

Mémoire de Master

Mention Électronique

Spécialité Systémes de Télécommunications

présenté par

Goso Kelvin Tatenda

ETUDES DES PERFOMANCES DES DECODEURS LDPC

Proposé par : Professeur Meliani Hamza

Année Universitaire 2017-2018

 الجـمهوريةالجزائريةالديمقراطيةالشعبية

République Algérienne démocratique et populaire

 وزارةالتعليمالــعــاليوالبحــثالعــلمــي
Ministère de l’enseignement supérieur et de la recherche scientifique

 جــامعةسعددحلبالبليدة

Université SAAD DAHLAB de BLIDA

 كليةالتكنولوجيا
Faculté de Technologie

 قسمالإلكترونيـك

Département d’Électronique

Remerciements

Firstly, I would like to thank the governments of Zimbabwe and Algeria for the

opportunity to study under Zimbabwe-Algeria Bilateral scholarship.

Secondly, all my teachers from Language Department of The University of Annaba,

Science and Technic department and Electronic Department of the University of Blida.

Eternal gratitude to my project supervisor Professor Meliani.

 Lastly to all the family and friends for much appreciated support throughout my

studies.

تحكم طريقة بنيت مصفوفة بلا سيما فيما يتعلق LDPCلتقنية التشفير راسة د خصصت: ملخص

للمصفوفات LU تستخدم بعد ذلك تقنية تحلل .باستخدام أسلوب غالاغر والبناء لنيل وماكايالتكفؤ

البيانات المشفرة تفك . Rayleighأو AWGNمثل قناة قناة صاخبةير لتشفير البيانات قبل إرسالها ع

ها عند استقب Bit Flipping ,probabilityمن طرف جهاز الإستبال باستخدام خوارزميات الهاتشفير

domain, log domain و simplified log domain . ا يتم تحقيق على أثر إشارة إلى نسبة أخير

على) Raylieghو قناة AWGNقناة (نوع القناة , طول الرمز , د مرات التكرارعد, (SNR)الضوضاء

 .معدل خطأ البت

 ,AWGN. iteration, BER, SNR, LDPC, Channel, encoding, decoding : الكلمات الرئيسية

Résumé : Une étude est consacrée aux codes LDPC notamment sur la façon dont la

matrice de contrôle de parité est construite en utilisant la méthode Gallagher et

construction de Neal et MacKay. La décomposition LU est ensuite utilisée pour coder

le message avant de le passer sur les canaux AWGN et Rayleigh. Les mots codés

envoyés sont ensuite décodés l’aide de l’algorithme décision Hard (retournement de

bit) et les algorithme soft (probability domain, log domain et simplified log domain).

Enfin une évaluation est faite sur l’effet du rapport signal sur bruit (SNR), le nombre

d’itérations, la longueur du code et le type du canal (canal AWGN, canal de Rayliegh)

sur le taux d’erreur BER.

Mots clés: encoding, decoding, BER, SNR, LDPC, Channel, iteration, AWGN.

Abstract: A study of Low-Density Parity Check codes particularly on how the parity

check matrix is constructed using Gallagher method and using Neal and MacKay

construction. The LU decomposition is then used to encode the message before

passing it over AWGN and Rayleigh channel. The sent codewords are then decoded

using Hard decision (Bit Flipping) and Soft Decision (probability domain, log domain

and simplified log domain) decoding methods. Effects of SNR, number of iterations,

code length and channel type on BER are studied.

Keywords: encoding, decoding, BER, SNR, LDPC, Channel, iteration, AWGN.

List of Acronyms and Abbreviations

BER: Bit Error Rate

SNR: Signal to Noise Ratio

LDPC: Low-Density Parity-Check

BEC: Binary Erasure Channel

BSC: Binary Symmetric Channel

AWGN: Additive White Gaussian Noise

Table of Contents

General Introduction ... 1

Chapitre 1 : Introduction .. 3

1.1 Background ... 3

1.1.1 Digital communication system .. 3

1.1.2 Noisy Channels .. 5

1.2 Types of codes ... 6

1.2.1 Linear Block codes ... 6

1.2.2 Convolutional codes .. 8

1.3 Decoding Channels .. 9

1.3.1 Binary erasure channel (BEC) .. 9

1.3.2 Binary Symmetric channel .. 11

Chapitre 2 : LDPC Encoder .. 13

2.1 Introduction .. 13

2.1.1 LDPC Codes .. 13

2.1.2 Tanner graphs ... 13

2.2 Construction of H parity check matrix .. 15

2.2.1 Gallagher construction .. 16

2.2.2 Neal and Mackay construction.. 16

2.3 Encoding .. 20

2.3.1 Canonical Encoding ... 20

2.3.2 Encoding using LU decomposition .. 21

Chapitre 3 : LDPC Decoding .. 27

3.1 Introduction .. 27

3.2 Hard Decision decoding .. 28

3.3 Soft Decision Decoding ... 31

3.3.1 Belief propagation Probability Domain ... 31

3.3.2 Belief Propagation Log Domain ... 35

3.3.3 Belief Propagation Simplified Log Domain .. 39

3.4 Errors and Limitations of LDPC decoding .. 40

Chapitre 4 : Decoding signals in Noisy channels ... 41

4.1 Introduction .. 41

4.2 Effects of EbN0 on BER .. 41

4.3 Effects of number of iterations on BER ... 42

4.3.1 Bit-Flipping Decoder .. 42

4.3.2 Log Domain Decoder ... 43

4.3.3 Simplified Log Domain Decoder .. 43

4.3.4 Probability domain Decoder ... 44

4.4 Effects of codelength on BER .. 45

4.4.1 Bit flipping decoder ... 45

4.4.2 Log Domain decoder ... 45

4.4.3 Simplified Log Domain Decoder .. 46

4.4.4 Probability Domain Decoder ... 47

4.5 Effects of the channel Type on BER .. 47

4.5.1 Bit Flipping decoder .. 47

4.5.2 Log Domain Decoder ... 48

4.5.3 Simplified Log Domain decoder .. 49

4.5.4 Probability Domain decoder ... 49

4.6 Conclusion ... 50

General Conclusion ... 52

Bibliography .. 54

List of Figures

Figure 1. 1 : The General Communication System ... 3

Figure 1. 2 : The Digital Communication system .. 4

Figure 1. 3 : Block Encoding .. 7

Figure 1. 4 : Memory-less Channel ... 9

Figure 1. 5 : The Binary Erasure Channel .. 10

Figure 1. 6 : The Binary Symmetric Channel ... 11

Figure 1. 8 : Cascaded BSC channel ………………………………………………………………………….12

Figure 2. 1 : The Tanner Graph ... 14

Figure 3. 1 : LDPC Decoders .. 27

Figure 3. 2 : Tanner graph before decoding ... 28

Figure 3. 3 : After one iteration .. 29

Figure 3. 4 : Tanner Graph after the second Iteration .. 31

Figure 3. 5 : Vertical Step .. 32

Figure 3. 6 : Horizontal Step ……………………………………………………………………………………..32

Figure 4. 1: effects of EbN0 on BER .. 42

Figure 4. 2 : effects of number of iterations of a Bit flipping decoder 42

Figure 4. 3 : effects of number of iterations on a log domain decoder.......................... 43

Figure 4. 4 : effects of number of iterations on a simplified Log domain decoder 44

Figure 4. 5 : effects of number of iterations on a probability domain decode 44

Figure 4. 6 : effects of code length on a bit flipping decoder ... 45

Figure 4. 7 : effects of code length on a log domain decoder .. 46

Figure 4. 8 : effects of code length on a simplified log domain decoder 46

Figure 4. 9 : effects of code length on a probability domain decoder 47

Figure 4. 10 :Performance of a bit flipping decoder for different channel types. 48

Figure 4. 11: Performance of a Log Domain decoder for different channel types……….48

Figure 4. 12: Performance of a Simplified Log Domain decoder for different channel

types…….49

Figure 4. 13: Performance of a Probability Domain decoder for different channel

types…….50

List of tables

Table 2.1 : LU Decomposition Encoded Messages 25

Table 2.2 : MATLab Encoded Messages 26

Table 3.1 : Updating Table 29

Table 3.2 : Decision Table 30

1

General Introduction

In an era like ours, an era of information, an era in which everyone is connected and

civilization is ever-rising, every business has an online presence, an era whereby

unimaginable volumes of data needs to be transmitted in a fraction of a second, there

needs to be a communication system in place which ensures reliable transfer of

information. Digital modulations are improving, internet speeds are increasing and

broad bandwidths are in place. Technological generations are evolving and as of now,

the fifth generation is being tested for commercialization. That means that our

information needs to be coded with sophisticated channel codes, thank goodness we

have LDPC codes for exactly that.

LDPC codes were invented by Robert Gallagher in 1963 [1] in his PhD thesis but they

were quickly forgotten as they were impractical to implement due to the fact that the

hardware at the time was not as sophisticated. They lied dormant till Tanner designed

his graphs. Still the hardware had not evolved for them to be practically applicable, so

other channel codes like the convolutional codes were being used. In the 1990s when

it became possible to implement the LDPC codes, MacKay rediscovered them and

progressed with other notable researchers such as Urbanke. Now that the hardware

has finally caught up, the LDPC codes are now used in the satellite television standard

the DVB-S2, they are used in the 10GBase-T ethernet which sends data at 10 gigabits

per second over a twisted cable ad they are also used in the latest Wi-Fi standards

802.11n. The other codes like turbo codes are now being relegated to moderate-high

data rates transmissions.

In this thesis there are four chapters in which we will study the LDPC codes.

In chapter 1, we are looking at introduction to coding. A little background to assess

why we need channel coding through studying the digital communication system and

2

the noisy transmission lines. We go on to look at the type of codes that we have, the

lock codes and the convolutional codes. We also take a look at the decoding channels

and see how they affect the decoded result.

In chapter 2, we look at the basics of the LDPC code and their representation, how to

create a parity check matrix using the Gallagher method and the Neal and Mackay

method. We look at how to encode the information source using the systematic

encoding and using the LU decomposition.

