
PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

Ministry of Higher Education and Scientific Research

UNIVERSITY OF SAAD DAHLEB BLIDA

Faculty of sciences

Computer Science Department

MASTER’S THESIS

In Computer Science

Option : Natural Language Processing

Toward an improvement of the genetic
algorithm: application to Max-SAT

problem

By

Ait Hellal Noureddine
Members of the thesis committee

Dr. HIRECHE C Supervisor

Dr. MEZZI M President

Mr. KAMECHE H Examinator

Defended on June 25, 2023

Dedication

I thank my family for their continuous support and encouragement.

I am also thankful for my friends for being such great company throughout this.

Noureddine AIT HELLAL .

Blida, July 8, 2023.

ii

Acknowledgment

First, I would like to express my admiration and gratitude to my advisor, Mrs. Hireche,

for her invaluable guidance and assistance. Her hard work and dedication were instru-

mental in the success of this work.

I would like to thank the president for the honor of chairing the defense jury.

I thank the examinators, for providing me the chance to learn from their judgment

and expertise.

iii

Abstract

A considerable amount of research has been conducted on the optimization of

genetic algorithms, what lead to a wide range of different genetic operators and

solution representations; however, parameter tuning, which is a very crucial part

of the good performance of the algorithm, is rarely discussed. This step can be

considered a search for a set of good parameters that maximize the performance of

the algorithm.

Taking this into consideration, we can say that this process is a double search

search for good parameters, then search for a solution. In this work, we propose a

genetic algorithm that combines the two search spaces, where a chromosome does

not only represent a solution to the problem at hand but a set of genetic parameters

too.

This method achieved a 4% increase in performance compared to the classic

genetic algorithms. This result was reached after comparing the performance of our

methods with all the combinations of genetic operators found in the state of the

art, taking into consideration the temporal and hardware limitations.

Furthermore, this search space unification led to the elimination of the need to

initialize parameters for each problem, which made it problem-independent.

Keywords: NP-completeness, MAX-SAT, Evolutionary Algorithms, Genetic Al-

gorithm, Parameter tuning.

iv

Résumé

Plusieurs travaux ont été menés sur l’optimisation des algorithmes génétiques, ce

qui a conduit à un vaste ensemble d’opérateurs génétiques et différentes représentations

de solutions. Cependant, le paramètrage de ces opérateurs, qui est une étape cru-

ciale pour assurer la bonne performance de l’algorithme, est rarement discuté. Cette

étape peut être considérée comme la recherche d’un ensemble de paramètres efficaces

qui maximisent la performance de l’algorithme. En prenant cela en considération,

nous pouvons dire que ce processus est une double recherche (recherche des bons

paramètres, puis recherche d’une solution).

Dans ce mémoire, nous proposons un algorithme génétique qui combine les deux

espaces de recherche. Où un chromosome ne représente pas seulement une solution

au problème posé, mais aussi une série de paramètres génétiques.

Cette méthode a permis une amélioration des performances de 4 % par rapport

aux algorithmes génétiques classiques. Ce résultat a été obtenu après avoir com-

paré les performances de nos méthodes avec toutes les combinaisons d’opérateurs

génétiques de l’état de l’art, en tenant compte des limitations temporelles et matérielles.

En outre, cette unification de l’espace de recherche a permis d’éliminer la nécessité

d’initialiser les paramètres pour chaque problème, ce qui a rendu la méthode indépendante

du problème.

Mot-clés : NP-complétude, MAX-SAT, Algorithmes évolutionnaires, Algorithme

Génétique, Paramétrage.

v

P�l�

T�wm�� Y�� « � Am� , Tyny��� �Ay�EC�w��� �ys�� �w� �w�b�� �� ryb� Cd� º�r�� ��

TK�An� �t� A� A¾C A� ,��Ð ��¤ ; �wl��� �®y�m�¤ Tflt�m�� Tyny��� �Aylm`�� �� T`F�¤

­wW��� £@¡ CAbt�� �km§ .Ty�EC�w�l� dy��� º� °l� A¾d� �h� ºz� w¡¤ ,�Aml`m�� XbR

.Ty�EC�w��� º� � �� d§z� ¨t�� ­dy��� �Aml`m�� �� T�wm�� �� A¾A���

�Aml`� �� ��b��) �¤ z� ��� Tylm� £@¡ � �wq�� Annkm§ ,CAbt�¯� ¨� ��Ð @�� ��

¨t�As� �y� �m�� Tyny� Ty�EC�w� �rtq� ,��b�� �@¡ ¨� .(�� �� ��b�� �� ,­dy�

�� T�wm�� A¾AS§� ��m§ �� ,	s�� T�¤rWm�� TlkKml� ¾®� ���� ��m§ ¯ �y� ,��b��

.Tyny��� �Aml`m��

.T§dylqt�� Tyny��� �Ay�EC�w��A� T�CAq� %4 Tbsn� º� ±� ¨� ­ A§E Tq§rW�� £@¡
qq�

¨� ­ w�wm�� �rW�� �ym� �� Tq§rW�� £@¡ º� � T�CAq� d`� T�ytn�� £@¡ Y�� �w}w�� ��

.­zh�±�¤ Tyn�z�� wyq�� ­A��r� �� ,�Aynqt�� �d��

�Aml`m�� T·yh� Y�� T�A��� ºA��� Y�� �@¡ ��b�� T�As� dy�w� « � ,��Ð Yl� ¾­ A§E

.TlkKm�� �� Tlqts� Ahl`� Am� ,TlkK� �k�

Ty�EC�w��� , T§CwWt�� �Ay�EC�w��� , MAX-SAT ,NP-completenes :Tysy¶r�� �Amlk���

�Aml`m�� , Tyny���

vi

Contents

Contents vii

List of Figures x

List of Tables xi

1 General introduction 1

State of the art 3

2 Metaheuristics and Genetic algorithms 3

2.1 Introduction . 3

2.2 Overview of Metaheuristics . 3

2.3 Swarm based metaheuristics . 5

2.3.1 Particle Swarm Optimization . 5

2.3.2 Ant Colony Optimization . 6

2.4 Physics based metaheuristics . 7

2.4.1 Gravitational search algorithm . 7

2.5 Evolutionary algorithm . 7

2.5.1 Evolutionary programming . 8

2.6 Genetic algorithm . 8

2.6.1 Selection . 9

2.6.1.1 fitness proportional selection 9

2.6.1.2 Ordinal based selection . 10

2.6.2 Crossover . 11

2.6.3 Mutation . 12

2.7 Adaptive genetic algorithm . 13

2.8 Real coded genetic algorithms . 14

2.8.1 Crossover . 15

2.8.2 Mutation . 16

vii

2.9 Parameter tuning . 17

2.10 Conclusion . 18

3 Satisfiability problem: definition and solvers 19

3.1 Introduction . 19

3.2 Satisfiability problem; Definition and MAX-SAT variant 19

3.3 SAT solvers . 20

3.3.1 Complete solvers . 20

3.3.1.1 Branch and bound solvers 20

3.3.1.2 DavisPutnam-Logemann-Loveland algorithm 21

3.3.1.3 Conflict driven clause learning 21

3.3.2 Incomplete solvers . 22

3.4 Conclusion . 23

Contribution 24

4 Integrated Parameter Genetic Algorithm 24

4.1 Introduction . 24

4.2 Parameter integration . 24

4.3 Agent definition . 25

4.4 Genetic operators . 25

4.4.1 Crossover . 25

4.4.2 Confusion resolution methods . 26

4.4.2.1 Simple resolution . 26

4.4.2.2 Random confusion resolution 26

4.4.2.3 Resilience based confusion resolution 27

4.4.2.4 Dominance resolution . 29

4.4.3 Mutation . 29

4.4.4 Selection . 30

4.5 Conclusion . 30

5 Solver Implementation 32

5.1 Introduction . 32

5.2 Testing system architecture . 32

5.3 parallelism . 35

5.4 Logging . 35

5.5 MAX-SAT implementation and instance pre-processing 36

5.5.1 Optimization of solution evaluation 38

5.6 Conclusion . 40

6 Experimetns and results 41

viii

6.1 Introduction . 41

6.2 Testing environment and Benchmarks description 41

6.3 Genetic algorithm experiments . 42

6.3.1 Genetic algorithm parameter choice 42

6.3.2 Genetic algorithm test results . 43

6.4 Integrated parameter genetic algorithm experiments 46

6.5 Conclusion . 53

7 General Conclusion 54

Bibliography xiv

ix

List of Figures

2.1 Shortest path search space size . 4

2.2 Stochastic universal sampling[15] . 10

2.3 single point crossover . 11

2.4 K-point crossover . 12

2.5 Mask crossover . 12

2.6 Inversion mutation . 13

2.7 Scramble mutation . 13

2.8 Binary encoding . 14

4.1 IPGA crossover, confusion vs compatible genes 26

4.2 Simple confusion resolution . 27

4.3 Random confusion resolution . 28

5.1 Flow chart of GA algorithm . 33

5.2 Project structure . 34

5.3 Heatmap example . 36

5.4 Performance test results (log scale) . 40

6.1 Instance difficulty ranking based on average max score 46

6.2 Generation diversity . 49

6.3 IPGA zero initialization results . 50

6.4 IPGA and CGA score trends . 50

x

List of Tables

5.1 Sparse matrix compression methods . 38

6.1 SATLIB benchmark instance characteristics 42

6.2 Crossover operator names . 43

6.3 Mutation operator names . 43

6.4 CGA test results . 44

6.5 CGA test results . 45

6.6 Operator ranking based on max achieved score 46

6.7 IPGA operators . 47

6.8 IPGA test results . 48

6.9 IPGA test results . 51

6.10 IPGA operator ranking . 52

6.11 Difference in IPGA and CGA performance . 52

6.12 Zero init test GA names . 52

xi

List of Algorithms

1 Genetic Algorithm . 9

2 Adaptive Genetic Algorithm . 14

3 A typical BnB algorithm for Max-SAT . 21

4 DPLL algorithm . 22

5 Typical CDCL algorithm . 23

6 Random confusion resolution crossover . 27

7 Resilience based confusion resolution . 28

8 Coupled mutation . 29

9 Disjoined mutation . 30

10 resiliance mutation . 30

11 Count the number of satisfied clauses in a CNF formula 39

xii

Acronyms

ACO Ant colony optimization. 6

BCGA binary coded genetic algorithm. 14, 15

BNB Branch and bound algorithm. 20, 21

CDCL Conflict driven clause learning. 21, 22

CGA Classic genetic algorithm. x, xi, 15, 24, 25, 30, 41, 43–46, 48–50, 52

DPLL DavisPutnam-Logemann-Loveland algorithm. 21, 22

DRCRX Dominant random confusion resolution crossover. 47–49

EA Evolutionary algorithm. 17

EMO Electromagnetism like optimization. 7

EP Evolutionary programming. 8

FEP Fast Evolutionary programming. 8

GA Genetic algorithm. x, xi, 8, 11, 13, 14, 24, 25, 32, 33, 35, 42, 43, 46, 47, 49, 50, 52

GSA Gravitational search algorithm. 7

IPGA Integrated parameter genetic algorithm. 25, 29–31, 41, 42, 46–50

IWD Intelligent Water Drops. 7

MAXSAT Satisfiability maximization problem. 20, 32, 36

PSO Particle Swarm Optimization. 5, 8

xiii

RCGA Real coded genetic algorithm. 15, 30

RCRX random confusion resolution crossover. 47, 49

RFD River formation dynamics. 7

SAGA Self adaptive genetic algorithm. 13

SAT Satisfiability problem. 19–21, 23, 33, 41, 43

SRX simple resolution crossover. 47

SUS Stochastic universal sampling. 10

WMAXSAT weighted Satisfiability maximization problem. 20

xiv

Chapter 1

General introduction

Problem solving is the task of finding a solution to a certain problem. Problem solvers

are not only tasked with finding such a solution but also doing so in a fast and reliable

way. Simple problems only require defining a process that generates a valid solution. For

NP-complete problems, where defining such a process is not possible, alternate methods

of solving are required.

