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Abstract

Phenols are natural compounds with pharmacological properties and possible drug like
molecules. In this research a docking study of selected phenolic compounds with key elements
of inflammation and oxidative stress (Ikappa kinase beta (Ikk[3), cyclooxygenase-2(COX-2( and
Xanthine oxidase) was performed to predict their possible anti-oxidative and anti-
inflammatory effect, alongside ADMET (Absorption ,Distribution , Metabolism , Excretion,
Toxicity ) profiling for more accurate results on their effectiveness.

Molecular modeling with BIOVIA Discovery Studio Visualizer and virtual screening
with Pyrx application allowed to find that phenolic acids (4-Hydroxybenzoic, Ferulic and
caffeic acids), Anthocyanins (Apigeninidin, Delphinidin, Pelargonidin and Luteolinidin) and
Flavonols (Fisetin and Taxifolin) are probable Ikkf inhibitory sources. all of the tested
phenolic compounds interacted with Cox-2 and Cox-1active sites. The phenolic acids (Caffeic
and Ferulic acids), flavonoids ,Pelargonidin, Delphinidin, Gallocatechin, Fisetin and Butein
showed the best non-specific binding conformation towards Cox-2 ,while Genistein only
interacted with Cox-2. From all the tested phenolic compounds only 4-Hydroxybenzoic acid,
Luteolinidin and Apigeninidin were found to be possible XO inhibiters.

As to the pharmacological profile, all the tested phenolic were accepted in Lipinski’s rule
of five and showed good absorption, distribution, metabolism and excretion results. As to the
toxicity profile, Epicatechin, Luteolin, Butein, Fisetin, Taxifolin, Luteolinidin and
Pelargonidin were suggested be mutagenic, only Caffeic acid was registered to be hepatotoxic
and Ferulic acid, Genistein, Naringenin, Butein, Luteolinidin and Apigeninidin were suggested

to possibly be carcinogenic.

Key word: natural compounds, Ikappa kinase beta, Cyclooxygenase-2, Xanthine
Oxidase, Phenolic compounds,Docking, Inhibiter, in silico, Autodock Vina, BIOVIA

Discovery Studio Visualizer.



Résumé

Les phénols sont des composés bioactifs dotés de propriétés pharmacologiques et de
possibles molécules ressemblant a des médicaments. Dans cette recherche, une étude
d'amarrage de composes phénoliques sélectionnés avec des éléments clés de I'inflammation et
du stress (lkappa kinase beta (Ikkp), cyclooxygenase-2(COX-2) et Xanthine oxidase) a été
réalisée pour prédire leur possible effet antioxydant et anti-inflammatoire, ainsi que le
profilage ADMET (Absorption ,Distribution , Metabolism , Excretion, Toxicity ) pour des

résultats plus précis. sur leur efficacité.

la modélisation moléculaire avec BIOVIA Discovery Studio Visualizer et le criblage
virtuel avec l'application Pyrx ont permis de découvrir que les acides phénoliques (acides 4-
Pelargonidine et Lutéolinidine) et les Flavonols (Fisetine et Taxifoline) sont probables Ikk[
sources inhibitrices. tous les composes phénoliques testés interagissaient avec les sites actifs
Cox-2 et Cox-1. Les acides phénoliques (acides caféique et férulique), les flavonoides, la
pélargonidine, la delphinidine, la gallocatéchine, la fisétine et la butéine ont montre la
meilleure conformation de liaison non spécifique envers la Cox-2, tandis que la génistéine
n'interagissait qu'avec la Cox-2. tous les composés phenoliques testés, seuls I'acide 4-

.....

possibles.

En ce qui concerne le profil pharmacologique, tous les composes phénoliques testés ont
été acceptés dans la régle de cing de Lipinski et ont montré de bons résultats d'absorption, de
distribution, de métabolisme et d'excrétion. En ce qui concerne le profil de toxicité,
I'épicatéchine, la lutéoline, la butéine, la fisétine, la taxifoline, la lutéolinidine et la
pélargonidine ont été suggérées comme mutagenes, seul I'acide caféique a été enregistré

comme étant hépatotoxique et I'acide férulique, la génistéine, la naringénine, la butéine, la

.....

Mot clé : natural compounds, Ikappa kinase beta, Cyclooxygenase-2, Xanthine Oxidase,
Phenolic compounds,Docking, Inhibiter, in silico, Autodock Vina, BIOVIA Discovery Studio

Visualizer.



Résumé
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Introduction
Introduction

Inflammation plays a major role in chronic diseases such as Chronic liver disease, gallbladder
disease , chronic respiratory diseases, heart disorders, cancer, obesity, and diabetes (Bengmark 2004;
Netea et al. 2017; Pahwa et al. 2021).

oxidative stress is thought to be involved in many neurodegenerative diseases , chronic kidney
disease, cancer and several others (Liguori et al. 2018).

It has been proven throughout the years that oxidative stress interconnects with inflammation
by activating certain transcriptional factors such as NF-xB (Reuter et al. 2010).

Numerous reports have identified therapeutic roles of plants and their extracts because
they contain phytochemicals which are secondary metabolite with anti-inflammatory and anti-
oxidative effects (Choi et al 2010; Mueller et al. 2010).

Phenolic compounds express anti-inflammatory activity by modulating the inflammatory
responses through inhibition of inflammatory pathways and down-regulating the expression of IL-
1B, IL-6 ,TNF-a, INF-y and COX-2 (Bisht et al2010; H. Zhang and Tsao 2016). It was found that
phenolic compounds regulate the NFKB pathway mediated inflammation by suppressing its DNA-
binding ability and preventing the phosphorylation and degradation of IkBa (Singh and Aggarwal
1995; Chiu et al. 2015) . Same as antioxidants, some polyphenolic compounds play a role in the
suppression of ROS formation by either inhibiting the enzymes involved in their production,
scavenging of ROS, or by upregulation and protection of antioxidant defenses(Hussain et al. 2016).

Virtual screening is an in silico method that is rapidly dominating the field of hit recognition
and drug discovery due to its increasing accuracy and low cost utilization (Pinzi and Rastelli 2019).
Molecular docking is the most commonly used virtual screening method, it is performed between a
small molecule (ligand) and a target macromolecule ( protein ) and gives us as a result the binding
affinity and the structure of the protein-ligand complex which we can use for structure—activity
studies and lead optimization (Morris and Lim-Wilby 2008; Wang and Zhu 2016). In this study we
aim to identify anti-inflammatory and anti-oxidative properties of a selected set of phenolic
compounds by conducting a docking analysis to find possible inhibitory activity towards Ikkf , Cox2

and xanthine oxidase , along sides pharmacological and toxicity analysis .
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l. Inflammation :

Inflammation is the immune system's response to pathogens, damaged cells, toxic
substances, or irradiation (Medzhitov 2010) and it works by eliminating the source of the
response and commencing the healing process (Ferrero-Miliani et al. 2007)Thus, inflammation
is a necessary defense mechanism for health (Furman et al. 2019; Lordan, Tsoupras, and
Zabetakis 2019).

At the tissue level, inflammation manifests as redness, swelling, heat, discomfort, and
loss of tissue function, all of which are the result of local immunological, vascular, and
inflammatory cell responses to infection or injury (Takeuchi and Akira 2010). During the
inflammatory process, significant microcirculatory events occur, including changes in vascular
permeability, leukocyte recruitment and accumulation, and inflammatory mediator release
(Chertov et al. 2000)

I.1 Types of Inflammation

a) Acute inflammation

It can be induced by Tissue damage ,microbial invasion or chemical compounds ;it
lasts for a few hours or days (Table 1), marked by secretion of fluid and plasma and leukocyte
emigration (mainly neutrophils), and when the immune system is able to eliminate those
pathogenic elements, the reaction disappears.(Ambriz-Pérez et al., 2016 ; Pahwa et al., 2021)

b) Chronic inflammation

Due to a Failure in eliminating the pathogen , An autoimmune disorder ,A defect in
the cells responsible for mediating inflammation the host can enter a long and persistent chronic
inflammation phase (table 3), associated with the presence of lymphocytes and macrophages,
vascular proliferation, fibrosis, and tissue destruction (Ambriz-Pérez et al., 2016; Pahwa et al.,
2021).

It has been proven throughout several studies that a person entering the chronic
inflammation leads to an overproduction of pro-inflammatory mediators (TNF-a,, TGFb, IL-6)
and it plays a major role in chronic diseases such as Chronic liver disease and gallbladder
disease , chronic respiratory diseases, heart disorders, cancer, obesity, and diabetes (Bengmark,
2004; Netea et al., 2017; Pahwa et al., 2021).



Table 1 : Acute inflammation Vs chronic inflammation

Acute inflammation chronic inflammation
T PAMPs (infection), DAMPs DAMPs (‘exposome’, metabolic
rigger
% (cellular stress, trauma) dysfunction, tissue damage)

Duration Short-term Persistent, non-resolving

Magnitude High-grade Low-grade
Healing, trigger removal, tissue
Outcome(s) ] Collateral damage
repair

Age-related No Yes

) Silent—no canonical standard
Biomarkers IL-6, TNF-0, IL-18, CRP _

biomarkers

1.2 Inflammatory response
1.2.1 Pattern recognition receptor activation
The inflammatory response is set into action once the host cells recognizes pathogen
associated molecular patterns (PAMPs) or danger associated molecular patterns (DAMPS)
using pattern recognition receptors (PRRs) (Netea et al., 2017). In mammals, these recognition
receptors are known as toll like receptors (TLR) , and are able to recognize various PAMPs
like:
o lipopolysaccharide (LPS) (detected by TLR4),
o bacterial lipoproteins and lipoteichoic acids (detected by TLR2),
o Flagellin (detected by TLR5).
o The unmethylated CpG DNA of bacteria and viruses are detected by TLR9.

o The double-stranded RNA are detected by TLR3
o Single-stranded viral RNA (by TLR7) (Iwasaki and Medzhitov 2004).

