MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA
RECHERCHE SCIENTIFIQUE
UNIVERSITE SAAD DAHLAB - BLIDA 1

FACULTE DES SCIENCES

DEPARTEMENT D’ INFORMATIQUE

Master’s Report
in Computer Sciences

Specialty : Natural Language Processing

Automatic Identification of an Author

Based on Writing Style

Presented by:
Tabet Abderraouf and Bouhala Ayoub

Supervided by :

Promoteur Mr Cherif-Zahar

2021-2022

Appreciation

At the end of this work, we thank God in the first place for giving us
the strength and courage to bring it to completion.

We would like to express our sincere thanks to our Promoter m.chrife
zahar for his unquestionable advice and interests.

Our thanks go to the people who helped us in the realization of this
brief.

We extend our sincere thanks to the members of the jury for the
interest they expressed in this modest work and agreed to review it.

In the impossibility of mentioning all the names, our sincere thanks go
to all those who contributed by their advice to the good outcome of
this work.

Finally, we would not dare to forget to thank all the TAL teachers for
the enormous work they do in order to create the right conditions for
our studies.

Dedication

| dedicate this work to my dear parents
| dedicate this work to my dear family
| dedicate this work to my dear friends
| dedicate this work to my brothers Th30,Tb10
| dedicate this work to my dear sport athletes
| wish you all happiness

Abstract

It often happens that articles that appear in the press or sometimes entire books are not signed
and we know nothing about their author. It also happens that authors attribute to themselves
the authorship of an unsigned article or book or, on the contrary, that critics question this
authorship.

The idea of the present subject and of being able to attest whether, according to the style of
this or that other author, an unsigned article could be from him or not.

Our interest in the subject applies to journalistic articles in Arabic with nationalist or even
revolutionary connotations from the pre-revolutionary Algerian period that appeared in Ech-
Chihab and/or El-Bassa'ir.

Unfortunately we didn't manage to found a proper Arabic data concern our topic , therefore
we used a English one.

The Ech-Chihab of IbnBadis appeared from 1925 to 1939 first in weekly and then monthly
form.

El-Bassa ’ir was the organ of the Association of Algerian Muslim Ulemas from 1935 to 1939
and then slipped voluntarily during the Second World War to reappear only in 1947 to be
suspended by the colonial administration in 1946.

Both newspapers contained religious, social, and biographical articles with moralistic aims,
but also contained sections of national or foreign policy, which are of particular interest to us.

Résumé

Il arrive souvent que des articles parus dans la presse ou parfois des livres entiers ne soient
pas signés et on ne sait rien de leur auteur. Il arrive aussi que les auteurs s’attribuent la
paternité¢ d’un article ou d’un livre non signé ou, au contraire, que les critiques remettent en
question cette paternité.

L’idée du sujet présent et de pouvoir attester si, selon le style de tel ou tel autre auteur, un
article non signé pourrait étre de lui ou non.

Notre intérét pour le sujet s’applique aux articles journalistiques en arabe a connotation
nationaliste voire révolutionnaire de la période algérienne pré-révolutionnaire parus dans Ech-
Chihab et/ou El-Bassa’ir.

Malheureusement, nous n’avons pas réussi a trouver une bonne donnée arabe concernant
notre sujet , donc nous avons utilisé un anglais.

Le Ech-Chihab d’Ibn Badis est apparu de 1925 a 1939 d’abord sous forme hebdomadaire puis
mensuelle.

El-Bassa ’ir a été I’organe de 1’ Association des oulémas musulmans algériens de 1935 a 1939
et a ensuite glissé volontairement pendant la Seconde Guerre mondiale pour réapparaitre
seulement en 1947 pour étre suspendu par 1’administration coloniale en 1946.

Les deux journaux contenaient des articles religieux, sociaux et biographiques a but moraliste,
mais aussi des sections de politique nationale ou étrangere, qui nous intéressent
particuliérement.

uadlall
Of e gl Capmd W5 ALY Sl w5 a Y la) Glany 8) ddlaall 85) sdinall VA o aaadle Glle
138 Al @y celld (o eSall oo sl alige ye QS) JUal) sil e agdl O silsall ey Of Wl Gy il e

ol
A 08 Ol Sy AnBga e Aliacelld 5f Calgall 138 (o glul 88 e)lS 13 Lo) e 5508 5 all g guin sall 3 S
W

Jile 558 e sl in o e sl VYA I3 By pal) FADL Al YA o Gakaiy § g pally Lialaial
o) 1/ g sbpall 5 sl g 4 530) 5)

Al AR Bas) Lierdid @llillie guin gl saa A ye by e siall (pe (S) cdanll ¢ pud

JUoed A e sl U5 81939 ale) 1925 ale (e el unnls o) el

I8 Ao sk G i 19390al) 1935 le (o Con i1l Cpabusall slalall Lman (& 13ume e Llual) il
1946.5le 8 & jlaniu¥) 5 10Y) 8 (e 3la3 1047 ple b s a0 5 ja jedaid Al duallall oyl

O aladl e (g gint Wil (€0 g0 BDAT (o je 3 4310 3y 5 dpe laliad) 5 A OYle o iitianall UK (5 giad
oald JS8 Liegd Sl gedan LAl i Al sl duau)

Table of contents

Chapter 1 : INtroductionccciiiiiiiiiiiiiiiiiiiiennre e resasesessssseseeasssssesasssssesasssssesnsssssenns 14
1.0 WOTK CONEEXE .ttt ettt ettt et e s ettt e st e s bt e e s bt e e sab e e sabeesabeeesabeeesnbeesnseesneeesareennns 15
1.2 ProBI@MAtIC c..eeeiiet et ettt e b e she e saee e e 15
1.3 The style Of N QULNOKoviiee e e e e et e e e st e e e e s ateeeeeanes 17
IR 0] o T =Y or 4 VTR PPPRN 18
1.5 MEMOIY OFZaNIZATION . .eeiiiiiiieeee ettt ettt e e e ettt e e e e e s e eabb et e e e e e e s e anrteeeeeeeesannreeeeeens 18

Chapter II: State of the art of related WOrkK............cirereiiiiiiecirreccrrrccrrreeee e e e e s e raneenenas 19
2.0 INEPOTUCTION ...ttt ettt ettt et e bt e s bt e sat e s et e et e e b e e bt e sbeesmeeenneenneen 20
2.2 PN MEASUIEMENTS .. .oiiiiiiiiie ittt e e s e e s ra e e s e e e e sarreee e 20

2.2, 1 defINITION 1ottt sttt et e e s bt e sabeesbeeeanteesbeeeans 20
2.2.2 NISEOFIC ettt ettt ettt ettt ettt ettt e sb e st s bt e sttt e sab e e s bt e s bt e e s be e e bt e e abeesbeeesabeesabeeeanbeesbeeean 21
2.3 EXPerimentation 0N GIONO c.occceeee e 21
P8 B A [44 o Yo [ot i o Yo FO O OO PSSP P OO UPUROPIN 21
2.3.2 The Prediction SEABE ..uuii ittt e e st e e e seata e e e ssate e e e senteeeeserraeeesnes 21
2.3.3 Traditional MEthods........oo it saee e s 21
2.3.4 Deep learning, from model to MOdelliNgcccveeiiiiiiiiieiee e 23
D oY=l [=Yolo) o1V Lo [V A oY T =T o F TR 24
2.4.1 From dEEP IEAIMINE ...vviieiiiie ettt e ettt ettt e e ettt e e e ectte e e e e ebte e e e ettaeeesataeeesstaeaesasteeaesassenaesnnes 24
2.4.2 Segmentation fOr INAEXINGccuiii it e e e sre e e e s sate e e s searaeeesanes 25
2.5 Natural Langage PrOCESSING....cccuiiiiiciieeeeiiiieeeeittteeesitteeesetreeessataeeeesaaaeeessatseeessnsseeeesssseeesnnsseeeans 26
PR T A) { oTe [¥ T T o OO P PRSPPSO 26
2.5.2 Definition OF TALN ...coiiiiiee ettt st sttt esbe e sae e satesabe e b e e nbeens 26
2.5.3 HiISTOMIC Of TALN ...ttt ettt ettt b e bt sat e st e et e e sbe e sbeesabesabeeabeebeenes 26
2.5 4 TALN SEAtISTIC .civviiiiiiiiiiiiiric e s 27
2.5.5The leVels Of TALN....coci ettt st e s e e e e ns 28
2.6 SOMES OF @NAIYSIS ..uviiiiiiiie et e e et e e e et a e e e e ata e e e e abaeeesaasaeeeeansreeeeannreaaaas 28
B Y T 1A F V7] = Yot o [oSSR 28
W Y T 1 A F Y=Y = Lo o o USRS 29
P R 1o b= AV R o1 = T={ g - 1 4 (ol U PURPRRN 30
2.7 Research fields and applications of TALN.......cccciiiiiiiiiie e e e seaee e 30
2.8 Applications related to production where text editing........cccceeeeeeeciiiieeee e, 30
PRl 0] o 1ol (V1Y [o] o IV P UV PURTOURRPPRTN 31

Chapter lll: State of the art on classificationcccceuiiiiiiiiiiircccrrcrrrcrrr e 32

0 A [N 4 o Yo 18 [t o o TN 33

3.2 Definition Of RNN L....iiie ettt ettt sttt et esbe e st e sabe e b e e nbeenes 33
3.3 BASIC RNN Cell...neiiieeieee ettt sttt sttt e s bt e saee st e sabe e b e e neenes 34
VUL B N =T o T=T ol =T o d o] o PRSP 36
34,1 DEfiNITION ettt e s e et e et e e s bt e e sabeesbeeeaneeesreeeane 36
3.5 ACEIVAtION fUNCLIONS...cuiiitiiie ettt sttt sttt et sbe e s s bbb nes 37
3.5.1 Activation function — SIZMOId........cccciiiiiiiiiee e e et 38
3.5.2 Activation funCtion —tanh.......c.cooiiiiii e 38
3.5.3 Activation fUNCION — RELUciiiiieee ettt e 38
3.5.4 Two additional activation functions — ELU and LeakyReLU.........cccocvveeiviiieeincieeeeiciiee e 39
3.6 Back propagation throught time (BPTT)...ccccuieii ettt e e e e e e 40
3.7 Vanishing and exploding gradientsooocuiiiiiiiiii et e 42
3.8 RNIN CEII VAITANES ..ttt ettt sttt et esaeesatesabe e b e e nbeenes 42
3.8.1 Long short-term memory (LSTIM) ..couee e ciee e ceteeetes ettt e eteeetee e teestee e eaveestaeesateesaraeenns 42
3.8.2 Gated recurrent UNit (GRU)ccciieciiecie ettt et e e te e ete e e s e e e ta e enaeesraeeans 47
3.9 RNN Variants TOPOIOZIESc..uviieeeiiiie ettt ettt e et ee e e ettt e e e e sabae e e enbteeeentaeeeenreeas 48
3.9.1 BidirectioNal RNNS......ooiieieeteee ettt st sttt be e st st sabe e b e beenes 49

R T A - 1= 0] 2 AV RPN 51
3.9.3 Recursive NEUral NETWOIK.......cciiuiieriiiiiieee ettt ettt ettt st e s e e saee e sbee e 51
I8 (0] o Tl [V o o TP UR PR UR PSSO 52
Chapter IV: Designing an Author Detection Application by Stylecc..corrreiiriiccirieccererceeee, 53
AL DEFINITION .ttt ettt et e bt e s bt e s at e et e bt e s bt e sbe e eae e et e e teenbeesheesareeas 54
By Yol o1 g Yo] [o =TSSP 54
B.2. 1 TENSOTFIOW ..ttt sttt e s s anesn e e n e e neens 54
L A =T - 1 PSP PSPPSR OPP P OPPPN 54
L0 e VLV oY o =T 0 o1 oT=To [1 Y= 55
G o T =] L OO SO U PR TRRRTPTUSRURRRPPON 55
N T I o [OOSR PSPPSR 55
B.3.2 GRU ettt sttt e b e bt e sae e s s ne s re e b e neennes 61
4.3.3 LINEAK ClaSSIfIOr . .eeeiitieiie ittt sttt et e b e e he e st st e b e e b b as 66
4.3 CONCIUSION <.ttt sttt s et e be e e st e s b e e e sab e e sabe e e meeesabeeesaseesareeeaneeesareeennnes 71
Chapter V: Implementation and TeStingccciuuiiiiiiiiiiiiiiirirerrrn e rrenese s eeneseserasseesesnssssnenns 72
L3R B 1) oo [¥ Tt A T o PP PR PP PRSP 73
5.2 hardware @NVIFONMENTocuiiiieieiee ettt sttt et s s s s b e e neenes 73
5.3 SOftWare ENVIFONMENToiiiiiieiete ettt sttt be e s be e saeesatesabeebeenbeens 73

LTG0 A 22V oY o USRS 73

ST I o ToT={ [l 6o] -1 o NP USRS 74

5.3.3 TENSOIFIOW ...ttt s b e sttt et e b e sae e sanesare e beebeenes 74

S R U140 | PPPPPPPPRE 74
LT T0= 0 11 PR PPPPPPN 74
5.3.6 Matplotlib.pyplot. . e errr e e snee 75
D37 FIASK ettt et b e bt sae e s ane s be b e beennes 75
5.4 DAt ST .ottt e 75
T 3 R 1= T of T A o] o IO PPPPPPPPPRE 75
5.4.2 File DESCIIPLIONS wueiiiitiieiieiiiieeetieee ettt e ettt e sttt e e sttt e e s s bee e e s sbteeessabtaeessseaeessanteeessassaeassnnes 75
54,3 Data flelUS ettt e e s be e e sab e e s beeeaneeesreeeane 75
5.5 The graphical interface of the SYSteM ... e e 76
5.5.1 SYStEM USEI GUITE ...uvviiiiiieee ettt ettt ettt e ettt e e e e tte e e e ette e e e ebtaeeesntaeeesntaeeesnteeeeenssaeaeennes 77
N Sl = d o T=T a g L=T a1 =1 o] E 3PP 78
5.6.1 Results USING LSTIM MOTEIcciuuiiiiiiiiie ettt ettt e e s tae e e ssate e e s sate e e s snraeeesanes 78
5.6.2 Results USiNg GRU MOAEL......ccoiuiiiiiiiiiee ittt ettt et e e eitee e s ssata e e s ssate e e s snraeeesanes 82
5.6.3 Results using linear classifiermModel..........cueeiieiiei i 85
5.7 EVAlUQLION MEASUIES ..ottt ettt st sttt ettt e b e sbe e sat e et e et e e beesbeesabesabeeabeenbeenes 86
5. 7.1 defiNItIONS . ettt e st esbe e sbeeeenteesbeeene 87
A Y (oo =] @] g Yo - [£ o] o R PPRPPPN 88
5.8 DISCUSSION ..ttt ettt e aa e s e s ba e ar e s ra e sabee s 89
5.9 CONCIUSION 1.ttt sttt e b e bt e s bt e sae e et e e beesbeesaeesabesabeeabeenbeenes 89
(001 1o [T T To Lo - 2=T S =T - | N 90

211 e [TeT = =T] 1| 2O POPPPPTRPPIOt 91

List of

Figure 1:
Figure 2:
Figure 3 :
Figure 4 :
Figure 5:
Figure 6:
Figure 7:

Figures

Factorial analysis on forms — GIONO database...............cccoceviiiiiiiiiinn.. 22
Tree analysis on lemmas - GIONO DaSe. ..o 23
RECCE Chart. ... et e e 24
Histogram — deconVoIUtIONStEP.oviriii e, 25
Representation of TALN leVels...... ..o, 28
Syntax tree showing an example SENteNCe..........c.ooeiiiriiriiiiiiiiieieeea, 29

A condensed representation of Recurrent Neural Network (RNN). It is a neural

network that recurs over time, which allows information to persist by loops. The f(x)

represents some squashing fUNCLION. e, 34
Figure 8: (a) Schematic of an RNN cell; (b) RNN cell unrolled..................c.coooiiiin 35
Figure 9: An example of a multiple layer Perceptron ... vvevreeereeesieese et 37
Figure 10 : An example of an activation function applied after a linear function............... 37
Figure 11: A sigmoid function with output in the range (0,1)..........c.cooiiiiiiiiiiiiiiiene, 38
Figure 12:Tanh activation fUNCtioN.......... ..o e, 38
Figure 13: ARELU fUNCHION. ... e 39
Figure 14: AN ELU fUNCHION.o e 39
Figure 15: A LeakyReLU fUuNCioN.o e 40
Figure 16 :Backpropagationthrought time................oooiiiiiii e 41
Figure 17 : AN LSTMcCell. ... e 43
Figure 18 : Attention NEIWOIK.otiei e e e e 46
Figure 19 :llustrate GRU Cell........ ..o e 47
Figure 20 : Common RNN topologies. Image Source: AndrejKarpathy[31].................... 48
Figure 21 : Bidirectional RNIN.........oii e 50
Figure22 : A condensed representation of Recursive Neural Network........................... 51
Figure 23 :TensorBoard graph of the generated model..................ccoiiiiiiiiinin.. 70
Figure 24 : Accuracy and average loss, visualized...............c.oooiiiiiiiiiii 70
Figure 25 : Home Page of Web application..............coooiiiiiiiiiii e 76
Figure 26 : graphic interface of @ppP.........oviiiiiiii e 76
Figure 27 : select the model and text iNpUt...........cooiiiiii i, 77

Figure 28: prediCt reSUIL. ... 78

Figure 29: Accuracy of train and validation in terms of epoch.........................l 79
Figure 30:loss of train and validation in terms of epoch...................o . 79
Figure 31:Accuracy masked of train and validation in terms of epoch........................... 80
Figure 32:Evaluation of Accuracy (a) and loss (b) in terms of iterations......................... 81
Figure 33 :Evaluation of Accuracy masked in terms of iterations................................. 81
Figure 34 :Evaluation of Accuracy masked result................oooiiiiiiiiiiiiin, 81
Figure 35 : Accuracy of train and validation in terms of epoch.....................a. 82
Figure 36:loss of train and validationin terms of epoch................cooiiiiiii i, 82
Figure 37: Accuracy masked of train and validation in terms of epoch.......................... 83
Figure 38 :Evaluation of Accuracy in terms of iterations................coooviiiiiiiinienenn. 84
Figure 39 :Evaluation of loss in terms of iterations..................coocoiiiiiiiii e 84
Figure 40 :Evaluation of Accuracy masked in terms of iterations.....................oovinnie 85
Figure 41:Evaluation of Accuracy masked result...............coooiiiiiiiiiiiiiiiieee, 85
Figure 42 :model LinearClassifier with estimator................ccooooiiiiiiiiiiiee, 86

Figure 43 :Evaluatemodel LinearClassifier withtestdata........................ooiviiiinn. . 86

Abreviations List

RNN Recurrent Neural Network

LSTM Long Short-Term Memory Neural
GRU Gated Recurrent Unit

TAL Traitement automatique du langage

EAP Edgar Allan Poe
HPL HP Lovecraft
MWS Mary Wollstonecraft Shelley

TALN Le traitement automatique du langage naturel

MIT Massachusetts Institute of Technology

BERT Bidirectional Encoder Representations from Transformers
TPU Tensor Processing Unit

GPU Graphics Processing Unit

List of Tables

Table 1: CONTUSION MALIIX.ttt e e e e e e eneas 87
Table 2: Result of author Edgar Allan PO& (EAP)...c.iiiieiieiiiiiiiiieiieiientemiensancescesnss 88
Table 3: Result of author Mary Wollstonecraft Shelley (MWS)....iveiiiieiniiniieiieccecnnnnns 88

Table 4: Result of author HP Lovecraft (HPL)...ceuiriiniieiieiiiiniiniierrsnniesenssnsescescnsens 89

Chapter 1 : Introduction

14

Chapter 1 : Introduction

1.1 Work context

If most authors are known, some had to use borrowed names or simply did not sign
their articles for fear that the presence of their name in plain language would be material, for
the colonial administration, to suspend these two newspapers which were the spearhead of the
Muslim reform movement and thereby to destroy the movement which is one of the major
factors in the outbreak of the Revolution of November 1, 1954.