The straight-forward approach is to test all possible solutions by brute force; even

though this will eventually reach a definite answer, given a large enough problem, this

becomes quickly unmanageable. Guiding this extensive search by leveraging problem-

specific characteristics can enhance this method. This type of solver is called an exact

solver.

Another approach is to use metaheuristics, which are general problem solvers and easy

to use. The drawback of these methods is that they are non-deterministic, so reaching

the most optimal solution is not guaranteed.

Generally, when discussing the performance of an algorithm, we only consider its

behavior after its execution starts; this makes sense as a good solver is the one that

reaches the best solution in the shortest time. What this fails to capture is the considerable

amount of time spent selecting a good set of parameters for the problem at hand.

This work focuses on the optimization of parameters search of genetic algorithm where

this project argues that parameter search can be eliminated as a preliminary step of the

genetic algorithm.

To demonstrate the performance of the proposed method, experiments were conducted

on hlthe SATLIB satisfiability problem benchmark [1]as it is one of the most established

NP-complete problems.

This document is organised as follows; First, an overview of state-of-the-art meta-

heuristics focusing on the genetic algorithm is presented, followed by the satisfiability

problem and examples of exact solvers. The proposed optimized genetic algorithm is pre-

sented in Chapter 3, the implementation details are discussed in Chapter 4. Chapter 5

1

showcases the analysis of the experimental results. Finally, a general conclusion and some

perspectives are presented.

2

Chapter 2

Metaheuristics and Genetic algorithms

2.1 Introduction

Solving NP-complete problems can be a real challenge and present a serious handicap

when processed by current machines. Indeed, the existing exact methods explore the

whole search space in order to find a solution. Nonetheless, a large search space can

generate a combinatorial explosion and a considerable overrun of calculation time that no

machine can support.

Metaheuristics are stochastic problem solvers that rely on a random component as a

mechanism to generate potential solutions that are iteratively optimized in order to have

the best possible solution.

In this section, we will give a general overview of existing methods, their advantages,

and their drawbacks.

2.2 Overview of Metaheuristics

Generally,a problem corresponds to a set S of possible solutions and a function f allowing

to measure the quality of the elements of this set. In other words, a problem is defined

as a set of potential solutions named search space where the validity of each solution is

determined by an objective function.

When faced with an optimization problem, the goal is to find the best possible solution.

This is equivalent to a maximization (minimization) of the fitness function, where the best

solution is the global maximum (minimum). Because of the distribution of good solutions

in the search space, the algorithm may get stuck in local optima. This issue may be

caused by a bad parameter choice.

In case of an optimization problem, the set of potential solutions is a search space and

the objective function is called a fitness function, where the fitness is a continuous value

rather than a binary value. This is important as the optimization process is gradual; with

3

a binary evaluation, there is no difference in quality between two false solutions.

As an example, when looking for the shortest path between a point A and a point B,

S is the set of all possible paths and the fitness function determines the quality of each

solution, in this case with the length of the path.

The difficulty of solving this kind of problem is directly related to the search space

size which is often very large or even infinite.

Figure 2.1 shows the increase of search space size in function of the number of nodes in

the previous example

Figure 2.1: Shortest path search space size

Metaheuristics appeared as an alternative to exact methods ,which explore the whole

space search looking for the best solution, in order to find a compromise between solution

quality and execution time. The goal is to optimize the solution as much as possible while

guaranteeing an acceptable calculation time[2].

Metaheuristics are optimization algorithms that, generally, generate a single or a set

of random potential solutions and optimize them at each iteration. These algorithms

consider the optimization version of a given problem, where a stochastic process is guided

by a fitness function in order to search the potential solution space.

Nowadays, a plethora of metaheuristics exist and can be categorized as follows:

• Physics based metaheuristics

• Swarm based metaheuristics

• Evolutionary algorithms

4

2.3 Swarm based metaheuristics

Swarm based intelligence refers to the fact that natural or artificial objects, systems, or

insects devoid of any intelligence can have collectively intelligent behavior [3].

2.3.1 Particle Swarm Optimization

Proposed by Eberhart and Kennedy (1995), particle swarm optimization (PSO) is one of

the first proposed swarm based algorithms. It is an evolutionary optimization calculation

technique based on the concept of swarm intelligence[4].

In PSO, the social behavior is modeled by a mathematical equation that guides par-

ticles during their displacement process. The displacements are influenced by the inertia,

cognitive, and social component. Each of these components reflects a part of the equation.

A particle is described with a velocity and a position vector.

Let P i a particle, P ix is the position of P at the ith iteration,P iv is the velocity of P

at the ith iteration.(Equations 2.1 and 2.2 describe the position and velocity updates for

the i+ 1 iteration, respectively).

P i+1x = P ix+ P iv (2.1)

P i+1v = WP iv + C1R1(Pxmax − P ix) + C2R2(Gxmax − P ix) (2.2)

Where R1 and R2 are random values between 0 and 1, W determines how much of

the previous velocity the particle keeps,C1 and C2 control the effects of local and global

best, respectively, and W , C1 and C2 are hyperparameters,

The algorithm starts with a random set of particles, after evaluation, Gxmax and

Pxmax are determined and represent the global best and local best, respectively. Each

particle is updated according to the described equations above.

High velocity values cause large steps in the particles’ movement, thus limiting local

exploration. This problem was mitigated by clamping P iv to a maximal value Maxv

according to 2.3[5]:

P iv =

P iv if P iv < Maxv

Maxv otherwise
(2.3)

Even though this method makes the particles more controllable, if all the velocities

become equal to Maxv the particle continue to conduct searches within a hypercube and

will probably remain in the optima but will not converge in the local area[5].

5

2.3.2 Ant Colony Optimization

Ant colony optimization (ACO) takes inspiration from the foraging behaviour of ant

colonies, where ants indicate trails leading to food using pheromone deposits. [6] This

behaviour is used as indirect communication of path desireability between ants. [7]

ACO implements artificial ants as agents that iteratively construct solutions stochas-

ticly, taking in consideration the pheromone component in the construction (the pheromone

is called a pheromone value). [7]

ACO considers combinatorial optimization problems only, where a problem P is formu-

lated as follows (Equation 2.4 describes the components of a combinatorial optimization

problem) :

P = (S,Ω, f) (2.4)

Where S is a search space defined over a set of decision variables Xi, a feasible solution

adheres to a set of constraints Ω, f is the fitness function,[8]

A decision variable xi takes a discrete value vji ∈ Di, where xi = vji is a solution

component cji . This notion is important, as a pheromone value τ ji is an evaluation of the

component cji .

For each iteration of ACO, an artificial ant goes through the following operations:

• Construct a solution

• Local search (optional)

• Update pheromone

A solution is constructed based on the following probability distribution (Equation 2.5

represents the probability of a solution component cji being chosen given the the current

solution s):

p(cji |s) =
τij

α · η(cji)β∑|N(s)|
l=0 τilα · η(cli)β

(2.5)

Equation 2.6 updates the pheromone deposit of a solution component.

τij = (1− P)τij +
m∑
k=0

g(sk) (2.6)

g calculates the pheromone value laid by an ant k for a component cji ,P is the evaporation

rate.

The above solution construction and pheromone update were proposed in the Ant

System (AS) method, other methods can be used. Local search is an optional step used

to refine the solutions.

6

2.4 Physics based metaheuristics

Physics based optimization methods leverage already established physical principles, such

as gravitational force in gravitational search (GSA), and Electromagnetic force in electromagnetism-

like optimization (EMO), other physical phenomena were used in algorithms like Intelli-

gent Water Drops (IWD) and River Formation Dynamics (RFD).

2.4.1 Gravitational search algorithm

Gravitational search algorithm (GSA) represents solutions as masses that interact ac-

cording to gravity and motion laws. The mass of each object (solution) is proportional to

its fitness, so agents with higher fitness have a higher influence on the position of other

solutions,[9] pulling them towards a region of potentially higher optimality. On the other

hand, a heavier object resists changes in motion. Therefore, the trajectory of more op-

timal solutions is less affected, making less optimal solutions follow the path to a more

optimal region.

Let xi be a point in an n-dimensional space where n is the number of decision variables

xi = (x0
i , x

1
i . . . , x

d
i , . . . , x

n
i). Mi, the mass of the ith agent (point). At each iteration, the

force exerted on the ith agent by all the other masses is calculated (Equation 2.7 describes

the force exerted by all masses on the ith agent [9]).

F d
i =

N∑
j=0

r.F j
i (2.7)

With r a random value r ∈ [0, 1], F d
ij the force exerted by mass j on mass i in the

dimension d, given by the Equation 2.8 , and N the number of agents[9].

F d
ij = G

Mi ·Mj

R + ε
(xd

j − xd
i) (2.8)

To update the agents, first the new acceleration is calculated, followed by a position

update[9](Equation 2.9 describes the acceleration of the ith mass).

adi =
F d
i

Mi

(2.9)

2.5 Evolutionary algorithm

Inspired by evolutionary theory, evolutionary algorithms represent a class of optimization

algorithms based on population optimization. A random initial population is iteratively

optimized, evolving towards a higher-performing population, using operators inspired by

natural evolution. Each generation is then created as a recombination of a selected set

7

of parents from the previous population, where the selection process favors fitter parents.

Some algorithms inject randomness into a generation by mutating individuals.

2.5.1 Evolutionary programming

Evolutionary programming (EP) is a stochastic search algorithm inspired by biological

evolution and natural selection. In EP, an initial population of random solutions is gener-

ated. Each candidate solution is evaluated based on an objective function[10]. Selection

is performed, where individuals with higher fitness values have a greater chance of be-

ing selected as parents for reproduction. The selected individuals undergo reproduction

through mutation. The new offspring replace some individuals in the current population;

in other words, the new generation is a subset of the union of the mutated solutions and

the previous population. The process continues iteratively, with the population evolving

over generations. The algorithm terminates based on a halting condition[11].

