République Algérienne Démocratique et Populaire Ministère de l'enseignement supérieur et de la recherche scientifique Université Blida-1-Faculté des Sciences de la Nature et de la Vie Département de biologie et physiologie cellulaire

Mémoire de fin d'études en vue de l'obtention du diplôme de Master

Option : Bio-signalisation Cellulaire et Moléculaire, Immunologie (BCMI)

Thème

Etude structurale de la corticosurrénale et mesure de l'activité glucocorticoïde chez le mouton de race d'Man vivant dans les zones arides

Présenté par :

M^{lle} MERRAD AMINA

M^{lle} CHACHOUA HALIMA

Soutenu le : 20 /09/2015

Devant le jury composé de :

Présidente	\mathbf{M}^{me}	CHAKHMA A.	MAA	UB 1
Examinatrice	\mathbf{M}^{me}	MATAOUI H.	MCB	UB 1
Promotrice	\mathbf{M}^{me}	AMOKRANE A.	MAA	UB 1

Promotion 2014/2015

Remerciement

Nous remercions tout d'abord le bon Dieu de nous avoir donné la force et le courage d'affronter toutes les difficultés.

Nos remerciements vont à Mme Amokrane A., notre promotrice, qui nous a encadré et pris en charge la réalisation de ce mémoire.

Nous tenons également à exprimer nos remerciements a :

-Mme Khammar.F, professeur à la faculté des sciences biologiques (USTHB), pour avoir accepté de nous accueillir dans son laboratoire de recherche sur les zones arides (LRZA).

-la présidente Mme Chakhma.A D'avoir bien voulue nous faire l'honneur de présider ce jury.

-L'examinatrice Mme Mataoui .H pour avoir accepté d'examines notre travail.

Et sans oublier de remercier vivement tous nos enseignants du département de Biologie de l'U.S.D.B

Enfin nos remerciements vont à tous ceux qui nous ont aidés de près ou de loin afin de réaliser ce travail.

Amina et Halima

Dédicaces

A mes grands- parents.

A mes très chers parents

A mes chères sœurs

A mon cher frère.

A mon amie Narimane

A toute ma famille et tous mes amis qui se reconnaitront

Amina

Dédicaces

A mes grands- parents.

A mes très chers parents

A mes chers frères.

A toute ma famille et tous mes amis qui se reconnaitront

Halima

Résumé

Dans cette étude, nous nous sommes intéressés à l'étude de la fonction corticosurrénalienne du mouton d'Man élevé dans la région d'El Meniaa (Sahara algérien) (30°34' latitude nord 2°52' longitude Est, Altitude 379m). Dont l'objectif essentiel est d'établir des interrelations entre les synchroniseurs externes (l'intensité lumineuse et la photopériode) et les variations structurales et fonctionnelles du cortex surrénalien.

Les prélèvements d'organes et de sang ont été effectués sur un lot de 24 béliers adultes de race d'Man au cours de : équinoxe d'automne (21 Septembre), solstice d'hiver (21 Janvier, équinoxe du printemps (21 Mars) et solstice d'été (21 Juin)

Les prélèvements sanguins précédent bien sûr le sacrifice, ils sont réalisés chaque 15 à 30 min pendant 25 heures, les prélèvements d'organes ont été réalisés à raison de 6 sacrifices par jour, trois en pleine phase claire (12h) et trois en pleine phase sombre (00h).

Les surrénales prélevées ont fait l'objet d'une étude histologique en utilisant trois colorations (l'Hemalun-Eosine, le Trichrome de Masson et l'Azan Modifié) et d'une étude morphométrique. La fonction glucocorticoïde est évaluée par le dosage du cortisol plasmatique utilisant le kit RIA.

L'ensemble des résultats indiquent : -un cortex plus développée en phase claire qu'en phase sombre quel que soit la saison. Avec présence des variations saisonnières, caractérisées par : un maximum en été et un minimum en hiver et en automne.

-de même, pour le profil du cortisol plasmatique, qui montre des concentrations élevées le jour et faibles la nuit. La production du cortisol est affectée aussi par la photopériode ; elle est très active en photopériode longue (été) et faible en photopériode courte (hiver).

De cette étude, il apparait que la fonction corticosurrénalienne, est sous l'influence directe de l'intensité et de la durée de la lumière au cours des saisons.

Mots clés : Bélier d'Man, corticosurrénale, cortisol plasmatique El-Meniaa, histologie, morphométrie, phase claire, phase sombre, radioimmunologie, saison, variations.

Abstract

In this study, we are interested to study the adrenocortical function of sheep d'Man elevated in the region of El Meniaa (Algeria Sahara) (30°34 'north latitude 2°52 east longitude, altitude 379m). Whose main purpose is to establish interrelationships between external synchronizers (luminous intensity and photoperiod) and structural and functional changes in the adrenal cortex.

The harvesting organs and blood were carried out on a batch of 24 mature rams of bredD'Man during the: autumnal equinox, winter solstice, spring equinox and summer solstice.

The blood samples preceding of course the sacrifice, carried every 15-30 min for 25 hours, organ samples were taken because of 6 sacrifices a day, three in full clear phase (12) and three in full dark phase (00h).

The levied adrenal were the subject of a histological study using three colorations (Hemalumeosin, Masson's trichrome the Amazon Modified) and morphometric study. the Glucocorticoid function is evaluated by the determination of plasma cortisol using the RIA kit.

The overall results indicate: -a more developed cortex in clear phase compared with dark phase in any season.With the presence of seasonal variations, characterized by a maximum in summer and minimum in winter and autumn.

- Similarly, for the profile in plasma cortisol, which shows high levels during the day and low during the night? Cortisol production is also affected by photoperiod; she is very active in long photoperiod (summer) and low in short photoperiod (winter).

From this study, it appears that adrenocortical function is under the direct influence of the intensity and duration of light during the seasons.

Keywords: Aries Man, adrenocortical, plasma cortisol, histology, morphometry, clear phase, dark phase, El-Meniaa, radioimmunology, season, variations.

الملخص

في هذه الدراسة, اهتممنا بدراسة وظيفة القشرة الكظرية لأغنام الدمان في منطقة المنيعة (الصحراء الجزائرية) (34, 30° شمال خط العرض, 2°52 شرقا, ارتفاع 379م). هدفنا الرئيسي هو وضع العلاقات المتبادلة بين المزامنات الخارجية (شدة الضوء و الفترة الضوئية), و التغييرات الهيكلية و الوظيفية في قشرة الغدة الكظرية.

أخذت عينات الأعضاء و الدم على مجموعة من 24 كبش بالغ لسلالة الدمان خلال الفصول : الخريف, الشتاء, الربيع و الصيف. عينات الدم التي تسبق الذبح احذوا كل 15-30 دقيقة لمدة 25 ساعة. تم اخذ عينات الأعضاء بهدف 6 ذبائح يوميا, 3 في المرحلة الضوئية (12سا) و 3 في المرحلة المظلمة (00سا).

الغدد الكظرية التي تم جمعها, هدفها دراسة نسيجية باستخدام ثلاث ملونات (ايماليون ايوزين, ثلاثي كرومات لماسون, و أزون معدل), و دراسة مظهرية, تم تقييم وضيفة غليكوكورتيكود عن طريق تحديد الكورتيزول البلازماتي, باستخدام عدة RIA.

تشير النتائج عامة أن : القشرة أكثر سمكا في المرحلة الضوئية مقارنة بالمرحلة المظلمة في أي موسم, مع وجود اختلافات موسمية, و التي تتميز ب : الحد الأقصى في الصيف و الحد الأدنى في الشتاء و الخريف.

و بالمثل, من اجل تغيرات الكورتيزول البلازمي, التي تبين مستويات عالية لتركيز الكورتيزول خلال النهار و منخفضة في الليل. يتأثر إنتاج الكورتيزول أيضا بالفترة الضوئية, إنها نشطة جدا في الفترة الضوئية الطويلة (الصيف), و منخفض في الفترة الضوئية القصيرة (الشتاء).

من هذه الدراسة, يبدو أن وظيفة القشرة الكظرية تحت تأثير مباشر لكثافة و مدة الضوء على مدى المواسم.

الكلمات المفتاح : كبش الدمان, القشرة الكظرية, الكورتيزول البلازماتي, علم الأنسجة, دراسة مظهرية, مرحلة الضوئية, مرحلة المظلمة, المنيعة, الاشعاع المناعي, الفصل, التغيرات.

Sommaire

PREAMBULE	••••
I- DONNEES BIBLIOGRAPHIQUES	
I-1 RYTHMES CIRCADIENS DE L'AXES	
HYPOTHALAMO-HYPOPHYSO-CORTICOSURRENALIEN	N
I-1-1-La zone glomérulée	
I-1-2-La zone fasciculée	
I-1-3-La zone réticulée	
I-1-4-Activité glucocorticoïde de la glande surrénale	
I-1-5-régulation de l'axe hypothalamus-hypophysaire corticosurré	nale-
glucocorticoide	
II-MATERIEL	
II-1. Matériel biologique	
II-2 - mouton	
III-METHODES	
III.1 Etude histologique	
III.2-Etude morphométrique	
III.3 Dosage du cortisol plasmatique par radioimmunologie	· -
III-4-Analyse statistique	
IV-RESULTATS IV-1-Les variations histologiques et morphométriques de	e la
corticosurrénale en fonction du cycle lumière/obscurité	
IV-1-1-L'équinoxe d'automne	
IV-1.1.1 En Phase claire	
IV-1.1.2En phase sombre	
IV-1.2- solstice d'hiver	
IV-1.2.1. En phase claire	
IV-1.2.1. En phase sombre	
IV-1.3L'équinoxe	du

printemps	
IV-1.3.1 En phase claire	33
IV-1.3.2 En phase sombre	33
IV-1-4. solstice d'été	39
IV-1.4.1. En phase claire	39
IV-1.4.2 En phase sombre	39
IV-2. variations morphométrique de la corticosurrénale au cours des saisons IV-3.Concentration plasmatique du cortisol durant le cycle lumière/obscurité	46 47
IV-3-1.En phases claire et sombre	47
IV-4. Concentrations plasmatiques du cortisol durant les différentes saisons	48
IV-4-1.Equinoxe d'automne	48
IV-4-2. Le solstice d'hiver	48
IV-4-3. L'équinoxe du printemps	48
IV-4-4. Le solstice d'été	48
IV-5.Les variations saisonnières du cortisol plasmatique	52
V- DISCUSSION VI- CONCLUSION ET PERSPECTIVES	54 56
VII- REFERENCES BIBLIOGRAPHIQUES	57
VIII- ANNEXES	

Liste des figures

Figure	Titre	Page
Figure 01	Schéma représentant une coupe longitudinale de la glande surrénale	04
Figure 02	Formule développée du cortisol	05
Figure 03	Schéma de la stéroïdogénèse du cortex surrénalien adulte humain	05
Figure 04	Système de régulation du rythme circadien de la sécrétion de cortisol	
Figure 05	Mode d'action génomique des récepteurs aux glucocorticoïdes	07
Figure 06	Phylogénie des ovins (Sous- famille des caprines)	08
Figure 07	Photo représente des béliers de la race D'man	10
Figure 08	Bélier et brebis de la race D'man	11
Figure 09	Mesures des surfaces cellulaires et nucléaires (a) et des épaisseurs tissulaires (b) à l'aide du logiciel Axio Vision	16
Figure 10	Principe du dosage RIA	17
Figure 11	Histologie de la corticosurrénale en phase claire à l'équinoxe d'automne chez le bélier de la race D'Man élevé dans la région d'El Meniaa	
Figure 12	Histologie de la corticosurrénale en phase sombre à l'équinoxe d'automne chez le bélier de la race D'Man élevé dans la région d'El Meniaa	
Figure 13	Histologie de la corticosurrénale en phase claire (C1 : ZG, C2 : ZF etC3 : ZR) et phase sombre (S1 : ZG,S2 : ZF etS3 : ZR) à l'équinoxe de l'automne chez le bélier de la race D'Man élevé dans la région d'el Meniaa	23
Figure 14	La hauteur du cortex (ZG, ZF, ZR) en phase claire et en phase sombre à l'équinoxe d'automne chez le bélier de race D'Man élevé dans la région d'EL Meniaa	24
Figure 15	Les variations du diamètre du N, hauteur cellulaire de la zone G et le rapport N/C en phase claire et en phase sombre à l'équinoxe d'automne chez le bélier de la race D'Man élevé dans la région d'El Meniaa	24
Figure 16	Les variations du diamètre du N, hauteur cellulaire de la zone F et le rapport N/C en phase claire et en phase sombre à l'équinoxe d'automne chez le bélier de la race D'Man élevé dans la région d'El Meniaa	25
Figure 17	Les variations du diamètre du N, hauteur cellulaire de la zone R et le rapport N/C en phase claire et en phase sombre à l'équinoxe d'automne chez le bélier de la race D'Man élevé dans la région d'el Meniaa	25

Figure 18	Histologie de la corticosurrénale en phase claire au solstice d'hiver chez le bélier de race D'Man élevé dans la région d'El Meniaa	27
Figure19	Histologie de la corticosurrénale en phase sombre au solstice d'hiver chez le bélier de race D'Man élevé dans la région d'El Meniaa	27
Figure 20	Histologie de la corticosurrénale en phase claire (C1 : ZG, C2 : ZF etC3 : ZR) et phase sombre (S1 : ZG,S2 : ZF etS3 : ZR) au solstice d'hiver chez le bélier de la race D'Man élevé dans la région d'el Meniaa	28
Figure 21	La hauteur du cortex (ZG, ZF, ZR) en phase claire et en phase sombre au solstice d'hiver chez le bélier de race D'Man élevé dans la région d'EL Meniaa	29
Figure 22	Les variations du diamètre du N, de la hauteur cellulaire de la zone G et le rapport N/C en phase claire et en phase sombre au solstice d'hiver chez le bélier de race D'Man élevé dans la région d'El Meniaa	29
Figure 23	Les variations du diamètre du N, de la hauteur cellulaire de la zone F et le rapport N/C en phase claire et en phase sombre au solstice d'hiver chez le bélier de la race D'Man élevé dans la région d'El Meniaa	30
Figure 24	Les variations du diamètre du N, hauteur cellulaire de la zone R et le rapport N/C en phase claire et en phase sombre au solstice d'hiver chez le bélier de la race D'Man élevé dans la région d'El Meniaa	30
figure 25	Histologie de la corticosurrénale en phase claire(A) et en phase sombre (B) à l'équinoxe du printemps chez le bélier de race D'Man élevé dans la région d'El Meniaa	33
Figure 26	Histologie de la corticosurrénale en phase claire (C1 : ZG, C2 : ZF etC3 : ZR ; coloré à l'Azan modifié, G X100) et phase sombre (S1 : ZG, S2 : ZF etS3 : ZR ; Coloré à l'Hemalun-Eosine, G X100) à l'équinoxe du printemps chez le bélier de la race D'Man élevé dans la région d'el Meniaa	34
Figure 27	Les variations du cortex (ZG, ZF, ZR) et de médulla en phase claire et en phase sombre à l'équinoxe du printemps chez le bélier de la race D'Man élevé dans la région d'El Meniaa	35
Figure 28	Les variations du diamètre du N; de la surface cellulaire de la ZG et le rapport N/C en phase claire et en phase sombre à l'équinoxe du printemps chez le bélier de race D'Man élevé dans la région d'El Meniaa	35
Figure 29	Les variations du diamètre du N; de hauteur cellulaire de la ZF et le rapport N/C en phase claire et en phase sombre à l'équinoxe du printemps chez le bélier de race D'Man élevé dans la région d'El Meniaa	36
Figure 30	Les variations du diamètre du N et de la hauteur cellulaire de la ZR et le rapport N/C en phase claire et en phase sombre à l'équinoxe du printemps chez le bélier de race D'Man élevé dans la région d'El Meniaa	36