1.2 Problematic

In the world of writing production (books, press articles, studies, etc.), it can happen
that unscrupulous authors plagiarize the work of other authors. Thus the 18th century sees the
advent of the individual, claiming for himself the property of his work. Moreover, the word
plagiarism was born in 1697 in the Dictionnaire de Pierre Bayle, while the verb "plagier"
would be hatched in 1801 under the pen of the picturesque and fertile Louis Sébastien Mercier
who was so plagiarized."[1]

So what is plagiarism?

According to the Robert, plagiarism is “copying an author by wrongly attributing parts
of his work”.

A more explicit definition or at least more explanation found on the University of Namur
website says that it is the fact of “copying someone’s work or part of it and claiming
authorship”.

If copying “part of the work™ is a matter of plagiarism, how do you do it with quotations?
Are they plagiarism or are they allowed and, if so, how high?

It would seem that It is only with the printing press that the indicators of quotation are
introduced into the text, it is only from this invention that quotation acquires its proper
meaning, modern, full, and that it defines a specific category in the practice of the text.”[2]

Therefore, there is no harm in repeating sentences from another author while
respecting certain rules, including framing the quotation by quotation marks or placing it in
another color or another attribute of the characters used and returning it to the reference from
which the quotation.

Logic would like the quotation not to be too long because otherwise it would risk
becoming plagiarism.

However, it often happens that a work «pumps» literally whole sandwiches and,
therefore, it is no longer an original work but a disguised plagiarism.

There is another problem with plagiarism, which is similar to plagiarism, and that is
when we have anonymous writings, of which an author, years after publication, claims to be
the author.

15

Chapter 1 : Introduction

These types of problems are not common. However, they do exist and we give some
examples below.

When Algeria was in the throes of colonialism, it often happened that talented
publicists did not sign their articles or use pseudonyms to avoid problems with the
administration whichMight have banned them from publishing anything. Thus we find articles
in the Chiheb of Benbadis signed ‘“al-fata azzouaoui”, “katibkabir”, “al mansir”... For
connoisseurs, these names are not enigmatic.

The problem which is at the origin of the idea of subject and a considerable amount of
political articles published in the Chiheb and which are not signed outright. Among these
articles, some form a kind of cornerstone in the ideology of revolutionary and post-colonial
Algeria. The latter show the fierce nationnalism of their author.

In this category there is a collection of three articles which originated from an article
by Mr. Ferh2at Abbas who represented the leader of the assimilationists. In his article “France
is me!” Ferhat Abbas wrote, “If I had discovered the “Algerian nation,” I would be a
nationalist... And yet I will not die for the “Algerian homeland”, because that homeland does
not exist. | have not discovered it. | questioned the history, | questioned the living and the
dead; I visited the cemeteries: no one told me about it. No doubt I found “the Arab Empire”,
the Muslim Empire, which honours Islam and our race. But those empires are extinct. They
corresponded to the Latin Empire and the Holy Roman Empire of the medieval period. They
were born for a time and a humanity that are no longer ours . . . We have once and for all
discarded the clouds and the chimeras to definitively link our future with that of the French
work in this country.»[3]

As soon as it appeared, an article entitled "A clear answer!" (i »<=44IS) appeared in
the Chihab where it says:

The Algerian nation is not France, it cannot become it, it does not want to become it, it
could not become it even if it wanted to! It is a nation very far from France, in its language, in
its uses, in its components, in its religion and it refuses to integrate. It has a clean country and
that country is Algeria!”

"l L i el (O i Y g el 5 e 2 5 Y g el 5 S5 G (S Wy elaai b A ol A 30 5l AGY) ()
Lo s gmanii O 2 5 Y (g 85 oW puaic 5 (LBAT g clgiad 8) JS L i (e B Al o8 s)
g Al Ghsll s (e Gl "

Some authors such as Mohamed Salah Ramadhan explain that this quote has become
the credo of Muslim nationalists for fifty years and that parents have been trying to teach their
children by heart.

The value of this quotation, which concludes the answer to Ferhat Abbas and which
led to his «repentance» since he will come to apologize to Benbadis, is very great. It appears
in the section reserved in the newspaper for the column usually reserved for Ahmed Tewfik el
Madani. The latter, from 1976, published his memoirs in three volumes on a total of about
1490 pages. In the second volume reserved for the militantism of the author from 1925 to
1954 in Algeria where he was one of the most influential members of the Muslim reformist
movement, the latter explains how Ferhat Abbas published his article deemed insulting and
how he wrote his reply entitled “kalimasariha”. The other tells us in his memoirs how

16

Chapter 1 : Introduction

Benbadis went especially to Algiers to congratulate Tewfik el Madani for this scathing
response against the followers of assimilationism and to discuss with him the consequences of

the publication of the article because the administration The colonial was not going to
be silent.

As the article in question had appeared in Benbadis' newspaper, and that it was not
signed as almost all the articles of Tewfik el Madani, it was only natural that people believe
that Benbadis was the author. When Tewfik el Madani asserted that he was the author of it, an
outcry took place by some students of Benbadis to refuse Tewfik el Madani his declaration
and it resulted in a real war against him which will even lead to the production of a pamphlet.

The primary objective of this work was to repair this enormous injustice by using
modern computer techniques to determine the degree of likelihood of the author being
Benbadis or Tewfik el Madani.

The only major asset for this would be to start from the simple style of writing to try to
detect who is the author.

It is therefore important to define an author’s style.

1.3 The style of an author

It is not very easy to describe the style of an author. In the specific case of Mr. Ahmed
Tewfik el Madani, Mr. Mohamed Salah Ramadan says that his style is “sahlmoumtanaa”,
which would translate into “inimitable although simple”. In fact, Ahmed Tewfik el Madani
does not find in almost all of his written production -which is huge compared to the other
actors of Algerian Muslim reformism of the 1930s- outdated words, complex phrases,
parables. The language is simple, direct and yet eminently elegant.

Other authors such as Mubarek el Mili and Bachirlbrahimi use sadj” (the rhyme) a lot
in their writings. They sometimes use unusual or even unknown words.

Here is an example of Bachir el Ibrahimi’s pen:
ailual y dal il 3 8 G pall e 48 il cdal gl Bac ailaing il) cdldal Ll e VL Canaidll Cile 5l
A 58 (ya ol) 5 Bl Slsae 8 4 g oo s Calally 438 5 s siunall il el

ool e da Al e gl L seanl) il e 8 Lealdd 4% 0 asm calyg ¢ al) e 1Al caalil iy el
(g i) Aipe e e Uy W Ul apeny i)) CnniSY g ¢l) juad) 55 juai (pui s A Sl) 5al)

O Al o) Lgia ya 3 5LaY) e (e Aadalis dani Lgiandl 5 clgling Wnge 2y pmiaill g o)il (e e Canal
"L e e e lgie Lldl callae 5 jalis Aard Camanl g o alil) e Sl dia Ll

Also on the lexical level, we note that Ahmed Tewfik el Madani uses common terms

in Tunisia, the country that saw him born. Thus we find extressions such as «silw3" or
I sia 2", We see him using fairly clean expressions such as i ni==8 » that we only find in him.

On a thematic level, Benbadis writes in the religious field. The two main sections of
his writings concern tafsir and hadith. He also writes biographies of companions of the
prophet.

Tewfik el Madani specialized in foreign policy of which he was the master in Tunisia
then in Algeria. He also wrote in national politics but also in history. His training at the Zitlna

17

Chapter 1 : Introduction

in Tunis focused on history and he will write countless books and studies and give numerous
lectures on historical themes relating to Algeria but also to the Muslim world.

It would have been quite certain that the work would have conclusively determined
that the article kalimasariha is of him since it mentions historical themes which the historian
juggles with.

Unfortunately, modern techniques such as elearning require a consistent dataset.
However, although the production of Tewfik el Madani is enormous, it does not exist in the
form of a usable text document, nor does this of Benbadis.

Also, we will remain hungry and try to validate the approach that we will explain on a
dataset of English authors.

The work can then be tested as soon as an Arabic dataset is available.

1.4 Objectives

The objective of this work is therefore to study the existing methods for detecting
plagiarism or identifying an author by his style.

An analysis of the results published by their authors on the use of this or that method
will guide us on the direction to take.

1.5 Memory organization

Chapter I: Introduction

Chapter I1: State of the art of related work

Chapter I11: State of the art on classification

Chapter 1V: Designing an Author Detection Application by Style

Chapter V: Implementation and Testing

18

Chapter Il: State of the art of related
work

19

Chapter II: State of the art of related work

Chapter I1: State of the art of related work

2.1 Introduction

The automatic detection of an author or a writer who writes an article or a text in a
journal that identifies itself not his personal information and sometimes it was important to
know the writer is all based on the writing style, If the machine can detect one author on the
other using deep learning, this type of detection is most effective in identifying author by
another or a free writer who just writes a text in a journal by another known writer who relies
on intrinsic detection that exploits data from within documents, The detection of authors by
study of the writing style of the document is the most common form of intrinsic plagiarism
detection , contains problems such as relevant text cutting and collection of stylistic data.

In this chapter we will demonstrate what this based for identification a style of an
author, and we will illustrate the experiment on Giono also we will talk about some method
used to help at the level of deep learning how to identify a style.

2.2 Pen measurements

2.2.1 definition

Stylometry is a field of linguistics that is based on statistics for stylistic properties of a
pen text of an article is based on the analysis of linguistics , detection and automatic grouping
of writing style in an article or text these are the pen variables,it is used to identify the style of
an author it is possible to calculate, to make factor analyses, statistical forecasts, comparisons.

Stylometry is a branch of linguistics concerned with the quantitative description of the
stylistic properties of texts. In some cases, it allows to solve problems of authorship of
disputed texts and to discover the probable chronology of the works of a given author. A
historical overview of pen measurements shows that there was not a single scientist whose
work could be considered decisive in its development. At the same time, the literature on the
history of pen work shows that authors treat available material selectively, preferring some
researchers while completely ignoring others. WincentyLutostawski (1863-1954) is a good
example of a scientist forgotten (or underestimated) by contemporary scholars. However, it
was he who coined the term "stylometry" already at the end of the 19th century and defined
the principles of this "new science". This article presents and discusses the following
questions: the importance of chronology in the interpretation of Platonic philosophy, the
definition and objectives of the pen, the most important Platonic chronologies, a description
and assessment of Lutostawski’s contribution to the development of pen methodology, and
the origins of pen measurement. Finally, we will attempt to (re)determine Lutostawski’s place
in the history of language sciences [4].

20

Chapter II: State of the art of related work

2.2.2 historic

Since the 19th century, Mendenhall (1887) suggests that by analysing the internal
characteristics of a text one can recognize the author. Since then, document pen techniques
have made significant advances and research [5] has applied this finding to plagiarism
detection. Some of this research focuses on extracting and monitoring the most relevant pen
data. Stein and Eissen (2007) and Zamani et al. (2014) monitor the proportions of lexical class
use within segments in order to discern which are the most relevant to the author’s style.
Oberreuter and Velasquez (2013) favour, on the other hand, the frequency of terms as a pen
data to be monitored. At the same time, research on learning and classification (Layton et al.,
2013) has emerged. They characterize an author’s style by a n-gram language model, so they
train their module on a corpus of learning authors and apply the resulting model on test runs
in order to calculate the most likely author [6].

2.3 Experimentation on Giono

2.3.1 Introduction

What if artificial intelligence can identify a writer’s style? And if, automatically, the
machine was able to identify the characteristics of a writing.

It is exactly the experimentation that is attempted on Giono , conduct an
experimentation on a very large corpus that brings together the novel works of Giono
unpublished. two bases were thus constituted by E. Brunet: one brings together the
Romanesque works of Giono, where we distinguish the two well-known ways of writing of
the Gionian specialists since Hill (1929) on the one hand the pre-Romanesque novelswar, on
the other chronicles after 1946 - from the King without entertainment. Critics tend to see even
three ways in distinguishing in the Chronicles the Angelo Cycle inaugurated by Le
Hussard[7]and grouping together the following works : Le Hussard, Angelo, Crazy
Happiness, Half-Brigade Stories [8]. The other corpus that serves as reference counts 50 texts
for 25 authors [9].

2.3.2 The prediction stage
2.3.3 Traditional methods

The results obtained with the intertextual distance calculations in Hyperbase applied to
the Giono base only, which makes it possible to highlight the groupings of works according to
their lexical or syntactic affinities. The texts of the study corpus are compared between them
and two to two with as internal standard the whole corpus. The following factorial analysis

21

Chapter II: State of the art of related work

(Figure 1) proposes the calculation on the forms of the corpus.

[Ave 1 T0% Axe2 15%

BONHEUR
HUSSARD

2

ot BRIGADE

ANGELO

Divertsse

Cavalers

Ames

Chemns

Figure 1: Factorial analysis on forms — GIONO database

We can see the expected distribution between the two ways of Giono (the first in the left
quadrants of the graph, the second in the right quadrants). There is no defection of the Great
Flock, even if this work corresponds to a war chronicle and, as such, has a hybrid status —
belonging to the first chronologically but to the second, a priori, thematically.

22

Chapter II: State of the art of related work

ROMANS "premiére maniére”

Hoerse

__ CYCLE DU HUSSARD

\\ A,/

Ames

Figure 2: Tree analysis on lemmas — Giono base

The distribution is a little more disturbed when it concerns lemmas (Figure 2).The
bipartition remains with a grouping in a bouquet of the Hussard cycle. However, the works
seem to affirm their connections according to the lexical fields they develop. Regain and Hill
are carried by a single branch for example, while The Great Flock takes some freedom from
novels in the first way, like To greet Melville who finds himself isolated on a single branch.

2.3.4 Deep learning, from model to modelling

The work is done from the base of fifty novels; this one is trained with all these texts,
in other words the engineer teaches the machine to recognize the works and their authors from
the two texts given for each writer; for Giono, the machine has learned to identify The Great
Flock and The Hussard on the roof as works written by Giono , It is then to present the other
works of Giono and to observe the rate of recognition performed by the machine: this is the
first so-called stage of prediction.