EP is known to have slow convergence. Methods like fast evolutionary programming

(FEP) were proposed[11] to tackle this issue by using a mutation operator based on a

Cauchy distribution rather than the Gaussian distribution used in the original algorithm.

This choice is based on the claim that Cauchy mutation results in longer jumps than

Gaussian mutation; other research results support this claim. A similar use case of Cauchy

mutation was used in other algorithms, like PSO.

Genetic algorithms (GAs) are another type of evolutionary algorithm that is similar

to EP in that both use mutation and selection operators, but GA differs in that it uses a

genetically inspired structure to represent solutions.

2.6 Genetic algorithm

Genetic algorithm (GA)is a population-based algorithm inspired by the theory of evolu-

tion. Its principle is that, on an initial randomly generated population (set of agents),

representing solutions (chromosomes) to a given problem, where each decision variable is a

gene, GA applies a set of genetic operators to generate the next generation of solutions[12].

After evaluating the fitness of each solution, a subset of the current generation called

parents is selected based on their fitness (selection operator), a crossover operator is

applied to parent pairs to generate new offspring (solutions). Finally, each chromosome is

slightly modified with the mutation operator. This process is repeated until a satisfactory

solution is found or a stopping condition is reached.

Algorithm 1 presents the general structure of GA:

Notice that mutation and crossover are parameterized. These parameters control how

mutation and crossover are performed and can have a significant impact on the algorithm’s

behavior and performance.

8

Algorithm 1 Genetic Algorithm

Input: A problem instance P
Output: Best solution reached
1: G← create initial generation()
2: while stopping condition and problem not solved do
3: G evaluated← evaluate solution(G,P)
4: G parents← selection(G evaluated)
5: G new ← crossover(G parents, parameters)
6: G new mutated← mutate(G newparameters)
7: G← G new mutated
8: end while
9: return G.best solution

Several versions of genetic algorithm exist, depending on the genetic operators choices.

This will be discussed in the following sections.

2.6.1 Selection

During the selection process, the parents of the next generation are chosen based on their

fitness scores. The goal is to generate more fit solutions by allowing only good solutions

to influence the next generation.

Some selection methods result in aggressive selection strategies[13], which reduce di-

versity. A low selective pressure on the other hand, results in slow convergence.

Selection methods can be grouped into the following categories:

2.6.1.1 fitness proportional selection

A selection method is said to be fitness proportional if the selection probability of a

solution is determined by its score. Outliers with relatively high scores compared to the

rest of the population are heavily selected, resulting in a less diverse population[14], which

may lead to stagnation. These methods are advantageous due to their simplicity.

Given a population Gi of size n, to generate generation Gi+1 of the same size, a set of

parents P ∈ Gi are selected, The following selection methods can be used:

• Roulette selection

Roulette selection divides a wheel into N shares proportional to the fitness of each

solution,and then the wheel is randomly rotated to select the parents of the next

generation. To address the issues of fitness proportional selection, a modified version

of roulette selection (rank selection) was developed[13].

The selection probability of a solution g is calculated as follows (Equation 2.10

describes the probability of selection for an agent g using roulette selection[13])

9

p(g) =
f(g)

n∑
j=0

f(gj)
(2.10)

Where f is the fitness function.

• Stochastic universal sampling

Stochastic universal sampling (SUS) is a variant of roulette selection. The main

difference is that SUS selects parents using a set of selection pointers rather than

sequential selection. SUS assigns solutions to contiguous sections of varying lengths

based on their fitness score.To position the selection pointers, a random position

is generated for the first one in the range [0, 1/N],and the subsequent pointers

are equally spaced by 1/N [15]. (Figure 2.2 represents the selection process using

stochastic universal sampling).

Figure 2.2: Stochastic universal sampling[15]

2.6.1.2 Ordinal based selection

Ordinal based selection methods try to eliminate the premature convergence problem

caused by fitness proportional methods by using alternative ordering techniques.

• Rank selection

Rank selection is a variant of roulette selection where, selection probability is a

function of solution rank rather than fitness value. Solutions are ranked in the

ascending order of their fitness; the most fit solution takes rank of n and the worst a

rank of 1.(Equation 2.11 describes the selection probability of selection for an agent

g using rank selection[13])

p(g) =
f(rank(g))

n× (n− 1)
(2.11)

• Tournament selection

To select the gene pool for the next generation, a parent is chosen based on a fitness

comparison of randomly selected agents from the last population. A tournament

generally contains a pair of agents, but there is no theoretical limit to tournament

size[16].

10

2.6.2 Crossover

Any agent in GA is either generated in the initial generation or is the result of a com-

bination of two solutions from the previous generation. Combining two good solutions

potentially results in a better solution is the main idea of crossover.

After selecting the parents of the next generation, these are combined two by two to

generate new agents using one of the methods described below.

Given two parents P1 and P2, the crossover operation results in two children C1 and

C2.

• Single point crossover

Given a crossover point k where k ∈ [1,m− 1] (m is the number of decision vari-

ables), the two parents, P1 and P2, are split at the point k, this results in two

contiguous parts for each parent. A child solution combines different parts (at their

respective places) of the parents to generate a chromosome[17] (Figure 2.3 represents

the selection process using single point crossover).

Figure 2.3: single point crossover

• K-point crossover

Given K crossover points where ∀k ∈ K, k ∈ [1,m− 1] (m is the number of decision

variables), each parent is split into K+1 sequences. C1 and C2 are constructed from

parent sequences by alternating the donor parent at each k point, starting with a

different parent for each child to ensure that C1 and C2 are different[17] (Figure 2.4

represents the selection process using k-point crossover).

• Mask crossover

Mask crossover defines a binary vector M of length m, where m is the number of

decision variables, the mask value determines which parent contributes each bit.

Knowing that a crossover operation results in two offspring, we can use the in-

verse mask to generate the second solution. After each generation, a new mask

is generated randomly [17] (Figure 2.5 represents the selection process using mask

crossover).

11

Figure 2.4: K-point crossover

Figure 2.5: Mask crossover

2.6.3 Mutation

Mutation operator randomly edits parts of the solution, with the goal of maintaining

solution diversity and prevent premature convergence[18].

The mutation rate controls the number of mutations that occur. This rate is generally

set to a low probability; a higher mutation rate causes big changes in the solutions, and

the search becomes equivalent to a random search.

Many mutation functions exist among which;

• Bit-flip mutation

In bit-flip mutation, a set of random bits A ∈ P is selected according to the mutation

rate, where P is the current solution,A′ is the set of new values for A.

A′
i =

1 if Ai = 0

0 if Ai = 1
(2.12)

• Inversion mutation

After selecting two random points p1 and p2 in the solution, where p2 > p1, the order

of the contiguous bits in the range [p1, p2] is reversed[19] (Figure 2.6 represents the

mutation of a solution S using inversion mutation).

• Scramble mutation

Like inversion mutation, a subset of contiguous bits in the chromosome is selected to

12

Figure 2.6: Inversion mutation

be mutated by a random shuffle[19] (Figure 2.7 represents the mutation of a solution

S using scramble mutation).

Figure 2.7: Scramble mutation

2.7 Adaptive genetic algorithm

Knowing that parameter selection is a tedious procedure, self-adaptive genetic algorithm

(SAGA) tries to optimize this process by implementing individual-level self-adaptation

by defining some of GA’s parameters as agent parameters, where the selection process

does not only select for fitter solutions but also for the parameters that lead to better

solutions, as a way to optimize parameter search[20].

SAGA integrates the crossover method, mutation probability, and a noise range (noise

is used as a secondary means of mutation). The crossover method parameter determines

which crossover algorithm is in use. Another particularity in the way SAGA implements

these parameters is the way the parameters are operated upon[20];

SAGA splits the genetic operations into solution operations and parameter opera-

tions; first crossover and mutation are applied to the parents parameters, generating

the offspring’s parameters; then the offspring’s solution is calculated according to its pa-

rameters. The following pseudo code gives a more detailed description(Algorithm 2 is a

pseudocode implementation of SAGA[20]).

SAGA resulted in a similar performance to a simple genetic algorithm with a tuned

set of parameters [20].

13

Algorithm 2 Adaptive Genetic Algorithm

1: initialize generation (G)
2: while not solved do
3: PP ← select parent pairs(G)
4: new G ← empty set
5: for each P1, P2 in PP do
6: S.param ← crossover parameters(P1.param,P2.param)
7: S.param ← mutate parameters(S.param)
8: S.solution ← crossover solution(P1.solution,P2.solution, S.param)
9: new G.add(S)

10: end for
11: G ← new G
12: end while
13: return G.best solution

2.8 Real coded genetic algorithms

A large set of real-life problems deal with continuous parameters, but GA’s deal exclu-

sively with binary coded parameters. To be able to use binary coded genetic algorithms

(BCGA), we have to either translate the problem into binary encoding or use a genetic

algorithm compatible with real coded solutions; this requires crossover and mutation op-

erators compatible with real valued solutions[21].

The first proposed methods were based on a binary encoding; given a problem with

a search space S = S1 × S2 × · · · × Sn, with n the number of decision variables, s is a

solution, s = s1, s2, ...sn with si ∈ [ai, bi], (ai bi the lower and upper bound of the ith value

respectively), an encoding function cod(s) = x that transforms a real value s to a binary

string of size l (Figure 2.8 represents the Gray encoding of a binary soluiton S into a

solution S ′)[21].

Figure 2.8: Binary encoding

Even though binary encoding is advantageous because of the ability to leverage already

existing GA operators, it becomes less performant and especially taxing the bigger the

search space; the length of the binary strings increases, increasing with it the size of the

binary search space. On the other hand, having a range [ai, bi] that does not cover all

the possible binary string codifications results in values outside the acceptable range. For

example, to codify a parameter Si ∈ [0, 8], it requires at least 4 bits, with the lower bound

0000 and the upper bound 1000, but a crossover or a mutation can result in a value

outside this range(1001,1010,...,1111). These conflicts can be mitigated by discarding

14

invalid solutions, assigning a low fitness value , or remapping these solutions to valid

ones, this problem becomes more pronounced the larger the set of invalid solutions.

Moreover, the structure of binary numbers can be an issue. Two adjacent values

can differ in many bits, this becomes an issue when the algorithm converges close to

a maximum. For example, considering that 8 is the best solution, to converge from a

solution 0111 to 1000 takes a complete change in all solution bits. Even the distance

between the two values is small, this makes it difficult for the algorithm to converge to

the best solution. A better distance metric that expresses this issue is the hamming

distance[21], where the distance between two strings is the number of bits where they

differ. The previous example is a special case where every bit of the two strings differ,

called the hamming cliff.

As a solution to the above problem, we can use gray coding instead of binary coding,

where the hamming distance between two consecutive gray coded integers is equal to one.