	Histologie de la corticosurrénale en phase claire (A) et en phase		
Figure 31	sombre (B) au solstice d'été chez le bélier de race D'Man élevé dans		
	la région d'El Meniaa		
	Histologie de la corticosurrenale en phase claire (C1 : ZG, C2 : ZF et		
Figure 32	C3 : ZR) et en phase sombre (S1 : ZG,S2 : ZF etS3 : ZR) au solstice	39	
8	d'ete chez le beller de la race D'Man eleve dans la region d'El		
F' 22	Les variations du cortex (ZG, ZF, ZK) et de medulla en phase claire	40	
Figure 33	et en phase sombre au solstice d'ete, chez le beller de la race D'Man	40	
	Les voriations de diamètre du Ni de la heuteur celluleire de la 7C et		
Figure 34	Les variations de diametre du N; de la nauteur centulaire de la ZO et la rannort N/C on phase aloire et en phase sombre au seleties d'été	40	
rigure 54	abez la báliar de race D'Man álevá dans la rágion d'El Manian	40	
	Les variations de diamètre du N: de la hauteur cellulaire de la ZE et le		
Figuro 35	Les variations de diametre du N, de la nauteur centraire de la Zr et le rapport N/C en phase claire et en phase sombre au solstice d'été chez	<i>/</i> 1	
Figure 55	le bélier de race D'Man élevé dans la région d'El Meniaa	41	
	Les variations de diamètre du N: de la hauteur cellulaire de la ZR et		
Figure 36	le rannort N/C en phase claire et en phase sombre au solstice d'été	41	
I Igui e 50	chez le bélier de race D'Man élevé dans la région d'El Meniaa	11	
	Histogramme récapitulatif des différentes zones du cortex surrénalien		
Figure 37	pendant la phase claire des différentes saisons chez le bélier de race	42	
- iguite e /	d'Man élevé dans la région d'El Meniaa		
	Histogramme récapitulatif des différentes zones du cortex surrénalien		
Figure 38	pendant la phase sombre des différentes saisons chez le bélier de	43	
0	race d'Man élevé dans la région d'El Meniaa		
Figure 20	L'épaisseur du cortex surrénalien durant les différentes saisons chez	4.4	
rigure 39	le bélier de race d'Man élevé dans la région d'El Meniaa	44	
Figure 40	L'épaisseur de la ZF durant les différentes saisons chez le bélier de	4.4	
rigure 40	race d'Man élevé dans la région d'El Meniaa	44	
	Variations de la concentration du cortisol plasmatique durant le cycle		
Figure 41	lumière/obscurité au cours des différentes saisons chez le bélier de	45	
	race d'Man élevé dans la région d'El Meniaa		
	Variations de la concentration du cortisol plasmatique durant		
Figure 42	l'équinoxe d'automne chez le bélier de race D'Man élevé dans la	46	
	région d'El Meniaa		
	Variations de la concentration du cortisol plasmatique durant le	. –	
Figure 44	solstice d'hiver chez le bélier de race D'Man élevé dans la région	47	
	d'El Meniaa		
	Variations de la concentration du cortisol plasmatique l'equinoxe	40	
Figure 45	printemps chez le beller de race D Man eleve dans la region d El	48	
	Withilda Variations do la concentration du conticol plasmatique au colstica		
Figure 46	variations de la concentration du cortisol plasmatique au solstice d'été abor la bélier de race D'Man élevé dans la région d'El Manier	49	
	U CIC CHEZ LE DEHEL UE LACE D'IVIAIL ELEVE UAILS LA LEGIOIL U EL IVIENIAA		
Figure 47	élevé dans la région d'El Menia	50	
1			

Liste des tableaux

Tableau	Titre
Tableau 1	les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase claire de la saison automnale chez le belier de race D'Man élevé dans la région d'El Meniaa
Tableau 2	les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase sombre de la saison automnale chez le bélier de race D'Man élevé dans la région d'El Meniaa
Tableau 3	les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase claire de la saison d'hiver chez le belier de race D'Man eleve dans la région d'El Meniaa
Tableau 4	les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase sombre de la saison d'hiver chez le bélier de race D'Man eleve dans la région d'El Meniaa
Tableau 5	les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase claire de la saison du printemps chez le bélier de race D'Man élevé dans la région d'El Meniaa.
Tableau 6	les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase sombre de la saison du printemps chez le bélier de race D'Man élevé dans la région d'El Meniaa
Tableau 7	les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase claire de la saison d'été chez le bélier de race D'Man élevé dans la région d'El Meniaa
Tableau 8	les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase sombre de la saison d'été chez le bélier de race D'Man élevé dans la région d'El Meniaa
Tableau 9	les valeurs calculées de la surface cellulaire et le diamètre des noyaux des différentes zones du cortex en phase sombre de la saison d'été (exemple) chez le bélier D'Man élevé dans la région d'El Meniaa
Tableau 10	les valeurs calculées de la surface cellulaire et le diamètre des noyaux de la zone glomérulee durant les différentes saisons chez le bélier D'Man élevé dans la région d'El Meniaa
Tableau 11	les valeurs calculées de la surface cellulaire et le diamètre des noyaux de la ZF durant les différentes saisons chez le bélier D'Man élevé dans la région d'El Meniaa.
Tableau 12	les valeurs calculées de la surface cellulaire et le diamètre des noyaux de la ZR durant les différentes saisons chez le bélier D'Man élevé dans la région d'El Meniaa.
Tableau 13	les valeurs calculées des concentrations du cortisol plasmatique durant la saison d'automne
Tableau 14	les valeurs calculées des concentrations du cortisol plasmatique durant la saison de printemps

Tableau15	les valeurs calculées des concentrations du cortisol plasmatique durant la saison de la saison d'hiver
Tableau16	les valeurs calculées des concentrations du cortisol plasmatique durant la saison de la saison d'été
Tableau 17	étude statistique (t de student) des différentes zones du cortex durant la saison d'automne
Tableau 18	étude statistique (t de student) des différentes zones du cortex durant la saison du printemps
Tableau 19	étude statistique (t de student) des différentes zones du cortex durant la saison d'hiver
Tableau 20	étude statistique (t de student) des différentes zones du cortex durant la saison d'été
	étude statistique (t de student) de la surface des cellules et le diamètre des noyaux
Tableau 21	des différentes zones durant la saison d'automne
Tableau 22	étude statistique (t de student) de la surface des cellules et le diamètre des noyaux des différentes zones durant la saison de mars
Tableau 23	étude statistique (t de student) de la surface des cellules et le diamètre des noyaux des différentes zones durant la saison d'hiver
Tableau 24	étude statistique (t de student) de la surface des cellules et le diamètre des noyaux des différentes zones durant la saison d'été
Tableau 25	caractéristiques générales des lots de béliers de race D'Man élevé dans la région d'El Meniaa indiquant leur poids de la surrénale

Liste des abréviations

ННС	axe hypothalamo-hypophyso-cortico-surrénalien		
ZG	Zone glomérulée		
ZF	Zone fasciculée		
ZR	Zone réticulée		
CRH	Corticolibérine		
АСТН	Adréno-corticotrophe		
GR	récepteur des glucocorticoïdes		
Ac	anticorps		
GR	Globules rouges		
N/ C	Rapport nucléo-cytoplasmique		

PREAMBULE

Les variations rythmiques, dans la nature, existent depuis la naissance du monde. Elles se déroulent dans le temps et se répètent à peu près identiques à elles-mêmes: exemple de l'alternance du jour et de la nuit, l'alternance des saisons et la rotation de la terre en 365 jours. Ces variations temporelles touchent également l'espèce vivante et on les appelle des rythmes biologiques. Ces rythmes se retrouvent depuis l'être unicellulaire aux cellules les plus complexes tant dans leur organisation que dans leur fonctionnement.

La fonction de la reproduction présente souvent un caractère saisonnier et correspond à une suite d'évènements dont l'enchainement aboutit à la naissance des petits à une période optimum pour leur survie.

Les mammifères vivant en zones arides constituent de bons modèles expérimentaux, pour l'étude des mécanismes d'adaptation aux conditions de leur environnement. Ainsi, ces animaux peuvent répondre aux facteurs externes (climatique, sociaux....) par des variations de l'activité corticosurrénalienne et donc des changements dans leur comportement et métabolisme.

Compte tenu de l'adaptation particulière à la vie désertique du mouton D'man, ce travail est initié afin de compléter nos connaissances sur la physiologie de cette espèce, travaux déjà entrepris par Y. Soltani (1988), Bouknaoui (2001), Amokrane et Anane (2005), au Laboratoire d'Endocrinologie et Ecophysiologie Animale Des Zones Arides à l'Université des Sciences et de la Technologie Houari Boumediene.

Notre travail est basé essentiellement, sur l'étude de l'influence des facteurs externes à savoir : la lumière du jour et la photopériode saisonnière, sur la structure et l'activité glucocorticoïde de la surrénale du bélier D'man, pour cela nous avons réalisé :

- L'étude histologique en utilisant trois colorations : l'Hemalun-Eosine, le Trichrome de Masson et l'Azan Modifier.
- L'étude morphométrique en réalisant des mesures de l'épaisseur : de la capsule conjonctive, de la medulla, du cortex (ZG, ZF, ZR), de la hauteur cellulaire (C) et du

diamètre du noyau (N) au cours de la phase claire et de la phase sombre de toutes les saisons.

- > Le dosage du cortisol plasmatique par radio-immunologie.
- > L'étude statistique permettant l'interprétation des résultats obtenus.

Avant de rapporter nos résultats, nous rappellerons d'abord la physiologie endocrinienne du cortex surrénal en insistant sur l'activité glucocorticoïde et sa régulation, et nous tenterons de faire la synthèse des connaissances sur la description de la race D'man adaptés particulièrement à la vie désertique, nous présenterons aussi le matériel et les méthodes utilisées, les résultats obtenus seront discutés à la lumière de la littérature et enfin une conclusion générale clôturera ce mémoire.

I-1- LES RYTHMES CIRCADIENS DE L'AXE HYPOTHALAMO-HYPOPHYSO-CORTICOSURRENALIEN

La physiologie de l'axe hypothalamo-hypophyso-cortico-surrénalien (HHC) des animaux vivants en zones arides, a été relativement peu étudiée et nos connaissances sur la fonction endocrine de leur cortex surrénal, sont fragmentaires et ne permettent pas d'élucider entièrement les mécanismes d'adaptation à l'environnement aride (Sherwood, 2000), la corticosurrénale est divisée en trois zones :

I-1-1- La zone glomérulée

C'est la zone fine sous capsulaire, elle secrète les minéralocorticoïdes (aldosterone) et représente 10 à 15% du volume du cortex surrénalien chez l'Homme, elle est formée par de petites cellules compactes en amas cylindriques (**Poirier et al., 1976; Stevens et lowe, 1997**). Ces cellules ont un cytoplasme basophile peu abondant riche en liposomes et un noyau hétérochromatine abondante avec un nucléole visible (**Ganong et Jobin, 2005**). Cette couche est caractérisée par la présence de tissu de soutien avec capillaires et présence de quelques gouttelettes lipidiques, ainsi qu'un réseau de réticulum endoplasmique lisse (REL) bien visible (**Stevens et lowe, 1997**). Chez le rat adulte, les cellules de la ZG sont arrangées en cordons ou en amas. Ces cellules sont polygonales et hautes ayant une forme allongée, avec un cytoplasme riche en lysosomes, et un noyau centrale sphérique et volumineux avec un ou deux nucléoles (**Mouriquand, 1977**).

I-1-2- La zone fasciculée

S'étend entre la zone glomérulée et la zone réticulée et représente 75% du volume du cortex surrénalien, elle secrète les glucocorticoïdes. Les cellules fasciculées, spongiocytes, s'organisent en long cordons parallèles et étroits disposés d'une façon perpendiculaire par rapport à la capsule, et radiaire par rapport à la médullaire (Sherwood, 2000). Ces cordons présentent des capillaires sinusoïdes verticales, tapissés d'endothélium fenêtré (Poirier et *al.*, 1976 ; Stevens et lowe, 997). Chez l'Homme et le rat, les cellules fasciculées sont volumineuses, polyédriques ou rectangulaires et plus ou moins cubiques. Leur cytoplasme est abondant, claire et riche en vacuoles lipidiques d'où l'aspect spumeux des cellules. Le noyau est visible a forme ronde ou ovoïde avec un contour irrégulier est une chromatine dispersée, contient un ou deux nucléoles (Dietert, 1969; Idlman, 1970; Wheater et *al.*, 2001)

I-1-3- La zone réticulée

Elle est située entre la fasciculée et la médullosurrénale, secrète des quantités infimes d'hormones sexuelles, principalement les androgènes, et représente 5 à 10% du volume du cortex surrénalien, elle forme des cellules a cytoplasme acidophile disposées en réseau anastomosé (Kierszenbaum, 2006), présence de nombreux vaisseaux entre les cellules, présence de lysosome et REL moins abondant et leurs noyaux sont visibles, arrondis ou ovoïde (Piorier et *al.*, 1976; Wheater et *al.*, 2001). Chez l'Homme, le cytoplasme est acidophile, réduit et contient peu de liposomes (Race et Maywu, 1964; Weather et *al.*, 2001). Chez le lapin, les cellules réticulées sont dépourvues de liposomes (Grasse, 1973).

Figure 1: schéma représentant une coupe longitudinale de la glande surrénale (Yves Clemont*et al.*, 2013)

I-1-4- Activité glucocorticoïde de la glande surrénale

1-Le cortisol

Le cortisol est le principal glucocorticoïde sécrété par le cortex surrénalien chez la plupart des animaux domestiques, bien que les surrénales de quelques espèces produisent une quantité assez importante de corticostérone (**Bielinska***etal.*, **2009**; **Young** *et al.*, **2004**).

Figure 03 : Schéma de la stéroïdogénèse du cortex surrénalien adulte humain (Kempna et Fluck, 2008)

Légende : AdR= adrenotoxine réductase Adx= Adrenodoxine P450scc= P45 sidechaincleavage enzyme POR= P450 oxydoreductase ST= sulphonyl transférase ZF= zone fasciculée ZG= zone glomérulée ZR= zone réticulée

I-1-5- Régulation de l'axe hypothalamus-hypophysaire corticosurrénale-glucocorticoïde

Le Cortisol est synthétisé de façon complexe, à partir d'un signal de l'hypothalamus, la "corticotropin-releasing hormone (CRH)" qui est véhiculé jusqu'à l'hypophyse où il y a sécrétion d'ACTH qui est à son tour véhiculé jusqu'aux glandes surrénales où la sécrétion du Cortisol est stimulée. La sécrétion du CRH, de l'ACTH et du Cortisol suit un rythme circadien variant selon l'heure du jour et de la nuit (**Wikstrom, 2003; Roumestan** *et al.,* **2004**). Elle est maximale le matin vers 8 h et minimale entre 24 h et 4 h du matin (**Bertherat, 2002**).

Figure 04. Système de régulation du rythme circadien de la sécrétion de cortisol (Oster et al., 2006)

Le cortisol évolue selon un rythme circadien imposé par une horloge biologique localisée dans les noyaux suprachiasmatiques de l'hypothalamus. Ceci a pour conséquence une fluctuation régulière des niveaux de cortisol au cours de 24h (**Weibel, 2003**). Ces fluctuations, à l'origine du rythme circadien, peuvent être entrainées par la lumière et la photopériode (**Woodley** *et al.*, 2003), appelés aussi des synchroniseurs, capable de réguler les

oscillateurs et la période des rythmes circadiens. Notons cependant que la suppression des synchroniseurs, comme cela a été fait dans les expériences d'isolement en grotte souterraine (**Siffre** *et al.*, **1966**), laisse persister les rythmes circadiens, mais avec généralement une période naturelle allongée à 25 heures environ chez l'Homme sain (**Benoit** *et al.*, **1988**).

Les effets des glucocorticoïdes sur les cellules sont médiés par un récepteur de la famille des récepteurs nucléaires, NR3C1, appelé récepteur des glucocorticoïdes (GR).

3- Mode d'action du cortisol

Figure 05 : Mode d'action génomique des récepteurs aux glucocorticoïdes (Rodolphe, 2013)

Après la liaison aux GRs dans le cytoplasme, les récepteurs corticostéroïdiens se dissocient de leurs protéines chaperonnes et traversent la membrane nucléaire. Ils se dimérisent et module la transcription des gènes via : 1) Une interaction directe avec l'ADN via les GRE ou nGRE 2) Une interaction indirecte avec l'ADN via des facteurs de transcriptions (FT : AP-1, NF-kB, NF-IL- 6 : Nuclear Factor interleukine 6) 3) Une interaction avec à la fois l'ADN et des FT

Le présent travail a été réalisé au niveau du Laboratoire de Recherche sur les Zones Arides (LRZA), de l'Université des Sciences et de la Technologie Houari Boumediene (USTHB). Dont le but d'établir des interrelations entre la structure et la fonction glucocorticoïde de la surrénale avec les deux puissants synchroniseurs : la lumière du jour et la photopériode, chez mouton D'man élevé dans la région d'El Meniaa.

Pour cela notre travail s'articule en deux parties essentielles : la première est représentée par l'étude structurale (histologique) de la corticosurrénale, la deuxième se résume par le dosage du cortisol plasmatique par la technique radioimmunologique.

II- MATERIEL

II-1. Materiel biologique

II-2. Le mouton

II-2.1- Position phylogénique du mouton

Le mouton domestique est Ovisaries. Il appartient à l'ordre des Artiodactyla, et au sous-ordre des Pecora. Il est de la famille des Bovidae, de la sous-famille des Caprinae, et du genre Ovis. (Annelyse, Clémence, Marie Desbois, 2008).

Figure 06 : Phylogénie des Ovins (Sous – famille des Caprinés) (Vivicorsi, 1998).

II-2-2 La race D'man

II-2-2-1 Systématique des ovins

La systématique des ovins en général est la suivante

Règne : Animalia. Embranchement : Vertébrés. Classe : Mammifères. Sous-classe : Mammifères ongulés. Ordre : Artiodactyles. Sous-ordre : Ruminants. Famille : Bovidés. Sous-famille : Ovinés. Genre : Ovis Espèce : *Ovis aries*. (Marmet, 1971; Mazoyer, 2002)

II-3- Données bibliographiques sur la race D'man.

Cette race des oasis sahariennes originaire du Maroc représente 0.5% du cheptel national soit environ 34.200 têtes. L'aire géographique de répartition de cette race s'étend du sud-ouest algérien (Becher, Tindouf, Adrar) jusqu'à Ouargla. Bien que de conformation modique et de petit format, cette race pourrait présenter énormément d'intérêt zootechnique et économique à l'avenir grâce à ses performances de reproduction exceptionnelles.

- •1er agnelage à 10_12 mois ;
- •prolificité de 150 à 250% ;
- absence d'anoeustrus saisonnier ou de lactation ;
- deux agnelages annuels, très fréquemment gémellaires (Feliachi, 2003).