We send texts not included in the database and the algorithm states a degree of
recognition evaluated in terms of percentages that could be glossed by a formula such as “this
text is rather of...”. The algorithm proceeds through a window of three words, which means
that the sequentiality is the only criterion and matches are not chosen based on syntactic
criteria. Deep learning works in layers and every word is converted into numerical values.
Frequency concerns not only forms but sequences, linear sequences of forms.words, which
means that the sequentiality is the only criterion and matches are not chosen based on

syntactic criteria. Deep learning works in layers and every word is converted into numerical

23

Chapter II: State of the art of related work

values. Frequency concerns not only forms but sequences, linear sequences of forms. Deep
learning is sensitive to the different levels of granularity of texts — the grammatical value is,
for example, independent of the form — and is distinguished from the traditional method by
the combination of sequential and frequency, by the identification of complex and
multidimensional motifs, by the intertextuality to be discovered. The results for our corpus of
studies presented as percentages are gathered in the table below — in red the highest
recognition rates.

o $

F ® & vy & & f » & &

° » g N o o o » N Ca &

= v,-»ee @‘@ f& 3 9" o\e\ @0 ‘\o") aﬁ‘& (5°6 @(\ & & Q@’ 04[- ‘}:,6 ‘_‘oé‘ ‘},}‘} “De < & < & 0”6 & & & « 63
Bourwsgees 425 G615 0 514 86 034 201 223 059 123 156 1128 2696 034 19 223 19 246 A58 031 268 994 011 0.67 045 100
Regom 1.35 334 O 188 1542 042 302 135 031 021 052 4137 S09 021 021 583 115 18 115 031 052 479 05 o021 021 i
Odyssée 02 1.6 0.2 09 &7 0.5 1.7 28 14 1 09 761 871 38 36 1221 a7 32 127 21 0.9 3.2 3 05 1582 100
solitude L78 963 042 392 82 048 131 19 095 L78 273 88 2675 095 19 511 202 214 428 085 083 1118 059 059 039 100
Bleu 304 621 013 45 823 013 462 3.86 07 291 171 621 2217 374 2.03 443 S7 279 38 057 108 773 139 082 146 100
Cham 14 274 0 285 715 0 247 124 032 03 075 387 3976 048 124 231 699 172 967 021 043 8523 086 467 021 100
Jow 262 274 016 326 1168 0 798 166 035 041 124 533 3138 135 143 297 44 102 709 032 068 363 14% 137 048 00
Batailes 232 377 003 2.71 1144 002 38 349 028 055 103 608 30.76 117 279 354 472 167 4233 033 087 368 14 238 109 100
Melvile 241 450 121 402 737 095 416 509 0% 308 147 932 14885 201 LVA 406 389 308 A5 201 282 1206 LYS 08 268 100
EauVive 206 416 D64 325 99 049 301 45 0949 249 164 747 2077 173 223 674 364 2.19 44 203 14 804 261 138 237 100
Dwvertisse 1.76 1067 028 499 492 042 197 379 042 126 091 1096 1692 274 112 442 372 218 5.2 240 478 1082 105 0B84 L33 100
Noé, 117 522 1.7 324 BROS5 065 19 862 129 279 093 833 1351 295 154 748 311 275 425 449 158 813 1758 065 39 100
Parndis 037 234 161 256 1252 037 7.76 556 117 158 037 337 678 256 439 454 234 146 G666 2.2 198 505 1589 168 249 100
Personnage 443 842 058 456 339 137 339 643 058 386 129 1368 643 168 19 14 105 LIS 292 667 585 1497 L 07 105 100
Ames 375 116 016 672 747 039 34 535 055 156 168 1074 1063 332 066 254 1032 078 746 078 191 746 023 051 027 100
Charmin 604 959 039 9 53 012 617 358 080 259 358 78S 156 L73 002 399 24 062 068 143 143 1332 074 043 05 100
Covokers 193 333 006 345 ROD7 0 257 237 035 076 146 825 3049 211 24 a4 41 1.9 41 129 076 1837 1.7 137 076 100
Pologne 42 289 103 454 224 047 1362 625 1.03 718 14 97 55 345 L31 L5 187 485 677 187 154 532 299 028 373 100
Bonheur 23 238 047 347 645 005 332 42 041 236 124 514 3331 204 22 42 5 209 429 039 087 58 34 182 315 10
Angolo 213 198 091 213 251 035 319 296 038 312 114 669 SO1S 19 137 091 122 106 328 09 228 365 205 023 304 100
Hottense 1153 208 o 0.6 4857 0 19 &% 02 278 08 537 2265 7% 08 258 497 437 547 0.2 08 239 63 08 33 0
Brignde 287 535 048 564 411 029 287 411 09 363 332 1501 1683 4131 239 344 373 105 325 086 163 832 1.24 0338 363 100
Ernemonde 075 4310 128 149 1L73 o 32 883 073 203 053 3152 175 33 149 693 173 501 500 3532 203 437 1L92 OB 505 100
lews 198 439 035 309 & 0 111 128 074 142 167 1089 2875 278 1.3 637 563 464 6 183 087 984 078 173 248 00
totol 67.29 1279 1168 8933 193.3 &34 92.33 1025 17.67 51.82 3544 1949 S561.3 5331 4354 1255 95.13 5807 1316 39.03 42.62 1933 56.23 25.83 61.47 2500
mayenne 269 532 047 357 .73 033 369 41 071 207 142 179 B3 2113 LMA 502 381 232 526 156 1.7 15 225 103 246 10

Figure 3 :Recce Chart

2.4 The deconvolution step

2.4.1 From deep learning

The deconvolution step leads to the limits of the characterization of a writing.
Projecting objects are spotted which justify the successful recognition. The deconvolution
step crosses several criteria: Let’s take the example of Regain, which has the highest
recognition rate. The extract analysed is as follows:

An old roller axle. It is good to have a small box on the chimney, even if, on the small
box there is marked pepper. It’s good to have this box ready in case we get a chance to get a
good mule. That can happen. We’ll have to see. One cannot always live on borrowed money.
In the path that descends, there is Arsule and his galoshes; one hears them both. Arsulesings.

24

Chapter II: State of the art of related work

< 188
% w0y

o,.llljxll..,....K.A..||IH‘HH‘]'5:.. A.|‘|
R

)]
\}2’% o\\\k \\Q?, ‘}Q‘} (?GS' .)_,S' ’boég' é\b
® : § &

Figure 4 :Histogram — deconvolutionstep

We obtain a three-data histogram - form, code, lemma - and we can sometimes observe
one another’s variable. It turns out that the projections are on the forms «mule», «ca»,
«galoches», «pepper», «roll» for the first extract of 100 words that appears, «ploughs»,
«velvet» for the second as well as on the grammatical codes or grammatical categories «is»,
«a», “may”, “intends” for the first excerpt — meaning that these forms are only retained by
virtue of their verbal nature (Figure 4).

2.4.2 Segmentation for indexing

First, the idea is to segment the document. It is important that eachsegment retains
meaning in order to be autonomous and therefore to be potentially written by adifferent
person. A segmentation in unit of meaning is therefore preferred. Relying onthe work of
Zechner et al. (2009) is a pseudo-semantic segmentation that has been retained:

a minimum sentence size (in words). The threshold was set at 15 words, size average
of sentences in the French language [10].

The segmentation of documents and articles is treated under a variety of spaces in the
literature according to the intended purpose, recognition of texts, in the Domain of
information search, we recognize different methods:

e Segmentation into a sequence of words;

e Segmentation in sentences;

e Segmentation intoparagraphs;

e Thematic segmentation;

e Segmentation into logical units reflected in the table of contents;

25

Chapter II: State of the art of related work

Segmentation by a series of arbitrary words, it leaves aside the syntactical and
semantic aspects of the text.

Segmentation in sentences is not reliable when one waits in response for a part of text that
does not require inference work on the part of the user, knowing that the sentence does not
have a guarantee of syntactic completeness, In the same way as segmentation into sentences,
because of the difficulty of interpreting a paragraph in contexts in which it is attached to a unit
preceding it or succeeding it [11].

2.5 Natural Langage Processing

2.5.1 introduction

Today, an increasingly large volume of data on the web is made up, to a very large
extent, of textual data that can be analysed and exploited for different purposes. IT has
enabled the development of tools to process information and establish solutions. Among the
tools and

Computer techniques related to this field, we find the Automatic Natural Language
Processing (TALN).solutions. Among the tools and computer techniques related to this field,
we find the Automatic Natural Language Processing (TALN). Some languages have been
preferred such as English and French, where searches are centralized to give tools for TALN
applications. Others, such as the Arabic language, are continuing their research and work to
propose robust processing tools for proposing TALN applications for these languages.

2.5.2 Definition of TALN

Automatic Natural Language Processing (TALN) refers to the set of research and
methods that aim to allow a machine to automatically understand human language [12]. Much
more than just the recognition of terms (or keywords), the TALN aims to “understand” the
meaning of the sentences, the ideas that emerge from them, and this in the most optimal and
natural way from a human point of view, and to provide an appropriate response without any
external intervention being necessary.

It is the computer sub-domain, in particular artificial intelligence (Al), which aims to
enable computers to understand and process human language. Technically, the main task of
the TALN would be to program computers for the analysis and processing of a huge amount
of natural language data.

2.5.3 Historic of TALN

Automatic processing of natural languages was born at the end of the forties of the last
century, in a very precise scientific and political context [13].

e Year [1950 - 1968]

The beginnings in automatic processing of natural language began in the 1950s in the
United States where the political context, related to the Cold War is conducive to the
development of the theme of machine translation.

26

Chapter II: State of the art of related work

Between 1951 and 1954 Zelling Harris3 published his most important works of linguistics
(distributionist linguistics);

1954: The development of the first (very rudimentary) automatic translator some Russian
phrases, selected in advance, were automatically translated into English

1956: Dartmouth Summer School sees the birth of artificial intelligence

1957: N. Chomsky4 publishes his first important works on the syntax of natural languages,
and on the relations between formal and natural grammars;

In the late 1960s, Terry Winograd, an MIT researcher, developed a natural language
program called SHRDLU, allowing his user to converse with a computer to manage a “world
of building blocks” (a blocks world). displaying on one of the first screens, This is the first
program that knows how to understand and execute complex orders in natural language.

1962: First conference on translation (Bar-Hillel5) AIPACG report;1966: The ELIZA7 system
(Weizenbaum);1968: The first (true) translation system (Systran, Russian English); Années
[1970 - 1980]

During the 1970s many programmers began to write «conceptual ontologies» is the
structured set of terms and concepts representing the meaning of a field of information,
whether by the metadata of a namespace or the elements of a domain of knowledge , the
purpose of which was to structure the information into data understandable by the computer ,
This is the case of MARGIE (Schank, 1975), SAM (Cullingford, 1978), PAM (Wilensky,
1978), TaleSpin (Meehan, 1976), SCRUPULE (Lehnert, 1977), Politics (Carbonell, 1979),
Plot Units (Lehnert, 1981).

1971: A Smart System in Closed Mode (SHRDLUS), 1976: The METEO translation system
developed at the Université de Montréal;

e Year [1990 -2000]

90s :First corpus, statistical approaches in machine learning. Applications use large corpus
and statistical methods.

2000s :Use of the World Wide Web as a corpus.
e Since [2000].

In January 2018, artificial intelligence models developed by Microsoft and Alibaba each
managed to beat humans in a reading and understanding test at Stanford University.

November 2018, Google launches BERT, a language model [14].

2.5.4 TALN statistic

The statistical TALN comprises all quantitative approaches to automated language
processing, including modeling, information theory, and linear algebra [15]. The technology
for statistical TALN comes primarily from machine learning and data mining, which involves
learning from data from artificial intelligence.

27

Chapter II: State of the art of related work

2.5.5 The levels of TALN

The process of automatic processing of linguistic data requires different levels of
analysis. The literature refers to morphological analysis, syntactic analysis, semantic analysis
and pragmatic analysis (Figure 5). In the following we will briefly describe the different
levels of analysis of a natural language text:

Morphologique

Pragmatique

Sémantique

Figure 5: Representation of TALN levels

2.6 sorts of analysis

2.6.1 analysis syntactic

A formal language is defined by its grammar, whereas natural language is not. Indeed,
a language is not defined by its syntax, because it is written later and presents only an
approximation, from which we speak of syntax model. It is this approximation that makes
parsing non-specific and difficult.

Several methods of syntactic analysis have been developed, such as Lemmatisation,
Morphology, Morpho-syntactic labeling, Syntactic analysis, Sentence delimitation,

28

Chapter II: State of the art of related work

Racinisation, Word separation, but the best known is the notion of formal grammar. It
is presented as a set of derivation rules expressing the structure of syntactical entities such as
phrase (PH), nominal group (GN), verbal group (GV) and so on. For example, to express that
a sentence is composed of a nominal group and a verbal group, we use the PH GN + GV rule.
Also, to express that a nominal group is composed of a determinant and a name, we use the
GN Det + Name rule. Using this set of rules, it is therefore possible to analyze a number of
sentences [16], Figure 6 shows an example of an arborescent representation of the sentence:
<< the student has written the course>>

PH
GN GV 7N\
Nom Det Verb Nom Det
I'éleve a ecrit le cours

Figure 6: Syntax tree showing an example sentence

2.6.2 analysis semantic

According to Jean VERONIS9 [17], «In an automatic processing system, the analysis
of the meaning of sentences usually consists in extracting a simplified, stylized representation
of a logicomatic type, which will allow later calculations and reasoning».

Semantic analysis of statements is based on preliminary syntactic analysis. It seeks to
construct a formal representation allowing reasoning and thus to infer new information from
the information present in the statement. Among the representations is the logic of the
proposals. Using logical connectors (such as conjunction “ ”, disjunction “ ”, negation “ etc.)
one can form from the proposals complex new proposals. The logic of the proposals is not
concerned with the content of the proposals but only with their values of truth. Thus, many
phenomena cannot be represented in the logic of predicates.

Another form of representation called "semantic networks" has been proposed, its
principle being to represent knowledge in the form of a graph (or network) of concepts. Nodes
represent concepts and arcs represent the relationships between these concepts. Several types
of relationships between concepts exist such as: EST-UN, SORT-DE, EST-PARTIE-DE, etc.

The use of these concepts requires navigation tools in the graph to understand the
meaning of the sentence and the relationships between the different words that make up it.

29

Chapter II: State of the art of related work

Semantic networks have been expanded to improve the representation and inference of
knowledge [16]. 9Jean Veronis: French born in 1955, Professor of linguistics and computer
science, specialist in TAL.

2.6.3 analysis pragmatic

According to J-H. JAYEZ10 [18], Pragmatism concerns the study of the environment
of a sentence, at the time when it is issued,; it arises from the idea that a sentence (a statement)
can take its full meaning only if it is (it) replaced in its original milieu; it is the taking into
account of all the conditions of production of a sentence, as it is true that an effective
linguistic act can only take place within a certain communication situation». This level of
analysis covers everything related to the implicit in the communication. It is therefore the
level that poses the most problems to be designed and therefore it is much more complex to
establish, which explains why there is little operational realization, which concerns a few
applications. We are still far from knowing how to build pragmatic analyzers for the TALN
[16].

2.7 Research fields and applications of TALN

The field of automatic natural language processing covers a wide range of research
disciplines which can apply skills as diverse as applied mathematics or signalll

2.8 Applications related to production where text editing

Automatic translation: This is one of the most complex problems, says Al-complete,
which requires a lot of knowledge, not only linguistic, but also about the world. It is the first
research application, active since the 1950s.

Automatic generation of texts: Writing texts that are syntactically and semantically
correct, for example to produce weather reports or automated reports.

Automatic Text Summary, Restatement and Paraphrasing: Extracting the relevant
content of a text, detecting the most important information, redundancies, in order to generate
a coherent text that is humanly credible.

word sense disambiguation: Still an unresolved problem, determining the meaning of
a word in a sentence, when it can have several possible meanings, depending on the general
context.

spelling correction: in addition to a comparison with dictionary words and a rough
search to propose corrections, there are grammatical proofreaders who use semantics and
context to correct homophonies.

Conversational Agents, and Question and Answer Systems: Combination of a
language comprehension step and then a text generation step.

Detection of co-references and resolution of anaphores: Detection of the
connection between several words of a sentence referring to the same subject.

30

Chapter II: State of the art of related work

2.9 Conclusion

In this chapter we have presented the state of the art of TALN based on its history,
treatment levels, areas of application, which presents many challenges for various fields such
as automatic processing of natural language or also searching for information.

To conclude, this notion of pen measurement approach makes it possible to detect
different styles of writing within the same text and our contribution despite its limitations
allows to automatically group the stylistic phases by author.

The calculations of deep learning have proved to be effective for the recognition of an
author: Giono’s works have all been recognized (except for about one), after learning about 4
novels by Giono and 2 novels by 25 other contemporary writers.

The more traditional tools to observe the lexical and grammatical properties of the
object of study are complementary to deep learning, while waiting for the progress to come
regarding the «deconvolution» stage.

31

Chapter I11: State of the art on
classification

32

Chapter III: State of the art on classification

Chapter I11: State of the art on classification

3.1 Introduction

In real life, the pieces of information that the brain processes have an inherent
structure and
order, and the organization and sequence of every phenomenon we perceive has an
influence on how we treat them. Examples of this include speech comprehension (the order
of the words in a sentence), video sequence (the order of the frames in a video), and
language translation. This prompted the creation of new models. The most important ones
are grouped under the RNN umbrella.

3.2 Definition of RNN

Recurrent Neural Network (RNN) is a class of deep learning based of the works of
David Rumelhart in 1986. RNNs are heralded for their ability to process and obtain insights
from sequential data. Therefore, video analysis, image captioning, natural language
processing (NLP), and music analysis all depend on the capabilities of recurrent neural
networks. Unlike standard neural networks that assume independence among data points,
RNNSs actively capture sequential and time dependencies between data.

One of the most defining attributes about RNNs is parameter sharing. Without
parameter sharing, a model allocates unique parameters to represent each data point in a
sequence and therefore cannot make inferences about variable length sequences. The impact
of this limitation can be fully observed in natural language processing. For example, the
sentences to decode are “Kobe Bryant is an incredible basketball player” and “An incredible
basketball player is Kobe Bryant”. An ideal model should be able to recognize that ‘Kobe
Bryant’ is the basketball player discussed in both sentences regardless the position of the
words. A traditional multilayer network in this scenario would fail because it would create an
interpretation of the language with respect to the unique weights set for each position (word)
in the sentence. RNNSs, however, would be more suitable for the task as they share weights
across time steps (i.e. the words in our sentence)—enabling more accurate sentence
comprehension [19](Figure 7).