The gray coding of a binary string H = {h0, h1 . . . hl} to a string H ′ = {h′
0, h

′
1, . . . , h

′
l}

is done as follows(Equation 2.13) :

h′
i =

h0 if i = 0

hi−1 ⊕ hi if i > 0
(2.13)

The decoding process is as follows(Equation 2.14):

hi =

h′
0 if i = 0

hi−1 ⊕ h′
i if i > 0

(2.14)

Because of the stated drawbacks of BCGA, a real coded genetic algorithm (RCGA)

was proposed. Parameters are directly codified as real values, and this method implements

a set of genetic operators. As the CGA operators can not be used on real values, RCGA is

a less complex solution because a codification step is not needed. Contrary to BCGA, the

precision of the parameters is not bounded by the used codification but by the computer’s

characteristics.

The following are the most notable genetic operators relating to RCGA:

2.8.1 Crossover

Given two parents P1 = {p10, p11, . . . , p1n} and P2 = {p20, p21, . . . , p2n}, the resulting offspring is
Hk = {hk

0, h
k
1, . . . , h

k
n}, and generally k ∈ {1, 2}. In addition to CGA’s crossover methods

RCGA implements the following operators:

• Flat crossover

For each gene hk
i in the offspring Hk, a random value is chosen from the set

{p1i , p2i }[21].

15

• Arithmetical crossover

The two offspring are calculated according to the following equations.

Equations 2.15 and 2.16 describe the arithmetical crossover of two parents c1 and

c2 resulting in offspring H1 and H2 respectively[21].

∀h1
i ∈ H1, h

1
i = λc1i + (1− λ)c2i (2.15)

∀h1
i ∈ H2, h

2
i = λc2i + (1− λ)c1i (2.16)

With λ can be a constant value λ ∈ [0, 1] (called uniform arithmetical crossover)

or defined in function of the generation count (called non-uniform arithmetical

crossover).

• Linear crossover

Contrary to the above crossover methods, linear crossover generate three offspring

then chooses the two best agents to propagate to the next generation.

Equations 2.17,2.18 and 2.19 describe the linear crossover of two parents c1 and c2

resulting in three offspring where two are randomly chosen[21]:

∀h1
i ∈ H1, h

1
i =

1

2
c1i +

1

2
c2i (2.17)

∀h2
i ∈ H2, h

2
i =

3

2
c1i +

1

2
c2i (2.18)

∀h3
i ∈ H3, h

3
i = −

1

2
c1i +

3

2
c2i (2.19)

2.8.2 Mutation

Let C = {c0, c1, . . . , cn} be a chromosome where each gene is defined in a range ci ∈ [ai, bi].

The following mutation methods can be applied on each gene; Let c′i be the result of

mutating ci.

• Random mutation

c′i takes a random value in the range [ai, bi]

• Non-uniform mutation

Equation 2.20 describes the non-uniform mutation of a gene ci[22]

c′i =

ci+∆(t, bi − ci) ifτ = 0

ci−∆(t, ci − ai) ifτ = 1
(2.20)

with t the number of the current generation t ∈ [0, gmax], τ a random value τ ∈ 0, 1

determining the shifting direction, the function ∆(l, y) calculates the shifting dis-

tance for the value ci.

16

Equation 2.21 calculates the shifting distance given the current generation and shift-

ing range[22].

∆(t, y) = y(1− r(1−
t

gmax
)b) (2.21)

with r a random value r ∈ [0, 1], and b a user determined value controlling the

degree of dependency on the generation count, and ∆(t, y) ∈ [0, y].

This method starts out with large shift values and gradually favours local search

the closer the current generation is from gmax.

• Muhlenbein’s mutation

Equation 2.22 describes the Muhlenbein mutation of a gene ci[21]

c′i = ci ± rangi · γ (2.22)

where rangi defines the mutation range, and it is normally set to 0.1 · (bi − ai) γ is

calculated as follows(Equation 2.23):

γ =
15∑
k=0

αk2
−k (2.23)

with αi ∈ {0, 1} randomly generated with the probability p(αi = 1) = 1
16
[21]

2.9 Parameter tuning

Considering the sensitivity of metaheuristics to parameter choice, determining the best

set of parameters becomes paramount for good performance. Specifically for Evolutionary

algorithms where mutation probability, crossover points, and generation size are the main

parameters of concern.

Considering the computational cost of tuning these values by trial and error, several

methods of parameter tuning were developed.

Meta evolutionary algorithms tune parameters by considering parameter tuning as a

problem by itself, hens meta EA, where a solution represents a set of parameters, and a

solution is evaluated by running anEA with the given parametersEA[23]. This method is

computationally demanding because each evaluation requires a full run of the EA[24].

Another approach is Sequential Parameter Optimization, where a set of parameter

vectors is first tested several times to determine their efficacy, and a new set of vectors is

generated based on a regression model constructed from the previous set of parameters

[24].

17

2.10 Conclusion

Through this chapter, we have introduced the basic concepts of metaheuristics and their

different types, such as swarm-based and physics-based metaheuristics.

Evolutionary algorithms were discussed, and especially the genetic algorithm, which

is the subject of this research work, was put forward.

18

Chapter 3

Satisfiability problem: definition and

solvers

3.1 Introduction

The Boolean satisfiability problem is a widely established problem with both theoretical

and practical significance. SAT is the first problem to be proven to be NP-complete,

and a wide range of practical problems can be formulated as SAT problems, like model

checking, automatic test pattern generation, automated theorem proving, and many more.

With SAT being the first NP-complete problem to be proven, there exists a large body of

work mapping problems to SAT, which means that advancement in solving SAT problems

translates to all related problems. This chapter introduces the fundamentals of SAT and

some of its solvers.

3.2 Satisfiability problem; Definition and MAX-SAT

variant

The goal of SAT problem is to determine whether a boolean formula P in Conjunctive

Normal Form (CNF) is satisfiable. I.e : A conjunction of clauses C, where each clause is

a disjunction of literals c = (α0 ∨ α2 . . . αn) and each literal is a propositional variable or

its negation. Its formal definition is as fallows;

• Instance: A set of m clauses and n variables forming a CNF formula.

• Question: Is the CNF formula satisfiable? IS there any assignment of the variables

that satisfies the instance?

For example, the following boolean formula P is satisfiable, because given the assignment

S, all clauses of P are satisfied.

19

P = (α1 ∨ ¬α2 ∨ α3) ∧ (¬α3 ∨ α1) ∧ (α2 ∨ α3) (3.1)

S = {α1 = 1, α2 = 0, α3 = 1} (3.2)

Due to the combinatorial explosion that may occur while solving a SAT instance, less

complex variants have been introduced, from which we cite MAX-SAT for Maximum

SAT.

In MAX-SAT, instead of finding a boolean assignment that satisfies all the clauses,

MAX-SAT looks for the maximum number of satisfiable clauses in a given instance. In

other words, MAX-SAT is the optimization version of SAT, whose formal definition is :

• Instance: A set of m clauses and n variables forming a CNF formula.

• Question: What is the maximum number of satisfied clauses?

More general versions of SAT exist, like Weighted Partial MAXSAT (WMAXSAT) or

PM-sat. The generalization of SAT permits the use of solvers across different problems,

WMAXSAT assigns a weight to each clause representing its importance, WMAXSAT

solvers can be used for MAXSAT, as an instance of the former with an equal weight for

every clause is equivalent to a MAXSAT instance, the solvers below can be used to solve

MAXSAT instances as they solve a more general problem.

3.3 SAT solvers

Since the SAT problem is considered the backbone of NP-complete problems, a plethora

of solvers have been developed for solving it. These solvers can be organized into two

major classes as follows:

3.3.1 Complete solvers

Complete solvers explore the entire search space of a given problem. This type of algorithm

reaches a definitive answer at the end of its execution. It either finds the solution to the

problem or prove that the problem can not have any solution.

Complete solvers traverse the search space using a search tree structure, where a

solution is constructed by incrementally assigning a truth value to decision variables.

3.3.1.1 Branch and bound solvers

BNB methods use inference rules to extend the current solution; as one variable assign-

ment is made, another may be logically inferred. For example, assigning false to a variable

α while having the following clause in the SAT instance C = α ∨ β makes beta trivially

20

assigned to true, as any other assignment makes it unsatisfied[25]. Algorithm 3 presents

a typical implementation of the BNB algorithm [25].

Algorithm 3 A typical BnB algorithm for Max-SAT

Input: A CNF formula Φ with n the number of variables of Φ
Output: (UB, IUB) with UB the best solution found and IUB the corresponding assign-

ment
1: UB ←

∑
cj∈Φ wj

2: IUB ← ∅
3: I ← ∅
4: repeat
5: I ← assignment extension(Φ, I)
6: LB ←

∑
cj∈Φ|I wj + count remaining conflicts(Φ|I)

7: if LB ≥ UB then
8: backtrack()
9: else if |I| = n then

10: UB ←
∑

cj∈Φ|I wj

11: IUB ← I
12: backtrack()
13: else
14: l← select new decision()
15: I ← I ∪ {l}
16: end if
17: until |I| > 0
18: return (UB, IUB)

Given a partial assignment α, a conflict is a contradiction reached by a unit propaga-

tion of α, where two unit clauses assign different values for the same variable, this means

that the assignment α does not satisfy the SAT instance.

3.3.1.2 DavisPutnam-Logemann-Loveland algorithm

Similarly to BNB, DavisPutnam-Logemann-Loveland (DPLL) explores the search tree by

iteratively expanding the partial solution, either by a truth value assignment or a Unit

propagation. Unit propagation procedure consists of assigning a truth values that makes

the unit clause true. A unit is a clause with all but one of its literals equal to 0.

In case of a conflict, DPLL backtracks to the last assignment and reverts all following

assignments.

The following implementations written in a recursive form(Algorithm 4 is a typical im-

plementation of the DPLL algorithm [26]).

3.3.1.3 Conflict driven clause learning

Conflict-Driven Clause Learning (CDCL) is an extension DPLL algorithm. It follows

the same general structure as a DPLL solver but introduces additional techniques to

21

Algorithm 4 DPLL algorithm

1: function DPLL-recursive(F, τ)
2: Input: A CNF formula F and a partial assignment τ
3: Output: SAT/UNSAT, depending on whether there exists an assignment extend-

ing τ that satisfies F
4: while ∃ unit clause ∈ F do
5: ℓ← the unset literal in the unit clause
6: τ [ℓ]← true
7: end while
8: if F contains the empty clause then
9: return UNSAT
10: end if
11: if all clauses in F are satisfied then
12: Output τ
13: return SAT
14: end if
15: ℓ← some unset literal (based on variable ordering heuristic)
16: if DPLL-recursive(F, τ [ℓ]← true) = SAT then
17: return SAT
18: end if
19: return DPLL-recursive(F, τ [ℓ]← false)
20: end function

improve efficiency. When a conflict is encountered during the search process, Instead of

immediately backtracking to a previous decision level and undoing assignments, CDCL

performs a clause learning procedure[27].