L'absence de cornage est un caractère constant chez les deux sexes. La queue est fine et longue à bout blanc. La très grande hétérogénéité morphologique de la D'MAN, laisse apparaître trois types de populations:

- •Type noir acajou, le plus répandu et apprécié.
- •Type brun.
- •Type blanc

Les trois types présentent des queues noires à bout blanc et des caractères de productivité ne signalant aucune différence significative (Anonyme, 2008).

Cette race saharienne est répandue dans les oasis du sud-ouest Algérien:

Gourara, Touat, Tidikelt et va jusqu'à El-Goléa à l'est et se prolonge dans les zones désertiques au sud de Bechar sous le nom de race de TAFILALET, ou D'MAN.

La race très bien implantée au Maroc, c'est là qu'elle est la plus étudiée et bien préservée (Anonyme, 2008).

Figure 07 : Photo représente des béliers de la race D'man (Amokrane A., 2005).

II-4- Caractéristiques morphologiques.

Il parait morphologiquement défectueux avec un squelette très fin à côtes plates.

De petit format, il semble tiré en arrière (**Anonyme, 2008**). La toison est généralement peu étendue, le ventre, la poitrine, et les pattes ne portent pas de laine, parfois la toison ne couvre que le dos sur quelques centimètres de part et d'autre de la colonne vertébrale, la ligne de dessous est inclinée vers l'arrière, la tête est fine, le chanfrein busqué, les cornes sont absentes sauf des ébauches chez le male, la queue est fine et longue, la couleur de la robe est noire acajou ou brune foncée avec une extrémité blanche de la queue (**Trouette, 1929 ; Turries, 1976 ; (Sadok** *et al.***, 1977) cité par (Laoun, 2007; Chellig, 1992).**

La productivité pondérale de cette race est supérieure de 70% environ à celle des autres races. Une sélection sur la conformation pourrait en faire une race d'un grand intérêt pour l'élevage en race pure en zone saharienne et pour les croisements industriels destinés à la boucherie (**Feliachi., 2003**).

Figure 08 : Bélier et brebis de la race D'man (Belaib issam., 2011)

Cette race est très rustique, supporte très bien les conditions sahariennes, avec une prolificité très élevée, la brebis peut avoir jusqu'à cinq (05) agneaux en une **portée (Trouette, 1929 ; Turries, 1976 ; (Sadok et al, 1977)** cité par (Laoun, 2007 ; Chellig, 1992).

II-5- Mensurations

Tableau : Mensurations de la race D'man

Auteur	Catégorie	Poids (Kg)	Hauteur au garrot (cm)	Profondeur de poitrine	Longueur du corps
Chellig,	Bélier	46	75	34	74
1992	Brebis	37	60	32	64

II-6- Aire d'expansion

L'aire d'expansion de la D'man est le Sahara du Sud-Ouest algérien (Erg occidental et vallée de l'Oued Saoura) et du Sud Est marocain (Chellig, 1992).

Carte 01: Aire d'expansion de la race D'man (selon la délimitation de Chellig, 1992).

III-METHODES

Notre travail est effectué en fonction de deux paramètres de l'environnement : la lumière et la photopériode qui apparemment ont un impact redoutable sur la fonction glucocorticoïde de la surrénale.

III.1 Etude histologique

III.1.1 Prélèvements des organes

Les prélèvements des glandes surrénaliennes, a été effectué sur un lot de 24 béliers adultes dont 6 sacrifiés à chaque saison (4 saisons), à raison de 3 sacrifices en pleine phase claire (12h) et 3 en pleine phase sombre (00h).

Juste après le sacrifice, les glandes surrénales sont rapidement prélevées, débarrassées du tissu adipeux, pesées puis coupé en fragments transversales. Les fragments destinés à l'étude histologique sont placé rapidement dans le fixateur (Bouin-Hollande)

La confection des coupes histologiques, permet l'observation des tissus au microscope photonique après une coloration spécifique. Elles comportent plusieurs étapes, rapportées essentiellement dans **Martoja et Martoja (1967)** et **Gabe (1968).**

1-Fixation

Etape primordiale, elle permet d'immobiliser et conserver les structures cellulaires et tissulaires dans un état aussi proche que possible du vivant. L'agent fixateur solidifie le gel protéique qui circule entre les mailles du réseau membranaire limitant le hyaloplasme et les organites.

Les organes sont plongés dans un volume de fixateur (Bouin-Hollande) environ 60 fois supérieur à celui de l'organe, pendant 3 à 5 jours. Aprés fixation, sont transférés dans un liquide conservateur (Alcool 70°) jusqu'à l'étape suivante. Chaque pièce est accompagnée d'une étiquette portant toutes les indications utiles (crayon sur fiche cartonnée)

2-Inclusion

2.1-Déshydratation

L'inclusion à la paraffine nécessite au préalable la déshydratation des pièces histologiques (bains successifs d'éthanol de degrés croissants, jusqu'à l'absolu) la paraffine étant insoluble dans l'eau et soluble dans les hydrocarbures benzéniques benzène, toluène ou xylène.

2.2- Eclaircissement

Il permet l'élimination complète des traces d'alcool et l'imprégnation par le butanol, solvant de la paraffine.

2.3- Pénétration des pièces par la paraffine

Cette étape consiste à éliminer le butanol et le remplacer par la paraffine. Les pièces sont successivement plongées dans trois bains de paraffine mis dans l'étuve à 58C°

2.4- Confection des blocs de paraffine

Dans cette étape, ont été utilisés des moules de métal (tissus-TEK111) et des cassettes en plastique sur lesquelles sont inscrites les indications de la pièce traitée. La paraffine fondue est versée dans les moules légèrement préchauffés à 45C°. La pièce à inclure est orientée et disposée dans la paraffine; on dépose ensuite la cassette correspondante, sur le moule, le bloc est laissé à température ambiante.

Environ 15 min plus tard, le bloc à complètement durci. Détachement du moule, il est prêt à être débité au microtome selon l'épaisseur désirée.

3- Confection des coupes

Apres installation du bloc sur le microtome. Le rabotage commence en ajustant l'échelle à 20 ou 15 μ m. Lorsque la pièce apparait dans le plan de coupe, on ramène l'échelle à 5 μ m pour obtenir les coupes fines sous forme de rubans.

4- Etalement des coupes

On dépose les coupes sur une surface d'eau gélatinée chauffée à 37C° pour l'élimination complète de la paraffine.

A l'aide d'aiguilles à dissection, les coupes sont déposées et collées sur les lames puis séchées à 37C° dans une étuve. A l'aide d'un crayon, toutes les informations de l'organe sont préalablement indiquées sur la lame correspondante.

5- Coloration

Elle a pour but d'établir le contraste naturel des coupes et de rendre plus évidents les différents constituants cellulaires et tissulaires. C'est la coloration topographique (Hemalun-Eosine, Trichrome de Masson et l'Azan modifier) qui a été effectuée.

Avant toute coloration, les coupes doivent être débarrassées de la paraffine et réhydratées.

Le xylène est utilisé pour le déparaffinage (2 bains de 10 min). Le passage pendant 5 min dans les alcools de degré décroissant (2 bains de l'alcool absolu, 1 bain de l'alcool 90° et 1 bain de l'alcool 70°) permet la réhydratation.

Le Trichrome de Masson met en évidence les éléments du tissu conjonctif en particulier le collagène en vert, le noyau en noir et le cytoplasme en rouge.

l'Hémalun-éosine met en évidence les organites de la cellule: les noyaux sont colorés en bleu-noir, le cytoplasme acidophile en rose, certaines secrétions restent incolores.

6- Montage et observation

Une fois colorées, les lames doivent passer dans des bains d'alcool de concentration croissante de façon à éliminer l'eau restante dans les coupes $(70^\circ, 96^\circ, 100^\circ)$ et enfin dans 3 bains de xylène.

Le montage est l'opération qui consiste à fixer, à l'aide d'une substance appropriée (Eukit) au colorant utilisé, tout de suite une lamelle en verre est déposée sur l'échantillon histologique.

Les lames sont ensuite séchées à l'aire libre, nettoyées au xylène et enfin observées au microscope photonique (Zeiss).

III.2-Etude morphométrique

Les mesures morphométriques ont été réalisées chez tous les animaux (28) aussi bien pour les épaisseurs tissulaires que les hauteurs cellulaires des différentes zones de la corticosurrénale (zones glomérulée, fasciculée et réticulée), à l'aide d'un logiciel d'analyse et de traitement d'images « Axio vision 4.6.3 ». Concernant les épaisseurs tissulaires, les mesures sont faites sur dix coupes de surrénale en balayant toute la périphérie du cortex, tandis que les mesures cellulaires et nucléaires ont été réalisées sur 100 cellules randomisées au niveau de chaque zone du cortex surrénal.

Les variations du volume nucléaire peuvent s'apprécier également par rapport à la taille de la cellule par l'évaluation du rapport nucléocytoplasmique qui correspond au rapport du volume nucléaire / (volume cellulaire – volume nucléaire) (**Hertwig, 1903**). Plus une cellule est différenciée, plus son noyau est petit par rapport au cytoplasme et donc plus le rapport nucléo-cytoplasmique est faible

Figure 09: Mesures des surfaces cellulaires et nucléaires (a) et des épaisseurs tissulaires (b) à l'aide du logiciel Axio Vision.

Rapport nucléo-cytoplasmique est calculé de la façon suivante :

Les photographies figurant dans ce mémoire ont été prises à l'aide d'un appareil photos numérique (KODAK) fixé sur microscope

III.3 Dosage du cortisol plasmatique par radioimmunologie

III.3.1 Prélèvement :

Sur un lot de 6 béliers par saison, 4 prélèvements ont été réalisés par béliers chaque 15 à 30 minutes pendant 25 heures aux équinoxes '21' d'automne et printemps et aux solstices '21 ' d'hiver et d'été.

A chaque prélèvement, on recueille par ponction au niveau de la veine jugulaire environ 5 ml de sang dans un tube hépariné ; après centrifugation à 3000 tours/mn, les plasmas sont recueillis et immédiatement congelés à -20 °C, puis ramenés à Alger dans de l'azote liquide.

III.3.2 Principe

C'est une technique dans laquelle des molécules marquées (Ag*) et non marquées (Ag) d'une même espèce entrent en compétition vis-à-vis d'un nombre limité de sites de liaison appartenant à un réactif spécifique (Ac).

Les échantillons à doser sont incubés dans des tubes recouverts d'anticorps monoclonal avec un traceur cortisol marqué à l'iode 125. Après incubation, le contenu du tube est vidé par aspiration, puis la radioactivité liée est mesurée. Une courbe d'étalonnage est établie. Les valeurs inconnues sont déterminées par interpolation à l'aide de cette courbe

Figure 10 : Principe du dosage RIA

III.3.3 Les etapes de la technique

Etapes	Calibrateur et contrôle	Sérums ou Extraits urinaires	Tubes		
1 . Départition	ercontrole	LAUGIUS UTITAILES	«totaux»(1)		
1: Repartition					
Dans des tubes recouverts					
d'anticorps, distribuer :					
 les calibrateurs, contrôle 	50 µL	-	-		
 les sérums ou extraits urinaires 	-	50 µL	-		
- traceur	500 µL	500 µL	500 µL		
Agiter à l'aide d'un vortex					
2: Incubation 1 heure à 18-25°C avec agitation (400 rpm).					
3 : Comptage					
Aspirer soigneusement le contenu de chaque tube (sauf les 2 tubes «com totaux»).					
Compter les cpm liés (B) et les cpm totaux (T).					

III-4-Analyse statistique

Les résultats obtenus sont présentés sous forme de moyennes \pm ESM ; une analyse de variance puis un test t de Student ont été effectués pour la comparaison.

• Moyenne arithmétique (\bar{X}) des valeurs individuelles

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

 $\sum x_i$: Somme des valeurs individuelles

n : Nombre de valeurs

• Erreur Standard à la Moyenne(ESM)

$$ESM = \frac{\delta}{\sqrt{n}}$$
 avec $\delta = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$

 δ : écart type

 x_i : Valeurs individuelles

• Coefficient de corrélation

$$r = \frac{P}{\delta x \ \delta y} \qquad \qquad p = \frac{1}{n} \sum x_i \ y_i - \bar{x} \bar{y}$$

$$(\delta x)^2 = \frac{1}{n} \sum (x_i - \bar{x})^2 \qquad (\delta x)^2 = \frac{1}{n} \sum (y_i - \bar{y})^2$$

 $x_I et \gamma_I$: Valeurs individuelles comparées

 $x et \gamma$: moyenne des valeurs individuelles comparées

• Validité statistique

La signification statistique des différences est évaluée par le test "t de Fisher-Student.

$$I_{t} = \frac{\bar{X}_{1-}\bar{X}_{2}}{S_{\sqrt{1/n_{1}+1/n_{2}}}} \qquad S^{2} = \frac{\sum (x_{1-}\bar{x}_{1})^{2} + (x_{2-}\bar{x}_{2})^{2}}{n_{1}+n_{2-2}}$$

La différence entre deux moyennes comparées est statistiquement significative si la probabilité "p", lue en fonction du nombre de degrés de liberté

 $(d. d. l = n_1 + n_2 2)$ est égale ou inférieur à 5%.

- Si p>0,05 : la différence n'est pas significative.
- Si 0,01 : elle est significative.
- Si 0,001 : elle est très significative.
- Si p<0,001 : elle est hautement significative.

Les résultats rapportés dans ce travail concernant les effets de la photopériode et de la saison sur la corticosurrénale, chez le bélier D'Man adulte élevé dans la région d'El Meniâa. Pour cela, nous avons procédé à rechercher d'éventuelles différences morphologiques du cortex surrénalien et du cortisol plasmatique entre la phase claire et la phase sombre et entre les saisons de prélèvement.

Les résultats de cette étude portent essentiellement, sur :

1-l'histologie de la surrénale, présentant la médulla et le cortex ainsi que les trois zones corticales (ZG, ZF, ZR).

2- les mesures morphométrique de l'épaisseur du cortex y compris : la capsule, ZG, ZF, ZR Et aussi, les mesures de la surface cellulaire (C) et du diamètre du noyau (N) de chaque zone corticale, ce qui nous a permis par la suite de calculer le rapport nucléo-cytoplasmique (N/C).

3-les concentrations du cortisol plasmatique ; d'abords les variations de la photopériode ensuite les variations saisonnières. Les tableaux et les figures des valeurs individuelles et moyennes sont dans le texte. Mais l'ensemble des données et tableaux statistiques sont placés en annexe.

IV-1- Variations histologiques et morphométrique de la corticosurrénale en cycle lumière/obscurité

Dans cette partie, notre objectif s'est posé sur la recherche d'éventuelles variations histo-morphométrique de la corticosurrénale entre la phase claire et la phase sombre au cours des quatre saisons d'étude.

L'étude histologique révèle une organisation structurale typique de la glande surrénale ; formée par l'association de deux tissus glandulaire : le cortex, limité par une capsule fibrocollagène et une médullaire centrale.

Le cortex surrénalien, est subdivisé en trois zones : la zone glomerulée qui constitue une mince zone sous capsulaire, suivie d'une large couche de cellules fasciculaires disposées en cordon rectilignes orientés vers le centre de la glande, perpendiculaire à la capsule conjonctive en enfin la zone réticulée dont les cellules sont agencées en petits amas anastomosés qui se terminent par du tissu conjonctif la séparant de la médullosurrénale.
IV-1-1 L'équinoxe d'automne

La capsule et le cortex surrénalien (ZG, ZF, ZR) présentent des variations morphométriques plus ou moins importantes entre les deux phases claire et sombre.

IV-1-1-1- En Phase claire

Durant la phase claire de l'équinoxe d'automne, la hauteur capsulaire est de l'ordre de 171.72µm±11.16, et l'épaisseur du cortex est de 1075.67µm±16.82 (ZG : 193.011µm±6.03 ; ZF : 553.48µm±23.85 ; ZR : 246.57µm±11.81) (figure 11,14) (tableau 1)

Les cellules de la zone glomérulée sont cubiques regroupées en nids, donnant l'aspect d'un cordon arciformes nettement délimité par le tissu conjonctif. Au fort grossissement, la surface des cellules est de $82.41 \mu m^2 \pm 1.39$; les noyaux sont clairs d'une surface de $29.27 \mu m^2 \pm 0.34$ (figure 13) (tableau 10)

Les cellules fasciculaires sont cubiques avec un cytoplasme abondant, disposées en cordons parallèles. Les cellules et les noyaux sont de grandes tailles, intégrer par des capillaires sanguins (GR). (figure 13) (tableau 11) En effets, le diamètre cellulaire de la zone fasciculée est de 88.59μ m²±1.42 et celle du noyau 29.04 μ m²±0.30.

Les cellules de la zone réticulée sont de taille très variées, disposées en cordon non uniforme infiltrées du tissu conjonctif. Le contour est de $69.50\mu m^2 \pm 1.35$. Les noyaux sont clairs avec un diamètre de 24.15 $\mu m^2 \pm 0.44$ (figure 13) (tableau12)

IV-1.1.2 En phase sombre

Durant la phase sombre de l'équinoxe d'automne, on observe une augmentation de la hauteur capsulaire par rapport à celle de la phase claire (216.15 μ m±16.89) et une augmentation (0.44%) significative (p=0.03) de l'épaisseur du cortex (1075.92 μ m±22.31) (ZG : 200.3 μ m±6.57 ; ZF : 607.003 μ m±43.08 ; ZR : 289.59 μ m±15.48) (figure 12, 14)

Cependant, au fort grossissement La surface cellulaire (96.17 μ m²±2.11) de la zone glomerulée a subit une augmentation hautement significative (p<0.001) (figure15) (tableau16)

Par contre la surface cellulaire et nucléaire de la zone fasciculée (respectivement; 78.92 μ m²±1.65 et 25.15 μ m²±0.49) ont subi une diminution hautement significative (p<0.001) (figure 13,16) (Tableau 11) Même chose pour la zone réticulée, la surface des cellules ($55.12 \mu m^2 \pm 0.99$) et le diamètre des noyaux ($19.47 \mu m^2 \pm 0.31$) ont subi une diminution hautement significative (p<0.001) par rapport à celle de la phase claire.(figure 13,17) (tableau 12)

Figure 11: Histologie de la corticosurrénale en phase claire à l'équinoxe d'automne chez le bélier de la race D'Man élevé dans la région d'El Meniaa.CC : capsule conjonctive ; ZG : zone glomérulée ; ZF : zone fasciculée ; ZR : zone réticulée ; M : médulla (Coloré à l'Hemalun-Eosine, X40).