In chapter 3 we look at decoding the LDPC codes using an iterative decoding algorithm

called message passing algorithm. We use the hard decision decoder (bit flipping

algorithm) and the soft decoders like the probability domain, log domain and log

domain simple decoder. There is also the errors and limitations of the decoders and

code.

In chapter 4 we simulate the four decoders to study the evolution of Bit Error Rate

(BER) as the signal to noise ratio increases, as the number of iterations increases, as

the code length increases and as the channel type changes specifically for the

information that has traversed the Additive White Gaussian Noise (AWGN) and the

Rayleigh channels.

3

Chapitre 1 : Introduction

1.1 Background

1.1.1 Digital communication system

In any given type of communication, it consists of the source of information, medium

being used to transmit that information and the receiver, that is where the

information is intended to reach. The most basic communication is a point-to-point

system depicted by the following diagram [2]:

Figure 1. 1 : The General Communication System

The 𝑠𝑜𝑢𝑟𝑐𝑒 can be speech, audio, data etc. being transferred through a 𝑛𝑜𝑖𝑠𝑦 channel

such as a telephone line, wireless line, optical line etc. to 𝑠𝑖𝑛𝑘 which is the receiver. In

this project, we are interested in the reliable transfer of the data. Reliability of the

transfer implies a very low probability of error of the information received at the sink.

A more informative diagram about digital transfer of information is shown below:

Source channel Sink

4

Figure 1. 2 : The Digital Communication system

Source encoder transforms a source(analog) into a bit stream(digital) by use of

digitalization techniques such as the pulse coded modulation (PCM). It then removes

the redundancy bits in the source in a way that we can retain the information without

losing the essential part of the information. There are several techniques for this

process such as the Hamming source coding. They all follow “the Shannon’s source

coding theorem[3] which asserts that for a given source and distortion measure, there

exists a minimum rate 𝑅 = 𝑅(𝑑) (bits emitted per source symbol) which is necessary

and efficient to describe this source and distortion 𝑑”[2].The bit stream obtained is

called the 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. Source decoder does exactly the opposite of this

process that is transforming the bit stream into accessible analog information.

Channel encoder adds some redundancy bits to the information sequence which is

used at the receiver to detect errors produced by the noisy channel and eventually to

correct them. It is responsible for ensuring a reliable transmission of the information.

Different techniques such as Convolutional coding, Cyclic coding, Turbo coding and

LDPC coding exist and they go on to error correction at the decoder as well. They are

all optimized using the Shannon Channel Theory. It asserts that “there is a maximum

rate (bits per channel use), known as channel 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐶 at which information can be

transmitted reliably, that is to say with vanishingly probability of an error over a

channel[2].”

Virtually all modern systems are based on Shannon’s 𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑡ℎ𝑒𝑜𝑟𝑒𝑚[3],

which asserts that the source can be reconstructed with a distortion of at least 𝑑 at the

receiver if the required rate to represent a given source is less than the channel

capacity 𝑅(𝑑) < 𝐶. It follows that a good channel coding can be used for virtually any

source. The capacity limit 𝐶 𝑖𝑛 𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑𝑠 is given by the formula below where 𝐵 is

the bandwidth in 𝐻𝑧 and 𝑆/𝑁 is the signal to noise ratio

source
source

encode
channel
encoder

channel
channel
decoder

source
decoder

sink

5

 𝐶 = 𝐵 log2 (1 +
𝑆

𝑁
) (1.1)

The channel is the physical medium that is used to send information from the

transmitter to the receiver[4]. In the case of wireless communications, wireless

broadcast channels, mobile radio channels and satellite channels are used. In case of

wired communications, telephone lines, coaxial cables and optical fibers are used.

Whichever channel is used, the information sent is going to be corrupted in a random

manner. Be it interference from man-made noise, thermal currents in the cables or

even any other physical random phenomenon like lightning. It is for the channel

decoder to try to detect and correct those errors caused by the channel noises

1.1.2 Noisy Channels

We have so far seen that in the channels, there are random noises. now we are

modeling the type of noise associated with the channels. There are three main models

namely the Gaussian channel, the Rician channel and the Rayleigh channel.

The Gaussian Channel

This is used to model the communication where there is a direct Line of Sight (LOS)

between the transmitter and the receiver. The signal received is equal to the signal

transmitted plus some noise. The channel is assumed to be linear, time invariant and

frequency non-selective. It is a model for thermal noise in communication channels.

The noise used in simulation is the Additive White Gaussian Noise (AWGN). It is white

noise because its power spectral density is flat, so the autocorrelation of the noise in

time domain is zero for any non-zero time-offset. The noise samples follow a Gaussian

distribution. This kind of channel is next to ideal for it disregards any external noise

except for that caused by the heating of the circuit components of the system[5].

The Rician Channel

This channel is a wireless channel and has a line of sight in addition to all other

multipath signals. So, there is a dominant stationary signal. Rician model is used in

modeling satellite channels, indoor channels, microcellular channels, etc.

6

The Rayleigh Channel

This channel is also a wireless channel and has no direct LOS. The received signal is a

sum of multipath signals. It is characterized by multipath. Multipath is when a signal is

reflected refracted and diffracted by various objects between emitter and receiver. As

a result, it arrives at the receiver as sums of multipath components with various delays

from the first component. It is a more practical channel model of the three discussed.

An example of this communication is a device connected to a Wi-Fi network.

1.2 Types of codes

Any system with digitally presented data such as Internet, television, CD player, mobile

telephones, FAX machines, satellites etc. all use the digital communication system.

They all succumb to noises. For a reliable communication, they need error correcting

codes and the codes must ensure fast encoding of information, easy transmission of

the encoded information, fast decoding of the received information, reliable error

correction and transfer of maximum information per unit time.

In search for a code as powerful as described above among the most known channel

codes which are the Block codes and the Convolutional codes. The most efficient are

codes are : the LDPC code which is a block linear code, the Convolutional codes and

the Turbo codes which are a hybrid of block and convolutional codes[6].

1.2.1 Linear Block codes

An (𝑛, 𝑘) block linear code 𝑪 is a code in which 𝑛 is the number of bits of an output

which has an input of 𝑘 bits and 𝑑 the Hamming distance[6]. In general, our input is

associated with 2𝑘 distinct messages. Each message has 𝑛 symbols(bits) and is known

as a 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 denoted 𝑐. The code is said to be linear if and only if it forms 𝑘-

dimensional subspace of {0,1}𝑛.

Input 𝒖 = (𝑢0, 𝑢1, … , 𝑢𝑘−1) of length 𝑘. (Information bits)

Output 𝒄 = (𝑐1, 𝑐2, … , 𝑐𝑛−1) of length 𝑛.

7

Figure 1. 3 : Block Encoding

Since we are working in binary, the number of possible of information bits and

codewords becomes2𝑘.

The rate at which information passes through the channel is then reduced, because

𝑘 < 𝑛, by a factor R, called the 𝑐𝑜𝑑𝑒 𝑟𝑎𝑡𝑒

 𝑟 =
𝑘

𝑛
 (1.2)

Another useful property of these block codes is the 𝐻𝑎𝑚𝑚𝑖𝑛𝑔 distance. If we have

two codewords 𝑐1 = (𝑐11, 𝑐12, … , 𝑐1𝑛) and 𝑐2 = (𝑐21, 𝑐22, … , 𝑐2𝑛), the Hamming

distance is the number of positions at which the corresponding elements of 𝑐1 and 𝑐2

are different. Meaning that the minimum number of substitutions in 𝑐1 to make it

exactly like 𝑐2 or vice versa.

When a codeword is sent over a noisy channel, the receiver might receive any of the 2n

codewords. The receiver may detect only 2(n-k) erroneous codewords and the

remaining 2k are undetectable erroneous codewords.

A generator matrix 𝑮 is the one used to encode the information word

(sequence), 𝒖 into a codeword 𝒄. 𝑮 of a block linear code is constructed by a suitable

set of 𝑘 linearly independent basis vectors as follows:

𝐺 = (

𝑔0

𝑔1

⋮
𝑔𝑘−1

) = (

𝑔0,0 𝑔0,1 … 𝑔0,𝑛−1

𝑔1,0 𝑔1,1 … 𝑔1,𝑛−1

⋮ ⋮ ⋱ ⋮
𝑔𝑘−1,0 𝑔0,1 … 𝑔𝑘−1,𝑛−1

)

So, the 𝑘-dimensional𝒖is encoded into 𝑛-dimensional 𝒄 using the equation below:

 𝒄 = 𝒖𝑮 (1.3)

8

For any linear block code 𝐶, there is an equivalent generator matrix 𝐺 of dimensions

𝑘 × 𝑛 to define it such that:

 𝐺 = (𝐼𝑘|𝐴𝑘,𝑛−𝑘) (1.4)

The encoding equation hence becomes:

 𝑐 = (𝑢|𝑢𝐴𝑘,𝑛−𝑘) (1.5)

The first k bits of the code are the information sequence. The remaining bits are parity

check bits 𝑚 = 𝑛 − 𝑘. They serve a purpose of error detection and or correction.

The parity check matrix of the aforementioned block linear code is defined as follows:

 𝐻 = (−𝐴𝑘,𝑛−𝑘
𝑇 |𝐼𝑛−𝑘) (1.6)

The generator matrix and the Parity check matrix are orthogonal to each other, hence

 𝐻𝐺𝑇 = 0𝑛−𝑘,𝑘 (1.7)

At the reception,𝑐̂ the codeword received is of the same dimensions as the one sent 𝑐.

If the received codeword is correct, then the parity check equations is given by 1.8

below is satisfied:

 𝐻𝑐̂𝑇 = 0 (1.8)

𝐻 is an 𝑚 × 𝑛 matrix. For binary matrices, the negative sign is inutile, hence it is not

used.

Examples of block linear codes are Low-Density Parity Check codes, Reed-Muller

Codes, Hamming Codes etc.

1.2.2 Convolutional codes

This type of codes is the one in which a block of 𝑘 − 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 bits u, is encoded into

an 𝑛 − 𝑏𝑖𝑡𝑠codeword v. The encoded block depends on the corresponding 𝑘 bits at

the time and also on 𝑚 previous message blocks. This is to say that the convolutional

encoder has got a memory of the order 𝑚.

