République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieure et de la Recherche Scientifique

Université de Blida 1

Institut d'Aéronautique et des Etudes Spatiales

MEMOIRE

p 1

Présenté pour l'obtention du diplôme de Master

En Aéronautique

Option : Structure Avions

Thème

Contrainte de cisaillement dans des tubes fermés à paroi minces mono caisson non symétriques soumis à un effort tranchant et application aux profils d'ailes

Par,

HAMIDA Abdelkader

Jury,

SETTOUF Mohamed	MAA	Université de Blida 1,	Président
ZEBBICHE Toufik	Professeur	Université de Blida 1	Promoteur
KIRAD Abdelkader	MAA	Université de Blida 1	Examinateur
GHERROUS Mustapha	MAA	Université de Blida 1	Examinateur

Dédicace

Je dédie ce modeste travail

A ma raison de vivre et ma fleur de vie ma mère, symbole d'amour d'affection de bienveillance, pour sa patience, ses sacrifices, sa conscience, ses conseils qui ont éclairé mon chemin.

A mon père en reconnaissance de tout ce qu'il a fait pour moi tout au long de mon existence, pour son soutien moral, son encouragement continuel, et pour sa compréhension.

A mes très chers frères : Sofiane, Noureddine, Mohamed ainsi que sa femme et son fils Anes et à ma sœurs : Leila,

Aux quels je souhaite une vie pleine de bonheur et une carrière pleine de gloire.

J'ai le plaisir de le dédier Bezzou Hicham, Khelifa Fakhreddine Bachir Aourai, Abdennour Amroune Mohamed Zamouchi, Mustapha HAkemi, Boumaiza massi Hana Slamani

A tous mes oncles et à toutes mes très chères tantes En ce qui les concerne, pour moi ne peut pas se résumer en quelques lignes. À la mémoire de mon grand-père Mohamed et mon frère Rabah

Que dieu les accueille dans son vaste paradis.

HAMIDA Abdelkader

Remerciement

Avant tout propos, je tiens à rendre grâce à Dieu qui m'a guidé sur la bonne voie.

Je remercie vivement Mr SATTOUF Mohamed de m'avoir fait l'honneur de présider le jury de cette thèse.

Je remercie également Mr KIRAD Abdelkader et Mr GHEROUSSE les membres du jury pour m'avoir fait l'honneur d'examiner ce mémoire. Qu'ils trouvent ici l'expression de mon profond respect.

Je tiens à exprimer mes remerciements et ma profonde reconnaissance tout particulièrement à Mr ZEBBICHE Toufik mon encadrant et directeur de thèse, pour son expérience scientifique qu'il m'a transmise, sa pédagogie ainsi que sa disponibilité et son soutien. Ses conseils et ses encouragements ont été des grandes valeurs pour l'aboutissement de ce mémoire.

Je tiens à saluer toutes les personnes de l'Institut et Prospective et Synthèse de l'IAES pour leur sympathie,

Je tiens à remercier mes collègues à l'IAES pour les moments passés ensemble, dont Hicham Bezzou, aussi Hana Slamani pour m'avoir aider.

J'adresse mes remerciements aux enseignants, bibliothécaires et administrateurs de l'institut d'Aéronautique et des études spatiales, à tous ceux qui ont contribué à ma formation et à tous ceux qui m'ont accompagné, amis et proches de près ou de loin.

Merci encore à vous tous....

HAMIDA Abdelkader

Résumé

Le travail présenté consiste à élaborer un programme de calcul numérique, permettant de déterminer les caractéristiques géométriques des sections planes à paroi minces avec épaisseur constante et la distribution de la contrainte de cisaillement dans des tubes fermés à paroi minces non symétriques ayant une épaisseur, soumis à un effort tranchant que ce soit horizontal ou vertical et de faire l'application pour des tubes ayant une forme d'un profil d'aile mono-caisson, sans effet des raidisseurs, appliqués en Aéronautique et par conséquent la détermination de la position et la valeur de la contrainte maximale.

Dans la littérature, on trouve des solutions exactes analytiques uniquement pour quelques sections de géométries simples comme les sections circulaires et rectangulaires. D'où notre intérêt est orienté vers la recherche des solutions numériques approchées pour d'autres sections complexes utilisées en aéronautique. La méthode utilisée est celle la subdivisions du contour de la section en petits segments infinitésimales. Les caractéristiques géométriques d'un segment de droite quelconque donné par la position de ces deux nœuds de ces extrémités peuvent être déterminées facilement. En utilisant le principe des surfaces composées, on peut déterminer les caractéristiques géométriques de la section à paroi mince surface du profil d'aile. Les caractéristiques géométriques d'un segment de droite sont approximées en éliminant les résultats liés avec la puissance cubique de l'épaisseur. Un calcul de l'erreur est fait entre les formules exactes et celles rapprochées pour déterminer une limite d'application des formules rapprochées. En deuxième étape on détermine la position du centre de cisaillement pour que la section ne subit pas de torsion. La fonction analytique de la frontière du profil d'aile est obtenue en utilisant l'interpolation Cubic-Spline vu qu'elle est donnée sous la forme des points tabulés. Parmi les avantages de cette méthode, elle garde la courbe du profil d'aile au niveau du bord d'attaque.

Mot clés : Segment de droite, Paroi mince, Profil d'aile, Interpolation cubic spline, Flux de cisaillement, Caractéristiques géométriques, Centre de cisaillement, Efforts tranchants, Bras de levier, Contrainte de cisaillement, Contrainte maximale, Erreur de calcul. Caractéristiques géométriques d'un segment de droite, Erreur de calcul.

Abstract

The presented work is to develop a program for numerical computation to determine the geometrical characteristics of thin-wall flat with constant thickness and distribution of the shear stress in closed tubes with asymmetric thin wall having a thickness sections, subject to shear that is horizontal or vertical to the application and for tubes having a form of a single box airfoil without stiffening effect, applied in Aeronautics and therefore the determination of the position and the value of maximum stress.

In the literature, there are analytical exact solutions only for some sections of simple geometries, such as circular and rectangular sections. Hence our interest is in search of approximate numerical solutions for other complex sections used in aeronautics. The method used is that the subdivisions of the contour of the section into small infinitesimal segments. The geometric characteristics of a line segment in any given position of the both ends of these nodes can easily be determined beings. Using the principle of quilts, one can determine the geometric characteristics of the thin-walled section of the airfoil area.

The geometric characteristics of a line segment are approximated by eliminating the results associated with the third power of the thickness. A calculation is made of the error between the reconciled and exact formulas for determining a range for application of formulas close. In the second step the position of the shear center is determined so that the section does not undergo torsion. The analytic function of the boundary of the airfoil is obtained by using Cubic Spline interpolation since it is given in the form of tabulated points. Among the advantages of this method, it retains the curve of the airfoil at the leading edge.

Keyword: Line Segment, thin wall, wing profile, cubic spline interpolation, flow shear, geometric characteristics, Centre shear cutting efforts, Lever Arm, shear stress, maximum stress, Miscalculation. Geometric characteristics of a line segment, Miscalculation. ملخص

العمل المقدم هو تطوير برنامج لحساب العددي لتحديد الخصائص الهندسية للرقيقة الجدار مسطحة مع سمك وتوزيع إجهاد القص في أنابيب مغلقة مع غير المتماثلة جدار رقيق وجود أقسام سمك ثابت، تخضع ل هذا هو القص الأفقي أو الرأسي لتطبيق والأنابيب وجود شكل مربع الجنيح واحد دون تشنج تأثير، تطبيق في الطيران، وبالتالي تحديد موقف والقيمة من أقصى الإجهاد. في الأدب، هناك حلول تحليلية دقيقة فقط لبعض المقاطع من الأشكال الهندسية البسيطة، مثل مقاطع دائرية ومستطيلة. وبالتالي مصلحتنا هي في البحث عن الحلول العددية التقريبية للأقسام الأخرى المعقدة المستخدمة في الملاحة الجوية. الطريقة المستخدمة هو أن التقسيمات الفرعية للكفاف من قسم إلى أجزاء متناهية الصغر الصغيرة.

الهندسية لقطعة مستقيمة في أي موقف معين من نهايات كل من هذه العقد يمكن بسهولة تحديد الكائنات. باستخدام مبدأ حاف، يمكن للمرء تحديد الخصائص الهندسية لقسم رقيقة الجدران من المنطقة الجنيح. ويقترب من الخصائص الهندسية لقطعة

مستقيمة من خلال القضاء على النتائج المرتبطة القوة الثالثة للسمك. يتم إجراء احتساب الخطأ بين صيغ التوفيق والدقيق لتحديد مجموعة لتطبيق الصيغ وثيقة. في الخطوة الثانية يتم تحديد الموقف من مركز القص بحيث لا يخضع قسم الالتواء. يتم الحصول على وظيفة تحليلية للحدود الجنيح باستخدام المفتاح مكعب الاستيفاء منذ يتم منحها في شكل نقاط جدولتها. من بين مزايا هذه الطريقة، فإنه يحتفظ منحنى الجنيح على حافة الرائدة.

الكلماث الرئيسية: الخط القطاع، جدار رقيق، لمحة الجناح، مكعب خدد الاستيفاء، وتدفق القص، وخصائص هندسية، مركز الجهود قطع القص، ليفر الذراع، إجهاد القص، والحد الأقصى الإجهاد، وسوء تقدير الخصائص الهندسية لشريحة الخط، وسوء تقدير

Table des matières :

Dédicace	e		1
Remerciement			
Résumé.			3
Abstract			4
ملخص	•••••		5
TABLES	S DE	S MATIERES	Erreur ! Signet non défini.
LISTE D	DES I	FIGURES	8
LISTE D	DES 1	TABLEAUX	10
NOMEN	ICLA	TURE	11
INTROE	DUC	ΓΙΟΝ GENERALE	
I. CH.	APIT	RE I : LES PRINCIPAUX ELEMENTS DE LA CELLULE.	15
I.1.	LE	FUSELAGE	15
I.1.	1.	LE FUSELAGE SEMI-MONOCOQUE	Erreur ! Signet non défini.
I.1.2	2.	LA NUMEROTATION DES STATIONS	17
I.2.	L'E	MPENNAGE	
I.3.	LES	S TARINS D'ATTERRISSAGES	Erreur ! Signet non défini.
I.4.	Blo	c moteur	19
I.5.	La	voilure	
I.5.	1.	Historique	
I.5.2	2.	Description d'une aile d'avion:	
I.5.	3.	Les éléments internes de la voilure	
I.5.4	4.	Les efforts appliqués à la voilure :	
I.5.5	5.	L'évolution de la voilure :	
I.5.0	6.	La structure externe de la voilure :	
I.5.7	7.	Types de forme d'une voilure :	
II. Cha	pitre	II : Caractéristiques géométriques d'un segment que lconque	ayant une épaisseur33
II.1.	Gér	nération de Maillage	
II.2.	Fon	ction de condensation	
II.3.	Cor	nnexion des segments du maillage	
II.4.	Car	actéristiques géométriques de la section composée	
III. C	Chapit	re III : Contrainte de cisaillement dans des tubes fermés à par	rois minces38
III.1.	Flu	x de cisaillement dans des sections ouvertes	
III.2.	Dét	ermination de la valeur de $q_{s,0}$	
III.3.	Cer	tre de cisaillement	
III.4.	Gér	nération de Maillage	Erreur ! Signet non défini.
III.5.	Fon	ction de condensation	Erreur ! Signet non défini.

III.6.	Connexion des segments du maillage	Erreur ! Signet non défini.
IV. C	HAPITRE IV : RESULTATS ET COMMENTAIRES	43
IV.1.	Convergence des formules rapprochées	43
IV.2.	Effet de la discrétisation sur la convergence	47
IV.3.	Variation de la contrainte tangentielle	
IV.4.	Convergence pour la contrainte de cisaillement	
IV.5.	Résultats pour différents profils d'ailes	
Conclusi	ons	63
Perspe	ective et travaux future	64
Annexes		65
Référenc	es	

Liste des figures :

Figure	0-1 Cisaillement de tube à section fermée et présentation de l'ouverture de la section . 14
Figure	I-1 représentation générales des différents éléments de construction 17
Figure	I-2 Schéma représentatif de numérotation des stations d'un avion (sens longitudinal)
Dessin	Boeing 17
Figure	I-3 Empennage d'un avion 18
Figure	I-4) Ensemble de train d'atterrissage (Dessin : Beechcraft) 19
Figure	I-5 présentation de type des propulseurs utilisé en aviation
Figure	I-6 Coupe d'un turboréacteur axial simple flux J85
Figure	I-7 Squelette d'une voilure
Figure	I-8 Présentation des éléments internes d'une voilure
Figure	I-9 Schéma détaillé d'une nervure
Figure	I-10 Coupe d'une nervure
Figure	I-11 voilure métallique
Figure	I-12 Aile entoilée
Figure	I-13 Aile moderne d'un Airbus A320
Figure	I-14 présentation éclate des éléments externes d'une voilure
Figure	I-15 Famille des types de forme d'une voilure
riguic	
Figure	III-1 Présentation le segment de calcul 38
Figure Figure	III-1 Présentation le segment de calcul 38 III-2 Centre de cisaillement d'une section fermée 42
Figure Figure Figure	III-1 Présentation le segment de calcul 38 III-2 Centre de cisaillement d'une section fermée 42 III-3 Schémas pour le calcul de centre de cisaillement 42
Figure Figure Figure Figure	III-1 Présentation le segment de calcul 38 III-2 Centre de cisaillement d'une section fermée 42 III-3 Schémas pour le calcul de centre de cisaillement 42 III-4 Distribution des nœuds selon la relation (III.25). Erreur ! Signet non défini.
Figure Figure Figure Figure Figure	III-1 Présentation le segment de calcul 38 III-2 Centre de cisaillement d'une section fermée 42 III-3 Schémas pour le calcul de centre de cisaillement 42 III-4 Distribution des nœuds selon la relation (III.25). Erreur ! Signet non défini. IV-1 Variation du moment Ix' et l'erreur en fonction de l'épaisseur normalisé (t/C). 44
Figure Figure Figure Figure Figure Figure	III-1 Présentation le segment de calcul 38 III-2 Centre de cisaillement d'une section fermée 42 III-3 Schémas pour le calcul de centre de cisaillement 42 III-4 Distribution des nœuds selon la relation (III.25). Erreur ! Signet non défini. IV-1 Variation du moment Ix' et l'erreur en fonction de l'épaisseur normalisé (t/C). 44 IV-2 Variation du moment Iy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 45
Figure Figure Figure Figure Figure Figure Figure	 III-1 Présentation le segment de calcul
Figure Figure Figure Figure Figure Figure Figure Figure	 III-1 Présentation le segment de calcul
Figure Figure Figure Figure Figure Figure Figure Figure	III-1 Présentation le segment de calcul
Figure Figure Figure Figure Figure Figure Figure Figure Figure	III-1 Présentation le segment de calcul 38 III-2 Centre de cisaillement d'une section fermée 42 III-3 Schémas pour le calcul de centre de cisaillement 42 III-4 Distribution des nœuds selon la relation (III.25). Erreur ! Signet non défini. IV-1 Variation du moment Ix' et l'erreur en fonction de l'épaisseur normalisé (t/C). 44 IV-2 Variation du moment Iy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 45 IV-3 Variation du moment Ixy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 47 IV-4 Variation des caractéristiques géométriques en fonction de nombre de segments. 50 IV-5 Discrétisation de la frontière du profil d'aile par NS=15. 51
Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure	III-1 Présentation le segment de calcul 38 III-2 Centre de cisaillement d'une section fermée 42 III-3 Schémas pour le calcul de centre de cisaillement 42 III-4 Distribution des nœuds selon la relation (III.25). Erreur ! Signet non défini. IV-1 Variation du moment Ix' et l'erreur en fonction de l'épaisseur normalisé (t/C). 44 IV-2 Variation du moment Iy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 45 IV-3 Variation du moment Ixy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 47 IV-4 Variation des caractéristiques géométriques en fonction de nombre de segments. 50 IV-5 Discrétisation de la frontière du profil d'aile par NS=15. 51 IV-6 Discrétisation de la frontière du profil d'aile par NS=30. 51
Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure	III-1 Présentation le segment de calcul 38 III-2 Centre de cisaillement d'une section fermée 42 III-3 Schémas pour le calcul de centre de cisaillement 42 III-4 Distribution des nœuds selon la relation (III.25). Erreur ! Signet non défini. IV-1 Variation du moment Ix' et l'erreur en fonction de l'épaisseur normalisé (t/C). 44 IV-2 Variation du moment Iy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 45 IV-3 Variation du moment Ixy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 47 IV-4 Variation des caractéristiques géométriques en fonction de nombre de segments. 50 IV-5 Discrétisation de la frontière du profil d'aile par NS=15. 51 IV-7 Discrétisation de la frontière du profil d'aile par NS=60. 51
Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure	III-1 Présentation le segment de calcul 38 III-2 Centre de cisaillement d'une section fermée 42 III-3 Schémas pour le calcul de centre de cisaillement 42 III-4 Distribution des nœuds selon la relation (III.25). Erreur ! Signet non défini. IV-1 Variation du moment Ix' et l'erreur en fonction de l'épaisseur normalisé (t/C). 44 IV-2 Variation du moment Iy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 45 IV-3 Variation du moment Ixy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 47 IV-4 Variation du moment Ixy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 47 IV-4 Variation de caractéristiques géométriques en fonction de nombre de segments. 50 IV-5 Discrétisation de la frontière du profil d'aile par NS=15. 51 IV-6 Discrétisation de la frontière du profil d'aile par NS=30. 51 IV-7 Discrétisation de la frontière du profil d'aile par NS=60. 51 IV-8 Discrétisation de la frontière du profil d'aile par NS=100. 51
Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure	III-1 Présentation le segment de calcul 38 III-2 Centre de cisaillement d'une section fermée 42 III-3 Schémas pour le calcul de centre de cisaillement 42 III-4 Distribution des nœuds selon la relation (III.25). Erreur ! Signet non défini. IV-1 Variation du moment Ix' et l'erreur en fonction de l'épaisseur normalisé (t/C). 44 IV-2 Variation du moment Iy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 45 IV-3 Variation du moment Ixy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 47 IV-4 Variation du moment Ixy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 47 IV-4 Variation du moment Ixy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 47 IV-4 Variation du moment Ixy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 47 IV-4 Variation des caractéristiques géométriques en fonction de nombre de segments. 50 IV-5 Discrétisation de la frontière du profil d'aile par NS=15. 51 IV-6 Discrétisation de la frontière du profil d'aile par NS=30. 51 IV-7 Discrétisation de la frontière du profil d'aile par NS=100. 51 IV-9 Discrétisation de la frontière du profil d'aile par NS=200. 51
Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure	III-1 Présentation le segment de calcul 38 III-2 Centre de cisaillement d'une section fermée 42 III-3 Schémas pour le calcul de centre de cisaillement 42 III-4 Distribution des nœuds selon la relation (III.25) Erreur ! Signet non défini. IV-1 Variation du moment Ix' et l'erreur en fonction de l'épaisseur normalisé (t/C)
Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure	III-1 Présentation le segment de calcul 38 III-2 Centre de cisaillement d'une section fermée 42 III-3 Schémas pour le calcul de centre de cisaillement 42 III-4 Distribution des nœuds selon la relation (III.25) Erreur ! Signet non défini. IV-1 Variation du moment Ix' et l'erreur en fonction de l'épaisseur normalisé (t/C) 44 IV-2 Variation du moment Iy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 45 IV-3 Variation du moment Ixy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 47 IV-4 Variation du moment Ixy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 47 IV-4 Variation du moment Ixy' et l'erreur en fonction de l'épaisseur normalisé (t/C). 47 IV-4 Variation des caractéristiques géométriques en fonction de nombre de segments. 50 IV-5 Discrétisation de la frontière du profil d'aile par NS=15. 51 IV-6 Discrétisation de la frontière du profil d'aile par NS=30. 51 IV-7 Discrétisation de la frontière du profil d'aile par NS=100. 51 IV-9 Discrétisation de la frontière du profil d'aile par NS=200. 51 IV-10 (Fig. 4.10) : Discrétisation de la frontière du profil d'aile par NS=350. 51 IV-11 Présentation du cercle à paroi mince 53

Figure IV-13 Variation de en fonction de nombre de segments pour le cas de cercle
Figure IV-14 Variation de en fonction de nombre de segments pour le cas de cercle
Figure IV-15 Variation de en fonction de nombre de segments pour le cas de cercle
Figure IV-16 Variation de en fonction de nombre de segments pour le cas de cercle
Figure IV-17 Variation de la contrainte de cisaillement le long de la paroi de cercle pour Sx=1.0
et Sy=1.0
Figure IV-18 Variation de la contrainte de cisaillement le long de la paroi de cercle pour Sx=0.0
et Sy=1.0
Figure IV-19 Variation de la contrainte de cisaillement le long de la paroi de cercle pour Sx=1.0
et Sy=10.0
Figure IV-20 Variation de la contrainte de cisaillement le long de la paroi du profil d'aile
DOUGLAS LA203A lorsque Sx=0.0 et Sy=1.0
Figure IV-21 : Variation de la contrainte de cisaillement le long de la paroi du profil d'aile
DOUGLAS LA203A lorsque Sx=1.0 et Sy=1.0
Figure IV-22 Variation de la contrainte de cisaillement le long de la paroi du profil d'aile
DOUGLAS LA203A lorsque Sx=1.0 et Sy=0.0
Figure IV-23 Variation de et en fonction de pour le profil d'aile DOUGLAS LA203 A58
Figure IV-24 Variation de et en fonction de Sx lorsque Sy=0.0 pour le profil d'aile DOUGLAS
LA 203 A

Liste des tableaux :

Table IV-1 Points de définition de la surface du profil d'aile RAE 2822
Table IV-2 Comparaison les résultats de Ix' entre la formule exacte (II.6) et la formule
rapprochée (II.16)
Table IV-3 Comparaison les résultats de Iy' entre la formule exacte (II.7) et la formule
rapprochée (II.16)
Table IV-4 : Comparaison les résultats de Ixy' entre la formule exacte (8.2) et la formule
rapprochée (II.17)
Table IV-5 Effet de la discrétisation sur la convergence des valeurs de L, xG et yG pour le profil
d'aile RAE 2822
Table IV-6 Effet de la discrétisation sur la convergence des valeurs de Ix', Iy' et Ixy' pour le
profil d'aile RAE 2822
Table IV-7 Points de définition de la surface de profil d'aile DOUGLAS LA203A
Table IV-8 Effet de la discrétisation sur la convergence de , et pour le cercle
Table IV-9 Effet de la discrétisation sur la convergence des valeurs de et pour le cercle 54
Table IV-10 Références des profils d'ailes ainsi que la valeur de la contrainte de cisaillement à
l'ouverture
Table IV-11 Contrainte de cisaillement maximale ainsi que la position de centre de cisaillement
de quelques profils d'ailes
Table IV-12 : Références des profils d'ailes ainsi que la longueur de la frontière
Table IV-13 Position du centre de gravité des différentes sections 62
Table IV-14 Moments d'inerties par rapport aux axes centraux des différentes sections

Nomenclature :

(x _i , y _i)	Coordonnées d'un nœud.
NS	Nombre de segments.
NN	Nombre de nœuds sur la frontière de la section.
I_x, I_y	Moments quadratiques d'un segment de droite.
S_x, S_y	Moments statiques d'un segment de droite.
I_{xy}	Produit d'inertie d'un segment de droite.
L	Longueur du segment et pour la section.
XG, YG	Coordonnées du centre de gravité.
IP	Moment d'inertie polaire.
η^{*}	Variable normalisée.
С	Corde de profil d'aile.
t	Epaisseur du segment ainsi que le profil d'aile.
3	Erreur relative.
I_x, I_y	Moments d'inerties centraux de la section.
I_{xy}	Produit d'inertie central de la section.
$\mathbf{S}_{\mathbf{x}}$	Effort tranchant horizontal.
$\mathbf{S}_{\mathbf{y}}$	Effort tranchant vertical.
q_b	Flux de cisaillement dans le tube ouvert.
q_s	Flux de cisaillement dans le tube fermé.
$q_{s,0}$	Valeur de flux de cisaillement à l'ouverture.
τ	Contrainte de cisaillement.
$\tau_{s,0}$	Valeur de la contrainte de cisaillement à l'ouverture.
Т	Moment de tangage.
L	Longueur totale de la section.
d	Bras de levier.
P, Q	Paramètres pour le contrôle des points de maillage (Fonction de condensation).
ξs, ηs	Coordonnées du centre de cisaillement.