The combined activity of PAMPs and TLRs lead to the activation of several signaling
pathways such as nuclear factor-«B (NF-«B) , Nod-like receptor pyrin domain containing 3
(NLRP3) ,the mitogen-activated protein kinase and JAK-STAT signaling pathways that incites

the secretion of different pro-inflammatory cytokines such as tumor necrosis factor (TNF)-

o, interleukin IL-1 (Afonina et al. 2017) (Figure 1).
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Figure 1: TLR signaling (Cognasse et al. 2015)
1.2.2 Activation of inflammatory pathways
1. NF-kB pathway

The NF-xB transcription factor is involved in numerous activities including
inflammation, immunological response, survival, and apoptosis ((Girard et al. 2009; Peng et al.
2020). The NF-xB family of transcription factors is comprised of five members: P50, p52, RelA
(p65), RelB, and c-Rel(figure 2) (Moynagh 2015; Hoffmann, Natoli, and Ghosh 2006) . NF-
kB exist in the cytoplasm in an inactive state in the form of homo/heterodimers under the

inhibitory effect of IkB family (Figure 2) (Bonizzi and Karin 2004)
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NF-kB signaling pathways (canonical and non-canonical) are prompted by a various
insinuators such as proinflammatory cytokines (TNF-a and IL-1), T and B cell mitogens,
bacterial lipopolysaccharide(LPS), viruses, viral proteins, double-stranded RNA, and physical

and chemical stress (Karin and Ben-Neriah 2000) (Figure 2).

e Canonical pathway

Upon proper activation of the canonical NF-kB pathway commonly represented by
TNFo/TNFR stimulus , IkB are ubiquitinated due to phosphorylation of Ser32 and Ser36
residues under the effect of IkB kinase IKK , a complex composed of three subunits , IKKa and
IKKp , the catalytic subunits , and NEMO or IKKy the regulatory subunit . IkB degradation
leads to the exposure of the NLS (nuclear localization signal) of the NF-kB dimers allowing
them to pass through the nuclear import pathways and express their gene transcription activity
(Lin et al. 2010; Ghosh and Karin 2002). (Figure 3)



e Non-canonical pathway

The non-canonical pathway is mainly activated by non-death receptor members of the
TNF receptor family like CD40, lymphotoxin beta (LTf), and B-cell-activating factor (BAF)
and viral proteins such as LMP-1 from Epstein-Barr virus (EBV). This pathway is dependent
on NF-kB-inducing kinase (NIK)-mediated activation of IKKa subunit of the IKK complex,
which leads to the cleavage of p100 to create p52. Then p52 forms a complex with RelB and
translocate to the nucleus to enhance gene expression ( Ghosh and Karin 2002;Lin et al. 2010).(

Figure 3)
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Figure 3 : The canonical and non-canonical NF-kB signaling pathway (Peng et al. 2020)



Without any major surprise research shows that NF-kB signaling plays a major role in
many inflammatory diseases as well as cancer (Zhang et al., 2017; Ben-Neriah and Karin,
2011). Making the steps of activating the NFkB pathway (IKK activation, IkB degradation
and NF-xB nuclear translocation and DNA binding) interesting targets for therapeutic
inhibition.(Lin et al., 2010).

a.l IKK kinase

The IKK kinase complex is an important component in the NF-«kB signaling
pathway. It is essentially made of two kinases (IKKa and IKKf) and a regulatory
subunit, NEMO/IKKy (Israél 2010). The structure of hIKKp consists of an N-
terminal kinase domain, KD (1-309), the central ubiquitin-like domain, ULD (310—
404), and the C-terminal dimerization domain, SDD (408-664) (Polley et al. 2013)
(figure 4).

Figure 4 : crystal structure of hIKKp (Polley et al., 2013)

In determining inhibitory specificity residue Met96 plays a major role as the
“gatekeeper” residue, which controls the access of the inhibitor to the hydrophobic
pocket ,while Glu97, Tyr98 and Cys99 form the hinge region of the KD of IKK.
The backbone groups of GIlu97 and Cys99 are able to provide hydrogen-bonding
interactions with the inhibitor. In addition, the ATP binding site of IKKf is partly
covered by an activation loop comprised of serine, threonine and tyrosine residues in
the unphosphorylated state, While the N-terminalside of the activation loop contains
the Asp166, Leul67 and Gly168 triad which is involved in catalytic transfer of the y-
phosphate group in most kinase ATP binding sites (Hotchkiss et al. 2021).



2. Cyclooxygenase (COX)

Cyclooxygenase (COX) is responsible of synthetizing prostaglandin. It is an enzyme
that catalysis the oxidation of arachidonic acid, the first steps in the synthesis of prostanoids
such as prostaglandin, prostacyclin, and thromboxane, a large family of arachidonic acid
metabolites that are the inflammation mediators (Minghetti, 2004).

Cyclooxygenase exist in two isoforms, COX-1 a constitutive isoform that exists almost
in all cell types and is thought to mediate physiological activities through the synthesis of
certain prostaglandins that regulate renal hemodynamics and water/electrolyte balance, protect
the gastrointestinal mucosal lining, and limit gastric acid secretion and thromboxane A2
(TXAZ2). Arachidonate metabolite formed by COX-1 stimulates platelet aggregation and thus
maintains normal hemostasis (Figure 5).

COX-2 is an inducible isoform expressed in several cell types in response to growth
factors, cytokines, and pro-inflammatory molecules ; It’s been noticed that prostaglandins
produced via COX-2 (prostaglandin E2, Al, A2, D2...) are intimately involved in the
induction of inflammation by enhancing vascular permeability, mediating vasodilation. lin
addition, PGE2 is considered as a chemoattractant for leukocytes ( Simon, 1999; Minghetti
2004; Lim et al.,, 2001). Cox-2 is further more linked to inflammation because of the
nonspecific inhibition of its enzymatic activity by the non-steroidal anti-inflammatory drugs
(NSAIDs)(Simon, 1999),That is why it is very crucial to develop drugs that have limited side
effects and specific to COX-2.
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Figure 5: COX pathway (Stasinopoulos et al. 2013)

Considering their structure, when the sequences of Cox-1 and Cox-2 are compared
they show a similarity of 61%, and a 87%similarity when only the active site sequence is

compared



The Cox active site is divided into three distinctive areas, a hydrophobic pocket
defined by the residues Tyr385, Trp387,Phe518, Ala201,Tyr248 and Leu352. The mouth
of the active site, with three hydrophilic residues guarding its entrance:
Argl120,Glu524,Tyr355 and a side pocket that includes several conserved residues like
His90 and non-conserved residues His/Arg513and Ile/Val523 , also interacting with
Ser530 and Phe518 is an indication to a possible inhibitory activity (Llorens et al. 2002).
(Figure 6).

COX-1 COX-2

Eigure 6 : Comparison of the cyclooxygenase active sites of COX-
land COX-2 .(Kudalkar, Rouzer, and Marnett2015)



1. Oxydative stress
Oxidative stress is seen as an imbalance between the concentration of reactive oxygen
species (ROS) and antioxidants in a cell, due to the overexpression of ROSs or the incapacity

of antioxidants (Betteridge 2000).

Il.1  Reactive oxygen species (ROS)

Reactive oxygen species or free radicals are every atom or molecule that have one or more
unpaired electrons in the outer orbit. This feature gives these molecules or atoms a higher
chemical reactivity (Halliwell, 1994).

ROS can be created from external sources, like being exposed to X-rays, ozone, cigarette
smoking, air pollutants and industrial chemicals. They can be generated by using oxygen
02 as a first substrate in endogenous enzymatic reaction in different cell compartments such
as cytoplasm, cell membrane, endoplasmic reticulum (ER), mitochondria(aerobic respiration),
and peroxisome. Various enzymes like NADPH oxidase, xanthine oxidase, D-amino acid
oxidase and dihydrolipoamide dehydrogenase are implicated in ROS generation (Forrester
et al. 2018; Li et al. 2016; Kalam et al. 2015).

Some of the most famous ROSs are superoxide anion (O2—¢). It is formed by adding an
electron to oxygen O2. Another is hydrogen pyroxidas (H202) made by adding another
electron with 2 protons. Hydroxyl radical (OHe) is the most reactive free radical and it is
formed by the reaction of O2—+ with H202 in the presence of Fe2+ or Cu+ (the Fenton
reaction) ( Kalam et al. 2015; Li et al. 2016;Forrester et al. 2018).

1.2  Negative actions of ROS
Free radicals can cause the activation of redox-sensitive transcription factors such as
AP-1, p53 and NF-xB. This activation leads to an increased levels of proinflammatory
enzymes like COX-2, interleukin 18 and TNF-a and ROS-induced activation of protein
kinases (MAPK). This generally promotes cell survival and proliferation, which can create a
perfect environmentfor cancer development. ROS can also cause the loss of intracellular Ca2+
homeostasis which activates diverse Ca2+ sensitive signaling pathways, alongside with
causing lipid, protein,
DNA and mtDNA damage (Burton and Jauniaux 2011). These actions carried out by

free radicals made Oxidative stress implicated in many diseases and disorders including
cancer, neural disorders, cardiovascular disease, Alzheimer’s disease, alcohol induced liver

disease, and ageing (Mishra et al. 2013).
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1.3 Xanthine oxidase

Xanthine oxidase is widely distributed throughout the liver, gut, kidney, heart, capillary
endothellial cells, brain, lung and plasma; it is made up of two identical subunits of
approximately 145Kda each. Each catalytically independent subunit contains two non-
identical Fe2S2 iron-sulfur centers located in the N-terminal (20 kDa) domain, flavin adenine
dinucleotide (FAD) cofactor in the intermediate (40 kDa) domain, and molybdopterin
cofactor in the C-terminal (85 kDa) domain (figure12) (Smelcerovié et al. 2017) (Figure 7)

Asn768, Glu802, Leu873, Arg880, Phe914,Phe649 ,Phe1009, Thr1010, Leul014 and
Glul261 are key residues in the process of oxidative hydroxylation of hypoxanthine and

xanthine to uric acid (Smelcerovié et al. 2017).