9

A set of 𝑘 bits input, 𝑛 output its encoded by an encoder of memory order 𝑚 is called

an (𝑛, 𝑘, 𝑚) convolutional code of rate 𝑟 =
𝑘

𝑛
.

To have an increased redundancy, there needs to simply increase the memory order

𝑚.[6][7]

1.3 Decoding Channels

It is important to understand the impact of channel impairments on compressed data

which passes over them for they play a crucial role in the designing and development

of multimedia applications. The simple channel models are considered as links which

can be developed to become routes and consequently networks. The two basic classes

of these channels are the Memoryless channel and the channel with memory. Here we

will be focusing on discreet memoryless channels only. A discreet memoryless channel

is a statistical model with an input X and an output Y, which is a noisy version of X.

Both are random variables. It is called discreet because X and Y are both from

alphabets of finite sizes X and Y respectively; and memoryless because at any given

time (t), the output 𝑌 = 𝑦 depends only on the input X=x at that time. It is represented

by conditional probabilities as the figure below[8] shows

Figure 1. 4 : Memory-less Channel

1.3.1 Binary erasure channel (BEC)

BECs are primarily used in cases which some data will be lost[8]. Internet links and

routes are examples of BEC models because data packets either arrive correctly or are

lost due to buffer overflows or excessive delays. So, in BEC, bits are either correctly

10

received or they are known to be lost. The figure below[2] shows the BEC(ε) model

with probabilities; ε being the probability that the transmitted bit at a particular

instant is erased. The conditional probabilities in play are:

 𝑃[𝑌 = "erasure" | X=0]=ε (1.9)

 𝑃[𝑌 = "erasure" | X=1]=ε (1.10)

 𝑃[𝑌 = 0 | X=0]=1-ε (1.11)

 𝑃[𝑌 = 1 | X=1]=1-ε (1.12)

It follows that the probability of bit error is zero

 𝑃[𝑌 = 1 | X=0]=0 (1.13)

 𝑃[𝑌 = 0 | X=1]=0 (1.14)

Figure 1. 5 : The Binary Erasure Channel

The total probability of an erasure thus becomes:

 𝑃[𝑌 = "𝑒𝑟𝑎𝑠𝑢𝑟𝑒"] = ∑𝑝(𝑥, 𝑌 = "𝑒𝑟𝑎𝑠𝑢𝑟𝑒") (1.15)

 𝑃[𝑌 = "𝑒𝑟𝑎𝑠𝑢𝑟𝑒"] = ∑𝑝[𝑌 = "𝑒𝑟𝑎𝑠𝑢𝑟𝑒"|𝑥]𝑝(𝑥) (1.16)

𝑃[𝑌 = "𝑒𝑟𝑎𝑠𝑢𝑟𝑒"]

= 𝑝[𝑌 = "𝑒𝑟𝑎𝑠𝑢𝑟𝑒"|𝑋 = 0]𝑝(𝑋 = 0)

+ 𝑝[𝑌 = "𝑒𝑟𝑎𝑠𝑢𝑟𝑒"|𝑋 = 1]𝑝(𝑋 = 1)

(1.17)

 𝑃[𝑌 = "𝑒𝑟𝑎𝑠𝑢𝑟𝑒"] = ε𝑝(𝑋 = 0)+ε𝑝(𝑋 = 1)=ε{𝑝(𝑋 = 0)+𝑝(𝑋 = 1)} (1.18)

 𝑃[𝑌 = "𝑒𝑟𝑎𝑠𝑢𝑟𝑒"]=ε (1.19)

11

Cascaded BEC channel

Network routes comprises of multiple links which can be modeled as sets of cascaded

channels. Therefore, the output of a first channel serves as the input of the second

channel. Now consider the first link BEC(ε) and the second link BEC(δ) such that there

is input X, output Y1 which is the input of the second channel and the output Y2.

Assuming that all these channels are independent to each other.

The probability that the communication is reliable is then:

 𝑃[𝑌2 ≠ "𝑒𝑟𝑎𝑠𝑢𝑟𝑒"] = (1 − 𝜀)(1 − 𝛿) (1.19)

Thus, the probability of an erasure is given by:

 𝑃[𝑌2 = "𝑒𝑟𝑎𝑠𝑢𝑟𝑒"] = 1 − 𝑃[𝑌2 ≠ "𝑒𝑟𝑎𝑠𝑢𝑟𝑒"] (1.20)

 𝑃[𝑌2 = "𝑒𝑟𝑎𝑠𝑢𝑟𝑒"] = 1 − (1 − 𝜀)(1 − 𝛿) (1.21)

1.3.2 Binary Symmetric channel

This type of channel is widely used to model the channels that exhibit errors. Wireless

links and low-quality wired links are prime examples of BSCs[8]. It consists of a binary

input X and a binary output Y as shown in the Figure 1.6.

Figure 1. 6 : The Binary Symmetric Channel

12

A BSC is characterized by the following probabilities:

 𝑃[𝑌 = 0 |𝑋 = 0] = 1 − 𝜀 (1.22)

 𝑃[𝑌 = 1 |𝑋 = 1] = 1 − 𝜀 (1.23)

 𝑃[𝑌 = 0 |𝑋 = 1] = 𝜀 (1.24)

 𝑃[𝑌 = 1 |𝑋 = 0] = 𝜀 (1.25)

a Cascaded BSC channel

Two or more independent BSC links are joined together. Now consider two links with

error probabilities ε1 and ε2 shown in the fig below[8]

Figure 1. 7 : Cascaded BSC channel

The overall error probability is given by:

 𝑃[error] = 𝑃[𝑌2 ≠ 𝑋1] (1.26)

So, there is an error if it occurs over the first BSC channel ε1 and no occurrence over

the second BSC channel, ε2; or if no error occurrence over the first BSC channel and an

occurrence over the second BSC channel. It is clear that there is no error if it occurs

over both channels. The probability of an error thus becomes :

 𝑃[𝑌2 ≠ 𝑋1] = 𝜀1(1 − 𝜀2) + 𝜀2(1 − 𝜀1) (1.27)

In the next chapter LDPC encoder will be studied.

13

Chapitre 2 : LDPC Encoder

2.1 Introduction

The basic processes that take place at the LDPC encoder are the creation of parity

check matrix, encoding the message and passing the coded information on to the

channel.

2.1.1 LDPC Codes

A Low-Density Parity Check code is a linear block code whose control matrix (parity-

check matrix H) is sparse, meaning that it has very few non-zero elements in each row

and column. There exist regular and irregular LDPC codes. When the weight of the

column 𝑤𝑐, that is the number of ones in a column, and the weight of the row 𝑤𝑟 are

constant, it’s a regular LDPC code; otherwise it is an irregular LDPC code. Also, the

following conditions hold for a regular LDPC code: 𝑤𝑐 ≪ 𝑛 , 𝑤𝑟 ≪ 𝑚,𝑤𝑐 ≤ 𝑤𝑟 and

𝑤𝑟 = 𝑤𝑐
𝑛

𝑚
 where n is the column number of H and m is its row number.

LDPC codes are represented using a matrix or a bipartite graph called the Tanner

Graph[11].

2.1.2 Tanner graphs

Tanner graphs are called bipartite graphs because they are made up of two disjoint

and independent sets called check nodes and variable nodes. It has 𝑚 check nodes

(also known as function nodes) which correspond to the parity check constraints, that

is the rows of 𝐻, and 𝑛 variable nodes corresponding to the elements of the codeword

(also known as message node). These sets can only be connected by an edge and no

intra-connection in the sets. The 𝑖-th variable node is connected to the 𝑗-th check node

14

if and only if 𝐻𝑖𝑗 = 1, with 0 ≤ 𝑖 < 𝑛 and 0 ≤ 𝑗 < 𝑚. Node degree is the number of

connections associated with a node

Figure 2.1 [13] is an example of a (10,5) regular LDPC code of 𝐻,𝑤𝑐 = 2; consequently

𝑤𝑟 = 𝑤𝑐
𝑛

𝑚
= 4

As explained above, the check node 𝑓0 corresponds to the first row and is connected to

the message nodes𝑦0, 𝑦1, 𝑦2 and 𝑦3. It is all because 𝐻0,0 = 𝐻0,1 = 𝐻0,2 = 𝐻0,3 = 1.

The logic sum of all bit values connected to a check node is zero;

𝑓0 = 𝑦0 ⊕ 𝑦1 ⊕ 𝑦2 ⊕ 𝑦3 = 0 and 𝑓1 = 𝑦0 ⊕ 𝑦4 ⊕ 𝑦5 ⊕ 𝑦6 = 0

Figure 2. 1 : The Tanner Graph

A sequence of connected nodes which start and end at the same node containing no

other node more than once in a Tanner graph is called a 𝑐𝑦𝑐𝑙𝑒. The length of a cycle is

defined as the number of edges that it has. The size of the smallest cycle is called

𝑔𝑖𝑟𝑡ℎ of the graph. The bold edges in the graph above show a cycle of length 6.

The main purpose of the Tanner graph is to serve in a decoding technique based on

the 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑃𝑎𝑠𝑠𝑖𝑛𝑔𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚(MPA). This is an efficient 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 process

involving message being passed along the edges from variable nodes to check nodes

and vice versa[11]. In the iterative process, if the syndrome of the estimated decoded

vector is an all-zero at the check node level, this estimated vector is then our output

15

and it is said the algorithm has converged. However, if the algorithm has not

converged for a given maximum number of iterations, it is noted that there has been a

decoding failure.

Due to the fact that the LDPC code is sparse, its Tanner graph is consequently sparse

and the number of traversed edges is small, the running time of the MPA becomes

importantly short. In addition, for a constant number of iterations, each edge is

traversed a constant number of times, the number of operations in the message nodes

becomes linear, thus linear decoding. It all renders the algorithm efficient.

To achieve this kind of efficiency, the LDPC code has to be well-constructed. There are

basically two ways in which the LPDC codes are constructed, Pseudo-random way and

the Algebraic way. Pseudo-random codes generally perform better than the

algebraically constructed ones but they pose an encoding complexity and a memory

problem as the code has to be stored at both the transmitter and the receiver.