(x₀, y₀) Position du point de calcul de moment.

Indices

- ij Pour délimiter un segment.
- Ad Admissible.
- i Compteur sur les nœuds.
- 12 Segment limité par les nœuds 1 et 2.
- G Centre de gravité.

Introduction générale

Introduction générale:

Les caractéristiques géométriques d'une section droite plane à paroi mince, en particulier la géométrie d'un profil d'aile à revêtement jouent un rôle très important pour le calcul d'élasticité par exemple [1], [2] et [3]. Selon la sollicitation externe appliquée, le calcul de la distribution de contrainte et de flux de cisaillement est lié avec la connaissance des caractéristiques géométriques de la section à paroi mince de la structure [1], [2] et [3].

On s'intéresse au calcul des caractéristiques par rapport aux axes centraux passant par le centre de gravité. Alors dans ce cas il faut déterminer la position du centre de gravité de la section par rapport au repère de la définition du domaine.

La présente étude consiste alors, à réaliser un programme de calcul numérique permettant de déterminer les caractéristiques géométriques des sections planes à paroi minces et de faire l'application pour des profils d'ailes en utilisant le principe de discrétisation de la frontière du domaine en des segments de droites ayant une épaisseur constante. Les segments sont définis par leurs positions de ces deux nœuds qui se trouvent sur la frontière de la section. Les caractéristiques géométriques d'un segment de droite par rapport à un repère quelconque peuvent être trouvées facilement [1]. Elles peuvent être déduites par rapport à celles d'un rectangle ayant une dimension très inférieure à l'autre. La longueur du rectangle est celle de la longueur de segment et la largeur du rectangle remplace l'épaisseur du segment. Notre application est limité e pour des épaisseurs très inférieur à l'unité t/C<0.01. Généralement dans les cas réels, la valeur de t est de l'ordre de millimètres dans les environs de 1 à 3 mm [1], [2] et [3].

En utilisant le principe de la section composée, on peut déterminer les caractéristiques géométriques de la section composée. Vu que le nombre de segment est très important, le calcul devient numérique. La précision du calcul dépend de la discrétisation. Plus le nombre des segments est élevé, plus on aura une bonne précision.

Généralement la frontière de profil d'aile est donnée sous la forme des points tabulés [4] et [5], alors il faut faire une interpolation pour déterminer une forme analytique de la géométrie [7] et [8]. L'interpolation choisie est celle de cubic-spline [7]. Parmi les avantages de cette méthode, elle garde la courbure du profil d'aile au niveau du bord d'attaque.

Pour un engin aérospatial, la plus part de ces structures sont fabriquées par des matériaux à paroi minces. On parle de l'aile, coque de fuselage, dérive, empennage, langerons, pale d'hélicoptère, etc [1], [2] et [3]. On détermine la distribution de la contrainte de cisaillement afin de localiser la contrainte maximale avec sa valeur pour ne pas avoir une rupture causée par ces efforts tranchants. Lors de mouvement de l'engin aérospatial on aura une distribution de la pression sur la surface externe (engin). Cette distribution donne en général un torseur

Introduction générale

aérodynamique formé par trois forces et trois moments. Pour une section plane le torseur est formé par deux forces l'une horizontale et l'autre verticale ainsi qu'un moment de tangage [1], [2] et [3]. Ces efforts externes se transforment en des efforts internes. D'où la naissances des efforts tranchants S_x horizontal et S_y vertical ainsi qu'un moment de tangage T comme présente la figure 0.1. Ces efforts internes donnent eux-mêmes par conséquent à une distribution de la contrainte de cisaillement le long de revêtement.

Figure 0-1 Cisaillement de tube à section fermée et présentation de l'ouverture de la section

Ce travail a été traité selon les étapes suivantes :

Ddéterminer les caractéristiques géométriques des profils d'ailes ainsi que la contrainte de cisaillement et le centre de cisaillement :

Détermination des caractéristiques géométriques des profils d'ailes à parois minces par rapport aux axes centraux.

Détermination du flux de cisaillement au point de l'ouverture de la paroi.

Détermination de la distribution de la contrainte de cisaillement.

Valeur et position de la contrainte maximale sous l'application d'un effort tranchant horizontal et vertical.

Position de point du centre de cisaillement.

Application pour différentes géométries (profil d'aile et autre sections).

Variation des paramètres (changement de l'épaisseur, valeur de l'effort tranchant, la corde).

Conclusion et recommandations

I. Chapitre I : Les principaux éléments de la cellule

Bien que de nombreux éléments et procédés de montage semblables se retrouvent à la fois dans le fuselage, la voilure, les empennages, les bâtis-moteurs, les capotages et les gouvernes, il est utile d'analyser séparément la constitution de chaque section. Les différences proviennent de la prépondérance du rôle que la section a à jouer, un rôle mécanique ou un rôle aérodynamique.[24]

I.1. Le fuselage:

Le fuselage constitue la structure principale de l'avion et ses fonctions sont extrêmement variées. Il contient les passagers, le fret, les équipements électroniques de navigation et de communication, les circuits mécaniques, électriques, hydrauliques ou pneumatiques des commandes et les canalisations des systèmes de conditionnement d'air ; parfois, il supporte ou contient les moteurs et le train d'atterrissage. Sur certains appareils, tels que le **TWIN OTTER**, le **JET FALCON** ou le **CONCORDE** [25], on trouve à l'intérieur du fuselage des réservoirs de carburant ; cette configuration pose des problèmes de répartition de masses plus critiques que lorsque le carburant est contenu dans les ailes et, dans certains cas, il s'avère nécessaire d'installer des circuits de transferts pour assurer l'équilibrage.

De plus le fuselage assume un rôle de bras de levier entre les empennages et le centre de gravité ; c'est pourquoi sa longueur est déterminée non seulement en fonction de la capacité de charge désirée, mais aussi en fonction des qualités de stabilité et de maniabilité

Il y a trois types principaux de fuselages :

Le fuselage en poutre de Warren, le fuselage monocoque et le fuselage semimonocoque

I.1.1. Le fuselage semi-monocoque :

Entre les deux extrêmes, le fuselage en **poutre de WARREN**, où la structure interne supporte tous les efforts, et le fuselage **monocoque**, le fuselage **semi-monocoque** permet de répartir les efforts entre la structure interne et le revêtement (**fig. 1.1**). Ce type de fuselage est plus couramment utilisé. Il est principalement composé des éléments suivants [25]:

I.1.1.1. Les longerons de fuselage:

Placés longitudinalement, les longerons de fuselage constituent l'épine dorsale du fuselage et supportent le plus gros des charges de flexion primaires. Ils sont formés de sections de poutrelles d'aluminium en H ou en I, fixées bout à bout et qui courent tout le long du fuselage [25].

I.1.1.2. LES LISSES :

Les lisses s'ajoutent aux longerons pour empêcher que les tensions et les compressions ne plient le fuselage. Beaucoup plus légères que les longerons, elles contribuent très peu à la rigidité de l'ensemble ; elles servent surtout à donner sa forme au revêtement et à le supporter.

Les lisses sont habituellement placées dans les espaces entre les cadres. Dans de nombreux avions de construction récente, les longerons de fuselage sont remplacés par des lisses plus nombreuses [25].

I.1.1.3. LES CADRES :

Les cadres, appelés aussi couples, sont les éléments transversaux qui donnent la forme extérieure au fuselage ; ils sont souvent fabriqués en tôle emboutie. Les cadres supportent le revêtement par l'intermédiaire des lisses [25].

I.1.1.4. LES CLOISONS TRANSVERSALES :

Comme les cadres, les cloisons transversales servent à modeler le fuselage, mais sont beaucoup plus résistantes. Faites de métal plus épais, elles présentent une section plus pleine.

On les trouve aux endroits soumis aux plus grosses contraintes. Tels que les emplantures d'ailles, l'emplacement des moteurs, du train d'atterrissage ou des empennages. Dans les aéronefs à pression rétablis, des cloisons transversales de section pleines en forme de dôme servent de bouchons à l'avant et à l'arrière de l'espace pressurisé [25].

I.1.1.5. LE REVETEMENT :

Le revêtement constitue l'enveloppe extérieure du fuselage. C'est une mosaïque de tôle d'aluminium sandwich, fixé sur la charpente. Comme on l'a vu dans la définition du fuselage semi-monocoque, le revêtement contribue à supporter une partie des efforts et à les distribuer également sur la structure. Ce principe n'est pas exclusif à la construction du fuselage : on rencontre sur d'autres sections de la cellule des arrangements de ce type ; on parle alors de revêtement travaillant. L'épaisseur du revêtement n'est pas la même sur toute la charpente ; elle varie en fonction des contraintes à supporter [25].

I.1.1.6. LE PLANCHER :

Dans les avions de transport de construction récente, le plancher, situé environ au tiers de la hauteur du fuselage, joue un rôle important comme élément de renforcement de l'ensemble. Il ajoute à la rigidité tant sur le plan transversale que longitudinal.

Le fuselage semi-monocoque offre de nombreux avantages :

La solidité, la facilité de construction, l'habitabilité et la protection totale [25].

Figure I-1 représentation générales des différents éléments de construction

I.1.2. La numérotation des stations:

Pour repérer les stations dans le fuselage d'un avion, on les désigne par un chiffre indiquant leur distance (en pouce ou en mètre) à partir d'une référence donnée. Cette référence peut être le nez de l'avion, pour définir les stations dans le sens longitudinal, la ligne médiane pour le sens transversal, et une ligne située dans le plancher comme référence pour la hauteur. La numérotation des stations sert, en particulier, à composer les devis de poids et de centrage [25]

I.2. L'empennage :

L'empennage est constitué du cône de queue, des surfaces fixes et des surfaces mobiles. Le cône de queue sert à fermer le fuselage et à profiler la partie arrière. Etant donné que très peu de contraintes y sont appliquées, sa construction est plus légère que celle du fuselage.

Sur les avions légers, c'est le plus souvent un cône amovible en fibre de verre.

La dérive et le plan fixe constituent les surfaces fixes ; la gouverne de profondeur et la gouverne de direction constituent les surfaces mobiles. La construction de ces surfaces est identique à celle des ailes. Sur certains avions légers, les parties fixes sont parfois renforcées par des haubans [25].

Figure I-3 Empennage d'un avion

I.3. Les trains d'atterissages :

Les masses et les vitesses d'atterrissage des avions modernes ont atteint des valeurs élevées qui imposent des charges extrêmement fortes au moment de l'impact et au cours de la déclaration. On demande au train d'atterrissage une fiabilité considérable dans la capacité d'absorber les chocs, de freiner l'avion, de se rétracter et de se déployer. Le train d'atterrissage est un organe complexe de l'avion qui demande beaucoup de soins [25].

Le train d'atterrissage joue différents rôles:

Il supporte l'avion au sol et fournit le moyen de la manœuvre.

Il sert à freiner l'avion au sol et parfois, selon les modèles, à procurer un freinage aérodynamique en vol d'une façon comparable aux aérofreins.

Il supporte les charges latérales lors du roulage au sol et lors des atterrissages et des décollages en condition de vent de travers.

La plupart du temps, le train d'atterrissage n'a aucune utilité en vol et il crée de la trainée.

Comme celle-ci augmente avec le carré de la vitesse, il s'impose d'installer un train escamotable sur les avions rapides [25].

Le train d'atterrissage est fixé à la cellule de l'avion en dessous des ailles ou sous le fuselage. L'ensemble du train d'atterrissage est constitué des éléments suivants. Le fut, les biellettes, le compas, les essieux, la gente, les freins et leurs accessoires et les pneus et la contrefiche comme sont l'indique la figure (1.4).

Figure I-4 Ensemble de train d'atterrissage (Dessin : Beechcraft)

I.4. Bloc moteur :

Le moteur fait partie des éléments les plus importants constituent l'avion, ce dernier est le dispositif permettant à l'aéronef d'acquérir sa vitesse et de vaincre la trainée aérodynamique. Il est constitué de ; NACELLE, CAPOT, BATI-MOTEUR, FUSEAU-MOTEUR et la cellule MOTEUR elle-même [24]. Parmi les différents systèmes on distingue principalement

Les propulseurs directs, produisant une force dirigée vers l'avant, appelée poussée opposée à la traînée. Dans ces moteurs se trouve la famille des turboréacteurs ainsi que des moteurs fusées [26].

Les propulseurs indirects, pour lesquels la force, appelée traction est produite par un organe intermédiaire, l'hélice. Celui-ci transforme l'énergie mécanique d'un moteur thermique en énergie propulsive. Les principaux moteurs thermiques utilisés sont les moteurs à pistons et les turbomachines [26].

On aéronautique nous avons trois types de moteurs sont les suivants [27] : Turboréacteur : on distingue deux type de moteurs G.T.R Turboréacteur simple flux Turboréacteur double flux avec pc Turbopropulseur (Les moteurs à hélice) G.T.P Les moteurs à piston G.M.P

Figure I-5 présentation de type des propulseurs utilisé en aviation

Figure I-6 Coupe d'un turboréacteur axial simple flux J85

I.5. La voilure :

I.5.1. Historique :

La surface de voilure nécessaire au vol dépend de la masse et de la vitesse et donc de la puissance des moteurs disponibles. Au début de l'aviation les moteurs disponibles étaient lourds et peu puissants, la vitesse faible ; il fallait donc une grande surface portante, ce qui a conduit à réaliser des aérodynes à plusieurs voilures superposées reliées entre elles par des mâts et des haubans, car la technique de l'époque ne permettait pas de construire des ailes à grand allongement. Les appareils multi-plans étaient donc une configuration fréquente aux débuts de l'aviation, dans la première moitié du xx^e siècle, on a construit des avions biplans (à deux voilures superposées) voire triplans (à trois voilures superposées). Ceci permettait d'obtenir une portance supplémentaire sans trop augmenter l'envergure et la masse de l'aile. Avec l'augmentation de la puissance des moteurs, l'apparition de nouvelles méthodes constructives et de nouveaux matériaux, l'amélioration des moyens de calcul et de dimensionnement et le développement de la science de la résistance des matériaux, la construction d'avions à ailes

métalliques plus épaisses mais sans haubans a permis de réduire la traînée et de gagner en vitesse [24].

I.5.2. Description d'une aile d'avion:

La structure d'une aile d'avion est particulière, surtout à l'intérieur de l'aile. De nombreuses contraintes doivent être respectées afin d'en assuré la sécurité et surtout, qu'elle puisse servir à voler. L'aile est construite de manière à réduire la masse, et donc le poids de l'appareil. C'est pour cela qu'une aile est creuse. Le revêtement est maintenu par les nervures, elles-mêmes tenues par les longerons.

La structure de l'aile permet de créer un volume de forme bien déterminée avec un minimum de matière. Ainsi une masse relativement faible par rapport à son volume du fait que ce dernier soit principalement constitué d'air. La structure est néanmoins étudiée pour garantir la solidité de l'ensemble [24].

Figure II-7 Squelette d'une voilure

Chaque voilure est constituée d'un ou de plusieurs longerons attachés au fuselage au niveau de l'emplanture. Les nervures supportent les revêtements supérieur (extrados) et inférieur (intrados) et transmettent les charges aérodynamiques aux longerons.

La voilure peut également être le support de différents systèmes de navigation comme les feux de position (aux extrémités), les phares d'atterrissage, ou de pilotage (détecteur de décrochage). Y sont également fixés d'autres dispositifs, par exemple de fines tiges parfois terminées par des brosses en fibres de carbone permettant d'éliminer la charge électrostatique formée par la friction de l'air [25].

Figure II-8 Présentation des éléments internes d'une voilure

I.5.3. Les éléments internes de la voilure :

L'aile est constituée d'éléments indispensables qui ont tous une fonction bien précise :

I.5.3.1. Longeron :

C'est un élément constitutif d'une structure, correspondant à une poutre disposée longitud in a lement, c'est une pièce essentielle d'une aile, le longeron est une poutre en bois ou en métal qui s'étend sur toute la longueur de l'aile ou de la demi-aile et qui en assure la **solidité** ainsi que la **rigidité**.

Le longeron peut être fabriqué en une seule pièce, de métal, de carbone, il est constitué de deux âmes (parois verticales) et de deux semelles (faces supérieure et inférieure), sont ces « semelles » qui vont supporter 99 % des forces dynamiques qui vont affecter l'aile.

Une aile peut comporter deux longerons, un principal, vers le centre de gravité de l'aile, un secondaire, plus en arrière. Le longeron principal peut même être situé dans le bord d'attaque, « formant », ce bord d'attaque. Le longeron principal peut être aussi construit afin de constituer le réservoir de carburant.

A noter qu'un longeron-caisson est beaucoup moins lourd et beaucoup plus solide qu'une poutre pleine de section égale.

Pendant très longtemps, les ailes ont eu deux longerons mais dans la construction moderne, il n'y en a plus qu'un seul. L'aile est dite alors mono-longeron [25].

I.5.3.2. Nervure :

C'est une armature interne qui rigide la voilure tout en structurant la forme aérodynamique de l'aile, ce sont plus ou moins allégées et renforcées dans les parties soumises à de fortes contraintes mécaniques.

En général les nervures sont des entretoises qui conservent la forme de l'aile entre le bord d'attaque et le bord de fuite [25].

Figure I-9 Schéma détaillé d'une nervure

I.5.3.3. Le bord d'attaque :

C'est la section avant d'un profil aérodynamique, elle fait face au fluide, le bord d'attaque héberge le point de stagnation où l'écoulement est divisé en deux sections. Ce point de stagnation se déplace le long du profil en fonction de l'incidence.

D'un point de vue géométrique, le bord d'attaque est le point à l'avant du profil où le rayon de courbure de la surface est minimal. Ce point est indépendant de l'écoulement; il permet de définir la ligne de corde ainsi que les propriétés géométriques en découlant, telles que la longueur de corde, la ligne de cambrure, ou encore l'épaisseur [24].

I.5.3.4. Le saumon d'aile :

C'est un caisson de forme allongée servant de carénage à l'extrémité de la voilure.

Sur les avions, des feux de position sont intégrés dans les saumons. Le feu de couleur verte correspond à la partie droite de la voilure, et le rouge à la partie gauche de la voilure [24].

I.5.3.5. Les lisses :

Les lisses, qui sont semblables aux longerons mais qui n'ont qu'un rôle de renfort [24].

I.5.3.6. Le revêtement :

Le revêtement recouvre la structure, comme le fuselage, peut être en toile, en bois, en tôle ou en composite.

Le revêtement en toile est le plus souvent de la toile de lin ou de coton, après sa mise en place, la toile est recouverte d'un enduit de tension destiné à la tendre.

Le revêtement en bois est constitué de feuilles de contreplaqué.

Toutefois, si les avions métalliques font beaucoup appel aux alliages légers pour gagner du poids, ils utilisent aussi les aciers spéciaux les plus durs pour les pièces maîtresses soumises à de grands efforts.

Le revêtement en métal ou en contreplaqué est dit revêtement travaillant, parce qu'en plus de son rôle de couverture destinée à faciliter l'écoulement fluide aérodynamique, il participe à la solidité et à la rigidité de l'ensemble [25].

Figure I-10 Coupe d'une nervure

I.5.4. Les efforts appliqués à la voilure :

Sans entrer dans les détails qui seraient beaucoup trop longs avec de nombreux schémas, il faut savoir que les ailes subissent des efforts importants que ce soit en vol [28] ou au sol [29].

En vol les charges aérodynamiques font subir à l'extrados une compression et à l'intrados un étirement [28], alors qu'au sol sous le poids de l'aile les forces s'inversent [29].

En plus pour les ailes dites "tirées" comme les Airbus ou Boeing dont les réacteurs sont accrochés sous les ailes par des nacelles, elles subissent des moments de torsion et de flexion dus aux poids des réacteurs et à leur poussée ainsi qu'un moment tranchant dirigé vers l'arrière.

Pour les ailes dites "poussées" comme les Falcon ou Fokker 28/100 si la charge due au poids des réacteurs est supprimée, celles-ci subissent toujours les moments de torsion, de flexion et de tranchant [29].

Aux effets précédents se superposent les efforts aérodynamiques dus au braquage des gouvernes comme les spoilers, aérofreins ou ailerons [28].

Les atterrissages et décollages engendrent également des efforts sur la voilure [29].

I.5.5. L'évolution de la voilure :

I.5.1. Voilure des premiers avions :

Comme son positionnement ou ses formes la voilure ou l'aile d'un aérodyne à évolué avec le temps. Dès le début les constructeurs furent conscients que les longerons étaient les pièces maîtresses de l'aile. Les premiers longerons furent construits en bois (en principe du frêne) cloué ou collé en forme de caisson ou de I [29]. Des nervures en contreplaqué ou en lattes de bois donnant le profil de l'aile s'appuyaient sur les longerons. Des câbles (corde à piano) étaient tendus en diagonale pour augmenter la rigidité. Le tout était recouvert de toiles de lin ou de coton puis enduit. Comme la puissance des moteurs était faible la surface de l'aile était importante et sa structure devait être légère.

Les premiers avions ne comportaient pas d'ailerons, la stabilité autour de l'axe de roulis se faisait en gauchissant l'aile. Ce mot gauchissement est quelquefois encore employé.

I.5.2. Voilure en bois :

L'aile comporte un seul longeron en forme de caisson supportant toutes les contraintes. La partie centrale est rectangulaire et plate. Les bouts des ailes en forme trapézoïdale ont un dièdre assez prononcé. Cette partie légèrement "vrillée" engendre une incidence plus faible en bout d'aile qu'au centre. De cette façon l'incidence de décrochage sera atteinte sur la partie centrale de l'aile avant la partie "relevée" du bout d'aile.

Les toiles à usage aéronautiques sont constituées de fibres naturelles (lin et coton) ou de fibres polyester dénommées (Tergal, Dacron, Diolen). Mais d'autres tissus polyester de qualité spéciale peuvent être utilisés. L'ensemble de l'aile est entoilé en tissu synthétique de type dacron, sauf le bord d'attaque qui est coffré en contreplaqué puis marouflé.

