertinent patterns (data structures) 

that exist among large amount of data. These discovered patterns can be used as actionable 

knowledge directly or they can be used by other data mining methods as an input. Itemsets 

represent the most basic type of pattern and are the most treated in this field. In the real world, 

the actual data is for the most part uncertain. 

Indeed, we are interested in our work on this type of data, and as a result, our work consists of 

providing an approach for extracting frequent itemsets from uncertain data using deep 

reinforcement learning, which has had a lot of success in a variety of domains. 

Keywords: frequent itemset mining, high utility itemset mining, uncertain data, 

reinforcement learning, deep learning. 

Résumé 

L'exploration de motifs consiste à trouver des motifs (structures de données) intéressants, 

utiles et pertinents qui existent parmi une grande quantité de données. Ces motifs découverts 

peuvent être utilisés directement en tant que connaissances exploitables ou peuvent être 

utilisés par d'autres méthodes d'exploration de données en tant qu'entrée. Les itemsets 

représentent le type de modèle le plus basique et sont les plus traités dans ce domaine. Dans le 

monde réel, les données réelles sont pour la plupart incertaines. 

En effet, notre travail s'intéresse à ce type de données, et par conséquent, notre travail consiste 

à fournir une approche pour l'extraction d'items fréquents à partir de données incertaines en 

utilisant l'apprentissage par renforcement profond, qui a eu beaucoup de succès dans une 

variété de domaines. 

Mots clés : extraction d'items fréquents, extraction d'items de grande utilité, données 

incertaines, apprentissage par renforcement, apprentissage profond. 

 

 



 

 ملخص

يتكون تعدين الأنماط من إيجاد أنماط مثيرة للاهتمام ومفيدة وذات صلة )هياكل البيانات( الموجودة بين كمية كبيرة من  

البيانات. يمكن استخدام هذه الأنماط المكتشفة كمعرفة قابلة للتنفيذ مباشرة أو يمكن استخدامها بواسطة طرق التنقيب عن 

عات العناصر النوع الأساسي للنمط وهي الأكثر معاملة في هذا المجال. في العالم  البيانات الأخرى كمدخلات. تمثل مجمو

البيانات الفعلية في معظمها غير مؤكدة الحقيقي، . 

يتكون عملنا من توفير نهج لاستخراج مجموعات  لذلك،ونتيجة  البيانات،نحن مهتمون بعملنا على هذا النوع من  الواقع،في 

والذي حقق نجاحًا كبيرًا في مجموعة متنوعة  العميق،يانات غير المؤكدة باستخدام التعلم المعزز العناصر المتكررة من الب

المجالاتمن  . 

 المؤكدة،البيانات غير  العالية،التنقيب عن العناصر ذات المنفعة  العناصر،التعدين المتكرر لمجموعة الكلمات المفتاحية: 

التعلم العميق المعزز،التعلم  . 
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General Introduction  

1. Context 

The amount of data processed each day surpasses one billion, necessitating a very strong 

mathematical ability. The expansion in the size of data bases is what led to the development 

of information extraction techniques from data. [11] 

Furthermore, enormous amounts of data are generated as a result of the quick development of 

applications in a number of real-world fields, including e-commerce and health. For instance, 

a business that saves consumer data for competitive reasons may be interested in adopting 

information extraction techniques. These methods often seek to identify patterns that 

frequently appear in the data that can be used to derive important data. However, the vast 

majority of these applications use uncertain data. 

Exploration of motifs is a subset of data exploration that calls for finding interesting, 

unexpected, and useful themes within a set of data. Due to the numerous uses of uncertain 

data, the extraction of frequent sets of elements from uncertain data bases has gained 

significant attention in the data mining field. 

Deep learning is a very fashionable field of artificial intelligence that has been explored in 

many fields in recent years, Deep learning is a type of machine learning that uses supervised 

and unsupervised algorithms to learn multi-level representations in hierarchical architectures, 

often used in classification and pattern recognition problems. One of the most interesting 

machine learning and artificial intelligence techniques is reinforcement learning, with 

numerous applications in a variety of disciplines 

2. Problem definition 

In the fields of data mining and machine learning, the problem of imperfect (missing, 

imprecise, inconsistent, and unclear) data, particularly uncertain data, is a well-known issue. 

The extraction of frequent itemsets from uncertain data has attracted the attention of scientists 

in the data mining field, and a large number of algorithms have been published in the 

literature as a result. 

The scaling problem, on the other hand, is a common issue with these algorithms and their 

analogues that deal with accurate data. 

3. Objective 

The objective of our work is the creation of a new model that allows the extraction of frequent 

and high utility patterns from uncertain data using one of the most interesting machine 

learning techniques, Deep Reinforcement learning  
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Thesis organization  
 

There are four chapters in the thesis: 

Chapter 1: “Pattern Mining “ 

This chapter covers the many types of methods most typically used to extract frequent 

itemsets and high utility itemsets. 

Chapter 2: “Machine Learning “  

In this chapter, we'll go over the various machine learning techniques, with a focus on deep 

learning and the various architects. 

Chapter 3: “Proposed Approach “ 

This chapter introduces the proposed approach to our problem as well as its architect. 

Chapter 4: “Testing and Experimentation” 

The final chapter illustrates and validates the method used. 
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1. Introduction 

We live in a world where large quantities of data are collected every day. Data analytics was 

classified as the first priority technologies, when actionable information can be extracted from 

the large volume of data available across the organization data analytics enables the 

company’s stakeholders to make informed decision for their business, when business 

stakeholders make decision using data analytics capability this allows a company to have a 

greater likelihood of increasing revenue, reducing costs and improving its competitive 

advantage.[10] 

This chapter covers the many types of algorithms most typically used to extract frequent 

itemsets and high utility itemsets. 

 

2. Pattern Mining 

Figure 1 shows the whole process typical of data analysis, among the various phases, data 

mining plays an important role consist of extracting from data stored in the database to make 

decisions and understand the data and action. Some of the most fundamental data mining 

tasks are pattern mining, so the main challenge in extracting data is to find useful information 

from massive amounts of data. Two important tasks of pattern mining are discussed in this 

chapter Frequent Pattern Mining and High Utility Pattern Mining. For example frequent 

pattern mining can be used in various applications over the world [11]. It can be used in 

product on shelves, wireless sensor networks, supermarkets for selling, and another 

applications that require user environmental monitoring. 

 

 

 

 

Figure 01  Process of typical data analysis [7]. 
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Pattern mining consists of finding interesting, useful and pertinent patterns (datastructures) 

that exist among large amount of data. These discovered patterns can be used as actionable 

knowledge directly or they can be used by other data mining methods as an input. 

3. Frequent Pattern Mining: 

In data extraction research, frequent Pattern Mining (FPM) has been a major topic for many 

years and it plays an essential role in extracting rules. Considerable progress has taken place 

in this area and many effective algorithms have been designed to search frequent patterns in a 

transaction database.  

In 1993,[1]Agrawal initially proposed this conception the form of association rule mining 

based on market analysis to determine association between items bought on the market, this 

concept used transactional Database for extract frequent patterns and interesting correlations, 

frequent patterns are subsequence or substructures of elements that appear in database 

transactions with a user-specified frequency, if a set of elements with a frequency is above or 

equal to the minimum threshold ,it will be considered a frequent pattern. Different techniques 

are applied to find frequent elements, there are two major problems relating to the technique 

of frequent Pattern mining, the first problem is that the database is parsed a few times, the 

second problem is the complex process of generating candidates with multiple sets of 

generated candidate articles, both problems are an efficiency patch infrequent pattern mining 

research shows that a great deal of effort has gone into this in order to innovate the best 

technology and many algorithms have proposed by different researchers to enhance the 

technology of FPM among them we mention : Apriori, FP_Growth, ECLAT,RARM and 

ASPMS algorithms[9]  

3.1 Efficient Algorithms for mining frequent patterns: 

3.1.1 Apriori algorithm: 

Agrawal and Srikant [2] introduced this algorithm in 1994. Based on extracting 

frequent items, for generating association rules, Apriori uses an iterative approach in which k-

itemset are used to explore (k+1) itemset and uses a breadth-first search to explore the search 

space of itemsets 

Principle: 

First, frequent items can be extracted by browsing the horizontal database to find 

frequent items L the resulting set is denoted by  𝐿1 then using frequent 1-itemsets  𝐿1 to 

generate items for two candidates  𝐿2 and checking the database to get frequent items for two 
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candidates , the set of frequent 2-itemsets used to find  𝐿3 and so on. This process is repeated 

until no more frequent set of K_elements can be generated for a certain K, the finding of 

each 𝐿𝐾requires one complete database scan. 

Second, the following principle underpins the Apriori property such as if a set of 

elements D does not satisfy the minimum support threshold then D is not frequent that is P(D) 

< sup-min, if an item A is added to the items D then the resulting item set (that is to say D ∪ 

A) cannot happen more frequently than D, hence D union A is not frequent no more that is 

P(D ∪A) < sup-min. 

The final step is to generate Association Rules from Frequent Itemsets. After generalising the 

sets of frequent elements in transaction database D, strong association rules can be 

discovered, so that the strong association rules meet both the minimal support and minimum 

confidence, we explain this using the equation below.     

Confidence(A⇒B) =
(support_count(A∪B))

(support count(A)) 
…..…………..….(1) 

The number of transactions containing the (A∪B) items is represented by the support 

count(A∪B)and how many transactions included the A item is defined by support count (A). 

Such that the association rules can be generated as follows:  

1. Let X be the frequent set of elements, generate all the subsets of X. 

2. For each non-empty subsets A of X, say that A⇒(X-A) if (support_count(X) 

/(spport_count(A))  ≥ min_conf, which represents the minimum confidence threshold. 

3.1.2 FP_Growth Algorithm 

Frequent Pattern Growth is an algorithm that extracts frequent sets without the costly 

candidate generation process. 

As we have already said two main drawbacks of the algorithm Apriori : 

• Firstly, the algorithm requires generating a large number of candidates. 

• Secondly, it is time consuming to discover the itemset's support for each transaction in 

the database. 

To treat these two problems of Apriori a new algorithm of frequent patterns called 

FPgrowth was developed by Han in 2000[3]. 
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Principle: 

The Algorithm based on two steps, the frequent pattern tree was created in the first stage by 

walking through the database twice. During the database's initial pass, it calculates the 

number of supports for each element and the data is analysed, such that the frequent patterns 

are ordered from the top to the bottom, and the infrequent patterns are removed from the list. 

On the second attempt of the database, build the FP tree (like it's shown in figure 02) then 

extract the frequent patterns from the FP tree using the FP Growth algorithm, it separates the 

collected database into a set of conditional databases, each linked to a frequent model and it 

exploits each database for each frequent model, consequently this method allows the size of 

the data sets to be searched to be reduced. The goals of the FP Growth Algorithm are to reach 

these important objectives: 

-The first is that the database is scanned only twice, which will decrease the cost of 

calculation. 