Eigure 7: Crystal structure of bovine xanthine oxidas (Smelcerovi¢ et al. 2017)
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I11.  Phenolic compounds

Phenolic compounds are widely found in fruits, vegetables, cereals and beverages with more

than 8,000 compounds.( Table 2 ) , These molecules are considered as secondary metabolites

of plants and are involved in the defense against ultraviolet radiation and/or aggression by

pathogens (Pandey and Rizvi 2009; Bels¢ak-Cvitanovi¢ et al. 2018).

Table 2:food sources of phenolic compounds.(M. B. Hussain et al. 2019)

Phenolic compound

Source

Phenolic acids (gallic acid)

Red wine

Anthocyanins (cyanidin, delphinidin,
malvidin, pelargonidin, peonidin)

Blackberry, blueberry, black grape, cherry,

strawberry, red wine, plum

Condensed tannins (procyanidin)

Red wine, chocolate, cranberry juice and
apples

Flavan-3-ols (catechin)

Fruits, vegetables, chocolate, lentil, green and

black tea, wine, grapes and ginkgo

Flavanones (hespertin, naringenin)

Orange, grapefruit and lemon juices

Flavones (apigenin, luteolin)

Parsley, celery, capsicum pepper and grape

Flavonols (quercetin, kaempferol)

Fruits, vegetables, and beverages such as tea

and red wine

Isoflavones (genistein)

Soy

Stilbenes (resveratrol)

Legumes, grapes, red wine, soy, peanuts and

peanut products
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111.1. Classification of Phenolic compounds
phytochemicals can be classified according to the number of phenol rings that they
contain and the structural elements that bind these rings to each other into four main classes:

phenolic acids, flavonoids, stilbenes and lignans (Manach et al. 2004) (Figure 8).

. Polyphenois

1
I 1 1 L I

Phenolic Flavonoids Stilbenes Lignans QOthers
acigs
Flavonols Flavenes Flavanois Anthocyanidins Isoflavenes

«Cyanidin-3-a-f-

Monomers
(cateching)

Proanthocyanidins

("'oc}-an-:‘ns {dimers i
| decamers)e.g. £1. B2
EE’EE-! 810

Eigure 8: Classification of phenolic compounds (Panche et al., 2016)

~Lutecine
«Apigenine

«Narngenine

1.Phenolic acids:

They Are phenolic molecules that can be Found in coffee, tea, cinnamon, blueberries,
Kiwis, plums, apples, and cherries (Kumar Ganesan and Baojun Xu 2017), with great deal of
health benefits such as anti-inflammatory and ant-oxidative activities ( Cheng et al.
2007;Ambriz-Pérez et al. 2016). We can distinguish between Two classes of phenolic acids
hydroxybenzoic acids and hydroxycinnamic acids .

Hydroxybenzoic acids include gallic,p-hydroxybenzoic, vanillic, syringic, and
protocatechuic acids. hydroxycinnamic acids are commonly found in foods and beverages like
p-coumaric acid, caffeic acid, ferulic acid, sinapic acid and cinnamic acids (Chandrasekara
2019).

2.Flavonoids

Flavonoids make two third of the polyphenol population ,they are found in onions , tea
, oranges , soy, dry beans, red wine , chocolate and many others. They are the most abundantly
found compounds, with Quercetin being the main flavonol in our day to day dietary intake

alongside Genistein and Daidzein. (Scalbert and Williamson 2000; Bravo 2009).
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The chemical structure of flavonoids is made up of two benzene rings A and B, linked
via a heterocyclic pyran ring C. Flavonoids can be divided into several classes according to the
properties exhibited by the C ring (flavones ,Flavonols ,Isoflavones ,Anthocyanins ,Flavanones,
Chalcones ...) ( Table 3) (Kumar and Pandey 2013; Panche, Diwan, and Chandra 2016).

Table 3: structure of some flavonoids

Class (Compounds) Structure

flavones

(Luteolin, apigenin and tangeritin)

O

Flavonols

(Quercitin , myrcitin , rutin)

isoflavones

(genistein and daidzein)

\ /"

malvidin) O
R
553

OH
Anthocyanins O
(Cyanidin, , pelargonidin, peonidin, R X R
Ry

Flavanones o
(Naringin, naringenin, taxifolin,and G
hesperidin)
o)
Chalcones ?

(phloridzin, arbutin, phloretin and

)
/
9

chalconaringenin)
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a) Flavonols

Flavonols are flavonoids that include a double bond between the carbon atoms C2 and
C3, as well as a hydroxyl group at the carbon atom C3 and a carboxyl group at the carbon atom
C4. This structure adds up to three functional groups that are accessible to react with other
substances. These flavonoids are present in a wide variety of edible and medicinal plants and
are currently undergoing extensive research due to their numerous bioactivities. The most well-
known chemicals in this category are kaempferol, myricetin, and quercetin (Kumar and Pandey
2013; Panche et al., 2016).

b) Flavones

Flavones have a double bond between carbon atoms C2 and C3, and a structure similar
to Flavonols, but without a hydroxyl group at carbon atom C3. Luteolin and Apigenin are the
most prevalent flavones. Their antioxidant action is due to the presence of free hydroxyl groups
in their rings A and B (Panche, Diwan, and Chandra 2016)

c) Flavanones

There are about 160 different forms of Flavanones, which are found in 36 different plant
families and serve as precursors to a large number of additional flavonoids (Cristina et al. 2017;
Durazzo et al. 2019). Chemically, these compounds are defined by the presence of a carboxyl
group at position 4 and the absence of a double bond between C2 and C3. Citrus fruits are the
primary source of flavanones (Table 3). The most extensively studied chemicals in this class
are naringenin and hesperidin (Cristina et al. 2017; Durazzo et al. 2019)

d) Flavanols

Flavanols, sometimes called flavan-3-ols, are the most abundant subclass of flavonoids.
The presence of a functional hydroxyl group at position 3 is all that distinguishes this class.
Catechin and Epicatechin are the two major members of this class. Flavan-3-ols are present in
a variety of fruits and plants (Table 3). Among these sources, green tea (Camellia sinensis L.)
stands out for its high concentration of these compounds, and consumption of this tea has been
related with a reduced incidence of chromic cardiovascular disease due to the bioactivities of
flavan-3-ols (Cristina et al. 2017; Durazzo et al. 2019)

e) Isoflavonoids

Isoflavonoids are the only flavonoids having a benzenoid substituent at position 3,
which gives them a structure similar to endogenous estrogens and enables them to interact with
estrogen receptors in both an agonistic and antagonistic manner. Over 2000 isoflavonoids have

been found, with isoflavones being the most well-known (Panche, Diwan, and Chandra 2016)
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f) Anthocyanins
Anthocyanins are are responsible for the various red, blue and purple color of various
fruits, vegetables, and flowers , they considered as flavonoids although they have a positive

charge at the oxygen atom of the C-ring of basic flavonoid structure (Khoo et al. 2017).

g) Lignans

Lignans are secondary plant metabolites with a variety of chemical configurations;
nonetheless, their basic structure is composed of phenylpropanoid dimers (C6-C3) connected
by the central carbons of the side chains. Lignans are formed of two phenylpropane units, they
can be found in cereals (triticale and wheat), fruit (pears, prunes) and certain vegetables (garlic,
asparagus, carrots) with sesame and flax seeds being the most concentrated lignans sources. the
most famous lignans are Secoisolariciresinol and Matairesinol , among others such enterodiol,
enterolactone, sesamin, syringaresinol, medioresinols have anti-estrogenic, antioxidant and

anti-carcinogenic activities (Manach et al., 2004; Rodriguez-Garcia et al., 2019).
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111.2. Biological effect of phenolic compounds

Nowadays, phenolic compounds (PC) are one of the most studied groups of bioactive

molecules by the scientific community. These molecules have numerous documented health

benefits, consuming a diet high in these compounds on a regular basis is critical for overall

well-being (Dominguez-Avila et al., 2017).

Additional beneficial bioactivities for health maintenance have been associated with

these compounds, including anti-inflammatory, antimicrobial, and anti-proliferative activities

(Soto, Falqué, and Dominguez 2015; Cristina et al.

2017; Durazzo et al. 2019). The

characteristics of polyphenols are summarized in Figure 5.These biological activities have

sparked interest in the use of these molecules in the formulation of nutraceutical products

(Cristina et al. 2017; Durazzo et al. 2019) (Figure 9).