Les ailerons occupent tout le bord de fuite de la partie trapézoïdale.

a) Détail d'une nervure en bois :

Les nervures en lattes sont renforcées par des goussets en contreplaqué (okoumé ou bouleau), et s'appuient sur le longeron. L'ensemble est uniquement collé.

I.5.3. Voilure métallique classique :

L'ossature d'une aile dite "classique" est formée de deux longerons (ou plus) reliés entre eux par des nervures. La rigidité de l'ensemble est assurée en partie par le revêtement extrados, intrados qui sont rivetés sur les nervures, les lisses et les semelles des longerons. Le revêtement extrados et intrados est en tôles d'alliage d'aluminium. Si le revêtement est trop mince, il ne participe pas au partage des contraintes, on dit alors que le revêtement est non travaillant.

a. Détail d'une aile métallique :

Sur la plupart des avions la voilure est composée de deux parties aile gauche et aile droite. Chaque fixée le partie est sur fuselage par une plusieurs attaches. ou Un caisson est la partie comprise entre deux nervures, les âmes des longerons et l'extrados/intrados, il est souvent utilisé comme emplacement ou réservoir de carburant.

Figure II-11 voilure métallique

b. Détail d'une nervure métallique :

Les nervures comportent généralement des bords tombés ou pliures. Ces pliures ont plusieurs fonctions :

Elles permettent le rivetage du revêtement extrados et intrados.

Elles renforcent la rigidité de la nervure.

Les nervures sont découpées pour laisser passer les lisses. Elles peuvent également comporter des évidements pour diminuer le poids de l'aile sans en altérer sa résistance.

I.5.4. Voilure métallique revêtement en toile :

L'aile est composée de deux longerons (avant et arrière) en tôle d'alumini um pliée ou en bois et d'un réseau de nervures en tôle d'alumini um formée. La résistance de l'aile est complétée par des tubes de compression et de tension. Le bord d'attaque est revêtu d'une tôle fine.

Comme pour l'aile métallique les nervures comportent des évidements pour diminuer le poids de l'aile sans en altérer sa résistance.

Figure I-12 Aile entoilée

I.5.5. Voilure d'un avion de transport :

Figure I-13 Aile moderne d'un Airbus A320

Comme l'aile classique, l'aile dite "moderne" est formée de longerons et de nervures. La différence est le revêtement de l'extrados et de l'intrados. Ces revêtements auto raidis sont généralement fraisés dans la masse. C'est à dire que les raidisseurs font partie intégrante du revêtement. L'usinage peut se faire également par fraisage chimique.

On utilise alors une épargne qui protège la surface de pièce où il ne doit pas avoir d'usinage et l'attaque chimique se fait alors uniquement sur les parties non protégées. L'avantage d'un tel procédé est l'état remarquable de la finition, prix de revient inférieur au fraisage.

L'inconvénient pas de récupération de copeaux et comme tout produit chimique la pollution.

I.5.6. La structure externe de la voilure :

L'aile présente des surfaces mobiles ou gouvernes permettant le contrôle aérodynamique de l'avion [28] :

gouvernes en roulis : ailerons

gouvernes en tangage et en roulis : gouvernes de profondeur plus ailerons, séparées ou bien regroupées.

Becs et volets hypersustentateurs, aérofreins permettant le contrôle de la portance et de la traînée.

Figure I-14 présentation éclate des éléments externes d'une voilure 1°) Ailette verticale marginale (Winglet en anglais)

2°) Aileron basse vitesse

3°) Aileron haute vitesse

4°) Rail de glissement des volets

- 5°) Becs de bord d'attaque
- 6°) Becs de bord d'attaque
- 7°) Volets intérieurs
- 8°) Volets extérieurs
- 9°) Spoilers (destructeurs de portance)
- 10°) Spoilers/aérofreins

I.5.6.1. Ailette verticale marginale (WINGLET) :

Une **winglet** est une ailette sensiblement verticale située au bout des ailes d'un avion et qui permet de réduire la trainée par la portance sans augmenter l'envergure de l'aile.

On peut l'associer aux rémiges primaires de l'aile qui sont les plumes sur lesquelles s'exercent les principales poussées au cours du vol. Elles permettent de réduire la résistance de l'air et les trainées.

I.5.6.2. Hypersustentateurs :

Les **dispositifs hypersustentateurs** sont des dispositifs mis en œuvre sur un avion pour que les ailes conservent leur portance à la vitesse la plus basse possible, et réduire ainsi la vitesse de décrochage, que l'on peut associer aux alules de l'aile d'oiseau qui permettent d'augmenter la vitesse de l'écoulement de l'air (donc la portance) et de réduire le risque de décrochage.

I.5.7. Types de forme d'une voilure :

Au niveau de la forme de l'aile, on distingue :

I.5.7.1. L'aile rectangulaire :

L'aile rectangulaire qui décroche près du fuselage avec une force orientée vers l'extérieur.

I.5.7.2. L'aile trapézoïdale :

L'aile trapézoïdale qui décroche sur toute sa surface avec une répartition régulière du phénomène.

I.5.7.3. L'aile elliptique :

L'aile elliptique qui a un décrochage réparti sur tout le bord de fuite, mais plus accentué à l'extérieur de l'aile mais qui décroche sur une zone plus restreinte et centrale que l'aile trapézoïdale.

I.5.7.4. L'aile delta :

L'aile delta a un comportement très différent des autres types d'aile. Elle se comporte comme un fer à repasser en quelque sorte.

L'aile d'avion a donc une structure très similaire à celle de l'aile d'oiseau [24], que la structure soit interne ou externe. Ils sont tous les deux dotés de dispositifs permettant la conservation de la portance, mais aussi la réduction des frottements de l'air [28], etc. On peut donc en conclure après cette étude que l'aile d'avion s'est inspirée de l'aile d'oiseau.

Cependant, bien que les connaissances sur l'aile soient déjà bien avancées, les chercheurs continuent à trouver d'autres protocoles, qui permettront d'autres améliorations comme la recherche de nouveaux modes de sustentation avec un plus grand confort pour les passagers.

Figure I-15 Famille des types de forme d'une voilure

CHAPITRE II : CARACTERISTIQUES GEOMETRIQUES D'UN SEGMENT QUELCONQUE AYANT UNE EPAISSEUR

II. Chapitre II : Caractéristiques géométriques d'un segment quelconque ayant une épaisseur :

Le segment est présenté par les nœuds de ses extrémités comme se présente la figure (II.1). Les cordonnées des nœuds 1 et 2 sont connues par rapport au repère quelconque xoy. La numérotation des nœuds est faite dans le sens trigonométrique.

Les caractéristiques géométriques A, x_G , y_G , S_x , S_y , I_x , I_y et I_{xy} du segment par rapport au repère oxy sont données par [1], [2] et [9] :

$$L_{12} = L_{i} = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$
(II.1)

$$x_{G} = \frac{1}{2}(x_{1} + x_{2})$$
(II.2)

$$y_{G} = \frac{1}{2}(y_{1} + y_{2})$$
(II.3)

$$S_{x} = t L_{12} y_{G}$$
(II.4)

$$S_{y} = t L_{12} x_{G}$$
(II.5)

$$I_{x} = \frac{I_{x}^{'} + I_{y}^{'}}{2} - \frac{I_{y}^{'} - I_{x}^{'}}{2} \cos(-2\theta) + y_{G}^{2} L_{12} t$$
(II.6)

$$I_{y} = \frac{I_{x}^{'} + I_{y}^{'}}{2} + \frac{I_{y}^{'} - I_{x}^{'}}{2} \cos(-2\theta) + x_{G}^{2} L_{12} t$$
(II.7)

$$I_{xy} = \frac{I_{y}^{'} - I_{x}^{'}}{2} \sin(-2\theta) + x_{G} y_{G} L_{12} t$$
(II.8)

Avec

$$I'_{x} = \frac{1}{12} L_{12} t^{3}$$
(II.9)

$$I'_{y} = \frac{1}{12} L_{12}^{3} t$$
 (II.10)

$$I'_{xy} = 0$$
 (Par raison de symétrie) (II.11)

CHAPITRE II : CARACTERISTIQUES GEOMETRIQUES D'UN SEGMENT QUELCONQUE AYANT UNE EPAISSEUR

Comme $I'_{xy} = 0$ d'après la relation (II.11) (par raison de symétrie), on n'a pas ajouté le terme lié avec le produit d'inertie dans les relations (II.6), (II.7) et (II.8).

Ce présent travail est limité pour des sections planes à paroi minces. Dans ce cas l'épaisseur t/C <<1. Alors $t^3/C^3 <<1$. Pour les applications, on aura [1] :

$$\frac{t}{C} \le 0.01 \tag{II.12}$$

Alors, on peut approximer la relation (II.9) par $I'_x = 0$. Cette approximation donne des bons résultats si la condition (II.12) est vérifiée.

A partir de la figure 0.1, on peut écrire :

$$\sin(\theta) = \frac{y_1 - y_2}{L_{12}}$$
 (II.13)

$$\cos(\theta) = \frac{x_1 - x_2}{L_{12}}$$
 (II.14)

En utilisant les transformations trigonométriques $\cos^2(\theta) = [1 + \cos(2\theta)]/2$ et $\sin^2(\theta) = [1 - \cos(2\theta)]/2$ et remplaçant les expressions (II.13) et (II.14) dans les relations (II.6), (II.7) et (II.8) on obtient après réarrangement et simplification les résultats suivants [1].

$$I_{x} = \frac{t L_{12}}{3} \left(y_{1}^{2} + y_{2}^{2} + y_{1} y_{2} \right)$$
(II.15)
$$I_{y} = \frac{t L_{12}}{3} \left(x_{1}^{2} + x_{2}^{2} + x_{1} x_{2} \right)$$
(II.16)
$$I_{xy} = \frac{t L_{12}}{3} \left(x_{1} y_{1} + x_{2} y_{2} + \frac{x_{1} y_{2} + x_{2} y_{1}}{2} \right)$$
(II.17)

Les relations (II.15), (II.16) et (II.17) sont proportionnelles à la valeur de l'épaisseur t de la section. Dans ces expressions, les résultats dépendent des cordonnées des nœuds 1 et 2, de la longueur de segment ainsi que l'épaisseur du segment.

Notons que les relations (II.6), (II.7) et (II.8) donnent des résultats exacts et les relations (II.15), (II.16) et (II.17) donnent des résultats approchés.

II.1. Génération de Maillage :

Il est à noter que la géométrie du profil d'aile est donnée sous la forme des valeurs tabulées. Alors on a utilisé l'interpolation cubic-spline pour trouver une équation analytique de l'extrados et de l'intrados. Le nombre de points choisis pour la génération de maillage est différent à celui donné pour la définition de la géométrie du profil. Le maillage obtenu est formé par des segments de droite placés sur la frontière du profil d'aile comme présentent les figures (IV.5), (IV.6), (IV.7), (IV.8), (IV.9) et (IV.10)

CHAPITRE II : CARACTERISTIQUES GEOMETRIQUES D'UN SEGMENT QUELCONQUE AYANT UNE EPAISSEUR

II.2. Fonction de condensation :

Vu la courbure de la frontière, il est parfois préférable de condenser les nœuds vers une région bien spécifiée pour avoir une bonne présentation de la frontière, notamment au niveau de bord d'attaque pour les profils d'ailes subsoniques où il y a un arrondissement de la frontière [4] et [6].

Si la fonction de condensation est appliquée sur le coté *EA* (voir figure II.2), par exemple la corde du profil, la variable indépendante normalisée est donnée par :

$$\eta^* = \frac{\eta - \eta_A}{\eta_E - \eta_A} \tag{II.18}$$

avec : $0 \le \eta^* \le 1$ et $\eta_A \le \eta \le \eta_E$

où : η peut représenter x ou y

On peut même donner la distribution sur l'intervalle [0, 1] par η^* avec des sous intervalles égaux. La fonction de condensation utilisée est donnée par [6]:

$$s=P \ \eta^* + (1-P) \left[1 - \frac{\tanh\left[Q(1-\eta^*)\right]}{\tanh\left[Q\right]} \right] \quad (\text{II}.19)$$

Une fois on a obtenu la valeur de s, il est demandé de spécifier la distribution de x par exemple,

$$x = x_A + s (x_A - x_F)$$
 (II.20)

Pour des valeurs de P > 1.0, il est possible de condenser les nœuds vers le point A.

Des distributions typiques des points sur le segment EA pour différentes valeurs de P et Q, sont présentées sur la figure (II.2) suivante :

Figure II-2 Distribution des nœuds selon la relation (II.19)

Pour obtenir l'ordonnée du point considéré sur la frontière, il suffit qu'à utiliser la fonction analytique de l'extrados ou de l'intrados.

II.3. Connexion des segments du maillage :

La numérotation des nœuds du maillage commence par le bord de fuite dans le sens antihoraire. Si le nombre de points sur la frontière est NN, alors le nombre de segments a traité est égale NS=NN.
CHAPITRE II : CARACTERISTIQUES GEOMETRIQUES D'UN SEGMENT QUELCONQUE AYANT UNE EPAISSEUR

Le problème consiste à faire l'assemblage de ces segments pour obtenir le résultat pour la section complète. Pour arriver aux résultats, il faut connaître les numéros des nœuds de chaque segment, voir figure II.1. Pour le segment numéro (*i*) (*i*=1, 2, 3, ..., *NN*), les nœuds N_1 et N_2 prend respectivement les valeurs *i* et *i*+1. Pour le dernier segment, le numéro de nœud $N_2=1$ (fermeture de la frontière). Ce segment se trouve dans l'intrados avec un nœud est celui le bord de fuite.

II.4. Caractéristiques géométriques de la section composée :

La section à été subdivisée en petits segments de droite. Alors, le calcul des caractéristiques géométriques pour la section complète sera approximé par la somme de toutes les caractéristiques géométriques des segments constituant la section. Alors on peut écrire [1] :

$$L = \sum_{i=1}^{i=NS} L_i \qquad (II.21)$$

$$S_x = \sum_{i=1}^{i=NS} (y_G)_i t L_i \qquad (II.22)$$

$$S_y = \sum_{i=1}^{i=NS} (x_G)_i t L_i \qquad (II.23)$$

$$I_x = \sum_{i=1}^{i=NS} (I_x)_i \qquad (II.24)$$

$$I_y = \sum_{i=1}^{i=NS} (I_y)_i \qquad (II.25)$$

$$I_{xy} = \sum_{i=1}^{i=NS} (I_{xy})_i \qquad (II.26)$$

Le centre de gravité de cette section composée en petits segments est donné par :

$$x_G = \frac{S_y}{Lt}$$
; $y_G = \frac{S_x}{Lt}$ (II.27)

Les termes sous le signe sommation dans les relations (II.21), (II.22), (II.23), (II.24), (II.25) et (II.26) sont donnés par les relations d'un segment de droite, présentés par les relations (II.2), (II.2), (II.3), (II.6), (II.7) et (II.8).

Les caractéristiques géométriques de la section complète par rapport aux axes centraux de la section peuvent être déterminées en utilisant le théorème d'Huygues (théorème des axes parallèles) [1] et [9]. Alors on aura :

$$I'_{x} = I_{x} - y_{G}^{2}(Lt)$$
 (II.28)

 $I_{y} = I_{y} - x_{G}^{2} (Lt)$ (II.29)

$$I'_{xy} = I_{xy} - x_G y_G (Lt)$$
 (II.30)

CHAPITRE II : CARACTERISTIQUES GEOMETRIQUES D'UN SEGMENT QUELCONQUE AYANT UNE EPAISSEUR

Le moment d'inertie polaire de la section complète peut être calculé par la relation suivante. Alors :

$$I_{p} = I'_{x} + I'_{y}$$
 (II.31)

Pour justifier l'exactitude des résultats obtenus, il est recommandé de calculer l'erreur commise par le calcul numérique et les résultats exacts. Alors, pour chaque paramètres L, x_G , y_G , I_x , I_y , I_{xy} , la valeur de l'erreur relative peut être calculée est donnée par la formule suivante :

$$\varepsilon \% = \left| 1 - \frac{Paramètre_{Calculé}}{Paramètre_{Exacte}} \right| \times 100 \quad \text{(II.32)}$$

III. Chapitre III : Contrainte de cisaillement dans des tubes fermés à parois minces :

Le calcul de la contrainte de cisaillement dans des sections des tubes à paroi mince, en particulier la géométrie d'un profil d'aile à revêtement jouent un rôle très important pour le calcul d'élasticité [1], [2] et [3]. Lorsque la section est soumise à un ou deux efforts tranchants, la section sera sollicitée par une contrainte de cisaillement le long de sa frontière [1], [2] et [3]

III.1. Flux de cisaillement dans des sections ouvertes :

Pour commencer le calcul, il faut couper la section dans un endroit quelconque comme présente la figure 1 [1], [2] et [3].

La valeur de flux de cisaillement en ce point est égale à zéro pour la section ouverte. On a choisi de faire l'ouverture au niveau de bord de fuite. Un segment de la frontière est présenté par les nœuds de ses extrémités comme présente la figure (III.2). Les cordonnées des nœuds *i* et *j* sont connues par rapport au repère passant par le centre de gravité. La numérotation des nœuds est faite dans le sens trigonométrique en commençant par le bord de fuite.

Figure III-1 Présentation le segment de calcul

La valeur de flux de cisaillement en un point (x, y) du segment numéro (i) de la figure (III.1) pour le cas de la section ouverte ayant une épaisseur constante est donnée par [1] :

$$q_{b,ij}(s) = q_{b,i} - H_1 \int_0^s x \, ds - H_2 \int_0^s y \, ds \tag{III.1}$$

La contrainte de cisaillement τ est reliée avec le flux de cisaillement par la relation suivante ;

$$\tau = \frac{q}{t} \tag{III.2}$$

Avec

$$H_{1} = t \left(\frac{S_{x}I_{xx} - S_{y}I_{xy}}{I_{xx}I_{yy} - I_{xy}^{2}} \right) , \qquad H_{2} = t \left(\frac{S_{y}I_{yy} - S_{x}I_{xy}}{I_{xx}I_{yy} - I_{xy}^{2}} \right)$$
(III.3)

Les moments d'inerties I_{xx} , I_{yy} et I_{xy} doivent être calculés par rapport aux axes centraux de la section. Pour plus de détails, on peut consulter les références [1] et [9].

D'après la figure (III.2), on peut écrire

$$x = x_i - \frac{x_i - x_j}{L_{ij}} s$$
 , $y = y_i - \frac{y_i - y_j}{L_{ij}} s$ (III.4)

Avec

$$L_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$
(III.5)

Substituant les relations (III.4) dans (III.1) et intégrant, on obtient :

$$q_{b,ij}(S) = q_{b,i} - H_1 \left(x_i \, s - \frac{x_i - x_j}{2 \, L_{ij}} \, s^2 \right)$$

$$- H_2 \left(y_i \, s - \frac{y_i - y_j}{2 \, L_{ij}} \, s^2 \right)$$
(III.6)

D'où

$$q_{s,ij}(S) = q_{b,ij}(S) + q_{s,0}$$
 (III.7)

D'après la relation (III.6), on remarque une distribution parabolique du flux de cisaillement le long de la longueur de segment. A partir de la relation (III.6), la valeur de flux de cisaillement au point j est obtenue lorsque $s=L_{ij}$. On obtient :

$$q_{b,j} = q_{b,i} - H_1 L_{ij} \frac{x_i + x_j}{2} - H_2 L_{ij} \frac{y_i + y_j}{2}$$
 (III.8)

Dans la relation (III.7) on a \models 1, 2, 3, ..., NS-1 et j=i+1.

Le flux de cisaillement total au point j se calcule en ajoutant le flux de cisaillement de l'ouverture. Alors :

$$q_{s,j} = q_{b,j} + q_{s,0}$$
 (III.9)

Pour i=1, le flux de cisaillement au point de l'ouverture est égal à zéro. Alors

$$q_{b,1} = 0$$
 (III.10)

III.2. Détermination de la valeur de $q_{s,0}$:

La valeur de $q_{s,0}$ représente le flux de cisaillement au point de l'ouverture. Il se calcule par la relation suivante [1], [2] et [3] :

$$q_{s,0} = -\frac{\oint q_b \, ds}{\oint ds} \tag{III.11}$$

Cette valeur représente la valeur moyenne de flux de cisaillement.

Dans la relation (III.11), le dénominateur peut être approximé par :

$$\oint ds = L = \sum_{i=1}^{i=NS} L_{ij}$$
 (III.12)

Le résultat dans la relation (III.12) est fait en faisant la somme de la longueur de tous les segments constituant la discrétisation.

D'après la relation (III.11) on peut écrire encore :

$$\oint q_b \, ds = \sum_{i=1}^{i=NS} \int_0^{L_{ij}} q_{b,ij}(s) \, ds$$
 (III.13)

Remplaçant la relation (III.6) dans (III.13) et intégrant cette dernière on obtient après réarrangement un résultat qui sera remplacé dans la relation (III.11) on obtient le résultat final concernant $q_{s,0}$. Alors :

$$q_{s,0} = -\frac{1}{L} \sum_{i=1}^{i=NS} \begin{bmatrix} q_{b,i} L_{ij} - H_1 L_{ij}^2 \frac{2x_i + x_j}{6} \\ -H_2 L_{ij}^2 \frac{2y_i + y_j}{6} \end{bmatrix}$$
(III.14)

Par conséquent on peut déterminer la valeur de la contrainte au niveau de l'ouverture par la relation suivante :

$$\tau_{s,0} = \frac{q_{s,0}}{t} \tag{III.15}$$

Remplaçant le résultat donné par la relation (III.14) dans la relation (III.9), on peut obtenir la valeur totale de flux de cisaillement en chaque point de la discrétisation.

Dans les relations (III.12), (III.13) et (III.14), j=i+1. Si i=NS alors j=1. Dans la relation (III.14), plus le nombre de segments est grand, plus on aura une bonne précision.

Une fois qu'on détermine la distribution de flux de cisaillement par la relation (III.9), on peut facilement déduire la distribution de la contrainte de cisaillement en utilisant la relation (III.2).

En fin on peut déterminer la valeur et la position de la contrainte de cisaillement maximale. On peut avoir deux valeurs de la contrainte maximale. L'une pour les valeurs positives et l'autre pour les valeurs négatives. Il faut que ces valeurs doivent être inférieures à la valeur de la contrainte admissible τ_{ad}^+ et τ_{ad}^- pour ne pas avoir une rupture.

III.3. Centre de cisaillement :

Pour éliminer la torsion causée par les efforts tranchant, il est très intéressant d'appliquer ces efforts tranchant en un point appelé centre de cisaillement. La détermination de ce point se fait par rapport à un point quelconque. Dans notre étude on a choisi le bord d'attaque du profil d'aile pour le calcul du moment.

La position du centre de cisaillement des tubes à parois minces fermées est localisée dans la même manière que les tubes ouverts [1], [2] et [3]. Cependant, pour déterminer la position du centre de cisaillement de coordonnées (ζ_s , η_s) de la poutre à paroi mince fermée présentée dans la figure (III.2), on applique arbitrairement un effort tranchant horizontal S_x ensuite S_y au point S, ensuite on calcule la distribution de flux de cisaillement q_s due à ces efforts tranchants et puis en égalisant le moment interne au moment externe. Cependant à ce niveau, il est impossible d'égaliser le moment interne du au flux de cisaillement au moment externe du au efforts tranchants pour avoir une équation puisque les efforts tranchant S_x et S_y sont inconnus. Pour avoir la solution, on applique la condition dont les efforts tranchants sont appliqués au centre de cisaillement pour produire un moment nul.