2.2 Construction of H parity check matrix

There are two basic ways of creating an LDPC parity check matrix namely the random

construction and the structured construction. The random entails the pseudo-random

methods mainly done by Gallagher[1] and Neal and Mackay[13] whereas the

structured construction refers mainly to the algebraic construction carried out in the

2000s.

The structured constructions are easier to implement in hardware and have regular

interconnections that give them good performance. However, they are limited with

respect to the length of the code performance-wise, also the rate and the girth of the

code.

The randomly constructed codes have a higher encoding complexity because they are

difficult to implement in hardware, they suffer more errors than the structured codes.

However, given that there are no 4-cycles in the code, they outperform the structured

code easily and they produce higher rates and girths. They are also handy when a good

code of a long length is required. In this project, they are the ones used.

16

2.2.1 Gallagher construction

A Gallagher parity check matrix is defined as (𝑛, 𝑤𝑐, 𝑤𝑟) matrix. It consists of 𝑤𝑐 sub-

matrices of 𝑚/𝑤𝑐 rows such that the final matrix is in the form:

 𝐻 = [

𝐻1

𝐻2

⋮
𝐻𝑤𝑐

] (2.1)

The first submatrix 𝐻1 contains 𝑤𝑟 consecutive ones from the left right across all the

columns and the rest of the sub-matrices are just random column permutations of the

𝐻1. Below is an example of a (12,3,4) H-matrix created using the Gallagher method.

H=

1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 1
0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 1 0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1 0 0 0 1

 This is the construction of a regular Gallagher LDPC code.

A simulation result of an irregular LDPC code of length 106 using a code rate of 0.5

yielded a bit-error probability of 10−6, which is just 0.13𝑑𝐵 away from the Shannon

Capacity [12]. This is better than any Turbo code in existence.

In favor of performance, in this project, the irregular codes are going to be used. A

little modified construction by R. Neal is the one to be used specifically due to its

simplicity to understand. R. Neal and D Mac Kay rediscovered the LDPC codes and

showed their good performances in the mid-1990s [12].

2.2.2 Neal and Mackay construction

This is the method of creating very sparse matrix as described by MacKay in their work

[13]. The code is created in four main steps as described below:

17

• Creating a preliminary parity check matrix which is essentially an all-zero matrix

by randomly putting a specified number of ones in every column, 𝑤𝑐. This is to

say flipping 𝑤𝑐 zeros to 1s. At the same time, it tries to maintain a constant

number of 1s in a row throughout the whole matrix. Initially, it creates

indicators for all the 1s that will be required and assigns these 1s to rows as

evenly as it can, favoring earlier rows if an exactly even split is not possible. It

then assigns 1s to successive columns by selecting randomly, without

replacement, from this initial supply of 1s, subject only to the constraint that

the 1s assigned to a column must be in distinct rows. If at some point it is

impossible to put the required number of 1s in a column by picking from the 1s

remaining, a 1 is set in that column without reference to other columns,

creating a possible unevenness.

This is how 𝑤𝑐ones are put in a column, from the first column to the n-th column;

the indices of the columns are randomly permuted.

Example of generating a 4 by 8 H-matrix using the MacKay method with wc=1

- The first step of the algorithm is distributing randomly the indices (the row

numbers) 1 to 4 in the first column of the H matrix and so on till 8-th column and

the matrix appears as given below:

[

1 1 4 4 1 3 3 1
2 2 2 3 4 1 1 3
4 4 3 2 2 2 4 2
3 3 1 1 3 4 2 4

]

- The second step is re-arranging the first wc elements of each column into a column

vector

𝑟 =

1
1
4
4
1
3
3
1

- Repeat a row vector of 1 to 𝑛 elements into a block of wc rows by 1 column to get:

1 2 3 4 5 6 7 8

- Reshape the results above into a n*wc vector column to get

18

𝑐 =

1
2
3
4
5
6
7
8

- Sort the elements of r in ascending order and keep the positions they held before

sorting

Sorted r Positions of elements before sorting

𝑟 =

1
1
1
1
3
3
4
4

 𝑖𝑥 =

1
2

5
8
6
7
3
4

- Create a column vector of n*wc =8 *1 of each element of the column vector c

given above to get 𝑐𝑖 = 𝑐(𝑖𝑥)

𝑐𝑖 =

1
2
5
8
6
7
3
4

- Create a row index by repeating a row vector of 1 to m into a block of wr rows by 1

column and then reshape it into an n*wc column vector

Row vector Reshaped row indices

1 2 3 4

1 2 3 4

1
1
2
2
3
3
4
4

19

- Sparse the row indices and column indices into an 𝑚 × 𝑛 matrix (reshaped row

index, column index ci) to get:

(1,1)
(1,2)
(2,5)
(2,8)
(3,6)
(3,7)
(4,3)
(4,4)

- Fill the matrix with ones on the indices that are mentioned above and zeros for the

rest of the matrix elements

𝐻𝑝 = [

1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 1 1 0 0 0 0

]

 For this example, 𝐻𝑝 is the final matrix. However, in a general case the following steps

should be considered.

• Add 1s to the parity check matrix to avoid rows with no 1s, if there are any. The places

within a row in which these 1s are added are randomly selected.

• Avoid redundancy by adding a 1 to a column that has an even number of 1s. By now

we have a preliminary full matrix, 𝐻𝑝.

• Eliminate situations where a pair of columns have a 1 in a particular pair of rows (4-

cycle). This is done by randomly flipping any 1 among the four ones.

The first three steps may yield a regular matrix as evidenced below:

𝐻𝑝 =

[

0 1 0 0 1 1 1 0 1 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0
1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1
0 1 1 0 0 0 0 0 0 1 0 1 0 1 1 0
1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0]

Passing this preliminary regular matrix through the fourth step will yield an irregular

matrix

20

𝐻 =

[

0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0]

The larger the matrix, the more it becomes more regular.

2.3 Encoding

This is a stage in which the parity check matrix created above is used to create

redundancy bits (check bits) and the added to the source information. There is a

canonical way of doing it by creating a generator matrix, then multiplying the source

information with the generator matrix created in GF2 (binary Galois Field). This is the

method used by the in-built MATLAB encoder. If you are to use your own parity check

matrix, it has to be in a systematic form. It will be called canonical encoding in this

section.

Another way of doing it is by LU decomposition which is less complex than the

canonical way and very much effective[14] .

2.3.1 Canonical Encoding

This method makes use of the H matrix to create the generator matrix. First the H

matrix has to be converted to its systematic form[5]:

𝐻𝑠𝑦𝑠 = [𝐴𝑇|𝐼𝑚] (2.2)

The positions of the identity matrix 𝐼𝑚 and 𝐴𝑇 can interchange. This operation is

performed by Gaussian elimination and column re-ordering. Once there is a systematic

parity check matrix, a valid canonical form of the generator matrix can be easily

deduced

 𝐺𝑐 = [𝐼𝑘|𝐴] (2.3)

21

2.3.2 Encoding using LU decomposition

The whole encoding process is considered as solving a system of equations to get

parity check bits. The parity check matrix H is partitioned into two parts A and B such

that A is an 𝑚 × 𝑚 sub-matrix and B an 𝑚 × (𝑛 − 𝑚) sub matrix:

 𝐻 = [𝐴|𝐵] (2.4)

The sub-matrix 𝐴 has to be non-singular.

The system of equations to be solved is 𝐻𝑥 = 0, where 𝑥 is a vector column codeword.

So, it becomes:

 [𝐴|𝐵] [
𝑐

𝑠
] = 0 (2.5)

Where 𝑐 represents the parity check bits and 𝑠 the source information bits. It follows

that:

 𝐴𝑐 + 𝐵𝑠 = 0 (2.6)

Since we’re working in binary, this becomes

 𝑐 = 𝐴−1𝐵𝑠 (2.7)

These parity check bits are created with computational time proportional to 𝑚(𝑛 −

𝑚). It can be reduced however to approximately 𝑚2 if the process is broken down into

2 steps:

• Compute 𝑧 = 𝐵𝑠 which is of order 𝑚

• Compute 𝑐 = 𝐴−1𝑧, of order 𝑚 again, to make the total 𝑚2

Since A is sparse, it can be efficiently reduced to an Upper or lower triangular matrix

using the Gaussian-Jordan method.

 𝐴𝑐 = 𝑧 which is reduced to an upper triangular matrix yields 𝑈𝑐 = 𝑦 . 𝐴 can be

reduced into a lower triangular matrix to get 𝐿𝑦 = 𝑧.

 𝐴 = 𝐿 𝑈 (2.8)

Taking 𝐴 to be a 4 × 4 matrix[15],

22

[

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎43

] = [

𝑙11 0 0 0
𝑙21 𝑙22 0 0
𝑙31 𝑙32 𝑙33 0
𝐿41 𝑙42 𝑙43 𝑙44

] [

1 𝑢12 𝑢13 𝑢14

0 1 𝑢23 𝑢24

0 0 1 𝑢34

0 0 0 1

]

So, 𝐵, 𝐿, 𝑈 are used to create parity check bits in a following manner[16]:

• 𝑧 is computed first

• 𝐴 is reduced to a lower triangular matrix by Gaussian elimination method and

𝑦 is obtained through forward substitution. The equation used is 𝐿𝑦 = 𝑧.

• 𝐴 is reduced to an upper triangular matrix by Gaussian-Jordan elimination

method and our parity check bits 𝑐 are then obtained using back substitution.

𝑈𝑐 = 𝑦 is the equation being used.

Hence the name LU decomposition.

 To have 𝐴:

Set L and U to all zeros

Set F to H

For 𝑖 = 1 𝑡𝑜 𝑚

Find a non-zero element in (row, column) 𝑖, 𝑖 or in the later row/column.

Rearrange F’s and H’s rows and columns to put this element in row and column 𝑖, 𝑖.

Copy the column 𝑖 of F up to row 𝑖 of the column 𝑖 of U.

Copy the column 𝑖 of F from row 𝑖 of the column 𝑖 of L.

Add row 𝑖 of F to later rows with a 1 in column 𝑖.

End

Set B to the last 𝑛 − 𝑚 columns of the rearranged H.

Note that the rearranged H is the one saved for decoding.