The clause learning procedure aims to identify a new clause, called a conflict clause,

that captures the cause of the conflict. This clause enables the solver to detect conflicts

earlier in subsequent assignments[27].

Algorithm 5 is a typical implementation of the CDCL algorithm [27].

Contrary to the backtracking of DPLL, CDCL can backtrack to previous assignments

other than the latest assignment; this property is called non-chronological backtracking.

3.3.2 Incomplete solvers

With larger and more complex problem instances, the complete solvers can no longer

scale, resulting in a significant increase in running time and a combinatorial explosion.

This has led researchers to develop new approaches for finding incomplete solutions in

reasonable time, in other words, to try to find a compromise between exhaustive search

and temporal effectiveness.

These algorithms do not explore the entire search space. They are stochastic and

guided by heuristics to reach a mostly optimized solution. These solvers are generally

metaheuristics. Among the plethora of existing metaheuristics, some principle ones are

22

Algorithm 5 Typical CDCL algorithm

Input: A CNF formula ϕ and a partial assignment ν
Output: SAT/UNSAT
1: function CDCL(ϕ, ν)
2: if UnitPropagation(ϕ, ν) = CONFLICT then
3: return UNSAT
4: end if
5: dl← 0 ▷ Decision level
6: while not AllVariablesAssigned(ϕ, ν) do
7: (x, v)←PickBranchingVariable(ϕ, ν) ▷ Decide stage
8: dl← dl + 1 ▷ Increment decision level due to new decision
9: ν ← ν ∪ (x, v)

10: if UnitPropagation(ϕ, ν) = CONFLICT then ▷ Deduce stage
11: β ←ConflictAnalysis(ϕ, ν) ▷ Diagnose stage
12: if β < 0 then
13: return UNSAT
14: else
15: Backtrack(ϕ, ν, β)
16: end if
17: dl← β ▷ Decrement decision level due to backtracking
18: end if
19: end while
20: return SAT
21: end function

presented within the first chapter.

3.4 Conclusion

Through this chapter, we have introduced the problem of Boolean Satisfiability as well as

the interest that is brought to it by the scientific community.

We have presented some of the most popular SAT algorithms and solvers whose two

main categories have been defined (complete and incomplete solvers).

23

Chapter 4

Integrated Parameter Genetic

Algorithm

4.1 Introduction

Parameter initialization is one of the drawbacks of GAs, where the parameter search time

is a considerable cost in the overall search process.

Through this work, we propose a new improved version of the genetic algorithm where

parameters are integrated into the solution itself with the idea that a good solution is the

one that leads to a better solution.

In this chapter, we present the main concepts developed for this new approach.

4.2 Parameter integration

The proposed methods rely on the idea of gene-level parameter integration. A solution, is

represented, not just as a value assignment of problem variables but also as an evolutionary

preference at the gene level. An agent may have different parameters for each gene

which gives the potential for a granular optimization of the genetic parameters. Another

advantage of this method is the dynamic nature of the integrated parameters, where these

values have the potential to adapt, favoring values that maximize the fitness, where the

optimal parameters may change depending on the current generation, where such thing

is not possible in CGA.

This method leads to a wide range of possible implementations of genetic operators.

For example, crossing two solutions with different crossover expressions leads to conflicts

that require managing (this will be discussed in later sections), and a number of different

operators will be presented.

Granted, this adds a layer of complexity that needs to be justified with better perfor-

mance or desirable characteristics; these methods are tested against a canonical imple-

24

mentation of GA.

4.3 Agent definition

In classical GA (CGA), an agent is simply a solution, where each variable is mapped to

a gene and the set of all genes is a chromosome.

In the proposed integrated parameter genetic algorithm (IPGA), each gene is equipped

with two values: an expression value and a resilience value. The expression value is used in

the crossover operator (a full description of its use is given in section 3.4.1.), and resilience

is the inverse of mutation probability.

In this method, each variable expresses its mutation probability and its expression; the

genetic parameters are integrated on a variable level.

Example : Given a problem instance P with n variables, an agent G is defined as

follows(Equation 4.1 represents the structure of an IPGA agent):

G =

s0 s1 . . . si sn

e0 e1 . . . ei en

r0 r1 . . . ri rn

 (4.1)

where si ei ri represent the solution, expression, and resilience of the variable at index i,

respectively. An agent for a problem of n variables is a chromosome of shape n× 3.

The integrated parameters are used mainly in the genetic operators, which leads to a

diverse way of implementing them. The following is the set of developed genetic operators:

4.4 Genetic operators

This section presents the proposed IPGA’s genetic operators.

4.4.1 Crossover

IPGA relies on a modified masked crossover operator. As described in the state-of-the-

art section, masked crossover uses a mask vector to determine which of the two parents

expresses each gene (variable).

In IPGA, each parent provides its own expression making the crossover process ambiguous,

where a choice has to be made about which parent should express its gene.

Let E1 and E2 be expression vectors of P1 and P2, respectively.

E1 and E2 are said to be compatible if, E1 = ¬E2, the first parent expresses a gene while

the other parent does not, as in figure 4.1. Contrarily, E1
i = E2

i is a state of confusion

(see figure 4.1), a decision should be taken on which parent should express its gene(i.e.

25

confusion resolution)(Figure 4.1 illustrates the case of confusion in parent expressions in

the crossover process).

Figure 4.1: IPGA crossover, confusion vs compatible genes

4.4.2 Confusion resolution methods

A gene i is a confusion point if E1
i = E2

i . Confusion points C is a set of gene indexes

where |C| < n and ∀c ∈ C, c ∈ [0, n− 1], E1
c = E2

c ,with n the number of genes.

The choice of which parent’s gene to express is done following resolution methods.

4.4.2.1 Simple resolution

As each parent pair results in two offspring, each child can be assigned a parent’s expres-

sion as the final expression vector (Figure 4.2 is an example of simple confusion resolution).

4.4.2.2 Random confusion resolution

To resolve the confusion, two new expression vectors V 1 and V 2 are created, these vectors

are the crossover masks after resolving the confusions, in this case a random parent will

be selected to be expressive for each confusion point Equations 4.2 and 4.3 calculate the

expression vectors after random confusion resolution:

∀i ∈ [0, n− 1], V 1
i = ((E1

i ⊕ E2
i) ∧ E1

i) ∨ (¬(E1
i ⊕ E2

i) ∧ a) (4.2)

∀i ∈ [0, n− 1], V 2
i = ((E1

i ⊕ E2
i) ∧ E2

i) ∨ (¬(E1
i ⊕ E2

i) ∧ a) (4.3)

26

Figure 4.2: Simple confusion resolution

With a a random boolean value. In this case, each child C1 and C2 has a main parent.

If Vi = 1, the main parent expresses its gene; otherwise, the secondary parent expresses

its gene. This method can be implemented as follows(Algorithm 6)

Algorithm 6 Random confusion resolution crossover

Input: Two parent agents P1 and P2
Output: A new offspring agent
1: newAgent← Agent()
2: F ← XOR(P1.e, P2.e)
3: C[F]← P1.e[F]
4: C[¬F]← random()
5: for each g, c in newAgent, C do
6: if c then
7: gene.s← P1.s
8: gene.r ← P1.r
9: else
10: gene.s← P2.s
11: gene.r ← P2.r
12: end if
13: gene.e← c
14: end for
15: return newAgent

Figure 4.3 is an example of random confusion resolution crossover.

4.4.2.3 Resilience based confusion resolution

Instead of randomly selecting the expressive parent, we can select for a resilience char-

acteristic. This method is a corrective method for the resilience accumulation problem,

27

Figure 4.3: Random confusion resolution

where the agent with a lower resilience value is prioritized. Equations 4.4 and 4.5 calculate

the expression vectors after random resilience based confusion resolution.

∀i ∈ [0, n− 1], V 1
i = ((E1

i ⊕ E2
i) ∧ E1

i) ∨ (¬(E1
i ⊕ E2

i) ∧ (R1
i > R2

i))) (4.4)

∀i ∈ [0, n− 1], V 2
i = ((E1

i ⊕ E2
i) ∧ E2

i) ∨ (¬(E1
i ⊕ E2

i) ∧ (R2
i >= R1

i)) (4.5)

With R1 and R2 resilience vectors(Algorithm 7 shows an implementation of resilience

based confusion resolution).

Algorithm 7 Resilience based confusion resolution

Input: Two parent agents P1 and P2
Output: A new offspring agent
1: newAgent← Agent()
2: F ← XOR(P1.e, P2.e)
3: C[F]← P1.e[F]
4: C[¬F]← compare(P1.r, P2.r)
5: for each g, c in newAgent, C do
6: if c then
7: gene.s← P1.s
8: gene.r ← P1.r
9: else
10: gene.s← P2.s
11: gene.r ← P2.r
12: end if
13: gene.e← c
14: end for
15: return newAgent

28

4.4.2.4 Dominance resolution

The objective of an expression vector is to determine which of the two parents has better

genes in order to propagate them to the next generation. This method proposes that a

fitter solution carries a better expression vector.

A parent is dominant if its score is greater than the score of the other parent; a

dominant parent’s expression is used as the final expression vector for both offspring.

This method can be used in conjunction with random confusion resolution or resilience-

based confusion resolution.

4.4.3 Mutation

IPGA mutation is based on bit flip mutation. As an agent is a value assignment of problem

variables equipped with resilience and expression vectors, each one of these values should

be affected by the mutation. This triplet (si, ei, and ri) can be treated as one unit; The

mutation affects the three values at the same time (referred to as coupled mutation).

Algorithm 8 shows an implementation of coupled mutation method

Algorithm 8 Coupled mutation

Input: An Agent A with n genes
Output: The mutated Agent A′

1: A′ ← copy of A
2: for i← 1 to n do
3: if random() < 1− Ai.r then
4: A′

i.s← ¬Ai.s
5: A′

i.e← ¬Ai.e
6: A′

i.r ← resilience mutate(Ai.r)
7: end if
8: end for
9: return A′

Another method is to treat each value as a separate mutation case; the mutation of

each value is determined separately. (referred to as disjoined mutation).

Algorithm 9 shows an implementation of disjoined method.

In both methods, the three values are mutated: expression and solution are binary

values, and resilience is a real value.

When a gene i is determined to be mutated, si and ei can be simply mutated as fol-

lows(Equations 4.6 and 4.7 describe the solution mutation and expression mutation, re-

spectively):

s′i = ¬si (4.6)

e′i = ¬ei (4.7)

29

Algorithm 9 Disjoined mutation

Input: An agent Agent
Output: An agent Agent with some genes mutated
1: for all genes gene in Agent do
2: if random() < 1− gene.r then
3: gene.s← ¬ gene.s
4: end if
5: if random() < 1− gene.r then
6: gene.e← ¬ gene.e
7: end if
8: if random() < 1− gene.r then
9: gene.r ← resilience mutate(gene.r)

10: end if
11: end for
12: return Agent

But resilience is a real-coded value ri ∈ [0, 1], a simple mutation is not possible. This

value can be mutated according to real-valued mutation methods described in section 2.8.