Le calcul se fait par la relation suivante [1], [2] et [3] :

$$\xi_S S_y - \eta_S S_x = \oint d q_S ds \qquad (III.16)$$

Pour le calcul du moment on a choisi le sens antihoraire par rapport au point O.

Dans la relation (III.16), le symbole d représente la valeur du bras de levier du point d'application du flux de cisaillement q_s . Pour une discrétisation de *NS* segments sur la frontière comme présente la figure (III.3), la relation (III.16) devient :

$$\xi_{S}S_{y} - \eta_{S}S_{x} = \sum_{i=1}^{i=NS} d_{ij} \int_{0}^{L_{ij}} q_{S,ij}(s) ds \qquad (\text{III.17})$$

La valeur d_{ij} dans la relation (III.17) représente le bras de levier du segment reliant les nœuds *i* et *j* comme le présente la figure (III.3).

Dans ce cas, pour déterminer la valeur de d, il faut en premier lieu déterminer l'équation de la droite reliant les points i et j et l'équation de la droite perpendiculaire à la droite reliant les points i et j et passe par le point O. L'intersection de ces deux droites donne la position du point k comme présente la figure (IV.5). On peut par suite facilement déterminer la distance entre les points O et k qui représente la distance d_{ij} . Alors :

$$y_{ij}(x) = \frac{y_j - y_i}{x_j - x_i} (x - x_i) + y_i$$
 (III.18)

et

$$y_{ok}(x) = -\frac{x_j - x_i}{y_j - y_i}(x - x_o) + y_o$$
 (III.19)

La position du point $O(x_0, y_0)$ est donnée

Egalisant les ordonnées des équations (III.18) et (III.19), on peut obtenir la position du point k. On trouve :

$$x_{k} = \frac{\frac{y_{O} - y_{i} + \frac{x_{j} - x_{i}}{y_{j} - y_{i}} x_{O} + \frac{y_{j} - y_{i}}{x_{j} - x_{i}} x_{i}}{\frac{y_{j} - y_{i}}{x_{j} - x_{i}} + \frac{x_{j} - x_{i}}{y_{j} - y_{i}}}$$
(III.20)

$$y_k = -\frac{y_j - y_i}{x_j - x_i} (x_k - x_i) + y_i$$
 (III.21)

Par conséquent, la distance d_{ij} entre les points O et k se calcule par la relation suivante :

$$d_{ij} = \sqrt{(x_k - x_O)^2 + (y_k - y_O)^2}$$
(III.22)

On a préféré d'introduire les indices i et j au lieu les indices O et k pour le calcul de la valeur de bras de levier du segment relie entre les nœuds i et j.

Remplaçant la relation (III.7) dans la relation (III.17) et intégrant le long du segment reliant les nœuds i et j on obtient le résultat suivant :

$$\xi_{S}S_{y} - \eta_{S}S_{x} = \sum_{i=1}^{i=NS} d_{ij} \begin{bmatrix} q_{b,i} L_{ij} + q_{s,0} L_{ij} \\ -H_{1} \frac{L_{ij}^{2}}{6} (2 x_{i} + x_{j}) \\ -H_{2} \frac{L_{ij}^{2}}{6} (2 y_{i} + y_{j}) \end{bmatrix}$$
(III.23)

Dans la relation (III.23), les expressions de d_{ij} , $q_{b,i}$, $q_{S,0}$, H_1 , H_2 et L_{ij} sont données respectivement par les relations (III.22), (III.8), (III.14), (III.3) et (III.5). Les positions des nœuds i et j sont données.

A partir de la relation (III.23), pour déterminer l'abscisse ζ_S du centre de cisaillement on donne $S_x=0.0$ et S_y arbitraire. Dans le programme de calcul on a pris $S_y=1.0$. Pour déterminer l'ordonnée η_S du centre de cisaillement on pose $S_y=0.0$ et S_x arbitraire. Dans le programme de calcul on a donné $S_x=1.0$.

Figure III-2 Centre de cisaillement d'une section fermée

Figure III-3 Schémas pour le calcul de centre de cisaillement

IV. Chapitre IV : Résultats et commentaires:

Ce chapitre présente l'ensemble des résultats des exemples déjà donnés aux chapitres précédents qu'ont été réalisé par un programme en langage Fortran 90

Table IV-1 Points de définition de la

surface du profil d'aile RAE 2822

		Extrados		Intrados
		En (%) de <i>C</i>		En (%) C
x/C(%)		y/C (%)		y/C (%)
0.0000	Ī	0.0000		0.0000
0.0602	Ī	0.3165		-0.3160
0.2408	Ī	0.6306		-0.6308
0.5412	Ī	0.9416		-0.9443
0.9607	Ī	1.2480		-1.2559
1.4984	Ī	1.5489		-1.5649
2.1530	Ī	1.8441		-1.8707
2.9228		2.1348		-2.1722
3.8060	Ī	2.4219		-2.4685
4.8005		2.7062		-2.7586
5.9039	Ī	2.9874		-3.0416
7.1136		3.2644		-3.3170
8.4265		3.5360		-3.5843
9.8396		3.8011		-3.8431
11.3495		4.0585		-4.0929
12.9524	Ī	4.3071		-4.3326
14.6447		4.5457		-4.5610
16.4221	Ī	4.7729		-4.7773
18.2803		4.9874		-4.9805
20.2150	Ī	5.1885		-5.1694
22.2215	Ī	5.3753		-5.3427
24.2949	Ī	5.5470		-5.4994
26.4302	Ī	5.7026		-5.6376
28.6222	Ī	5.8414		-5.7547
30.8658		5.9629		-5.8459
33.1555		6.0660		-5.9046
35.4858		6.1497		-5.9236
37.8510		6.2133		-5.8974
	x/C (%) 0.0000 0.0602 0.2408 0.5412 0.9607 1.4984 2.1530 2.9228 3.8060 4.8005 5.9039 7.1136 8.4265 9.8396 11.3495 12.9524 14.6447 16.4221 18.2803 20.2150 22.2215 24.2949 26.4302 28.6222 30.8658 33.1555 35.4858 37.8510	x/C (%) 0.0000 0.0602 0.2408 0.5412 0.9607 1.4984 2.1530 2.9228 3.8060 4.8005 5.9039 7.1136 8.4265 9.8396 11.3495 12.9524 14.6447 16.4221 18.2803 20.2150 22.2215 24.2949 26.4302 28.6222 30.8658 33.1555 35.4858 37.8510	Extrados En (%) de C x/C (%) y/C (%)0.00000.00000.06020.31650.24080.63060.54120.94160.96071.24801.49841.54892.15301.84412.92282.13483.80602.42194.80052.70625.90392.98747.11363.26448.42653.53609.83963.801111.34954.058512.95244.307114.64474.545716.42214.772918.28034.987420.21505.188522.22155.375324.29495.547026.43025.702628.62225.841430.86585.962933.15556.066035.48586.149737.85106.2133	Extrados En (%) de C x/C (%) y/C (%)0.00000.00000.06020.31650.24080.63060.54120.94160.96071.24801.49841.54892.15301.84412.92282.13483.80602.42194.80052.70625.90392.98747.11363.26448.42653.53609.83963.801111.34954.058512.95244.307114.64474.545716.42214.772918.28034.987420.21505.188522.22155.375324.29495.547026.43025.702628.62225.841430.86585.962933.15556.066035.48586.149737.85106.2133

29	40.2455	6.2562	-5.8224
30	42.6635	6.2779	-5.6979
31	45.0991	6.2774	-5.5257
32	47.5466	6.2530	-5.3099
33	50.0000	6.2029	-5.0563
34	52.4534	6.1254	-4.7719
35	54.9009	6.0194	-4.4642
36	57.3365	5.8845	-4.1397
37	59.7545	5.7218	-3.8043
38	62.1490	5.5344	-3.4631
39	64.5142	5.3258	-3.1207
40	66.8445	5.0993	-2.7814
41	69.1342	4.8575	-2.4495
42	71.3778	4.6029	-2.1289
43	73.5698	4.3377	-1.8232
44	75.7051	4.0641	-1.5357
45	77.7785	3.7847	-1.2690
46	79.7850	3.5017	-1.0244
47	81.7197	3.2176	-0.8027
48	83.5779	2.9347	-0.6048
49	85.3553	2.6554	-0.4314
50	87.0476	2.3817	-0.2829
51	88.6505	2.1153	-0.1592
52	90.1604	1.8580	-0.0600
53	91.5735	1.6113	0.0157
54	92.8864	1.3769	0.0694
55	94.0961	1.1562	0.1033
56	95.1995	0.9508	0.1197
57	96.1940	0.7622	0.1212
58	97.0772	0.5915	0.1112
59	97.8470	0.4401	0.0935
60	98.5016	0.3092	0.0719
61	99.0393	0.2001	0.0497
62	99.4588	0.1137	0.0296
63	99.7592	0.0510	0.0137
64	99.9398	0.0128	0.0035
65	100.0000	0.0000	0.0000

Les points de la table IV.1 sont utilisés pour déterminer la fonction analytique de l'extrados et de l'intrados en utilisant l'interpolation cubic-spline.

IV.1. Convergence des formules rapprochées :

Dans ce paragraphe, on va faire une comparaison entre les résultats donnés par les formules exactes (II.6), (II.7) et (II.8) avec les résultats donnés par les formules rapprochées (II.15), (II.16) et (II.17). Pour cela, on va prendre un exemple la section à paroi minces du profil RAE 2822 et on va varier la valeur de l'épaisseur t jusqu'à t/C=0.10 (On prend C=1.0) et on

compare les résultats obtenus de point de vu erreur trouvée respectivement entre les formules (II.6) et (II.15) et entre les formules (II.7) et (II.16) et entre les formules (II.8) et (II.17).

La table IV.2 présente les résultats trouvés sur I_x '.

La table IV.3 représente les résultats donnés sur I_y ' et la table IV.4 présente la comparaison des résultats donnés par I_{xy} '. Dans ces tables on a appliqué les formules exactes et les formules rapprochées.

Table IV-2 Comparaison les résultats de Ix' entre la formule exacte (II.6) et la formule

t/C	I_x ' × 10 ⁵	I_x ' × 10 ⁵	$\alpha(0/)$
l/C	Formule (II.6)	Formule (II.15)	8 (%)
0.001	0.38490	0.38488	0.00427
0.002	0.76989	0.76975	0.03849
0.003	1.15506	1.15462	0.06841
0.004	1.54052	1.53947	0.06841
0.005	1.92637	1.92431	0.10685
0.006	2.31270	2.30914	0.15380
0.007	2.69961	2.69396	0.20922
0.008	3.08720	3.07877	0.27310
0.009	3.47557	3.46356	0.34540
0.010	3.86482	3.84890	0.42594
0.020	7.82735	7.69561	1.68307
0.030	11.98641	11.54179	3.70938
0.040	16.44079	15.38687	6.41039
0.050	21.28929	19.23086	9.66888
0.060	26.63073	23.07375	13.35666
0.070	32.56391	26.91556	17.34542
0.080	39.18763	30.75627	21.51534
0.090	46.60070	34.59590	25.76098
0.100	54.90192	38.43443	29.99438

Courbe 1 Variation de $I_x' \times 10^5$ par la formule (II.6) Courbe 2 Variation de $I_x' \times 10^5$ par la formule (II.15) Courbe 3 Variation de l'erreur relative (%).

FigureIV-1Variation du moment Ix' et l'erreur en fonction de l'épaisseur normalisée (t/C).

t/C	$I_y' \times 10^3$ Formule (7.2)	$I_y' \times 10^3$ Formule (16.2)	ε (%) × 10 ⁴
0.001	0.67112	0.67112	0.00700
0.002	1.34124	1.34124	0.02802
0.003	2.01036	2.01036	0.06309
0.004	2.67849	2.67849	0.11225
0.005	3.34562	3.34561	0.17552
0.006	4.01175	4.01175	0.25295
0.007	4.67688	4.67688	0.34455
0.008	5.34102	5.34102	0.45036
0.009	6.00416	6.00415	0.57041
0.010	6.66630	6.71617	0.70251
0.020	13.23287	13.23283	2.84021
0.030	19.69974	19.69962	6.43900
0.040	26.06694	26.06664	11.53468
0.050	32.33449	32.33390	18.16183
0.060	38.50242	38.50141	26.35611
0.070	44.57077	44.56916	36.15428
0.080	50.53955	50.53715	47.59423
0.090	56.40880	56.40538	60.71505
0.100	62.17855	62.17385	75.55707

Table IVIV-3 Comparaison les résultats de Iy' entre la formule exacte (II.7) et la formule rapprochée (II.16).

Courbe 1 Variation de $I_y' \times 10^3$ par la formule (II.7) Courbe 2 Variation de $I_y' \times 10^3$ par la formule (II.16) Courbe 3 Variation de l'erreur relative (%).

	$L^{2} \times 105$	$I^{2} \times 105$	
t/C	$I_{xy} \wedge 10^2$	$I_{xy} \wedge 10^{\circ}$	$(\%) \times 10^4$
u/C	Formule(II.8)	Formule(II.17)	0 (70)/10
	1 0111000 (1110)		
0.001	0.74963	0.74963	0.00384
0.002	1 40022	1.40022	0.00460
0.002	1.49823	1.49823	0.03468
0.003	2 24577	2 24577	0.03468
0.005	2.27377	2.24377	0.05400
0.004	2.99228	2.99228	0.06170
0.005	0.5055.4	0.5055.4	0.00 < 10
0.005	3.73774	3.73774	0.09648
0.006	1 / 18216	1 / 8216	0 13003
0.000	4.40210	4.40210	0.13703
0.007	5.22554	5.22554	0.18937
0.008	5.96787	5.96787	0.24751
0.000	6 70016	6 70016	0.21247
0.009	0.70910	0.70910	0.31347
0.010	7.44940	7.50158	0.37625
0.020	14.79444	14.79446	1.56005
0.030	22.03510	22.03517	3 53505
0.030	22.03310	22.03317	5.55505
0.040	29.17135	29.17154	6.32952
0.050	36.20319	36.20355	9.96118
0.060	12 12060	42 12122	11 11007
0.000	45.15000	45.15122	14.44027
0.070	49.95355	49.95454	19.80959
0.080	56.67204	56.67352	26.06447
0.000	62 20604	62 2001 4	22 22202
0.090	03.28004	03.28814	55.25285
0.100	69,79553	69.79842	41.33521
0.100		0,,,,0,12	11.00021

Table IV-4 : Comparaison les résultats de Ixy' entre la formule exacte (II.8) et la formule rapprochée (II.17).

Courbe 1 Variation de $I_{xy}' \times 10^5$ par la formule (II.8) Courbe 2 Variation de $I_{xy}' \times 10^5$ par la formule (II.17) Courbe 3 Variation de l'erreur relative (%)× 10⁴.

Figure IV-3Variation du moment Ixy' et l'erreur en fonction de l'épaisseur normalisée

(t/C).

Sur les tables (IV.2), (IV.3) et (IV.4) on remarque que l'erreur varie avec l'épaisseur t. Plus l'épaisseur augmente plus les formules rapprochées (II.15), (II.16) et (II.17) tombent à défaut. Mais si t/C<0.01, dans ce cas l'erreur maximale ne peut pas dépasser 0.42% pour I_x ', 0.000070 % pour I_y ' et 0.000038 % pour I_{xy} '. Donc les formules rapprochées donnent des bons résultats dans notre intervalle d'utilisation $t_t \in]0, 0.01]$.

Les figures (IV.1), (IV.2) et (IV.3) présentent respectivement la variation de I_x ', I_y ' et I_{xy} ' avec l'épaisseur de la section en utilisant soit les formules exactes ou rapprochées, ainsi que la variation de l'erreur relative commise par les formules rapprochées par rapport aux formules exactes.

On remarque que l'erreur donnée la formule (II.15) pour le cas de I_x est plus grande par rapport aux erreurs données par les formules (II.16) et (II.17) vu que la dimension suivant l'axe y vertical est très petite par rapport à la dimension x horizontal.

On a pris un exemple d'un profil d'aile non symétrique pour avoir une valeur de produit d'inertie I_{xy} ' différente de zéro.

IV.2. Effet de la discrétisation sur la convergence :

Ce problème consiste à justifier la convergence des résultats numériques vers la solution exacte en faisant varier le nombre des segments sur le profil d'aile et de voir la convergence des caractéristiques géométriques. On prend l'exemple de profil d'aile RAE 2822 avec une corde C=1.0. On va appliquer les formules rapprochées (II.15), (II.16) et (II.17) respective ment pout I_x ', I_y ' et I_{xy} ' et les formules (II.1), (II.4) et (II.5) respectivement pour L, S_x et S_y . Notons

qu'on n'a pas fait une approximation aux formules pour l'obtention de la longueur et les moments statiques de la section. On prend l'épaisseur t/C=0.01.

NS	L	$x_G \times 100$	$y_G \times 10^4$
10	2.025769	0.496608	0.299835
20	2.029713	0.495927	0.470064
50	2.031520	0.495599	0.511345
100	2.031952	0.495512	0.516716
200	2.032229	0.495448	0.517872
300	2.032412	0.495404	0.518015
500	2.032439	0.495398	0.518128
700	2.032456	0.495394	0.518154
1000	2.032465	0.495391	0.518167
2000	2.032472	0.495390	0.518177
5000	2.032474	0.495389	0.518179
8000	2.032475	0.495389	0.518180
10000	2.032475	0.495389	0.518180
20000	2.032475	0.495389	0.518180
50000	2.032475	0.495389	0.518180
105	2.032475	0.495389	0.518180
106	2.032475	0.495389	0.518180

Table IV-5 Effet de la discrétisation sur la convergence des valeurs de L, xG et yG pour le profil d'aile RAE 2822.

NS	I_x ' ×10 ⁴	I_y ' ×10 ²	I_{xy} ' ×10 ⁴
10	0.343525	0.670685	0.436670
20	0.374787	0.671313	0.669650
50	0.383326	0.671559	0.737018
100	0.384501	0.671602	0.746872
200	0.384793	0.671613	0.749331
300	0.384847	0.671615	0.749790
500	0.384874	0.671617	0.750025
700	0.384882	0.671617	0.750090
1000	0.384886	0.671617	0.750124
2000	0.384889	0.671617	0.750149
5000	0.384889	0.671617	0.750156
8000	0.384889	0.671617	0.750157
10000	0.384890	0.671617	0.750157
20000	0.384890	0.671617	0.750157
50000	0.384890	0.671617	0.750158
105	0.384890	0.671617	0.750158
106	0.384890	0.671617	0.750158

Table IV-6 Effet de la discrétisation sur la convergence des valeurs de Ix', Iy' et Ixy' pour leprofil d'aile RAE 2822.

On note qu'on na pas suivi la convergence de moment d'inertie polaire I_P . Ce dernier peut être calculé directement en utilisant la relation (II.31).

On remarque a partir des tables (IV.5) et (IV.6) la convergence des caractéristiques géométriques vers la solution exacte. Pour avoir une précision de ε =10⁻⁵, il faut environ une discrétisation de 7000 points sur la frontière.

Figure IVIV-4 Variation des caractéristiques géométriques en fonction de nombre de segmen

ts.

La figure IV.4 présente la variation des caractéristiques géométriques en fonction de nombre de segment sur la frontière du profil d'aile. On remarque que la convergence est faite d'une façon monotone pour toutes les caractéristiques géométriques. Une stabilité de la convergence est faite à partir de NS=300 segments sans avoir le nombre de chiffres après la virgule.

IV.3. Variation de la contrainte tangentielle :

Les figures (IV.5), (IV.6), (IV.7), (IV.8), (IV.9) et (IV.10) présentent le maillage opté dans notre calcul. Il est formé par des segments sur la frontière. On a pris les paramètres suivants P=1.9, Q=2.00 pour l'extrados et P=0.01, Q=2.00 pour le coté intrados. Le profil choisi dans ces figures c'est le DOUGLAS LA203A non symétrique avec cambrure, dont la définition de la géométrie est présentée par 51 points comme présente la table (IV.7).

Notons que la numérotation des nœuds sur l'extrados commence de bord de fuite vers le bord d'attaque tandis que pour l'intrados, la numérotation des nœuds commence de bord d'attaque vers le bord de fuite. Le maillage est fait de telle manière qu'il y a condensation des nœuds vers le bord d'attaque afin de voir l'arrondissement de la courbure. Cette procédure est importante surtout pour les profils d'ailes subsonique et transsonique.

Dans ces figures on a pris respectivement NS=15, 30, 60, 100, 200 et 350 segments sur la frontière pour visualiser la position des nœuds. Notons que le programme développé peut faire un maillage illimité. Pour les applications, on a pris le nombre de segment jusqu'à un Million.

Figure IV-5 Discrétisation de la frontière du profil d'aile par NS=15.

Figure IVIV-6 Discrétisation de la frontière du profil d'aile par NS=30.

Figure IVIV-7 Discrétisation de la frontière du profil d'aile par NS=60.

Figure IVIV-8 Discrétisation de la frontière du profil d'aile par NS=100.

Figure IV-9 Discrétisation de la frontière du profil d'aile par NS=200.

Figure IV-10 : Discrétisation de la frontière du profil d'aile par NS=350

Table IV-7 Points de définition de la surface de profil d'aile DOUGLA	S LA203A.
---	-----------

		Extrados	Intrados
		En (%) de <i>C</i>	En (%) de <i>C</i>
	x/C(%)	y/C (%)	y/C(%)
01	0.0000	0.0000	0.0000
02	0.0887	0.6000	-0.8018
03	0.3544	1.5836	-1.5137
04	0.7963	2.3336	-2.1544
05	1.4127	3.0677	-2.6516
06	2.2015	3.8031	-2.9638
07	3.1599	4.5492	-3.1320
08	4.2846	5.3047	-3.2209
09	5.5715	6.0636	-3.2676
10	7.0162	6.8190	-3.2867
11	8.6135	7.5641	-3.2657
12	10.3579	8.2919	-3.2692
13	12.2432	8.9956	-3.2407
14	14.2628	9.6688	-3.2024
15	16.4095	10.3048	-3.1557
16	18.6758	10.8970	-3.1016
17	21.0538	11.4389	-3.0405
18	23.5350	11.9234	-2.9724
19	26.1106	12.3424	-2.8967
20	28.7718	12.6854	-2.8125
21	31.5090	12.9435	-2.7184
22	34.3127	13.1182	-2.6124
23	37.1729	13.2075	-2.4919
24	40.0796	13.2090	-2.3512
25	43.0226	13.1219	-2.1826
26	45.9916	12.9436	-1.9830
27	48.9759	12.6743	-1.7533
28	51.9653	12.3176	-1.4947
29	54.9490	11.8770	-1.2099
30	57.9167	11.3566	-0.9052
31	60.8579	10.7640	-0.5917
32	63.7621	10.1087	-0.2822
33	66.6193	9.4063	0.0143
34	69.4194	8.6797	0.2917
35	72.1524	7.9995	0.5448
36	74.8087	7.2292	0.7686
37	77.3791	6.5291	0.9596
38	79.8545	5.8545	1.1145
39	82.2261	5.2086	1.2313
40	84.4856	4.5936	1.3087
41	86.6250	4.0113	1.3484
42	88.6369	3.4630	1.3448
43	90.5141	2.9490	1.3056
44	92.2500	2.4700	1.2302
45	93.8385	2.0258	1.1218
46	95.2740	1.6162	0.9838
47	90.3316	1.2408	0.8211
48	97.0000	0.8985	0.6392
49	90.0101	0.3883	0.2294
50	77.3738	0.3044	0.2384
51	100.0000	0.0000	0.0000

Les points de la table (IV.7) sont utilisés pour déterminer la fonction analytique de l'extrados et de l'intrados en utilisant l'interpolation cubic-spline.