33

Chapter III: State of the art on classification

Mew Information

r
Prediction

Figure 7: A condensed representation of Recurrent Neural Network (RNN). It is a neural
network that recurs over time, which allows information to persist by loops. The f(x)
represents some squashing function.

3.3 Basic RNN Cell

Traditional multilayer perceptron neural networks make the assumption that all inputs
are independent of each other. This assumption is not true for many types of sequence data.
For example, words in a sentence, musical notes in a composition, stock prices over time, or
even molecules in a compound, are examples of sequences where an element will display a
dependence on previous elements.

RNN cells incorporate this dependence by having a hidden state, or memory, The
value of the hidden state at any point in time is a function of the value of the hidden state at
the previous time step, and the value of the input at the current time step, that is:

htt = (htt — 1)

Here, ht and ht-1 are the values of the hidden states at the time t and t-1 respectively,
and xt is the value of the input at time t. Notice that the equation is recursive, that is, ht-1 can
be represented in terms of ht-2 and xt-1, and so on, until the beginning of the sequence. This
is how RNNs encode and incorporate information from arbitrarily long sequences.

34

Chapter III: State of the art on classification

We can also represent the RNN cell graphically as shown in Figure 8(a). At time t, the
cell has an input x(t) and output y(t). Part of the output y(t) (represented by the hidden state ht
) is fed back into the cell for use at a later time step t+1.

Just as in a traditional neural network, where the learned parameters are stored as
weight matrices, the RNN's parameters are defined by the three weight matrices U, V, and W,
corresponding to the weights of the input, output, and hidden states respectively:

y(t) y(1) y(2) y(3)

x(t) x(1) x(2) x(3)

{a) RNN Cell (b) RNM Cell {unrolled)

Figure 8: (a) Schematic of an RNN cell; (b) RNN cell unrolled

Figure 8(b) shows the same RNN in an "unrolled view". Unrolling just means that we
draw the network out for the complete sequence. The network shown here has three time
steps, suitable for processing three element sequences. Note that the weight matrices U, V,
and W, that we spoke about earlier, are shared between each of the time steps. This is because
we are applying the same operation to different inputs at each time step. Being able to share
these weights across all the time steps greatly reduces the number of parameters that the RNN
needs to learn.

We can also describe the RNN as a computation graph in terms of equations. The
internal state of the RNN at a time t is given by the value of the hidden vector h(t), which is
the sum of the weight matrix W and the hidden state ht-1 at time t-1, and the product of the
weight matrix U and the input xtat time t, passed through a tanh activation function. The
choice of tanh over other activation functions such as sigmoid has to do with it being more
efficient for learning in practice.

We have omitted explicit reference to the bias terms by incorporating it within the
matrix. Consider the following equation of a line in an n-dimensional space. Here wlthrough
wn refer to the coefficients of the line in each of the n dimensions, and the bias b refers to the
y-intercept along each of these dimensions.

y = wlxl + w2x2 + -+ + wnxn + bb

35

Chapter III: State of the art on classification

We can rewrite the equation in matrix notation as follows:

y=Wx+b
Here W is a matrix of shape (m, n) and b is a vector of shape (m,1), where m is the
number of rows corresponding to the records inour dataset, and n is the number of columns
corresponding to thefeatures for each record. Equivalently, we can eliminate the vector b by
folding it into our matrix W by treating the b vector as a featurecolumn corresponding to the
"unit" feature of W. Thus:

y = wilxl + w2x2 + --- + wnxn + w0 (1)
= W'X

Here W' is a matrix of shape (m, n+1), where the last column contains the values of b,
The resulting notation ends up being more compact and (we believe) easier for the reader to
comprehend and retain as well.

The output vector ytat time t is the product of the weight matrix V and the hidden state
ht, passed through a softmax activation, such that the resulting vector is a set of output
probabilities:

ht = tanhifWht — 1 + Uxt)
yt = softmax(Vht)

Keras provides the SimpleRNN recurrent layer that incorporates all the logic we have
seen, as well as the more advanced variants such as LSTM and GRU.

3.4 Multi-layer perceptron
3.4.1 Definition

We present a network with multiple dense layers, Historically, "perceptron™ was the
name given to a model having one single linear layer, and as a consequence, if it has multiple
layers, you would call it a multi-layer perceptron (MLP). Note that the input and the output
layers are visible from outside, while all the other layers in the middle are hidden — hence the
name hidden layers. In this context, a single layer is simply a linear function and the MLP is
therefore obtained by stacking multiple single layers one after the other:

36

Chapter III: State of the art on classification

// \)
A\
7/}
Input ; /\/;///A\ \\ Output
2 a4 <
NeAA A S~
/\\ e/ ‘\X//> - '[‘) »
Y8y D

Figure 9: An example of a multiple layer perceptron

In Figure 9 each node in the first hidden layer receives an input and "fires"
(0,1) according to the values of the associated linear function. Then, the output of the first
hidden layer is passed to the second layer where another linear function is applied, the results
of which are passed to the final output layer consisting of one single neuron. It is interesting
to note that this layered organization vaguely resembles the organization of the human vision
system.

3.5 Activation functions
Sigmoid, Tanh, ELU, LeakyReLU, and ReLU are generally called activation functions in

neural network jargon. Those gradual changes typical of sigmoid and ReLU functions are the basic
building blocks to develop a learning algorithm that adapts little by little by progressively reducing the
mistakes made by our nets. An example of using the activation function oo with (x1, X2 ,..., xm) input
vector, (wl , w2 ,..., wm) weight vector, b bias, and Y. summation is given in (Figure 10). Note that

TensorFlow 2.0 supports many activation functions :

b
Weighted sum
Activation function
xm Wm

Figure 10 : An example of an activation function applied after a linear function

37

Chapter III: State of the art on classification

3.5.1 Activation function — sigmoid

The sigmoid function defined as (x) = 1/ 1+ e”-x and represented in the following
figure has small output changes in the range (0, 1) when the input varies in the range (—oo, o).
Mathematically the function is continuous. A typical sigmoid function is represented in
(Figure 11):

Figure 11: A sigmoid function with output in the range (0,1)

A neuron can use the sigmoid for computing the nonlinear function (z = wx + b). Note
that if z = wx + b is very large and positive, then e®-z — 0 so (z) — 1, while if z=wx + b is
very large and negative e™-z — o so (z) — 0. In other words, a neuron with sigmoid
activation has a behavior similar to the perceptron, but the changes are gradual and output
values such as 0.5539 or 0.123191 are perfectly legitimate. In this sense, a sigmoid neuron
can answer "maybe."

3.5.2 Activation function — tanh

Another useful activation function is tanh. Defined as tanh(z) = ez — e™-z/e”"z — e”-z whose
shape is shown in (Figure 12), its outputs range from -1 to 1:

Figure 12:Tanh activation function

3.5.3 Activation function — ReLLU

The sigmoid is not the only kind of smooth activation function used for neural
networks. Recently, a very simple function named ReLU (REctified Linear Unit) became very
popular because it helps address some optimization problems observed with sigmoids. A
ReLU is simply defined as f(x) = max(0, x) and the non-linear function is represented in
(Figure 13). As you can see, the function is zero for negative values and it grows linearly for

38

Chapter III: State of the art on classification

positive values. The ReLU is also very simple to implement (generally, three instructions are

enough), while the sigmoid is a few orders of magnitude more. This helped to squeeze the
neural networks onto an early GPU:

Figure 13: A ReLU function

3.5.4 Two additional activation functions — ELU and LeakyRel U
Sigmoid and ReLU are not the only activation functions used for learning.
a(e* —1) ifx<0

ELU is defined as (a, x) = { X if x>0 for aa>0and its plot is represented in
(Figure 14):

Figure 14: An ELU function

ax ifx<0

LeakyReLU is defined as (a, x) = [x if x>0 for aa> 0 and its plot is represented in
(Figure 15):

39

Chapter III: State of the art on classification

| .2

Figure 15: A LeakyReLU function

Both the functions allow small updates if x is negative, which might be useful in certain
conditions.

3.6 Back propagation throught time (BPTT)

Just like traditional neural networks, training RNNSs also involves backpropagation of
gradients. The difference in this case is that since the weights are shared by all time steps, the
gradient at each output depends not only on the current time step, but also on the previous
ones. This process is called backpropagation through time [20]. Because the weights U, V,
and W, are shared across the different time steps in case of RNNs, we need to sum up the
gradients across the various time steps in case of BPTT. This is the key difference between
traditional backpropagation and BPTT.

Consider the RNN with five time steps shown in (Figure 16). During the forward pass,
the network produces predictions ytat time t that are compared with the label yttocompute a
loss Lt. During backpropagation (shown by the dotted lines), the gradients of the loss with
respect to the weights U, V, and W, are computed at each time step and the parameters
updated with the sum of the gradients:

40

Chapter III: State of the art on classification

Figure 16 :Backpropagationthrought time.

The following equation shows the gradient of the loss with respect to W. We focus on
this weight because it is the cause for the phenomenon known as the vanishing and exploding
gradient problem.

This problem manifests as the gradients of the loss approaching either zero or infinity,
making the network hard to train. To understand why this happens, consider the equation of
the SimpleRNN we saw earlier; the hidden state htis dependent on ht-1, which in turn is
dependent on ht-2, and so on:

aL aL,
aw — W
Let us now see what happens to this gradient at timestept=3. By the chain rule, the
gradient of the loss with respect to W can be decomposed to a product of three sub-gradients.
The gradient of the hidden state h2 with respect to W can be further decomposed as the sum of
the gradient of each hidden state with respectto the previous one. Finally, each gradient of the

hidden state with respect to the previous one can be further decomposed as the product of
gradients of the current hidden state against the previous hidden state:

L, aL, a9, dh,
oW 3y 0hy OW
9Ly 395 0h; Ok,
=~ /.39, dh, oh, oW

t=0
3 3
_ 6L3 6_}?3 th 6ht
= a}’g 3h3 (i1 ﬁh}-_l BW

Jj=

Similar calculations are done to compute the gradient of the other losses LO through L4
with respect to W, and sum them up into the gradient update for W.We will not explore the

41

Chapter III: State of the art on classification

mathfurther in this book, but this WildML blog post [21]has a very good explanation of
BPTT, including a more detailed derivation of themath behind the process.

3.7 Vanishing and exploding gradients

The reason BPTT is particularly sensitive to the problem of vanishing and exploding

gradients comes from the product part of the expression representing the final formulation of
the gradient of the loss with respect to W. Consider the case where the individual gradients of
a hidden state with respect to the previous one is less than 1.
As we backpropagate across multiple time steps, the product of gradients get smaller and
smaller, ultimately leading to the problem of vanishing gradients. Similarly, if the gradients
are larger than 1, the products get larger and larger, and ultimately lead to the problem of
exploding gradients.

Of the two, exploding gradients are more easily detectable. The gradients will become

very large and turn into Not a Number (NaN) and the training process will crash. Exploding
gradients can be controlled by clipping them at a predefined threshold [22]. TensorFlow 2.0
allows you to clip gradients using the clipvalue or clipnorm parameter during optimizer
construction, or by explicitly clipping gradients using tf.clip_by value.
The effect of vanishing gradients is that gradients from time steps that are far away do not
contribute anything to the learning process, so the RNN ends up not learning any long-range
dependencies. While there are a few approaches to minimizing the problem, such as proper
initialization of the W matrix, more aggressive regularization, using ReLU instead of tanh
activation, and pretraining the layers using unsupervised methods, the most popular solution
is to use LSTM or GRU architectures, each of which will be explained shortly. These
architectures have been designed to deal with vanishing gradients and learn long-term
dependencies more effectively.

3.8 RNN cell variants

In this section we'll look at some cell variants of RNNs. We'll begin by looking
at a variant of the SimpleRNN cell: the Long short-term memory RNN.

3.8.1 Long short-term memory (LSTM)

The LSTM is a variant of the SimpleRNN cell that is capable of learning long-term
dependencies. LSTMs were first proposed by Hochreiter and SchmidHuber[23] and refined
by many other researchers. They work well on a large variety of problems and are the most
widely used RNN variant.

As previously mentioned, RNN suffers from a context problem which is attributable to
the phenomenon known as the vanishing gradient problem. The vanishing gradient problem
occurs when gradient descent is used as an optimization algorithm along with
backpropagation [24]. As gap sizes increase between dependencies, the error gradients vanish
exponentially and may result in the training of a network to become very slow or even unable
to learn

42

Chapter III: State of the art on classification

We have seen how the SimpleRNN combines the hidden state from the previous time
step and the current input through a tanh layer to implement recurrence. LSTMs also
implement recurrence in a similar way, but instead of a single tanh layer, there are four layers
interacting in a very specific way. The following diagram illustrates the transformations that
are applied in the hidden state at time step t.

The line across the top of the diagram is the cell state c, representing the internal
memory of the unit.

The line across the bottom is the hidden state h, and the i, f, 0, and g gates are the
mechanisms by which the LSTM works around the vanishing gradient problem. During
training, the LSTM learns the parameters for these gates (Figure 17):

—
c(t-1) l c(t)

f i tanh
E—
g
[+]
sigm sigm tanh sigm —b®
-~ + F 3
h(t-1) h(t)

x(t)
Figure 17 : An LSTM cell

An alternative way to think about how these gates work inside an LSTM cell is to
consider the equations for the cell. These equations describe how the value of the hidden state
htat time t is calculated from the value of hidden state ht-1 at the previous time step. In
general, the equation-based description tends to be clearer and more concise, and is usually
the way a new cell design is presented in academic papers. Diagrams, when provided, may or
may not be comparable to ones you have seen earlier. For these reasons, it usually makes
sense to learn to read the equations and visualize the cell design.

The set of equations representing an LSTM are shown as follows:

i = a(Wihe—y + Uixy + Vicp—q)
f=0Wrhi_y + Usxt + Vpcr)
0=0W,he_y +Usxe +V,01)
g = tanh (W, h;_, + Ugx,)
ce = (f*ee-1) +(g*1)
h: = tanh(c;) * 0

43

Chapter III: State of the art on classification

Here i, f, and oare the input, forget, and output gates. They are computed using the same
equations but with different parameter matrices Wi, Ui, Wf, Uf, and Wo, Uo. The sigmoid
function modulates the output of these gates between 0 and 1, so the output vectors produced
can be multiplied element-wise with another vector to define how much of the second vector
can pass through the first one.

The forget gate defines how much of the previous state ht-1 you want to allow to pass
through. The input gate defines how much of the newly computed state for the current input
xtyou want to let through, and the output gate defines how much of the internal state you want
to expose to the next layer. The internal hidden state g is computed based on the current input
xtand the previous hidden state ht-1. Notice that the equation for g is identical to that for the
SimpleRNN, except that in this case we will modulate the output by the output of input vector
i.

Given i, f, 0, and g, we can now calculate the cell state ctat time t as the cell state ct-1 at time
(t-1) multiplied by the value of the forget gate g, plus the state g multipliedby the input gate i.
This is basically a way to combine the previous memory andthe new input — setting the forget
gate to 0 ignores the old memory and setting theinput gate to 0 ignores the newly computed
state. Finally, the hidden state htat time t is computed as the memory ctat time t, with the
output gate o.

One thing to realize is that the LSTM is a drop-in replacement for a SimpleRNN cell; the only
difference is that LSTMs are resistant to the vanishing gradient problem., You can replace an
RNN cell in a network with an LSTM without worrying about any side effects. You should
generally see better results along with longer training times.

3.8.1.1 LSTM Gates

The critical components of the LSTM are the memory cell and its gates. There are
different variations of LSTM but they all predominantly include three gates, known as the
forget gate, input gate, and output gate. The contents of the memory cell are modulated by the
input gates and forget gates. Assuming that both of these gates are closed.the contents of the
memory cell will remain unmodified between one time-step and the next.

The gating structure allows information to be retained across many time-steps, and
consequently also allows gradients to flow across many timesteps. This allows the LSTM
model to overcome the vanishing gradient problem that occurs with most Recurrent Neural
Network models. The unfolded graph of an LSTM network can be thought of as a conveyor
belt, with the data passing along the from one layer to the next, being altered slightly as it
passes through each layer by use of the input and forget gates using linear interactions.

The forget gate is responsible for removing information from the cell state and its goal
is to identify which information is no longer useful and may be forgotten. It takes 2 inputs: the
Hidden State from the previous memory cell, h(t—1), and the Current Input, x(t), also known
as the current cell state at that particular time step.

44

Chapter III: State of the art on classification

The inputs are multiplied by weight matrices and a bias is added. After that, a sigmoid
function is applied; the sigmoid function is responsible for deciding which values to keep and
which to discard. The function outputs a vector with values 0 to 1; a O indicates the forget gate
wants to forget the information completely while a 1 indicates the forget gate wants to
remember the entire piece of information.

The input gate involves a 2-step process and is responsible for deciding what new
information will be added to the cell state. Similar to the forget gate, a sigmoid function is
applied to h(t—1) and x(t). A hyperpolic tangent function creates a vector of all possible
values, ranging from —1 to 1. This vector indicates candidate values which may be added to
the cell state.

The output gate selects useful information from the cell state as output in a 3-step
process. In the first step, a hyperbolic tangent function is applied to cell state, creating a
vector with scaled values from —1 to 1. Step 2 is to use sigmoid function and use the previous
hidden state, h(t—1), and x(t) as inputs to create a regulatory filter.

In the final step, the regulatory filter from step 2 is multiplied with the vector from
step 1, producing an output and hidden state to the next cell. Using LSTM, the network is able
to minimize any long term dependencies and can bridge gaps in data references in excess of
1,000 steps[25] (Fig. 18).