Figure 12: Histologie de la corticosurrénale en phase sombre à l'équinoxe d'automne chez le bélier de la race D'Man élevé dans la région d'El Meniaa. (Coloré a l'Hemalun-Eosine, X40).

Résultats

PHASE SOMBRE

PHASE CLAIRE

Figure 13: Histologie de la corticosurrénale en phase claire et en phase sombre à l'équinoxe de l'automne chez le bélier de la race D'Man élevé dans la région d'el Meniaa. N : noyau ; C : cytoplasme ; TC : tissu conjonctif ; GR globule rouge (Coloration phase claire : au Trichrome de Masson , phase sombre a l'Hemalun éosine grossissement X1000)

Figure 14: la hauteur du cortex (ZG, ZF, ZR) en phase claire et en phase sombre à l'équinoxe d'automne chez le bélier de race D'Man élevé dans la région d'EL Meniaa.

Figure 15: les variations du diamètre du N, hauteur cellulaire de la zone G et le rapport N/C en phase claire et en phase sombre à l'équinoxe d'automne chez le bélier de la race D'Man élevé dans la région d'El Meniaa.

Figure 16: les variations du diamètre du N, hauteur cellulaire de la zone F et le rapport N/C en phase claire et en phase sombre à l'équinoxe d'automne chez le bélier de la race D'Man élevé dans la région d'El Meniaa

Figure 17: les variations du diamètre du N, hauteur cellulaire de la zone R et le rapport N/C en phase claire et en phase sombre à l'équinoxe d'automne chez le bélier de la race D'Man élevé dans la région d'el Meniaa.

IV-1.2 Le solstice d'hiver

Comme pour la saison d'automne, l'épaisseur du cortex de la saison d'hiver présente une faible différence morphométrique.

IV-1.2.1. En phase claire

Au faible grossissement, l'épaisseur du cortex est de 1216.48 μ m±18.54, notamment l'épaisseur de ses trois zones est : ZG : 229.402 μ m±1.92 ; ZF : 732.816 μ m±1.37 ; ZR : 244.983 μ m±1.30. (figure 18) (Tableau 3)

Au fort grossissement :

-la surface des cellules de la zone glomérulée est de 134.80µm²±1.92, le diamètre nucléaire 31.38µm²±0.40. (Tableau 10)

-la surface cellulaire de la zone fasciculée est de 109.21 μ m²±1.37 et le diamètre nucléaire 27.52 μ m²±0.33.(tableau11)

-la surface cellulaire de la zone réticulée est de $86.73\mu m^2 \pm 1.30$ et le diamètre nucléaire $24.49\mu m^2 \pm 0.46$. (tableau 12)

IV-1.2.2. En phase sombre

L'épaisseur du cortex surrénalien (1212.34 μ m±53.10) montre une légère diminution non significative (p=0.9), en effet l'épaisseur des trois zones du cortex surrénalien présente approximativement les mêmes valeurs que celle de la phase claire (ZG : 200.046 μ m±1.74 ; ZF : 687.018 μ m±1.74 ; ZR : 260.717 μ m±1.17) (figure 21) (tableau 4)

Au fort grossissement :

-on observe une régression hautement significative (p<0.001) de la surface des cellules $120.03\mu m^2 \pm 1.743$ et de diamètre du noyau $29.49\mu m^2 \pm 0.33$ de la zone glomérulée (figure 22) (tableau10)

-la surface des cellules (101.83 μ m²±1.74) ainsi que le diamètre des noyaux (25.41 μ m²±0.40) de la zone fasciculée ont subi une diminution hautement significative (p<0.001) par rapport à ceux de la phase claire (figure 23) (tableau11)

-proche à la zone fasciculée, la zone réticulée a subit une diminution non significative (p=0.08) de la surface de ses cellules ($83.73\mu m^2 \pm 1.17$)et du diamètre nucléaire ($22.52\mu m^2 \pm 0.40$) par rapport à la phase sombre (figure 24) (tableau 12)

Figure 18: Histologie de la corticosurrénale en phase claire au solstice d'hiver chez le bélier de race D'Man élevé dans la région d'El Meniaa. CC : capsule conjonctive ; ZG : zone glomérulée ; ZF : zone fasciculée ; ZR : zone réticulée Coloré a l'Hemalun-Eosine, X40).

Figure19 : Histologie de la corticosurrénale en phase sombre au solstice d'hiver chez le bélier de race D'Man élevé dans la région d'El Meniaa. (Coloré a l'Hemalun-Eosine, X40)

Phase claire

phase sombre

Figure 20: Histologie de la corticosurrénale en phase claire (C1 : ZG, C2 : ZF etC3 : ZR) et phase sombre (S1 : ZG, S2 : ZF etS3 : ZR) au solstice d'hiver chez le bélier de la race D'Man élevé dans la région d'el Meniaa. N : noyau ; C : cytoplasme ; GR : globules rouge ; CS : capillaire sanguin ; TC : tissu conjonctif (Coloration a l'Azon modifié : grossissement X1000)

Figure 21: la hauteur du cortex (ZG, ZF, ZR) en phase claire et en phase sombre au solstice d'hiver chez le bélier de race D'Man élevé dans la région d'EL Meniaa.

Figure 22: les variations du diamètre du N, de la hauteur cellulaire de la zone G et le rapport N/C en phase claire et en phase sombre au solstice d'hiver chez le bélier de race D'Man élevé dans la région d'El Meniaa.

Figure 23: les variations du diamètre du N, de la hauteur cellulaire de la zone F et le rapport N/C en phase claire et en phase sombre au solstice d'hiver chez le bélier de la race D'Man élevé dans la région d'El Meniaa.

Figure 24: les variations du diamètre du N, hauteur cellulaire de la zone R et le rapport N/C en phase claire et en phase sombre au solstice d'hiver chez le bélier de la race D'Man élevé dans la région d'El Meniaa.

IV-1-3 L'équinoxe du printemps

La structure histologique de la corticosurrénale subit des modifications durant cette saison. En effet, les cordons cellulaires sont de taille très irrégulière dans plusieurs endroits. Un changement de l'organisation structurale des cellules fasciculaires : elles se regroupent en amas de formes irrégulières.

Le tissu conjonctif montre une disposition importante qui sépare la zone réticulée de la zone médullaire très observé en phase claire et peu visible en phase sombre. (figure 25)

IV-1-3.1 En phase claire

Au faible grossissement :

-le cortex surrénalien montre une épaisseur de $1362.58\mu m \pm 56.42$ (dont : ZG =198.17 $\mu m \pm 3.029$; ZF = 853.354 $\mu m \pm 2.792$; ZR = 308.682 $\mu m \pm 2.92$). (figure 25) (tableau 5)

Au fort grossissement : -le diamètre des cellules de la zone glomérulée est de $89.47 \mu m^2 \pm 1.60$ et le diamètre des noyaux $28.117 \mu m^2 \pm 0.30$ (tableau 10)

-le diamètre des cellules de la zone fasciculée est de 94.95µm²±1.80 et le diamètre des noyaux 29.85µm²±0.37 (tableau 11)

-le diamètre des cellules de la zone réticulée est de 82.09µm²±1.70 et le diamètre des noyaux 25.43µm²±0.370 (tableau 12)

IV-1-3-2 En phase sombre

L'épaisseur du cortex se trouve légèrement diminuée durant cette phase (p) (1326.79 μ m±23.45) cette variation est due à la diminution de l'épaisseur de la zone fasciculée (697.42 μ m±26.47) cette différence est non significative (p<0.62) (figure 27) (tableau 6)

Au fort grossissement :-on observe une augmentation très significative (p=0.006) de la surface cellulaire de la zone glomérulée ($89.47 \mu m^2 \pm 1.60$) par rapport à la phase claire de la même saison. (figure 28) (tableau 10)

-au niveau de la zone fasciculée, on observe une augmentation non significative de 2.05 % de la surface cellulaire (96.93 μ m²±2.79), quant au diamètre nucléaire (26.25 μ m²±0.49), il présente une diminution hautement significative (p<0.001) (figure 29) (tableau11)

-pour la zone réticulée, on note une augmentation non significative (p=0.12) de la surface des cellules (82.09 μ m²±1.70) avec un diamètre nucléaire de 25.43 μ m²±0.370. (figure30) (tableau12)

Figure 25: Histologie de la corticosurrénale en phase claire et en phase sombre à l'équinoxe du printemps chez le bélier de race D'Man élevé dans la région d'El Meniaa. CC : capsule conjonctif ; ZG : zone glomérulée ; ZF : zone fasciculée ; ZR : zone réticulée ; M : médulla (A: Coloré au Trichrome de Masson, x4 et B: coloré a l'Hemalun-eosine, x4)

Figure 26: Histologie de la corticosurrénale en phase claire (C1 : ZG, C2 : ZF etC3 : ZR ; coloré à l'Azon modifié, G X100) et phase sombre (S1 : ZG,S2 : ZF etS3 : ZR ; Coloré à l'Hemalun-Eosine, G X100) à l'équinoxe du printemps chez le bélier de la race D'Man élevé dans la région d'el Meniaa. N : noyau ; C :cytoplasme ; TC : tissu conjonctif.

Figure 27: les variations du cortex (ZG, ZF, ZR) et de médulla en phase claire et en phase sombre à l'équinoxe du printemps chez le bélier de la race D'Man élevé dans la région d'El Meniaa

Figure 28: les variations du diamètre du N; de la surface cellulaire de la ZG et le rapport N/C en phase claire et en phase sombre à l'équinoxe du printemps chez le bélier de race D'Man élevé dans la région d'El Meniaa.

Figure 29: les variations du diamètre du N; de hauteur cellulaire de la ZF et le rapport N/C en phase claire et en phase sombre à l'équinoxe du printemps chez le bélier de race D'Man élevé dans la région d'El Meniaa.

Figure 30: les variations du diamètre du N et de la hauteur cellulaire de la ZR et le rapport N/C en phase claire et en phase sombre à l'équinoxe du printemps chez le bélier de race D'Man élevé dans la région d'El Meniaa.

IV-1-4- Le solstice d'été

Durant cette saison, le solstice d'été présente le cortex surrénalien le plus épais par rapport à toutes les autres saisons.

IV-1-4-1. En phase claire

À faible grossissement :

L'épaisseur du cortex surrénalien est très développée (1694.52µm±57.21) due à l'importance de la zone fasciculée (1196.26µm±36.52) (figure 31)

A fort grossissement :

-la surface des cellules de la zone glomerulée est de 117.49µm²±1.49 et le diamètre du noyau est de 33.48µm²±0.37 (tableau 10)

-la surface des cellules de la zone fasciculée est de 110.82 μ m²±1.34 et le diamètre du noyau est de 30.65 μ m²±0.32 (tableau 11)

-la surface des cellules de la zone réticulée est de 96.69 μ m²±1.39 et le diamètre du noyau est de 29.90 μ m²±0.42 (tableau 12)

IV-1-4-2 En phase sombre

Au faible grossissement :

On observe une diminution très significative (p=0.001) de l'épaisseur corticale (1559.80 μ m±36.65) du à la diminution hautement significative (p<0.001) de l'épaisseur de la zone fasciculée (958.14 μ m²±49.01) (figure 33)

Au fort grossissement :

-on observe une augmentation non significative (p<0.7) de la surface des cellules de la zone glomerulée (118.03 μ m²±1.44) (figure 34)

-la surface des cellules (119.46 μ m²±1.5) de la zone fasciculée présente une augmentation hautement significative (p<0.001) par rapport à la phase claire. (figure 35)

-au niveau de la zone réticulée, la surface des cellules (92.87 μ m²±1.31) présente une diminution significative (p=0.04), alors le diamètre du noyau (24.74 μ m²±0.38) montre une diminution hautement significative (p<0.001) (figure 36)

Figure 31: Histologie de la corticosurrénale en phase claire et en phase sombre au solstice d'été chez le bélier de race D'Man élevé dans la région d'El Meniaa.CC : capsule conjonctif ; ZG : zone glomérulée ; ZF : zone fasciculée ; ZR :zone réticulée ; (A et B : coloré au trichrome de Masson, X40)

Résultats

Phase claire

phase sombre

Figure 32: Histologie de la corticosurrénale en phase claire et en phase sombre au solstice d'été chez le bélier de la race D'Man élevé dans la région d'El Meniaa, N: noyau; C :cytoplasme (coloré à l'Azon Modifié, X100).

Figure 33: les variations du cortex (ZG, ZF, ZR) et de médulla en phase claire et en phase sombre au solstice d'été, chez le bélier de la race D'Man élevé dans la région d'El Meniaa

Figure 34: les variations de diamètre du N; de la hauteur cellulaire de la ZG et le rapport N/C en phase claire et en phase sombre au solstice d'été, chez le bélier de race D'Man élevé dans la région d'El Meniaa.

Figure 35: les variations de diamètre du N; de la hauteur cellulaire de la ZF et le rapport N/C en phase claire et en phase sombre au solstice d'été, chez le bélier de race D'Man élevé dans la région d'El Meniaa.

Figure 36: les variations de diamètre du N; de la hauteur cellulaire de la ZR et le rapport N/C en phase claire et en phase sombre au solstice d'été, chez le bélier de race D'Man élevé dans la région d'El Meniaa.

Résultats

Figure 37: Histogramme récapitulatif des différentes zones du cortex surrénalien pendant la phase claire des différentes saisons chez le bélier de race d'Man élevé dans la région d'El Meniaa.

La figure ci-dessus, montre clairement que l'histogramme de la zone fasciculée suit parfaitement celui du cortex surrénalien au cours de toutes les saisons étudiées, témoignant leur intime dépendance ; l'augmentation de l'épaisseur de la zone fasciculée au solstice d'été est suivie par l'augmentation de l'épaisseur corticale. De même, la diminution de l'épaisseur de la zone fasciculée durant l'équinoxe d'automne est simultanée à la diminution de l'épaisseur du cortex surrénalien.

Quant à la zone réticulée, son épaisseur est augmentée en printemps/été et relativement diminuée en hiver/automne.

Tandis que, la zone glomérulée, elle est épaisse en hiver et faible en été.

Résultats

Figure 38: Histogramme récapitulatif des différentes zones du cortex surrénalien pendant la phase sombre des différentes saisons chez le bélier de race d'Man élevé dans la région d'El Meniaa.

Les deux figures en haut, montrent que aussi bien le cortex que la fasciculée sont plus développés en phase claire des quatre saisons.

Alors que les zones glomérulée et réticulée, semblent augmentées de taille en phase sombre de la majorité des saisons (sauf pour la ZG à la saison d'hiver).

Dans cette partie, on a tenté de rechercher d'éventuelles variations de la corticosurrénale entre les saisons.

Figure 39: l'épaisseur du cortex surrénalien durant les différentes saisons chez le bélier de race d'Man élevé dans la région d'El Meniaa

La figure ci-dessus, montre une épaisseur corticale très développée en été (1627.16 μ m±46.93), relativement faible en printemps (1344.68 μ m±39.94) et en hiver (1214.41 μ m±35.82) et très faible en automne (1073.30 μ m±19.56).

Figure 40: l'épaisseur de la ZF durant les différentes saisons chez le bélier de race d'Man élevé dans la région d'El Meniaa.

-la figure : montre clairement que l'épaisseur de la zone fasciculée présente des variations semblables à celles du cortex surrénalien. En effet, son épaisseur augmente durant la saison estivale (1077.20 μ m±42.79), diminue relativement au printemps et en hiver et atteint son minium en automne (580.24 μ m±33.46).

IV-3- Concentration plasmatique du cortisol durant le cycle lumière/obscurité

Dans cette partie, nous présenterons les variations de la concentration du cortisol plasmatique durant la phase claire et la phase sombre des quatre saisons étudiées.

IV-3-1- En phases claire et sombre

Les concentrations du cortisol sont toujours plus élevées durant la phase claire sauf pour la saison d'hiver qui semble légèrement plus élevées en phase sombre (3.56ng/ml±0.176354).

On observe une augmentation très importante de la concentration du cortisol plasmatique de la saison d'été 8.16ng/ml±2.01, automne6.64ng/ml±1.23, et printemps 5.42ng/ml±0.64 par rapport à la phase sombre et une diminution de la concentration du cortisol en hiver en phase claire (3.35ng/ml±0.20) qu'en phase sombre

Figure 41: variations de la concentration du cortisol plasmatique durant le cycle lumière/obscurité au cours des différentes saisons chez le bélier de race d'Man élevé dans la région d'El Meniaa.

IV-4- Concentrations plasmatiques du cortisol durant les différentes saisons

IV-4-1- L'équinoxe d'automne

Dans cette partie, notre objectif est d'étudier les variations de la concentration du cortisol plasmatique durant les saisons.