IV.4. Convergence pour la contrainte de cisaillement :

On va justifier la convergence des résultats numériques vers la solution exacte en faisant faire la variation de nombre des segments sur la section et de voir la convergence des paramètres de calcul $\tau_{s,0}$, τ_{max}^+ , τ_{min}^- , ξ_s , η_s . On prend l'exemple de cercle de Rayon *R*=1.0, de centre placé au point $x_G=R$, $y_G=0.0$ comme le présente la figure (II.11). Pour cet exemple on a pris t=0.01. Dans ce cas, les valeurs des moments et de produit d'inerties par rapport *aux axes centraux* (horizontal et vertical) sont données par [1] et [9] :

$$I_{xx}/(R^3t) = I_{yy}/(R^3t) = 3.1415926535$$
 (IV.1)
 $I_{yy} = 0.0$ (IV.2)

Les valeurs de $\tau_{s,0}$, τ_{\max}^+ , τ_{\min}^- , ξ_S , η_S pour quelques valeurs de nombre de segments sont présentées dans les tables (IV.8) et (IV.9). Dans ces tables, on a pris $S_x=1.0$ et $S_y=1.0$. On note que $\tau_{s,0}$, τ_{\max}^+ , τ_{\min}^- dépendent de S_x et S_y et que ξ_S , η_S ne dépendent pas de S_x et de S_y .

Dans les figures (IV.12), (IV.13), (IV.14), (IV.15) et (IV.16) on a présenté respectivement la variation des paramètres $\tau_{s,0}$, τ_{max}^+ , τ_{min}^- , ξ_s , η_s en fonction de nombre de segments pour voir la convergences de ces paramètres vers la solution exacte. On remarque clairement d'après cette figure et les tables (IV.8) et (IV.9), la convergence de ces paramètres. Il est bien présenté la fixation des chiffres décimaux, plus le nombre de segment augmente, ce qui interprète la convergence des paramètres vers la solution exacte. Une stabilité est rencontrée pour les paramètres à partir de *NS*=300 segments. Donc pour avoir une précision de ε =10⁻³, il nous faut environ 300 segments. Pour une précision ε =10⁻⁶, il faut environ 40000 segments.

Figure IV-11 Présentation du cercle à paroi mince

NS	$\tau_{s,0}$	$ au_{ m max}^+$	$ au^{ m min}$
10	32.120821	46.114908	-47.060181
20	31.830346	45.893652	-46.075668
50	31.837888	45.178012	-45.306287
100	31.839597	45.059774	-45.121430
200	31.836513	45.021131	-45.051751
300	31.834777	45.019860	-45.036059
500	31.833184	45.018975	-45.025069
700	31.832476	45.017202	-45.021673
1000	31.831951	45.016513	-45.019245
2000	31.831394	45.016210	-45.017048
5000	31.831112	45.015888	-45.016115
8000	31.831075	45.015874	-45.015984
10000	31.831064	45.015860	-45.015940
20000	31.831020	45.015832	-45.015853
50000	31.830997	45.015824	-45.015826
105	31.830993	45.015823	-45.015824
106	31.830992	45.015823	-45.015823

Table IV-8 Effet de la discrétisation sur la convergence de $\tau_{s,0}$, τ_{max}^+ et τ_{min}^- pour le cercle.

Table IV-9 Effet de la discrétisation sur la convergence des valeurs de ξ_s et η_s pour le cercle.

NS	ξ_{s}	η_{S}
10	0.8899922873	0.0383217545
20	0.9543224561	0.0041862997
50	0.9868014410	0.0000310035
100	0.9950410087	-0.0000623843
200	0.9981762532	-0.0000273174
300	0.9989907237	-0.0000144579
500	0.9995234514	-0.0000060630
700	0.9997101922	-0.0000033406
1000	0.9998296578	-0.0000017599
2000	0.9999398717	-0.0000004839
5000	0.9999860454	-0.000000820
8000	0.9999931018	-0.000000322
10000	0.9999951684	-0.000000255
20000	0.9999986939	-0.000000034
50000	0.9999999355	-0.000000007
105	0.9999999834	-0.0000000004
106	1.0000000000	0.0000000001

Figure IV-13 Variation de τ_{max}^+ en fonction de nombre de segments pour le cas de cercle.

Figure IV-15 Variation de ξ_S en fonction de nombre de segments pour le cas de cercle

La variation de la contrainte de cisaillement le long de la paroi de cercle pour quelques valeurs de S_x et S_y sont présentées dans les figures (IV.17), (IV.18), et (IV.19). Dans ces exemples, on a pris NS=10000.

Alors pour chaque valeur de S_x et S_y on peut avoir une distribution de la contrainte de cisaillement.

Figure IV-17 Variation de la contrainte de cisaillement le long de la paroi de cercle pour

Figure IV-18 Variation de la contrainte de cisaillement le long de la paroi de cercle pour Sx=0.0 et Sy=1.0.

Figure IV-19 Variation de la contrainte de cisaillement le long de la paroi de cercle pour Sx=1.0 et Sy=10.0.

Le deuxième exemple choisi est celui le profil d'aile DOUGLAS LA203A avec une corde C=1.0. Pour cet exemple on prend toujours l'épaisseur t=0.01.

La variation de la contrainte de cisaillement pour ce profil pour différente valeurs de S_x et S_y sont présentées dans les figures (IV.20), (IV.21) et (IV.22).

Figure IV-20 Variation de la contrainte de cisaillement le long de la paroi du profil d'aile DOUGLAS LA203A lorsque Sx=0.0 et Sy=1.0.

Figure IV-21 : Variation de la contrainte de cisaillement le long de la paroi du profil d'aile DOUGLAS LA203A lorsque Sx=1.0 et Sy=1.0.

Figure IV-22 Variation de la contrainte de cisaillement le long de la paroi du profil d'aile DOUGLAS LA203A lorsque Sx=1.0 et Sy=0.0.

La figure (IV.23) représente la variation de la valeur maximale de τ_{max}^+ et τ_{min}^- en fonction de S_x et S_y . Donc plus l'effort tranchant vertical S_y est grand plus τ_{max}^+ et τ_{min}^- deviennent grande.

La figure (IV.24) représente la variation de la valeur maximale de τ_{max}^+ et τ_{min}^- en fonction de S_x lorsque $S_y=0.0$. Cette figure est le compliment de la figure (IV.23). Dans ce cas τ_{max}^+ est presque égale à τ_{min}^- en valeur absolue.

Figure IV-23 Variation de $(\tau_{\max}^+ \times t) / S_y$ et $(-\tau_{\min}^- \times t) / S_y$ en fonction de S_x / S_y pour le profil d'aile DOUGLAS LA203 A.

(a) : Variation $de(\tau_{\max}^+ \times t) / S_y$.

(b) : Variation de $(-\tau_{\min}^{-} \times t) / S_{y}$.

Figure IV-24 Variation de τ_{max}^+ et $(-\tau_{min}^-)$ en fonction de Sx lorsque Sy=0.0 pour le profil d'aile DOUGLAS LA 203 A.

- (a) : Variation de $\tau_{\max}^+ \times t$
- (b) : Variation de $-\tau_{\min}^{-} \times t$

IV.5. Résultats pour différents profils d'ailes :

Les valeurs dans les tables (IV.10) et (IV.11) sont obtenues pour une discrétisation d'un million de points sur la frontière des profils d'ailes lorsque $S_x=S_y=1.0$. L'épaisseur est prise égale à t/C=0.01.

Les moments et le produit d'inertie I_{xx} , I_{yy} et I_{xy} sont présentées dans les références [1] et [9].

Les profils d'ailes choisis dans cette thèse touchant toutes les compagnies aériennes. On a pris 33 profils d'ailes comme présente la table 10.

Les profils qui possèdent η_S =0.0 veulent dire que ce profil est symétrique. Dans ce cas le centre de cisaillement se trouve sur l'axe horizontal de symétrie vers l'intérieur à une distance ξ_S par rapport au bord d'attaque. On trouve ces résultats pour les profils numéro 1 (NACA 0012), numéro 5 (NACA 62), numéro 6 (RAF 30), numéro 17 (NACA M1) d'après la table (IV.11).

Les valeurs de τ_{max}^+ et τ_{min}^- dépendent de S_x et S_y . Les profils d'ailes qui possèdent une contrainte maximale la plus grande possible c'est un profil qui est très sollicité. On trouve ce cas pour le profil NACA M1 (numéro 17). On trouve le cas contraire pour le profil d'aile WORTMANN FX2 (Numéro 16).

Si on applique les efforts tranchants S_x et S_y au centre de cisaillement présenté dans la table (IV.11), on n'aura pas dans ce cas le phénomène de torsion.

Table IV-10 Références des profils d'ailes ainsi que la valeur de la contrainte de cisaillement à l'ouverture.

N°	Profil d'aile	$\tau_{S,0}$ / t
1	NACA0012	4.425044
2	NACA 63-412	4.279588
3	RAE 2822	4.397287
4	NACA 0010-34	5.578217
5	NACA 62	4.472229
6	RAF 30	4.186719
7	E-385	4.646177
8	NACA 23009	5.845371
9	NACA 2412	4.357741
10	NASA AMES A-01	5.113134
11	AQUILA 9.3%	5.208383
12	AVISTAR	3.770983
13	CHEN	3.949288
14	FAUVEL 14%	3.752219
15	EIFFEL 385	3.742358
16	WORTMANN FX 2	2.693112
17	NACA M1	8.688636
18	ONERA OA209	5.719238
19	OAF 128	3.967910
20	ONERA NACA CAMBRE	4.711216
21	NASA LANGLEY RC-08 B3	6.772725
22	NASA LANGLEY RC-08 N1	6.794713
23	TRAINER 60	2.898697
24	TSAGI 8%	6.743970
25	TSAGI 12%	4.564709
26	EPPLER 520	3.462827
27	EPPLER 635	4.647121
28	LOCKHEED L-188 ROOT	3.814667
29	NACA 63-415	3.460841
30	NACA 63-210	5.188818
31	NACA 64-108	6.629517
32	NASA LANGLEY 64-012	4.443705
33	DOUGLAS LA203A	3.030211

Table IV-11 Contrainte de cisaillement
maximale ainsi que la position de centre de
cisaillement de quelques profils d'ailes.

N°	$\tau_{\max}^+ \times t$	$-\tau_{\min}^- \times t$	ξ_S	η_{S}
1	4.52045	5.97929	0.26271	0.00000
2	4.30303	6.16136	0.28294	-0.02562
3	4.39762	5.90114	0.29757	-0.00473
4	5.57882	6.66320	0.37108	-0.01610
5	4.57211	6.00023	0.27083	0.00000
6	4.29871	5.72350	0.25998	0.00000
7	5.37088	7.66141	0.48236	-0.05314
8	5.87193	8.16689	0.24929	-0.01736
9	4.35786	5.96744	0.26520	-0.02452
10	5.13433	6.76407	0.28596	-0.01637
11	5.30166	7.65885	0.25105	-0.04905
12	3.77942	4.92719	0.30335	-0.02657
13	3.95733	6.05067	0.21267	-0.05685
14	3.98370	5.65741	0.20043	-0.02052
15	3.83989	5.70550	0.29287	-0.06941
16	2.71198	3.33076	0.38476	-0.03429
17	8.71315	11.20230	0.29570	0.00000
18	5.78284	7.79007	0.27693	-0.01452
19	3.97155	6.30563	0.20024	-0.01207
20	4.77201	6.29418	0.27596	-0.01287
21	6.79972	8.29754	0.34428	-0.01264
22	6.83759	9.07613	0.29337	-0.01759
23	3.04167	4.19153	0.28811	-0.00042
24	6.78046	8.82729	0.29785	-0.01418
25	4.62205	5.95387	0.30307	-0.02083
26	3.66332	4.84449	0.25938	0.00000
27	4.81587	6.61000	0.24172	-0.02480
28	3.81757	5.00155	0.41267	-0.02385
29	3.48340	4.98324	0.27203	-0.02559
30	5.18989	7.41203	0.26124	-0.01302
31	6.64367	9.17045	0.26857	-0.00660
32	4.61766	6.15478	0.26559	0.00000
33	3.10454	4.56410	0.33329	-0.06192

Les valeurs dans les tables (IV.12), (VI.13) et (IV.14) sont obtenues pour une discrétisation de un million de points sur la frontière des profils d'ailes. L'épaisseur est prise égale à t/C=0.01.

La détermination de la position de centre de gravité est faite par rapport au repère de la définition de la section. Ce repère est lié avec le bord d'attaque de la section (profil d'aile).

Les profils d'ailes choisis dans cette thèse touchant toutes les compagnies aériennes. On a pris 32 profils d'ailes comme présente la table (IV.12).

Les profils qui possèdent $y_G=0.0$ veulent dire que ce profil est symétrique. Dans ce cas le produit d'inertie I_{xy} '=0.0. On trouve ces résultats pour les profils numéro 1 (NACA 0012), numéro 5 (NACA 62), numéro 6 (RAF 30), numéro 17 (NACA M1) d'après la table (IV.12).

Pour étudier le phénomène de traction et compression des ailes d'avions, les pales d'hélicoptère, les aubes des compresseurs et les turbines, on s'intéresse de connaitre l'aire de la section comme présente la table (IV.12).

Les résultats présentés dans les tables (IV.13) et (IV.14) sont très intéressants pour faire l'étude de différents sollicitations notamment la flexion, la torsion et le cisaillement des ailes et les autres configurations. Le moment d'inertie polaire a pour but de faire l'étude du phénomène de torsion des profils d'ailes.

On peut déterminer les moments d'inerties principaux et les directions principales en utilisant des formules analytiques [1], [2] et [9].

On remarque d'après la table (IV.12) que la longueur totale de la frontière de la section de profil d'aile est supérieure à 2 ce qui normale parce que la longueur de l'extrados et de l'intrados est supérieure chacune à la corde et comme on a pris C=1.0, alors L>2.0.

N°	Profil d'aile	L
1	NACA0012	2.03825
2	NACA 63-412	2.03501
3	RAE 2822	2.03248
4	NACA 0010-34	2.02186
5	NACA 62	2.02881
6	RAF 30	2.03817
7	E-385	2.03517
8	NACA 23009	2.02514
9	NACA 2412	2.03873
10	NASA AMES A-01	2.03588
11	AQUILA 9.3%	2.03428
12	AVISTAR	2.05797
13	CHEN	2.08620
14	FAUVEL 14%	2.07148
15	EIFFEL 385	2.06148
16	WORTMANN FX 2	2.07586

17	NACA M1	2.01229
18	ONERA OA209	2.03410
19	OAF 128	2.06191
20	ONERA NACA CAMBRE	2.03710
21	NASA LANGLEY RC-08 B3	2.02152
22	NASA LANGLEY RC-08 N1	2.01790
23	TRAINER 60	2.09936
24	TSAGI 8%	2.01616
25	TSAGI 12%	2.03415
26	EPPLER 520	2.04672
27	EPPLER 635	2.04054
28	LOCKHEED L-188 ROOT	2.07179
29	NACA 63-415	2.04986
30	NACA 63-210	2.02417
31	NACA 64-108	2.01535
32	NASA LANGLEY 64-012	2.03098

Table IV-12 : Références des profils

d'ailes ainsi que la longueur de la frontière

Table IV-13 Position du centre de gravité

des différentes sections

N°	$x_G \times 100$	$y_G \times 10^4$
1	0.49340	0.00000
2	0.49478	1.60289
3	0.49539	0.51818
4	0.49754	0.93921
5	0.49583	0.00000
6	0.49360	0.00000
7	0.49636	5.90277
8	0.49563	1.03463
9	0.49376	1.34775
10	0.49426	0.84872
11	0.49438	2.63017
12	0.49211	1.35097
13	0.48535	3.69782
14	0.48633	0.83439
15	0.49208	5.44272
16	0.49441	2.31396
17	0.49791	0.00000
18	0.49586	0.83588
19	0.49349	0.65637
20	0.49364	0.76599
21	0.49655	0.63442
22	0.49713	0.85068
23	0.49155	0.07908
24	0.49753	0.66013
25	0.49499	0.98948
26	0.49292	0.00000
27	0.49316	1.11762
28	0.49752	1.37637
29	0.49261	1.61551
30	0.49609	0.80499
31	0.49748	0.39923
32	0.49508	0.00000

Table IV-14 Moments d'inerties par

rapport aux axes centraux des différentes

sections

N°	$I_x' \times 10^4$	$I_y' \times 10^2$	I_{xy} ' $\times 10^4$	$I_P \times 10^2$
1	0.39844	0.67086	0.00000	.66988
2	0.42044	0.67153	1.60898	.67075
3	0.38489	0.67162	0.75016	.67048
4	0.30873	0.67137	0.93275	.66945
5	0.38642	0.67073	0.00000	.66960
6	0.43086	0.67093	0.00000	.67027
7	0.94184	0.67438	5.81126	.67871
8	0.25003	0.66929	0.77459	.66682
9	0.44313	0.67155	1.28221	.67100
10	0.33657	0.67172	0.63523	.67011
11	0.40557	0.67061	2.26226	.66968
12	0.62502	0.67696	1.24259	.67822
13	0.80768	0.67409	2.70144	.67723
14	0.53250	0.67130	0.26210	.67172
15	1.15286	0.67758	4.60350	.68406
16	1.26833	0.68675	2.63700	.69435
17	0.11078	0.66823	0.00000	.66435
18	0.25993	0.67429	0.59820	.67189
19	0.39349	0.68242	0.63079	.68134
20	0.38170	0.67084	0.56504	.66969
21	0.20735	0.66974	0.49859	.66682
22	0.19040	0.66892	0.58134	.66583
23	0.84857	0.69493	0.02327	.69834
24	0.19209	0.66893	0.46441	.66586
25	0.43170	0.67172	0.69856	.67106
26	0.59077	0.67259	0.00000	.67352
27	0.40742	0.67089	0.49283	.67000
28	0.60004	0.69513	1.39925	.69600
29	0.62151	0.67343	1.62418	.67467
30	0.26606	0.66953	0.81007	.66720
31	0.16533	0.66845	0.40007	.66511
32	0.36114	0.67037	0.00000	.66900

Conclusion

Conclusions

Le présent travail nous a permet de faire la détermination des caractéristiques géométriques des sections à paroi minces complexes ainsi que la distribution de la contrainte de cisaillement dans des tubes fermés à paroi mince mono caisson utilisées dans le domaine de l'aéronautique pour faire l'étude des problèmes de différentes sollicitations de l'élasticité.

On peut tirer à partir de ce travail les points suivants :

La discrétisation est faite par des segments de droites sur la frontière de la section.....

Des applications sont faites pour des valeurs de l'épaisseur de la section t/Cinférieure ou égale à 0.01.....

Des approximations sont faites aux formules des caractéristiques géométriques I_x ', I_y ' et I_{xy} ' pour faire des applications aux faibles valeurs de l'épaisseur de la section t/C<0.01.

Les problèmes de l'élasticité comme la traction, flexion simple ou déviée, flambement et torsion (Bredt Batho theory) peuvent être étudiées et appliquées si on connait les caractéristiques géométriques des sections à étudiées.

L'interpolation cubic spline est utilisée dans ce cas pour obtenir une fonction analytique de l'extrados et de l'intrados.

Les profils d'ailes étudiés touchant uniquement le domaine de subsonique incompressible et compressible ainsi que le domaine transsonique.

La discrétisation du domaine peut être fait avec n'importe quel nombre de segment. Des applications sont faites pour une discrétisation de un million de segments.

Une condensation des nœuds vers le bord d'attaque du profil d'aile est utilisées pour raffiner les points vers le bord d'attaque vu la courbure importante dans cette région.

Le moment d'inertie central I_y 'est très inférieure à I_x 'vu la dimension du profil suivant l'épaisseur (l'axe vertical) est très inférieure à la corde du profil (dimension suivant l'axe horizontal).

Les résultats présentés pour les profils d'ailes (Tables (IV.13) et (IV.14)) sont déterminés par utilisation des formules rapprochées (II.15), (II.16) et (II.17)

Conclusion

Pour étudier une section fermé, il faut faire une ouverture dans cette section dans n'importe quel endroit et d'étudier en premier la distribution de la contrainte dans la section ouverte.

Il faut déterminer la valeur de la contrainte de cisaillement au point de l'ouverture pour les sections fermées.

La contrainte de cisaillement est appliquée tangentiellement à la paroi.

Une grandeur très importante qu'on peut la considérée pour calculer la contrainte de cisaillement nommée par flux de cisaillement.

La section doit être définie dans le repère central de la section.

La détermination de centre de gravité de la section est nécessaire.

Le calcul des moments et le produit d'inerties doit être fait par rapport aux axes centraux.

La position du centre de cisaillement ne dépend pas de la valeur et la position de l'application de l'effort tranchant.

Perspective et travaux future :

Dans le même axe de recherche et comme perspective on peut proposer les deux travaux futurs suivants :

On peut faire l'étude de la distribution de la contrainte de cisaillement dans des sections mono-caissons avec effet des raidisseurs

On peut faire l'étude de la distribution de la contrainte de cisaillement dans des sections multi caissons. Des applications peuvent être fait pour trois caissons avec et sans effet des raidisseurs (booms). Dans ce cas on doit faire une ouverture dans chaque caisson, dont' il possède son propre contrainte $\tau_{S,0}$.

Annexe A :

Cubic-Spline :

A.1 L'aspect théorique :

La fonction spline-cubique donc est un polynôme de degré3. Pour un x donné, il faut donc d'abord déterminer dans quel intervalle $[x_j, x_{j+1}]$ se trouve x, puis calculer le polynôme de degré 3 auquel la spline est égale sur cet intervalle. On définit alors les fonctions splines par :

A2 Définition1

On appelle spline-cubique d'interpolation une fonction notée f(x), qui vérifie les propriétés suivantes :

F(x) est de classe $C^2(f(x)$ est deux fois continument dérivable);

 $F(x) \text{ coïncide sur chaque intervalle } [x_j, \, x_{j+1}] \text{ avec un polynome de degré inférieure ou}$ égal à 3 ;

 $G(x_j) = y_j$ quelque soit j=0,...,n

Principe on approche la courbe par morceaux (localement). On prend des polynômes de degré faible (3) pour éviter les oscillations

A.3 Définition2 :

On appelle spline cubique d'interpolation une fonction notée

g, qui vérifie les propriétés suivantes :

• $g \in C^2[a;b]$ (g est deux fois continûment dérivable),

• g coïncide sur chaque intervalle [xi; xi+1] avec un polynôme de degré inférieur ou égal à 3,

• g(xi) = yi pour $i = 0 \dots n$

Figure A linterpolation linéaire par morceaux

Dans bon nombre d'applications, il est impératif d'obtenir des courbes très régulières passant par un grand nombre de points. C'est le cas en conception assistée par ordinateur (CAO), où l'on cherche à représenter des objets aux formes lisses.