The way in which the non-zero element is found is in such a way that the product the

number of non-zeros in its rows minus one and the number of non-zeros in its columns

minus one is minimized. It is called the minimal product rule. It minimizes the number

of modifications to the other rows which often produce more non-zeros, hence

maintaining the sparseness.

Example of LU decomposition:

Consider the following system of equations that need to be solved:

23

 𝑣 + 2𝑤 − 3𝑥 = 1 (2.9)

 2𝑣 − 𝑤 + 2𝑥 = 3 (2.10)

 3𝑣 + 3𝑤 − 4𝑥 = 5 (2.11)

Presenting them in a matrix form 𝐴𝑐 = 𝑧 where 𝑐 = (𝑣,𝑤, 𝑥):

[
1 2 −3
2 −1 2
3 3 −4

] [
𝑣
𝑤
𝑥
] = [

1
3
5
]

Reducing 𝐴 to a lower triangular matrix 𝐿 to solve for 𝐿𝑦 = 𝑧 by converting it to row

echelon using Gaussian elimination method:

𝑅2 → 𝑅2 − 2𝑅1

𝑅3 → 𝑅3 − 3𝑅1

The transformations result in:

[
1 2 −3
0 −5 8
0 −3 5

] [

𝑦1

𝑦2

𝑦3

] = [
1
1
2
]

𝑅3 → 5𝑅3 − 3𝑅2

The final 𝐿 matrix of 𝐴

[
1 2 −3
0 −5 8
0 0 1

] [

𝑦1

𝑦2

𝑦3

] = [
1
1
7
]

From the matrix, we have

𝑦3 = 7, −5𝑦2 + 8𝑦3 = 1 and 𝑦1 + 2𝑦2 − 3𝑦3 = 1. Using back substitution

𝑦3 = 7

𝑦2 =
8𝑦3 − 1

5
= 11

𝑦1 = 1 − 2𝑦2 + 3𝑦3 = 0

So, 𝑦 = (0,11,7)

For the upper triangular matrix to solve 𝑈𝑐 = 𝑦

[
1 2 −3
2 −1 2
3 3 −4

] [
𝑣
𝑤
𝑥
] = [

0
11
7

]

𝑅1 → 4𝑅1 − 3𝑅3

𝑅2 → 2𝑅2 + 𝑅3

24

[
−5 −1 0
7 1 0
3 3 −4

] [
𝑣
𝑤
𝑥
] = [

21
29
7

]

𝑅1 → 𝑅1 + 𝑅2

The final 𝑈 matrix of 𝐴

[
2 0 0
7 1 0
3 3 −4

] [
𝑣
𝑤
𝑥
] = [

50
29
7

]

The equations become

2𝑣 = 50, 7𝑣 + 𝑤 = 29 and 3𝑣 + 3𝑤 − 4𝑥 = 7

Using forward substitution

𝑣 =
50

2
= 25

𝑤 = 29 − 7𝑣 = −146

𝑥 =
3𝑣 + 3𝑤 − 7

4
= −90.75

Therefore,

𝑐 = (𝑣,𝑤, 𝑥) = (25,−146,−90.75)

Example of encoding using LU decomposition and using the MATLAB in-built encoder:

Using the matrix created above for an 8-bit information,𝑠, at a code rate of 𝑟 = 1/2,

the resultant codeword is given in the Table 2.1 below. The first 8 bits are the check

bits, the rest are information bits.

The rearranged 𝐻 is the one shown below

𝑛𝐻 =

[

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0]

25

Table 2.1: LU Decomposition Encoded Messages

Source

information
Codeword

0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0

0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0

1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 0 0 0 0

1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0

1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0

To use the in-built MATLAB encoder for the same information, the rearranged 𝐻 is

used because it resembles more the systematic form of the parity check matrix. Also,

the in-built encoder doesn’t support multi-channel, so the vector columns of the

source information are coded one by one. The table below shows the results using the

MATLAB encoder. The parity check bits are at the end of the codeword in this format,

but as earlier stated, their position is arbitrary.

26

 Table 2.2: MATLAB Encoded Messages

Source information codeword

0 0 1 1 1 1 1 0
0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 0 1 0 0 0 1 1 0 1
0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0
1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1

The codeword is then passed over to the channel where it encounters either Gaussian

noise or Rician Noise or the Rayleigh Noise. In this project, Gaussian and Rayleigh

channels are going to be used.

27

Chapitre 3 : LDPC Decoding

3.1 Introduction

Decoding is a process of recovering the information sent at the receiver. The

information received contains some errors due to the noise and interference in the

channel that need to be corrected. However, not all errors can be corrected correctly

as shall be explored in the errors section below. The best methods that best detect and

correct these errors are shown in the figure below [17]:

Figure 3. 1 : LDPC Decoders

All these methods are based on iterative Message passing[18], using the Sum-Product

algorithm to be specific. We are going to have a look on Hard decision decoding, Soft

decoding and errors and limitations of LDPC decoding.

28

3.2 Hard Decision decoding

This is basically the bit flipping method whereby the error in the codeword is detected

and corrected as individual bits[17]. The following H matrix will be used to

demonstrate how this works:

𝐻 =

[

0 0 1 1 0 0 0 0 1 0 1 0
1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0 0 0 1 1
0 1 1 0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 1 0 1
0 0 0 1 0 1 1 1 0 0 0 0]

Its Tanner graph has six check nodes noted c1 to c6 and 12 variable nodes v1 to v12 as

shown below:

Figure 3. 2 : Tanner graph before decoding

The codeword 𝑦 = (1 0 0 1 0 1 0 0 0 0 1 0) is sent and the signal received correspond

to the codeword:

𝑦′ = (1 0 0 1 0 1 0 𝟏 0 0 1 0)

The first step is the one in which the message received from the channel is passed

from the variable nodes to the check nodes through the edges. In our case v1sends a 1

to c2 and c3and all other variable nodes will do so to their connected check nodes.

The second step is for the check nodes to calculate their parity check equations and

sent back a bit they believe to be correct if the parity check equations are not satisfied

(i.e. are equal to logical 1). In the Tanner graph, if the parity check equation for a

particular check node is not satisfied, there is an odd number of connections to it as

indicated at the check nodes c4 and c6.

29

Figure 3. 3 : After one iteration

It is now clear that the parity check equations are binary additions of the messages

from variable nodes.

 𝑐1 = 𝑣3 ⊕ 𝑣4 ⊕ 𝑣9 ⊕ 𝑣11 = 0 (3.1)

 𝑐2 = 𝑣1 ⊕ 𝑣6 ⊕ 𝑣9 ⊕ 𝑣10 = 0 (3.2)

 𝑐3 = 𝑣1 ⊕ 𝑣5 ⊕ 𝑣11 ⊕ 𝑣12 = 0 (3.3)

 𝑐4 = 𝑣2 ⊕ 𝑣3 ⊕ 𝑣5 ⊕ 𝑣8 = 1 (3.4)

 𝑐5 = 𝑣2 ⊕ 𝑣7 ⊕ 𝑣10 ⊕ 𝑣12 = 0 (3.5)

 𝑐6 = 𝑣4 ⊕ 𝑣6 ⊕ 𝑣7 ⊕ 𝑣8 = 1 (3.6)

If the result of the parity check equations is a 1 (parity check equation not satisfied),

the check node sends back flipped results of the ones it received. Otherwise, it returns

the same messages that it received. Below is a table showing what a check node

received and what is sent back. The variable nodes that send (in received message

column) and receive (in sent messages column) zero messages are in brackets

Check node Received message Sent message

c1 v4; v11;(v3;v9) v4; v11;(v3;v9)

c2 v1; v6; (v9; v10) v1; v6; (v9; v10)

c3 v1; v11; (v5; v12) v1; v11; (v5; v12)

c4 v8; (v2; v3; v5) v2; v3; v5; (v8)

c5 (v2; v7; v10; v12) (v2; v7; v10; v12)

c6 v4; v6; v8; (v7) v7; (v4; v6; v8)

Table 3.1 : Updating table

30

Step 3 is for the variable node to decide its value considering the response from the

check node and send its decision back to the check nodes for parity check again, given

that the maximum number of iterations allowed has not been reached. The decision is

simply based on a majority vote (majority of ones or zeros at each variable node as

shown in the Table 3.2).

According to the decisions shown in Table 3.2, the parity check equations are all

satisfied since:

𝑐1 = 𝑣3 ⊕ 𝑣4 ⊕ 𝑣9 ⊕ 𝑣11 = 0

𝑐2 = 𝑣1 ⊕ 𝑣6 ⊕ 𝑣9 ⊕ 𝑣10 = 0

𝑐3 = 𝑣1 ⊕ 𝑣5 ⊕ 𝑣11 ⊕ 𝑣12 = 0

𝑐4 = 𝑣2 ⊕ 𝑣3 ⊕ 𝑣5 ⊕ 𝑣8 = 0

𝑐5 = 𝑣2 ⊕ 𝑣7 ⊕ 𝑣10 ⊕ 𝑣12 = 0

𝑐6 = 𝑣4 ⊕ 𝑣6 ⊕ 𝑣7 ⊕ 𝑣8 = 0

Variable

node

Check nodes

contributing

Original, check node value

1, check node value 2

Decision

v1 c2; c3 1; 1; 1 1

v2 c4; c5 0; 1; 0 0

v3 c1; c4; 0; 0; 1 0

v4 c1; c6 1; 1; 0 1

v5 c3; c4; 0; 0; 1 0

v6 c2; c6 1; 1; 0 1

v7 c5; c6 0; 0; 1 0

v8 c4; c6 1; 0; 0 0

v9 c1; c2; 0; 0; 0 0

v10 c2; c5 0; 0; 0 0

v11 c1; c3; 1 ; 1; 1 1

v12 c3; c5 0 ;0 ; 0 0

Table 3.2 Decision table

31

 Since all parity check equations are satisfied, then the values of the variable nodes

constitute the decoded codeword i.e.

𝑦 = (1 0 0 1 0 1 0 0 0 0 1 0) .

 If the maximum number of iterations allowed is reached and the parity check

equations are not satisfied, then the decoder is in the situation of a decoding failure.