This difference is noted by the use of resilience mutate function in the above pseudocode.

In addition to the RCGA mutations, normal and Cauchy mutations can also be used.

These methods shift the chromosome x by a value α sampled from a probability distribu-

tion. To fit the use case of resilience mutation, very high or low values of resilience should

be avoided; thus, we add a lower and upper bound Lb Ub to limit the range of mutation.

Algorithm 10 resiliance mutation

Input: resiliance value x
Output: mutated resiliance value x′

1: x′ ← min(max(x+ alpha, Lb), Ub)
2: return x′

Comparisons between the performance of normal and cauchy mutations showed that

cauchy mutation is more capable of escaping local optima and leading to a more diverse

population[28].

4.4.4 Selection

The selection methods of CGA are directly applicable to IPGA, as the selection process

is not affected by IPGA’s structure.

4.5 Conclusion

Through this chapter, we proposed an improved version of the genetic algorithm called

IPGA where the crossover and mutation parameters are integrated into the solution itself,

30

unifying the problem and genetic parameter search spaces. This representation lead to

the development of its own set of genetic operators.

The test results of IPGA are discussed in chapter 6.

31

Chapter 5

Solver Implementation

5.1 Introduction

This chapter discusses important details and notions used while implementing the pro-

posed MAXSAT solver.

Firstly, a simple solver implementation is mentioned then contrasted with the chosen op-

timized implementation. A fast and reliable framework is crucial for the implementation

and testing of the proposed methods.

5.2 Testing system architecture

The simplest approach for implementing test algorithms is to create an independent imple-

mentation for each solving method and then proceed with the tests. Using this approach

leads to slow development as genetic algorithms are based on operators with numerous

implementations. On the other hand, Such an implementation is surely redundant, as

genetic algorithms share the structure presented in figure 5.1:

Any genetic algorithm is implemented in the above general structure; in some cases,

the order of operations between mutation and crossover is reversed. A better testing

system is needed to be able to rapidly iterate through ideas. A good testing system should

enable users to rapidly iterate through the experimentation process, from implementation

to execution. A non-optimized or complicated implementation, coupled with hardware

limitations, leads to longer execution times and, thus, a slower testing framework.

Another important aspect of a testing system is the logging and comparing of results.

Each test run should produce a trace describing the implementation (used operators), the

used parameters, and the obtained result, with the goal of future comparison.

Leveraging the special structure of GAs, we can define a general framework to test

different implementations by abstracting general processes into a library. This way, we

can optimize the performance using parallel computing and other methods without adding

32

Figure 5.1: Flow chart of GA algorithm

unnecessary complexity on the development end.

Figure 5.2 describes the general structure of the testing system.

• A solver takes a set of operators and a SAT instance as input;

• Operators (selection, crossover, mutation, and evaluation) are defined as functions;

• A selection function takes a set of agents as input and returns a set of agent couples

(parents);

• Crossover takes a set of agent pairs and returns the new generation (the result of

parents crossover);

• Mutation takes an agent as input and returns it after mutation;

• The evaluation function defines the used fitness function; and a SAT instance is an

implementation of the SAT solution evaluation described earlier.

33

Figure 5.2: Project structure

34

5.3 parallelism

Parallelism is the process of splitting a task into independently computed subprocesses

with the goal of reducing execution time. For example, calculating the fitness value of a

solution in a generation depends only on the solution itself; thus, the evaluation step of

a GA is a parallelizable process. On the other hand, selection and crossover can not be

parallelized, as the crossover process depends on the selected parents (a serial process).

The final goal of optimization is to minimize execution time with the available hard-

ware. In addition to the time performance gains associated with parallelism, we can

manage heavier loads and more efficiently exploit the used hardware.

Parallelism was achieved in this project using Dask.

Dask provides a scalable parallelization framework where multiple computers can be

used simultaneously as one compute unit called a cluster. This structure is scalable

and easily intergrated. It uses the same API as Python’s numpy and pandas, which

influenced the use of numpy as the implementation of choice for Sat instances and solution

representations.

Workers are the main computation units in Dask; they can be defined on one single

machine (threads or cores) or in a network of machines. Computation load is distributed

across workers using a scheduler; the number of used workers depends on hardware specs,

and the number of used machines.

5.4 Logging

Relying on a statistical representation of algorithm performance is maybe enough when

analyzing simple methods, where a general view of the performance is satisfactory to

compare and understand the functionality of different implementations. Generally, per-

formance visualization is represented as a change in score over generation. Even though

this representation shows the overall performance, it does not show the difference in be-

havior between algorithms; two algorithms may have the same score/generation graph

while behaving in very different ways.

To better understand the proposed methods, a per-variable analysis is needed. As

these methods behave on a variable level, a log should show the effects of different opera-

tors even if the performance is similar; a per-variable level analysis shows changes in trends

and stagnation. On the other hand, visualizing the algorithm’s behavior in this manner

helps in the development phase, where it will be easier to recognize implementation errors.

To do so, we used heatmaps.

Heatmaps have a wide range of uses, from webpage performance to DNA expression

analysis. Heatmaps represent variable values as a color intensity in a two-dimensional

plot; they show the relationship between variables through changes in intensity patterns.

35

Figure 5.3: Heatmap example

Heatmaps were recognized as a valuable visualization tool for optimization algorithms[29].

Figure 5.3 is an example of a heatmap output.

The heatmap is split into three sections: resilience, expression, and a solution section.

Each row in a section represents a generation, and each column represents a variable.

Two solutions can be compared by comparing their heatmap logs, these logs give insight

into the changing trends throughout the generations.

5.5 MAX-SAT implementation and instance

pre-processing

The max-sat problem, as discussed in the state of the art, is an optimization problem

with the goal of maximizing the number of satisfied clauses.

Implementing a solution for such a problem requires not only an efficient solver but also

an efficient representation of the problem instance. Furthermore, solution verification is

a crucial part of any metaheuristic, including genetic algorithms. The pre-processing of

MAXSAT instances and the optimization methods are discussed in this section.

Most satisfiability benchmarks codify instances in ”.cnf” files,the following is an ex-

ample of a ”.cnf” file :

c <comments>

p cnf 4 3

-1 3 -4 0

1 4 0

36

-2 3 4 0

Each file includes a parameter line that starts with p and contains two consecutive

integers n and m, variable count and clause count, respectively.

In this example, n = 4 and m = 3, each clause is defined by a subset of variables a ∈ α

denoted by their indices, where a negative index means that the variable is negated, ”0”

is used as a delimiter between clauses, and a cnf file may contain comment lines prefixed

by a lowercase ”c”.

The above instance represent the following boolean formula:

(¬α1 ∨ α3 ∨ ¬α4) ∧ (α1 ∨ α4) ∧ (¬α2 ∨ α3 ∨ α4) (5.1)

Instance files are compiled into a matrix representation, where an instance P is a

matrix of size n ∗m, where P i
j ∈ {−1, 0, 1}. If P i

j = 0, the ith variable is not included in

the jth clause, P i
j = 1, the ith variable is included in the jth clause and if P i

j = −1 the

negation of the ith variable is included in the jth clause.

P =

−1 0 1 −1
1 0 0 1

0 −1 1 1

 (5.2)

This choice will be justified in the following section. Upon analysis of the used benchmark,

we found that 99% of values in instance matrices are zero.

Arithmetic operations on a matrix require storage and access to each value; thus, a

large matrix requires both more memory and execution time to operate on. This lead us to

use a sparse matrix. In sparse matrix, we can leverage its structure to optimize execution

time and memory use, where non-zero values are stored in an alternate structure, leading

to a more compact data representation and thus using less memory.

There are multiple matrix compression algorithms to optimize both time and memory. A

method’s performance is not only related to the compressed matrix but also to the use case,

where methods optimize for specific arithmetic operations or a problem-specific matrix

structure. Compressed sparse row (CSR) is one of the most commonly used compression

methods, as it performs well with non-regularly structured data. In the table below, we

present the most commonly used methods and a brief description(see table 5.1).

To choose the best method for our purposes, in the next section, each described method

will be tested and then compared.

37

method description
DOK stores each non zero value as a dictionnary

of keys where a key is the index of the
value

LIL list of lists where each index in the main
list represents a row containing a list of
column/value nodes

COO a list of row column value triplets of non
zero values

CSR compressed sparse row. Decompose the
matrix into value column index and non
zero count matricies

CSC compressed sparse column. Same repre-
sentation as CSR but column wise

Table 5.1: Sparse matrix compression methods

A solution S with |S| = n, is an assignment of a boolean value to each variable,

Si ∈ {0, 1}, if Si = 0, the ith variable is set to false, if Si = 1, the ith variable is set to

true.

5.5.1 Optimization of solution evaluation

To iterate faster over proposed methods, a fast evaluation method is needed, whereas a

slow implementation limits the size and number of tests we can run.In this section, mul-

tiple approaches are presented and tested.

First, intuitively, we can determine the number of satisfied clauses given a boolean value

assignment S by simply verifying the satisfiability of each clause one by one, reminding

that a clause is satisfied if one literal is true. Algorithm 11 shows an intuitive implemen-

tation of solution evaluation:

To optimize the implementation, the evaluation method is rewritten with matrix op-

erations. Such an approach is beneficial considering the limitations of using for loops in

a high-level language like Python. Even though using a lower-level language may lead to

better performance. The benefits of the tools available in a high-level language justify its

use.

This method evaluates a solution as follows:

V = C + P · S ′ (5.3)

A clause i is satisfied if Vi > 0 where C is the number of variables in a clause,Ci = ∥Vi∥
and Ci > 0, P instance matrix and S ′ is calculated as follows:

38

Algorithm 11 Count the number of satisfied clauses in a CNF formula

Input: A CNF formula P with n variables
Input: An assignment S of truth values to the variables in P
Output: The number of clauses in P that are satisfied by S
1: satisfied count← 0
2: for each clause C in P do
3: for i in [0, n] do
4: if (Ci = 1 and Si = 1) or (Ci = −1 and Si = 0) then
5: satisfied count← satisfied count+ 1
6: break
7: end if
8: end for
9: end for
10: return satisfied count

S ′ =

1 if S = 1

−1 if S = 0
(5.4)

This method is tested using the sparse matrix compression algorithms described in

the previous section.

The test goes as follows: Define a set of cnf instances with an increasing number of clauses

ranging from 10 to 40000 clauses; these instances are created by truncating the ”bmc-

ibm-7.cnf” instance to a size starting with 10 and with 1000 clause increments; a test

solution is randomly generated; and the execution time is averaged over 3 runs for each

instance/solution.

Based on the test result, with clause counts <20000, the best method is sparse csr,

with higher values, sparse csc becomes marginally better, because most instances are

smaller than 20000 clauses and the difference between csc and csr for instances larger

than 20000 is negligible. sparse csr is The beneficial method to be used.

Further optimization is possible; the chosen method can be used in parallel. Even

though this may result in improved performance, the fact that the performance is already

very good makes the complexity of implementation unnecessary.