Nous avons déjà constaté que l'utilisation de polynômes de degré 'élevé est délicate et mène parfois à des oscillations de grande amplitude. Les polynômes de degré 'élevé sont alors peu adéquats.

On peut mesurer la régularité d'une fonction par le biais de ses d'dérivées. En effet, plus une fonction est différentiable, plus la courbe qui lui est associée est lisse et plus la fonction est régulière. Le problème, lorsque l'on utilise des polynômes de faible degré, provient du fait qu'il faut en utiliser plusieurs pour relier tous les points. C'est le cas de l'interpolation linéaire par morceaux, illustrée à la figure 1, qui consiste à relier chaque paire de points par un segment de droite. On utilise aussi l'appellation *splines linéaires*. On imagine assez mal comment une telle courbe pourrait permettre de faire la conception d'une carrosserie de voiture ou d'une aile d'avion. Il faut donc être plus prudent à la jonction des différents segments de courbe. La spline linéaire est continue mais n'est pas d'dérivable et nous allons maintenant montrer que l'on peut faire beaucoup mieux.

Les splines cubiques représentent un compromis très intéressant entre la régularité de la courbe obtenue et le degré des polynômes utilisés. Nous 'étudierons dans un premier temps les courbes de la forme y = f(x) et par la suite nous verrons comment aborder les courbes paramétrées.

Courbes de la forme y = f(x)

On considère donc, ici encore, (n + 1) points d'interpolation $(x_i, f(x_i))$, $i = 0, 1, 2, \cdots$, *n* par lesquels on souhaite faire passer une courbe autant de fois différentiable que possible.

Figure A 2 Spline-cubic : n polynômes de degré 3

Dans chaque intervalle $[x_i, x_{i+1}]$ (de longueur $h_i = x_{i+1}-x_i$), nous allons utiliser un polynôme de degré 3 de la forme :

$$p_i(x) = f_i + f'_i(x - x_i) + \frac{f''_i}{2!}(x - x_i)^2 + \frac{f'''_i}{3!}(x - x_i)^3$$
 pour $i = 0, 1, 2, \dots, n-1$

Et relier ces différents polynômes de façon `a ce que la courbe résultante soit deux fois différentiable. La situation est d'écrite à la figure 2 pour n = 4. C'est l'*interpolation par splines cubiques*. On remarque que chacun de ces polynômes se présente comme un développement de Taylor autour du point *xi*. Ce n'est nullement obligatoire mais cette forme permet d'interpréter plus facilement les coefficients à déterminer f_i , f_i , f_i "et f_i " qui sont alors respectivement les valeurs de la spline et de ses trois premières dérivées en x_i . on constate en effet facilement que $p_i(x_i) = f_i$, $p_i'(x_i) = f_i$ " et enfin p_i " (x_i) = f_i ".

Puisque l'on a (n + 1) points d'interpolation, il y a *n* intervalles [xi, xi+1] qui résultent en 4*n* coefficients inconnus $(f_i, f_i^{'}, f_i^{''}, et f_i^{'''} pour i = 0, 1, 2, ..., n-1)$.

Ces 4n coefficients doivent être déterminés le plus efficacement possible pour que la méthode reste attrayante. Comme nous allons le constater, une résolution astucieuse conduit à un système linéaire *tri-diagonal* de dimension (n+1) qui pourra être résolu par l'algorithme d'écrit à la section ? Nous allons en effet exprimer toutes ces inconnues en fonction des dérivées secondes f_i aux nœuds. On complète donc notre ensemble d'inconnues en introduisant la dérivée seconde f_n aux nœuds xn de sorte que nous aurons un grand total de 4n + 1 inconnues que nous réduirons en un système de dimension n + 1.

Voyons combien de conditions ou d'équations nous pouvons imposer `a ces 4n+1Coefficients. Ces équations proviennent des conditions de régularité que l'on souhaite imposer à la courbe résultante.

On définit tout d'abord que f_n ''est tout simplement la dérivée seconde de la spline en x_n . On a ainsi une première équation :

$$f_n'' = p_{n-1}''(x_n) = f_{n-1}'' + f_{n-1}'''(x_n - x_{n-1}) = f_{n-1}'' + f_{n-1}'''(x_n - x_{n-1}) = f_{n-1}''(x_n - x_{n-1$$

Qui peut aussi s'écrire :

$$f_{n-1}^{\prime\prime\prime} = \frac{f_n^{\prime\prime} - f_{n-1}^{\prime\prime}}{h_{n-1}}$$

A sa première extrémité, le polynôme $p_i(x)$ passe $(x_i, f(x_i))$, c'est-à-dire :

 $P_i(x_i) = f_i = f(x_i)$ pour i = 0, 1, 2, ..., n-1 ce qui nous donne *n* équations ;

– De même, on obtient *n* nouvelles équations en regardant à la deuxième extrémité de chaque sous-intervalle. Pour $i = 0, 1, 2, \dots, n - 1$:

$$p_i(x_{i+1}) = f(x_{i+1}) = f_i + f'_i(x_{i+1} - x_i) + \frac{f''_i}{2!}(x_{i+1} - x_i)^2 + \frac{f'''_i}{3!}(x_{i+1} - x_i)^3$$
$$= f(x_i) + f'_i h_i + \frac{f''_i}{2!}h_i^2 + \frac{f'''_i}{3!}h_i^3$$

On peut ainsi isoler f_i pour obtenir :

$$f'_{i} = \frac{f(x_{i+1}) - f(x_{i})}{h_{i}} - \frac{f''_{i}}{2!}h_{i} - \frac{f'''_{i}}{3!}h_{i}^{2} = f[x_{i}, x_{i+1}] - \frac{f''_{i}}{2!}h_{i} - \frac{f'''_{i}}{3!}h_{i}^{2}$$

On impose maintenant la continuité des dérivées secondes aux (n-1) nœuds intérieurs x_{i+1} , $i = 0, 1, \dots, n-2$, c'est-à-dire n-1 nouvelles équations

$$p_{i+1}''(x_{i+1}) = p_i''(x_{i+1})$$

ou encore :

$$f_{i+1}'' = f_i'' + f_i'''(x_{i+1} - x_i) = f_i'' + f_i'''h_i$$

et en isolant $f_i^{\prime\prime\prime}$, on trouve :

$$f_i''' = \frac{f_{i+1}'' - f_i''}{h_i}$$

Cette relation n'est *a priori* vraie que pour $i = 0, 1, \dots n - 2$. En vertu de

L'équation 2, elle est également vraie pour i = n - 1 de sorte que l'on peut remplacer dans l'équation 3 qui devient :

$$f'_{i} = f[x_{i}, x_{i+1}] - \frac{f''_{i}}{2!}h_{i} - \left(\frac{f''_{i+1} - f''_{i}}{3!}\right)h_{i}$$

et par la suite :

$$f'_{i} = f[x_{i}, x_{i+1}] - \frac{h_{i}f''_{i}}{3} - \frac{h_{i}f''_{i+1}}{6}$$

Il ne reste plus qu'à imposer la continuité de la dérivée première aux mêmes (n-1) points intérieurs ((n-1) nouvelles équations) :

$$p'_{i+1}(x_{i+1}) = p'_i(x_{i+1})$$

ou encore :

$$f_{i+1}' = f_i' + f_i'' h_i + \frac{f_i'''}{2} h_i^2$$

On peut ensuite utiliser les expressions 4 et 5 pour tout exprimer en fonction des Inconnues $f_i^{\prime\prime}$. On a alors :

$$f[x_{i+1}, x_{i+2}] - \frac{h_{i+1}f_{i+1}''}{3} - \frac{h_{i+1}f_{i+2}''}{6} = f[x_i, x_{i+1}] - \frac{h_i f_i''}{3} - \frac{h_i f_{i+1}''}{6} + f_i'' h_i + \left(\frac{f_{i+1}'' - f_i''}{2}\right) h_i$$

A.4 Conclusion :

les splines d'interpolations cubique (degré 3) sont importantes car

- 1) Ce sont les splines de plus petit degré qui permettent une approximation.
- 2) Elles ont de bonnes propriétés de régularité.

Les splines d'interpolation présente deux inconvénients.

1) la spline peut-elle aussi devenir oscillante si les dérivées de la fonction à interpoler deviennent trop grandes (>>1)

2) La spline dépend du choix du système de coordonnées, donc elle ne possède pas une propriété d'invariance géométrique.

3) Ceci peut être gênant si la spline est utilisée pour présenter graphiquement une courbe qui n'est pas un graphique d'une fonction (par exemple une ellipse). Une solution vient du fait de représenter la spline de manière paramétrique (coordonnées x et y fonction d'un paramètre t).

Annexe B :

Data des profils d'ailes :

B.1.Les points de définition de la géométrie du profil d'aile EPPLER 1210

(x) (y) (x) (y) 000.0000 000.0000 000.0000 000.0000 000.0000 000.07509 002.0632 001.0270 -01.94770 -01.10466 000.07509 002.0532 001.02570 -01.94770 -01.94770 001.67402 004.05828 002.3236 -02.86877 -03.266477 004.59818 006.94713 006.31962 -03.37614 -008.57626 008.30502 009.05362 -03.77614 008.57626 008.30527 009.05362 -03.77614 -03.22874 -01.75044 -03.22874 014.37745 011.55061 020.40367 -01.628099 -02.23774 -03.22874 017.59049 012.232541 020.40367 -03.22874 -03.999 -02.10575 024.91054 012.88055 013.3133 -02.49726 -03.999 -02.10584 033.33054 012.267325 030.13373 -02.49726 -0.00584 -03.23274 033.3054 012.65160 046.65383 -01.3999 -03.5006 -06.2376	Extrados			Intrados						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	()	x)	(y)					(x)	(y)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	000.0	0000	000.0000					000.00000	000.0000	
00075094 002.60532 001.02570 -01.94770 002.90010 005.51821 004.05832 002.32366 +02.68977 002.90010 005.51821 004.05853 -03.26487 004.59818 006.94713 006.31962 -03.63399 006.57526 008.30502 0090.005362 -03.77614 008.87533 009.5560 012.32563 -03.71431 011.47539 010.65476 016.12764 +03.51551 014.37745 011.5001 020.40367 -03.22874 017.59049 012.22544 025.00370 +02.88099 021.10452 012.67325 033.1373 -02.288099 021.10454 012.28605 035.45476 -02.09555 028.99455 012.87383 040.98679 -01.69584 042.99555 012.87383 040.98679 -01.69584 042.99555 012.87383 040.98679 -01.69584 042.9876 047.52148 010.89283 063.70991 -00.35066 052.51344 010.0266 069.15894 -00.12235 053.8185 -00.95045 07.55740 009.07229 074.36395 00.002377 00.2487 07.55740 009.07229 074.36395 00.002377 00.2487 07.55740 009.07229 074.36395 00.002377 00.2487 07.55740 009.07229 074.36395 00.002377 00.2487 07.55120 005.02424 091.37199 00.25146 081.42418 004.10200 094.37100 00.2487 07.240927 006.0849 087.82199 00.26765 008.45104 003.28879 096.75700 00.02371 009.225708 001.84942 099.62800 00.03002 094.94066 001.27528 009.03284 094.57010 00.02730 083.4511 002.559 098.53100 00.0730 098.5909 096.75700 00.0280 00.0208 092.25708 001.84942 099.62800 00.03002 094.94066 001.27528 000.0298 000.20730 084.54514 003.28879 096.75700 00.02816 099.67500 00.02816 092.25708 001.84942 099.62800 00.03002 094.94066 001.27528 100.00000 -000.0000 000.0000 00.00000 00.00000 00.00000 000.00000 00.0	000.1	9187	001.20735					000.24474	-01.10466	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	000.7	5094	002.60532					001.02570	-01.94770	
002.96010 005.51821 004.08363 -03.26487 004.08363 -03.26487 004.59818 006.94713 006.51962 -03.63399 006.57626 008.30502 0090.05362 -03.77614 008.87533 009.55690 012.32563 -03.71431 011.47539 010.65476 016.12764 -03.51551 014.37745 011.55061 020.40367 -03.22874 017.59049 012.22544 025.09370 -02.88099 021.10452 012.67325 030.1373 -02.289099 021.10452 012.67325 033.45476 -02.09555 028.99455 012.87383 040.98679 -01.69584 033.33054 012.65160 046.65383 -01.30914 037.88753 012.23225 053.38185 -00.95045 012.23247 017.59049 012.2325 053.38185 -00.95045 012.23215 053.38185 -00.95045 012.23215 053.38185 -00.95045 012.23216 009.0229 073.3695 00.005237 062.59636 008.06202 079.23397 00.17411 067.56831 007.03075 088.76198 00.22476 09.07229 074.3595 00.005237 062.59636 008.06202 079.25397 00.17411 067.56831 007.03075 088.76198 00.22476 09.025765 077.05122 005.0849 088.76198 00.22476 09.025765 077.05122 005.0849 088.76198 00.22476 09.03300 602.59636 008.06202 079.25397 00.17411 067.56831 007.03075 088.76198 00.22476 09.03370 00.25765 077.05122 005.0849 088.76198 00.2487 00.0300 602.59636 008.06202 079.25397 00.17411 067.56831 001.0317 088.0502 079.25397 00.15117 089.05011 002.50659 096.5700 00.015317 089.0501 00.02575 098.53400 00.020730 085.45914 003.25879 096.57610 00.00000	001.6	7402	004.05828					002 32366	-02.68977	
004.59818 006.94713 006.51962 - 03.63399 006.57626 008.30502 009.05362 - 03.77614 008.8753 009.55690 012.32563 - 03.7143 1 011.47539 010.65476 016.12764 - 03.51551 014.37745 011.55061 020.00367 - 03.22874 017.59049 012.22544 025.09370 - 02.88999 021.10452 012.67325 030.13373 - 02.49726 024.91054 012.88605 035.45476 - 02.09555 028.99455 012.87383 040.98679 - 01.69584 033.3054 012.65160 046.65383 - 01.30914 037.88753 012.23235 052.38185 - 00.95045 014.63735 012.23235 052.38185 - 00.95045 042.63151 011.63710 058.09288 - 00.62876 047.52148 010.89283 063.70991 - 00.35006 052.51344 010.02556 069.15894 - 00.12235 057.55740 009.07229 074.36395 00.05237 062.59636 008.06202 079.25397 00.17411 067.5681 007.03075 083.76198 002.4487 077.40927 006.00849 087.82199 00.26765 0770.0025166 084.4218 004.10200 094.37100 0.020730 085.45914 003.25879 096.76700 00.15317 089.0901 002.30559 098.53400 00.09208 099.25708 001.84942 099.63701 00.020730 086.45914 003.25879 096.76700 00.15317 089.0901 002.30559 098.53400 00.09208 099.25708 001.84942 099.63701 00.020730 00.0730 087.85194 003.25879 096.76700 00.15317 089.0901 002.30559 098.53400 00.09208 099.25708 001.84942 099.63701 00.020730 00.76216 099.63701 00.03002 099.63701 00.00000 00.0000 00.0000 00.0000 00.0000 00.0000 00.00000 00000 000000	002.9	6010	005.51821					004 08363	-03 26487	
$006.57626 008.30502 009.05362 -03.77614 \\ 008.87533 009.55690 012.32563 -03.77614 \\ 014.37745 011.55061 02.403.51551 \\ 014.37745 011.55061 02.403.677 016.12764 -03.51551 \\ 014.37745 011.55061 02.40367 -03.22874 \\ 017.59049 012.22544 025.09370 -0.28099 \\ 021.10452 012.67325 030.13373 -02.49726 \\ 024.91054 012.88605 035.43476 -02.09555 \\ 028.99455 012.877833 040.98679 -01.69584 \\ 033.33054 012.65160 044.65583 040.98679 -01.69584 \\ 047.52148 010.29253 052.38185 -00.562876 \\ 047.52148 010.02656 069.15894 -00.12325 \\ 057.55740 009.07229 074.36395 00.05237 \\ 062.59636 008.06202 079.25397 00.17411 \\ 067.56831 007.03075 083.76198 00.24487 \\ 072.40927 006.0849 091.37599 00.25165 \\ 077.05122 005.02424 091.37599 00.25166 \\ 091.37599 00.25164 003.25879 096.76700 00.15317 \\ 089.69011 002.50659 096.76700 00.15317 \\ 089.69011 002.50659 096.76700 00.15317 \\ 089.69011 002.50659 096.76700 00.15317 \\ 089.69011 002.50659 096.76700 00.015317 \\ 089.60602 000.3308 0099.63701 000.07002 \\ 100.0000 -000.0000 \\ 097.01012 000.76216 099.6280 00.003002 \\ 099.63701 000.7702 \\ 100.0000 -000.0000 \\ 000.0000 -000.0000 \\ 000000 0000 $	004.5	9818	006.94713					006 31962	-03 63399	
008.87533 009.55690 012.32563 0.371431 011.47539 010.65476 016.12764 0.351551 014.37745 011.55061 020.40367 0.3.22874 017.9049 012.22544 025.09370 0.2.88099 021.10452 012.67325 030.13373 0.2.49726 024.91054 012.88605 035.45476 0.20.09555 028.99455 012.87383 040.98679 0.16.9584 033.33054 012.65160 046.65383 0.1.309144 037.88753 012.23235 052.38185 0.00.950145 042.63151 011.63710 058.09288 0.00.2376 047.52144 010.02656 069.15894 0.0.12235 057.55740 009.07229 074.36395 00.05237 062.59636 008.0620 079.25397 00.17411 1067.56831 007.03075 083.76198 00.24487 077.240927 006.00849 087.82199 00.25765 077.05122 005.02542 091.37599 00.25146 081.42418 004.10200 094.37100 00.20730 085.45914 003.25879 096.57610 00.15317 089.0001 002.20559 098.53400 00.09208 099.63701 00.00000 0.00000 097.01403 000.76216 099.63701 00.03002 094.90406 001.27528 100.00000 0.000000	006.5	762.6	008.30502					000.05362	03.05577	
011.47539 010.65476 016.12764 0.351551 014.37745 011.55061 020.40367 0.32.82099 021.10452 012.67325 030.13373 0-2.88099 021.10452 012.67325 030.13373 0-2.89099 021.10452 012.67325 035.45476 0-20.90555 028.9945 012.87383 040.98679 0.1.69584 033.33054 012.65160 0446.65383 040.98679 0.1.69584 0.0.20975 028.9945 012.37510 010.3710 058.09288 0.0.62876 047.52148 010.89283 063.70991 -00.35006 052.51344 010.02656 069.15894 -00.12235 057.55740 009.07229 074.36395 00.05237 062.59636 008.06202 079.25397 00.17411 067.56831 007.03075 083.76198 00.24487 072.40927 006.00849 087.82199 00.25765 077.05122 005.02424 091.37599 00.25146 081.42418 004.1020 094.37100 0.020730 085.45914 003.25879 096.76700 00.15317 089.09011 002.5065 909.67670 00.01.5317 089.09011 002.5065 909.67670 00.01.5317 089.09011 002.50859 909.63300 00.09208 092.25708 001.84942 099.62800 00.03002 094.93100 00.07902 100.00000 -000.00000 (Fig. 5) profil dalle EPPLEH 1210	008.8	7533	009.55690					012 32563	-03.77014	
014.37745 011.55061 020.40367 - 03.22874 017.59049 012.22544 025.09370 - 02.88099 021.10452 012.67325 030.13373 - 02.49726 024.91054 012.88605 035.45476 - 02.09555 028.99455 012.87383 040.98679 - 01.69584 033.3054 012.65160 046.653383 - 01.30914 037.88753 012.23235 052.38185 - 00.95045 042.63151 011.63710 058.09288 - 00.62876 047.52148 010.02656 069.15894 - 00.12235 057.55740 009.07229 074.36395 00.02527 062.59636 008.06202 079.25397 00.17411 067.56831 007.03075 083.76198 00.2487 072.40927 006.00849 083.76198 00.2487 072.40927 006.00849 087.82199 00.25146 081.42418 004.10200 094.37100 00.20730 085.45914 003.25879 096.76700 00.15317 089.09011 002.50659 096.55340 00.020730 094.37100 00.20730 094.37100 00.20730 095.05414 032.8579 096.76700 00.15317 089.09011 002.50659 096.5340 00.00208 099.3701 000.07902 100.00000 -000.00000 097.01403 000.76216 099.62800 00.03302 094.37100 00.20730 094.37100 00.20730 094.37100 00.20730 094.37100 00.20730 094.37100 00.20730 094.37100 00.20730 094.37100 00.20730 094.37100 00.020730 094.37100 00.20730 095.5340 00.009208 099.3701 000.07902 100.00000 099.62800 00.03302 094.37100 00.020730 094.37100 00.020730 094.37100 00.20730 094.37100 00.020730 094.37100 00.20730 094.37100 00.20730 094.37100 00.20730 094.37100 00.020730 094.37100 00.020730 094.37100 00.020730 094.37100 00.020730 094.37100 00.020730 094.37100 00.020730 094.37100 00.00000 097.01403 000.76216 099.62800 00.03302 094.3710 00.00000 097.01403 000.76216 098.5340 00.00000 00.00000 097.01403 000.76216 098.5340 00.00000 00.00000 097.01403 000.76216 098.6540 00.03302 094.3710 00.00000 00.00000 00.00000 097.01403 000.76216 098.6540 00.33008 099.6770 00.00000 00.00000 00.00000 097.01403 000.76216 098.5400 0.00000 00.00000 000000 097.01403 000.76216 098.5400 0.00000 00.00000 00.00000 000000 097.01403 000.76216 000.5000 00.00000 00.00000 00.00000 000000 000000	011.4	7539	010.65476					016 12764	-03.71431	
017.59049 012.22544 002.60370 - 02.88099 021.10452 012.67325 030.13373 - 02.49726 024.91054 012.88005 035.45476 - 02.9555 028.99455 012.87383 040.98679 - 01.69584 033.33054 012.65160 046.65383 - 01.30914 037.88753 012.23235 052.38185 - 00.95045 042.63151 011.63710 0586 0288 - 00.62876 047.52148 010.89283 063.70991 - 00.32006 052.51344 010.02656 0691.5894 - 0.012235 057.55740 099.07229 074.36395 00.02237 062.5863 007.03075 083.76198 00.2487 072.40927 006.0849 067.82199 00.26765 077.05122 005.02424 091.37599 00.25146 081.42418 004.10200 094.37100 00.20730 085.45914 003.25879 096.76700 00.15317 089.09011 002.50659 094.53400 00.09208 099.63701 000.3908 099.63701 000.7902 100.0000 000000 000000 000000 000000 000000	014 3	7745	011 55061					020 40267	-03.31331	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	017.5	9049	012.22544					020.40307	-03.22874	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	021.1	0452	012.67325					020.12272	-02.88099	
$\begin{array}{c} 0.28, 99455 \\ 012, 87383 \\ 033, 33054 \\ 012, 65160 \\ 046, 65383 \\ 012, 2325 \\ 012, $	024.9	1054	012 88605					030.13373	-02.49720	
02.0 + 0.0	028.9	9455	012 87383					033.43470	-02.09555	
0.20, 0.20	033.3	3054	012 65160					040.98079	-01.09384	
0.22, 51151 011.63710 052.58183 -00.02876 047.52148 010.89283 063.70991 -00.35006 052.51344 010.02656 069.15894 -00.12235 057.55740 009.07229 074.36395 00.05237 062.59636 008.06202 079.25397 00.17411 067.56831 007.03075 083.76198 00.24487 072.40927 006.00849 087.82199 00.25146 081.42418 004.10200 094.37100 00.20730 085.45914 003.25879 096.76700 00.15317 089.09011 002.250659 098.53400 00.09208 092.25708 001.84942 099.63701 00.076216 099.63001 000.76216 099.60602 000.33908 099.63701 000.076216 099.63701 000.072012 100.0000 00.0000 00.0000 00.00000 00.0000 00	037.8	8753	012 23235					040.03383	-01.30914	
0.25, 0.14, 0.16	042.6	3151	011 63710					052.38185	-00.95045	
$0.07.2510 \\ 0.05.251344 010.02656 \\ 0.09107229 \\ 0.0057.55740 009.07229 \\ 0.0259636 008.06202 \\ 0.072.40927 006.00849 \\ 0.0250651 007.03075 \\ 0.03765831 007.03075 \\ 0.07.56831 007.03075 \\ 0.07.56831 007.03075 \\ 0.07.5812 005.02424 \\ 0.01.2752 \\ 0.00 0.0250659 \\ 0.00 0.0250659 \\ 0.00 0.033008 \\ 0.099.63701 000.07902 \\ 100.0000 0 \\ 0.0000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.0000 \\ 0.00$	042.0	2148	010 89283					058.09288	-00.62876	
$02.51344 - 00.12235 \\ 005.755740 - 009.07229 \\ 074.36395 - 00.05237 \\ 00.05237 \\ 072.40927 - 006.00849 \\ 005.02424 \\ 091.37599 - 00.25146 \\ 081.42418 - 004.10200 \\ 094.37100 - 00.20730 \\ 008.45914 - 003.25879 \\ 008.54591 + 003.25879 \\ 009.67670 - 00.15317 \\ 089.09011 - 002.50659 \\ 099.62800 - 000.3002 \\ 094.90406 - 001.27528 \\ 100.0000 - 000.0000 \\ 000.000 \\ 000.000 \\ 000.000 \\ 000.0000 \\ 000.000 \\ 000.0000 \\ 000$	052.5	1344	010.02656					063.70991	-00.35006	
0.001, 0.0	052.5	5740	000 07220					069.15894	-00.12235	
$0.25.001 0.00173075 \\ 0.07.03075 \\ 0.083.76198 00.24487 \\ 0.024487 \\ 0.02070 \\ 0.0017240927 006.00849 \\ 0.07.015122 005.02424 \\ 0.01.75192 00.26765 \\ 0.01.42418 004.10200 \\ 0.020730 \\ 0.020730 \\ 0.025059 \\ 0.0255708 001.84942 \\ 0.092.55708 001.84942 \\ 0.092.55708 001.84942 \\ 0.092.55708 001.84942 \\ 0.092.55708 001.84942 \\ 0.092.55708 001.84942 \\ 0.099.62800 00.03002 \\ 0.00000 0.00000 \\ 0.000000 000.0000 \\ 0.000000 00000 \\ 0.000000 00000 \\ 0.000000 00000 \\ 0.000000 00000 \\ 0.000000 00000 \\ 0.000000 00000 \\ 0.000000 00000 \\ 0.000000 00000 \\ 0.000000 00000 \\ 0.00000 00000 \\ 0.00000 000 $	057.5	0636	009.07229					0/4.36395	00.05237	
0.000 - 0.0000 - 0.0	067.5	6821	007.0202					0/9.25397	00.1/411	
072.40227 077.40327 077.05122 005.02424 091.37599 00.25146 094.37100 00.20730 094.37100 00.20730 094.37400 00.00002 094.53400 00.09208 092.25708 001.24528 100.0000 00.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000	007.3	0027	007.03073					083.76198	00.24487	
0.00 - 0.00 -	072.4	5122	005.00049					087.82199	00.26765	
081-2213 085-45914 003.25879 096.76700 001.15317 098.09011 002.0730 098.53400 00.09208 099.62800 00.0000 00.0000 00.000000 00.000000 00.000000 00.00000000	077.0	0122 0419	003.02424					091.37599	00.25146	
083.4.914 003.2075 096.76700 00.15317 089.09011 002.50659 098.53400 00.09208 092.25708 001.84942 099.62800 00.03002 094.90406 001.27528 100.00000 098.66602 000.33908 099.63701 000.07902 100.00000 -000.00000 0.	001.4	-2410 5014	004.10200					094.3/100	00.20/30	
039.0001 002.0003 092.25708 001.84942 099.62800 00.03002 094.90406 001.27528 100.00000 00.00000 098.60602 000.33908 099.63701 000.07902 100.00000 -000.00000 0.00 -000.00000 0.00 -000.00000 -000.0000 0.00 -000.0000 -000.0000 -000.0000 -000.0000 -000.0000 -000.0000 -000.0000 -000.00000 -000.00000 -000.0000 -000.0000 -000.0000 -000.0000 -000.00000 -000.00000 -000.00000 -000.000 -000.0000 -000.000 -000.000 -000.0000 -000.0000 -000.000 -000.0000 -000.0000 -000.000 -000.0000 -000.000 -000.0000 -000.0000 -000.000 -0000 -000.000 -000.000 -000.000 -000.000 -000.000 -000.000 -00	080.4	0011	003.23879					096.76700	00.15317	
0.92.25708 001.84942 099.62800 00.03002 094.90406 001.27528 100.00000 00.0000000 00.00000 00.000000 00.000000 00.000000 00.00000	089.0	5700	002.30639					098.53400	00.09208	
094.90406 001.27328 097.01403 000.76216 098.60602 000.33908 099.63701 000.07902 100.00000 -000.00000 0.20 0.20 0.20 0.00 0.20 0.00 0.20 0.00 0.00 0.00000 00.00000 0.00000 0.00000 00.00000 0.000000 0.00000 0.000000 0.00000 0.00000 0.00000 0.000000 0.00000 0.000000 0.00000000	092.2	5708	001.84942					099.62800	00.03002	
097.01403 000.76210 098.60602 000.33908 099.63701 000.07902 100.00000 -000.00000 -0.20 -	094.9	1402	001.27328					100.00000	00.00000	
0.20 0.20 0.20 0.00	097.0	0602	000.70210							
$\begin{array}{c} 0.20 \\ 0.20 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.20 \\ 0.00 \\ 0.00 \\ 0.20 \\ 0.00 \\ 0.20 \\ 0.40 \\ 0.60 \\ 0.60 \\ 0.80 \\ 1.00 \\ (Fig. 5) profil d'alle EPPLER 1210 \\ \end{array}$	098.0	2701	000.33908							
0.20 0.20 0.00	100.0	0000	000.07902							
0.20 0.00 0.00 0.20 0.00 0.20 0.00 0.20 0.40 0.60 0.80 1.00 (Fig. 5) profil d'aile EPPLER 1210	100.0	0000	-000.00000							
0.20 0.00 0.00 0.00 0.00 0.20 0.00 0.20 0.40 0.60 0.80 1.00 (Fig. 5) profil d'aile EPPLER 1210										
0.20 0.00 -0.2										
0.20 0.00 -0.2										
0.20 0.00 0.00 0.20 0.20 0.20 0.20 0.40 0.60 0.80 1.00 (Fig. 5) profil d'aile EPPLER 1210										
0.20 0.00 0.00 0.20 0.20 0.20 0.20 0.40 0.60 0.80 1.00 (Fig. 5) profil d'aile EPPLER 1210										
0.20 0.00 -0.2										
0.00 -0.20 -0.	0.20									
0.00 -0.20 -0.										
0.00 -0.20 -0.			· · · · · ·	· · · · · · ·	· · ·	 				
0.00 -0.20 -0.		· · ··································						· · · · · · ·		
0.00 -0.20 -0.	· · · · /				•					
-0.20	0.00							· · · · ·		
-0.20		· · · ·	· · · · ·	· · · · · · · · ·						
-0.20	· · · · · ·					· · ·	· · · ·			· · · ·
-0.20	.	• •								
-0.20					· · · ·					
-0.20						· · · _·			· · · · · · ·	· · · · <u>-</u> ·
0.00 0.20 0.40 0.60 0.80 1.00 (Fig. 5) profil d'aile EPPLER 1210	-0.20									
(Fig. 5) profil d'aile EPPLER 1210	0.00		0.20		0.40		0.60		0.80	1.00
				(Fig	. 5) pro	fil d'aile	EPPLER	1210		
B.2.Les points de définition de la géométrie du profil d'aile AQUILA 9.3% Extrados Intrados