* Protocatechuic acid
* Chlorogenic acid
* Caffeic acid
* Quercetin

Caffeic acid
* Quercetin

* Taxifolin PO LY P H E N O LS

PRO-OXIDANT

ROS ==+ Caffeic acid

* Protocatechuic acid
= Chlorogenic acid
* P-coumaric

* Aminobenzoic acid

* Rutin

* p-coumaric acid

Rosmarinic acid
Curcumin
o
o

..... ANTIINFLAMMATORY

* Cathechin

* Resveratrol

'..'.‘ ‘ ]
ANTIPROLIFERATIVE )&
ANTIOXIDANT 44

* Chlorogenic acid
+ Caffeic acid
* Resvetatrol

Eigure 9: polyphenol properties (Zitka et al. 2011)
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111.3. Anti-inflammatory effect
Phenolic compounds express anti-inflammatory activity by modulating the
inflammatory responses through various mechanisms, such as:

A. Reduction of cytokine pathways (Zhang and Tsao, 2016),

B. Down-regulating the expression of IL-1B, IL-6 ,TNF-a, INF-y and COX-2 (Bisht et
al., 2010),

C. Inhibiting of NO production (Taofiq et al., 2015) and TNF-a cytotoxicity (Kassim
etal., 2010),

D. Nuclear factor-kappa B (NF-«xB) DNA-binding ability suppression (Chiu et al.,
2015),

E. Inhibition of NF-kappaB activation in a TNF-a induced signaling by preventing the
phosphorylation and degradation of IkBa (Singh and Aggarwal, 1995),

F. Inhibition of mitogen-activated protein kinase (MAPK) pathway (Seelinger et al.,
2008).

I11.4. Anti-Oxidative effect

Polyphenols are regarded antioxidants because they donate a hydrogen atom and/or an
electron to free radicals, so interrupting the chain reaction of oxidation. As a result, the
antioxidant effect is dependent on the amount and position of the hydroxyl groups (Cristina et
al. 2017)
In the study of Sevgi, Tepe, and Sarikurkcu (2015), the antioxidant activity of 10 phenolic
acids was reported, with the ferulic acid showing the highest antioxidant activity compared to
caffeic,chlorogenic, cinnamic, gallic, p-hydroxybenzoic, protocatechuic, rosmarinic, syringic,
p-coumaric,and vanillic acids. In vivo, ferulic acid significantly blocked the free
radicals,therefore preventing the oxidative stress correlated with alcohol and polyunsaturated
fatty acids
induced toxicity (Rukkumani et al. 2004)
Luteolin-6-C-neohesperidoside is a flavone that have been found to have ant oxidative effects
in rats that were subjected to intense physical activity (forced swimming) by reducing lipid
peroxidation and the activation of Nrf2/ARE, there for inducing the expression of antioxidant
enzymes(Duan et al. 2017) .
in another study a 1% quercetin diet was applied on mice which increased the expression of
antioxidant enzymes in the liver and in the epididymal adipose tissues by activating the
nuclear factor Nrf2(Kobori et al. 2015)
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in a study of Teucrium poliumL. (Lamiaceae) aerial part extracts ,Rutin and Apigenin was
found to be active antioxidants according to DDBH (2,2-diphenyl-1-picryl-hydrazyl-hydrate)
assay results (Sharififar, Dehghn-Nudeh, and Mirtajaldini 2009) .In a study The flavonoid
Naringenin was administrated orally to rats and was found to reduce elevated anti-oxidative
enzymes activity (Wojnar, Zych, and Kaczmarczyk-Sedlak 2018)

IV.  Molecular docking
IV.1. In silico drug design

Modern medicinal chemistry methodologies, including molecular modeling, have
become more important in the analysis of structure-activity correlations (SAR) (Hughes et al.
2011). Along with pharmacodynamics data (e.g., potency, affinity, effectiveness, and
selectivity), these approaches have been used to investigate pharmacokinetic features
(ADMET: absorption, distribution, metabolism, excretion, and toxicity) (Lipinski et al. 2012)
The area has advanced in lockstep with advancements in bio- molecular spectroscopic
techniques such as X-ray crystallography and nuclear magnetic resonance (NMR), which
have enabled dramatic improvements in molecular and structural biology.

These approaches have enabled the resolution of over 100,000 three-dimensional
protein structures, thereby revealing critical structural information about important
macromolecular drug targets (Berman et al. 2000)Efforts to store, organize, and explore such
data have resulted in an increase in the demand for strong and advanced computational tools.
From this vantage point, the precise integration of in silico and experimental methodologies has
resulted in a comprehensive understanding of the delicate elements of intermolecular
recognition (Weigelt 2010)

IV.2. Molecular docking

The molecular docking approach is used to mimic the atomic level interaction between
a small molecule and a macromolecule (protein), allowing us to define the interaction pattern

and the binding region of target proteins (McConkey, Sobolev, and Edelman 2002).

Docking is a two-step method that begins with the prediction of the ligand structure,
as well as its position and orientation inside these sites (often referred to as pose), and ends
with the determination of the binding affinity. These two phase sare associated with sampling
methods and scoring schemes (Drwal and Griffith 2013)(Figure 10).
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Figure 10: Utility and implementation of molecular docking in drug discovery and

drugdesign (Sivakumar et al. 2020)

Before the docking simulation it is better to know the location of the binding site

because it considerably improves docking accuracy. (Kalyaanamoorthy and Chen 2011)

Additionally, information about the sites can be obtained by
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Comparing the target protein to a family of proteins with comparable functions or to proteins
co-crystallized with other ligands. Without knowledge of the binding locations, cavity detection
tools and online servers like as GRID, POCKET, SurfNet, PASS, and MMC can be used to
find probable active sites within proteins (Glaser et al. 2006).

V. In silico pharmacology
Absorption, distribution, metabolism, excretion along sides toxicity are considered to
be very important data in discovering and developing new drugs, it helps researchers find drug
like molecules that possesses physicochemical properties that might enable them to become a
therapeutic drugs (Zhong, 2017; Chandrasekaran et al., 2018)
a) Absorption

Absorption is considered to be the ability of a molecule to penetrate the gastrique cell
membrane; there are two types of trans-membrane activity: (Chandrasekaran et al., 2018;
Zhong, 2017).

» Passive membrane transport: compounds are transported by the effect of a concentration
gradient; here we take into consideration the lipophilicity and size of the molecule to
predict the possibility of absorption.

» Active membrane transport: this type of trans-membrane activity requires the mediation
of carrier proteins that are selective and energy dependent, like P-glycoprotein (MDR1),
in this case the interaction between the molecule and the carrier protein is taken into
consideration.

b) Distribution

Drug distribution means the movement of a drug from the circulatory systems (blood or
lymphatic) to the tissue; the prediction of drug distribution is made possible by mainly
examining the blood-brain barrier (BBB) permeability, the volume of distribution (VD), and
the plasma protein binding (PPB) (Zhong, 2017; Chandrasekaran et al., 2018)

c) Metabolism

Drug metabolism is the biotransformation (oxidation, reduction, hydrolysis, and
carboxylation.) of viable drugs into metabolites; most of this reactions occur in the liver and
are carried out by cytochrome P450 (P450 or CYP) with about 100 CYPs isoforms found in
humans ,The most active CYPs for drug metabolism are CYP2C, CYP2D, and CYP3A
subfamilies. (Zhong, 2017).
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d) Excretion

Excretion is the elimination of a drug from the body achieved by either the kidney and/or the
liver where drugs are eliminated in the form of urine or bile; drug excretion prediction help
build the required drug concentration to maintain the therapeutics effects.(Zhong 2017;
Chandrasekaran et al., 2018).

e) Toxicity Profile

Prediction of Toxicity Profiles considered as a critical to Developers; toxicity was tested by
using laboratory animals but now in silico toxicology is applied for toxicity optimization and to
minimize the risks of animal toxicity testing by predicting the toxicity of compounds towards
certain organ(liver , kidney ...).(Chandrasekaran et al. 2018) (Nathan and Aihao 2010)
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Material and methods

l. Materials

1.1. Data bases
a) PDB

The Protein Data Bank (PDB) is the first open access digital data resource in biology
and medicine. It provides free access to 3D structure data for large biological molecules
(proteins, DNA, and RNA) (www.rcsh.org). PDB was explored to download the targeted

proteins 3D structures in PDB format. In our study, we retrieved 3D structure of IKB, COX-1
and 2, and Xanthine-oxydase according to their IDs (Table 4).
Table 4: 3D structures and IDs of target proteins downloaded from PDB

Targeted protein
(macromolecule) RCSB 1D structure

Human IkB kinase beta
4KIK

Bovine Xanthine Oxidase in

Complex with Quercetin SNVY
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Cyclooxygenase-2
(prostaglandin synthase-2)

with a selective inhibitor, sc- 1Cx2
558 (cox-2)
Ovine Cyclooxygenase-1 1017

Complex with Meloxicam

b) PubChem

PubChem is an open chemistry database. Since its launch in 2004, it became a key

chemical information resource for scientists, students, and the public. Mostly, PubChem

contains small molecules, but also larger molecules such as nucleotides, carbohydrates, lipids,

peptides, and chemically modified macromolecules. It collects information on chemical

structures, identifiers, chemical and physical properties, biological activities, patents, health,

safety, toxicity data, and many others. (pubchem.ncbi.nlm.nih.gov).

We used PubChem to download 2D structures of phenolic compounds from different

classes according to their IDs (Table 5).
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Table 5: PubChem IDs of targeted polyphenol compounds.
) PubChem ) PubChem
Phenolic compound Phenolic compound
ID ID
4-Hydroxybenzoic 135 Fisetin 5281614
acid
Apigenin 5280443 Gallocatechin 9882981
Apigeninidin 441647 Genistein 5280961
Butein 5281222 Luteolin 5280445
Caffeic acid 689043 Luteolinidin 441701
Delphinidin 128853 Naringenin 439246
Epicatechin 72276 Pelargonidin 440832
Ferulic acid 445858 Taxifolin 439533

1.2. Software
a) BIOVIA Discovery Studio Visualiser

It’s considered as a free molecular modeling application for viewing and analyzing
proteins and small molecules data, with an easy interactive environment for viewing and editing
molecular structures.(‘ADMETIab 2.0’ n.d.)

b) Pyrx

Pyrx is considered as virtual screening software for structure-based drug design that
can be used to screen compounds against potential drug targets; Pyrx enables Virtual Screening
from data preparation to job submission and analysis of the results with an easy-to-use user
interface, which makes it a valuable tool for Computer-Aided Drug Design. (Pyrx,) .it’s used

in this study due to its free availability and easy work interface.
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c) OpenBabel

Conversion of chemical structures between multiple formats is a recurrent issue in

computational modeling. While standard interchange formats (for example, Chemical Markup

Language) and de facto standards (for example, the SMILES format) exist, the need to

interconvert formats continues to be a problem due to the variety of different applications for

chemistry data and the differences in the data stored by different formats (OD versus 3D, for

example).