45

Chapter III: State of the art on classification

: Local : Aﬁntion

Weights yer
1 |
1
1 a; 1
1
l [
Context |
Vector |

1 ¢ =i+ hy ——ey,

A Aligned
i | Pasition
A Y .
[hy |
'
-

Figure 18 : Attention network

3.8.1.2 Peephole LSTM

The peephole LSTM is an LSTM variant that was first proposed by Gers and
Schmidhuber [26]. It adds "peepholes” to the input, forget, and output gates, so they can see
the previous cell state ct-1. The equations for computing the hidden state ht , at time t, from
the hidden state ht-1 at the previous time step, in a peephole LSTM are shown next.

Notice that the only difference from the equations for the LSTM is the additional ct-1
term for computing outputs of the input (i), forget (f), and output (0) gates:

i = o(Wihey + Upxy + Vice1)
f=0Wrhey + Upxy + Vecy)
0=0(Wohi_y +Upxe + Vo y)
g = tanh (W, h;_y + Ugx,)
e =(fre-1) +(g*D)
h; = tanh(c;) * o0

46

Chapter III: State of the art on classification

TensorFlow 2.0 provides an experimental implementation of the peephole LSTM cell.
In order to use this in our RNN layers , we need to wrap the cell in the RNN wrapper :
hidden_dim = 256
peephole cell = tf.keras.experimental .PeepholeLSTMCell (hidden dim)
ronn_layer = tf.keras.layers.RNN{peephole cell)

3.8.2 Gated recurrent unit (GRU)

The GRU is a variant of the LSTM and was introduced by K. Cho [27]. It retains the
LSTM's resistance to the vanishing gradient problem, but its internal structure is simpler, and
therefore is faster to train, since fewer computations are needed to make updates to its hidden
state. The gates for a GRU cell are illustrated in the following diagram (Figure 19):

hit-1) h(E)
& (1N o

—3 TT

x(t)

Figure 19 :Illustrate GRU Cell

Instead of the input (i), forgot (f), and output (0) gates in the LSTM cell, the GRU cell
has two gates, an update gate z and a reset gate r. The update gate defines how much previous
memory to keep around, and the reset gate defines how to combine the new input with the
previous memory. There is no persistent cell state distinct from the hidden state as it is in
LSTM.

The GRU cell defines the computation of the hidden state ht at time t from the hidden
state ht-1 at the previous time step using the following set of equations:

z=0Whi—y + Uzxy)
r=oa(W.h_; + U,x;)
c = tanh (W.(he—y *7) + U.x;)
he =(z*c)+((L—2)*hey)
He outputs of the update gate z and the reset gate r are both computed using a
combination of the previous hidden state ht-1 and the current input xt . The sigmoid function

47

Chapter III: State of the art on classification

modulates the output of these functions between 0 and 1. The cell state ¢ is computed as a
function of the output of the reset gate r and input xt . Finally, the hidden state ht at time t is
computed as a function of the cell state ¢ and the previous hidden state ht-1. The parameters
Wz Uz, Wr, Ur,and Wc, Uc, are learned during training.

GRU and LSTM have comparable performance and there is no simple way to
recommend one or the other for a specific task. While GRUs are faster to train and need less
data to generalize, in situations where there is enough data, an LSTM's greater expressive
power may lead to better results. Like LSTMs, GRUs are drop-in replacements for the
SimpleRNNCcell[28].

3.9 RNN variants topologies

RNNs offer yet another degree of freedom, in that it allows sequence input and output.
This means that RNN cells can be arranged in different ways to build networks that are
adapted to solve different types of problems. (Figure 20) shows five different configurations
of inputs, hidden layers, and outputs, represented by red, green, and blue boxes respectively:

onef)—one (ie to many many to 02—8 manyti many mj\yf—mfy
I 00l 0 non oo
1 i i 1 il ottt
(1 M HHHH 4

5 b S o AT bl

0 OO0 DEA EOE

Figure 20 : Common RNN topologies. Image Source: AndrejKarpathy[31].

Of these, the first one (one-to-one) is not interesting from a sequence processing point
of view, since it can be implemented as a simple Dense network with one input and one
output.

The one-to-many case has a single input and outputs a sequence. An example of such a
network might be a network that can generate text tags from images [32], containing short
text descriptions of different aspects of the image. Such a network would be trained with
image input and labeled sequences of text representing the image tags.

The many-to-one case is the reverse; it takes a sequence of tensors as input but outputs
a single tensor. Examples of such networks would be a sentiment analysis network [33]which
takes as input a block of text such as a movie review and outputs a single sentiment value.

The many-to-many use case comes in two flavors. The first one is more popular and is
better known as the seq2seq model. In this model, a sequence is read in and produces a
context vector representing the input sequence, which is used to generate the output sequence.

48

Chapter III: State of the art on classification

The topology has been used with great success in the field of machine translation, as
well as problems that can be reframed as machine translation problems. Real life examples of
the former can be found in [34]and an example of the latter is described in[35].

The second many-to-many type has an output cell corresponding to each input cell.
This kind of network is suited for use cases where there is a 1:1 correspondence between the
input and output, such as time series. The major difference between this model and the
seg2seq model is that the input does not have to be completely encoded before the decoding
process begins.

3.9.1 Bidirectional RNNs

Some other RNN architectures include Bidirectional Recurrent Neural Networks
(BRNN) and Encoder-Decoder Recurrent Neural Networks (EDRNN). BRNNS deviate from
the conventional causal structures utilized by most other RNN frameworks. They make
inferences from the current data point in a sequence relative to both past and future data
points. This is particularly useful for decoding the meaning of sentences in which each word
of the sentence is evaluated in the context of all the values of the sentence. Furthermore, many
subtle linguistic dependencies can be extrapolated by considering a word’s left and right
neighbors.

It is also important to note that many words and phrases used in sentences can have
different meanings depending upon the context of the sentence. A bidirectional view enables
the model to have a higher probability of correctly extrapolating this context. In addition to
NLP, BRNNSs are also particularly useful in proteomics—identifying protein sequences from
amino acid ordering—as well as in handwriting identification. EDRNN is another versatile
RNN framework that allows the RNN to be trained to map an input sequence to variable
length output sequences. This framework can be very useful to decode speech as well as to
automate responses to speech (Figure 21).

49

Chapter III: State of the art on classification

‘ee
D=
DD (DD

Figure 21 : Bidirectional RNN

We have seen how, at any given time step t, the output of the RNN is dependent on the
outputs at all previous time steps. However, it is entirely possible that the output is also
dependent on the future outputs as well. This is especially true for applications such as natural
language processing where the attributes of the word or phrase we are trying to predict may
be dependent on the context given by the entire enclosing sentence, not just the words that
came before it.

This problem can be solved using a bidirectional LSTM, which are essentially two
RNNs stacked on top of each other, one reading the input from left to right, and the other
reading the input from the right to the left. The output at each time step will be based on the
hidden state of both RNNSs. Bidirectional RNNs allow the network to place equal emphasis on
the beginning and end of the sequence, and typically results in performance improvements.

Chapter III: State of the art on classification

3.9.2 Stateful RNNs

RNNs can also be stateful, which means that they can maintain state across batches
during training. That is, the hidden state computed for a batch of training data will be used as
the initial hidden state for the next batch of training data. However, this needs to be explicitly
set, since TensorFlow 2.0 (tf.keras) RNNs are stateless by default, and resets the state after
each batch. Setting an RNN to be stateful means that it can build state across its training
sequence and even maintain that state when doing predictions.

The benefits of using stateful RNNs are smaller network sizes and/or lower training
times. The disadvantage is that we are now responsible for training the network with a batch
size that reflects the periodicity of the data and resetting the state after each epoch. In
addition, data should not be shuffled while training the network since the order in which the
data is presented is relevant for stateful networks.

3.9.3 Recursive Neural Network

Recursive neural networks, not to be confused with RNNSs, are a set of non-linear
adaptive models which are used to process data of variable length. They are especially
proficient in processing data structure inputs. Recursive networks feed the state of the
network back into itself, in what can be viewed as a loop. They are primarily suited for image
and sentence deconstruction. The architecture of recursive neural networks enables users to
not only identify the constituents of input data but also to quantitatively determine the
relationships between them [29].

Y1

Y2 Y5

e N
s N

. : :

X4 X5 X6

Figure22 : A condensed representation of Recursive Neural Network

This kind Deep Learning Architectures of deconstruction is made possible through a
shared-weight matrix and binary tree structure—both of which enable the recursive neural
network to extrapolate from varying length sequences of images and words. Furthermore, one

51

Chapter III: State of the art on classification

major advantage of recursive nets over recurrent nets is that for a sequence of the same length
n the depth (measured as the number of compositions of nonlinear operations) can be
drastically reduced from n to log(n) which enables efficient capturing of longterm
dependencies [30].. Recursive neural networks are generally known for having a bottom-up
feed-forward method and top-down propagation method. Both mechanisms constitute the
propagation through structure that is prevalent in most recursive networks (Figure 22).

Two of the most commonly used varieties of recursive networks include the semi-
supervised recursive autoencoder and the supervised recursive neural tensor. The recursive
autoencoder is used to deconstruct sentences for NLP applications whereas the recursive
neural tensor is primarily used for computer vision applications. One drawback common to
nearly all recursive neural networks is substantial computational overhead—moreso than
recurrent neural networks. Recursive networks are reputed for processing exorbitant amounts
of data often containing millions of parameters which results in long training times. As a
result, optimization techniques are continuously developed for these architectures;
furthermore, the evergrowing sophistication of processors and advancements made in parallel
computing enable large-scale deployment of recursive neural networks.

3.10 Conclusion

The incorporation of deep learning models have allowed for large amounts of data to
be correlated from multiple modalities. Built to emulate the structure of synaptic connections
in the human brain, deep learning architectures are ubiquitously used for feature extraction,
pattern analysis, and data abstraction. These models have been shown to perform better and
faster than current state-of-the-art analysis techniques through supervised, unsupervised, and
semi-supervised learning tasks.

There is a large range of applications that deep learning algorithms could be used for.
They can be used to perform classification, data generation, and information understanding.
For various fields from autonomous driving to bioinformatics, and medical image processing
to assist the medical field in making accurate diagnoses [36]. For example, many CNN
architectures are developed for image recognition tasks, including AlexNet and GoogLeNet.
LSTM architectures have been designed for natural language processing since they have
shown high performance in this application [37]. A CNN-based architecture called
AtomNet[38] is designed for drug discovery and successfully predicted some novel molecules
for Ebola virus Fig. 13. Deep and thorough researches has been done with using different
deep learning architectures to analyze multimodality in medical imaging techniques [39].

52

Chapter 1V: Designing an Author
Detection Application by Style

53

Chapter IV: Designing an Author Detection Application by Style

Chapter 1V: Designing an Author Detection Application by
Style

4.1 Definition

As we have seen in the previous chapter all the theories and definition of RNN and the
variants cell of RNN(LSTM, GRU ,Linear Classifier),in this chapter we will talk about the
necessary basics technologies that we can not avoid , then we look to the diffrents models that
we have used and how we trained them.

4.2 Technologies
4.2.1 TensorFlow

TensorFlow is a powerful open source software library developed by the Google Brain
team for deep neural networks, the topic covered in this book. It was first made available
under the Apache 2.0 License in November 2015 and has since grown rapidly; as of May
2019, its GitHub repository [40] has more than 51,000 commits, with roughly 1,830
contributors. This in itself provides a measure of the popularity of TensorFlow.

Google calls it "an open source software library for machine intelligence,” but since
there are so many other deep learning libraries like PyTorch [41], Caffe [42], and MxNet[43],
what makes TensorFlow special? Most other deep learning libraries — like TensorFlow — have
auto-differentiation (a useful mathematical tool used for optimization), many are open source
platforms, most of them support the CPU/GPU option, have pretrained models, and support
commonly used NN architectures like recurrent neural networks, convolutional neural
networks, and deep belief networks, that’s why TensorFlow is the most popular among deep
neural network researchers and engineers.

We install TensorFlow 2.0 as the following lines, Only CPU support:
pip install tensorflow==2.0.0-alpha0

With GPU support:
pip install tensorflow-gpu==2.0.0-alpha0

4.2.2 Keras

Keras is a beautiful API for composing building blocks to create and train deep
learning models. Keras can be integrated with multiple deep learning engines including
Google TensorFlow, Microsoft CNTK, Amazon MxNet, and Theano. Starting with
TensorFlow 2.0, Keras has been adopted as the standard high-level API, largely simplifying
coding and making programming more intuitive.

54

Chapter IV: Designing an Author Detection Application by Style

4.2.3 Word embedding

Wikipedia defines word embedding as the collective name for a set of language
modeling and feature learning techniques in natural language processing (NLP) where words
or phrases from a vocabulary are mapped to vectors of real numbers.

Deep learning models, like other machine learning models, typically don't work
directly with text; the text needs to be converted to numbers instead. The process of
converting text to numbers is a process called vectorization. An early technique for
vectorizing words was one-hot encoding, a major problem with one-hot encoding is that it
treats each word as completely independent from all the others, since similarity between any
two words(measuredby the dot product of the two-word vectors) is always zero.

The following part of code shows how we set our tokenization and preprocessing
using Keras
def tokenize and build vocab(texts, wvocab size=None, lower=True):
if wvocab size is None:
tokenizer = tf.keras.preprocessing.text.Tokenizer({lowsr=lower)
else:
tokenizer = tf.keras.preprocessing.text.Tokenizer(
num_words=vocab size+l, oov_token="UNK", lower=lower)
tokenizer.fit on texts(texts)

The next part of code shows how we set our indexation to the data means switch word
to index using word-index

tokenizer.word index = {e:i for e, i in tokenizer.word index.items()
if i <= vocab size+l }

word2idx = tokenizer.word index
idx2word = {v:k for k, v in word2idx.items()}
4.3 Models
4.3.1 Lstm
if the input is the sequence [cl , c2, ..., cn], the output will be [c2, ¢3, ..., cnt1].

We will train the network for 50 epochs, and at the end of every 10 epochs, we will generate a
fixed size sequence of characters starting with a standard prefix

As always, we will first import the necessary libraries and set up some constants , a

folder under the data folder, where we will save the weights of the model at the end of every
10 epochs:

55

Chapter IV: Designing an Author Detection Application by Style

def load data(dir name):
file name=os.path.join(dir_name, 'data.csv’)
it (os.path.exists(file name)):
data=pd.read csv{file name,sep=",")
text=[x for x in data["text"]]
label=[x for x in data["author™]]
return text,label

15e:
re

Next we download and prepare the data for our network to consume, The
tf.keras.utils.get_file() function will check to see whether the file is already downloaded to
your local drive, and if not, it will download to a datasets folder under the location of the
code. We also preprocess the input a little here, removing newline and byte order mark
characters from the text.

def download_data():
data=pd.read csv('data.csv',sep=",")
text=[x for x in data[text']]
label=[x for x in data['author']]
#
return text,label

Now let’s read our data in form of csv :

def read data csv(dir_name,data name):
file name=os.path.join{dir_name,data_name)
it (os.path.exists(file_name)}):
data=pd.read csv({file name,sep=",")

Next, we will create our vocabulary. In our case, our vocabulary contains unique
characters, composed of uppercase and lowercase alphabets, numbers, and special characters.
We also create some mapping dictionaries to convert each vocabulary character to a unique
integer and vice versa. As noted earlier, the input and output of the network is a sequence of
characters. However, the actual input and output of the network are sequences of integers, and
we will use these mapping dictionaries to handle this conversion:

if vocab size is None:
tokenizer = tf.keras.preprocessing.text.Tokenizer(lower=lower)
elze:
tokenizer = tf.keras.preprocessing.text.Tokenizer(
num_words=vocab size+l, oov_token="UNK", lower=lower)
tokenizer.fit on texts(texts)

The next step is to use these mapping dictionaries to convert our character sequence
input into an integer sequence, and then into a TensorFlow dataset. Each of our sequences is
going to be 100 characters long, with the output being offset from the input by 1 character
position. We first batch the dataset into slices of 101 characters, then apply the
split_train_labels() function to every element of the dataset to create our sequences dataset,

56

Chapter IV: Designing an Author Detection Application by Style

which is a dataset of tuples of two elements, each element of the tuple being a vector of size
100 and type tf.int64. We then shuffle these sequences and then create batches of 64 tuples
each for input to our network. Each element of the dataset is now a tuple consisting of a pair
of matrices, each of size (64, 100) and type tf.int64:

def Build dataset(text int,label=None,text size=None,batch size=64):

dataset=tf.data.Dataset.from_tensor slices{{text int,label})
dataset=dataset.shuffle(lo8aa

dataset=tf.data.Dataset.from_tensor slices(text int)

We combine all of this into a one define function as following :

def Build dataset(text_int,label=None,text_size=None,batch_size=64):
#
if text size is not None:
test size=text size // 3
val size=(text size-test size) // 18
#
dataset=tf.data.Dataset.from_tensor slices{(text int,label})
dataset=dataset.shuffle(1la888
#
dataset test=dataset.take(test size)
dataset val=dataset.skip(test size).take(val size)
dataset_train=dataset.skip{test_size+val_size)
#
dataset test=dataset test.batch(batch_size)
dataset val=dataset val.batch(batch size)
dataset_train=dataset_train.batch(batch size)
#
return dataset train,dataset test,dataset wal

else:
#
dataset=tf.data.Dataset.from_tensor slices{text int)
#
-

eturn dataset

We are now ready to define our network. As before, we define our network as a
subclass of tf.keras.Model as shown next. The network is fairly simple; it takes as input a
sequence of integers of size 100 (num_timesteps) and passes them through an Embedding
layer so that each integer in the sequence is converted to a vector of size 256

57

Chapter IV: Designing an Author Detection Application by Style

(embedding_dim). So, assuming a batch size of 64, for our input sequence of size (64, 100),
the output of the Embedding layer is a matrix of shape (64, 100, 256).