	(x)	(y)				(x)	(y)	
	000.000	000.000				000.000	000.000	
	000.333	000.929				000.333	-000.572	
	000.667	001.377				000.667	-000.725	
	001.000	001.739				001.000	-000.810	
	001.333	002.052				001.333	-000.862	
	002.000	002.587				002.000	-000.917	
	002.667	003.045				002.667	-000.940	
	003.333	003.454				003.333	-000.947	
	004.667	004.171				004.667	-000.939	
	006.000	004.786				006.000	-000.920	
	009.333	006.012				009.333	-000.866	
	012.667	006.914				012.667	-000.821	
	016.000	007.577				016.000	-000.787	
	019 333	008.055				019 333	-000 758	
	023 333	008 438				023 333	-000 724	
	025.555	008.655				027 333	-000.688	
	021.333	008.055				031 333	-000.000	
	034 667	008.735				034 667	-000.050	
	020 222	008.710				030 333	000.010	
	039.333	008.331				039.333	-000.574	
	054 667	008.203				044.000	-000.330	
	054.007	007.214				049.333	-000.480	
	065 222	005.330				054.007	-000.450	
	003.333	003.708				065.222	-000.380	
	076.000	004.945				003.555	-000.330	
	0/6.000	004.077				0/0.66/	-000.279	
	082.000	003.065				076.000	-000.229	
	087.333	002.150				082.000	-000.173	
	092.667	001.240				087.333	-000.122	
	098.000	000.340				092.667	-000.070	
	098.667	000.228				098.000	-000.019	
	099.000	000.171				098.667	-000.013	
	099.333	000.114				099.000	-000.009	
	099.667	000.057				099.333	-000.006	
	100.000	000.000				099.667	-000.003	
						100.000	000.000	
					· ·		· ·	
•								
0.10			· · · · · · · ·	· · · · · ·				
	 					· · · · ·		
. –								
	·/· · · ·						· · ·	· · · · · · · · · · · ·
0.00 —	(<u> </u>		· · · · ·	· · · ·	<u> </u>	· · · · ·	· · ·	<u> </u>
· · ·_								
-0.10 -	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·		n · · · · · · · · · · · · · · · · · · ·	· · · · ·		
	no		20	0.40		0	0.80	
			(Fig	. 6) profil d'a		9.3%	0.00	1.00
				- /				

B.3.Les points de définition de la géométrie du profil d'aile AVISTAR

Extr	rados	Intr	rados
(x)	(y)	(x)	(y)
000.0000	-000.1520	000.0000	-000.1520
000.0980	000.5578	000.0980	-000.8736
000.5480	001.3840	000.5480	-001.7535
001.3380	002.0385	001.3380	-002.3921
02.43300	002.6683	002.4330	-002.7806
003.8110	003.3807	003.8110	-003.0357
005.4680	004.1953	005.4680	-003.2981
007.3950	005.0589	007.3950	-003.6103
009.5760	005.9061	009.5760	-003.9323
011.9990	006.6906	011.9990	-004.2246
014.6480	007.3768	014.6480	-004.4736
017.5040	007.9484	017.5040	-004.6861
020.5490	008.4131	020.5490	-004.8689
023.7600	008.7896	023.7600	-005.0081
027.1200	009.0928	027.1200	-005.0919
030.6090	009.3163	030.6090	-005.1202
034.2040	009.4266	034.2040	-005.0953
037.8870	009.3994	037.8870	-005.0210
041.6380	009.2502	041.6380	-004.9040
045.4350	009.0125	045.4350	-004.7554
049.2650	008.7118	049.2650	-004.5845
053.0990	008.3592	053.0990	-004.3925
056.9370	007.9493	056.9370	-004.1697
060.7780	007.4739	060.7780	-003.9055
064.5940	006.9329	064.5940	-003.6034
068.3590	006.3296	068.3590	-003.2834
072.0430	005.6761	072.0430	-002.9673
075.6160	004.9972	075.6160	-002.6692
079.0480	004.3213	079.0480	-002.3935
082.3090	003.6724	082.3090	-002.1300
085.3700	003.0674	085.3700	-001.8605
088.2020	002.5157	088.2020	-001.5858
090.7750	002.0211	090.7750	-001.3368
093.0640	001.5819	093.0640	-001.1525
095.0440	001.1966	095.0440	-001.0375
096.6980	000.8656	096.6980	-000.9412
098.0370	000.5878	098.0370	-000.7926
099.0700	000.3654	099.0700	-000.5555
099.7540	000.2134	099.7540	-000.2893
100.0000	000.1577	100.0000	-000.1634

B.4.Les points de définition de la géométrie du profil d'aile BOENIG 737 OUTBOARD

Extr	rados	Intr	ados
(x)	(y)	(x)	(y)
000.0000	000.0000	000.0000	000.0000
000.2500	000.7000	000.2500	-000.5100
000.5000	001.0000	000.5000	-000.6600
000.7500	001.2300	000.7500	-000.7700
001.2500	001.6000	001.2500	-000.9100
002.5000	002.3200	002.5000	-001.1600
005.0000	003.3500	005.0000	-001.4800
007.5000	004.1000	007.5000	-001.7400
010.0000	004.6800	010.0000	-002.0000
015.0000	005.4900	015.0000	-002.4600
020.0000	006.0600	020.0000	-002.9100
025.0000	006.4300	025.0000	-003.3100
030.0000	006.6200	030.0000	-003.5900
035.0000	006.7800	035.0000	-003.8800
040.0000	006.7800	040.0000	-004.0200
045.0000	006.6800	045.0000	-004.0400
050.0000	006.4600	050.0000	-003.9300
055.0000	006.1100	055.0000	-003.7100
060.0000	005.6300	060.0000	-003.3900
070.0000	004.3700	070.0000	-002.5700
080.0000	002.9100	080.0000	-001.7200
090.0000	001.4500	090.0000	-000.8600
100.0000	000.0800	100.0000	-000.0800

		•	•	·	·	•	·	·	·	·	·	·	·	·	·	·	·	·		•		•		•	•	·	·	•	•	·	·	·	·	•	•	• •	• •	•	·	·	·	·	·	·	•	• •	•	•
• •					•				•		•																								•			•				•				•		
• • •		•	1	·		•	1	•		•		·		·		·				•		•		•		•		•			•	•	•	•	•	• •	•	•	·		·	•	·	•	•	• •	•	•
			•		•		•		•				·		•		•		•		•						•				•		•					•				·		•		•	•	
		•		•	•			·		•		·				·				•								•				•				• •					•	•	•			• •		•
• •									•																										•							•				•	•	
			1									·				·																				• •										• •		
• •					•				•																		•								•							•					•	
		•		•	•	•		•	•	•		•		•		•				•				•		•		•	•	•	•	•	•		•	• •	• •	•	•		•	•	•	•	•	• •	•	•
							÷																				Ċ																			· 		
																													÷																			
0.10	_	1																																														
																_		_										_																				
		-			مد			-	-																						÷		÷	<u> </u>														
.0.00			~	_																																				· ·	~~~	- <u>-</u>				<u> </u>		
0.00			÷	÷																													•							<u> </u>	_ _						۳.	
		_												_				_	•		<u> </u>						-																					
		·					÷			·	÷	·	÷			·		·																	•		•										•	
-0.10	-	+			•		Т				•	Г	•		•				•																·				<u> </u>				—				٦·	
		. !		·	·	·	÷	·	·	·		I.	·	÷	·	·	·	÷	•	·							•	·	•			·	÷	•	•	• •	•		۱.				·		•	• •	1.	•
• •	().(00		•		·		·		0.	20			·		•		•		0.4	10			•		·		· ().6	0		·					0.	80							- 1	.00	
		•	•	·	·	·	•	·	•	·	·	·	·	·(Fi	g.	8) p	ro	ofi	l c	l'a	ile	B	0	Ell	N	G	73	7	Οl	JT	B	ЭA	١R	Ð	• •	•	·		·	·	·	•	•	• •		•
																-	1																		•											•		

Annexes

B.5.Les points de définition de la géométrie du profil d'aile G III BL288

Extr	ados	Intra	ados
(x)	(y)	(x)	(y)
000.00000	000.0000	000.0000	000.0000
000.49350	000.98825	000.50474	-00.72068
000.74211	001.19888	000.75564	-00.85703
001.23994	001.52916	001.25688	-01.04573
002.48617	002.10136	002.50848	-01.28949
004.98112	002.86877	005.01009	-01.53403
007.47748	003.42120	007.51145	-01.74157
009.97454	003.86763	010.01261	-01.91811
014.97013	004.53650	015.01449	-02.20420
019.96719	004.98338	020.01596	-02.42929
024.96531	005.26727	025.01720	-02.61838
029.96428	005.42316	030.01827	-02.78248
034.96395	005.47206	035.01922	-02.92757
039.96419	005.43596	040.01981	-03.01667
044.96505	005.30386	045.01999	-03.04576
049.96629	005.11477	050.01976	-03.01187
054.96811	004.83669	055.01905	-02.90397
059.97048	004.47760	060.01796	-02.73808
064.97335	004.03952	065.01640	-02.50319
069.97651	003.55644	070.01445	-02.20730
074.98010	003.01037	075.01201	-01.83942
079.98395	002.42629	080.00961	01.47553
084.98790	001.82422	085.00721	01.11065
089.99184	001.22215	090.00480	-00.74677
094.99581	000.62007	095.00241	-00.38288
099.99976	000.01800	100.00000	-00.01800

•		·		·			·		·		·					·		·		·							·		•			·		1					·				
• •	•	·	·	·	• •	•	·	·	·	·	·	·	• •		•	·	·		·	·	•	•		•	•	·	·	·	•	• •	·	·	·	•	•	• •		•	·		•	• •	
•		·		·			·		·		·					·		·		·							·		•			·		1					·				
• •	•	•	·	·	• •	•	·	·	·	·	·	·	• •	•	•	·	·	·	·	·	•	•		•	•	·	·	·	•	• •	•	·	·	•	•	• •		•	•	•	•	• •	
•		·		·			·		·		·					·		·		·							·		•			·		1					·				
• •	•	·	•	·	• •	•	·	·	•	·	·	•	• •	•	•	·	•	•	·	·	•	•	• •	•	·	·	·	·	•	• •	•	·	·	·	•	• •		•	•	•	•	• •	
		•		·			•		·		·		•			•		·		·		•			•		•		•	•		•		•		•	•		•		•		
• •	•	•	·	·	• •	•	·	·	·	·	·	·	• •	•	•	·	•	·	·	·	•	•		•	•	·	·	·	•	• •	•	·	·	•	•	• •		·	·	·	•	• •	
		•		·			•		·		·		•			•		·		·		•			•		•		•	•		•		•		•	•		•		•		
	•	•	•	·	• •	•	•	·	•	•	·		• •			•	•		•	•	•	•	• •	•		·	·	•	•	• •	•	·	·		•	• •		•				• •	
0.10	_	٦.		·			•		•		·					•		•		•							•		•	•		·							•				
• •	-	<u>۱</u> .	•	·	• •		<u> </u>			•	<u> </u>	•	<u> </u>			•	•		<u> </u>	•	•	<u> </u>		<u> </u>			·				•	•	•	•	•	• •		•	•			• •	
. 0 00		سرا		_			•		·		·					•		·		·							•		. –					-i			<u> </u>						
0.00	•	ॏ॔∽	<u> </u>	<u> </u>	· ·		•		•		•				•	·	•	•	•	•	•		• •			•		•		· ·			•	· ·		<u> </u>	<u> </u>	<u> </u>					
	_	<u>۱</u> .		·			•		•		·		•							•					•		•		•	•		•		•		•			•				
0 10			•	•	• •	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•		• •	•	•	•	•	•			•	•	•	•	•	• •		•	•	•	•		
-0.10	_			·		I	•				·			1.				Τ		•		. 1					•		•	l.												٦.	
• •	۰. ۱	00	•	•	• •		•	•	0	20	·		• •			•				·			• •	•	6	د	٠ ١	•	•	• •		•		n 0	0	• •		•	•		÷.,	1 0(•
	υ.	00					•		0.	20					/1	-:-		.4(. fi			ام	0		0.0 D	i.	00	0					0.0	U							1.01	,
						•	÷	•	÷						(1	- iĈ	1.1	9)	pn		r a	a	ie.	9	IT	D	Ľ,	20	0		•							•					

B.6.Les points de définition de la géométrie du profil d'aile HOBIE SM01

Extr	rados	Intr	ayor
(x)	(y)	(v)	(v)
000.0000	000.2521		000.2521
000.6200	001.1507	000.0000	000.2321
001.2500	001.5881	000.0200	-000.3129
002.5000	002.2800	002 5000	-000.8002
003.7500	002.8799	002.3000	-001.10/1
005.0000	003.4268	005.7500	-001.4450
006.2500	003.9263	005.0000	-001.0200
007.5000	004.3774	000.2300	-001.7513
008.7500	004.7813	007.5000	-001.7900
010.0000	005.1441	008.7500	-001.0107
015.0000	006.2804	010.0000	-001.6073
020.0000	007.0502	013.0000	-001.0332
025.0000	007.5513	025.0000	-001.3729
030.0000	007.8344	030,0000	-001.0250
035.0000	007.9310	035.0000	-000.0473
040.0000	007.8665	040,0000	000.2077
045.0000	007.6653	045.0000	000.0342
050.0000	007.3500	050,0000	000.5051
055.0000	006.9370	055.0000	000.5100
060.0000	006.4316	060.0000	000.8054
065.0000	005.8338	065.0000	000.8802
070.0000	005.1475	070.0000	000.9060
075.0000	004.3857	075.0000	000.8800
080.0000	003.5700	080.0000	000.8008
085.0000	002.7245	085.0000	000.6681
090.0000	001.8669	090.0000	000.4839
092.0000	001.5198	092.0000	000.3970
094.0000	001.1659	094.0000	000.3037
096.0000	000.7974	096.0000	000.2050
098.0000	000.4078	098.0000	000.1026
099.0000	000.2053	099.0000	000.0510
100.0000	000.0000	100.0000	000 0000