-The second key goal is to avoid generating a list of candidates. 

-Finally, the algorithm reduces search space because it uses the divide approach. 

 

Figure 02 FP_Tree. [2] 

3.1.3 Eclat Algorithm 

 In 2000, [8] Zaki proposed a new algorithm called Equivalence Class Clustering and 

Bottom-Up Lattice Traversal (ECLAT) which makes it possible to efficiently extract the sets 

of frequent items using the vertical data format. The Eclat algorithm which employs a Depth-

First Search strategy, uses less memory than the Apriori. 
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Principle: 

 As already mentioned previously the Apriori and FP-Growth algorithms explore the 

frequent models of a transaction set in the horizontal form, but Eclat uses a vertical 

transactional representation and also in a transaction the elements are also considered to be 

ordered by lexicographical order. 

By scanning the database once, from k=1 construct the candidates k+1 item sets 

frequent. Then, all itemsets with support less than min support will be eliminated. 

Now, we will basically repeat the same thing as the previous step, but now for the 

pairs. The interesting thing about the ECLAT algorithm is that this step is done using the 

Intersection of the two original sets. This makes ECLAT faster because it is much simpler to 

identify the intersection of the set of transactions 𝑃𝑖𝑑 than to scan each individual transaction 

for the presence of pairs (as Apriori does). 

This process is repeated until all the frequent elements are generated and no set of 

frequent elements can be discovered. So, the Eclat algorithm produces frequent itemsets with 

their support as a result. 

 

3.2. Frequent itemset mining limitations  

When it comes to analyzing client transactions, frequent itemset mining has several 

limitations. Purchase amounts are not taken into consideration, which is a significant 

limitation. As a result, an item may appear only once or never in a transaction. So, it doesn't 

matter if a consumer buys five, ten, or twenty loaves of bread, it's seen as the same. 

Second, the fact that all items are perceived as having the same relevance, utility, and 

weight is a second significant limitation. For example, if a consumer purchases a high-end 

bottle of wine or a simple loaf of bread, both are considered equally valuable.  

As a result, frequent pattern mining may find a large number of uninteresting patterns. 

(Bread and milk) for example, could be a frequent pattern. However, this pattern may be 

unattractive from a commercial standpoint because it does not create much profit. 

Furthermore, FPM algorithms that mine patterns often may miss rare patterns that 

have generated a large profit, such as caviar and wine. 
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4. High utility pattern mining 

Due to its capacity to handle non binary frequency values of items in transactions and 

variable profit values for each item, high utility pattern mining has recently become one of the 

most significant research challenges in data mining. 

When a database is updated or the minimum threshold is modified, incremental and 

interactive data mining allows you to reuse previous data structures and mining results to 

eliminate not necessary calculations. 

Many research have concentrated on classic frequent pattern mining, which only 

considers the presence of patterns in the database and ignores the internal utility values (such 

as quantity)  and external utility values (such as value, profit, and price) of each item in the 

itemset[12]. 

To address this problem, high utility itemsets (HUIs) mining has been used in a variety 

of fields, such as website clickstream analysis [13, 14], mobile commerce environment [18], 

cross marketing commercial value of retail stores [19], user behaviour analysis, Web mining, 

bioinformatics, market basket analysis, and promoting HUIs sales to increase profit. 

 

4.1. HUP mining algorithms  

Many existing HUPs mining techniques may be divided into two types: two-phase and 

one-phase approach [14]. 

4.1.1. Two phase algorithms  

The algorithm requires two phases to identify all HUPs: 

i.The candidate itemsets are generated in the first step by finding the utility value of each 

candidate itemset. 

ii.The real utility value of each candidate itemset in the second step is calculated by the scan of 

the dataset. 

The algorithms TwoPhase [13], IHUP [14], UP-Growth [15], HUP-Growth [16], and 

MUGrowth [17] use this two-phase technique. 

 

• Two Phase algorithm : 

The Apriori method is generalised by the Two-Phase algorithm [14]. The main distinction 

between Apriori and Two-Phase is that the two phase includes a second phase in which the 

utility of each pattern calculated with database scanning. 
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The result of Two-Phase is a list of high utility itemsets with a utility greater than the 

user-defined minimum utility threshold. On the other hand, Two-Phase has significant 

performance limits. The first is that, because Two-Phase creates itemsets by joining itemsets 

without consulting the database, it can produce patterns that aren't even in the database. As a 

result, Two-Phase can waste a lot of time processing itemsets that aren't in the database. 

The second disadvantage is that Two-Phase scans the database many times to compute 

the TWU and utilities of itemsets, which is very expensive. 

Third restriction is that utilizing a breadth-first search might be memory expensive 

because it needs keeping all k-itemsets and (k-1)-itemsets in memory at all times (for k > 1). 

 

• IHUP Algorithm  

Ahmed et al [5] presented IHUP, a tree-based approach for extracting high utility itemsets. 

This pattern-growth algorithm's basic principle is to search a database for itemsets and 

prevent generating itemsets that don't exist in the database. Moreover, it has created compact 

database representations and the notion of projected database to lower the size of databases 

when an algorithm explores bigger itemsets to reduce the cost of scanning the database. 

It employs the IHUP tree to keep information of high utility itemsets and transactions. 

Each node of the IHUP tree has the item name, medium, and TWU value. 

So, this algorithm include into three steps: 

    1-Exploration of the search space of itemsets using a depth-first search rather than a 

breadth-first search to build the IHUP tree structure, the advantage of using that throughout 

the search is that fewer itemsets will be stored in memory. 

    2-The creation of HTWUI (if TWU(x) is more than the minimal utility threshold, x is 

referred to as a high transaction weighted utilization Itemset). 

    3-To identify a hui: First step, the elements of the transaction are not ordered in a 

predefined sequence (order reduction support or TWU) The rearranged transactions are 

subsequently entered into the IHUP tree, as shown in the image, which illustrates the table 

database IHUP tree in decreasing order of TWU elements. 

Second step, the FP-Growth method is used to build HTWUI from the IHUP tree. 

Third step, by evaluating the original database once, a collection of high utility items and their 

utility is determined from the HTWUI collection. 
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     Figure 03 IHUP-Tree when min_util=50.[3] 

 

4.1.2. One phase algorithms 

The invention of methods that do not create candidates was the second important 

advance in high utility itemset mining. These one-phase methods calculate the utility of each 

pattern in the search space. As a result, an itemset may be quickly classified as either low or 

high utility, and patterns do not need to be stored in memory. 

The one-phase algorithm concept was initially introduced in HUI-Miner and later in the 

d2HUP [19] method. The speed of d2HUP and HUI-Miner is significantly faster than that of 

two-phase algorithms. 

FHM, mHUIMiner, ULB-Miner, HUI-Miner*, and EFIM are examples of enhanced and more 

efficient one-phase algorithms. 

 

• The FHM (Fast High-Utility Miner) Algorithm : 

FHM is a one-phase method that explores the search space of itemsets by doing a depth-

first search. The FHM algorithm, for each visited itemset in the search space creates a utility 

list throughout the search. An itemset's utility-list stores information about the itemset's utility 

in transactions where it occurs, as well as information about the utilities of remaining items in 

these transactions. Utility-lists structure allows to directly obtain the utility of an itemset, and 

the upper-bounds on the utility of its supersets without scanning the database. Furthermore, by 
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linking utility-lists of shorter patterns, utility-lists of k-itemsets k > 1 may be efficiently 

generated. 

The main procedure of FHM is to: 

First, take the quantitative transaction database as input and the minutil threshold. 

FHM initially scans database D to determine each item's TWU (transaction-weighted utility), 

which is calculated using the equation: 

TWU(X)=∑ 𝑇𝑢(𝑇𝑖𝑑)𝑇𝑖𝑑∈𝐷∧𝑥⊑𝑇𝑖𝑑
 ………………..(2) 

Second, get the set of all items with a TWU of at least minutil. The TWU values of the 

items are then utilized to create a total order on the items, which is the ascending TWU value 

order. 

The database is then scanned, items in transactions are reordered according to the total 

order during this database scan, the utility-list of each item is generated [15], and a structure 

called EUCS (Estimated Utility CoOccurrence Structure) is built [16]. 

 

Following the building of the EUCS, the recursive FHM Search is used to begin the 

depth-first search examination of itemsets. This search technique works like this: For each 

extension 𝑃𝑖𝑑of an itemset, if the total of the iutil values of 𝑃𝑖𝑑 's utility-list is no smaller than 

minutil, Pid is a high-utility itemset, and it is output. 

  After that, If the sum of iutil (the utility of X in Ttid: u(X, Ttid) and rutil (defined as: 

∑ 𝑢(𝑖, 𝑇𝑖𝑑)𝑖∈𝑇𝑖𝑑 ∧ 𝑖>𝑥 ∧ ∀ 𝑥𝜖𝑋 ) values in 𝑃𝑖𝑑 's utility-list are greater than minutil, indicating that 

𝑃𝑖𝑑 's extensions must be explored. This is accomplished by combining 𝑃𝑖𝑑with all of𝑃𝑖𝑑 's 

extensions. 

 To merge the utility-lists of itemset, 𝑃𝑖𝑑and the merging 𝑃𝑖𝑑 with all extensions of 𝑃𝑖𝑑, the 

utility-list of the merging 𝑃𝑖𝑑 with all extensions of 𝑃𝑖𝑑is created. Then figure out how useful 

it is and how far it may be developed (s). 

Because of the F H M Search method starts with a single item, it recursively searches 

the search space of itemsets by adding single items and only prunes the search space 

depending on, If  TWU (X) ≥ min_util, then the itemset X is HUIs. 

The FHM algorithm's utility-list structure is described as a vertical database 

representation. 
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• Utility-list algorithms have been demonstrated to be more than two orders of magnitude 

quicker than two-phase algorithms [12,13,18]. On the other hand, Utility-list-based 

algorithms had significant limitations. 

First, because itemsets are created by combining itemsets rather than reading the database, 

these algorithms may explore certain itemsets that never occur in the database. As a result, 

these algorithms may waste a significant amount of time generating utility-lists for 

itemsets that do not exist. 

Second, because a utility-list must be generated for each visited itemset in the search 

space, these methods can use a lot of memory. An itemset's utility list can be extremely 

long. In the worst-case situation, it contains a tuple for each database transaction. 

 

• Because two or three utility-lists must be compared to create the utility-list of each k-

itemset (k > 1), the join operation can be very expensive, the ULBMiner method was 

recently introduced by expanding HUI-Miner and FHM to lower the memory demand of 

utility-list based algorithms. ULB-Miner uses a buffer to reuse memory for utility-list 

storage. This method has been demonstrated to enhance both runtime and memory use, 

HUI-Miner*, which depends on an updated utility-list structure to speed up HUI-Miner, is 

another upgrade. 