Figure 3. 4 : Tanner Graph after the second Iteration

3.3 Soft Decision Decoding

This is a decoding method based on the concept of Belief Propagation[19]. The core

idea of this method is the same as in Hard decision except that whereas the input and

output messages in the latter are bits, the probabilities are used in the Belief

Propagation. Input bit probabilities are called the 𝑎𝑝𝑟𝑖𝑜𝑟𝑖 probabilities, for they were

known before being processed by the decoder. The output bit probabilities are the

𝑎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 probabilities.

The best way to start exploring the belief propagation is in its probability domain since

the others are its derivatives.

3.3.1 Belief propagation Probability Domain

The optimal soft decoder seeks to maximize the probability of one of the codewords

given the received information at the decoder and that all parity check equations are

32

satisfied[9][20][21]. It seeks to maximize the probability 𝑃(𝑐|𝑦, 𝐻𝑐𝑇 = 0) where c is

the sent codeword and y is the received codeword

The principal probability used here is 𝑃𝑖 = 𝑃(𝑐𝑖 = 1 |𝑦𝑖), the probability that a bit is 1

in the codeword, given the received bit. The other main probabilities used in the

algorithm are the information probability, from a variable node 𝑐𝑖 to a check node also

known as pseudo-posterior probability 𝑞𝑖,𝑗 and the response probability, calculated at

the check node (factor node 𝑓𝑗) and then sent to the variable node 𝑟𝑗,𝑖

The belief propagation algorithm runs in two main steps, 𝑡ℎ𝑒 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑡𝑒𝑝 and

𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑒𝑝[20].

Analogous to the bit flipping algorithm, the initialization in belief propagation is when

the information probabilities from the channel are sent to the check node from the

variable nodes

Figure 3. 5 : Vertical Step

Figure 3. 6 : Horizontal Step

For initialization, the variable nodes send:

 𝑞𝑖,𝑗(1) = 𝑃𝑖 (3.7)

 𝑞𝑖,𝑗(0) = 1 − 𝑃𝑖 (3.8)

Horizontal step

As shown in Figure 3.6, this is the updating of 𝑟𝑗,𝑖. It depends on all the variable nodes

connected to the check node. The formula used is :

𝑟𝑗,𝑖(0) =

1

2
+

1

2
∏ [1 − 2𝑞𝑖′𝑗(1)]

𝑖′ 𝜖 𝑉𝑗\𝑖

(3.9)

33

 𝑟𝑗,𝑖(1) = 1 − 𝑟𝑗,𝑖(0) (3.10)

The formula calculates the probability that there is an even number of 1s among the

variable nodes connected except for 𝑐𝑖 (the meaning of 𝑉𝑗\𝑖). The probability 𝑟𝑖,𝑗(0)

that 𝑐𝑖 is a 0.

Vertical Step

This as shown in Figure 3.5, is the step in which the variable nodes update their

messages according to the responses they get from the check nodes. The formulae for

the updating are given below:

 𝑞𝑖,𝑗(0) = 𝐾𝑖,𝑗(1 − 𝑃𝑖) ∏ 𝑟𝑗′,𝑖

𝑗′ 𝜖 𝑐𝑖\𝑗

(0) (3.11)

 𝑞𝑖,𝑗(1) = 𝐾𝑖,𝑗𝑃𝑖 ∏ 𝑟𝑗′,𝑖

𝑗′ 𝜖 𝑐𝑖\𝑗

(1) (3.12)

Where 𝐾𝑖,𝑗 are normalizing constants to ensure that 𝑞𝑖,𝑗(1) + 𝑞𝑖,𝑗(0) = 1 always and

𝑐𝑖\𝑗 means that all the check nodes except for 𝑓𝑗.

The variable node updates its current message 𝑐̂𝑖by voting for the greater probability

from the formulae below:

 𝑄𝑖(0) = 𝐾𝑖(1 − 𝑃𝑖) ∏ 𝑟𝑗,𝑖(0)

𝑗 𝜖 𝑐𝑖

 (3.13)

 𝑄𝑖(1) = 𝐾𝑖𝑃𝑖 ∏ 𝑟𝑗,𝑖(0)

𝑗 𝜖 𝑐𝑖

 (3.14)

The calculation includes all the check nodes connected to the variable node

34

Each bit of the resultant codeword is therefore obtained using

𝑐̂𝑖 = {
1, 𝑖𝑓 𝑄𝑖(1) > 𝑄𝑖(0)

0, 𝑒𝑙𝑠𝑒

The algorithm terminates when all the parity check equations are satisfied or when the

maximum number of iterations allowed has been reached. Otherwise, it goes back to

the horizontal step. The whole algorithm is summarized as follows:

Probability Domain Decoding Algorithm

Input: H; received vector 𝑌; maximum number of iterations L, noise variance 𝑁0/2.

Initialization: Set 𝑞𝑖,𝑗(𝑥) = 𝑃𝑖(𝑥) for all 𝐻(𝑖, 𝑗) = 1.

𝑃𝑖 = 𝑃(𝑐𝑖 = −1|𝑦𝑖) = 1
(1 + exp (2𝑦𝑖/𝑁0/2))⁄

While number of iterations 𝑙 < 𝐿

Horizontal step :

𝑟𝑗,𝑖(0) =
1

2
+

1

2
∏ [1 − 2𝑞𝑖′𝑗(1)]

𝑖′ 𝜖 𝑉𝑗\𝑖

𝑟𝑗,𝑖(1) = 1 − 𝑟𝑗,𝑖(0)

Vertical step :

𝑞𝑖,𝑗(0) = 𝐾𝑖,𝑗(1 − 𝑃𝑖) ∏ 𝑟𝑗′,𝑖

𝑗′ 𝜖 𝑐𝑖\𝑗

(0)

𝑞𝑖,𝑗(1) = 𝐾𝑖,𝑗𝑃𝑖 ∏ 𝑟𝑗′,𝑖

𝑗′ 𝜖 𝑐𝑖\𝑗

(1)

Also,

𝑄𝑖(0) = 𝐾𝑖(1 − 𝑃𝑖) ∏ 𝑟𝑗,𝑖(0)

𝑗 𝜖 𝑐𝑖

𝑄𝑖(1) = 𝐾𝑖𝑃𝑖 ∏ 𝑟𝑗,𝑖(0)

𝑗 𝜖 𝑐𝑖

Decision: Set 𝑐̂𝑖 = 1 𝑖𝑓𝑄𝑖(1) > 𝑄𝑖(0) else Set 𝑐̂𝑖 = 0.

If 𝐻𝑐̂ = 0, then Stop. Otherwise, loop back to horizontal step.

35

Otherwise, let the last decoded iteration as the codeword.

Example from the codewords in section 2.3.2,

𝑥 = [0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0]

was sent and signal corresponding to:

𝑦 = [0 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0]

was received. After decoding using this method in only 2 iterations, x was wholly

recovered.

𝑥’ = [0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0]

was obtained when a second error was introduced into the sent codeword

𝑦 = [0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0].

This however is not the sent information but it is another possible sent information.

The disadvantage of this decoder is that it has got computational complexity greater

than the others due to many terms multiplying each other[21].To counter that

disadvantage, we introduce the logarithms to change the multiplications to the

additions which are less of computational burden.

3.3.2 Belief Propagation Log Domain

 In addition to lessening computational burden[21], introducing logarithms also helps

in stabilizing the normalizing constants[9]. Everything is expressed as logarithms of

ratios of probabilities. First there needs to be a mapping from 𝑐𝑖 𝜖 {0,1} to

𝑋𝑖𝜖 {+1,−1}. The formula 𝑋𝑖 = 1 − 2𝑐𝑖 is used to achieve the mapping. Now

expressing the important probabilities that were used in the probability domain:

𝐿(𝑋𝑖) = 𝑙𝑛

𝑃(𝑋𝑖 = +1 |𝑌𝑖 = 𝑦𝑖)

𝑃(𝑋𝑖 = −1 |𝑌𝑖 = 𝑦𝑖)

(3.15)

36

𝐿(𝑟𝑗,𝑖) = 𝑙𝑛

𝑟𝑗,𝑖(+1)

𝑟𝑗,𝑖(−1)

(3.16)

𝐿(𝑞𝑖,𝑗) = 𝑙𝑛

𝑞𝑖,𝑗(+1)

𝑞𝑖,𝑗(−1)

(3.17)

𝐿(𝑄𝑖) = 𝑙𝑛

𝑄𝑖(+1)

𝑄𝑖(−1)

(3.18)

The check node response as illustrated in the probability domain is given by

𝑟𝑗,𝑖(−1) = 1 − 𝑟𝑗,𝑖(+1) =

1

2
−

1

2
∏ [1 − 2𝑞𝑖′𝑗(1)]

𝑖′ 𝜖 𝑉𝑗\𝑖

(3.19)

Rearranging it gives us

 1 − 2𝑟𝑗,𝑖(−1) = ∏ [1 − 2𝑞𝑖′𝑗(1)]

𝑖′ 𝜖 𝑉𝑗\𝑖

 (3.20)

Using the equivalence, tanh(
1

2
log

𝑠

𝑡
) = 1 − 2𝑡, With 𝑠 = 𝑟𝑗,𝑖(+1) and 𝑡 = 𝑟𝑗,𝑖(−1), we

will remain with

tanh

1

2
𝐿(𝑟𝑗,𝑖) = ∏ tanh

1

2
𝐿(𝑞𝑖,𝑗)

𝑖′ 𝜖 𝑉𝑗\𝑖

(3.21)

Simplifying it to become

𝐿(𝑟𝑗,𝑖) = 2 tanh−1 ∏ tanh

1

2
𝐿(𝑞𝑖,𝑗)

𝑖′ 𝜖 𝑉𝑗\𝑖

(3.22)

Let 𝐿(𝑞𝑖,𝑗) = 𝛼𝑖,𝑗𝛽𝑖,𝑗 where 𝛼𝑖,𝑗 = 𝑠𝑔𝑛(𝐿(𝑞𝑖,𝑗)) and 𝛽𝑖,𝑗 = |𝐿(𝑞𝑖,𝑗)|

Therefore

𝐿(𝑟𝑗,𝑖) = (∏ 𝛼𝑖′,𝑗

𝑖′ 𝜖 𝑉𝑗\𝑖

) . 2 tanh−1 ∏ tanh
1

2
𝛽𝑖′,𝑗

𝑖′ 𝜖 𝑉𝑗\𝑖

(3.23)

37

𝐿(𝑟𝑗,𝑖) = ∏ 𝛼𝑖′,𝑗

𝑖′ 𝜖 𝑉𝑗\𝑖

. ∅ [∑ ∅(𝛽𝑖,𝑗)

𝑖′ 𝜖 𝑉𝑗\𝑖

]

(3.24)

With

∅(𝑥) = − ln tanh
𝑥

2
= ln

𝑒
𝑥
2 + 𝑒

−
𝑥
2

𝑒
𝑥
2 − 𝑒

𝑥
2

= ln
𝑒𝑥+ 1

𝑒𝑥−1
,

Also, the function ∅(∅(𝑥)) = 𝑥 (function is its own inverse).