A l'équinoxe d'automne, les concentrations du cortisol sont assez élevées, caractérisée par une élévation importante à 7h du matin (7.55ng/ml±.1.34), diminue à 13h (5.73ng/ml±1.11), et relativement les mêmes concentrations sont observées à 19h (5.81ng/ml±0.96) et à 1h du matin (5.75ng/ml±0.67).

IV-4.2 Le solstice d'hiver

Durant la saison d'hiver, les concentrations du cortisol sont relativement les plus faibles par rapport aux autres saisons et varient dans un intervalle étroit (\approx 3ng/ml±0.4).

IV-4-3 L'équinoxe du printemps

A l'équinoxe du printemps, les concentrations moyennes du cortisol ré-augmentent par rapport à la saison d'hiver. Le taux de cortisol est élevé le matin à 7h (5.80ng/ml \pm 0.88), diminue légèrement durant la journée (13h : 5.043ng/ml \pm 0.40; $19h : 4.89 \pm 0.14$; 1h : 5.11 ng/ml \pm 0.35).

IV-4-4 Le solstice d'été

C'est au solstice d'été que les concentrations du cortisol sont les plus élevées. Le profil du cortisol présente des variations assez importantes, caractérisé par un pic très important à 7h du matin (9.34ng/ml±2.91), diminue13h (6.98ng/ml±1.10), continue à baisser à 19h (4.70ng/ml±1.56) puis augmente légèrement à 1h du matin (6.10ng/ml±0.63).

Figure 42: variations de la concentration du cortisol plasmatique durant les différentes équinoxes des saisons chez le bélier de race D'Man élevé dans la région d'El Meniaa.

Le graphe ci-dessus, témoigne l'existence des variations saisonnières du cortisol plasmatique, caractérisée par une activité importante durant l'été et faible en hiver.

A partir de l'ensemble des résultats, la corticosurrénale du bélier d'Man adulte présente des variations importantes en fonction de la photopériode et de la saison :

- L'épaisseur du cortex est plus développée en phase claire durant les différentes saisons, cette épaisseur est relative à celle de la zone fasciculée.
- La glande surrénale du bélier D'Man adulte, subit des variations morphométrique entre les solstices et les équinoxes. Son cycle saisonnier est caractérisé essentiellement par un maximum en été et un minimum en automne
- La concentration du cortisol est élevée durant le jour au cours des différentes saisons sauf la saison d'hiver ou elle est légèrement diminuée par rapport la phase obscure.
- Le profil du cortisol montre des variations saisonnières définit par un maximum durant la saison s'été et un minimum en hiver.

Le présent travail, a porté sur l'étude de la corticosurrénale en fonction du climat aride, nous avons réalisés une étude histologie et morphométrique de la surrénale ainsi que l'évaluation de la fonction glucocorticoïde par le dosage du cortisol plasmatique, en fonction du cycle lumière/obscurité et de la saison (automne, hiver, printemps, été) chez le bélier de race d'Man élevé dans la région d'El Meniaa, espèce particulièrement adaptée au climat saharien.

Les résultats obtenus, rapportent l'existence des variations morphométriques de la corticosurrénale, dont l'épaisseur est plus développée en phase claire qu'en phase sombre.

Le cortex surrénalien subit aussi des variations au cours de l'année caractérisées par :

Un maximum observé en été et un minimum en hiver et en automne.

D'autre part, nous confirmons l'intime relation de l'épaisseur du cortex surrénalien et celle de la ZF dont l'activité glucocorticoïde ; la ZF occupe la plus grande surface du cortex surrénalien et elle est responsable de la production et la sécrétion du cortisol, une concentration importante du cortisol plasmatique est signalée en été, elle est moyenne en automne, et est faible en hiver et au printemps.

A partir de ces résultats, il semble que l'intensité lumineuse et la photopériode ont une action importante sur la fonction corticosurrénalienne, qui se manifeste par des changements de l'aspect histologique de la surrénale et de son activité glucocorticoïde.

Afin que notre investigation soit plus approfondie, l'étude des rythmes nycthéméraux et saisonniers de la corticosurrénale pourrait être complétée par :

- L'activité enzymatique des cellules fasciculées
- Déterminer les facteurs régulant l'activité glucocorticoïde tels que l'hormone corticotrope et la vasopressine par dosage plasmatique afin de mettre en évidence les mécanismes endocriniens régulant les fonctions cortico-surrénaliennes
- Localisation des récepteurs androgéniques au niveau de la corticosurrénale dans le but d'étudier les interrelations surrénaliennes et testiculaires.
- Localisation des récepteurs mélatoniques au niveau de la corticosurrénale afin de comprendre l'effet de l'intensité lumineuse sur la fonction surrénalienne

- Abe M., Herzog E., Yamazaki S., Straume M., Tei H., Sakaki Y., Mend Block G.D., 2002- Circadian rythms in isolated brain regions. J. Neurosci. 22: 350-365.
- Ait-Iftene. F, 1986- Les rythmes biologiques. Application: les variations nycthémérales de la cortisolemie et de l'aldosteronemie chez le dromadaire (Camelus Dromedarius). D.E.S, USTHB, Alger, 57p.
- 3. Algérie.
- Alila-Johanasson A., Erikson L., Soveri T and Laakso M. L., 2003- Serum cortisol levels in goats exhibit seasonal but not daily rhythmicity. Chronobiol Int., 20: 65-79.
- Amirat et Brudieux R., 1993- Seasonal changes in vivo cortisol response to ACTH and in plasma and pituitary concentrations of ACTH in a desert rodent, the sand rat (Psammomys obesus). Comp. Biochem. Physiol., 104 A: 29-34.
- 6. Amirat Z., Khammar F and Brudieux R., 1980- Seasonal changes in plasma and adrenal concentration of cortisol, corticosterone, aldosterone and electolytes in the adulte male sand rat (*Psammomys obesus*), Gen. Comp. Endocrenol., 40: 36-43
- 7. Amokrane A., 2005- Variations nycthémérales et saisonnières de l'activité corticosurrénalienne chez le bélier de race D'man élevé a El-Meniaa Alger, 145p.
- 8. Anane A., 2005- Variations nycthémérales et saisonnières de l'activité endocrine testiculaire chez le bélier de race D'Man élevé a El-Menia Alger.
- 9. ANONYME, 2008-Les espèces d'ovicaprinae d'Algérie.
- 10. Bargiello T. A., Young M. W., 1984- Molecular genetics of biological clock in drosophila.
- Becker B. A., Nienaber J. A., Christenson R. K., Menak R. C., Deshazer J. A and Hahn G. L., 1985- Peripheral concentrations of cortisol as andicator of stress in the pig.Am. J. Vet. Res., 46: 1034.
- 12. **Belaib issam., 2011** Caractérisation morphologique des troupeaux ovins. Magister : production animale.
- 13. Belhocine M et Gernigeon-Spychalowizs T. H., 1996 Effets de la castration sur l'appareil genital male et la surrenale des merions sahariens. Bull. Soc. Zool. Fr., 121 (1): 107-110.

- 14. Bennani-Kabchi N., 1988- Etude saisoniere, par radioimmunologie de la progesteronemie et par endoscopie, de l'activite ovarienne de la brebis D'Man. En Algerie, These de Magister, INA, Alger : 131p.
- BIELINSKA M, PARVIAINEN H, KIIVERI S, HEIKINHEIMO M., WILSON D (2009). Origin and Molecular Pathology of Adrenocortical Neoplasms, Vet. Pathol., 46(2), 194–210.
- 16. Boudoucha D., 1990- Effet de la castration sur la corticosurrénale d'un rongeur désertique, le rat des sables *Psammomys obesus* : Etude histologique et determination du contenu surrenalien en androstenedione. D.E.S, FSB, USTHB, Alger, 48p.
- Bougrid A., 1984- Effet de la castration sur l'activité corticosurrenalienne. D.E.S FSB, USTHB, Alger, 57p.
- BOUKHLIQ R., 2002- Cours en ligne sur la reproduction ovine: Cours
 Agriculture et élevage ovin au Maroc, Département de Reproduction Animale
 IAVHassan II, BP 6516-Instituts, 10101- Rabat, Maroc.
- 19. CAZIN J.L., GOSSELIN P., TOUITOU Y., 1991-Chronobiologie : le temps est venu, but et principes J. Pharm. Clin., , 10,45-53.
- 20. Chala N. et etMeftouh F., 2003- Effet de la castration sur l'Histologie de la glande surrénale et sur la teneur plasmatique en surface de dehydroepiandrosterone (SDHEA) chez le lapin male adulte local. D.E.S, FES, USTHB, Alger, 31p.
- Challet F., 2004- Synchronisation des noyaux suprachiasmatiques. I. les signaux lumineux. Bulettin du groupe d'etude des rythmes biologiques de la SFC, Rythmes tome., 35, n° 5 : 6-20.
- 22. CHELLIG R., 1992- Les races ovines algériennes, office des publications universitaires, alger, 180p.
- 23. de Textbook of medical physiology (1996) 9ième ed. Philadelphia : WB Saunders; Les
- 24. **Dietert S. E., 1969** The occurrence of tubular intramitochondrial inclusions in the post-mortem zona fasciculate of the rat adrenal Anat..Rec., 165: 41-54
- 25. **Dietert S. E., 1969** The occurrence of tubular intramitochondrial inclusions in the post-mortem zona fasciculate of the rat adrenal. Anat..Rec., 165: 41-54.
- 26. DZVET, 2007, Races ovines de l'Algérie et du Maghreb.
- 27. FELDMAN EC, NELSON RW (2004) Canine and feline endocrinology and reproduction. 3ième ed. Philadelphia: WB Saunders, 394-439.

- 28. FELIACHI K., 2003-Rapport National sur les Ressources Génétiques Animales:
- 29. GABE M., 1968- Techniques histologiques. Masson (Eds.), Paris, 1113p.
- 30. **Ganong W et Jobin M., 2005** Troubles hydro-electrolytiques : bilan hydrique et systemes de regulation. Physiologie medicale., 5 : 1-12
- 31. Gernigeon-Spychalowicz T. H., Ablaoui R., Boudoucha D. et Kandsi F., 1992effets cytologiques et biochimiques de la castration d'un rongeur desertique a cycle saisonnier (Psammomy sobesus). Bull. Soc. Zoo. Fr., 117 (3) : 343
- 32. Granados-Fuentes D., Prolo L. M., Abraham U., Herzog E. D., 2004- The suprachismatic nucleus entrains, but does not sustain, circadian rythmicity in the olfactory bulb. J Neurosci.,
- Grasse P. P., 1973-Traite de Zoologie; Tome VI, Fascicule V : Appareils digestif et respiratoire. Glandes endocrines. Appareil excréteurs des Mammiferes. Masson et Cie, Paris.
- 34. GUYTON AC, HALL JE, LOCKHART A (2002) Précis de physiologie médicale traduction
- 35. Hertwig R., 1903- Ueber die correlation von zell-und Kernagrosse und ihreBdeutung fur die Geschlechtliche Differenzierung und die Teilung der Zelle. Biol. Central., 23:
 4.
- Herzog E. D., Huckfeldt R. M., 2003- Circadian entrainment to temperature, but not light, in the isolated suprachiasmatic nucleus. J Neurophysiol., 90: 763-153.
- 37. Hmmoum O., Abbrahen S., 2008- Contribution de la zone fasciculée surrénalienne dans le maintien de l'equilibre hydromeneral chez Gerbillus tarabuli : étude ultrastructurale. Thèse DES, USTHB, P33.
- Holley D. C., Beckman, D. A., et Evans, J.W., 1975- Effects of confinement of the circadian rhythm of ovine cortisol. J.Endoc., 65, 147-148.
- 39. hormones de la corticosurénale, 922-937.
- 40. Howard, J.G., Wildt, D. E., Chakraborty, P. K., Bush, M., 1983-Reproductive traits in including seasonal observations on semen quality and serum hormone concentration in the Dorcas gazelle. Physiolo. Reprod. 20, 2, 230.
- 41. **Idelman S., 1970** Ultrastructure of the mammalien adrenal cortex. International review of cytology. 27: 181-182.
- 42. **Inouye S.T et Shibata S., 1994** Neurochemical organization of circadian rhythm in the suprachiasmatic nucleus. NeurosciRes. 20:109-130.

- 43. Ito Y., Tomaoki B., Sakamoto H. etEgusa M., 1952- Sex hormones.IV. Reduction in weight and histological change in adrenal glands of castrated rats, resulting from testosterone administrations. J. Pharm. Soc. Japan., 72:68.
- 44. Kasprzak A., Lesniewska B. et Malendowicz L. K., 1989 Sex diffences in Adrenocortical Structure and Fuction. XXI. The Effects of Gonadectomy and Testostrone or Estradiol Replacement on Mitotic activity of the Rat Adrenal Cortex. *Experim. Clin. Endocrinol.*, 87 (1): 26-30.
- 45. **KEMPNA P, FLUCK CE (2008)**. Adrenal gland development and defects, Best Pract. Res. Clin. Endocrinol. Metab., 22, 77–93
- 46. **Khaldoun M., Khaldoun T et Brudieux R., 1999** Activité glucocorticoïdes et mineralocorticoïdes chez le dromadaire adulte male. Seminaire National : Adaptation des organismes aux milieux steppique et saharien. USTHB, Alger, 24-25 Novembre.
- 47. **Kierszenbaum A. L., 2006** Histologie et biologie cellulaire ;edition 1 de deboeck et larcier., p : 320-323.
- 48. **Kobayashi Y., 1977** Morphological evidence for pituitary factor, the pqrs inter, ediq hormone that may stimulate aldosterone secretion by adrenals in sodium depleted mice. Endocrinol., p: 67-74.
- 49. Konopka R. J et Benzer R., 1971- Clock mutans of drosophila melanogaster. Proceedings of the national Academy of sciences of the USA., 58., 2112-2116.
- 50. LAOUN A., 2007- Magistère des sciences vétérinaires: Etude morpho- biométrique d'un échantillonnage d'une population ovines de la région de Djelfa, Option: Zootechnie, Algerie,115p.
- 51. Larbi Bouamrane S., 2002- Effet de la cinétique de castration sur le tractus génital (vésicules séminales) et la corticossurenale chez le rat Wister : aspects histologique et biochimique. D.E.S FSB, USTHB, Alger, 70p.
- 52. Linkowski P., Van Onederbergen A., Kerkhafs M., Bosson D., Mendlewicz J et Van Cauter E., 1993- Twin study of the 24-h cortisol profile: Evidence for genetic control of the human circadian clock. American Journal of physiology., 264: 173-18.
- Magalhxes M. C., 1974- In contribuie-aocitoligicapara o estudo da esteredogenese, p. 1-232.
- 54. **MARMET R., 1971** la connaissance du bétail, tome II, Editions J.-B. Baillières, Paris, 182p.

- 55. MARSAUDON E.1998- Chronobiologie et diabète» Sem. Hôp. Paris, , 74, 29-30, 11 48-1154.
- 56. MARSAUDON E. 1998- La valeur des paramètres sanguins et des dosages hormonaux varie dans la journée La revue du praticien - médecine générale, , *ll*, 434, 2 1-26.
- 57. Martoja R etMartoja M. 1967- Initiation aux techniques de l'histologie.
- Mc Natty, K. P., Casthmore, M. et Young, A., 1972- Diurnal variations in plasma cortisol levels in sheep. J. Endocrn. 54, 3619-362.
- 59. **Mesbah S., 1978** Variation nycthémérales comparées de l'activité corticosurrenalienne chez le Rat et le belier. These 3eme cycle.P. 169.
- 60. Miller J. D., Morin L. P., SchwartznW. J., Moore R., Y., 1996- New insights into the mammalian circadian clock. Sleep., 19: 641-667.
- 61. Moore R. Y etEichler V. B., 1972- Loss of a circadian adrenal corticosterone rhythm following suprachismatic lesions in the rat. Brain Res., 42: 201-206.
- 62. Mouriquand C., 1977- Appareil respiratoire et glandes endocrines.ArmandColin., Paris : 1-71.
- 63. Munoz E., Fogal T., Dominguez S., Scardapane L., Guzman J. Piezzi R., 1997-Seasonal change of lydigs cells of Viscacha (*Lagosto musmaximus maximus*) a light and electron microscopy study. Tiss. Cell, 29: 119-128.
- 64. Oster H, Damerow S, Kiessling S et al.2006- The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab; 4:163-73.
- 65. Paris: Presse universitaire de France,.-734p.
- 66. pastoralisme, INA, Alger, 16p
- 67. Pihlajoki M., Dorner J., Cochran R. S., Heikinheimo M. et Wilson D. B., 2015-Adrenocortical Zonation, Renewal, and Remodeling. Front. Endocrinol., 6: 1-14.
- 68. Race G. J et Maywu H., 1964- Corticoids in the three Zones of the Camel (Camelus dromedarius) Adrenal Cortex. General and comparative endrocrinology., 4: 199-209.
- 69. Ralph M. R., Foster R. G., Davis F. C., Menaker M., 1990- Transplanted suprachiasmatic nucleus determines circadian period. Science., 247: 975-978.
- 70. **REINBERG A. 1997** Lesrythmes biologiques :que sais je ? _7ème édition.
- 71. REINBERG A.,1991-LABRECQUE G., SMOLENSKY M.H. « Chronobiologie et chronothérapeutique: heure optimale d'administration des médicaments» Paris: Flammarion Médecine-Sciences,.- 20 1p.
- 72. **REINBERG A., 1997**-Les rythmes biologiques: mode d'emploi ».- 2eme EditionParis : Flammarion,.- 170p.
- 73. **Reppert S. M and Weaver D. R., 2001** Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol., 63: 647-676.
- 74. Rodolphe Dorey.2013- Implication des corticoïdes et de leurs récepteurs hippocampiques dans les effets rapides et diffères du stress sur le rappel mnésique. Human health and pathology. Universit´e Sciences et Technologies - Bordeaux I,.French.
- RONDIA P., 2006- Aperçu de l'élevage ovin en Afrique du Nord, Filière Ovine etCaprine n°18.
- Rusak B etZucker I., 1979- Neural regulation of circadian rythms. Physiological Reviews., 59: 449-526.
- 77. **Sakiz E., 1964** Interaction gonades-surrenales chez la souris et le rat. Thèse Doctorat et sciences. Paris, 77p.
- 78. Sherwood L., 2000- Physiologie humaine; edition 1 Deboeck., p : 506-510.
- 79. **Stevens A et Lowe J., 1997** Histologie humaine; edition 2 de Deboeck et larcier., p : 511,514,516,264-267.
- Tamaoki B. I., 1973- Steroidogenesis and cell structure Biochem. Molec. Biol., 4: 89-118.
- TROUETTE M., 1929- Les races d'Algérie in Le congrès du mouton, monographies des races ovines, publications de la société nationale d'encouragement à l'agriculture, Paris, p. 301-325.
- 82. TURRIES V., 1976- Les populations ovines algériennes, chaire de zootechnie et de
- 83. **VIVICORCI M. P., 1998** Contribution à l'étude de la sauvegarde des races domestiques menacées de disparition, l'exemple de la chèvre du rove, Lyon (France).
- 84. Wheater P.R., Young B et Heath J. W., 2001- Histologie fonctionnelle. De boeck universite: 1ere edition, paris., p: 320-323.
- 85. Woodly S. K., Painter D. L., M. C., Wikelski M and Romeroc L. M., 2003-Effetct of tidal cycle and food intake on the baseline plasma corticosterone rhythm in intertidally foraging marine iguanas. Gen. Com. Endocrinol., 132: 216-222.