 

5. Uncertain data 

In the exploration of frequent patterns an important aspect to consider into account is 

whether the data to be used is certain or uncertain, in terms of precise data (certain) no 

probability is assigned to the data , However with uncertain data, each element of the database 

has a probability value between 0.0 and 1.0 such that the concept of frequent exploration of 

models from probabilistic databases because the data generated by many applications is 

uncertain, it has become extremely important. For example: 

• Data is updated in a privacy-preserving application by modifying its state. The format 

of the output [21] in this sort of application is the same to that of the uncertain data. 

[20] 

 

5.1 Measures for calculating the frequencies of uncertain itemsets 

Pattern mining algorithms designed for exact data can't be used on imprecise data, 

such that the frequency of occurrence is often expressed in terms of the number of supports, 
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however for datasets containing uncertain elements the definition of support must be 

redefined what encourage scientists to create new algorithms for extracting frequent itemsets 

from uncertain data, these algorithms use two measures to calculate frequent itemsets: 

 

i. Expected support: 

The total of the existential probability P(X,𝑡𝑗) of X in transaction 𝑡𝑗 across all n 

transactions in the probabilistic database is the expected support expSup(X) of pattern X in 

the whole database. 

The Expected support function expression and present as follows: 

expSup(X) =∑ 𝑃(𝑋 , 𝑡𝑗) = ∑ (∏ 𝑃(𝑥, 𝑡𝑗)𝑥∈𝑋
𝑛
𝑗=1

𝑛
𝑗=1 ...................(3) 

When elements x ∈ X in each transaction 𝑡𝑗 are independent. 

Where j represents the number of transactions. 

If and only if expSup(X)≥minsup , a pattern X is considered to be a frequent pattern in a 

probabilistic database. 

 ii. Probabiliste Support : 

An itemset X is a probabilistic frequency if its existence in a minsup transaction is 

higher than or equal to the probabilistic minimum threshold set by the specific user (MinProb) 

[22]. 

P(Sup (X) ≥MinSup) ≥MinProb  ………….………(4) 

In the database of uncertain transactions the support of one or more elements must be 

characterized by a discrete probability distribution rather than a single value [22]. 

Let T be the transaction database and W the set of possible elements of T, the 𝑃𝑖(𝑋)is the 

support probability of an itemset X such that X has support i. 

P(X) =∑ 𝑃(𝑊𝑗𝑤𝑗∈𝑊,(𝑠(𝑋,𝑤𝑗)=𝑗)  ) …............................(5) 

Where s(X,𝑊𝑗) denotes X's support in an element𝑊𝑗. 

Let I be the set of all possible elements of T represents the uncertain database where a 

transaction 𝑡𝑗 ∈ 𝑇 is a set of uncertain elements namely  𝑡𝑗 ⊑ 𝐼, contrary to the certain 

database each item 𝑥𝑖ϵ𝑡𝑗 is associated with an existential probability P(𝑥𝑖, 𝑡𝑗 ) ∈ [0,1] which 

denotes the probability that xi is present in 𝑡𝑗, for an itemset X⊑ 𝑡𝑗  based on the assumption 

that the elements of X are independent the existential probability  

P(X⊑ 𝑡𝑗)=∏ 𝑃(X ⊑ 𝑡𝑗)𝑥∈X ,Expected support of X is then the sum of the probability over all 

transactions[22] ,the frequent probability P(X) of X calculated by summing Pi(X) for all  
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I≥MinSup[20]. 

P(X)=∑ 𝑃𝑖(𝑋)
|𝑇|
𝑖=𝑚𝑖𝑛𝑠𝑢𝑝 ................................................. (6) 

Where Pi(X) is the probability of exactly X occurring in one transaction: 

 

𝑃𝑖(𝑋)=∑ (∏ 𝑃(𝑋 ⊑ 𝑡) ∏ 1 − 𝑃(𝑋 ⊑ 𝑡)𝑡𝜖𝑇−𝑆𝑡∈𝑆𝑆⊑𝑇
|𝑆|=𝑖

  ………….. (7) 

 

So, if P(X)≥MinProb, X is a probabilistic frequent itemset. 

 

5.2 Algorithms for extracting uncertain frequent itemsets 

For extracting important information with uncertain data ,There have been a variety of 

algorithms developed for researching frequent models. While processing uncertain data, we 

note the algorithms UF-growth, U-Apriori, UFP-growth, PUF-growth, UH-min, and TPC-

growth. So we have identified a certain algorithm with the calculated measures seen 

previously for the extraction of frequent itemsets from uncertain data.  

5.2.1. U-Apriori algorithm 

It is an extension of the Apriori algorithm introduced by [20]Chui et al.to deal with 

uncertain data. 

The only modification is that in the Apriori algorithm the number of support of the 

candidate model increased as a result of their true support on the other hand in the U-Apriori 

algorithm the support of a given model is incremented by the expected support, The approach 

is based on the downward closure property, which means that every non-empty subset of a set 

of frequent items must also be frequent. 

The steps are explained as follows: 

       Step_1:The algorithm examines the uncertain database to get the expected support S of 

each 1-itemset, then compares the expected support to the minimal support to determine the 

frequent 1-itemset L1. 

       Step_2: The algorithm generates K-itemset(2-itemset) using  𝐿𝐾−1 (1-itemset) and prunes 

the infrequent itemset with the APriori property. 

      Step _3: Re-parse the database to obtain the k-item candidate set's support, compare it to 

the minimal support, and obtain the frequent k-itemset  𝐿𝐾. 

      Step _4: generate all non-empty subsets of each frequent element set. 

      Step _5: for any non-empty part output the rule “S(1-S)”. 
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The two main disadvantages of this algorithm are that the number of candidates to generate 

takes more memory space and a large exclusion time and another problem is the larger 

number of database analysis for frequent model generation. When the database is huge, the 

algorithm does not work effectively.  

5.2.2. UF-Growth algorithm 

Leung et al[20] proposed the UF-Growth algorithm. to effectively represent uncertain 

data ,FP-Growth is a variation of this algorithm. The UF-Growth algorithm functions as 

follows: 

     Step -1: To determine the expected support, the algorithm first examines the database. of 

each element to find the frequent elements having an expected support S greater than the 

minimum support. 

     Step -2: It orders the frequently occurring items in order of expected support in declining 

order. 

     Step -3: The algorithm analyzes the database once more and inserts each transaction in the 

UF tree as in the FP tree, with the exception that each UF-tree node contains the element 

name X, its expected support, and its number of occurrences, which indicates how many times 

such expected support exists for an element in the database. The difference is that the path in 

the UF tree is merged only if the tree nodes on the path have the same element name and 

existential probability. 

The UF growth algorithm identifies frequent patterns from the UF tree structure in the same 

way as the FP growth algorithm does, with the exception that: 

• We must preserve the expected support of the X instead of the actual support when the 

projected database for a model X is trained in an uncertain database. 

• We estimated the expected support of y and x, for example X{y}, while calculating 

the expected support of an extension of the model X. 

 

5.2.3. UH-mine algorithm 

Proposed by Agrawal [20] is a variant of the H-Mine[23] algorithm , the algorithm 

uses an array structure known as UH-struct which stores the probability of each element and 

the link for element the algorithm works as follows: 

Step -1: According to the expected support, the UH-mine algorithm scans the database to find 

all the frequent elements. 
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Step -2: The algorithm builds a main table which stores all the frequent elements with their 

expected support for each element the header table contains the name of the element, the 

expected support and a size. 

 

Figure 04 The UH-struct for the probabilistic dataset with uncertain Data.[20] 

 

Step-3: Insert transactions into the UH-structure data structure after building the header table. 

Step-4: The algorithm builds the header tables repeatedly where distinct item sets are prefixed 

and produces the frequent item sets. 

5.3 Comparison between algorithms 

In order to evaluate the benefits and drawbacks of using each algorithm's efficacy in the field 

of data mining, this section examines the frequent pattern mining methods for uncertain data 

that were mentioned in the previous section. We will contrast the previously mentioned 

algorithms in the table below. 

Algorithms Advantage Disadvantage  

U-Apriori -provide precise results[41] 

-The candidate set size is 

greatly reduced by the 

Apriori property [1]. 

The performance is impacted 

by the repeated database 

scans. 

UF-growth -By searching the database 

twice, this technique 

typically exploits uncertain 

database models. 

-Greater tree size than the 

FP-tree [21] 

UH-mine -superior over the three 

earlier algorithms [41]. 

-Memory use are increased 

using UH-Struct [41] 
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5.4 Algorithms for extracting uncertain high-utility itemsets 

Based on the notion that uncertainty is frequent in real-world applications, researchers 

are proposing algorithms to efficiently extract high-utility items from uncertain databases 

such as : PHUI-UP algorithm ,PHUI-list . 

A new PHUIM framework, called Potentially High-Utility Itemset Mining [23], in uncertain 

databases, is proposed to effectively identify not only high-utility but also high-probability 

elements. The probability measure that is similar to the expected support based frequent item 

extraction model is used in the proposed PHUIM framework, and we dubbed it the potential 

probability measure. The uncertainty model utilized in PHUIM is quite similar to the model 

used for probabilistic databases. 

5.4.1. PHUI-UP algorithm 

The PHUI-UP algorithm is designed to extract PHUI from uncertain datasets using a 

level approach based on an Apriori type approach where a dataset's itemset X is considered a 

potential high-utility itemset (PHUI) if it meets both of the following criteria: 

1-X is a HUI , An itemset is considered to be a high-utility itemset (HUI) in a database if its 

utility value u(X) is more than the minimum utility  count as: 

∑ 𝑈(𝑋 , 𝑇𝑞𝑋⊆𝑇𝑞 ∩𝑇𝑞∈D )  ≥ 𝑇𝑢 × 𝜀 …………………………….(8) 

2- X is a HPI , If the potential probability of an item set X is more than or equal to the 

minimal potential probability  , which is determined as follows: 

∑ 𝑃(𝑋 ,𝑋⊆𝑇𝑞∧𝑇𝑞∈D 𝑇𝑞) = 𝑃𝑟𝑜(𝑋) ≥ 𝜇 × |𝐷| …………………… (9) 

  

The algorithm works in two phases as following: 

Step-1: The algorithm scans the database in the first phase to determine TWU, TU values, 

and probabilities for all 1-itemsets Pro(X) in the database, which are defined as: 

                 𝑡𝑢(𝑇𝑞)=∑ 𝑈(𝑖,𝑚
𝑗=1 𝑇𝑞) ……………….…………….....(10) 

                 𝑇𝑢(𝑋) = ∑ 𝑡𝑢(𝑇𝑞)𝑇𝑞∈𝐷 ……………….……………..(11) 

                 𝑃𝑟𝑜(𝑋) = ∑ 𝑃(𝑋, 𝑇𝑞)𝑇𝑞∈𝐷 ……………….……..….. (12) 

Then, the algorithm computes HTWPUI which is defined as, If TWU(X)≥TU×ε  , an itemset 

X in D is defined as a high transaction-weighted utilization itemset (HTWUI).  
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Step-2: The HTWPUIs are then constructed based on the designed candidates of 

 HTWPUIk (where k is initially set to 1), and will then be utilized to generate the following 

candidates   𝐶𝑘+1discover  HTWPUIk+1. 