With the release of Open Babel 2.3, Open Babel supports 111 chemical file formats in

total. It can read 82 formats and write 85 formats. These encompass:

Common formats used in cheminformatics (SMILES, InChl, MOL, MOL2),
Input and output files from a variety of computational chemistry packages
(GAMESS, Gaussian, MOPAC),

Crystallographic file formats (CIF, ShelX),

Reaction formats (MDL RXN),

File formats used by molecular dynamics and docking packages (AutoDock,
Amber),

Formats used by 2D drawing packages (ChemDraw),
3D viewers (Chem3D, Molden) and,

Chemical kinetics and thermodynamics (ChemKin, Thermo).

1.3. Webserver

a) ADMETIab 2.0:

Is an enhanced version of the widely used ADMETIab for systematical evaluation of

Pharmacological properties, with significant updates to functional modules, predictive

models, explanations, and the user interface (‘ADMETIab 2.0” )
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1. Methods

I1.1. macromolecules preparation
The selected macromolecules were purified using BIOVIA Discovery Studio
Visualizer, heteroatoms (water, ions, etc.) were deleted, polar hydrogen was added, and the

final macromolecules saved in PDB format.

I1.2. Ligands preparation
The SDF files for the phenolic compounds were obtained from the PubChem database,

11.3. Molecular docking process

Virtual molecular screening is a technique that involves docking small-molecule libraries
to a macromolecule in order to identify lead compounds with desirable biological properties.
This in silico method is widely used in computer-aided drug design. We describe how to
conduct virtual screening of small molecules using PyRx. Additionally, the specific methods
for using PyRx are outlined, as well as considerations for data preparation, docking, and

analysis as explained below :

e After opening our downloaded target molecule using Discovery studio visualizer we delete
the heatatoms and add polar hydrogens and finally save the modified molecule in PDB

format. (Figure 11 and Figure 12).

[ Discovery Studio Visualizer - o x
File Edit View Chemistry Structure Sequence Chart Scripts Tools Window Help

 Hacromolocues | Simution PSSR RN PRSI Pharmacophores | smallHolocules | X ray | Hy Tools
“vew "B RHEH ® X =26 & 8 [} Display Style... ~ MNon-bond Interactions... +

#  [=]ps welcome % bbh % 102 B |

v A <Cell>
v e 1o

Define Ligand: <undefined> @ C
Step through igands. =D

Define and Edit Binding Sit=

<

Figure 11: deleting heatatoms.
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Discovery Studio Visualizer — [m] ®
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Figure 12 : adding polar hydrogen.
e after opening Pyrex we right click using the mouse on the white space and click on load

molecule and choose our PDB format molecule (Figurel3).

ﬂ PyFx - Virtual Screening Tool

File Edit View Help
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Vina Execution Mode

(®) Local {using C:\Program Files {x36)\PyRx\vina.exe) Cluster (Portable Batch System) () Remote (Opal Web Services)

Figurel3: loading macromolecules.
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2 after our macromolecule have been loaded into Pyrex we right click on it and choose

°
Autodock then click on “make macromolecule.” (figure 14)
@] PyRx - Virtual Screening Taol - O X
File Edit View Help
Tdd BRIk ]
Navigator 8| | view ]
|| % Molecules | @ Autodock | BATVIK | > Mayaui | =|||| e 3D scene | [22DPots | | ZfDocuments | | | Tables |
E [ #[3vyn Di'spla'y' : , P A I I ZZ@| B A HS
AutoDock » Make Ligand
Save as PDB Wl EEE

Remove from Scene

Controls

| Vina Wizard | ) AutoDock Wizard
¥ StartHere x, Select Molecules  RunVina (5 Analyze Results
This wizard will guide you through setting up and running AutoDock Vina.

ook | P oypmel | Qs

Vina Execution Mode
() Remote (Opal Web Services)

(®) Local (using C:\Program Files (x86)\PyRx\vina.exe) Cluster (Portable Batch System)

Figure 14 : transforming the macromolecule into Autodock macromolecule.

e we click on Open babel then click on the Insert new item icon and choose our ligands

(Figurel5)

) PyRx - Virtual Screening Tool
File Edit Wiew Help
iw e e D | O
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Figure 15 :loading the ligands.
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e After choosing the ligands we right click on it and choose minimize all (Figure 16).

ﬂ PyRx - Virtual Screening Tool

— O X
File Edit View Help
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10743 C11H1205 224.20998 28

Figure 16: minimizing ligands

e After the minimization is completed we right click and choose convert all to Autodock ligand
(Figure 17)
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Figure 17 : converting ligands to Autodock ligands.
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e By clicking on the Autodock window we can see our loaded and converted ligands and

macromolecules (Figure 18)

8 PyRx - Virtual Screening Tool — O X
File Edit View Help

T dd REIE]
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x. Select Molecules  Run Vina Analyze Results
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Vina Execution Mode
(®) Local (using C:\Program Files (x86)\PyRx\vina.exe) Cluster (Portable Batch System) (D) Remote (Opal Web Services)

Click on Start button to begin -—= Start

Figure 18 : Autodock window view.

e After clicking on the start button and choosing our Targeted ligands and macromolecule we

click on “forward”(Figure 19)

@ PyRx - Virtual Screening Tool
File Edit WView Help

iw e D w| O

Navigator B | view
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I INEEFTEEZ @ 8 4L

& Macromolecules

E1 3rwy_Xanthine Oxidase
Controls
Vina Wizard | 2 AutoDock Wizard e Open Babel #*  python Shell &¥ Logger

¥ StartHere Jia SelectMolecules RunVina [G@ Analyze Resuits
Select Ligand(s) and Macromalecule from Navigator -> AutcDock panel.

Use Control and Shift buttons to select multiple Ligands.

3ligand(s) selected. | D:\Cruella. 2021, 1080p. WEBRIp. x264-RAREG Macromolecules\3nvy_Xanthine_Oxidase\3nvy_Xanthine_Oxidase. pdbgt selected.

| *Madd Ligand ||+l Add Macromelecule | [ ek

|[ Forward

Figure 19 : selecting targeted ligands and macromolecule.
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e We maximize our Vina search space for optimal results and click on the forward button again

to start our docking process (Figure 20).

@) PyRx - Virtual Screening Toal - O X
File Edit View Help
S dd R IK]
Navigator 5| [view 8
| % Molecules | 2 AutoDock | IATVIK | ) Mayavi | = ||| #3DS5cene | [ Pots | ZfDocuments | | |Tables |

[ & 3nvy_xanthine_Oxidase P| E EFE EE'| =2 ..%;|E||E{§)

| vinawizard | O AutcDackWizard | 4 OpenBabel | @ Pythonshel | Blogger |

¥ Start Here x. Select Molecules  RunVina [ Analyze Results

Ligand Progress
10185_uff E=270,88
10743_uff_E=206.41
I 128861 _uff E=34.73 Resst | Maximize |

Vina Search Space
Center X:29.4405 Y:-0.6354 Z:23.4521
Dimensions (Angstrom) X: 104.2916 Y:87.5002 Z:75.8077

Select ﬂR.un Vina Exhaustiveness: Back ” Forward
Figure 20 : starting the docking process.

e Once the calculations are done, results will be show the Binding Affinity (kcal/mol)
values. More negative the binding affinity better the orientation of the ligand in the
binding site.

e Exporting Vina Results: Results can be exported to Biovina discovery studio

visualizer software for analysis,
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11.4. Pharmacological properties
They were predicted using Lipinski's rule of five and ADMET' features.

11.4.1 Lipinski rule of Five
In drug research setting the rule of five predicts that poor absorption and permeation is less

likely when there are:

e less 5 hydrogen bonds donors (the total number of nitrogen— hydrogen and
oxygen—hydrogen bonds);

e less than 10 hydrogen bonds acceptors (all nitrogen or oxygen atoms);

e the molecular weight is less than 500 Daltons;

e the calculated octanol-water partition coefficient (log P) is less than 5 (Lipinskiet al.,
2001).

11.4.2. ADMET Features

Chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET) ,these
features were predicted using ADMETIAB2.0 server (table 6)

33



Material and methods

Table 6: Utility of pharmacology features used in this study
Pharmacology .
Parameters Significance
features
Caco-2 A compound is considered to have a proper Caco-2
permeability permeability and is easy to absorb if the predicted
Caco-2 permeability value is >-5.15 log cm/s.
Compounds with absorbance of more than 30% are
HIA considered to be greatly absorbed, while compounds
Absorption with absorbance less than 30% are considered poorly
absorbed.
Pgp-substrate
and A compound is considered to have a low absorption
if it was an inhibitor or a substrat for P-glycoprotein.
Pgp-inhibitor
Plasmaprotein | a compound is considered to have a proper PPB if it
binding (PPB) | has a predicted value < 90%; drugs with high
protein-bound may have a low therapeutic index.
Volume
Distribution A Compound is considered to have a proper VD if it
(VD) has a predicted value in the range of 0.04-20 L/kg,
Distribution The fraction unbound in plasma. Most drugs in
Fraction plasma will exist either in a bound or an unbound
unbound in | giate to serum proteins, the more that is bound the
plasma (FU)

less efficiently the drug molecule activity can be. >

5%: excellent ;< 5% : poor.

The blood-brain
barrier (BBB)

the ability of a drug to cross into the brain: BBB+ is
considered good blood-brain barrier permeability

while BBB- is a low blood—brain barrier.