- 86. YOUNG KM, WALKER SL, LANTHIER C, WADDELL WT, MONFORT SL, BROWN JL (2004). Non invasive monitoring of adrenocortical activity in carnivores by fecal glucocorticoid analyses, General and Comparative Endocrinology, 137, 148–165
- 87. Yves Clemont *et al.*, 2013- Zsuzsanna Bencsath-MakkaiATLAS D'HISTOLOGIE EN MICROSCOPIE OPTIQUE
- 88. **Zatra Y., 2008** influence de la castration en période de reproduction sur l'activité du cortex surrenal chez la gerbille male. These de magister, USTHB. P . 70.

FICHE TECHNIQUE Nº1 : Fixateur topographique : liquide de Bouin Hollande

- Eau bidistillée saturée d'acide picrique (1,4 g/100 ml) : 75 ml
- Formol à 40 % : 25 ml
- Acide acétique glacial : 5 ml

FICHE TECHNIQUE N°2 : déshydratation

•	1 bain de l'eau	rapide
•	1 bain d'alcool 70	30 min (ou 1h)
•	1 bain d'alcool 96	30 min (on peut le laisser jusqu'au
	lendemain)	
•	1 bain d'alcool 96	30 min (ou 1h)
•	1 bain d'alcool 100	30 min (ou 3h)
•	1 bain d'alcool 100	30 min (on peut le laisser jusqu'au
	lendemain)	

• FICHE TECHNIQUE N° 3 : Eclaircissement

•	1 bain de butanol	rapide
•	2 bains de butanol	24h
•	3 bains de butanol	illimité

• FICHE TECHNIQUE N° 4 : Pénétration des pièces par la paraffine

•	1er bain de paraffine/butanol (V/V)	1 heure
•	2eme bain de paraffine	3 heures à 4 heures
•	3eme bain de paraffine	1 nuit

FICHE TECHNIQUE N° 5 : Coloration topographique au Trichrome de Masson

1-Reactifs :

1.1-Hematoxyline de Groat : (préparation à froid) Acide sulfurique concentrée 0.8 ml Alun de fer 1 g Eau distillée50 ml Hématoxyline0.5 g Alcool 95 50ml Laisser reposer pendant une heure et filtrer (se conserve pendant trois mois environ) **1.2-Fuchine acide-Ponceau :** (préparation à froid) (Conservation illimitée) Fuchsine acide 0.1 g Ponceau 0.2 g . Eau distillée 300 ml

Apres reconstitution et dissolution, ajouter :

• Acide acétique 0.6 ml

1.3-Orange G acide phosphomolybdique : (préparation à froid) (Conservation illimitée)

- Acide phosphomolybdique1 g
- Orange G 2 g
- Eau distillée 100 ml

1.4-Vert lumière acétique : (préparation à froid) (Conservation illimitée)

•	Vert lumière0.1	g
	vert fullitereo.1	8

• Eau distillée100 ml

Ajouter après dissolution :

• Acide acétique 2 ml

2- Mode opératoire :

• Déparaffinage :

1 bain de xylène pendant 15 min

2 bains d'Alcool 100 pendant 3 min

1 bain d'Alcool 96 pendant 2 min

1 bain d'Alcool 70 pendant 2 min

Passage à l'eau courante

• Hématoxyline de groat pendant 5 min

L'eau courante pendant 5 min

• Fuschine acide ponceau pendant 5 min

Eau acétique (1%) :rinçage

• Orange G molybdique : passage

Eau acétique : rinçage

• vert lumière acétique : 10min

Eau acétique : rinçage

Déshydratation : alcool 96 (30 secondes)- alcool 100 (30 secondes)- alcool100 (30 secondes)- xylène (30min) et monter à l'EuKitt

3- Résultat : met en évidence les éléments du tissu conjonctif en particulier le collagène en vert, le noyau en noir et le cytoplasme en rouge ; cette coloration a servi pour les prises de photographies.

FICHE TECHNIQUE N°6 : Coloration topographique a l'Hémalun-éosine

1-Reactifs :

1.1-Hematoxyline de Groat : (préparationà froid) voir fiche n°3

1.2-Eosine : (préparation à froid) (Conservation illimitée)

- Eosine 1 g
- Eau distillée 100 ml

2- Mode opératoire :

Déparaffinage:

Xylène (2 bains pendant 10 min)

Alcool 100 (2 bains pendant 5 min)

Alcool 96 (1 bain pendant 5min)

Alcool70 (1 bain pendant 5 min)

Eau courante (1 bain pendant 3 min)

• Hématoxyline de Groat pendant 5 min

Laver à l'eau courante pendant 5 min

• Colorer par l'éosine pendant 30 secondes

Rincer à l'eau

Déshydratation : alcool 96 (30 secondes)- alcool 100 (30 secondes)- alcool100 (30 secondes)- xylène (30min) et monter à l'EuKitt.

3- Résultat : colore les noyaux en bleu noir et le cytoplasme acidophile en rose ; cette coloration a été utilisée à la fois pour l'étude morphométrique et la prise de photographies

FICHE TECHNIQUE N°5 : Coloration topographique a l'Azan modifié

1-Reactifs

1.1. Rouge nucléaire :

•	Rouge nucléaire(Nuclear fast red ouKernechtrot)	0.1g
•	Sulfate d'aluminium	5g
•	Eau distillée	10ml

Porter à ébullition, laisser refroidir, filtrer.

1.2. Bleu d'aniline :

Solution mère	
Bleu d'aniline	0.5g
Eau distillée	10ml
Porter à ébullition, laisser refroidir, filtrer, ajouter :	
Acide acétique	8ml
Solution de travail	
Au moment de l'emploi, diluer :	
Solution mère 1volume	
Eau	distillée
umes	2vol

1.3. Orange G phosphomolybdique : (fiche technique n°3)

Mode opératoire

• **Réhydrations**(déparaffinage)

Xylène (2 bains pendant 10 min)

Alcool 100 (2bains pendant 5 min)

Alcool 96 (1bain pendant 5min)

Alcool70 (1 bain pendant 5 min)

Eau courante (1 bain pendant 3 min)

- rouge nucléaire pendant 30 mins
- **Orange G** pendant 40 min

Rincer à l'eau (rapide)

• Bleu d'aniline pendant 10 min

Rincer à l'eau courante

Déshydratation : alcool 96 (30 secondes)- alcool 100 (30 secondes)- alcool100 (30 secondes)- xylène (30min) et monter a l'Eukitt

MATERIEL NECESSAIRE POUR L'HISTOLOGIE

Type d'appareillage

Marque

Binder

Etuve de séchage

Cassettes en plastique et Moules en métal

Tissus –Tek111 (moules)

Microtome

Leica

SLEE

OPTIKA

Microscope photonique

II MATERIEL NECESSAIRE POUR LE DOSAGE DU CORTISOL PLASMATIQUE PAR RADIOIMMUNOLOGIE

II.1 Réactifs fournis

Les réactifs stockes a 2-8° C sont stables jusqu'à la date de préemption de la trousse.

- tube revêtus d'un Anticorps monoclonal anti-cortisol : 2×50 tubes (prêt à l'emploi)

-traceur cortisol marqué à l'iode 125 : un flacon de 55ml (prêt à l'emploi)

- calibrateurs : 5 flacons de 0.5ml+1 flacon «zéro» de 5ml.

-échantillon de contrôle : 1 flacon de 0.5ml (prêt a l'emploi)

II.2 Matériel nécessaire mois non fourni

II.2.1 pour le dosage direct du cortisol sérique, plasmatique ou urinaire

-micropipette déprécission (50µl)

-pipette semi-automatique (500µl)

-mélangeur de type vortex

-agitateur a mouvement de va et vient horizontal ou a plateau oscillant

-système d'aspiration

-compteur gamma calibré pour l'iode 125

II.2.2 pour le dosage du cortisol urinaire après extraction (facultatif)

-dichlorométhane pour analyse, non stabilisé par de l'éthanol

-pipette en verre de 2 et 5ml

-tubes ou fiole en verre, avec bouchons avis, munis d'un joint en téflon.

-évaporateur

III MATERIEL NECESSAIRE POUR LA MORPHOMETRIE

Microscope photonique +Cam (premiere MA88-500)

- d'un logiciel d'analyse et de traitement d'images « Axio vision 4.6.3 »

Tableau 1 : les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase claire de la saison automnale chez le bélier de race D'Man élevé dans la région d'El Meniaa

	zones	capsule	Cortex	<mark>Zone G</mark>	Zone F	ZoneR	Medul
	1	376.9	960	163.16	567.47	319.96	1151.36
	2	263.96	992.25	156.05	643.85	220.05	1469.19
	3	227.67	985.06	191.76	679.14	277.22	1371.8
	4	217.15	997.59	225.7	690.34	247.87	1385.11
D12	5	263.96	1040.72	156.05	643.85	220.05	1467.79
	6	227.67	1029.95	191.76	679.14	277.22	1378.68
	7	217.15	1039.3	225.7	690.34	247.87	1266.27
	8	126.81	997.6	209.16	670.24	257.47	1450.21
	9	132.02	956.81	224.67	675.69	241.77	1208.72
	10	147.66	942.55	276.79	649.78	251.72	1305.41
	1	116.6	1025.75	180.57	353.57	173.98	742.41
	2	104.13	1035.63	184.03	395.52	204.24	827.12
	3	119.6	1028.42	190.12	364.22	139.86	871.5
	4	101.45	1061.42	194.81	428.07	272.91	927.53
D38	5	125.29	1021.11	175.03	351.73	136.7	976.59
	6	118.63	1027.72	179.9	366.9	131.07	1041.47
	7	114.91	1000.45	179.9	405.9	167.82	1026.99
	8	151.61	1093.07	175.03	302.08	141.22	920.87
	9	115.74	1103.94	193.46	373.42	217.72	802.85
	10	149.29	1092.1	179.13	533.36	284.68	878.27
	1	196.13	1314.63	171.79	639.12	279.78	1191.13
	2	201.34	1250.32	221.37	602.44	185.21	1292
	3	191.07	1215.72	161.14	591.03	322.81	1384.52
	4	133.04	1171.57	158.43	645.13	338.87	1084.67
D50	5	141.04	1180.07	167.38	589.1	310.01	1173.88
	6	214.61	1168.39	166.31	543.77	285.83	1023.94
	7	181.82	1151.4	154.23	733.14	322.11	945.41
	8	171.74	1135.36	214.54	593.76	357.63	988.33
	9	140.77	1123.11	267.75	564.65	322.25	975.21
	10	161.87	1128.15	254.62	637.66	241.45	1089.23
	moyenne	171.721	1075.672	193.0113	553.4803	246.5783	1120.615
	ecart type	61.15587	92.15324	33.04179	130.6765	64.7387	217.0392
	ESM	11.16548	16.8248	6.032579	23.85816	11.81961	39.62575

Tableau 2: les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase sombre de la saison automnale chez le bélier de race D'Man élevé dans la région d'El Meniaa

	zone	<mark>caps</mark> ∓	Cort 🖵	Zone	Zone	<mark>Zon</mark> €Ţ	Med -
	1	122.49	1198.06	164.28	647.15	338.55	1679.81
	2	113.18	1180.55	169.32	649.38	292.78	1820.2
	3	121.87	1196.72	195.83	597.38	349.57	1963.94
	4	162.78	1204.55	153.36	613.97	384.25	1390.83
D47	5	130.84	1196.96	202.25	688.75	303.67	1653.36
	6	133.35	1235.2	180.04	670.68	333.04	1786.47
	7	111.37	1243.36	208.46	721.24	282.46	1922.82
	8	144.06	1266.54	203.58	635.86	362.03	1749.53
	9	126.76	1284.99	207.18	726.18	277.92	1290.45
	10	149.57	1280.26	207.84	673.61	308.09	1771.94
	1	375.13	1020.23	235.99	944.12	258.56	/
	2	371.64	988.72	243.48	926.61	252.24	/
	3	402.22	986.74	231.19	987.08	262.25	/
	4	434.14	1026.76	255.79	636.68	185.07	/
D32	5	301.62	1051.33	252.53	933.22	355.98	1
	6	288.77	1061.84	238.62	929.41	297.08	/
	7	272.61	1037.36	284.31	945.48	289.41	/
	8	170.38	1041.2	222.72	677.63	257.18	1
	9	196.16	1038.73	227.82	656.5	274.68	1
	10	216.36	1044.53	211.27	695.96	238.69	1
	1	175.95	1025.23	179.08	224.66	408.13	2002.11
	2	180.56	964.93	170.13	283.98	355.67	2336.4
	3	218.35	927.62	134.25	287.85	396.2	2425.66
	4	226.62	926.84	155.96	232.13	535.49	2123.38
D15	5	168.34	989.09	176.39	392.63	154.19	2336.37
	6	146.2	963.06	172.35	443.41	164.58	2110.22
	7	180.25	959.9	150.16	487.47	221.76	2495.99
	8	264.65	951.1	210.72	272.62	196.45	1594.5
	9	293.96	889.79	195.39	274.01	176.05	1824.44
	10	284.49	945.67	168.71	354.44	175.78	1931.47
	moyer	216	1071	200	607	290	1910
	ecart 1	92.5	122	36	236	84.8	326
	ESM	16.9	22.3	6.57	43.1	15.5	72.9

Tableau 3 : les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase claire de la saison d'hiver chez le bélier de race D'Man élevé dans la région d'El Meniaa

	zones	capsule	Cortex	Zone G	Zone F	ZoneR	Medula
	1	446.56	1099.34	312.54	515.92	216.04	2077.97
	2	415.56	1077.12	322.63	529.74	240.72	2091
	3	322.45	1055.5	237.75	593	254.58	2107.37
	4	435.61	1061.56	326.76	474.86	223.07	2126.45
D6	5	416.55	1079.99	311.85	512.58	237.56	2176.91
	6	324.87	1076.54	316.16	534.76	256.8	2189.9
	7	331.66	1116.95	230.68	718.2	204.04	2167.69
	8	243.44	1150.26	202.27	654.66	233.55	2005.12
	9	235.72	1148.42	205.6	612.12	255.63	2193.11
	10	256.8	1149.94	210.98	798.63	218.02	2259.6
	1	314.25	1369.7	231.66	1068.35	291.93	2146.95
	2	359.38	1344.8	240.34	861.48	319.61	2171.04
	3	317.19	1352.69	234.21	913.32	299.99	2197.91
	4	368	1354.63	248.24	830.42	314.25	2112.29
D30	5	379.48	1347.29	237.57	810.73	302.43	2176.8
	6	337.07	1344.9	283.39	817.03	263.18	1990.87
	7	299.44	1341.88	291.14	825.55	245.92	2255.68
	8	273.58	1309.43	166.68	701.41	297.83	2278.26
	9	230.37	1310.89	176.39	862.47	237.07	2229.28
	10	202.83	1292.01	146.55	743.34	339.63	2176.96
	1	195.35	1230.66	196.43	833.94	205.23	1484.45
	2	191.65	1226.26	188.13	854.93	242.67	1537.52
	3	234.24	1199.51	184.2	835.4	209.49	1562.13
	4	232.05	1220.39	204.29	826.03	229.1	1612.53
D61	5	201.75	1233.52	190.38	680.48	182.07	1632.24
	6	192.57	1229.84	190.12	679.44	197.59	1689.58
	7	159.47	1198	207.59	688.06	220.89	1408.62
	8	148.54	1166.62	219.91	710.05	235.91	1743.44
	9	203.49	1197.04	194.07	656.54	196.46	1724.84
	10	239.76	1208.9	173.56	841.04	178.24	1374.95
	moyenne	283.656	1216.486	229.4023	732.816	244.9833	1963.382
	ecart type	85.07678	101.5603	51.01966	139.9791	42.38028	293.4691
	ESM	15.53282	18.54228	9.314873	25.55656	7.737545	53.57987