Step-3: the database must be rescanned to find  HTWPUIk+1 in each level  𝐶𝑘+1, 

phase one ends when there isn't a candidate created 

Step-4: The algorithm does the second phase in such a way that a database analysis is 

essential to discover the final PHUI from HTWPUI. 

6. Conclusion 

We have studied in this chapter various algorithms of pattern mining from either precise or 

uncertain data. We can distinguish between these algorithms by different metrics such as, the 

data structures, techniques they employ to scan the search space, they examine in depth first 

or in broad first, internally or externally, the kind of database representation they utilize 

(vertical /horizontal), how they come up with or decide on the next itemsets to examine in the 

search space, how they decide if itemsets satisfy the minimal utility constraint by calculating 

their utility, What type of data structure is utilized to store transaction and item information 

(e.g. hyperlink structures, utility-lists, tree-based structures), whether the data is certain or 

uncertain. 
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Chaptre2: Machine Learning 
 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Artificial Intelligence can be divided into three categories, which are: Artificial narrow 

intelligence (ANI) which is known as machine learning; these systems are designed to handle 

a particular problem and do a single task very effectively; it comes in the first stage. In the 

second stage, Artificial General Intelligence (AGI) which is known as Machine Intelligence 

and a machine that is as smart as a person. And in the third stage, Artificial Super Intelligence 

(ASI) will be able to transcend all human skills, known as Machine Consciousness. 

Machine Learning (ML) provides us with the mathematical skills we need to duplicate and 

mimic human behaviour, which is the objective of AI. With the use of machine learning 

algorithms, AI can understand language and carry on a conversation, allowing it to 

continuously learn and better itself based on experience. So, like humans, ML learns from 

data in order to execute a higher-level function. 

In this chapter, the important methods and models of ML where presented and discussed as 

well as its types. 
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2. Machine Learning 

Machine learning is a subset of AI that focuses on the creation of computer programs 

that have access to this current data by allowing the system to learn and improve 

automatically by detecting patterns in the database without the need for human interaction. 

And without being explicitly programmed to do so, as defined by Arthur Samuel and Tom 

Mitchell [23]. 

 

3. Applications of Machine learning 

It has already infiltrated every aspect of our life without our knowledge. Almost every 

machine we use, as well as the high technology machines we have seen in the previous 

decade, has incorporated machine learning to improve product quality. The following are 

some cases of machine learning: 

Image recognition used in social media by Facebook to help tag people in posts, it is also used 

in most phone camera apps to recognize objects in images. Another application of ML is 

speech recognition used by voice assistants like google assistant for android and Siri for 

apple. Product recommendation based on user preferences in shopping websites, streaming 

apps ...etc. Email spam filtering used in most mailing services such as Gmail, outlook ...etc. 

Automatic language translation which can be combined with image recognition to translate 

even text in pictures. 

4. Machine learning model process 

● Data identification: 

This is the initial step, identifying the various data sources that will be obtained and merging 

them as needed. The quality of data used is essential since it has a direct impact on the 

model's output. 

● Data preparation: 

After the data has been collected and obtained as a dataset, the Data Preparation stage begins, 

in which the characteristics of the data are recognized, as well as the format and quality of the 

data. All of the data is collected into a dataset and randomized, so the majority of it can be 

used to train the model and the remainder may be used to test it and to validate. 

● Data cleaning: 

In this step, data is transformed into the proper format, and feature identification and labeling 

are accomplished during this stage. The dataset is cleaned up by removing data with missing 
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values, duplicate values, and invalid data. This assures that the machine learning algorithm is 

not affected by noise in the data. 

● Data analysis: 

In this stage, we will start slicing and dicing our data in order to extract useful information. 

We will seek for hidden patterns and correlations, as well as insights and forecasts, using 

various data visualization tools. 

● Training: 

The dataset created in the preceding phases is utilized to train the algorithm and construct the 

model in this step. Using characteristics and labels provided in the dataset, the algorithm 

detects different patterns in the data and predicts the outcome for a particular input. 

● Testing: 

This is one of the most crucial processes in determining if the trained model produces the 

desired result. The data from the dataset is utilized to verify the model's result.  

● Deployment: 

We go on to the last stage of deploying the model after getting the desired accuracy. 

So, the trained model is then deployed and brought to life in the real-world system.  

 

 

5. Reinforcement Learning 

    5.1 Concept 

There are several ways to classify the different types of Machine Learning Algorithms, 

however they can typically be divided into classes based on their motivation, so reinforcement 

learning is one of them. 

Reinforcing learning is the concept of learning by doing, which is based on the 

psychology concept of reinforcement behavior. By trial and error, a machine can arrive at an 

optimum result. It learns to pick particular activities that lead to the desired outcome over 

time. 

Reinforcement learning differs from supervised learning in that supervised learning 

includes the answer key, allowing the model to be trained with the correct answer, whereas 

reinforcement learning does not include an answer and instead relies on the reinforcement 

agent to decide what to do to complete the task. It is obligated to learn from its experience in 

the absence of a training dataset[25]. 
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This type of machine learning is generally just concerned with increasing the 

function's effectivness. 

 

Figure 05 A general RL workflow. [25] 

Like it's shown in this figure, Within the RL workflow, five different areas need to be 

addressed: 

Agent: An RL agent is a program that we're learning to make good choices (for example: a 

Robot that is being trained to move around a house without crashing). 

Environment: The agent's environment is the space in which he or she interacts (the house 

where the Robot moves). The agent has no control over the environment; all it has is control 

over its own activities (the Robot cannot control where a table is in the house, but it can walk 

around it to get out of crashing case). 

State: The agent's current situation is defined by the state (it could be the exact position of the 

Robot in the house, or the alignment of its two legs, or its current posture; it depends on how 

we address the problem). 

Action: The decision made by the agent in the current time step (moving its right or left leg, 

or raise its arm, or lift an object, turn right or left, etc.). We know ahead of time what actions 

(decisions) the agent can take. 

Policy: A policy is the intellectual process that goes into deciding an action. It is a probability 

distribution attributed to the collection of actions in practice. Actions that are highly 

rewarding will have a strong probability, and vice versa. It's important to note that just 

because an action has a low probability doesn't mean it won't be chosen. It's only that it has a 

lower chance of being chosen.[26] 

 

   5.2 Models 

There are two important learning models in reinforcement learning: 
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● Q learning 

The best known and most widely used is algorithm Q-learning which is a value based 

and an out-of-policy reinforcement learning algorithm, such that Quality is represented by the 

"Q" in Q-learning. The latter represents the usefulness of a given action to obtain future 

rewards. 

Because the q-learning function learns actions that are not covered by the present 

policy, such as random acts, it is deemed off policy. Specifically, the goal of q-learning is to 

determine the optimum action in the current situation and get maximum rewards [24]. 

 

➢ The principle of Q-learning consists of: 

- Build the action-value function Q (knowledge of the agent) this function is 

summarized by an association of each state-action couple (𝑠𝑗 , 𝑎𝑗) with an estimated 

value V called Q-value. 

                          Q:    (𝑠𝑚, 𝑎𝑛) → 𝑉𝑚𝑛……………………….. (13) 

For each couple (𝑠𝑗 , 𝑎𝑗) the associated value is initialized at random, the objective 

of the algorithm is that for each couple (𝑠𝑗, 𝑎𝑗) improve the associated value V so 

that it converges towards the true value of the sum expected future rewards when 

the agent chooses the action 𝑎𝑗 in the state 𝑠𝑗. 

- The agent reinforces his knowledge by updating Q, the operation is repeated many 

times until the knowledge of the agent is sufficient to arrive at the solution. 

 

Formally the algorithm is done in three steps: 

1. In the state 𝑠𝑡 the agent chooses an action 𝑎𝑡and observes the response of the 

environment which gives the reward  𝑟𝑡 and the new state of the environment  𝑠𝑡+1  

2. We compute a target composed of a reward 𝑟𝑡 and a set of expected future rewards 

from t+1, approximated using current knowledge (Q) and a discount factor (𝜆). 

 

Target Q value= 𝒓𝒕+𝟏+ 𝜸𝒎𝒂𝒙𝒂Q(𝒔𝒕+𝟏,a) - Q(𝒔𝒕,𝒂𝒕)...........................(14) 

 

3. We update the function for the couple by mixing the knowledge resulting from the 

immediate experience (Target) and past knowledge , using Bellman's equation below : 
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𝐐(𝒔𝒕 , 𝒂𝒕) = Q(𝒔𝒕  , 𝒂𝒕) + 𝜶 [𝒓𝒕+𝟏 +  𝜸𝒎𝒂𝒙𝒂Q(𝒔𝒕+𝟏,a) - Q(𝒔𝒕,𝒂𝒕)]…….(15) 

Where: 

- Q(𝑠𝑡,𝑎𝑡) : Current Q value. 

- 𝛼 : The learning rate determines how fast or slow the model will be learning. 

- 𝛾: Discount factor which defines the importance of the rewards we get now 

versus later in the episode. 

- 𝑟𝑡+1: Reward. 

- MaxQ(𝑠𝑡+1,a) : Maximum Expected Future Reward. 

Q-Table: 

We will encounter many solutions when we run our algorithm, and the agent will 

follow a number of different knowledge. How can we identify who is the best of them? This 

is accomplished by compiling our results into a table known as a Q-Table. 

We can determine the appropriate knowledge of action for each environmental 

situation using a Q-Table. At each state, we apply the Bellman Equation to determine the 

future expected state and reward and save the results in a table for comparison with other 

states. 

For an agent that needs to learn how to run, collect, and sit on command, let's develop 

a q-table. The steps involved in creating a q-table are: 

 

Step 1: Make a new Q-Table with all of its values set to 0. All states and rewards will 

start out with values of zero. Take a look at the Q-Table below, which demonstrates how it 

learns to do actions: 

 

Figure 06 Initial Q-Table. [24] 
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Step 2: Select a course of action and carry it out. Update the table's values. 

We have not yet taken any further action. Let's imagine that we initially wanted the agent to 

sit, which it does. The new table will read: 

 

Figure 07  Q-Table after making an action .[24] 

 

 Step 3: Determine the reward's value and use the Bellman Equation to determine the 

reward's Q-Value. 