The updates at the bit nodes are given as follows:

 𝐿(𝑞𝑖,𝑗) = 𝐿(𝑋𝑖) + ∑ 𝐿(𝑟𝑗′,𝑖)

𝑗′ 𝜖 𝑐𝑖\𝑗

 (3.25)

 𝐿(𝑄𝑖) = 𝐿(𝑋𝑖) + ∑ 𝐿(𝑟𝑗,𝑖)

𝑗 𝜖 𝑐𝑖

 (3.26)

The decision is made according to the condition:

𝑐̂𝑖 = {
0, 𝑖𝑓 𝐿(𝑄𝑖) > 0
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Here is the summary of the belief propagation log domain decoding

Log Domain Decoder Algorithm

Input: H, Noise variance 𝑁0/2, maximum number of iterations K, channel output

probabilities

Initialization: for all (𝑖, 𝑗) such that 𝐻(𝑖, 𝑗) = 1

Set 𝐿(𝑞𝑖,𝑗) = 𝐿(𝑋𝑖) =
2𝑦𝑖

𝑁0/2

If the number of iterations <K, proceed. Otherwise stop and give the codeword from

the last iteration as the final codeword.

38

Horizontal step

𝐿(𝑟𝑗,𝑖) = ∏ 𝛼𝑖′,𝑗

𝑖′ 𝜖 𝑉𝑗\𝑖

. ∅ [∑ ∅(𝛽𝑖,𝑗)

𝑖′ 𝜖 𝑉𝑗\𝑖

]

Where 𝛼𝑖,𝑗 = 𝑠𝑔𝑛(𝐿(𝑞𝑖,𝑗)) and 𝛽𝑖,𝑗 = |𝐿(𝑞𝑖,𝑗)| and ∅(𝑥) = ln
𝑒𝑥+ 1

𝑒𝑥−1
,

Vertical step:

𝐿(𝑞𝑖,𝑗) = 𝐿(𝑋𝑖) + ∑ 𝐿(𝑟𝑗′,𝑖)

𝑗′ 𝜖 𝑐𝑖\𝑗

For each bit:

𝐿(𝑄𝑖) = 𝐿(𝑋𝑖) + ∑ 𝐿(𝑟𝑗,𝑖)

𝑗 𝜖 𝑐𝑖

Decision:

𝑐̂𝑖 = {
0, 𝑖𝑓 𝐿(𝑄𝑖) > 0
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example from the codewords in section 2.3.2,

𝑥 = [0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0]

was sent and signal corresponding to:

𝑦 = [0 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0]

was received. After decoding using this method in only 2 iterations, x was wholly

recovered.

𝑥’ = [0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0]

was obtained when a second error was introduced into the sent codeword

𝑦 = [0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0].

This however is not the sent information but it is another possible sent information.

39

3.3.3 Belief Propagation Simplified Log Domain

It is a variation of the BP Log domain with the difference being the inputs only. Unlike

all other described soft decoders, this one doesn’t make consider the noise variance

𝛿2. The probability 𝑃𝑖(𝑥) is replaced by minimum(x)[9]. The log likelihood function is

replaced by the received vector waveform to simplify it further , hence the name BP

simplified log domain.[21]

Example from the codewords in chapter 2.3.2,

𝑥 = [0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0]

was sent and signal corresponding to:

𝑦 = [0 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0]

was received. After decoding using this method in only 2 iterations, x was wholly

recovered.

𝑥’ = [0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0]

was obtained when a second error was introduced into the sent codeword

𝑦 = [0 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0].

This however is not the sent information but it is another possible sent information.

Simplified Log Domain Algorithm

Input: H, maximum number of iterations K, channel output vector 𝑦

Initialization: for all (𝑖, 𝑗) such that 𝐻(𝑖, 𝑗) = 1

Set 𝐿(𝑞𝑖,𝑗) = 𝐿(𝑋𝑖) = −𝑦𝑖

If the number of iterations <K, proceed. Otherwise stop and give the codeword from

the last iteration as the final codeword.

Horizontal step

𝐿(𝑟𝑗,𝑖) = ∏ 𝛼𝑖′,𝑗

𝑖′ 𝜖 𝑉𝑗\𝑖

. ∅ [∑ ∅(𝛽𝑖,𝑗)

𝑖′ 𝜖 𝑉𝑗\𝑖

]

40

Where 𝛼𝑖,𝑗 = 𝑠𝑔𝑛(𝐿(𝑞𝑖,𝑗)) and 𝛽𝑖,𝑗 = |𝐿(𝑞𝑖,𝑗)| and ∅(𝑥) = ln
𝑒𝑥+ 1

𝑒𝑥−1
,

Vertical step:

𝐿(𝑞𝑖,𝑗) = 𝐿(𝑋𝑖) + ∑ 𝐿(𝑟𝑗′,𝑖)

𝑗′ 𝜖 𝑐𝑖\𝑗

For each bit:

𝐿(𝑄𝑖) = 𝐿(𝑋𝑖) + ∑ 𝐿(𝑟𝑗,𝑖)

𝑗 𝜖 𝑐𝑖

Decision:

𝑐̂𝑖 = {
0, 𝑖𝑓 𝐿(𝑄𝑖) > 0
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3.4 Errors and Limitations of LDPC decoding

A decoding is successful when all bits are eventually correct [22]. For any given

decoder input y, a failure set is defined as 𝑇(𝑦) such that for every decoding success,

𝑇(𝑦) = ∅. Consequently, for a decoding failure, 𝑇(𝑦) ≠ ∅. 𝑇(𝑦) is called a trapping set

and it is found by fixing a large number of iterations for example 150. If the decoder

has not converged earlier, add a further smaller number of iterations, for example 20.

The union of the bits which do not correctly decode at all in those additional 20

iterations is identified as the trapping set. These trapping sets depends on decoding

algorithms and the decoder input. Generally, the Bit flipping algorithm exhibits larger

trapping sets.

41

Chapitre 4 : Decoding signals in Noisy channels

4.1 Introduction

In this chapter, different performances of the four decoding algorithms (Bit-Flipping,

Log Domain, Simplified Log Domain and Probability domain) presented in chapter3 are

studied by simulation using MATLAB as follows:

- Effects of Signal to noise ratio on Bit Error Rate

- Effects of number of iterations on BER

- Effects of codelength on BER

- Effects of the channel Type on BER

The source messages used are created randomly using a MATLAB function and then

modulated using BPSK. These are coded using LDPC coder studied in chapter 2 and

passed on to the noisy channel (AWGN and Rayleigh) and then decoded using the 4

algorithms above mentioned.

4.2 Effects of EbN0 on BER

In this section, an investigation is made for the effects of increasing the signal to noise

ratio for a codeword of length N=2000 and number of iterations k=3. This is done for

20 frames of the codeword through the Rayleigh channel.

As can be seen from figure 4.1, as the signal to noise ratio increases, the BER

decreases. The soft decoders converge for SNR greater than 3dB and the hard decoder

for SNR greater than 7dB. The Bit flipping decoder is less efficient than the other

decoders. One can notice that the Log Domain and the Probability Domain give the

same results and they are almost the same as the Simplified Log Domain.

42

Figure 4. 1: effects of EbN0 on BER

4.3 Effects of number of iterations on BER

This section investigates the effects of number of iterations on BER by fixing the code

length N=2000 and number of frames, 20, for all the decoders. This is done for the

Rayleigh channel.

4.3.1 Bit-Flipping Decoder

The results of Figure 4.2 show the effects of the number of iterations on BER values.

One can notice that the Bit Flipping decoder converges for lower SNR values when

more iterations are used.

Figure 4. 2 : effects of number of iterations of a Bit flipping decoder

43

4.3.2 Log Domain Decoder

Figure 4.3 shows the performance of the log domain decoder for different number of

iterations. One can notice that the decoder converges for SNR values greater 2dB in 6

and 8 iterations

Figure 4. 3 : effects of number of iterations on a log domain decoder

4.3.3 Simplified Log Domain Decoder

Figure 4.4 shows the performance of the simplified log domain decoder for different

number of iterations. One can notice that the decoder converges for SNR values

greater 2dB in 6 and 8 iterations

44

Figure 4. 4 : effects of number of iterations on a simplified Log domain decoder

4.3.4 Probability domain Decoder

Figure 4.5 shows the performance of the probability domain decoder for different

number of iterations. One can notice that the decoder converges for SNR values

greater 2dB in 6 and 8 iterations.

The probability domain decoder and the simplified log domain decoder give almost the

same results.

Figure 4. 5 : effects of number of iterations on a probability domain decode

45

4.4 Effects of codelength on BER

In this section, an investigation is done for the performances of different decoders for

different code lengths using 20 frames in only 3 iterations for different SNR values of

𝐸𝑏𝑁0 = [0 ∶ 10]. This is done for the Rayleigh channel.

4.4.1 Bit flipping decoder

Figure 4.6 shows the effects of code length on a bit flipping decoder.

Code lengths of N=1500 converge for SNR values greater than 6dB. For code lengths of

N=500, N=1000 and N=2000, the convergence is reached for SNR values greater than

7dB. The one of N=500 exhibit a highest BER at 7dB and N=2000 a lowest.