The next layer is the RNN layer with 100 time steps. The implementation of RNN
chosen is a GRU. This GRU layer will take, at each of its time steps, a vector of size (256,)
and output a vector of shape (1024,) (rnn_output_dim). Note also that the RNN is stateful,
which means that the hidden state output from the previous training epoch will be used as
input to the current epoch. The return_ sequences=True flag also indicates that the RNN will
output at each of the time steps rather than an aggregate output at the last time steps.

Finally, each of the time steps will emit a vector of shape (1024,) into a Dense layer
that outputs a vector of shape (90,) (vocab_size). The output from this layer will be a tensor of
shape (64, 100, 90). Each position in the output vector corresponds to a character in our
vocabulary, and the values correspond to the probability of that character occurring at that
output position:

self.embedding=tf.keras.layers.Embedding{vocab_size,seq_max,mask_zero=True)
#self.droupoutlD=tf.keras.layers.SpatialDropoutlD(8.2)
self.bidirection=tf.keras.layers.Bidirectional(

tf.keras.layers. LSTM(&4,return_sequences=True)

f.lstm=tf.keras.layers.L5TM({32)
f.dense=tf.keras.layers.Dense(64,activation="relu")
self.droupout=tf.keras.layers.Dropout(8.5)
#self.hiden=tf.keras.layers.Dense(32,activation="relu")
self.out=tf.keras.layers.Dense(out size,activation="sigmoid")

m M
=

After we wrapped all of this into one function for call it later when we need it, here we
made a function for call :

def call(self,x):
$#
¥=self.embedding(x)
#x=self . .droupoutlD(x)
¥=self.bidirection(x)
¥=self.lstm(x)
x=self.dense(x)
¥=self.droupout(x)
#x=self _hiden(x)
x=self.out(x)
$#

And now we print the vocabulary size :

58

Chapter IV: Designing an Author Detection Application by Style

print{vocab size)}
The result will be as show down :

seq_max=388
classes=3
batch size=128

Next we define a loss function and compile our model. We will use the sparse
categorical cross-entropy as our loss function because that is the standard loss function to use

when our inputs and outputs are sequences of integers. For the optimizer, wewillchoose the
Adam optimizer:

def loss{labels, predictions):

return tf.losses.sparse categorical crossentropy(
labels,

predictions,

from_logits=True

)

model . compile(
optimizer="adam’,
loss="categorical crossentropy’,
metrics=["accuracy’]

Finally, we are ready to run our training and evaluation loop. As mentioned earlier, we
will train our network for 50 epochs, and at every 10 epoch intervals, we will try to generate
some text with the model trained so far. Notice that in order to accommodate a single string
prefix, we save the weights after every 10 epochs and build a separate generative model with
these weights but with an input shape with a batch size of 1. Hereis the code to do this:

num_epochs = 58
for i in range(num_epochs // 18):
model . Fit(

dataset.repeat(),

epochs=18,
steps_per_epoch=steps_per_epoch

59

Chapter IV: Designing an Author Detection Application by Style

callbacks=[checkpoint_callback, tensorboard_callback]
)
checkpoint_file = os.path.join(
CHECKPOINT DIR, "model epoch {:d}".format{i+l))
model.save weights(checkpoint file)
create generative model using the trained model so far
gen_model = CharGenModel({vocab size, seqg length, embedding dim,
rnn_output dim)
gen_model.load weights{checkpoint file)}
gen_model.build(input_shape=(1, seq_length))
print{"after epoch: {:d}".format{i+l)*18)
print({generate text{gen model, "Alice ", char2idx, idx2char))
print{"---")

And the output will show like the following :

Model: "author_lstm__model 1"

Layer (type) Output Shape Param #
embedding 1 (Embedding) multiple 7783200

bidirectional 1 (Bidirectic multiple 186888

nal)

Istm 3 (LSTM) multiple 28688

dense_3 (Dense) multiple 2112

dropout (Dropout) multiple a

dense_4 (Dense) multiple 145

However, after about 10 epochs of training , it looks like this :

60

Chapter IV: Designing an Author Detection Application by Style

Epach 1/18
205/205 |]-
Epach 2/1@
2051205 |]-
Epoch 3/18
2051205 |]-
Epach 4/1@
205/225 []-
Epoch 5/18
25/205 |]-
Epoch 6/18
205/205 |]-
Epach 7/18
205/225 []-
Epach 8/18
2051205 |]-
Epach 9/18
205/225 []-
Epach 10/18
25/205 |]-
4.3.2 GRU

4875

4745

471s

4743

4743

4775

4733

4345

4823

4613

1s/step -
2s/step -
1s/step -
25/step -
25/step -
1s/step -
25/step -
2s/step -
25/step -

25/step -

loss

loss

loss

loss

loss

loss

loss

loss

loss

loss

: B.5565 -

v B.1613 -

. 0.8718 -

© 0.8414 -

0.8344 -

. 0.8271 -

0,824 -

. 0.68153 -

© 0.0162 -

. 0.0172 -

accuracy: 0.7699 -
accuracy: 8.9477 -

accuracy: @.9772 -

accuracy: 0.9873

accuracy: 8.9892 -
accuracy: 0.9928 -
accuracy: 0.9923 -
accuracy: 8.9953 -
accuracy: 0.9952 -

accuracy: 8.9947 -

val_loss
val_loss

val loss

- val loss

val_loss
val_loss
val loss
val_loss
val loss

val_loss

. 8.1883 -

. 0.8594 -

» 00355 -

. 0.0208

. B.@164 -

. 0.0268 -

. 0.0092 -

» 0.0125 -

. 0.8337 -

. B.0847 -

val_accuracy
val_accuracy

val_accuracy

- val_accuracy

val_accuracy
val_accuracy
val accuracy
val_accuracy
val accuracy

val_accuracy

© 0.9445

. 8.9815

. 0.9873

© 8.9948

: 8.9931

. 0.99%7

© 0.9985

: 8.9931

. 8.93%

: 0.9983

The competition dataset contains text from works of fiction written by spooky authors
of the public domain: Edgar Allan Poe, HP Lovecraft and Mary Shelley. The data was
prepared by chunking larger texts into sentences using CoreNLP'sMaxEnt sentence
tokenizer, the objective is to accurately identify the author of the sentences in the test set.

We are ready to build our network. As usual, we will start by importing the necessary

packages:

import numpy as np
import os

import shutil

import tensorflow as tf
import nltk

import pandas as pd

Now we have to pass throught our preprocessing and tokenization for the data , before
that we need to upload and read the data first , the following parts of code shown what we are

talking about :

def clean logs(data dir):

logs dir = os.path.join{data dir, "logs")
shutil.rmtree({logs dir, ignore_errors=True)

return logs_dir

Let’s upload the data :

61

Chapter IV: Designing an Author Detection Application by Style

def download data():
data=pd.read csv('data.csv',sep=",")
text=[x for x in data['text']]
label=[x for x in data['author']]
#
return text,label

There are 3194 sentences in our dataset. We will then use the TensorFlow (tf.keras)
tokenizer to tokenize the sentences and create a list of sentence tokens. We reuse the same
infrastructure to tokenize the parts of speech, although we could have simply split on spaces.
Each input record to the network is currently a sequence of text tokens, but they need to be a
sequence of integers. During the tokenizing process, the Tokenizer also maintains the tokens
in the vocabulary, from which we can build mappings from token to integer and back.

def tokenize and build vocab(texts, vocab size=None, lower=True):
if vocab size is None:
tokenizer = tf.keras.preprocessing.text.Tokenizer(lowsr=1lower)
elze:
tokenizer = tf.keras.preprocessing.text.Tokenizer(
num_words=vocab size+l, oov_token="UNK", lower=lower)
tokenizer.fit on_ texts(texts)
if wvocab size is not None:
additional workaround, see issue 2892
https://github.com/keras-team/keras/issues/8892
tokenizer.word index = {e:i for e, i in tokenizer.word index.items()
if i <= wocab _size+l }
word2idx = tokenizer.word index
idx2word = {v:k for k, v in word2idx.items()}
return word2idx, idx2word, tokenizer

We see that we could probably get away with setting the sentence length to around
100, and have a few truncated sentences as a result. Sentences shorter than our selected length
will be padded at the end. Because our dataset is small, we prefer to use as much of it as
possible, so we end up choosing the maximum length.

The next step is to create the dataset from our inputs. First, we have to convert our
sequence of tokens in our input and output sequences to sequences of integers. Second, we
have to pad shorter sequences to the maximum length of 271. Notice that we do an additional
operation on the POS tag sequences after padding, rather than keep it as a sequence of
integers, we convert it to a sequence of one-hot encodings using the to_categorical() function.
TensorFlow 2.0 does provide loss functions to handle outputs as a sequence of integers, but
we want to keep our code as simple as possible, sowe opt to do the conversion ourselves.
Finally, we use the from_tensor_slices() function to create our dataset, shuffle it, and split it
up into training, validation, and test sets:

62

Chapter IV: Designing an Author Detection Application by Style

ytrue tf.kerég.hé&kend.akgmaxfytrueJ axis=-1})
ypred = tf.keras.backend.argmax(ypred, axis=-1)

mask = tf.keras.backend.cast(

tf.keras.backend.not_equal(ypred, 8), tf.int32)
matches = tf.keras.backend.cast(

tf.keras.backend.egual(ytrue, ypred), tf.int32) * mask
numer = tf.keras.backend.sum{matches)
denom = tf.keras.backend.maximum{tf.keras.backend.sum{mask), 1)
accuracy = numer / denom

split into training, wvalidation, and test datasets
dataset = dataset.shuffle(18868)

test size = len(sents) // 3

val size = (len(sents) - test size) // 18
test_dataset = dataset.take(test size)

val dataset = dataset.skip(test size).take(val size)
train_dataset = dataset.skip(test size + val size)

create batches

batch_size = BATCH SIZE

train_dataset = train_dataset.batch({batch _size)
val dataset = val dataset.batch(batch size)
test dataset = test dataset.batch{batch size)

Next, we will define our model and instantiate it. Our model is a sequential model
consisting of an embedding layer, a dropout layer, a bidirectional GRU layer, a dense layer,
and a softmax activation layer. The input is a batch of integer sequences, with shape
(batch_size, max_seglen). When passed through the embedding layer, each integer in the
sequence is converted to a vector of size (embedding_dim), so now the shape of our tensor is
(batch_size, max_seglen, embedding_dim). Each of these vectors are passed to corresponding
time steps of a bidirectional GRU with an output dimension of 256. Because the GRU is
bidirectional, this is equivalent to stacking one GRU on top of the other, so the tensor that
comes out of the bidirectional GRU has the dimension (batch_size, max_seqlen,
2*rnn_output_dimension).

Each timestep tensor of shape (batch_size, 1, 2*rnn_output_dimension) is fed into a
dense layer, which converts each time step to a vector of the same size as the target
vocabulary, that is, (batch_size, number_of timesteps, output vocab_size). Each time step
represents a probability distribution of output tokens, so the final softmax layer is applied to
each time step to return a sequence of output.

Finally, we declare the model with some parameters, then compile it with the Adam
optimizer, the categorical cross-entropy loss function, and accuracy as the metric:

63

Chapter IV: Designing an Author Detection Application by Style

class POSTaggingModel(tf.keras.Model):
def init (self, source vocab size, target vocab size,
embedding dim, max seglen, rnn_output dim, **kwargs):
super(P0OSTaggingModel, self). init (**kwargs)
self.embed = tf.keras.layers.Embedding(
source vocab size, embedding dim, input_ length=max_seqglen)
self.dropout = tf.keras.layers.SpatialDropoutlD(@.2)
self.rnn = tf.keras.layers.Bidirectional(
tf.keras.layers.GRU(rnn_cutput _dim, return_sequences=Trus))}
self.dense = tf.keras.layers.TimeDistributed(
tf.keras.layers.Dense(target vocab size))
self.activation = tf.keras.layers.Activation("softmax")

c

® = self.embed(x)

¥ = self.dropout(x)

¥ = self.rnn{x)

® = self.dense(x)

¥ = self.activation(x)
¥

NUM_PATIRS = MNone
EMBEDDING_DIM = 128
RNN_OUTPUT_DIM = 256
BATCH_SI7YE = 128
NUM_EPOCHS = 5@

Observant readers might have noticed an additional masked_accuracy() metric next to
the accuracy metric in the preceding code snippet. Because of the padding, there are a lot of
zeros on both the label and prediction, as a result of which the accuracy numbers are very
optimistic. In fact, the validation accuracy reported at the end of the very first epoch is
0.9116. however the quality generated are very poor .

Perhaps the best approach is to replace the current loss function with one that ignores
matches where both numbers are zero; however, a simpler approach is to build a stricter
metric and use that to judge when to stop the training. Accordingly, we build a new accuracy
function masked_accuracy() whose code is shown as follows:

64

Chapter IV: Designing an Author Detection Application by Style

i def masked accuracy():
def masked accuracy fn{ytrue, ypred):
ytrue = tf.keras.backend.argmax(ytrue, axis=-1)
ypred = tf.keras.backend.argmax(ypred, axis=-1)

mask = tf.keras.backend.cast(

tf.keras.backend.not_equal(ypred, @), tf.int32)
matches = tf.keras.backend.cast(

tf.keras.backend.equal{ytrue, ypred), tf.int32) * mask
numer = tf.keras.backend.sum{matches)
denom = tf.keras.backend.maximum{tf.keras.backend.zum{mask), 1}
accuracy = numer / denom
return accuracy

return masked accuracy fn

We are now ready to train our model. As usual, we set up the model checkpoint and
TensorBoard callbacks, and then call the fit() convenience method on the model to train the
model with a batch size and epochs:

train
num_epochs = NUM_EPOCHS

best model file = os.path.join(data dir, "best model.h5")
checkpoint = tf.keras.callbacks.ModelCheckpoint(

best _model file,

save_weights_only=True,

save _best only=True)
tensorboard = tf.keras.callbacks.TensorBoard(log dir=logs dir)
history = model.fit(train_dataset,

epochs=num_epochs,

validation_data=val_dataset,

callbacks=[checkpoint, tensorboard])

A truncated output of the training is shown as follows. As you can see, the masked
accuracy and val_masked_accuracy numbers seem more conservative than the accuracy and
val_accuracy numbers. This is because the masked versions do not consider the sequence
positions where the input is a PAD character:

65

Chapter IV: Designing an Author Detection Application by Style

Epoch 1/56
184/184 [

Epoch 2/56@
184/184 [

Epoch 3/56
184/184 [

Epoch 4/58
184/184 [

Epoch 5/58

184/184 |
Epoch 6/56

184/184 [
Epoch 7/56@

184/184 [
Epoch 8/56
184/184 [

Epoch 9/58
184/184 [

Epoch 18/58
184/184 [

Epoch 11/58
184/184 [

Epoch 12/58

Finaly the evaluation with test set will show like this :

0/m |

- 480s 3s/step -
- 474s 3s/step -
- 4765 3s/step -
- 481s 3s/step -
- 4825 3s/step -
- 4825 3s/step -
- 484s 3s/step -
- 484s 3s/step -
- 4795 3s/step -
- 483s 3s/step -

- 479s 3s/step -

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

8.8566 - accuracy: €.9911 -
8.8851 - accuracy: 8.9977 -
8.8841 - accuracy: ©.9938 -
8.8838 - accuracy: 8.9982 -
8.8836 - accuracy: ©.9983 -
8.8828 - accuracy: 8.9988 -
8.0818 - accuracy: ©.9993 -
8.8812 - accuracy: ©.99%6 -
$.8284e-84 - accuracy: 8.9997 - masked_accuracy_fn: 8.9151 -
6.5518e-84 - accuracy: 8.9998 - masked_accuracy_fn: 8.9424 -

5.2431e-84 - accuracy: 8.9998 - masked_accuracy_fn: 8.9544 -

test loss: 0,080, test accuracy: 1,989, masked test accuracy: L.6%0

masked_accuracy_fn: 8.1382 -
masked_accuracy fn: 8.4852 -
masked_accuracy_fn: 8.4476 -
masked_accuracy_fn: 8.5857 -
masked_accuracy_fn: 8.5517 -
masked_accuracy fn: 8.6720 -
masked_accuracy_fn: 6.8182 -

masked_accuracy_fn: 8.8857 -

val_loss

val_less

val_loss:

val_loss:

val_loss

val_less

val_loss:

1 8.0064 -

18,8043 -

. 8.0034 -

18,8022 -

@.00338 -

8.0e37 -

@.0014 -

val_accuracy: 8.996
val_accuracy: 8.997
val_accuracy: ©.998
val_accuracy: 8.998
val_accuracy: ©.998
val_accuracy: 8.999

val_accuracy: €.999

val_loss: 9.3815e-84 - val_accuracy: @

val_loss: 6.9838e-04 - val_accurac
val_loss: 4.7349%-04 - val_accurac

val_leoss: 3.973%e-84 - val_accurac

| - B85 B4%ns/step - loss: 7.0676e-80 - accuracy: 10680 - masked accuracy fn: 8,998

Here are some examples generated for some random sentences in the test set, shown together
with the corresponding ground truth sentences. As you can see :

text : the back of the hand is upwards
prediction :
label @ [°

["EAP']
EAP]

text : the drawers of a bureau which stood in one corner were open and had been apparently UNK although many articles still remained in them

prediction :
label @ [’

["EAP']
EAP’]

text : evening approached and i beheld the sun set

prediction :
label @ [°

text : UNK

prediction :
"HPL']

label @ [
text : the

prediction :
"EAP']

label @ [

['MWS"]
WS]

ivory image but the sight of an UNK pistol calmed them

["HPL']

inhabitants of our side of the moon have svidently no darkness at all so there can be nothing of the extremes mentioned