 

   Figure 08 Updating Q-Table.[24] 
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Step 4: Repeat this procedure up until the table is full or the end of an episode .The 

agent keeps acting, and for each action, it calculates the reward and Q-value and updates the 

table. 

 

 

 Figure 09 Final Q-Table. [24] 

 

● SARSA 

SARSA is an on-policy learning algorithm, which is deployed in state, Action, 

Reward, State, Action, and is a method based on policy values. We need a rule for updating 

values. It is shown in equation 4: 

𝐐(𝒔𝒕, 𝒂𝒕)= 𝐐(𝒔𝒕, 𝒂𝒕) +𝜶 [𝒓𝒕+𝟏 + 𝝀𝐐(𝒔𝒕+𝟏 , 𝒂𝒕+𝟏) - 𝐐(𝒔𝒕, 𝒂𝒕)]………………. (16) 

This is an improved Q learning algorithm where the target policy is the same as the 

behavior policy, two consecutive state-action pairs, and the immediate reward the agent 

receives when transitioning from the first state to the next state determines the updated Q 

value, So this method is called SARSA [26]. 

 

The difference between SARSA and Q-learning is the Q-value update rule that 

distinguishes SARSA from Q-learning. Thus, the time difference is calculated using the 

current action state and the next action state. This means that we need to know our policy's 

next action in order to perform the update step. This makes SARSA a policy-compliant 

algorithm because it is updated based on our current policy choices [26]. 
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6. Deep Learning  

    6.1 Concept 

Deep learning, a branch of machine learning that deals with neural networks. In deep 

learning, researchers attempted to duplicate the human neural network with an artificial neural 

network; in the deep learning model, the human neuron is referred to as a perceptron. 

● What is a Perceptron: 

The perceptron is an artificial neuron, a unit that belongs to an artificial neural 

network. 

An artificial neuron is a simple Projection of a biological neuron. Figure 10 where the 

artificial neuron mimics some function of the biological neuron such as learning and working 

in parallel [40]. 

The neuron is defined mathematically as a non linear and bounded algebraic function. 

 

Figure 10: The artificial and biological neuron. [33] 

 

• The artificial neuron functions in two phases[28]: 

● the first step is the preprocessing of the received data by calculating the potential 

Vj of neurons j by this function: 

𝑉𝑗=𝑏𝑗 + ∑ 𝑤𝑖𝑗𝑥𝑖
𝑛
𝑖=1   ……………………………. (17) 

Where: 

- 𝑤𝑖𝑗 represents the weight of the connection linking neuron j to input i. 

-𝑏𝑗a constant called bias considered as the weight of an input 𝑥0. 
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● In the second step, a transfer function g called the activation function makes it 

possible to calculate the value of the internal state Sj of the neuron j, from  Vjthis 

value represents the neuron output. 

 Sj=g ( Vj) =g (∑ 𝑤𝑖𝑗𝑥𝑖
𝑛
𝑖=1 )…………………….. (18) 

 

 

 Figure 11 How a perceptron works [33]. 

 

● Activation Function: 

The activation function or the transfer function allows to define the output of the neural 

network, there are several most used activation functions [33] which are showed in the Figure 

12: 
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Figure 12 common activation functions. [33] 

 

6.2 Connexion Between Neurons: 

The connections between the neurons that make up the network describe the topology 

of the model, so we defined the most common type of neural nets: 

      6.2.1. Feed Forward Network 

Feed-Forward refers to the procedure of data processing by the neural network, feed-

forward means that the data passes through the network from input to output without 

backtracking information. That is to say if we move in the network from any neuron 

following the connections we cannot return to the starting neuron. 

In the family of forward propagation there are two types of networks seen in the following 

figures: 
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Figure 13 Total connection network. 

[27] 

Figure 14 Partially connected networks. [27] 

 

   6.2.2. Recurrent Neural Network 

Recurrent neural networks (feedback network) process information in cycles These 

cycles allow the network to process information several times by sending it back to the 

network each time, these are networks with several internal loops their output at a given time 

depends on inputs at the same times, such that the strength of recurrent neural networks 

appear in their ability to take information into account follows the recurrence of the 

processing of the same information where there are recurrent neural networks composed of 

one or more layers and other multi-layer network. 

 

 

Figure 15 Recurrent Neural Network.[27] 
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  6.2.3. Deep Neural Network: 

An artificial neural network (ANN) with several layers between the input and output 

layers is known as a deep neural network (DNN). Where the high number of layers should be 

a source of problem where from a number of layers the network artificial neural network was 

not able to learn properly so the solution to this problem is the deep neural network which has 

more and more endowed with multiple layers and able to learn 

 

Figure16 The difference between Artificial Neural network and Deep neural network.[28]  

 

In deep neural network you can use all the formulas and technique to shape each layer for 

example a deep neural network can have three fully connected blocks spotted at the input and 

then take a function from the output of the first block and another function of the second 

block but in artificial neural networks you are limited to using fully connected layers. [35] 

In other words, the deep neural network where we construct a neural network by connecting 

these perceptron units together; it comprises three components: 

 

Input layer ->Hidden layers ->Output layer 

The input layer: is the layer responsible for receiving input such that the layer taking the 

input is performing calculations through the neurons and then the output is transmitted to the 

following layers. 

The hidden layer: The input and output layers are separated by the hidden layers. It is the 

heart of the perceptron, these layers are invisible it is private for neural networks where each 

layer contains the same total number of neurons 

The output layer: is primarily responsible for producing the final output results. 
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• In the hidden layers we can have: 

• The CONVOLUTIONAL layer It is about detecting features and applying 

filters, and it will generate the required output after testing on a database by computing 

a dot product between the weight and region that are associated to the input volumes. 

• The RELU layer is utilized to perform an element-by-element activation function, 

in which we replace all negative values in the filtered picture with zero. When the 

node input surpasses a particular threshold, this function is activated. As a result, when 

the input is less than zero, the output is also zero. When the input surpasses a 

particular threshold, however, the dependent variable and the input have a linear 

relationship. This implies it can increase the speed of a training data set in a deep 

neural network quicker than other activation functions, avoiding summing with zero. 

• POOL layer is used to lower the size and volume of the width and height, and 

keeping the important features. 

• The FULLY CONNECTED layer at the end of the convolutional neural 

network, the class scores will be calculated and build all needed connections. 

• FLATTENING layer is used to convert to 1 dimension array. 

 

7. Deep Reinforcement learning: 

A recent area of study in the field of machine learning is deep reinforcement learning. In 

addition to being the driving force behind recent advances in issues like computer vision, 

machine translation, and time series prediction, neural networks can also be used with 

reinforcement learning methods to produce amazing results [39]. 

Deep learning-enhanced reinforcement algorithms have the ability to defeat human 

professionals at a variety of video games as well as world champions. Even though it might 

seem insignificant, it represents a significant advancement over their prior successes, and 

technology is developing quickly [39]. 

Like humans, our agents develop the best long-term strategies for themselves in order to attain 

the greatest rewards, this concept of learning by trial-and-error only through rewards is known 

as Reinforcement Learning (RL). 

Our agents generate and learn their own knowledge directly from raw inputs, just like humans 

do. This is made possible via deep learning of neural networks. The foundation of Deep 
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Reinforcement Learning is the training of deep neural networks to approximation the 

optimum policy and the ideal value functions V, Q. 

 

Figure 17 Deep Reinforcement Learning. [39] 

 

We are combining two things where RL sets the objective, and DL provides the 

mechanism, the way to express problems, and the way to solve them. Our goal is to create a 

single agent that can handle any human-level work. RL and DL produce general intelligence, 

or the ability to solve many complex problems. 

So how can RL and DL be combined? 

• Deep neural networks can be used to represent 

o Function of values 

o Policy 

o Model 

• Improve the loss function. 

The general working of a Neural Network is to:   

o Set up your primary and target neural networks. 

o select an action. 

o update the network weights. 

 

8. Conclusion 

This chapter presented learning and discussed the distinctions between deep learning and 

classical neural networks. To be able to explain the choice of the structure used in the 
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following chapter, we have presented the various deep neural network structures and their 

principles of use. 
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1. Introduction 

Instead of using traditional algorithms like UApriori, a new approach was proposed in this 

chapter to extract frequent itemsets and high utility itemsets from uncertain data. We provide 

a strategy to extracting uncertain patterns based on reinforcement learning called "U-PMRL" 

that employs a deep neural network called "Deep Q Network”. 

2. Motivation Attributed to Using a Deep Model 

Due to the extensive search space, extracting the itemset is difficult. The researchers 

have created a variety of data structures and algorithms including the UApriori algorithm and 

the UP-Growth algorithm to trim the search space because the naïve [40] approach is 

impractical to analyzing each of these item set. These itemsets extraction approaches are 

inflexible, nevertheless, the search space grows exponentially as the number of elements 

increases because the execution time of these algorithms deteriorates as the dataset enlarges. 

The main concept is derived from how a human searches a dataset for a particular type 

of itemsets. Humans most likely start by quickly skimming the dataset to gain a general 

understanding of which elements appear to be relevant (or unimportant) for the target type, 

which items are related to one another, and so forth. Then, he or she creates a "set of objects" 

made up of a few crucial elements and determines whether or not it matches the goal type. 

After that, a person updates the collection of items by adding or removing items to construct a 

new itemset based on knowledge gained from previous search experiences. 

Given its recent success, reinforcement learning which is based on behavioural psychology, 

we suggest an itemsets extraction approach that is based on RL.RL is used in Itemsets Mining 

to train an artificial agent to extract a collection of patterns from an uncertain dataset, what we 

called "U-PMRL" for Uncertain Pattern Mining based on Reinforcement Learning 

3. Extraction of Uncertain Pattern Based on Reinforcement Learning (U-PMRL) 

When we start the work on this project there was none research that use RL for mining 

patterns from data, but later, KAZUMA and KIMIAKI [35] have published a paper which 

deals with the same problem in very similar manner. As it is the first work in the literature in 

our problematic context, we have been inspired by the approach proposed in this paper. 

However, in our case, we address the problem of mining itemsets from uncertain data. 

In fact, U-PMRL (for Uncertain Pattern Mining based on Reinforcement Learning) is 

an approach that uses reinforcement learning to train a machine learning model extracting 

itemsets. A computer-generated agent interacts with an uncertain environment to adaptively 
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learn the optimal policy of action. The agent then is trained to extract a set of items from an 

uncertain dataset in the following manner: 

- First, the agent performs an action to update a set of items by adding or removing an 

item. 

- Then, the environment represented by the probabilistic dataset generates a reward𝑟𝑘 

Figure18 which expresses the relevance of the set of elements updated by the agent, 

such that the reward value is defined as follows: 

• Case 1: The agent obtains a reward of -1,𝑟𝑘=-1 if the set of items resulting from the 

action 𝑟𝑘 in state 𝑠𝑘does not exist in the probabilistic database.  