B.7.Les points de définition de la géométrie du profil d'RAE 5213

Extr	ados	Intr	ados
(x)	(y)	(x)	(y)
000.000	000.000	000.000	000.000
000.050	000.522	000.050	-000.410
000.100	000.732	000.100	-000.545
000.160	000.925	000.160	-000.665
000.241	001.128	000.241	-000.785
000.350	001.343	000.350	-000.900
000.500	001.580	000.500	-001.030
000.650	001.778	000.650	-001.139
000.800	001.940	000.800	-001.228
000.961	002.090	000.961	-001.316
001.500	002.480	001.500	-001.533
002.153	002.841	002.153	-001.727
003.000	003.216	003.000	-001.947
003.806	003.496	003.806	-002.118
005.904	004.029	005.904	-002.459
008.427	004.444	008.427	-002.786
011.349	004.828	011.349	-003.074
014.645	005.170	014.645	-003.332
018.280	005.476	018.280	-003.556
022.221	005.719	022.221	-003.731
026.430	005.904	026.430	-003.856
030.866	006.021	030.866	-003.915
035.486	006.061	035.486	-003.889
040.245	006.017	040.245	-003.773
045.099	005.892	045.099	-003.560
050.000	005.688	050.000	-003.232
054.901	005.394	054.901	-002.788
059.755	005.017	059.755	-002.267
064.514	004.574	064.514	-001.716
069.134	004.087	069.134	-001.199
073.570	003.586	073.570	-000.768
0/7.779	003.082	077.779	-000.424
081.720	002.581	081.720	-000.175
085.355	002.094	085.355	-000.010
088.651	001.641	088.651	000.085
091.573	001.236	091.573	000.130
094.096	000.870	094.096	000.126
096.194	000.562	096.194	000.098
097.847	000.302	097.847	000.062
099.039	000.133	099.039	000.029
100,000	000.034	099.759	000.006
100.000	000.000	100.000	000.000

																•								•					
0.10	· · · ·																	•				•						•	
· · ·			<u>ب</u>	 														· · ·	÷	· · ·								•	
0.00				 •			 •				•								<u> </u>	<u>.</u>		<u></u>				<u> </u>	- -		
· · ·		•					 :			: .					•				•				:						
-0.10	+		-1													Т			T			Т						•	
	0.00			0.	20			(F)	0	40						0.60	5.04				().80					1.0)0	
					• •	•		(FI	g: 1	11)	pro	DTIL	ďa	lie	RA	E :	521	<u>3</u>			•		÷			• •			

B.8.Les points de définition de la géométrie du profil d'aile WORTMANN FX3

Extra	ados	Intra	ados
(x)	(y)	(x)	(y)
000.00000	000.00000	000.00000	000.0000
001.70400	002.46400	001.70400	-01.79300
003.80600	003.91200	003.80600	-02.70200
006.69900	005.33000	006.69900	-03.48000
010.33300	006.74300	010.33300	-04.26500
014.64400	008.11200	014.64400	-05.04500
019.56200	009.39400	019.56200	-05.75500
025.00000	010.52300	025.00000	-06.36000
030.86600	011.46400	030.86600	-06.83300
037.05900	012.17800	037.05900	-07.15000
043.47400	012.64800	043.47400	-07.26500
050.00000	012.85600	050.00000	-07.12100
056.52600	012.77900	056.52600	-06.66600
062.94100	012.41900	062.94100	-05.68200
069.13400	011.74300	069.13400	-03.65900
075.00000	010.36600	075.00000	-02.04200
080.43800	007.89700	080.43800	-00.84600
085.35600	005.69500	085.35600	00.04900
089.66700	003.94800	089.66700	00.54800
093.30100	002.54100	093.30100	00.78600
096.16400	001.49800	096.16400	00.69400
098.29600	000.71800	098.29600	00.49500
099.57200	000.20800	099.57200	00.17900
100.00000	000.00000	100.00000	00.00000

B.9.Les points de définition de la géométrie du profil d'aile NACA 0012

EXTR	ADOS	INTRA	ADOS
(x)	(y)	(x)	(y)
0.00	0.000	0.00	0.000
1.25	1.894	1.25	-1.894
2.50	2.615	2.50	-2.615
5.00	3.555	5.00	-3.555
7.50	4.200	7.50	-4.200
10.0	4.683	10.0	-4.683
15.0	5.345	15.0	-5.345
20.0	5.737	20.0	-5.737
25.0	5.941	25.0	-5.941
30.0	6.002	30.0	-6.002
40.0	5.803	40.0	-5.803
50.0	5.294	50.0	-5.294
60.0	4.563	60.0	-4.563
70.0	3.664	70.0	-3.664
80.0	2.623	80.0	-2.623
90.0	1.448	90.0	-1.448
95.0	0.807	95.0	-0.807
99.0	0.126	99.0	-0.126
100	0.000	100	0.000

79

B.10.Les points de définition de la géométrie du profil d'aile RAE 2822

EXTR	ADOS	100.0000 000.0000
(x)	(y)	INTRADOS
000.0000	000.0000	(x) (y)
000.0602	000.3165	000.0000 000.0000
000.2408	000.6306	000.0602 -00.3160
000.5412	000.9416	000.2408 -00.6308
000.9607	001.2480	000.5412 -00.9443
001.4984	001.5489	000.9607 -01.2559
002.1530	001.8441	001.4984 -01.5649
002.9228	002.1348	002.1530 -01.8707
003.8060	002.4219	002.9228 -02.1722
004.8005	002.7062	003.8060 -02.4685
005.9039	002.9874	004.8005 -02.7586
007.1136	003.2644	005.9039 -03.0416
008.4265	003.5360	007.1136 -03.3170
009.8396	003.8011	008.4265 -03.5843
011.3495	004.0585	009.8396 -03.8431
012.9524	004.3071	011.3495 -04.0929
014.644/	004.5457	012.9524 -04.3326
010.4221	004.7729	014.044/ -04.5010
016.2605	004.9874	010.4221 -04.7775
020.2150	005.1885	010.2003 -04.9803
022.2213	005.5755	020.2130 - 05.1094 022.2215 - 05.3427
024.2040	005.5470	022.2213 = 05.3427 024.2949 = 05.4994
028 6222	005.8414	026 4302 -05 6376
030.8658	005.9629	028.6222 -05.7547
033.1555	006.0660	030.8658 -05.8459
035.4858	006.1497	033.1555 -05.9046
037.8510	006.2133	035.4858 -05.9236
040.2455	006.2562	037.8510 -05.8974
042.6635	006.2779	040.2455 -05.8224
045.0991	006.2774	042.6635 -05.6979
047.5466	006.2530	045.0991 -05.5257
050.0000	006.2029	047.5466 -05.3099
052.4534	006.1254	050.0000 -05.0563
054.9009	006.0194	052.4534 -04.7719
057.3365	005.8845	054.9009 -04.4642
059./545	005.7218	057.3365 -04.1397
062.1490	005.5344	059.7545 -03.8043
066 8445	005.0003	064 5142 03 1207
060 13/2	003.0995	066.8445 - 02.7814
071 3778	004.6029	069 1342 - 02.7814
073 5698	004.3377	071 3778 -02 1289
075.7051	004.0641	073.5698 -01.8232
077.7785	003.7847	075.7051 -01.5357
079.7850	003.5017	077.7785 -01.2690
081.7197	003.2176	079.7850 -01.0244
083.5779	002.9347	081.7197 -00.8027
085.3553	002.6554	083.5779 -00.6048
087.0476	002.3817	085.3553 -00.4314
088.6505	002.1153	087.0476 -00.2829
090.1604	001.8580	088.6505 -00.1592
091.5735	001.6113	090.1604 -00.0600
092.8864	001.3769	091.5735 000.0157
094.0961	001.1562	092.8864 000.0694
095.1995	000.9508	094.0961 000.1033
096.1940	000.7622	095.1995 000.1197
097.0772	000.3915	096.1940 000.1212
091.84/0	000.4401	097.0772 000.1112
0100.0202	000.3092	097.0470 000.0933
099 4588	000.1137	099 0393 000 0407
099 7597	000.0510	099.4588 000.0497
J///J/4		000 7502 000 0127

 $\begin{array}{c} 099.9398 & 000.0035 \\ 100.0000 & 000.0000 \end{array}$

B.11.Les points de définition de la géométrie du profil d'aile RAF 19

EXTRADOS

(x)	(y)
000.00000	000.00000
001.25000	002.70700
002.50000	004.61500
005.00000	007.33000
007.50000	009.24500
010.00000	010.66000
015.00000	012.59000
020.00000	013.62000
030.00000	014.18000
040.00000	013.74000
050.00000	012.50000
060.00000	010.86000
070.00000	008.72000
080.00000	006.38000
090.00000	003.64000
095.00000	001.97000
100.00000	000.00000

INTRADOS

(x)	(y)
000.00000	000.00000
001.25000	-00.80300
002.50000	-01.18500
005.00000	-01.07000
007.50000	-00.55500
010.00000	000.26000
015.00000	002.09000
020.00000	003.82000
030.00000	005.88000
040.00000	006.54000
050.00000	006.30000
060.00000	005.36000
070.00000	004.22000
080.00000	002.68000
090.00000	001.04000
095.00000	000.17000
100.00000	000.00000

B.12.Les points de définition de la géométrie du profil d'aile BELL 540— NACA0012 modifié

EXTRA	DOS	INTR	ADOS
(x)	(y)	(x)	(y)
00.000	000.00	00.000	000.00
00.453	01.163	00.453	-01.163
00.862	01.569	00.862	-01.569
01.250	01.857	01.250	-01.857
01.628	02.087	01.628	-02.087
02.366	02.453	02.366	-02.453
03.092	02.743	03.092	-02.743
03.810	02.986	03.810	-02.986
04.524	03.195	04.524	-03.195
05.590	03.463	05.590	-03.463
06.652	03 689	06.652	-03 689
08.064	03 939	08.064	-03 939
09 121	04 098	09 121	-04 098
10 177	04.235	10 177	-04 235
11 231	04 353	11 231	-04 353
12 285	01.555	12.251	-04 455
12.205	04.433	13 330	-04.543
15.003	04.545	15.093	-04.660
17 5/18	04.000	17 548	04.000
20.001	04.773	20.001	-04.775
20.001	04.850	20.001	-04.850
21.402	04.855	21.402	-04.051
22.102	04.855	22.102	-04.855
22.452	04.855	22.432	-04.855
25.505	04.831	25.505	-04.031
23.233	04.032	23.233	-04.652
20.055	04.707	20.055	-04.707
32.050	04.090	30.152	-04.090
52.950 35.048	04.372	52.950 25.049	-04.572
33.0 4 8 38 544	04.401	35.046	-04.401
12 026	04.015	42.026	-04.015
42.030	04.015	42.030	-04.013
43.328	03.783	45.528	-03.783
49.020	03.330	49.020	-05.550
56.002	03.320	52.512	-03.320
50.005	03.097	50.005	-03.097
39.493	02.807	59.495	-02.807
62.987	02.638	62.987	-02.638
66.479	02.408	60.479	-02.408
69.970	02.179	69.970	-02.179
73.462	01.949	73.462	-01.949
76.954	01.720	76.954	-01.720
80.446	01.490	80.446	-01.490
83.938	01.261	83.938	-01.261
87.430	01.031	87.430	-01.031
90.921	00.801	90.921	-00.801
94.413	00.572	94.413	-00.572
97.905	00.342	97.905	-00.342
100.00	00.205	100.000	-00.205

B.13.Les points de définition de la géométrie du profil d'aile EPPLER 520

EXTRA	ADOS		
(x)	(y)	INTRA	ADOS
000.00500	000.07000	(x)	(y)
000.01800	000.14300	000.00000	000.0700
000.03800	000.21800	000.00500	-00.07000
000.09500	000.37300	000.01800	-00.14300
000.17400	000.53300	000.03800	-00.21800
000.33100	000.78100	000.09500	-00.37300
001.17100	001.64000	000.17400	-00.53300
002.48100	002.51900	000.33100	-00.78100
004.24200	003.38000	001.17100	-01.64000
006.44100	004.19700	002.48100	-02.51900
009.05900	004.94900	004.24200	-03.38000
012.07500	005.62200	006.44100	-04.19700
015.46300	006.20400	009.05900	-04.94900
019.19100	006.68600	012.07500	-05.62200
023.24400	007.06200	015.46300	-06.20400
027.52300	007.32600	019.19100	-06.68600
032.04400	007.47500	023.22400	-07.06200
036.74000	007.50400	027.52300	-07.32600
041.56400	007.41100	032.04400	-07.47500
046.46900	007.19400	036.74000	-07.50400
051.40000	006.85100	041.56400	-07.41100
056.31300	006.36400	046.46900	-07.19400
061.18600	005.72800	051.40000	-06.85100
066.00800	004.94400	056.31300	-06.36400
070.79700	004.05900	061.18600	-05.72800
075.52000	003.18500	066.00800	-04.94400
080.06400	002.39900	070.79700	-04.05900
084.32500	001.72600	075.52000	-03.18500
088.21000	001.17800	080.06400	-02.39900
091.64000	000.75300	084.32500	-01.72600
094.54500	000.43800	088.21000	-01.17800
096.87100	000.21700	091.64000	-00.75200
098.58400	000.07800	094.54500	-00.43800
099.64100	000.01400	096.87100	-00.21700
100.00000	000.00000	098.58400	-00.07800
		099.64100	-00.01400
		100.00000	000.00000

	· 1.00
0.10	
0.10	· · ·
0.10	
0.10	
0.10	
0.10	- <u></u>
0.10	
· · · · · · · · · · · · · · · · · · ·	• • •
· · · · · · · · · · · · · · · · · · ·	• •
	· ·

B.14.Les points de définition de la géométrie du profil d'aile RYAN BQM-34 FIREBEE WING

EXTRA	ADOS		INTRADO						
(x)	(y)		(x)	(y)					
000.0000	000.00000	00	0.00000	000.0000					
000.12740	000.51850	00	0.12740	-00.51850					
000.50890	000.99999	00	0.50890	-00.99999					
001.14270	001.46679	00)1.14270	-01.46679					
002.02540	001.91428	00	02.02540	-01.91428					
003.15250	002.33938	00	3.15250	-02.33938					
004.51840	002.73973	00	4.51840	-02.73973					
006.11610	003.11273	00	6.11610	-03.11273					
007.93730	003.45580	00	7.93730	-03.45580					
009.97290	003.76642	00	9.97290	-03.76642					
012.21250	004.04242	01	2.21250	-04.04242					
014.64470	004.28243	01	4.64470	-04.28243					
017.25700	004.48654	01	7.25700	-04.48654					
020.03610	004.65493	02	20.03610	-04.65493					
022.96800	004.78668	02	2.96800	-04.78668					
026.03760	004.88054	02	26.03760	-04.88054					
029.22930	004.93530	02	9.22930	-04.93530					
032.52680	004.94975	03	32.52680	-04.94975					
035.91340	004.92319	03	35.91340	-04.92319					
039.37170	004.85536	03	39.37170	-04.85536					
042.88430	004.74661	04	2.88430	-04.74661					
046.43310	004.59796	04	6.43310	-04.59796					
050.00000	004.41159	05	50.00000	-04.41159					
053.56700	004.19132	05	53.56700	-04.19132					
057.11580	003.94233	05	57.11580	-03.94233					
060.62830	003.66959	06	60.62830	-03.66959					
064.08660	003.37888	06	64.08660	-03.37888					
067.47320	003.07696	06	57.47320	-03.07696					
070.77080	002.77090	07	0.77080	-02.77090					
073.96250	002.46820	07	3.96250	-02.46820					
077.03210	002.17567	07	7.03210	-02.17567					
079.96390	001.89698	07	9.96390	-01.89698					
082.74300	001.63337	08	32.74300	-01.63337					
085.35540	001.38566	08	35.35540	-01.38566					
087.78750	001.15514	08	\$7.78750	-01.15514					
090.02710	000.94290	09	0.02710	-00.94290					
092.06270	000.75017	09	2.06270	-00.75017					
093.88400	000.57784	09	3.88400	-00.57784					
095.48160	000.42673	09	95.48160	-00.42673					
096.84750	000.29765	09	06.84750	-00.29/65					
097.97470	000.19116	09	97.97470	-00.19116					
098.85730	000.10779	09	98.85730	-00.10779					
099.49110	000.04796	09	9.49110	-00.04/96					
099.87260	000.01201	09	9.8/260	-00.01201					
100.00000	000.00000	10	0.00000	000.00000					
0.05	· · ·								
			· · · ·						
			· · · ·						
		· · · · · · · · · · · · · · · · · · ·							
-0.05	<u></u> ,.	·····	· · · · · ·	· · · · · · · · · · · · · ·					
	I'.								
· · U.U·U · · · (.∠∪ (Fiα 18) n	rofil d'aile RYAN BOM-34 FIREREE M	0.80 /ING						
	(19.10/P								

B.15.Les points de définition de la géométrie du profil d'aile FX 60-100 <126>

EXTR	ADOS	INTRADO	S
(x)	(y)	(x)	(y)
0000.0000	000.0000	000.0000	000.0000
000.96000	001.46000	000.96000	-00.75000
002.60000	002.62000	002.60000	-01.34000
005.16000	003.85000	005.16000	-01.78000
008.42000	004.98000	008.42000	-02.13000
010.30000	005.50000	010.30000	-02.28000
014.60000	006.36000	014.60000	-02.48000
019.60000	007.06000	019.60000	-02.55000
025.00000	007.55000	025.00000	-02.46000
030.80000	007.84000	030.80000	-02.28000
044.20000	007.79000	044.20000	-01.15000
050.00000	007.42000	050.00000	-00.35000
059.70000	006.55000	059.70000	000.60000
069.10000	005.43000	069.10000	001.25000
080.40000	003.70000	080.40000	001.50000
089.60000	002.08000	089.60000	001.05000
094.80000	001.05000	094.80000	000.66000
100.00000	000.00000	100.00000	000.00000

	· ·		• •	• •		•	•			• •	·	·	• •		·	• •	·	·	• •		• •	• •		•		·	•	• •	·	·	•		·	•	• •	·
0 10	<u> </u>								•			·									•	•														
				• •	•		<u> </u>	÷	<u> </u>	<u> </u>					<u>.</u>	<u> </u>	÷	_		•	• •	• •	•	• •	•	·	•	• •	·	•	•	• •	·	•	• •	·
• •	-l ·		منسمه						•			•									÷		~~	÷	<u> </u>					•			•			
	· .	- Aller	• •	• •						• •		•	• •						• •		• •	• •					·		~~	· · · ·	÷			-	• •	
·0.00	—K.											·		_		خــــ				_	-	<u> </u>									_			-		
					<u>.</u>			•			_				•	• •	•	•	• •	•	• •	• •	•	•		•	•	• •	•	•	•	• •	•	•	• •	•
• •	-l ·								•			•			·						•															•
	<u>_</u>	• •	• •	• •		•				• •			• •		·	• •	_ `		• •	•	• •	• •		•				• •		•	•			÷ .		
-0.10		•	-1			· _	-			Τ.		· ·			•			•		Т		•		r			Т	-		•	Т			Ē		•
			• •	• •	•					• •	•	•			•	• •	•	•	• •	.'		• •	•	• •		۰.			•	•	•	• •	•	: .		•
• •	0.00		•			0.2	0 ·					•	0.4	40					-	0.6	0	•				().8).		•				1.0	0	
	· ·		• •	• •		•	•		· (Fig	J.∙1	9)	pr	ofil	d'a	aile	F	X	60	-10	0 ·	< 1	26	>		·		• •		•				•	• •	•
												• *			·																		·			

[1] Zebbiche T., "Résistance des matériaux," cours pour les ingénieurs,
Institut d'Aéronautique et des Etudes Spatiales, Université SAAD Dahleb Blida 1,
2013.

[2] Mirolioubov I. et al., "Résistance des matériaux manuel de résolution de problèmes," 4ème Edition, Edition Mir, Moscou, 1977.

[3] Muvdi B. B. and McNabb J. W., "Engineering Mechanics of Materials," Macmillan Publishing company, 1984.

[4] Pissatenko G., Yakoulev at Matveev V., "Aide mémoire de résistance des matériaux," Edition Moscou, 1979.

[5] Abbott I. H. and von Doenhoff A. E., "Theory of wing sections : Including a summary of Airfoil data," Dover Publications, Inc., New York, Vol. II, 1959.

 [6] Boun-jad M. et Zebbiche T., "Résolution de l'équation de Poisson dans un domaine simplement connexe," Editions Universitaire Européenne, Avril 2012, ISBN 978- 3-8417-9282-2.

[7] Imbert J. F., 'Analyse des Structures par Eléments Finis,' 3ème Edition, Sup'Aéro, Cepadues-Editions, 1991, France.

[8] Kardestuncer H. et al, 'Finite Element Handbook,' McGraw-Hill Book Company, 2010, USA.

[9] Reddy J. N., 'An Introduction to the Finite Element Method,' Edition Mc-Graw Hill Book Company, 2007.

[10] Gouri D. et Touzot G. 'Une présentation de méthode des éléments finis,' Université Laval, Moline S. A. Editeur, Paris, 1999.

[11] http://www.ae.illinois.edu/mselig/ads/coord_database.html#A

[12] Demidovitch B. et Marron I., 'Eléments de Calcul Numérique,' Edition Mir, Moscou, 1987.

[13] Raltson, A. and Rabinowitz, A., "A First Course in Numerical Analysis", McGraw Hill Book Company, 2005.

[14] Fletcher C. A. J., 'Computationnal Techniques for Fluid Dynamics,' Volume II, Specific Techniques for Different Flow Categories, Springer-Verlag, 1988, Austria.

[15] Zebbiche T., "Computation of Aircraft Structures," Courses for engineers, Institute of Aeronautics and space studies, University SAAD Dahleb of Blida 1, Algeria, 2013.

[16] Megson, T. H. G., "Structures and Stress Analysis," 2nd edition, Elsevier, Oxford, 2005.

[17] Megson, T. H. G., "Aircraft Structures for Engineering Students," 4nd edition, Elsevier, Oxford, 2007.

[18] Abbott I. H. and von Doenhoff A. E., "Theory of wing sections : Including a summary of Airfoil data," Dover Publications, Inc., New York, Vol. II, 1959.

[19] http://www.ae.illinois.edu/mselig/ads/coord_database.html#A

[20] Fletcher C. A. J., "Computationnal Techniques for Fluid Dynamics," Volume II, Specific

Techniques for Different Flow Categories, Springer-Verlag, 1988, Austria.

[21] Raltson, A. and Rabinowitz, A., "A First Course in Numerical Analysis", McGraw Hill Book Company, 2005.

[22] Demidovitch B. et Marron I., 'Eléments de Calcul Numérique,' Edition Mir, Moscou, 1987.

[23] Zebbiche T., Boun-jad M. and Allali Abderrazak "Geometric characteristics of thin wall sections with application to airfoils," Accepted for publication with The Arabian Journal for Science and Engineering, Jully 2013.

[24] Settouf. M, "Aéronautique 2 (Construction aéronautique), " Cours de licence Institut d'Aéronautique et des Etudes Spatils, Université SAAD DAHLEB Blida 1, 2010

[25] Didier Féminier, "Cellules et systèmes d'aéroneufs, "1er édition 1982 Québec-Canada

[26] Laetitia Souteyrat, Stéphane Esnault et Jean-Pière Joli, "cours du Brevet d'Initition Aéronautique, connaissance avions"

[27] https://www.qcmbia.fr/?qcm=cours #cours n°3 système propulsif.

[28] Chegrani. Ahmed, "Aérodynamique et mécanique du vol, " cours de licence et master structure et propulsion avions, Institut d'Aéronautique et des Etudes Spatials, Université SAAD DAHLEB-Blida 1, 2011/12/13

[29] Mme, MAHI Amel (HAMADOUCHE), "Structure avions, Analyse des Structures 1 et 2" cours de licence et master1, Institut d'Aéronautique et des Etudes Spatils, Université SAAD DAHLEB Blida 1, 2012/13.