34



b)

Material and methods

Metabolism: Metabolism was predicted based on the CYP models for substrate and
inhibition of CYP2D6, CYP3A4, CYP1A2, CYP2C19 and CYP2CO.
Excretion : Excretion was predicted based on the total clearance:

o High clearance : >15 ml/min/kg

o Moderate clearance: 5-15 ml/min/kg:

o Low clearance : <5 ml/min/kg
Toxicity: The toxicity prediction of drugs was based on AMES toxicity, hERG
inhibition, hepatotoxicity and Carcinogenicity.
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Results and discussion

l. Ikkp
1.1 IKkp interaction profile

In our study we found that polyphenols could bind to the Met 96 gatekeeper with VVander
Waals interaction (Ferulic acid, Caffeic acid, Gallocatechin, Fisetin and Narnigenin), Pi- Sulfur
bound (Pelargonidin, Genistein, Delphinidin, Apigeninidin and Luteolin) or Pi-Alkyl with and
Luteolinidin. (Figure 21)

In addition, we found that the hinge region of the KD of IKKf successfully interacted with 4-
Hydroxybenzoic acid, Ferulic acid, Caffeic acid, Gallocatechin, Fisetin, Taxifolin, Pelargonidin,
Delphinidin, Apigeninidin, Narnigenin, Luteolinidin and Luteolin. Epicatechin and Butein do not
interact with kinase domain of IKKf residues. (Figure 21)

Regarding the interaction with the activation loop, we found that almost all the phenolic
compound display an interaction bound with Asp166 while Epicatechin displayed an interaction
with Gly168. 4-Hydroxybenzoic acid, Caffeic acid, Butein and Fisetin do not interact with none of
the triad residues. Leul67 do not interact with any of the phenolic compounds.(Figure 21)

37



Results and discussion

VAL
LYs &2 MET ASP
A:44 A:96 A:103
i
LEU /l
A:21 e e \}//\/ GLY
: : A:102
. |
ASP slog. 2
2 B A:166 g o
A:98 - =
ILE * ILE ALA B A21
A:165 . A:165 &3 R 2
P A:152 ffﬁﬁ
e VAL —-—
£ GLU\ A:74
197 GLU pLYES
D - A:97 G
A:74
Interactions
Interactions [:] van der Waals :l Alkyl
E van der Waals [: PANYl - Conventional Hydrogen Bond [: Pi-Alkyl
- Conventional Hydrogen Bond [: i
PHE
B:26
“GLU VAL I;L-Eg,lf]
| 27 - .
TYR - : ASN CYs
298 B:54 B:46  arGg
B:47 [ LYS
. B:44
VAL
A:29 o N
(o= B:61 ASP
D ‘ A:44 : B:166
A:102 e o e
P o
fovs
A - MET
(A:99. A:96
Interactions

:I van der Waals

- Conventional Hydrogen Bond

Interactions
- Pi-Sigma l:l van der Waals - Pi-Anion
:] Pi-Alkyl - Conventional Hydrogen Bond - Pi-Pi T-shaped
- Unfavorable Donor-Donor I:I Carbon Hydrogen Bond
C

D

38



Results and discussion

VAL
B:74 LYS
o E,LQUZ B:44
B:220 . MET
o = . B:96
B:219 RS *
PRO *
B:224 GLN ALA ASN
B:432 B:42 B:28
o ' ASP
SER ERele : B:166
B:246 GLY VAL 3 -
B:431 B152" = == === .
e
Q
81247 "[ARG SeeH GLY
. B:427 cYs " B:22
B:09
TYR
ASN giazs  BiS71 e !
LEU B:225 cvs B:29
8:223 B:114 ILE s i
B:165 LEU ASN B:23
PHE B:21 B:150 -
B:424 -
GLU
B:149
Interactions
Interactlm;s - . D van der Waals - Pi-Sigma
I:I van der ) asls I:I Ak - Conventional Hydrogen Bond I:I Pi-Alkyl
- Conventional Hydrogen Bond - Unfavarable Donor-Donar
VAL ASP
A:74 B:103
GLY
MET LYs 3
A96 Ada R LEU
LYS
A:147
GLU
A:149
ASN
A:150
/0
5 ILE
QL¥ ¢ara A165
A:42
GLY THR THR
A22 A:23 WAL B:23
> B:74
Interactions
Interactions
:I van der Waals - Pi-Sigma o
- Conventional Hydrogen Bond :] Pi-Alkyl I:I van der Waals - Pi-Sigma
- Conventional Hydrogen Bond E Pi-Alkyl

39



Results and discussion

TYR
ASE A:98

GLU
A6l
VAL GLU
A:74 A:149
GLY
A:22
Interactions Interactions
:l van der Waals - Pi-Sigma D van der Waals - Pi-Sigma
I conventional Hydrogen Bond [ Pisulfur I Conventional Hydrogen Bond [ Pi-suifur
[ ] carbon Hydrogen Bond [ Pi-akyl [l Unfavorable Donor-Donor [ Pi-akyl
| J
GLU VAL
A:61 A:74 GLU
WAL A:97
AT4
GLU
A:97 P
@“'g’ g, Do o -
-
VR ' ASP
A:98 A:166
GLY
AG]_L;Z THR A:102
i A:23
A:42
MET ALA (&%)
A:96 A42 A:99
Interactions =
I:l van der Waals D Pi-sulfur D von der Woals D Pi-Sulfur
- Conventional Hydrogen Bond :I Pi-Alkyl
. - Conventional Hydrogen Bond D Pi-Alyl
- Pi-Sigma
- Pi-Sigma
K L

40



MET
A:96
VAL
ILE .‘A.:29
A:165
ASP " >
A:166 [ [
. D/
Lvs 't
A:44
Interactions

:] van der Waals
Il Conventonal Hydrogen Bond

ASP VALY
A:103 A:l52
.
GLY <
A:102 q
v
A:98
Cvs
AIIY ey ({
Y
GLU
Ai97
Interactions
[[] venderwaas

- Conventional Hydrogen Bond
Carbon Hydrogen Bond
I unfavorable Donor-Donor

VAL
A:74 CYS
A:99

GLU

L SUR97

WS TYR
A:98

. o
Pi-Akyl

B P
[: Pi-Sulfir
[ s

GLY
A:102

ASP
A:103

LEU

LEU
A94
MET
Tl GLU A:96
A167 &6L ILE
. A165
ASP
A166 H
A
LYS™,
AdY)
Interactions
[j van der Waals
- Conventonal Hydrogan Bond

I Unfavorable Donor-Danor

ASP
Al66

1vs"
A4

Results and discussion

B
-
*

VAL
A:29

ALA
A42

ALA

Bl ~soms
[ Pt

GLU
A97
CYs
A99
? TYR
A:98
L
a?
o . 9
'
W GLY
' A102
A2 b A1S2
LEU
A2l
GLU
A97
CYs
A99
TYR
A98
ASP
- ‘ A103
AP
e
- 4G
>
B
e
. .. GLY
"o VAL A102
LEU A152

A21

Luteolinidin,O: Luteolin, P: Apiginin

Figure 21: interaction profile of phenolic compounds with Ikkf. A : 4-Hydroxybenzoic acid,B :
Ferulic acid , C: Caffeic acid,D: Epicatechin ,E Butein ,F: Gallocatechin,G: Fisetin ,H: Taxifolin,
I : Pelargonidin ,J : Genistein ,K : Delphinidin ; L : Apigeninidin,M : Narnigenin, N :
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.2 Ikkp Binding energy results :

Results and discussion

All the phenolic compounds exhibited a high binding affinity with IKKf as shown in table 7.

Table 7: The binding energies displayed by phenolic compounds-IKKf complexes

Phenolic compounds

Binding energy

(kcal/mol)
4-Hydroxybenzoic acid -5.8
Ferulic acid -6.8
Caffeic acid -6.9
Epicatechin -7.1
Butein -7.9
Gallocatechin -8.5
Fisetin -8.5
Taxifolin -9
Pelargonidin -9.1
Genistein -9.1
Delphinidin -9.3
Apigeninidin -9.5
Naringenin -9.6
Apigenin -9.6
Luteolinidin -9.9
Luteolin -10

42



Results and discussion

The docking results of this research are similar to the study of the molecular interaction between
celastrol and its 36 analogues with IKK[ done by (Veerappan et al. 2016); were they found that celastrol
and 25 of its analogues inhibit IKKp, Celastrol formed two hydrogen bonds with Glu97 and one with
Met96, gatekeeper residue, which controls the access of inhibitor to binding pocket ,An additional
hydrogen bond with Asn150 and multiple hydrophobic interactions with glycine loop (residues 20-30)
and activation loop (residues 166- 194) greatly stabilizes the celastrol IKKf interaction with the binding
score of —10.56 kcal/mol.

In another study Hammoudi et al. (2020) docked thirty 2-amino-3-cyano-4-alkyl-6-(2- hydrox-
yphenyl) pyridine derivatives with IKKf , the results showed docking score valuesranging from -5.710 to
-8.441 kcal/mol with a binding mode similar to k252-A a known inhibiter ofIKKf, and interacting with
residues such as Leu21, Glu97, Cys99, Asp166, Glu149,Tyr98, Cys99, Aspl03.

1. Cox-1 and Cox-2 :
. Cox-2 interaction profile :

During this research we found that all the tested phenolic compounds interact with residues of
the hydrophobic pocket Tyr385, Tyr387, Phe518 and Leu352 mostly by Van Der Waals and Pi-
Alkylbonds (Figure 22)

Considering the mouth of the active site Apigenin, Luteolin, Naringenin, Ferulic acid and
Caffeicacid formed Van Der Waals interaction with Tyr355 residue. Apigeninidin and Pelargonidin

formed Pi-Cation interaction with residue Arg120 (Figure 22).