• Case 2: The agent obtains a reward of 0,𝑟𝑘 =0 if the calculated Expected support value 

(ExpSupp) of an itemset X as a result of the action 𝑎𝑘in state sk is less than a quarter 

of a predetermined threshold, i.e.  

(ExpSupp(X) ≤ 𝜀 /4) the same for the Probabilistic support  

Where j is the number of transactions :  

ExpSupp(X)=∑ 𝑃(𝑋 , 𝑡𝑗) = ∑ (∏ 𝑃(𝑥, 𝑡𝑗)𝑥∈𝑋
𝑛
𝑗=1

𝑛
𝑗=1  

ProbSupp(X)=𝑃𝑖(𝑋)=∑ (∏ 𝑃(𝑋 ⊑ 𝑡) ∏ 1 − 𝑃(𝑋 ⊑ 𝑡)𝑡𝜖𝑇−𝑆𝑡∈𝑆𝑆⊑𝑇
|𝑆|=𝑖

 

• Case 3: ExpSupp(X) ≥ 𝜀/4 (ProbSupp(X)) is the condition of this case which is then 

divided into four sub-cases, if 𝜀/4 ≤ExpSupp(X) ≤  𝜀/2  (ProbSupp(X)) then the 

agent receives a reward equal to 1 else, if 𝜀/4 ≤ExpSupp(X) ≤  3𝜀/4  (ProbSupp(X)) 

then the agent receives a reward equal to 2 else, if 3𝜀/4 ≤ ExpSupp(X)≤ 𝜀 

((ProbSupp(X))  then the agent receives a reward equal to 3 else, if ExpSupp(X)≥ 𝜀  

(ProbSupp(X)) then the agent receives a reward equal to 4. 

• Case 4: Two situations characterize this case. If the set of itemset X matches these 

two requirements, then offers a very high reward of 100. The first tests if the 

ExpSupp(X),(ProbSupp(X)) is greater than the threshold, i.e. (ExpSupp(X) ≥  𝜀  ), and 

the second checks if the set of itemset X has not yet been extracted in the episode. 

  

Therefore, U-PMRL gathers a substantial amount of trial-and-error steps in which the 

agent occasionally succeeded or failed to create the set of target elements. The agent is trained 

to have the best adding or deleting policies by analyzing these trial and error steps. For this 

we employ the DeepQ-learning algorithm. 
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Figure 18 The interaction cycle between the agent and the environment. 

 

4. The architecture of the Deep Q-learning algorithm 

Although Q-Learning is beneficial and too basic for our problems, our project is too 

sophisticated for Q-Learning to handle. 

Following those investigations and research, we conclude that deep learning works 

best for complicated tasks but requires a lot of data, whereas Q learning works best for basic 

projects. As a result, we combined the two to create Deep Q learning (DQN). 

We employ the Q-learning algorithm, which develops an agent with a function Q that takes an 

action 𝑎 and a state 𝑠 of the environment as inputs and outputs the quality of the action 𝑎at 𝑠. 

We utilize a Neural Network that determines the Q-values for each action depending on a 

state. We use a Deep Neural Network that gets the state as input, and produces different Q 

values for each action. 

To be in the Deep Q Learning, We utilize a Neural Network to approximately determine the 

Q-values for each action depending on a state. We use a Deep Neural Network that gets the 

state as input, and produces different Q values for each action. 
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Figure19 Structure of Deep  Q Learning 

 

Due to the large number of state-action combinations, it is not practical to directly 

construct𝑄(𝑠, 𝑎). For this reason, we approach 𝑄(𝑠, 𝑎) by a neural network “Deep Q 

Network” (DQN), which is defined by a set of parameters. 𝑄(𝑠, 𝑎) indicates the maximum 

number of target itemsets after taking an action(a) in the state(s). 𝑄(𝑠, 𝑎)is parameterized by 

Q(s, a,𝜃)  and our objective is to optimize DQN so that the chosen actions produce numerous 

itemsets. 

The DQN neural network architecture for extracting frequent itemsets and high utility 

itemsets respectively are common with respect to the input and output layers such that the 

input layer accepts a state vector an M dimension 𝑠𝑘 =  𝑠𝑘,1 , … … , 𝑠𝑘,𝑚(k step) where 

1 ≤ 𝑚 ≤ 𝑀 represents a utility of changing of the inclusion of the element in the set of 

elements, and the output layer generates  a vector𝑞𝑘 =  𝑞𝑘,1 , … … , 𝑞𝑘,𝑚+1 which denotes the 

quality of the action to change the inclusion of an element and the one for the random bit-

vector initialisation. 

So, the DQN consists of three layers: 

• Input Layer. 

• Hidden Layer which contain 3 blocks and every block contain a fully 

connected layer and batch normalisation layer, leaky relu layer. 

• Output Layer.  
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Figure 20 DQN architectures  

 

5. Presentation of the Proposed Approach 

5.1 Case of mining uncertain frequent itemsets 

We provide the following graphic to help you understand U-PMRL and how the agent 

Q(s, a,𝜃) trains to extract frequent itemsets from the probabilistic database. 

 

 

Figure 21 How agent train to extract frequent itemsets. 

 

The figure represents the steps k, k+1, k+2 to create an agent on uncertain dataset D, 

where 𝑏𝑘 represents the M-dimensional binary vector where𝑏𝑘,𝑚𝜖{0,1} where 1≤ 𝑚 ≤M 

which represents the inclusion of the item 𝑖𝑚  in D, and we describe the itemsets defined by 

𝑏𝑘 by X(𝑏𝑘). 

- The vector𝑏𝑘 =[0,1,1,0,0] shown in Figure 3 is randomly generated at the k th step 

thus define the itemset {𝑖1, 𝑖2} , at state k+1 the vector𝑏𝑘+1 =[0,1,1,1,0]  shown in 
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Figure 21 resulting by the action of changing the inclusion of 𝑖3 in X( 𝑏𝑘) and 

according to the definition of the reward  𝑟𝑘=-1 because X(𝑏𝑘+1 ) defined by 𝑏𝑘+1  

does not exist in D consequently 𝜃 is updated such that Q(s,a,𝜃) produces a very small 

value for the action of changing the inclusion of  𝑖3 in the 𝑠𝑘  calculated state from 𝑏𝑘 

more simply the agent becomes not to select this action for  𝑏𝑘. 

- In the second case based on 𝑏𝑘+1 =[0,1,1,0,1] obtained by the action of changing the 

inclusion of   𝑖4 in  X( 𝑏𝑘), since X( 𝑏𝑘+1 )={𝑖1, 𝑖2, 𝑖4} appearing once in D the agent 

receives the reward 𝑟𝑘= 0 because ExpSupp(X(𝑏𝑘+1 ))≤ 𝜀/4  knowing that 𝜀= 0.9 

- For the third case changes the inclusion of 𝑖0 in X( 𝑏𝑘),thus produces  X( 

𝑏𝑘+1)={𝑖0 , 𝑖1 , 𝑖2} which appear twice in D since this case is classified as the first sub-

case of the Case 3 the agent receives the reward  𝑟𝑘=1 consequently Q(s,a,𝜃) produces 

a high value for the action to modify the inclusion of 𝑖0 in the state 𝑠𝑘 which allows 

the agent to optionally select this action . 

- The 4th case triggered by the action of changing the inclusion of  𝑖2 in  X( 𝑏𝑘 ) and the 

result X( 𝑏𝑘+1 ) =𝑖1 appears 6 times in D is extracted as FI, the reward 𝑟𝑘 =100 guides 

Q(s,a,𝜃) to produce a high value for this action which makes the agent likely to select 

this action. 

The training of Q(s, a,𝜃) considers not only the reward 𝑟𝑘 at the kth step but also at 

future steps as illustrated in the last case caused by the action of modifying the 

inclusion of  𝑖2in X(𝑏𝑘+1 ) and the result X( 𝑏𝑘+2 )={𝑖0, 𝑖1} appears 5 times in D is 

extracted as an IF, the  𝑟𝑘=100 obviously guides Q(s,a,𝜃) to generate a high value for 

the action modification of the inclusion of  𝑖3 to  𝑠𝑘+1calculated from𝑏𝑘+1. 

In this way, in the U-PMRL method an agent is trained to select an action that leads to the 

extraction of an FI 

5.2 Extracting Uncertain High Utility Itemsets 

After demonstrating the extraction of frequent itemsets, we used our method to extract 

high utility itemsets from a uncertain database, even though the extraction of high utility 

itemsets from uncertain data is frequently seen in real-world applications where the utility of 

the item in a transaction is represented by the multiplication of the profit by the quantity of the 

item itself. 

The graphic below serves as an illustration of how the agent trained to extract HUI from 

uncertain database. 
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Figure 22 How agent train to extract high utility itemsets. 

 

The steps shown in the picture is k, k+1, k+2 which is used to create an agent on the 

probabilistic dataset D. Here, 𝑏𝑘 stands for the binary vector that defines whether an item 𝑖𝑚 

is included in D where 𝑏𝑘,𝑚𝜖{0, 1}, and we describe the item sets given by 𝑏𝑘 by X(𝑏𝑘). 

- In step k , the vector 𝑏𝑘=[0,1,1,0,0] is randomly generated at the k-th step thus 

defining the itemset X(𝑏𝑘)={𝑖1,𝑖2} , at the state k+1 the vector 𝑏𝑘+1=[0,1,1,1,0]  

shown in the Figure 22 resulting by the action of changing the inclusion of 𝑖3 in X( 

𝑏𝑘) and according to the definition of the reward  𝑟𝑘=-1 because X(𝑏𝑘+1) defined by 

𝑏𝑘+1 does not exist in D consequently 𝜃 is updated such that Q(s,a,𝜃) produces a very 

small value for the action of changing the inclusion of  𝑖3in the 𝑠𝑘 calculated state 

from 𝑏𝑘 more simply the agent becomes not to select this action for  𝑏𝑘. 

- The second case on 𝑏𝑘+1=[0,1,1,0,1] obtained by the action of changing the inclusion 

of 𝑖4in X(𝑏𝑘) the agent receive the reward 𝑟𝑘=100 because according to the definition 

of the utility  of an itemset X(𝑏𝑘+1)= {𝑖1,𝑖2,𝑖4} equal to 67, X(𝑏𝑘+1 )is considered as 

high utility itemset because 𝑈(X(𝑏𝑘+1),𝑇𝑞)≥ 𝜀*TU consequently Q(s,a,𝜃) produces a 

high value for the action to modify the inclusion of 𝑖2 in the state 𝑠𝑘 which allows the 

agent to optionally select the action. 