Tableau 4 : les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase sombre de la saison d'hiver chez le bélier de race D'Man élevé dans la région d'El Meniaa

	zones	capsule	Cortex	Zone G	Zone F	ZoneR	Medula
	1	209.09	1319.73	219.34	769.36	319.86	1559.2
	2	179.24	1336.51	203.59	793.3	309.02	1646.55
	3	234.47	1327.1	198.36	775.83	310.16	1653.91
	4	274.27	1323.78	235.01	171.47	763.03	1692.29
D31	5	290.15	1316.31	243.56	932.93	272.08	1716.35
	6	226.47	1316.34	150.31	785.83	282.14	1767.65
	7	235.01	1296.91	185.85	746.91	290.9	1825.4
	8	241.69	1320.61	200.61	452.67	175.73	1794.43
	9	240.48	1299.52	191.07	461.68	165.37	1860.65
	10	250.29	1317.24	161.28	454.91	148.25	1828.06
	1	209.5	1460.08	205.08	1019.61	272.14	1875.77
	2	193.54	1461.95	190.25	1018.02	252.79	1919.3
	3	237.79	1471.98	184.48	1014.78	245.67	1970.41
	4	166.44	1465.13	205.99	876.51	302.28	2010.7
D62	5	178.89	1447.24	219.79	929.61	303.6	2060.28
	6	152.53	1481.42	242.5	989.27	332.71	2077.21
	7	160.76	1480.83	170.71	487.33	153.84	1868.93
	8	157.89	1521.51	152.91	502.54	119.76	2069.13
	9	135.98	1557.89	147.66	523.74	135.31	1926.49
	10	157.66	1602.92	152.91	556.14	136.17	1850.01
	1	472.4	855.91	183.84	484.35	201.34	1796.73
	2	490.21	896.39	159.69	466.35	225.74	1788.42
	3	473.14	841.13	159.92	459.21	201.34	1820.66
	4	281.11	850.18	260.68	816.93	254.83	1825.08
D66	5	293.96	818.03	257.59	768.8	295.98	1833.27
	6	310.16	838.27	229.67	755.8	271.87	1792.31
	7	341.41	814.06	238.38	813.36	274.99	1796.83
	8	316.8	801.4	214.33	822.33	306.06	1801.81
	9	518.22	779.17	221.37	432.82	270.97	1737.32
	10	480.81	750.68	214.66	528.15	227.58	1679.2
	moyenne	270.3453	1212.341	200.0463	687.018	260.717	1828.145
	ecart type	111.9793	290.8578	33.27556	223.6572	113.8504	125.7365
	ESM	20.44453	53.10313	6.075258	40.83404	20.78614	22.95623

Tableau 5: les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase claire de la saison du printemps chez le bélier de race D'Man élevé dans la région d'El Meniaa.

			_				
	zones	capsule	cortex	Zone G	Zone F	ZoneR	Medula
	1	232.25	979.37	139.59	658.3	255.23	2094.71
	2	182.77	941.98	146.08	689.26	203.22	2197.06
	3	332.56	949.65	154.4	465.37	218.28	1839.55
	4	191.18	958.47	153.65	513.13	267.83	1578.63
D11	5	192.01	940.08	143.79	554.55	342.14	1839.87
	6	214.38	1009.63	165.68	510.14	273.29	1987.39
	7	279.32	1004.49	151.41	500.51	386.98	2058.03
	8	252.34	1048.05	186.63	521.97	354.79	2244.62
	9	237.61	1004.34	170.32	527.22	339.49	2483.86
	10	233.32	951.12	166.79	474.4	381.02	2476.38
	1	160.1	1689.73	180.65	756.64	540.16	1199.96
	2	151.65	1654.18	201.64	1307.3	276.76	1408.75
	3	121.28	1687.64	222.52	1317.86	337.84	1728
	4	150.36	1787.06	185.25	1343.95	359.22	1898.61
D1	5	245.51	1733.87	217.9	856.11	381.31	2118.59
	6	229.44	1725.67	210.19	917.89	195.98	2238.5
	7	248.71	1628.7	219.66	1055.41	304.45	1717.95
	8	228.56	1659.97	172.01	1480.4	302.04	2433.44
	9	240.57	1736.06	219.56	1417.4	290.35	2588.57
	10	216.5	1824.45	278.44	1359.6	261.71	2187.76
	1	304.85	1374.6	277.03	618.3	236.38	1795.64
	2	261.77	1387.14	267.75	673.2	214.38	1962.65
	3	215.42	1405.53	177.16	900.77	284.3	2106.13
	4	199.22	1409.6	198.91	957.08	226.28	1523.64
D3	5	227.08	1428.89	181.92	886.83	192.71	1650.33
	6	320.75	1432.82	235.43	774.19	304.44	1703.04
	7	360.48	1430.06	209.09	765.31	342.75	1642.07
	8	390.9	1422.52	261.82	751.77	403.24	2030.1
	9	229.86	1363.05	245.81	976.67	479.41	2086.8
	10	279.12	1308.69	208.82	1069.09	304.48	2065.39
	moyenne	237.6623	1362.58	198.33	853.354	308.682	1962.867
	ecart type	61.19626	309.0751	40.47246	315.9567	81.67591	331.4735
	ESM	11.17286	56.42914	7.389226	57.68554	14.91191	60.51851

Tableau 6: les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase sombre de la saison du printemps chez le bélier de race D'Man élevé dans la région d'El Meniaa.

	zone 👻	<mark>capsı</mark> 🔆	Corte -	Zone 루	Zone 두	Zone 구	Med 🗟
	1	191.65	1376.22	214.11	844.56	245.77	1832.71
	2	224.17	1329.9	247.25	771.15	305.55	2002.72
	3	218.68	1359.73	273.08	624.74	297.08	2055.78
	4	211.89	1431.92	280.98	772.9	368.65	2079.68
D2	5	241.21	1426.2	208.1	759.95	312.61	2032.05
	6	199.67	1465.48	231.9	780.5	287.21	2041.6
	7	242.66	1505.28	282.77	696.5	256.68	2168.76
	8	230.84	1547.72	292.81	660.61	255.48	2270.9
	9	143.95	1336.35	220.84	919.68	346.58	2158.89
	10	146.05	1364.77	220.03	934.85	335.45	2297.22
	1	294.84	1298.48	230.78	553.74	466.07	1919.33
	2	332.64	1268.84	207.95	610.74	383.88	2068.65
	3	291.39	1246.68	228.13	598.45	379.99	2339.39
	4	346.08	1244.13	215.53	640.46	324.8	2472.26
D14	5	145.64	1229.17	149.17	518.63	261.9	2533.51
	6	137.67	1227.52	156.68	510.98	237.14	2587.39
	7	328.44	1217.27	208.9	677.74	257.21	1724.86
	8	297.37	1220.06	221.05	718.95	238.69	1880.33
	9	305.46	1208.88	221.22	656.55	238.79	2016.85
	10	296.13	1231.2	191.44	696.77	272.66	2066.13
	moyen	241.3	1327	225.1	697.4	303.6	2127
	ecart ty	67.66	104.9	37.44	118.4	61.63	229.9
	ESM	15.13	23.46	8.371	26.48	13.78	51.42

Remarque : l'échantillon D4 est un ganglion, donc on n'a pas fait l'étude morphométrique

Tableau 7: les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase claire de la saison d'été chez le bélier de race D'Man élevé dans la région d'El Meniaa.

	zones	capsule	Cortex	Zone G	Zone F	ZoneR	Medula
	1	77.14	1464.41	129.52	1085.36	272.08	2492.85
	2	74.57	1445.3	121.06	1048.33	268.75	2495.11
	3	81.54	1430.59	138.03	1071.9	233.69	2488.96
	4	66.46	1420.44	140.72	1046.84	237.01	2447.63
D60	5	83.16	1352.35	131.41	1038.7	235.8	2452.54
	6	63.57	1395.18	175.91	1099	202.83	2437.8
	7	58.85	1418.66	179.99	1116.9	214.58	2387.42
	8	65.03	1400.54	173.58	1112.54	171.47	2417.98
	9	131.41	1381.94	100.87	1259.99	316.11	2442.57
	10	181.44	1462.83	117.78	1257.05	316.37	2429.05
	1	197.41	2093.1	210.89	1538.12	321.51	1816.7
	2	187.27	2075.67	182.1	1544.28	321.07	1820.63
	3	202.96	2084.23	185.7	1531.12	328.28	2005.39
	4	191.15	2125.09	183.05	1539.94	365.99	2062.19
D18	5	206.44	2099.84	227.08	1462.4	392.21	2053.68
	6	289.35	2130.44	149.57	1432.14	337.3	2103.78
	7	239.94	2115.12	194.32	1370.89	328.67	2075.97
	8	279.38	2105.15	202.59	1409.67	298.01	2073.87
	9	233.05	2192.36	208.56	1318.15	330.83	2066.53
	10	250.71	2174.06	218.58	1311.94	314.55	1812.76
	1	220.03	1452.99	163.71	1075.58	291.39	2368.22
	2	216.75	1497.19	170.91	1126.12	254.02	2495.62
	3	221.4	1499.88	177.13	1017.12	328.1	2588.47
	4	262.25	1541.41	176.78	975.33	354.51	2631.76
D5	5	212.33	1550.96	193.36	1124.96	273.45	2651.48
	6	206.44	1549.17	203.88	1145.67	292.59	2710.49
	7	270.74	1562.63	170.54	959.89	335.9	2647.64
	8	137.62	1564.81	162.64	977.6	388.89	2683.08
	9	123.44	1579.7	160.83	953.44	381.17	2566.34
	10	137.2	1669.59	182.87	936.91	355.23	2667.95
	moyenne	172.301	1694.521	171.132	1196.263	302.0787	2346.482
	ecart type	74.01767	313.371	31.38384	200.3651	56.13416	279.781
	ESIVI	13.51372	57.21345	5.72988	36.58149	10.24865	51.08078

Tableau 8: les valeurs calculées de l'épaisseur des différentes zones de la corticosurrénale et médulla en phase sombre de la saison d'été chez le bélier de race D'Man élevé dans la région d'El Meniaa

1 324.99 1628.7 249.85 1062.98 329.76	5 1556.23
2 315.33 1637.27 248.02 1030.66 359.24	1532.39
3 346.82 1633.07 232.88 1108.33 331.24	1532.91
4 341.09 1638.48 215.25 1138.03 318.79	1589.13
D65 5 316.77 1636.96 240.28 997.54 377.34	1605.27
6 455.57 1657.62 282.66 807.98 351.73	1628.83
7 468.7 1682.43 270.77 816.18 312.18	1618.66
8 500.37 1690.06 193.96 819.72 343.7	1629.73
9 500 1693.84 197.98 806.2 362.18	3 1611.86
10 248.56 1700.59 157.93 1120.41 293.73	1598.8
1 261.16 1290.87 156.05 913.81 252.83	1972.47
2 225.7 1265.66 154.6 916.83 236.93	3 2070.81
3 218.2 1253.14 141.76 941.82 176.22	2 2183.76
4 220.73 1251.88 139.59 895.87 241.93	2198.05
D22 5 252.88 1282.81 149.55 853.34 268.09	2285.05
6 75.22 1301.1 106.37 484.26 130.68	3 2336.69
7 46.96 1318.33 95.98 468.09 147.74	2414.63
8 34.18 1327.14 115.7 460.59 147.2	2380.8
9 31.7 1337.34 116.07 461.18 156.45	2342.2
10 57.96 1300.53 122.16 463.54 130.13	2461.45
1 247.6 1629.22 173.28 1223.96 533.59	2264.09
2 246.95 1649.44 178.91 1230.99 534.14	2256.88
3 244.01 1634.72 199.6 1235.72 518.88	2249.69
4 234 1693.55 224.56 1227 473.93	2268.64
5 261.42 1677.13 184.49 1196.92 545.43	2214.25
D63 6 251.91 1716.74 183.52 1273.07 421.83	3 2243.27
7 269.24 1796.75 177.19 1246.74 544.39	2208.25
8 326.4 1785.18 207.72 1167.28 269.98	3 2221.71
9 283.59 1844.29 237.57 1180.83 324.56	5 2261.92
10 314.33 1839.33 225.42 1194.38 336.04	2243.94
moyenne 264.078 1559.806 185.989 958.1417 325.699	2032.745
ecart type 125.7726 200.7644 50.4384 268.4395 128.1478	330.8517 60.40499

.

Tableau 09: les valeurs calculees de la surface cellulaire et le diametre des noyaux des différentes zones du cortex en phase sombre de la saison d'été (exemple) chez le belier d'El D'Man eleve dans la region Meniaa

animal	ZG	c cellule	c noyau	RNC	animal	ZF	c cellule	c noyau	RNC	animal	ZR	c cellule	c noyau	RNC
	1	92.37	29.13	0.46063		1	93.91	27.39	0.41176		1	92.47	21.93	0.31089
	2	71.95	27.41	0.6154		2	109.01	29.74	0.37517		2	95.09	23.09	0.32069
	3	70.78	26.03	0.58168		3	141.6	32.14	0.29362		3	111	22.67	0.25665
	4	105.71	27.59	0.35317		4	145.72	34.27	0.30749		4	107.22	21.54	0.2514
	5	127.17	31.61	0.33079		5	148	45.95	0.45027		5	112.86	24.93	0.28352
	6	109.91	37.1	0.50955		6	120.46	26.66	0.28422		6	136.74	18.76	0.15901
	7	131 44	24.73	0.23175		7	60.72	19 77	0.48278		7	96.64	20.70	0.33999
	8	108.05	28.78	0.36306		8	94.15	29.7	0.46082		8	76.29	20.52	0.36794
	9	112.76	25.59	0.29356		9	80.18	31.13	0.63466		9	89.31	30.13	0.50912
	10	94.02	22.55	0.31552		10	113.55	28.86	0.34077		10	98.09	21.38	0.27871
	11	85.48	20.74	0.32036		11	112.09	26.09	0.30337		11	77.32	21.38	0.3822
	12	93.86	33.71	0.56043		12	134.4	29.92	0.28637		12	78.17	21.69	0.38403
	13	132.15	28.51	0.27509		13	105.73	35.2	0.49908		13	67.93	12	0.21455
	14	111.44	28.66	0.34622		14	122.67	30.46	0.33033		14	113	37.07	0.48821
	15	109.63	33.12	0.43288		15	96.28	18.88	0.24393		15	74.3	21.4	0.40454
	16	174.86	37.88	0.35747		16	88.3	32.76	0.58985		16	76.88	20.66	0.36748
	17	136.55	23.25	0.20521		17	79.19	20.67	0.35206		17	114.43	18.83	0.19697
	18	149.22	28.9	0.24019		18	82.87	27.46	0.49558		18	73 39	30.31	0.70357
	19	116.56	23.83	0.25698		19	94.13	14.61	0.18373		19	84.66	38.19	0.82182
	20	128.39	39.53	0.44486		20	106.21	32.47	0.44033		20	98.94	15.49	0.18562
	21	153.62	31.94	0.26249		21	78.18	23.78	0.43713		21	63.14	13.66	0.27607
	22	144.48	33.34	0.29998		22	109.93	30.53	0.38451		22	100.7	25.35	0.33643
	23	82.75	21.7	0.35545		23	100.8	30.43	0.43243		23	107.7	36.3	0.5084
	24	107.11	33.3	0.45116		24	129.33	33,31	0.34691		24	95.62	25.31	0.35998
	25	139.59	30.24	0.27654		25	134.05	28.18	0.26618		25	116.97	23.06	0.24555
	26	109.84	36.32	0.49402		26	135.86	28.96	0.27091		26	79.21	20.07	0.33936
	27	109.91	31 31	0.39835		27	89.28	30.07	0.50785		27	86.65	23.87	0.37912
	28	90.86	32.62	0.5601		28	130.07	27.78	0.27158		28	88.9	23.85	0.36664
	29	122.49	31.41	0.34486		29	115.03	31.22	0.37251		29	83.87	23.19	0.38217
65	30	117.05	30.01	0.34478	D65	30	82.51	25.87	0.45674	D65	30	78.04	28.93	0.58909
	31	118.64	27.97	0.30848		31	91.68	25.04	0.37575		31	81.18	22.43	0.38179
	32	84.71	28.32	0.50222		32	126.17	35.27	0.38801		32	63.34	21.74	0.5226
	33	108.04	32.93	0.43842		33	93.6	20.66	0.28325		33	89.17	18.15	0.25556
	34	68.49	21.43	0.45538		34	118.85	38.88	0.48618		34	59.86	23.8	0.66001
	35	78.04	25.96	0.49846		35	78.23	18.87	0.31678		35	65.39	18.32	0.38921
	36	90.27	31.22	0.5287		36	74.39	22.81	0.44223		36	86.24	25.08	0.41007
	37	109.52	26.92	0.32591		37	128.51	17.12	0.15369		37	83.42	28.43	0.517
	38	95,19	24.35	0.34373		38	112.45	12.88	0.12936		38	98.41	19.47	0.24664
	39	138.98	35.84	0.34749		39	100.69	29.42	0.4128		39	93.85	26.29	0.38914
	40	143.17	28.65	0.25017		40	121.78	26.92	0.28379		40	94.44	21.35	0.29211
	41	107.72	36.7	0.51676		41	165.85	26.21	0.1877		41	80.54	25.12	0.45327
	42	141.19	18.94	0.15493		42	115.94	24.98	0.27463		42	62.55	24.58	0.64735
	43	145.27	25.24	0.21028		43	130.83	36.02	0.37992		43	79.65	24.09	0.43359
	44	134.36	25.16	0.2304		44	140.47	24.58	0.21219		44	106.69	18.88	0.21501
	45	99.20	23.10	0.27844		45	80.62	25.00	0.47404		45	67 87	19 0/	0.39032
	46	119.63	24.02	0.25123		46	106.66	36.75	0.52568		46	58.91	20.93	0.55108
	47	138.06	24.43	0.215		47	93.87	14.56	0.18358		47	70.13	14.46	0.25974
	48	79 77	21.15	0.4538		48	75 57	21.50	0.77519		48	77 97	21.10	0.37368
	49	114 78	24.5	0.2536		49	97 36	26 29	0.39791		49	81 68	21.21	0.33203
	50	96.80	23.22	0.3249		50	111 16	20.25	0.27755		50	70.96	12 86	0.22134
		50.05	£J./U	0.0210		50		67.1J	0.27733			10.00	12.00	0.22107