Figure 4. 6 : effects of code length on a bit flipping decoder

4.4.2 Log Domain decoder

Figure 4.7 shows the effects of code length on a log domain decoder

46

Figure 4. 7 : effects of code length on a log domain decoder

The code lengths of N=500, N=1500 are converging for SNR values greater than 3 dB.

N=1000 and N=2000 are converging for SNR greater than 4dB with N=2000 having a

higher BER at 4dB.

4.4.3 Simplified Log Domain Decoder

Figure 4.8 shows effects of code length on a simplified log domain decoder

Figure 4. 8 : effects of code length on a simplified log domain decoder

N=500, N=1500 and N=2000 converge for SNR greater than 4dB with N=2000 having

the lowest BER value and N=500 the highest. N=1000 converge for SNR greater than

3dB.

47

4.4.4 Probability Domain Decoder

Figure 4.9 shows the effects of code length on a probability domain decoder.

The decoder converges for SNR values greater than 3dB for the code lengths N=1500

and N=2000 which has a higher BER at 3dB. For N=1000 and N=500, convergence is

reached for SNR values greater than 4dB and N=500 has a higher BER value at 4dB.

Figure 4. 9 : effects of code length on a probability domain decoder

4.5 Effects of the channel Type on BER

This section shows the performances of the decoders in decoding a codeword of

length N=2000 in 20 frames using only 3 iterations and SNR values 𝐸𝑏𝑁0 = [0: 10].

4.5.1 Bit Flipping decoder

Figure 4. 10 shows the performance of a bit flipping decoder for different channel

types.

48

The decoder converges at a greater SNR value for Rayleigh channel (7dB) than for

AWGN (5dB). And for all values before convergence, the AWGN has smaller BER

values.

Figure 4.10: Performance of a bit flipping decoder for different channel types

4.5.2 Log Domain Decoder

Figure 4. 11 shows the performance of a Log domain decoder for different channel

types.

Figure 4.11: Performance of a Log domain decoder for different channel types

49

The decoder converges for SNR values greater than 1dB for an AWGN channel and 4dB

for a Rayleigh channel.

4.5.3 Simplified Log Domain decoder

Figure 4. 12 shows the performance of a simplified log domain decoder for different

channel types

Figure 4. 12: Performance of a simplified log domain decoder for different channel types

The decoder converges for SNR values greater than 1dB in an AWGN channel. For the

Rayleigh channel, it converges for values greater than 3dB.

4.5.4 Probability Domain decoder

Figure 4. 13 shows the performance of a bit flipping decoder for different channel

types.

The decoder converges for SNR values greater than 2dB in an AWGN and for values

greater than 4dB in a Rayleigh channel

50

Figure 4. 13: Performance of a bit flipping decoder for different channel types

4.6 Conclusion

In this chapter, are studied the performances of the four decoding algorithms

presented in chapter3 namely the effects of signal to noise ratio on BER, the effects of

number of iterations on the BER, the effects of code length on BER and the effects of

the channel type.

The first case studied as the effect of the signal to noise ratio on the results of the 4

decoders with fixed N=2000 and fixed k=3. It was found that the soft decoders

converge after 3dB and the hard decoder after 6dB. The Bit flipping decoder is less

efficient than the other decoders. It was noticed also that the Log Domain and the

Probability Domain give the same results and they are almost the same as the

Simplified Log Domain.

51

The second case was the investigation of the effect of the number of iterations with

fixed code length (N=2000). It was found that the probability domain decoder and the

simplified log domain decoder give almost the same results and they are more efficient

than the bit flipping decoder.

The third case which is studied is the effect of code length with fixed number of

iterations k=3. It was found that the convergence is best for N=2000

The last case which is studied is the effect of the type of channel on the results of

decoders. All the decoders give better results with AWGN channel

52

General Conclusion

In chapter 1, a brief study of a digital communication system was done. It is noted that

due to noise from the channels, modelled as Gaussian Channel, Rician Channel and

Rayleigh channel, there needs to be a channel code in place to detect and correct the

errors induced into the sent codewords. It is noted also that the block codes are better

as a channel coding technic due to a memory overhead which adds encoding

complexity to convolutional codes. Consequently, a brief study of the linear block

codes is done. Decoding channels are also studied and the BSC’s ability to give a result

is the reason why it is chosen most of the times ad in this project also.

In chapter 2, LDPC codes are introduced, their matrix and graphical presentations are

explored, particularly the Tanner graph. In a bid to construct an LDPC encoder, the

creation of the parity check matrix is explored using two methods, the Gallagher

construction and the Neal and MacKay construction. For their better irregular codes,

the Neal and MacKay construction method is the used to encode a random source of

binary stream of information using LU decomposition due to its lower complexity as

compared to the systematic encoding.

In chapter 3, the iterative message passing decoding method called the sum-product

algorithm is studied. The hard decision version of it called the bit flipping algorithm is

studied in detail together with the soft decision. To aid the study of the soft decision

decoding, the probability domain, the log domain and the simplified log domain

decoding methods are used. A study also of the limitations of the detectable and

correctable errors is also done and the all depend on the minimum distance of the

code.

In chapter4, are studied the performances of the four decoding algorithms presented

in chapter3 namely the effects of signal to noise ratio on BER, the effects of number of

53

iterations on the BER, the effects of code length on BER and the effects of the channel

type.

The first case studied as the effect of the signal to noise ratio on the results of the 4

decoders with fixed N=2000 and fixed k=3. It was found that the soft decoders

converge after 3dB and the hard decoder after 6dB. The Bit flipping decoder is less

efficient than the other decoders. It was noticed also that the Log Domain and the

Probability Domain give the same results and they are almost the same as the

Simplified Log Domain.

The second case was the investigation of the effect of the number of iterations with

fixed code length (N=2000). It was found that the probability domain decoder and the

simplified log domain decoder give almost the same results and they are more efficient

than the bit flipping decoder.

The third case which is studied is the effect of code length with fixed number of

iterations k=3. It was found that the convergence is best for N=2000

The last case which is studied is the effect of the type of channel on the results of

decoders. All the decoders give better results with AWGN channel.

We can suggest for future work, to use the LDPC decoder with different modulation

schemes QAM, M-PSK, and using real data like images, voice etc.

54

Bibliography

1. Gallagher RG. Low-density parity-check codes. Cambridge, Mass.: MIT-Press; 1963

2. Richardson T, Urbanke R. Modern Coding Theory. Cambridge: Cambridge
University Press; 2008

3. Shannon CE." A Mathematical Theory of Communication", The Bell System
Technical Journal, 1948, vol.27 pp 379-423,623-656 :55.

4. Proakis JG, Salehi M. Digital communications. 5th ed. Boston: McGraw-Hill; 2008.
1150 p.

5. Additive White Gaussian Noise Channels [Internet]. [cited 2018 Jan 14]. Available
from:
http://www.wirelesscommunication.nl/reference/chaptr05/digimod/awgn.htm

6. Neubauer A, Freudenberger J, Kuehn V. "Coding Theory: Algorithms,
Architectures, and Applications", John Wiley and Sons, 2007, p 355:27-30.

7. Shu Lin DJCJ. "Error Control Coding Fundamentals and Applications", Prentice
Hall, 1983, Electrical Engineering Series, p 624 :3-4

8. Simon Haykin. "Communication Systems", John Wiley and Sons, 4th ed, 2001, p
816:581-590,632-634,685-687

9. Costello DJ. Jr "An Introduction to Low-Density Parity Check Codes", Dept of
Electrical Engineering Notre Damme University, 2009 :78.

10. Sasmita. Interview Questions and Answers on Information Theory [Internet].
Electronics Post. 2017 [cited 2018 Apr 10]. Available from:
https://electronicspost.com/interview-questions-and-answers-on-information-
theory/

11. Tanner R. "A recursive approach to low complexity codes", IEEE Trans Inf Theory.
1981 September; vol.27(5):533–547.

12. Richardson TJ, Shokrollahi MA. "Design of Capacity-Approaching Irregular Low-
Density Parity-Check Codes", IEEE Trans Inf THEORY. 2001;47(2):619-635.

13. MacKay DJC. "Good Error-Correcting Codes Based on Very Sparse Matrices", IEEE
Trans Inf Theory, 1999; vol.45(2):399-432.

55

14. Qi H, Goertz N. "Low-Complexity Encoding of LDPC Codes: A New Algorithm and
its Performance", Institute for Digital Communications Joint Research Institute
for Signal & Image Processing School of Engineering and Electronics University of
Edinburg, Scotland UK, :6.

15. Patrick O. Wheately,Curtis F. Gerard. "Applied Numerical Analysis", Addison-
Wesley Publishing Company, 3rd ed, 1984, 579 p.

16. Software for Low Density Parity Check Codes [Internet]. [cited 2018 Jul 26].
Available from: http://www.cs.utoronto.ca/~radford/ftp/LDPC-2006-02-
08/index.html

17. Sonia E, Gupta ES. "HARD DECISION AND SOFT DECISION DECODING
ALGORITHMS FOR LDPC AND QC-LDPC CODES", International Journal of Computer
Science and Mobile Computing, vol.4(9), September 2015; p 182-191

18. Kschischang F, J. Frey B, Loeliger HA. "Factor Graphs and the Sum-Product
Algorithm", IEEE Transactions on Information Theory 47(2),2001, p498 - 519.

19. Neufeld E. Judea Pearl. "Probabilistic reasoning in intelligent systems: networks of
plausible inference. Series in representation and reasoning", Morgan Kaufmann,
San Mateo, 552 pp. Journal of Symbolic Logic, 1993 June; vol. 58(2):721–721.

20. Moon TK. "Error Correction Coding, Mathematical Methods and Algorithms",
John Wiley and Sons, 2005, p 756: 83-88,634-654..

21. W. E. Ryan, An introduction to LDPC codes, in Coding and Signal Processing for

Magnetic Recoding Systems (Bane Vasic, ed.), CRC Press, 2004

22. T. J. Richardson, “Error floors of LDPC codes,” in 41st Annual Allerton Conference on

communications, Control and Computing, Oct. 2003, pp.;1426–1435

https://www.researchgate.net/journal/0018-9448_IEEE_Transactions_on_Information_Theory