['EAP']

text @ his features had perhaps been noble once but were now UNK with the ghastly effects of terrible dissipation

prediction :
"HPL']

label @ [

["HPL']

4.3.3 Linear Classifier

we will use the Estimator classifier available in TensorFlow estimator to determine
wich text is belong to an author in our data , The classifier Estimator takes in the features and
the labels. It converts them to onehot encoded vectors, that is, we have 10 bits representing
the output. Each bit can have a value of either 0 or 1, and being one-hot, let’s build our model

66

Chapter IV: Designing an Author Detection Application by Style

1. The first step is as always importing the modules needed:

TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras

Helper libraries
import numpy as np
import matplotlib.pyplot as plt

print{tf. wversion_)}
2. We load the data :

def load data(dir name):

file name=os.path.join(dir name, 'data.csv')

it (os.path.exists(file_name)):
data=pd.read csv(file name,sep=",")
text=[x for x in data['text']]
label=[x for x in data[' 'author']]
return text,label

else:
-

eturn 8,8
3. Next, we preprocess the data:

deft my_label int(labels):
ints=[]
for x in labels:
if x=="EAP":
ints.append(&)
elif x=="MWS":
ints.append(1)
elif x=="HPL":
ints.append(2)
#
ints=np.array(ints)
#
return ints

4.Now, we move to the preprocessing for tokenization and indexation:

67

Chapter IV: Designing an Author Detection Application by Style

def build tokenizer(text,vocab_size=None, lowel=True}:
if vocab_size is HNone:
tokenizer=tf.keras.preprocessing.text.Tokenizer()

glse:

tokenizer=tf.keras.preprocessing.text.Tokenizer(
wum_words=vocab_size,ocov_token="UNK"

)

tokenizer.fit_on_texts(text)
if vocab_size is not Mene:

tokenizer.word_index={e:i for e,i in tokenizer.word_index if i <= vocab_size+l}
word2idx=tokenizer.word_index
idx2word={i:e for e,i in word2idx.items()}

return word2idx,idx2word,tokenizer

5. Use the feature_column module of TensorFlow to define numeric features of size:

def build_feature_columns(shape_size):
fo=[tf.feature _column.numeric_column(’x',shape=shape size)]
#
return fc

6. Create the logistic regression estimator. We use a simple LinearClassifier. We encourage
you to experiment with DNNClassifier as well:

linearClassifier=tf.estimator.LlinearClassifier(
feature_columns,
model dir="",
n_classes=3

)

7. Let us also build an input_function to feed the estimator:

def input_fn(data,label,train):
if train ==
text input fn=tf.compat.vl.estimator.inputs.numpy input fn{
®»={"x":data},
y=label,
num_epochs=HNone,
shuffle=True

A e

E.

text input fn=tf.compat.vl.estimator.inputs.numpy input fn{
¥x={"x":data},

y=label,

num_epochs=1,

shuffle=False

i#
return text _input_fn

68

Chapter IV: Designing an Author Detection Application by Style

8. Let's now train the classifier:

train the estimator
linearClassifier.train(
train_input fn,

steps=18
)

9. Next, we create the input function for validation data:

val input_fn = tf.compat.vl.estimator.inputs.numpy input +fn{
¥={"x": eval_data},

y=eval labels,

num_epochs=1,

shuffle=False)

10. Let us evaluate the trained Linear Classifier on the validation data:

input the test

out_input fn=input fn(test data,test label,8)
evaluate the estimator
linearClassifier.evaluate({out input fn)

We get an accuracy of 36.31% after 10 time steps note that since we have specified the
time steps, the model trains for the specified steps and logs the value after 10 steps (the
number of steps specified). Now if we run train again, then it will start from the state it had at
the 10th time step. The steps will go on increasing with an increment of the number of steps
mentioned.

The following is the graph of the preceding model (Figure 23):

69

Chapter IV: Designing an Author Detection Application by Style

concat concat 1 init
Const N Const . glebal step deps
axis axis % linear froap_dep
init 1
, group deps
report uninibial... report_uninitial... save . group da
in} P
: mit 1 v
o~ init 2
group deps
init all ta
| “nea[‘ . Init » group deps
init 3
group_deps
———— = £ random init 2 group de...
init all tahl ¢
> it
global step n » o
enqueue inpul)

Figure 23 :TensorBoard graph of the generated model

From TensorBoard we can also visualize the change in accuracy and average loss as the linear
classifier learned in steps of ten (Figure 24):

08 0.91
~+-|gss -+—Accuracy
0.75 09
0.7 0.89
088
0.65
0.87
E 0.6 .
2 086 2
w055 5
g 085 2
>
a2 05
0.84
0.45 083
0.4 0.82
0.35 0.81
03 0.8
o 20 40 60 B0 100 120 140
Time Steps

Figure 24 : Accuracy and average loss, visualized

70

Chapter IV: Designing an Author Detection Application by Style

4.3 Conclusion

In this chapter, we have seen the concepts behind distributional representations of
words and its various implementations, starting from static word embeddings such as
Word2Vec.

We have then looked at improvements to the basic idea, such as subwordembeddings,
sentence embeddings that capture the context of the word in the sentence, as well as the use of
entire language models for generating embeddings. While the language model-based
embeddings are achieving state of the art results nowadays, there are still plenty of
applications where more traditional approaches yield very good results, so it is important to
know them all and understand the tradeoffs.

We have also seen the two models LSTM and GRU step by step how to create the
model and how to load and read the data the way it seems better for building a right model as
it has , we have seen also how to preprocessing the data and split it for training and testing ,
the results that we have seen is different from these three models that we have used.

71

Chapter V: Implementation and Testing

72

Chapter V: Implementation and Testing

Chapter V: Implementation and Testing

5.1 Introduction

We have defined our approach to the identification of an author by his style abstract,
as well as all the concepts that follows it, and we are nowready to test our application. This
chapter will describes the hardware and software environment inwhich we worked on, as well
as the test of the application on which we have dealt with it and themeasurementthat we have
used.

5.2 hardware environment

Our application has been performed on a machine that has thefollowing characteristics:

e Brand : HP ProBook

e Processor : Intel(R) Core(TM) i5-2430M CPU @ 2.4GHz 2.4GHz
e Graphic Card : Internal Intel(R) HD Graphics 3000

e Memory : 8.00 Go

e Operating System : Windows 10 Professionel

5.3 Software environment

5.3.1 Python

Python23 is an open source programming language created by Guido programmer van
Rossum in 1991. It appeared at the time as a way to automate the elements the more annoying
than writing scripts or quickly making prototype applications.In recent years, this
programming language has become one of the most widely used in the field of software
development, infrastructure management and data analysis.This is a driving force behind the
Big Data explosion.

There are two versions of Python: Python 2 and Python 3. The differences between
these two versions are multiple. Python 2.x is the older version, which will continue to be
supported and receive official updates until 2020. Afterthat date, itwillprobably continue to
existunofficially.

Python 3.x is the current version of the language. It brings many new and very useful
features, such as better competition control and a more efficient interpreter. However, the
adoption of Python 3 has long been slowed down by the lack of supported third-party
libraries. Many of them were only compatible with Python 2, which made the transition
complicated. However, this problem is now practically solved and there are few valid reasons
to continue using Python 2.

The Python language owes its popularity to several advantages that benefit beginners as
well as experts, including:

73

Chapter V: Implementation and Testing

e It is easy to learn and use. Its features are few, this which allows programs to be
created quickly and with little effort. In addition, itssyntax is designed to be readable
and direct;

e It works on all major operating systems and platformscomputer. Moreover, even if it is
clearly not the fastest language,it compensates for its slowness by its versatility;

e Although it is mainly used for scripting and automation, this languageis also used to
create professional quality software. Whether it isapplications or web services, Python
is used by a large number ofdevelopers to create software.

5.3.2 Google Colab

Google Colab or Colaboratory is a cloud service, offered by Google (free), based on
Jupyter Notebook and intended for training and search in machine learning. This platform
allows you to train machine learning models directly in the cloud. So without having to install
anything on our computer except a browser. Cool, right? Before presenting this magnificent
service, we will recall what is a Jupyter Notebook.

Google Colabfile,has three different type of executionthat he must select :

1. None
2. TPU
3. GPU

5.3.3 TensorFlow

TensorFlow is a powerful open source software library developed by the Google Brain
team for deep neural networks, the topic covered in this book. It was first made available
under the Apache 2.0 License in November 2015 and has since grown rapidly; as of May
2019, its GitHub repository (https://github.com/ tensorflow/tensorflow) has more than 51,000
commits, with roughly 1,830 contributors. This in itself provides a measure of the popularity
of TensorFlow.

5.3.4 NumPy

NumPy is the fundamental package for scientific computing in Python. It is a Python
library that provides a multidimensional array object, various derived objects (such as masked
arrays and matrices), and an assortment of routines for fast operations on arrays, including
mathematical, logical, shape manipulation, sorting, selecting, 1/0, discrete Fourier transforms,
basic linear algebra, basic statistical operations, random simulation and much more
[https://numpy.org/doc/stable/].

5.3.5 NItk

NLTK is a leading platform for building Python programs to work with human
language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such
as WordNet, along with a suite of text processing libraries for classification, tokenization,
stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-strength NLP
libraries, and an active discussion forum.

74

Chapter V: Implementation and Testing

Natural Language Processing with Python provides a practical introduction to
programming for language processing. Written by the creators of NLTK, it guides the reader
through the fundamentals of writing Python programs, working with corpora, categorizing
text, analyzing linguistic structure, and more[https://www.nltk.org/].

5.3.6 Matplotlib.pyplot

Pyplot is a Matplotlib module with several simple functions to add elements such as
lines, images or texts at the axes of a graphic. Soundinterface is very comfortable, and that’s
why this module is very used. Matplotlibisfreely distributed under a BSD-style license.

5.3.7 Flask

Flask is a lightweight WSGI web application framework. It is designed to make
getting started quick and easy, with the ability to scale up to complex applications. It began as
a simple wrapper around Werkzeug and Jinja and has become one of the most popular Python
web application frameworks.

Flask offers suggestions, but doesn't enforce any dependencies or project layout. It is
up to the developer to choose the tools and libraries they want to use. There are many
extensions provided by the community that make adding new functionality
easy[https://palletsprojects.com/p/flask/].

5.4 Data Set

5.4.1 Description

The competition dataset contains text from works of fiction written by spooky authors
of the public domain: Edgar Allan Poe, HP Lovecraft and Mary Shelley.every one of them has
three books. The data was prepared by chunking larger texts into sentences using
CoreNLP'sMaxEnt sentence tokenizer, the objective is to accurately identify the author of the
sentences in the test set.

5.4.2 File Descriptions

e Train.csv : the training set.
e Test.csv : the test set.
e Sample_submission.csv : a sample submission file in the correct form.

5.4.3 Data fields

e Id: aunique identifier for each sentence.

e Text : some text written by one of the authors.

e Author : the author of the sentence (EAP: Edgar Allan Poe, HPL: HP
Lovecraft; MWS: Mary Wollstonecraft Shelley).

75

Chapter V: Implementation and Testing

5.5 The graphical interface of the system

@ author identification style X +

€ > C 01001 URL of web application

1 Gmal » YouTube & Maps () GitHub-ganit44/St. 4% E-Googe .. wnload Warrior-.. €) pylslam/mirath.py a...

Welcome to Author Identification Style Site

Home Page
contact page

predict the author page

Predict page

about page

|-l Taper ici pour rechercher i - ~ @ T d) FRA

@ Document

& C ® 127001

! Gmal » YouTube & Maps () GitHub- ganit44/St.. 43 E-Google Drive Download Wartior-.. () pylslam/mirath.py ...

select the models

type the texts here
for predict

post for go into
next resault page

I= ,Q Taper ici pour rechercher i A tm T Q) FRA

Figure 26 : graphic interface of app

76

17/09/2022

]

Chapter V: Implementation and Testing

5.5.1 System User Guide

@ Document

< C © 127001

1 Gmal » YouTube & Maps () GitHub-ganit44/St. /% E-GoogleDrive [} Download Warrior-..) pylskam/mirathpya..

LSTM Model

Test Model

available models

Lir assifier Model
GRU Model

. 1524
8 | O Taperici pour rechercher i . A @ T Q) FRA

17/09/2022 D

@ Document

< C © 127001

1 Gmal » YouTube © Maps () Github-ganit44/St. /3 E-GoogleDrive 21 Download Warrior-.. () pylslam/mirathipy a..

Paste the texts please

Upon the fourth day of the

assassination, a party of the

police came, very unexpectedly, any teXt Of teSt
into the house, and proceeded

again to make rigorous

1528
% O Taperici pour rechercher = I e A i@ T) FRA

17/09/202 D

Figure 27 : select the model and text input

77

Chapter V: Implementation and Testing

Author Predition

€ Cc

1 Gmal » YouTube & Maps () Githiub - ganitdd/St_

model name

Author Predition

authors

Vtexts sliced into
sentences for
predict

Author Predition

= [¢] 127.0.0.1

1 Gmail > YouTube § Maps () GitHub-ganitdd/St. A\ E-GoogleDrive [} DownloadWarior-.. () pylslam/mirathpy a..

8, Or, I (s MOJE Ol speecn orend you, Y, that My motner, te proud queen, Insule

arly into me a love of distinction, and all that, if the weakness of my physical nature and my peculiar
opinions had not prevented such a design, might have made me long since struggle for the lost
inheritance of my race.”

Mary Wollstonecraft Shelley

id02230," have promised that someone should watch for him and give him instant notice if any new

Mary Wollstonecraft Shelley object should appear in sight."
s ar in sight.

id15553,"The rope drags, either on land or sea, while the balloon is free the latter, consequently, is
Edgar Allan Poe always in advance, when any progress whatever is made: a comparison, therefore, by means of the
compass, of the relative positions of the two objects, will always indicate the course.”

id25688,"In his frenzied strains | could almost see shadowy satyrs and Bacchanals dancing and
whirling insanely through seething abysses of clouds and smoke and lightning."

HP Lovecraft
Edgar Allan Poe id17545,"The cat and pigeons seemed to suffer no inconvenience whatsoever."

HP Lovecraft id13929,"Did he think of this as we journeyed up to town?"

id12880,"All other art objects | had ever seen either belonged to some known racial or nationa

Edgar Allan Poe . . "
stream, or else were consciously modernistic defiances of every recognised stream.

A b T1d) FRA

Figure 28: predict result

5.6 Experimentations

5.6.1 Results using LSTM model

Here we show all the results related to LSTM model using the accuracy and loss of
train besides of the validation in terms of epoch.

78

Chapter V: Implementation and Testing

5.6.1.1 Accuracy,loss of train,validation in terms of epoch

Accuracy and loss results are shown in (Figure 29) which shows accuracy. In terms

of the epoch, and in the (Figure 30) it shows the percentage of loss in terms of the epoch, then
the (Figure 31) shows the convincing results of agreement:

Figure 29: Accuracy of train and validation in terms of epoch

The red graph represents train accuracy, and the blue one represents the validation
accuracy in terms of epoch payments.

We notice in the (Figure 29) that at the first epoch, the accuracy rate was above
90%, and this indicates that the training was successful , means it train well. When the ninth
batch of epoch was reached, it reached 99%, and the result was perfect.

Figure 30:loss of train and validation in terms of epoch

79

Chapter V: Implementation and Testing

The same colors expressing the above in the (Figure 29) also here in the (Figure 30)
symbolize the same thing, but this curve is the percentage of loss in terms of the epoch. We
notice in this (Figure 30) that at the first batch, the loss rate was less than 10% at the train and
the validation, which indicates that the result is very good from the first batch, and this is
thanks to the loss function and the optimizer was an ideal choice, and upon reaching the ninth
batch we see The loss rate is less than 2%.

Figure 31:Accuracy masked of train and validation in terms of epoch

As for the percentage of the (Figure 31), the red is the train, the filled data, and the
blue is the validation. We see here that the validation starts at the beginning of a high
percentage and decreases until it reaches the first batch and increases until it reaches the
second batch and decreases and then keeps increasing and also by a percentage For the train it
keeps increasing to the end and we notice also that it corresponds to the (Figure 29) Search
from the first batch the percentage was above 90% to the last batch above 99% or maybe they
quickly reached 100%. And we get the perfect result.

5.6.1.2 Evaluation of Istm model

Here the results of the evaluation are displayed by means of the test data so that we know
whether the model provides a realistic result, and this time in terms of iterations, which means
the repetition of the batch in only one epoch. In short, the curves here are the percentage of
compatibility or loss in one batch only.

80

Chapter V: Implementation and Testing

T

]
Lo
[Fa]}

&
=
i

]
o

=
-
Lu

Lo

Figure 32:Evaluation of Accuracy (a) and loss (b) in terms of iterations

We note in the (Figure 32(a)) is the percentage of compatibility in terms of frequency.
We note the curve is increasing and the percentage has exceeded 99%, and also in the (Figure
32(b)) the percentage of loss is decreasing and has reached zero, which indicates that the
evaluation is high and the result is very perfect and the model can be relied on in Predicting
the author's name.

V]
V]

e

Y5 b

mooas

(0= = s

mooTa

(=

M a7d

a7

[IRS 151 \~h
T anm - - -
Gl ol L.k Lok &K

Figure 33 :Evaluation of Accuracy masked in terms of iterations

We also notice in the (Figure 33) the convincing percentage of convincing is
decreasing and increasing and decreasing and increasing twice, but in the last batch we see it
exceeded 99% and also the evaluation is very high.