Regarding the interaction with the side pocket , Caffeic acid formed Hydrogen bonds with
both His90 and Val523 and Van Der Waals interaction with Arg513 and Ser530 , while Ferulic acid
formed Pi-Alkyl bonds with Val523 and Van Der Waals bonds with Ser530,Arg513 and
His90.(Figure 22)

The flavonoids, Delphinidin ,Luteolin , Apigenin ,Genistein and Naringenin all formed Van
Der Waals bond with residue Val523 , while Fisetin, Apigeninidin and Pelargonidin formed Pi-
Alkyl bond with Val523 , the two Anthocyanins also formed Van der Waals bond with Ser530
(Figure 22).
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Figure 22: Phenolic compounds interaction with Cox-2. A : 4-Hydroxybenzoic acid,B : Ferulic
acid, C: Caffeic acid, D: Epicatechin, E : Butein, F : Gallocatechin , G : Fisetin, H : Taxifolin, J :
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1. Cox-2 Binding energy results:

This study found binding energy of Cox-2 to be between -6.1 and -8.5 kcal/mol .(Table 8).

Results and discussion

Table 8: Cox-2 Binding energy results
Phenolic compounds Binding energy
(kcal/mol
4-Hydroxybenzoic acid -6.1
Caffeic acid -6.8
Ferulic acid -6.9
Epicatechin -7.5
Gallocatechin -7.7
Butein -7.9
Taxifolin -7.9
Delphinidin -7.9
Fisetin -8.1
Luteolinidin -8.1
Naringenin -8.2
Genistein -8.3
Luteolin -8.3
Apigenin -8.3
Pelargonidin -8.4
Apigeninidin -8.5
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1. Cox-1 interaction profile :

In this study we found that all the tested phenolic compounds interact with residues of the
hydrophobic pocket .4-Hydroxibenzoic acid, Caffeic acid ,Epicatechin, Gallocatechin, Taxifolin, Luteolin
and Naringenin all formed Van Der Waals interaction with Trp387 and Tyr385. Ferulic acid, Fisetin and
Delphinidin formed Hydrogen bonds with Tyr385.Pelargonidin and Apigeninidin showed Pi-Alkyl bond with
Leu352 and Van Der Waals bond with Trp387. Butein interacted with the hydrophobic pocket via Van Der
Waals interactions with Phe518, Tyr385, Trp387 and Leu 352 (Figure 23).

Considering the mouth of the active site the flavonoids, Butein, Pelargonidin, Apigenin,
Apigeninidin and Luteolinidin formed Van Der Waals bond with Tyr355, a key residue of the mouth of the
active site (Figure 23). Regarding the interaction with the side pocket residues, Pelargonidin and
Apigeninidin formed Van Der Waals bond with Ser530 and 11e523.Butein and Luteolinidin formed Pi-Alkyl
bond with I1e523 and VVan Der Waals bond with Ser530, Apigenin on the other hand formed hydrogen bond
with Ser530 and P-Alkyl bond with 11e523. Genistein didn’t show any interaction with Cox-1 active
site.(Figure 23).
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Figure 23 : Phenolic compounds interaction with Cox-1. A : 4-Hydroxybenzoic acid,B : Ferulic
acid, C: Caffeic acid, D: Epicatechin, E : Butein, F : Gallocatechin , G : Fisetin, H : Taxifolin, J :
Genistein, K : Delphinidin, L: Apigeninidin, M : Apigenin, N : Luteolinidin, O : Luteolin, P :

Naringenin.
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IV. Cox-1 binding energy results :

Results and discussion

Cox-1 binding energy ranged between -6.2 and -9,.5 kcal/mol (Table 9).

Table 9: Cox-1 Binding energy results
Phenolic compounds Binding energy
(kcal/mol
4-Hydroxybenzoic acid -6.2
Caffeic acid -6.6
Ferulic acid -6.7
Gallocatechin -7.2
Genistein -7.4
Epicatechin 1.7
Butein -8.1
Naringenin -8.2
Delphinidin -8.3
Pelargonidin -8.5
Taxifolin -8.5
Fisetin -8.6
Luteolin -8.6
Apigenin -8.6
Apigeninidin -8.6
Luteolinidin -8.8
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the results of Kurumbail et al. (1996) showed that SC-558 , a cyclooxygenase inhibitor that shows
inhibitory selectivity for COX-2 over COX-1 formed Alkyl and Pi-Alkyl bonds with residues of the
Hydrophobic pocket Trp387, Tyr358 and Leu352, Hydrogen bonds with residues from the mouth of the
active site Arg120 and Tyr355. SC-558 also interacted with the side pocket by forming Pi-Sulfur bond
with His90 and Pi-Sigma bond with Val523 (Figure 24) (Kurumbail etal. 1996).
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Eigure 24 Interactions between selective inhibitor SC-558 and COX-2.

In a Molecular docking study of active phytocompounds from the methanolic leaf extract of
vitex negundo against cyclooxygenase-2 , the resulted interactions of the tested compounds were
similar to the results of this research, the tested compounds interacted with residues Ser530,
Try355, His90 ,Arg120 and Val523 and were labeled as potential inhibiters for Cox-2

(Murugesan, Ponnuswamy, and Gopalan, 2014 ).
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1. Xanthine oxidase
I11.1  Xanthin oxidas interaction profile

Results and discussion

Apigeninidin showed the most interesting interaction with XO by forming hydrogen bonds
with Thr1010 and Ser876 ,Pi-Pi T shaped and Pi-Pi Stacked interaction with Phe914 and Phe1009
,Pi-Alkyl bond with residues Leul014 ,Vall0lland Leu873 and Van Der Waals interaction with
Glu802 (Figurel4).4-Hydroxybenzoic acid formed hydrogen bond with GIn1216 AND Van Der
Waals interaction with residue Phe914. Luteolinidin formed hydrogen bonds with Glu1261, and
Van Der Waals interaction with Phe914 (Figure 25).

The rest of the tested phenolic compounds didn’t show any interaction with the desired

residues.
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Figure 25 phenolic compounds interaction with Xanthine Oxidase .A: 4-Hydroxybenzoic acid,

1.2

B: Apigeninidin, C: Luteolinidin.

Xanthin oxidas binding energy :

The binding energy results of the 4-Hydroxybenzoic acid, Apigeninidin and Luteolinidin ranged between -

6.1 and -9.6 kcal/mol.

Table 10 : binding energy results of xanthin oxidas with 4-Hydroxybenzoic acid,

Apigeninidin and Luteolinidin.

Phenolic compounds

Classification

Binding energy (kcal/mol)

4-Hydroxybenzoic acid Phenolic acids :Hydroxybenzoic acids -6.1
Apigeninidin flavonoids : Anthocyannins -9.3
Luteolinidin flavonoids : Anthocyannins -9.6
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Results and discussion

The results of this docking study are similar to the results of (Cao, Pauff, and Hille 2014); where
they docked the Flavonoid Quercetin with XO and found interactions with catalytically importantresidues
Arg880 and GIlu802, as well as residues involved in purine substrate binding Phe 914,Phe1009, and

Thr1010, and also residues forming the extended solvent-accessible channel leading to the molybdenum
center Leu873, Leul014,Val 1011 (Figure 26).
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Figure 26 : Interaction of Quercetin with Xanthine Oxidase.
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IV.  Pharmacological properties

IV.1  Drug Ability

Results and discussion

All the tested phenolic compounds were accepted according to Lipinski Rules parameters (Table

11).

Table 11 : Lipinski Rule results

Phenolic compounds Molecular LogP | Hydrogen Hydrogen

weight donners accepters
4-Hydroxybenzoic 138.122 1.090 2 2 Accepted

acid

Apigenin 270.24 2.419 3 5 Accepted
Apigeninidin 255.070 3.649 3 4 Accepted
Butein 272.256 2.405 4 5 Accepted
Caffeic acid 180.159 1.196 3 3 Accepted
Ferulic acid 109.060 1.803 2 4 Accepted
Delphinidin 303.050 2.488 6 7 Accepted
Epicatechin 290.271 1.546 5 6 Accepted
Fisetin 286.050 2.248 4 6 Accepted
Gallocatechin 306.27 1.252 6 7 Accepted
Genistein 270.24 2.577 3 5 Accepted
Luteolin 286.239 2.282 4 6 Accepted
Luteolinidin 271.060 3.317 4 5 Accepted
Naringenin 272.256 2.51 3 5 Accepted
Pelargonidin 271.248 3.203 4 4 Accepted
Taxifolin 304.060 0.449 5 7 Accepted

V. ADMET profile

a) Absorption

All the tested phenolic compounds are non-Pgp inhibitors and have a High Human

intestinal absorption. Only Apigenin and Genistein were suggested to be possible Pgp-substrates.

Furthermore, the results suggested that 4-hydroxybenzoic acid, Caffeic acid, Gallocatechin,

Epicatechin, Taxifolin and Delphinidin have a low Caco-2 Permeability as shown in table 12.

Table 12: Insilico Caco-2 permeability prediction of phenolic compounds

Phenolic compounds Caco-2 Permeability Pgp-inhibitor Pgp- HIA
(cmls) substrat
4-hydroxybenzoic acid -5.270 No No High
Caffeic acid -5.220 No No High
Ferulic acid -4.902 No No High
Genistein -4.764 No Yes High
Gallocatechin -6.306 No No High
Epicatechin -5.971 No No High
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Luteolin -5.028 No No High
Apigenin -4.847 No Yes High
Naringenin -4.803 No No High
Butein -4.931 No No High
Fisetin -4.987 No No High
Taxifolin -6.055 No No High
Luteolinidin -4.989 No No High
Apigeninidin -4.843 No No High
Pelargonidin -4.965 No No High
Delphinidin -5.871 No No High

b) Distribution
All of the phenolic compounds showed no BBB penetration and had a proper volume distribution

as shown in table 13.