- For the third case triggered by the action of changing the inclusion of 𝑖0 in 

X(𝑏𝑘 )this produces the X(𝑏𝑘+1 )={𝑖0 ,𝑖1 ,𝑖2 } witch the utility value of  
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X(𝑏𝑘+1 ) equal to 92 the agent receive the reward  𝑟𝑘 =100 because 𝑈(X(𝑏𝑘+1 ),𝑇𝑞 )≥

𝜀 ∗ 𝑇𝑢 , the Q(s,a,𝜃) produces a high value for the action to change the inclusion of  𝑖0  

in the state 𝑠𝑘  which allows the agent to select this action . 

- The 4th case  triggered by the action of changing the inclusion of  𝑖2  in  X(𝑏𝑘 ) and the 

result X(𝑏𝑘+1 )={ 𝑖1 } appears 6 times in D is not extracted as HUI because 

𝑈(X(𝑏𝑘+1 ))=𝑈({𝑖1 })=13≤ 𝜀 ∗ 𝑇𝑢, the reward  𝑟𝑘 =-1 which makes the agent not select 

this action,consequently 𝜃 is updated such that  Q(s,a,𝜃) produces a very small value 

for the action of changing the inclusion of 𝑖3 in the state 𝑠𝑘  more simply the agent 

becomes not to select this action for  𝑏𝑘 . 

- In the last case caused by the action of modifying the inclusion of  𝑖2  in X(𝑏𝑘+1 )and 

the result X( 𝑏𝑘+2 )={𝑖0 , 𝑖1 } is not extracted as HUI, sach that the agent receive reward  

𝑟𝑘 = -1 obviously It is clear that this causes Q(s,a,𝜃) to produce a small value for the 

action modification of adding 𝑖2  to 𝑠𝑘+1  determined from 𝑏𝑘+1 . 

In this way, the agent is trained to select an action that leads to the extraction of an HUI. 

 

● Pseudo algorithm 

The proposed algorithm named U-PMRL is presented as follows: 

Algorithm: Uncertain Pattern Mining Based on Reinforcement learning (U-PMRL). 

Input DataSetD, Expected Support ExpSupp(X) , threshold 𝜀; 

Output a set ITEMS containing itemsets meeting ExpSupp(X)≥ 𝜀 , 𝑃𝑟𝑜𝑏𝑆𝑢𝑝𝑝(𝑋) ≥

 𝜀 , 𝑈(𝑋, 𝑇) ≥ 𝑇𝑈 × 𝜀. 

 

Initialize  Q(s,a,𝜃) with parameter installation 

Initialize a target network as Q(s,a,𝜃)=Q(s,a,𝜃−) 

Initialize a replay memory as  𝑃 ← {} ; 

Reduction the search space by discarding items which are less than threshold(have no 

chance to be in itemsets) 

X ← {} ; 

For    e=1…….E    Do 

Randomly initialize bit vector 𝑏1 

Generate the first state S based on b1 and D 

For   K=1…….K   Do 

calculate 𝑞𝑘by introducing 𝑠𝑘 in Q(s,a,𝜃)  
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Decide an action 𝑎𝑘from the 𝑞𝑘 

Update from 𝑏𝑘to 𝑏𝑘+1 by 𝑎𝑘 

  If  ExpSupp( X(𝑏𝑘+1))≥ 𝜀 then  

 /*Expected support, Probabilistic support or Utility  𝒖(𝑿, 𝑻𝒒) ≥ 𝑻𝑼 × 𝜺*/ 

  ITEMS ← 𝐼𝑇𝐸𝑀𝑆 ∪ X(𝑏𝑘+1) 

  Endif; 

  calculate the reward  𝑟𝑘 based on 𝑏𝑘+1  and D 

  calculate𝑠𝑘+1  as a function of 𝑏𝑘+1  and D 

  𝑃 ← 𝑃 ∪  { (𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠𝑘+1 ) } ; 

  Update  𝜃 of Q(s, a,𝜃) using randomly drawn experiments from P 

 EndFor; 

Update 𝜃− of Q(s,a,𝜃−)(every episodes) 

EndFor; 

return ITEMSETS 

Formally, the agent was trained in e episodes, each episode contain k steps, and at 

each step the agent received state s and count quality q to decide which action a to choose for 

update 𝑏𝑘 (the bit vector) into 𝑏𝑘+1 . Then, if the item set satisfy the condition ExpSupp( 

X(𝑏𝑘+1))≥ 𝜀 , the environment computes its reward and goes to the next state 𝑆𝑘+1. Then, it 

will store the tuple (𝑠𝑘, 𝑎𝑘 , 𝑟𝑘, 𝑠𝑘+1) in the replay memory (p) as an experience of agent. 

Consequently, the parameter 𝜃 will be updated. 

Finally, the parameter 𝜃− of the network will be updated each episodes.  

 

6. Conclusion 

         In this chapter we presented our approach for extracting itemsets based on a deep 

reinforcement learning model, we also presented the steps to take to train a neural network as 

well as our model. 

         The following chapter is devoted to demonstrating the effectiveness of our method by 

detailed experimental study on various datasets. 
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1. Introduction  

We'll talk in this chapter about the experimental section of our strategy after we've 

detailed our answer. The working environment and tools that we utilized will be shown in the 

first section. Then we'll present our test set, and then we'll show the results that we generated. 

Consequently the performance of our proposed approach. 

2. Working Environment 

2.1 Hardware Environment: 

• An HP computer with the following characteristics: 

o 8,00 Go RAM. 

o Intel(R) Core(TM) i5-3210M CPU @ 2.50 GHz 2.50 GHz. 

o Operating system (OS): Windows 10 - 64bit. 

• A DELL computer with the following characteristics: 

o 4,00 Go RAM. 

o Intel(R) Celeron(R) CPU N3060 @ 1.60GHz 1.60 GHz . 

o Operating system (OS): Windows 10 - 64bit. 

2.2 Software Environnent 

• Python 3.7: Python was developed by Guido van in 1990 and is one of the most 

widely used programming languages. It is strong and easy to learn, has dynamic 

typing, and is great for scripting and quick construction of applications in a variety of 

fields. It also supports high-level data structures. Python syntax allows programmers 

to code in fewer steps than Java or C++, making object-oriented programming clear 

and efficient. Because of its many programming paradigms, the language is 

extensively used in big businesses. It contains a vast and comprehensive standard 

library, as well as automated memory management and dynamic operation. 

 

 

• Jupyter Notebook: Jupyter Notebook is an open-source web application that allows 

you to write and share computer code, visualizations, equations, and text. It can be 

used to analyze a collection of texts, clean them up, and alter them. It can also be used 

for statistical modeling and automatic learning. 

Jupyter Notebook is a two-in-one tool: 

- Jupyter Notebook Documents are documents created by the Jupyter notebook 

application that includes both enhanced text (paragraph, equation) written in 
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LATEX and computer code. The notebook documents are both human-

readable and executable documents that may be used to do data analysis. 

- Application Jupyter Notebook It is a client-server application that allows you 

to change and execute notebook documents via a web browser, in addition to 

displaying, running, and changing documents. The Jupyter notebook 

application can run without an internet connection or on a server with an 

internet connection. 

 

The library used : 

• Pandas: It is a high-level tool for python analysis, an open-source software library 

created for data manipulation and analysis in python that is powerful, flexible, and 

simple to use. Pandas is built on "DataFrames", which are two-dimensional data 

arrays. 

• Tensor Flow: is a Python-compatible open source library designed by the Google 

Brain team for high-performance numerical computation and machine learning. Its 

flexible architecture allows computation to be deployed across a number of platforms 

(CPU, GPU) and from PCs to server clusters, simplifies the data acquisition, 

prediction generation, machine learning model training, and future results 

improvement processes 

• NumPy: Numerical Python's abbreviation is this library is extremely helpful for doing 

mathematical and static operations in Python, and it works flawlessly with many 

matrices and multidimensional tables. 

• sklearn: is the abbreviation of scikit-learn is undoubtedly python's most helpful 

machine learning library. classification, regression, clustering, and dimensionality 

reduction are just a few of the useful functions in the sklearn library for machine 

learning and statistical modeling. 

• gym: itis an open-source Python library for creating and comparing reinforcement 

learning algorithms by offering a standard API to communicate among learning 

algorithms and the environments. This python library provides us with a large number 

of test environments in which we can perform on our RL agent's algorithms, as well as 

shared interfaces for writing and testing general algorithms.  

• torch: It is a module that allows replacing NumPy to use the power of GPUs, to 

provide a platform for deep learning. The notion of tensors is to replace arrays of 
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NumPy and allows: tensors creation, operations on tensors, resizing, indexing, the 

gateway with NumPy, Multiplication of 2 tensors..etc. 

And we use a torch.nn base class that can be used to wrap parameters, functions, and 

layers in the torch.nn modules. Any deep learning model is developed using the 

torch.nn module which is a base class for all neural network modules.  

 

3. Data Preprocessing 

3.1 The used data 

The Machine Learning Repository (UCI) is a collection of domain theory databases 

and data generators that the machine learning community uses to analyze machine learning 

methods. 

Its datasets are appropriate for the extraction of frequent patterns itemsets and high 

utility itemsets, among the data sets are 'UBRecordLink', 'UBSkin'. 

Data production is one of the first things to consider before training the model. For our 

model, we dealt with data items with uncertain values (probabilities).  

Therefore, we convert those datasets from certain to uncertain values as shown in the 

Figure below, where we used the normal law to generate probability between 0 and 1 for each 

item of each transaction. 

In addition The UBRecordlink data has 29 items and UBSkin data has 11 items, and 

for the number of transactions in our test we have 200-1000 transactions. 

 

 

Figure 23 Example of  UBRecordlink data that we used. 

3.2 Splitting data 

In this stage, an agent that has been trained on the source dataset is transferred into 

another agent that has been trained on a target dataset that is related to the source dataset (test 

data). To do that we make a file for the training data and the other for the testing data. 
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3.3 Encoding data to 0 and 1 

We did this step to help us to know whether the item is existing or not, and to facilitate 

the creation of random bit vectors.  

 

 
Figure 24: Encoding data step 

 

3.4 Extract the items 

We notice that the cumulative reward was decreasing throughout the number of 

episodes, when we did the training with ubrecordlink data which has a lot of items, so the 

huge number of combined items used in the extraction of frequent itemsets and  high utility 

itemsets is a crucial issue.  

We decide to use HTWSP (high transaction weighted support pattern): {pro(in  , TD) 

>= min_sup }and  HTWUI (high transaction weighted utility itemsets): {u(in  , TD) >= 

min_util } where we prune the search space and avoid database scan time by ignoring the non 

weighted items to have a smaller number of items which are high weighted, consequently we 

will decrease the length of the generated bit vector. 