° # evaluate with test set

best_model = AuthorModelSTM(source_vocab_size,max_seqlen)
best_model.build{input_shape=(batch_size, max_seqlen))
best_model.load_weights(best_model_file)
best_model.compile(

loss="categorical_crossentropy”,

optimizer="adam",

metrics=["accuracy”, masked_accuracy()])

test_loss, test_acc, test_masked_acc = best_model.evaluate(test_dataset)

print("test loss: {:.3f}, test accuracy: {:.3f}, masked test accuracy: {:.3f}".format(
test_loss, test_acc, test_masked_acc))

O le2/1e2 [] - B2s 548ms/step - loss: B8.€175 - accuracy: 8.8944 - masked accuracy fn: 2.9263
test loss: ©.817, test accuracy: 0.994, masked test accuracy: @.996

Figure 34 :Evaluation of Accuracy masked result

81

Chapter V: Implementation and Testing

The (Figure 34) shows the result of the evaluation in the form of data and it is the
same as what we said in the previous two (Figure 32) and (Figure 33) and this evaluation is
perfect as we said in the past.

5.6.2 Results using GRU model

Here we show all the results related to GRU model using the accuracy and loss of train
besides of the validation in terms of epoch.

5.6.2.1 Accuracy,loss of train,validationin terms of epoch

Accuracy and loss results are shown in (Figure 35) which shows accuracy. In terms
of the epoch, and in the (Figure 36) it shows the percentage of loss in terms of the epoch, and
the (Figure 37)shows the convincing results of compatibility.

Figure 35 : Accuracy of train and validation in terms of epoch

The red graph represents train accuracy, and the blue graph represents validation
accuracy in terms of epoch payments.

We notice in the (Figure 35) that at the first epoch, the accuracy rate was above
99%, and this indicates that the training not was successful 100%. When the ninth batch of
epoch was reached, it reached 100% and exceeded it, and the result was not perfect because
the over fit.

82

Chapter V: Implementation and Testing

Figure 36:loss of train and validationin terms of epoch

The same colors expressing the above in the (Figure 35)also here in the (Figure
36)symbolize the same thing, but this curve is the percentage of loss in terms of the epoch.
We notice in this (Figure 36)that at the first batch the loss rate was less than 0.4% at the train
and the validation, which indicates that the result is very good from the first batch and this is
thanks to the loss function and the optimizer was an ideal choice, and when reaching the ninth
batch we see The loss rate is less than 0.15%.

Figure 37: Accuracy masked of train and validation in terms of epoch

As for the (Figure 37), the red is the train, the stuffed data, and the blue is the
validation. We see here the two increasing to the end, and we note that it corresponds to the
(Figure 36)but here in (Figure 37)from the first batch the percentage was above 45% to the
last payment 95%

Chapter V: Implementation and Testing

5.6.2.2 Evaluation of GRU model

Here the results of the evaluation are displayed by means of the test data so that we
know whether the model provides a realistic result, and this time in terms of iterations, which
means the repetition of the batch in only one epoch. In short, the curves here are the
percentage of compatibility or loss in one batch only.

a00 1k 12k 1.4k 16k 1.8k

Figure 38 :Evaluation of Accuracy in terms of iterations

200 1k 12k 1.4k 16k 1.8k

Figure 39 :Evaluation of loss in terms of iterations

We note in the picture (Figure 38)is the percentage of compatibility in terms of
frequency. We note the curve is increasing and the percentage has exceeded 100%. Also in
the (Figure 39) the percentage of loss has decreased and reached zero, which indicates that the
evaluation is high and the result is not perfect and the model maybe can be relied on in
predicting the name of the writer.

Chapter V: Implementation and Testing

Figure 40 :Evaluation of Accuracy masked in terms of iterations

We also note in the (Figure 40) the convincing percentage of compatibility is
increasing, but in the last batch we see it exceeded 99% because the over fit.

[1 # evaluate with test set
best_model = POSTaggingModel(source vocab_size, target vocab size+l,
embedding_dim, max_seqlen, rnn_output_dim)
best_model.build(input_shape=(batch_size, max_seqlen))
best_model.load_weights(best_model file)
best_model.compile(
loss="categorical_crossentropy”,
optimizer="adam",
metrics=["accuracy", masked_accuracy()])

test_loss, test_acc, test_masked_acc = best_model.evaluate(test_dataset)
print("test loss: {:.3f}, test accuracy: {:.3f}, masked test accuracy: {:.3f}".format(
test_loss, test_acc, test_masked_acc))

1ez2/182 [] - 88s B49ms/step - loss: 7.8876e-86 - accuracy: 1.88e@ - masked_accuracy_fn: 8.9995
test loss: .80, test accuracy: 1.e08, masked test accuracy: 1.808

Figure 41:Evaluation of Accuracy masked result

The (Figure 41) shows the result of the evaluation in the form of data and it is the
same as what we said in the previous pictures (Figure 39), (Figure 40), (Figure 41) and this
evaluation is perfect as we said in the past.

5.6.3 Results using linear classifiermodel

Let's be honest, there is no interesting result. All the curves in this model are empty
and meaningless. Because this model is a type of machine learning, but we have data that we
can show the results through

Chapter V: Implementation and Testing

[11] # build estimator LinearClassifier
linearcClassifier=tf.estimator.LinearClassifier(
feature_ columns,
model dir="",
n_classes=3

)

WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpchamsz8r

[12] # train the estimator
linearClassifier.train(
train_input_+n,
steps=16

Figure 42 :model LinearClassifier with estimator

The (Figure 42)shows making a model of the estimator and training it with 10 steps
because, frankly, I tried to raise the number of steps, and the results were very bad. | think
that 10 is very suitable.

[12] # input the test
out_input_fn=input_fn(test_data,test_label,8)
evaluate the estimator
linearClassifier.evaluate({out_input_fn)

{'accuracy’: 6.48178888,
"average loss': 2225.9358,
"loss": 2225.8888,

'global step': 18}

Figure 43 :Evaluatemodel LinearClassifier with test data

(Figure 43) shows the final evaluation result with the test data, and the compatibility
rate is 40%, and the catastrophic loss rate is 2,225,8008, and the loss rate is almost the same,
which indicates that the model is less than 70% in compatibility, so it is not very useful for us
in predicting.

5.7 Evaluation measures

To test the quality of any classification system like Support Vector Machines, there’s
need to perform some evaluation metrics. Support Vector Machines are classification
algorithm which | explained briefly in kernels.

The following matrix shows the true or false positive or negative by predicted

86

Chapter V: Implementation and Testing

Predicted

Negative Positive

Negative | True Negative | False Positive
Actual

Positive | False Negative | True Positive

Table 1: confusion matrix

5.7.1 definitions
5.7.1.1 Recall

Recall measures the ability of the system to retrieve all documentsin other words, it
measures the proportion of Canadianrelevant documents returned by the system in respect of
allrelevant documents contained in the collection. It is expressed by [44]:

True Positive
Recall =

False Negative + Ture Positive

5.7.1.2 Precision

Immediately you can see that Precision indicates how accurate your model is on the
positive ones, how many of them are actually positive.

Accuracy is a good measure to determine, when the costs of false positives are high.
For example, spam detection by email. In spam detection, a false positive means that an email
that is not spam (real negative) has been identified as spam (spam predicted). The email user
could lose important emails if the accuracy is not high for the spam detection model.

o True Positive
Precision =

False Positive + True Positive

5.7.1.3 F score

Now, if you read many other documents on precision and recall, you can’t avoid the
other measure, F1 which is a precision and recall function.

The F1 score could be a better measure to use if we have to balance accuracy and
recall AND if there is an uneven distribution of classes (large number of actual negatives).

Looking the formula is as follows:

(2 x precision x recall)

1 =
flscore (precision + recall)

87

Chapter V: Implementation and Testing

5.7.1.4 Accuracy

Accuracy is a measure that generally describes model performance for all classes. It is
useful when all classes are of equal importance. It is calculated as the ratio between the
number of correct predictions and the total number of predictions.

Accuracy =

5.7.2 Model Comparison

True Positive + True Negative

False Positive + False Negative + True Positive + True Negative

Author Name : EAP
Models

Precision Recall F1 Score Accuracy
LSTM 99.41 99.24 99.33 99.46
Linear 4457 51.13 47.62 54.73
GRU 97.13 96.38 96.76 97.39

Table 2: Result of author Edgar Allan Poe (EAP)

Author Name : MWS
Models

Precision Recall F1 Score Accuracy
LSTM 98.94 99.58 99.26 99.54
Linear 30.9 15.96 21.05 62.99
GRU 96.16 97.09 96.62 97.91

Table 3: Result of author Mary Wollstonecraft Shelley (MWS)

88

Chapter V: Implementation and Testing

Author Name : HPL
Models

Precision Recall F1 Accuracy
LSTM 99.65 99.2 99.43 99.67
Linear 32.24 42.32 36.6 57.72
GRU 97.15 97.21 97.18 98.38

Table 4: Result of author HP Lovecraft (HPL)

5.8 Discussion

Overall, models are showing fairly good results based on our data wich contain three
different author, we have used a global evaluation measureswich we performe a precision and
recall besides of f_score and accuracy.

The LSTM model has invade all the results a reched the top of them in three tables
wich proceed a 99% in every evaluation measures, and that means that the model was well
prepared wich passed throught all necessary steps , then it trained well.

The GRU model comes after with a great hight results between 96% and 98% wich
means was well trained too, therefore the linear classifier was the last with low results
because of the base steps that passed throught during the preparation and the training .

5.9 Conclusion

It is very clear in Tables 2,3 and 4 that the result is in favour of LSTM model and this
is entirely consistent with the data results, but we noticed that GRU model also had a very
high results in the previous graphical results and it is here in the tables that it did not surpass
LSTM because the probability that this is due to the reason of the small data but with that, As

for LinearClassifer, its results must have been as bad because it is of the standard ml,
and also the data did not provide a satisfactory result.

89

Conclusion General

Conclusion general

The internet become a place for uncounted of unknown documents and articles that
contain a very important topics related to anonymous author invades all the domains, It often
happens that articles published in the press or sometimes entire books are not signed and
nothing is known about their author. It also happens that authors attribute to themselves the
authorship of an unsigned article or book or, on the contrary, that critics question this
authorship.

Our initial objective during this thesis was to make a web application by exploiting
different variants of neural architectures based on automatic recognition of an author.

In this work, we started by explaining some theories that we have talked about based
on machine learning. We made a small presentation in order to understand this domain, then
we have presented some notions of Automatic identification of the author of an article from
the writing style.

Then we discussed about creating Automatic Author Identification of an article from
the writing style that based on neural networks, we have covered all the steps necessary to
Building a good Automatic Identification model. We have proposed methods that have been
used during preprocessing in automatic identification generation such as LSTM and GRU.

Once our approach has been well defined we are ready to put to the test. We presented
the datasets of our dataset (EAP: Edgar Allan Poe, HPL: HP Lovecraft; MWS: Mary
Wollstonecraft Shelley) which consisted of three different authors , we worked on and
processed. And in the end we have completed this work with a summary of the results and
tests obtained by our testing on data.

Finally the best rnn cell that has a great results during the test on our data is LSTM.

In the end of this work , we have reached that we could identifier an author based on
his style with great precession.

As future works , on propose :
- Develop the concept of author style.
- Test application with dataset that contains more than three authors.
- Test others models of classification.

- Test the application based on different language datasets.

90

Bibliography

Bibliography

[1]Charles Coustille, Une histoire du plagiat universitaire, sur le site « fabula.org ».
[2] Same source as above
[3]L’article a paru dans « [’Entente » le 23 février 1936.

[4]Author(s): Adam Pawlowski and ArturPacewicz ,HistoriographiaLinguistica, Volume 31,
Issue 2-3, Jan 2004, p. 423 — 447

[5]Stein and Eissen, 2007; Layton et al., 2013; Jayapal and Goswami, 2013

[6]Jérémy Ferrero_, Alain Simac-Lejeune, Automatic detection and grouping of writing style
in a text

[7]Voir Robert Ricatte, 1970, Préface Giono, (Euvres complétes, volume 1, Paris, Gallimard,
La Pléiade, 1971, p. XLVI.

[8] GioNO, Jean, (Euvres romanesques completes, édition dirigée par Robert Ricatte, Paris,
Gallimard, coll. « Bibliotheque de la Pléiade », 6 tomes, 1971-1983.

[9] V .Magri ,Le deep learning comme défi pour identifier le style d’un écrivain : I’exemple
de Jean Giono, p 3

[10](Jérémy Ferrero_, Alain Simac-Lejeune, Automatic detection and grouping of writing
style in a text

[11]C. Paganelli, La recherche d'information dans des bases de documents techniques en texte
intégral. Etude de I'activité des utilisateurs, These de Doctorat en sciences de I'information et
de la communication, Université Stendhal de Grenoble 3, 1997, 354p

[12]Zoulikha BENBLAL and Fatima BELOUAFI «Integration of an Arab lemmatizer in the
framework of an information search system», Mémoire Master, Adrar, Algeérie, 2014

[13]E. Cambria and B. White, "Jumping NLP curves: a review of Natural language processing
research”, [review article], Computational Intelligence Magazine, IEEE, vol. 9, pp. 48-57,
2014

[14]Toutanova, Kristina, “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding” [archive], at arXiv.org, 11 October 2018 (accessed 31 July 2020).

[15] Christopher D. Manning, HinrichSchiitze, Foundations of Statistical Natural Language
Processing, MIT Press (1999), (ISBN 978-0-262-13360-9), Xxxi.

[16]CHELLOUF Athman and AYACHI Yacine, "Proposition et conception d'un systéme de
détection d'événements sur les réseaux sociaux dédié a la langue Arabe", Ecole Militaire
Polytechnique, Algérie, 2018

[17]Jean VERONIS, “Informatique et Linguistique” teaching unit INF Z18, Université de
Provence, centre informatique pour les lettres et sciences humaines, France, 2001

91

https://www.jbe-platform.com/search?value1=Adam+Paw%C5%82owski&option1=author&noRedirect=true
https://www.jbe-platform.com/search?value1=Artur+Pacewicz&option1=author&noRedirect=true
https://www.jbe-platform.com/content/journals/15699781
https://www.jbe-platform.com/content/journals/15699781/31/2-3
https://www.jbe-platform.com/content/journals/15699781/31/2-3
https://www.jbe-platform.com/content/journals/15699781/31/2-3

Bibliography

[18]J-H. JAYEZ, «Compréhension automatique du langage naturel le cas du groupe nominal
en francais», Masson, 1985

[19]Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press. http://www.
deeplearningbook.org (2016)

[20]Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985).Learning Internal
Representations by Error Propagation. Parallel Distributed Processing: Explorations in the
Microstructure of Cognition

[21]Britz, D. (2015). Recurrent Neural Networks Tutorial, Part 3 - BackpropagationThrough
Time and Vanishing Gradients. URL: http://www.wildml. com/2015/10/recurrent-neural-
networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/.

[22]Pascanu, R., Mikolov, T., and Bengio, Y. (2013).0n the difficulty of training Recurrent
Neural Networks. Proceedings of the 30th International Conference on Machine Learning
(ICML)

[23]Hochreiter, S., and Schmidhuber, J. (1997). LSTM can solve hard long time lag problems.
Advances in Neural Information Processing Systems (NIPS).

[24](Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735—
1780 (1997)

[25](Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735—
1780 (1997)

[26]Gers, F.A., and Schmidhuber, J. (2000). Recurrent Nets that Time and Count.
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks
(JCNN)

[27] Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation, by K. Cho, arXiv:1406.1078, 2014

[28] An Empirical Exploration of Recurrent Network Architectures, by R. Jozefowicz, W.
Zaremba, and I. Sutskever, JMLR, 2015 and Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling, by J. Chung, arXiv:1412.3555. 2014

[29](Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press. http://www.
deeplearningbook.org (2016)).

[30]Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press. http://www.
deeplearningbook.org (2016)

[31]Karpathy, A. (2015). The Unreasonable Effectiveness of Recurrent Neural Networks.
URL.: http://karpathy.github.io/2015/05/21/rnneffectiveness/.]

[32]Karpathy, A., Li, F. (2015).Deep Visual-Semantic Alignments for Generating Image
Descriptions.Conference on Pattern Recognition and Pattern Recognition (CVPR).

[33]Socher, et al. (2013).Recursive Deep Models for Sentiment Compositionality over a
Sentiment Treebank. Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing (EMNLP)

92

Bibliography

[34]Bahdanau, D., Cho, K., Bengio, Y. (2015). Neural Machine Translation by Jointly
Learning to Align and Translate.arXiv: 1409.0473 [cs.CL].,

[35]Vinyals, O., et al. (2015).Grammar as a Foreign Language.Advances in Neural
Information Processing Systems (NIPS).

[36](Hosseini,M.-P.: Proposing a new artificial intelligent system for automatic detection of
epileptic seizures. J. Neurol. Disorders 3(4) (2015))

[37]Sutskever, 1., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks.
In: Advances in Neural Information Processing Systems, pp. 3104-3112 (2014)

[38]Wallach, 1., Dzamba, M., Heifets, A.: AtomNet: a deep convolutional neural network for
bioactivity prediction in structure-based drug discovery (2015). arXiv preprint
arXiv:1510.02855

[39]Hosseini, M.P., Lau, A., Lu, S., Phoa, A.: Deep learning in medical imaging, a review.
IEEE Rev. Biomed.Eng. (2019)).

[40]https://github.com/ tensorflow/tensorflow
[41]https://pytorch.org/

[42]https://caffe. berkeleyvision.org/
[43]https://mxnet.apache.org/

[44] S. Chaudiron, “Evaluation of Information Retrieval Systems”. Hermes, 2004.

93