Table 13: Insilico prediction of distribution features

Phenolic compounds PPB (%) VD (L/kg) | Fu (%)
4-hydroxybenzoic acid 38.354 0.291 49.502
Apigenin 97.255 0.510 3.668
Apigeninidin 98.450 0.693 2.384
Butein 99.308 0.466 1.430
Caffeic acid 87.705 0.370 11.072
Delphinidin 92.202 0.649 8.692
Epicatechin 92.065 0.661 8.871
Ferulic acid 89.754 0.339 6.395
Fisetin 97.043 0.477 5.171
Gallocatechin 91.158 0.572 9.800
Genistein 97.558 0.471 2.088
Luteolin 95.436 0.533 5.985
Luteolinidin 97.627 0.610 3.290
Naringenin 93.763 0.502 5.654
Pelargonidin 97.777 0.652 3.287
Taxifolin 85.443 0.681 15.910

Only 4-hydroxybenzoic, Caffeic and Ferulic acid and Taxifolin showed a proper Plasma

protein binding (<90%). Other polyphenols showed a low fraction unbound in plasma and may

have a low therapeutic index. It is well established that phenolic chemicals have a low oral

60




Results and discussion

bioavailability and undergo significant biotransformation in enterocytes, the liver, and the gut
microbiota (Luca et al. 2020).

¢) Metabolism
We found that 4-hydroxybenzoic, Caffeic acid, Ferulic acid, Gallocatechin and

Delphinidin are neither substrates nor inhibitors of CYP enzymes. Other phenolic compounds

are either inhibitors or substrate to one or more of the cytochrome P450 family as shown in table

14.
Tablel4: Prediction of metabolism features of the phenolic compounds
Phenolic Substrate Inhibitor ] CYP1AZ2,
Compounds LuteO“n CYP2C9 CYP2C9’
CYP3A4
4- None None Luteolinidin | CYP2C9 CYP1A2
hydroxybenzoic
acid
o CYP1A2, _ _ CYP1A2,
Apigenin CYP2C9 CYP2C9, Naringenin CYP2C9 CYP2C9,
CYP3A4 CYP3A4
o CYP1A2, .
Apigeninidin CYP2C9 CYP2C9, Pelargonidin | CYP2C9 CYP1A2
CYP3A4
) CYP1A2, o CYP1A2,
Butein CYP2C9 CYP2C9, Taxifolin CYP2C9 CYP2C9,
CYP3A4 CYP3A4
Caffeic acid None None Gallocatechin None None
Delphinidin None None Genistein CYP2C9 CYP1A,
CYP3A4
Epicatechin CYP2C9 None
Ferulic acid None None
o CYP1A2,
Fisetin CYP2C9 CYP3A4,
CYP2C9,
CYP3A4
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d) Excretion

The results in this research suggest that all the tested phenolic compounds have a good excretion
with clearance values ranging between 3.840 and 17.388 ml/min/kg (Table 15).
Table 15: clearance values of Phenolic compounds

Phenolic Clearance Phenolic Clearance
compounds (ml/min/kg) compounds (ml/min/kg)
hy drox34/-benzoic 7.575 Gallo%atechi 17.081
acid
Apigenin 7.022 Genistein 7.844
Apigeninidin 11.101 Hesperetin 15.680
Astilbin 3.840 Luteolin 8.146
Butein 16.320 Luteolinidin 12.924
Caffeic acid 10.973 Naringenin 17.388
Delphinidin 14.752 Pelargonidin 13.405
Epicatechin 17.911 Quercetin 8.284
Ferulic acid 7.480 Taxifolin 9.517
Fisetin 8.273
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e) Toxicity

The toxicity results showed that Epicatechin, Luteolin, Butein, Fisetin, Taxifolin, Luteolinidin
and Pelargonidin might be mutagenic. All the tested phenolic compounds were suggested to be
non hERG Blockers. Only Caffeic acid was registered to be hepatotoxic. Considering
carcinogenicity Ferulic acid, Genistein, Naringenin, Butein, Luteolinidin and Apigeninidin were
suggested to possibly be carcinogenic as shown in table 16.

Table 16: Toxicity prediction of the tested Phenolic compounds

Phenolic compound AMES Toxicity hERG H-HT Carcinogenicity
Blockers
4-hydroxybenzoic AMES - Non-blocker | H-HT- Non-carcinogenic
acid
Caffeic acid AMES - Non-blocker | H-HT+ Non-carcinogenic
Ferulic acid AMES - Non-blocker | H-HT- | possibly carcinogenic
Genistein AMES - Non-blocker | H-HT- | possibly carcinogenic
Gallocatechin AMES - Non-blocker | H-HT- Non-carcinogenic
Epicatechin AMES+ Non-blocker | H-HT- Non-carcinogenic
Luteolin AMES + Non-blocker | H-HT- Non-carcinogenic
Apigenin AMES - Non-blocker | H-HT- Non-carcinogenic
Naringenin AMES - Non-blocker | H-HT- | possibly carcinogenic
Butein AMES + Non-blocker | H-HT- | possibly carcinogenic
Fisetin AMES+ Non-blocker | H-HT- Non-carcinogenic
Taxifolin AMES+ Non-blocker | H-HT- Non-carcinogenic
Luteolinidin AMES+ Non-blocker | H-HT- | possibly carcinogenic
Apigeninidin AMES - Non-blocker | H-HT- | possibly carcinogenic
Pelargonidin AMES+ Non-blocker | H-HT- Non-carcinogenic
Delphinidin AMES - Non-blocker | H-HT- Non-carcinogenic
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Despite the many health benefits of flavonoids , they show a low bioavailability due to
the sulfation, methylation and glucuronidation in the small intestine and the liver(Thilakarathna
and Rupasinghe 2013),

Konishi, Zhao, and Shimizu (2006) measured plasma concentration of phenolic acids
dosed in a rat stomach and reported an increasing order of the gastric absorption efficiency,
Gallic acid=chlorogenic acid<caffeic acid<p-coumaric acid= ferulic acid.

Zhao, Egashira, and Sanada (2003) who studied the absorption sites of ferulic acid in
rats showed aquasitotal absorption of ferulic acid in the upper part of the gut and found that FA
has a very high bioavailability, which was evaluated on the basis of the high urinary recovery of
FA and the high total FA plasma concentration.

The final results of Wang et al. (2014) showed that Caffeic acid was shown to have low
oral bioavailability in rats, low intestinal absorption, and poor permeability across Caco-2 cells.

Considering flavonoids researcg bsyggests that they have low intestinal bioavailability
and rapid urinary and biliary excretion. The bioavailability of them varies between different kinds
of flavonoids(Akhlaghi and Foshati 2017)

In a study done by Franke, Lai, and Halm (2014) they found that Isoflavonoids have a
biphasic absorption pattern After soy intake, first in the small intestine and then in the large
intestine , with Daidzein (DE) and Genistein started to be absorbed minutes after intake

In an interesting study of Bioavailability of green tea flavan-3-ols in humans by (Del
Rio et al. 2010; Stalmach et al. 2009) it was found that green tea flavan-3-ols are highly
absorbed and rapidly excreted via the kidneys .

in the study of Azzini et al. (2010) after researching the bioavailability of
phytochemicals in fresh and stored strawberry it was found that Pelargonidin glucuronide,
pelargonidin glucoside and pelargonidin aglycone peaked in urine within 2 h of strawberry

consumption.
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Conclusion

Conclusion

In conclusion, this study showed that phenolic acids (4-Hydroxybenzoic acid, Ferulic
acid and caffeic acid) , Anthocyanins (Apigeninidin ,Delphinidin and Pelargonidin and
Luteolinidin) and Flavonols Fisetin and Taxifolin ) are probable Ikkp inhibitory sources due to
their interactions with Met96 ,a gate keeper residue or Glu97, Tyr98 and Cys99 , the residue of
the hinge region of the KD and Asp166, Leul67 and Gly168 residues the N-terminal side of the
activation loop.

Considering Cox-2, All of the tested phenolic compounds interacted with Cox-2 and
Cox-1lactive site ,showing interactions with the hydrophobic pocket residues Tyr385, Trp387,
Phe518, Ala201,Tyr248 and Leu352, the mouth of the active site hydrophilic residues
Arg120,Tyr355 and the conserved and non-conserved residues of the side pocket His90, Val523,
Arg513 and 1le523.Caffeic acid, Ferulic acid, Pelargonidin, Delphinidin, Gallocatechin, Fisetin
and Butein showed the best non-specific binding conformation towards Cox-2 with Genistein
only interacted with Cox-2.

From all the tested phenolic compounds only 4-Hydroxybenzoic acid, Luteolinidin and
Apigeninidin were found to be possible Xanthine Oxidase inhibiters due to their interaction with
catalytically important residue Glu802 as well as residues involved in purine substrate binding,
Phe 914,Phe1009, and Thr1010, and also residues forming the extended solvent-accessible
channel leading to the molybdenum center, Leu873, Leu1014,Val 1011.

All of the tested phenolic compounds had promising absorption, distribution, metabolism
and excretion results. Considering toxicity Epicatechin, Luteolin, Butein, Fisetin, Taxifolin,
Luteolinidin and Pelargonidin might be mutagenic, only Caffeic acid was registered to be
hepatotoxic and Ferulic acid, Genistein, Naringenin, Butein, Luteolinidin and Apigeninidin were
suggested to possibly be carcinogenic.

All in all phenolic compound or plant based compounds in general show a great deal of
interesting anti-inflammatory and anti-oxidative properties and should be intensively studies to

provide a more safer and effective medicinal drugs.
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