39

Figure 5.4: Performance test results (log scale)

5.6 Conclusion

Throught this chapter, we have defined a framework for implementing and testing the

proposed approach. In the next chapter, we will expose and discuss the experiments

results .

40

Chapter 6

Experimetns and results

6.1 Introduction

In this section, we describe the experiments and results of the proposed methods, all tests

are done on a well established benchmark To be able to compare the results with the

established methods, a set of CGAs is tested against the same benchmarks (results in the

CGA tests section). And finally, the results of IPGA are discussed and compared against

the best-performing CGA in the IPGA tests.

6.2 Testing environment and Benchmarks description

All the tests presented in this chapter are done in Desktop PC with Intel Core i5 (2.30

GHz) with 4 cores and 8 GB DDR3 RAM.

The experiments were done on a set of benchmarks that cover a large set of different

characteristics in the structure of a SAT problem.

The SATLIB benchmark, which is widely used [30][31], contains 13 instances; the table

below shows each instance and its number of clauses and number of variables(Table 6.1)

Because of hardware limitations, testing on instances 6,8,9,10,11 and 12 was not possible.

41

File name number of variables number of clauses

bmc-ibm-1.cnf 9686 55870
bmc-ibm-2.cnf 2810 11683
bmc-ibm-3.cnf 14930 72106
bmc-ibm-4.cnf 28161 139716
bmc-ibm-5.cnf 9396 41207
bmc-ibm-6.cnf 51639 368352
bmc-ibm-7.cnf 8710 39774
bmc-ibm-10.cnf 59056 323700
bmc-ibm-11.cnf 32109 150027
bmc-ibm-12.cnf 39598 194778
bmc-ibm-13.cnf 13215 65728
bmc-galileo-8.cnf 58074 294821
bmc-galileo-9.cnf 63624 326999

Table 6.1: SATLIB benchmark instance characteristics

6.3 Genetic algorithm experiments

The goal of these experiments is to establish a comparison baseline to compare IPGA’s

results against.

Because of the interconnected nature of GA’s operators, different combinations of opera-

tors result in different behaviors and, thus, different performance. To have a comprehen-

sive baseline, all the combinations of the following operators need to be tested:

• One point crossover

• Two point crossover

• Kpoint crossover

• Mask crossover

• Roulette selection

• Tournament selection

• Rank selection

• Bitflip mutate

• Inversion mutate

• Scramble mutation

6.3.1 Genetic algorithm parameter choice

The one-point, two-point, and k-point crossovers have the crossover points as parameters.

These parameters are fixed to the following random points for each operator. Figure 6.2

lists the names of the crossover operators and their parameter:

The bitflip mutation takes a mutation probability as input, and the following mutation

probabilities are tested. Figure 6.3 lists the names of the mutation operators and their

parameters:

42

Table 6.2: Crossover operator names

Table 6.3: Mutation operator names

Other parameters were chosen while keeping the hardware limitations in mind: The

population size is fixed at 100 agents, and the maximum number of generations is fixed

at 100 generations.

6.3.2 Genetic algorithm test results

The following are the test results for the bmc-ibm benchmark. Tables 6.4 and 6.5 exhibit

the score and mean score reached by each combination of CGA operators per test file

and their execution time per generation, score is calculated as the percentage of satisfied

clauses:

After an analysis of the results, we can say that the best operator combination is mask

crossover, bit flip mutation, and tournament selection, with a mutation probability of 0.02.

Table 6.6 gives the ranking of each operator based on the maximum score reached

using a GA, including that operator.

Additional information regarding the benchmark can be extracted by comparing the

differences in average max score for each instance (named mean in the results table). This

value can be interpreted as an indicator of the difficulty of each problem instance; given

two SAT instances, the one with a higher average max score is the easier one.

Based on this observation, we can rank the instances based on their difficulty(Figure 6.1

gives the problem instance ranking):

On the other hand, the max score value is negatively correlated with both variable

count and clause count, −0.62 and −0.58, respectively; in other words, the more variables

and clauses in an instance, the lower the maximum score.

43

Table 6.4: CGA test results

44

Table 6.5: CGA test results

45

Table 6.6: Operator ranking based on max achieved score

Figure 6.1: Instance difficulty ranking based on average max score

6.4 Integrated parameter genetic algorithm experiments

In this work, a set of genetic operators were proposed, to be able to effectively test the

performance of each operator, and the behavior of IPGA in general, and taking into

consideration the hardware and temporal limitations, a limited test set of operators was

selected. similarly to the CGA tests, due to the interlinked relation between genetic

operators, a set of genetic algorithms was created to test all the possible combinations

of the selected operators for testing. These GA’s are tested firstly against the bmc-ibm

benchmark, and then a comparison of the general performance of the operators against

their CGA counterparts. Then, the effect of the proposed methods on the diversity and

the overall behavior of the algorithm is explored.

Because of the large number of experiments, all mutation operators use coupled mutation

only.

The following operators are tested(Table 6.7 lists the IPGA tested operators):

The number of generations and the population size are fixed to the same values tested

in CGA.

46

Table 6.7: IPGA operators

The following are the test results for each test file: the max score and mean score of the

final generation are recorded, and the top 10% of the solutions are highlighted in green.

Figures 6.8 and 6.9 give the score and mean score reached by each combination of IPGA

operators per test file and their execution time per generation:

Through these experimental results, we can state that the best operator combination is

dominant random confusion resolution with Cauchy mutation and tournament selection.

Figure 6.10 gives ranking of each proposed operator based on the maximum score reached

using a GA including that operator:

As shown in the IPGA table, using simple crossover resulted in a lower score than

its confusion-resolving counterparts; both RCRX and DRCRX performed 8% better than

SRX, which shows the importance of confusion resolution.

Further, SRX methods stagnate at a low score close to the score of the initial generation,

which indicates that the GA is not converging.

Figure 6.2 exposes the reached diversity using the proposed crossover methods in

function of the generation averaged over 3 runs per crossover method for 200 generations

on the instance bmc-ibm-2.cnf.

Examining the solution diversity chart6.2, we observe that the SRX methods’ gen-

eration diversity stays static, maintaining a high diversity. This proves that the simple

crossover method is not effective and does not lead to a convergence.

On the other hand, from the diversity chart 6.2, we can see that RCRX maintains

a higher diversity than DRCRX throughout the GA’s lifetime. This was expected, as

47

Table 6.8: IPGA test results

dominance crossover favors the expression of the higher-performing parent instead of

favoring a different parent for the two resulting offspring. Even though a higher diversity

is considered a positive characteristic as it maintains variety in the gene pool, What helps

avoid premature convergence.

Despite this, DRCRX reached better score values6.4. It could be suggested that despite

DRCRX having lower diversity, it still maintains its useful diversity, where useful diversity

is defined as diversity that leads to good solutions.

Figure 6.11 illustrates the difference in score and mean score between CGA and IPGA.

48

Figure 6.2: Generation diversity

This difference is calculated as the difference between the best score and mean score value

for each test instance.

Even though resilience minimization was effective in keeping the resilience value lower

than the other methods, but this lead to a limited convergence compared to DRCRX and

RCRX. This method was proposed to limit the accumulation of resilience, this happens

when a gene gets mutated, if it receives a higher resilience value it becomes less likely to

be mutated in the later generations. Having an upper limit helped mitigate this issue, but

from the empirical results we can see that it has a large effect on the GAs performance. On

the other hand comparing the performance of IPGA to CGA shows that IPGA performed

4%better on both the average score of the last generation and the max score(see figure

6.11). This disparity maybe due to a suboptimal parameter initialization, as CGA depends

highly on the mutation probability and the crossover method used, but the mean resilience

of the best performing IPGA method converged to 0.98, which is equivalent to a mutation

probability of 0.02 used in the best performing CGA, what suggests that this disparity in

score is actually not a parameter issue.

One of IPGA’s characteristics is the ability to converge to optimal parameters without

a definite initialization; IPGA initializes the resilience and expression vectors to random

values in the initial generation, this can be showcased by initializing these vectors to bad

values, in this case to zero.

As chart 6.3a shows, even though the resilience and expression vectors were initialized

to zero in the first generation, the genetic algorithms listed in 6.12 converged to score val-

ues comparable to the randomly initialized tests seen in chart 6.4. The zero initialization

mean resilience chart 6.3b shows all the methods starting with 0 mean resilience as all

the population is initialized to zero, and all methods showed a trend towards a stagnation

49

(a) IPGA zero init score (b) IPGA zero init mean resiliance

Figure 6.3: IPGA zero initialization results

around 0.98 mean resilience. Furthermore, we notice that GAs that use Cauchy mutation

reached stagnation faster than GAs using normal mutation.

Figure 6.4: IPGA and CGA score trends

Finally, the added complexity of IPGA lead to a 0.57 seconds slower average generation

execution time compared to CGA, this is caused by the added computation of both the

mutation of expression and resilience vectors, and the crossover resolution process.

50

Table 6.9: IPGA test results

51

Table 6.10: IPGA operator ranking

Table 6.11: Difference in IPGA and CGA performance

Table 6.12: Zero init test GA names

52

6.5 Conclusion

Throughout this chapter, experiments were processed on a set of well established bench-

marks. Several combination of genetic parameters were tested in order to define a base-

line of performance for later comparison. Once done, the proposed Integrated Parameter

Genetic Algorithm was tested and compared with the classical genetic algorithm. The

obtained results showed a measurable increase in performance proving the effectiveness

of this method.

53

Chapter 7

General Conclusion

In this thesis, we have proposed an improved genetic algorithm by integrating the algo-

rithm’s parameters into the problem search space.

This work is the consequence of a broad analysis of the optimization process. Consid-

ering parameter tuning as a preliminary step of the genetic algorithm was the motivation

behind parameter integration.

This approach eliminates the need for tuning the crossover and mutation parameters

adding two vectors named expression and resilience respectively. The first dictates the

participation of a parent in the crossover process and the second represents an agents

resistance to mutation.

This idea led to different implementations of genetic operators, all combinations of these

operators were tested against a well-established benchmark to test their performance. The

experiments conducted showed the impact of the proposed solution. Indeed, in addition to

the considerable increase in performance, the tests showed that this method is successful

in eliminating the need for parameter tuning, which saves a considerable amount of time,

in addition to GA becoming a problem-independent algorithm.

In the future, an analysis of resilience and expression trends will be useful to further

understand the behavior of this algorithm.

Finally, as the concept of parameter integration is not limited to genetic algorithms,

implementing it on other metaheuristics can be considered the next step in our research.

54

Bibliography

[1] Ofer Shtrichman. “Tuning SAT checkers for bounded model checking”. In: Computer

Aided Verification: 12th International Conference, CAV 2000, Chicago, IL, USA,

July 15-19, 2000. Proceedings 12. Springer. 2000, pp. 480–494.

[2] Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics. Vol. 2.

Springer, 2010.