 
Figure 25 The list of  htwui from 29 items of  UBRecordlink data 

 

 
                       Figure 26 The list of  htwsp from 11 items of  UBSkin data 

   

So, this is the final step of preprocessing data, now we have all we need to move to the 

next step creating our model. 
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4. Model creation: 

We go through the different steps to create our feature set extraction model:  

4.1 Create the Environment  

 We create a specific environment using openAI gym, because we don’t want  to use an 

existing environment in our problem we have to implement gym.Env and redefine the 

functions: 

• Render(): we use this function to visualize our results. 

• Reset(): which resets the environment to its initial state and returns the observation to 

the initial state. 

• Step(): this function takes an action as input and applies it to the environment, which 

causes the environment to transition to a new state. The step function returns four 

variables: 

- Observation: The observation of the state of the environment. 

- Reward: the reward you can get from the environment after performing the 

action given as input to the step function. 

- Done: Indicates if the episode has been completed. If true, you may need to 

end the simulation or reset the environment to restart the episode. 

- Info: This provides additional information depending on the environment. 

 

 

Figure 27 observation and action space of our environment with UBRecordlink data 

 

In our case, the observation_space was a box(0.0, 1.0, (18,), float32) and the 

action_space was discrete(19) as shown in figure 05. Box and Discrete are both types of data 

structures that come from the gym.space base class is provided by the Gym to describe 

legitimate values of observations and actions for environments. 

4.2 Create the Deep Q Network 

In this step, we construct our deep network using nn.module base class, the 

architecture is shown in Figure 32. 
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Figure 28 Our DQN 

            We had 18 inputs which is the number of states and the output layer produces an 

approximate quality of the action to change the item inclusion. 

 

Figure 29 Our state and actions for the ubrecordlink data. 

Our network consists of a fully connected layer and batch normalization layer and an 

activation layer where we used a leaky relu, all of these are collected in a block where we 

have 3 blocks. 

 

Figure 30 Our model state after training the agent on UBRecordlink data. 
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4.3 Create the Agent 

Our agent decides what action to take based on the q learning algorithm which 

determines the optimum action in the current situation and gets maximum rewards. 

In reinforcement learning, gaining a reward from the environment is important, as is 

optimizing the agent to maximize the reward that is expected in the future. To do this, the 

agent will keep some data affected by the rewards he has received in the past and use it to 

make a better decision. 

So, we define the agent with the constructor and six functions which are:  

set network function where we set the deep network. 

set optimizer function: In recent years, Adam has likely been the most widely utilized 

optimizer in Deep Reinforcement Learning research. that's why we used the Adam optimizer 

which is an optimization algorithm that can be used instead of the classical stochastic gradient 

descent procedure to update iterative network weights based on training data. 

select action function based on q learning. 

optimize agent function where we compute the loss and use our optimizer to minimize the 

loss and by minimizing the loss, we can find the optimal parameters that give the best 

performance of the model.  

update agent function: get model function which returns policy network. 

 

We have also created a replay memory with a capacity of 10000 where the agent 

stores his own experience. 

 

4.4 Training step 

In this step, we set the number of 50 episodes each episode consists of 5 steps and we 

let the agent train on the training data like is shown in the figure below. 
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Figure 31 Training step 

 

4.5 The resulting file (itemsets with their support OR utility) 

 Finally, the extracted itemsets from the training data are saved with their support or 

utility in a named tuple and then saved in a file like it is shown in these figures. 

1. FI: 

 

Figure 32 The tuple Pattern of UBRecordlink data with min support = 7.905050446999999 

with expected support measure. 

 

 

Figure 33 The tuple Pattern of the UBRecordlink data with min support = 

7.905050446999999 with probabilistic support measure. 

 

2. HUI: 
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Figure 34 The tuple Rule of the UBRecordink data with min_util=9188.1. 

 

5. Our proposed approach performance: 

We can determine our RL model performance based on two important measures which are: 

 

5.1 Efficiency 

 

• Execution time 

From the training and the testing step of our approach, we obtain these results 

presented in the table below. 

 

UBSkin (200 transactions) 

5:20:32 

 

        Table1 The time needed to find all FI with probabilistic support measure. 

 

UBSkin data (11 items) UBRecordLink (29 items) 

00:12:02 +5:42:29 

 

Table2 The time needed to find all FI (exp sup) with a different number of items. 
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UBRecordLink(40 

transaction) 

UBRecordLink(200 

transaction) 

UBRecordLink(1000 

transaction) 

+00:23:09 +1:47:50 +5:42:29 

 

Table3 The time needed to find all FI (exp sup) with different number of transactions. 

 

UBRecordLink(40 

transaction) 

UBRecordLink(200 

transaction) 

UBRecordLink(1000 

transaction) 

00:43:27 8:37:14 00:40:52 

 

Table4The time needed to find all HUI with different number of transactions. 

 

➢ So, we can note that: 

• The time needed for each episode of our approach will be almost 

identical because the number of distinct items is fixed. 

• The time needed in a dataset with a little number of items will be 

shorter than a dataset with a lot of items. 

 

➢ But it seems that the number of items (not the number of transactions) in the dataset is 

truly affecting the execution time so it needs more time and more episodes to extract 

all FI or HUI in a large number of items. 

 

• Memory consumption 

From the training and the testing step of our solution, we obtain these results presented 

in the table below. 

 

 
UBSkin UBRecordLink 

Measure Expected sup Probabilistic sup Expected sup Probabilistic sup 

TRAIN 49.5 76.3 49.1 69.4 
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TEST 48.9 75.8 50.5 65.7 

 

Table5 The percentage of memory needed in extracting FI. 

 

 
UBRecordLink 

TRAIN 55.9 

TEST 59.4 

 

Table6 The percentage of memory needed in extracting HUI. 

5.2 Quality of solutions 

 In this section, we will judge the quality of our solution to tell you about its 

advantages and disadvantages. 

• So, our approach is an approximate approach because it can’t find all the frequent 

items (or HUI) in an exact number of episodes. 

To verify the efficacity of our approach we must between the obtained result 

and the obtained results from UApriori And FHM (because they are an exact 

algorithms) in SPMF [37] which is an open source data mining library that offers a 

variety of data mining algorithm implementations (algorithms for extraction of FI with 

just expected support measure and for extraction of HUI). We downloaded the 

software and did some tests which are written in the tables below. 
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Figure 35 Spmf software’s interface. 

 

 
Our approach UApriorialgorithm 

UBSkin 45 45 

UBRecordLink 1155 6937 

 

Table7 Comparison table between the result of the UApriori algorithm and our 

approach based on number of extracted FP from uncertain data. 

 

 
Our approach FHM algorithm 

UBRecordlink 867 867 

 

Table8 Comparison table between the result of the FHM algorithm and our approach 

based on number of extracted HUI from uncertain data. 
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From the comparison between the result of the spmf software and our approach’s 

result in the previous figure, we notice that there are no false positives (infrequent itemsets are 

considered frequent itemsets). But sometimes we can find false negatives (frequent itemsets 

not found). 

 

 

Figure 36 Example of Extracted FI from the small data with spmf software. 
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Figure 37 Example of Extracted HUI from the UBRecordLink data with spmf software. 

• Consequently, we define the itemset mining effectiveness of our approach as the total 

number of episodes needed to extract all the frequent patterns. From the graphics 

below, we conclude that we need more episodes when we have a lot of items to extract 

all the FIs or HUIs. 

 

Figure 38 The number of episodes needed to find all FI. 
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Figure 39 The number of episodes needed to find all HUI. 

 

• A reinforcement learning algorithm can be evaluated based on the quality of the policy 

it discovers or the amount of reward it receives while behaving and learning. 

If an agent is required to learn while deployed, it may never reach the point where it is 

no longer required to explore, thus the agent needs to maximize the reward it receives 

while learning. 

The performance of our reinforcement learning algorithm is shown by the 

cumulative reward (the sum of all rewards received so far) as a function of the number 

of episodes in the figures below. 

 

Figure 40 The cumulative reward as a function of the number of the first 10 episodes. 
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The performance of the algorithm is calculated by dividing the final reward by the total 

number of episodes. So, we can say that our approach is performance due to the increase of 

the reward. 

 

• Testing the SARSA algorithm: 

 

We also tested the SARSA algorithm where we update the q value by choosing 

a random q value of the next state, when we do that, we have seen that the algorithm 

chooses itemsets without relying on the best next action and without considering the 

high value of the reward. 

For that, there is no guarantee to find all the FIs or HUIs and the reward will decrease 

like it is shown in the figure below.  

 

Figure 41 The difference between the Q-Learning and the SARSA algorithm in the 

cumulative reward as a function of the number of the first 5 episodes in FI. 

  

6. Conclusion 

We have presented the hardware and software environments, and the libraries used to 

implement our technique, and we have performed tests to evaluate the quality of our 

approach's outcomes in this chapter. 
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General Conclusion and Perspective 

1. General Conclusion 

Data processing is a rapidly expanding course of research that is becoming 

increasingly relevant, We have seen the extraction of frequent item sets, which is a method of 

data processing which always remains one of the most important subjects as a result of the 

expanding domains and uses for it, the extraction of patterns from uncertain data continues to 

be a prominent topic for scholars. While the scientific community produces various tools and 

processing methods. 

In the course of our work to comprehend the challenge of extracting frequent itemsets and 

high utility itemsets  from uncertain data, In the first chapter we've seen many approaches for 

extracting frequent itemsets and high utility itemsets from certain and uncertain data, and in 

the second chapter, we've researched and studied the various structures of machine learning 

and deep learning. 

Then we discussed our deep learning-based solution “U-PMRL” and the training of an 

artificial agent that can extract frequent patterns from a database with the expected support 

and probabilistic support and how to extract a high utility items from uncertain data .Finally, 

we finished our work with the fourth chapter, test and experimentation, which allowed us to 

put our idea into practice and test it. 

In this research, we introduced “U-PMRL”, a unified RL structure that allows for the 

extraction of different types of itemsets simply by modifying the reward definition. Through 

studies on the HUI, FI extractions, the general efficacy of U-PMRL is demonstrated. 

 

This effort has allowed us to enhance our knowledge and better understand the concept of 

frequent item sets and high utility extraction in uncertain data and to discover and learn new 

techniques and many approaches concerning the deep learning. 

But the biggest challenge we faced in validating and testing our approach was the absence of 

powerful equipment that allowed for additional experiments. 

 

2. Perspective  

This study is not a perfect model because it was created by a human, thus we are open to all 

criticism and are prepared to hear any recommendations or comments that can help make it 

better. 
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There are numerous perspectives on this exploratory study, and we will mention a few of 

them. For example To obtain the results and conduct comparisons use another computation 

measure, or try to use double DQN where we use two DQN one for selecting action and other 

for evaluate the actions or think about using transfer agent which generates a trained agent. 
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