[3] Zahra Beheshti and Siti Mariyam Hj Shamsuddin. “A review of population-based

meta-heuristic algorithms”. In: Int. J. Adv. Soft Comput. Appl 5.1 (2013), pp. 1–35.

[4] Masaaki Suzuki. “Adaptive Parallel Particle Swarm Optimization Algorithm Based

on Dynamic Exchange of Control Parameters”. In: American Journal of Operations

Research 6.5 (2016).

[5] Siti Sophiyati Yuhaniz Dian Palupi Rini Siti Mariyam Shamsuddin. “Particle Swarm

Optimization: Technique, System and Challenges”. In: International Journal of

Computer Applications 14.1 (2011).

[6] Mohammed Moness. “H. Youness, A. Ibraheim, M. Moness, and M. Osama, ”An

Efficient Implementation of Ant Colony Optimization on GPU for the Satisfiability

Problem,” 23rd Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing, PDP 2015, Turku, Finland, March 4-6, 2015”. In: Mar.

2015.

[7] Marco Dorigo and Thomas Stützle. “Ant Colony Optimization: Overview and Re-

cent Advances”. In: Handbook of Metaheuristics (2018).

[8] Thomas Stu¨tzle Marco Dorigo Mauro Birattari. “Ant Colony Optimization”. In:

IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 1.4 (2006).

[9] Esmat Rashedi, Hossein Nezamabadi-pour, and Saeid Saryazdi. “GSA: A Gravita-

tional Search Algorithm”. In: Information Sciences 179.13 (2009). Special Section

on High Order Fuzzy Sets, pp. 2232–2248. issn: 0020-0255. doi: https://doi.org/

10.1016/j.ins.2009.03.004. url: https://www.sciencedirect.com/science/

article/pii/S0020025509001200.

xiv

https://doi.org/https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/https://doi.org/10.1016/j.ins.2009.03.004
https://www.sciencedirect.com/science/article/pii/S0020025509001200
https://www.sciencedirect.com/science/article/pii/S0020025509001200

[10] Thomas Bäck and Hans-Paul Schwefel. “An overview of evolutionary algorithms for

parameter optimization”. In: Evolutionary computation 1.1 (1993), pp. 1–23.

[11] Xin Yao, Yong Liu, and Guangming Lin. “Evolutionary programming made faster”.

In: IEEE Transactions on Evolutionary Computation 3.2 (1999), pp. 82–102. doi:

10.1109/4235.771163.

[12] Seyedali Mirjalili. “Evolutionary algorithms and neural networks”. In: Studies in

computational intelligence. Vol. 780. Springer, 2019.

[13] Khalid Jebari. “Selection Methods for Genetic Algorithms”. In: International Jour-

nal of Emerging Sciences 3 (Dec. 2013), pp. 333–344.

[14] Peter JB Hancock. “An empirical comparison of selection methods in evolutionary

algorithms”. In: Evolutionary Computing: AISB Workshop Leeds, UK, April 11–13,

1994 Selected Papers. Springer. 2005, pp. 80–94.

[15] Tania Pencheva, Krassimir Atanassov, and Anthony Shannon. “Modelling of a

stochastic universal sampling selection operator in genetic algorithms using gen-

eralized nets”. In: Proceedings of the tenth international workshop on generalized

nets, Sofia. 2009, pp. 1–7.

[16] Artem Sokolov and Darrell Whitley. “Unbiased tournament selection”. In: Proceed-

ings of the 7th annual conference on Genetic and evolutionary computation. 2005,

pp. 1131–1138.

[17] Anant J Umbarkar and Pranali D Sheth. “Crossover operators in genetic algorithms:

a review.” In: ICTACT journal on soft computing 6.1 (2015).

[18] Siew Mooi Lim et al. “Crossover and mutation operators of genetic algorithms”. In:

International journal of machine learning and computing 7.1 (2017), pp. 9–12.

[19] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. “A review on genetic

algorithm: past, present, and future”. In: Multimedia Tools and Applications 80

(2021), pp. 8091–8126.

[20] Juha Kivijärvi, Pasi Fränti, and Olli Nevalainen. “Self-Adaptive Genetic Algorithm

for Clustering”. In: Journal of Heuristics 9.2 (Mar. 2003), 113–129. issn: 1381-

1231. doi: 10.1023/A:1022521428870. url: https://doi.org/10.1023/A:

1022521428870.

[21] F. Herrera, M. Lozano, and J. L. Verdegay. “Tackling Real-Coded Genetic Algo-

rithms: Operators and Tools for Behavioural Analysis”. In: Artif. Intell. Rev. 12.4

(Aug. 1998), 265–319. issn: 0269-2821. doi: 10.1023/A:1006504901164. url:

https://doi.org/10.1023/A:1006504901164.

xv

https://doi.org/10.1109/4235.771163
https://doi.org/10.1023/A:1022521428870
https://doi.org/10.1023/A:1022521428870
https://doi.org/10.1023/A:1022521428870
https://doi.org/10.1023/A:1006504901164
https://doi.org/10.1023/A:1006504901164

[22] Aki Sorsa, Riikka Peltokangas, and Kauko Leiviska. “Real-coded genetic algorithms

and nonlinear parameter identification”. In: 2008 4th International IEEE Confer-

ence Intelligent Systems. Vol. 2. IEEE. 2008, pp. 10–42.

[23] John J Grefenstette. “Optimization of control parameters for genetic algorithms”.

In: IEEE Transactions on systems, man, and cybernetics 16.1 (1986), pp. 122–128.

[24] Selmar K Smit and Agoston E Eiben. “Comparing parameter tuning methods for

evolutionary algorithms”. In: 2009 IEEE congress on evolutionary computation.

IEEE. 2009, pp. 399–406.

[25] André Abramé and Djamal Habet. “Ahmaxsat: Description and Evaluation of a

Branch and Bound Max-SAT Solver”. In: Journal on Satisfiability, Boolean Modeling

and Computation 9 (Dec. 2015). doi: 10.3233/SAT190104.

[26] Cezar-Constantin Andrici and Ştefan Ciobâcă. “Who Verifies the Verifiers? A Computer-

Checked Implementation of the DPLL Algorithm in Dafny”. In: arXiv preprint

arXiv:2007.10842 (2020).

[27] Joao Marques-Silva, Inês Lynce, and Sharad Malik. “Conflict-driven clause learning

SAT solvers”. In: Handbook of satisfiability. IOS press, 2021, pp. 133–182.

[28] Kuo-Torng Lan and Chun-Hsiung Lan. “Notes on the distinction of Gaussian and

Cauchy mutations”. In: 2008 Eighth International Conference on Intelligent Systems

Design and Applications. Vol. 1. IEEE. 2008, pp. 272–277.

[29] Andy Pryke, Sanaz Mostaghim, and Alireza Nazemi. “Heatmap Visualization of

Population Based Multi Objective Algorithms”. In: Jan. 2006, pp. 361–375. isbn:

978-3-540-70927-5. doi: 10.1007/978-3-540-70928-2_29.

[30] Noureddine Bouhmala, Karina Hjelmervik, and Kjell Ivar Øverg̊ard. “Combining

An Evolutionary Algorithm With The Multilevel Paradigm For The Simulation Of

Complex System.” In: ECMS. 2013, pp. 753–757.

[31] Marc Thurley. “sharpSAT-counting models with advanced component caching and

implicit BCP”. In: SAT 4121 (2006), pp. 424–429.

xvi

https://doi.org/10.3233/SAT190104
https://doi.org/10.1007/978-3-540-70928-2_29

	Contents
	List of Figures
	List of Tables
	General introduction
	State of the art
	Metaheuristics and Genetic algorithms
	Introduction
	Overview of Metaheuristics
	Swarm based metaheuristics
	Particle Swarm Optimization
	Ant Colony Optimization

	Physics based metaheuristics
	Gravitational search algorithm

	Evolutionary algorithm
	Evolutionary programming

	Genetic algorithm
	Selection
	fitness proportional selection
	Ordinal based selection

	Crossover
	Mutation

	Adaptive genetic algorithm
	Real coded genetic algorithms
	Crossover
	Mutation

	Parameter tuning
	Conclusion

	Satisfiability problem: definition and solvers
	Introduction
	Satisfiability problem; Definition and MAX-SAT variant
	SAT solvers
	Complete solvers
	Branch and bound solvers
	DavisPutnam-Logemann-Loveland algorithm
	Conflict driven clause learning

	Incomplete solvers

	Conclusion

	Contribution
	Integrated Parameter Genetic Algorithm
	Introduction
	Parameter integration
	Agent definition
	Genetic operators
	Crossover
	Confusion resolution methods
	Simple resolution
	Random confusion resolution
	Resilience based confusion resolution
	Dominance resolution

	Mutation
	Selection

	Conclusion

	Solver Implementation
	Introduction
	Testing system architecture
	parallelism
	Logging
	MAX-SAT implementation and instance pre-processing
	Optimization of solution evaluation

	Conclusion

	Experimetns and results
	Introduction
	Testing environment and Benchmarks description
	Genetic algorithm experiments
	Genetic algorithm parameter choice
	Genetic algorithm test results

	Integrated parameter genetic algorithm experiments
	Conclusion

	General Conclusion
	Bibliography
	2b1a2981-a37f-4bbd-9c21-d120499a877a.pdf
	Contents
	List of Figures
	List of Tables
	General introduction
	State of the art
	Metaheuristics and Genetic algorithms
	Introduction
	Overview of Metaheuristics
	Swarm based metaheuristics
	Particle Swarm Optimization
	Ant Colony Optimization

	Physics based metaheuristics
	Gravitational search algorithm

	Evolutionary algorithm
	Evolutionary programming

	Genetic algorithm
	Selection
	fitness proportional selection
	Ordinal based selection

	Crossover
	Mutation

	Adaptive genetic algorithm
	Real coded genetic algorithms
	Crossover
	Mutation

	Parameter tuning
	Conclusion

	Satisfiability problem: definition and solvers
	Introduction
	Satisfiability problem; Definition and MAX-SAT variant
	SAT solvers
	Complete solvers
	Branch and bound solvers
	DavisPutnam-Logemann-Loveland algorithm
	Conflict driven clause learning

	Incomplete solvers

	Conclusion

	Contribution
	Integrated Parameter Genetic Algorithm
	Introduction
	Parameter integration
	Agent definition
	Genetic operators
	Crossover
	Confusion resolution methods
	Simple resolution
	Random confusion resolution
	Resilience based confusion resolution
	Dominance resolution

	Mutation
	Selection

	Conclusion

	Solver Implementation
	Introduction
	Testing system architecture
	parallelism
	Logging
	MAX-SAT implementation and instance pre-processing
	Optimization of solution evaluation

	Conclusion

	Experimetns and results
	Introduction
	Testing environment and Benchmarks description
	Genetic algorithm experiments
	Genetic algorithm parameter choice
	Genetic algorithm test results

	Integrated parameter genetic algorithm experiments
	Conclusion

	General Conclusion
	Bibliography