11.87 0.17245 0.44465

0.44147

0.20542

0.2907

0.3922

0.23685

0.28902

0.47036

0.45274

0.55326

0.45381 0.51635

0.27677

0.66243 0.70339

0.40409

0.27954 0.28703

0.35856

0.33088

0.23961

0.47303 0.28303

0.35836 0.41684

0.50587

0.9882 0.29452

0.61803 0.27142

0.39017

0.30914

0.26553

0.24918

0.38152

0.32619

0.25458

0.27434

0.4542

0.44826

0.30356

0.42182

0.64084 0.66372

0.27793

0.50773

0.28762

0.294

24.06

22.1

16.6

16.16

15.59

18.82

18.61

13.41

25.29

26.75 26.28

29.84 23.7

24.49

26.11

17.19 17.32

18.39

18.1

20.72

23.92 26.92

19.75 22.58

22.03

27.56 25.13

21.78 32.83

28.58

23.02

17.76

22.53

22.66

27.13

21.76

18.36

22.37

20.68

26.38

28.46

28.07

26.68 27.96

39.79

21.77

31.53

20.91 25.18 0.27707

	51	93.71	35.63	0.61346	51	106.09	26.44	0.33195	51	80.7
	52	77.44	28.68	0.58819	52	81.99	16.04	0.24321	52	78.17
	53	76.5	24.37	0.46749	53	142.71	36.18	0.33962	53	72.16
	54	111.06	25.74	0.30169	54	95.14	31.2	0.48796	54	97.41
	55	96.47	21.04	0.27893	55	112.02	27.35	0.32302	55	71.75
	56	121.89	31.2	0.34403	56	92.05	31.09	0.51001	56	55.34
	57	106.05	29.27	0.38122	57	157.41	26.79	0.2051	57	98.28
	58	130.03	22.77	0.21229	58	115.36	35.64	0.44706	58	83
	59	97.53	29.88	0.44169	59	150.12	38.22	0.34155	59	41.92
	60	92.47	33.33	0.56358	60	163.26	35.61	0.27897	60	81.15
	61	89.8	30.85	0.52332	61	89.02	24.53	0.38037	61	75.1
	62	104.45	35.44	0.51355	62	119.28	38.63	0.47898	62	84.19
	63	116.65	28.43	0.32226	63	128.97	22.76	0.21429	63	87.63
	64	107.88	34.18	0.46377	64	91.17	16.4	0.21934	64	109.33
	65	98.87	35.09	0.55017	65	118.63	35.9	0.43394	65	61.46
	66	115.35	35.9	0.45186	66	114.1	41.24	0.56602	66	63.23
	67	132.16	39.4	0.42475	67	117.39	21.9	0.22934	67	59.73
	68	121.24	23.73	0.24336	68	130.76	25.2	0.23873	68	79.28
	69	120.83	34.6	0.40125	69	94.38	27.91	0.41989	69	82.46
	70	181.43	29.42	0.19354	70	117.22	31.47	0.367	70	68.58
	71	126.04	31.58	0.33432	71	117.46	31.25	0.36249	71	83.34
	72	145.02	33.44	0.2997	72	95.78	21.73	0.29345	72	123.75
	73	202.84	32.15	0.18835	73	173.38	35.62	0.25857	73	83.83
	74	116.85	30.96	0.36046	74	125 71	24 45	0.24146	74	89.53
	75	104 26	30.92	0.4216	75	91 55	21.13	0.31632	75	85.59
	76	118.09	27.95	0.31007	76	91.05	28 31	0.45123	76	74 88
	77	87.66	22.61	0.34758	77	102 72	28.2	0.37842	77	82.04
	78	115.08	31.9	0.38351	78	140.13	27.9	0.2486	78	50.56
	79	114.09	30.17	0.35951	79	89.8	28.68	0.46924	79	95.73
	80	117.18	36.34	0.44953	80	105.38	22.49	0.27132	80	85.95
	81	86.5	18.22	0.26684	81	162.7	37.11	0.29549	81	133.88
	82	93.63	28.62	0.44024	82	108.87	29.72	0.37549	82	82.02
	83	98.48	35 72	0.56915	83	115 87	24 55	0.26883	83	75 21
	84	102.82	33 56	0.48455	84	134 75	17.82	0.1524	84	107 38
	85	121 3	27.2	0.28905	85	117 29	21 16	0.22012	85	113 6
	86	120.88	34.01	0.3915	86	133	23.02	0.20931	86	98.24
	87	116.44	29.79	0.3438	87	109.23	21.65	0.2472	87	88.47
	88	108 87	37 61	0.52779	88	135.25	16 83	0.14218	88	80.97 80.81
	89	115.87	24.6	0.26953	89	136.64	41.77	0.44029	89	110.24
	90	104 19	34 61	0.49741	90	88.96	23 68	0.36275	90	96.06
	91	94 22	37 13	0.51747	91	113 95	21.88	0.23765	91	84.4F
	92	97 41	23 88	0.32477	92	107 11	21.00	0.36917	92	91 95
	93	115 53	25.00	0.29416	93	161 48	20.00	0.2591	93	120 54
	94	95 02	20.20	0.41147	94	117 15	25.25	0.27684	94	80.03
	95	136.05	29.45	0.27627	95	198.8	21 42	0.12076	95	71 50
	96	104 08	19 57	0.23157	96	169 91	27 18	0.19043	96	99.74
	97	130.07	25.24	0.24077	97	73.61	28.58	0.63469	97	100 1
	89	104 66	23.24	0.26081	89	134 63	20.30	0.2839	89	93 63
	99	109 59	28.09	0.34466	99	128 82	34 01	0.35872	99	93.65
	100	102 43	30 37	0.42145	100	176 73	43.83	0.3298	100	116 04
	100	10E. TJ	55.57			1, 0, , J	13.03			

1	94 92	28 89	0 43753		1	123 13	27 23	0 28394		1	79 72	22.3	0 38837
2	96.04	38.29	0.66303		2	137.89	34.12	0.3288		2	113.85	30.21	0.36119
3	123.14	26.62	0.2758		3	151.98	32.7	0.27414		3	104.5	24.21	0.30153
4	117.79	29.43	0.33307		4	156.08	46.46	0.42383		4	110.66	13.4	0.13778
5	109.59	33.85	0.44692		5	124.58	38.13	0.44106		5	92.23	26.15	0.39573
6	100.26	33.86	0.50994		6	133.91	28.84	0.27448		6	102.87	31.85	0.44847
7	111.96	20.02	0.21775		7	153.13	28.39	0.22759		7	103.63	18.16	0.21247
8	96.08	22.62	0.30792		8	89.49	38.19	0.74444		8	66.21	21.58	0.48353
9	88.57	23.7	0.36535		9	127.14	40.75	0.4717		9	71	21.09	0.42256
10	123.31	27.63	0.28878		10	119.58	33.67	0.39192		10	89.04	21.7	0.32225
11	94.83	36.08	0.61413		11	69.55	33.02	0.90391		11	79.11	20.88	0.35858
12	117.62	37.03	0.45949		12	108.47	25.58	0.3086		12	84.88	23.08	0.37346
13	108.47	24.11	0.2858		13	115.11	32.6	0.3951		13	92.91	18.71	0.25216
14	130.8	25.94	0.24738		14	145.87	36.01	0.32778		14	88.03	17.97	0.25649
15	119.28	28.31	0.3112		15	146.58	50.33	0.52291		15	94.69	30.6	0.47745
16	115	26.19	0.2949		16	121.8	35.66	0.41398		16	110.45	34.52	0.45463
17	82.58	27.29	0.49358		17	136.88	63.46	0.86434		17	124.04	22.77	0.22484
18	117.4	28.48	0.32029		18	101.83	22.8	0.2885		18	103.46	26.27	0.34033
19	98.9	40.36	0.68944		19	154.07	16.87	0.12296		19	122.68	23.77	0.24032
20	126.41	28.42	0.29003		20	112.94	32	0.39535		20	75.39	23.46	0.45176
21	96.11	35.5	0.58571		21	70.74	20.69	0.41339		21	90.06	24.26	0.36869
22	112.91	35.72	0.46275		22	131.82	22.61	0.20703		22	104.31	32.68	0.45623
23	166.98	42.09	0.33702		23	123.76	29.88	0.31828		23	140.54	30.48	0.27694
24	117.15	38.67	0.49274		24	106.48	26.79	0.33618		24	102.42	23.76	0.30206
25	103.52	35.84	0.52955		25	103.76	23.74	0.29668		25	117.9	33.21	0.39214
26	125.08	33.94	0.37239		26	117.39	28.28	0.31736		26	140.58	40.15	0.39978
2/	97.53	36.22	0.590//		2/	128.01	29.74	0.30264		2/	100.04	31.54	0.46044
28	116.63	34.23	0.41541		28	150.07	27.94	0.228//		28	160.05	39.04	0.32262
29	129.23	33.8	0.35419	011	29	106.21	33.40	0.45993	222	29	101.45	38.55	0.01288
3U 21	130.57	33.38	0.34345	DZZ	30	/5.2	22.84	0.43021	DZZ	30	141 12	27.80	0.33831
21	24.00	33.07	0.56010		21	92.81 00 E	34.29	0.56595		21	141.15	32.21 22.41	0.29572
32	128 83	34.00	0.00140		32	96.3	36.23	0.30102		32	163 57	56.41	0.03323
33	105.05	38 5/	0.50715		33	91.01	1/1 1/1	0.33511		33	105.57 QQ /Q	27 18	0.32741
25	41 12	22 25	0 32303		34	125.65	22 70	0 36784		34	102 49	31 49	0 44352
35	155 48	35 82	0.29935		36	136.89	37 81	0.38161		36	128 38	29 91	0.30375
37	98.99	27.17	0.37831		37	94.55	39.76	0.72568		37	67.85	27.06	0.6634
38	117.93	28.18	0.31398		38	99.02	20.94	0.26819		38	105.73	31.97	0.43343
39	138.15	32.39	0.30626		39	94.3	24.84	0.35762		39	142.44	26.71	0.2308
40	114.62	29.04	0.33933		40	109.54	36.67	0.50322		40	118.25	25.25	0.27151
41	87.04	33.57	0.62783		41	89.53	26.81	0.42746		41	106.93	18.41	0.20798
42	102.46	24.74	0.31832		42	115.04	45.62	0.65716		42	69.89	19.06	0.37498
43	140.47	36.78	0.35471		43	95.14	30.8	0.47871		43	77.36	21.64	0.38837
44	123.4	27.48	0.28649		44	104.81	34.79	0.49686		44	145.44	37.65	0.34929
45	134.14	36.63	0.37565		45	114.98	22.72	0.24626		45	112.97	39.41	0.53575
46	143.12	44.31	0.44844		46	113	31.68	0.38957		46	119.36	37.59	0.4597
47	135.31	29.87	0.28329		47	104.61	28.58	0.3759		47	105.4	28.96	0.37886
48	119.77	25.64	0.27239		48	103.99	23.92	0.29874		48	86.22	25.2	0.41298
49	116.6	24.39	0.2645		49	132.88	25.13	0.23323		49	131.79	33.8	0.34493
50	115.03	35.06	0.43841		50	121.7	31.42	0.34803		50	61.26	20.18	0.49124

D22

51	144.94	31.56	0.27836	51	120.22	37.92	0.46075	51	88.48	19.82	0.28867
52	115.27	28.81	0.33322	52	74.55	32.61	0.77754	52	98.81	30.48	0.44607
53	156.47	38.58	0.32725	53	160.8	30.36	0.23275	53	100.34	33.87	0.50955
54	86.43	24.03	0.3851	54	147.03	34.9	0.31125	54	80.54	23.99	0.42423
55	103.43	34.51	0.50073	55	146.46	42.77	0.41248	55	109.26	31.58	0.40654
56	117.25	28.88	0.32681	56	110.22	32.11	0.41109	56	99.49	40.57	0.68856
57	109.64	37.35	0.51667	57	150.28	41.24	0.37821	57	81.57	23.28	0.39938
58	133.91	43.99	0.48921	58	185.64	43.27	0.30393	58	94.57	20.31	0.2735
59	105.41	36.27	0.52459	59	99.22	27.95	0.39217	59	126.6	31.28	0.32816
60	103.33	32.67	0.46235	60	105.68	29.43	0.38597	60	94.46	23.29	0.32724
61	88.73	25.29	0.39864	61	110.61	28.08	0.34024	61	88.85	23.25	0.35442
62	110.88	34.38	0.44941	62	101.69	24.22	0.31264	62	104.12	24.31	0.3046
63	103.18	26.84	0.35159	63	133.83	32.08	0.31528	63	67.03	17.49	0.35305
64	87.24	31.13	0.5548	64	125.65	29.82	0.31118	64	107.8	26.39	0.32416
65	106.43	35.48	0.50007	65	121.26	31.31	0.34808	65	110.59	27.66	0.33353
66	129.58	52.8	0.68768	66	107.23	35.6	0.497	66	95.14	25.27	0.36167
67	135.43	34.35	0.33983	67	131.28	37.54	0.40047	67	141.59	31.47	0.28578
68	124.46	28.99	0.30366	68	70.63	24.91	0.54484	68	136.55	43.82	0.47255
69	126.96	30.94	0.32222	69	102.31	30.28	0.42038	69	123.59	35.98	0.41068
70	138.14	32.04	0.30198	70	96.76	20.43	0.26765	70	106.5	27.24	0.34368
71	111.18	31.74	0.39955	71	96.96	33.24	0.52166	71	155.51	35.73	0.2983
72	104.07	40.06	0.62584	72	129.42	34.53	0.3639	72	109.55	29.26	0.36443
73	89.74	31	0.52775	73	116.44	41.37	0.55109	73	155.65	39.58	0.341
74	117.8	40.81	0.53007	74	135.29	42	0.45021	74	147.22	44.43	0.43224
75	112.17	33.93	0.43367	75	152.41	34.82	0.29611	75	102.28	25.99	0.34067
76	141.62	32.43	0.29701	76	114.46	32.46	0.39585	76	148.81	40.74	0.37698
77	117.66	37.2	0.46234	77	113.44	35.36	0.45287	77	161.77	39.99	0.32838
78	119.54	34.82	0.411	78	119.64	27.79	0.30256	78	102.04	24.05	0.30837
79	119.75	28.51	0.31247	79	130	26.49	0.25592	79	107.81	21.38	0.24737
80	140.92	22.71	0.19212	80	87.34	28.55	0.48563	80	116.89	25.81	0.28338
81	184.33	36.19	0.2443	81	98.69	28.57	0.40744	81	116.01	30.27	0.35304
82	117.92	33.28	0.39319	82	136.26	33.43	0.3251	82	112.03	19.8	0.21468
83	95.16	31.73	0.50024	83	95.46	33.72	0.54616	83	124.36	29.25	0.30754
84	118.54	33.95	0.40135	84	136.28	27.76	0.25581	84	86.2	21.81	0.33872
85	94.64	25.25	0.36389	85	114.93	40.26	0.53917	85	80.4	22.68	0.39293
86	99.81	27.64	0.38298	86	109.69	37.65	0.52263	86	96.29	24.39	0.33922
8/	97.97	32.29	0.49163	8/	95.06	23.02	0.31954	8/	112.29	28.78	0.34463
88	83.57	33.03	0.65354	88	91.29	29.31	0.47289	88	134.88	31.19	0.3008
89	118.36	30.49	0.34699	89	91.27	34.28	0.60151	89	85.06	26	0.44023
90	97.54	36.91	0.608//	90	113.69	30.38	0.36466	90	128.18	30.9	0.31/64
91	134.05	40.23	0.4288	91	92.74	34.51	0.59205	91	103.2	30.3	0.41504
92	115.8	3U.3/	0.3555	92	123.35	31.53	0.34339	92	109.57	32.74	0.42014
93	/4.5/	25.4/	0.010/4	93	128.55	30.58 25.54	0.39809	93	02.1/	22.45	0.20521
94 05	95.91	28.93	0.43192	94 05	100.04	35.54 ar o	0.39/45	94 0F	110.40	19.70	0.34353
95	02.50	2/.81	0.33/23	95 00	108.04	35.8 27 72	0.49001	95	119.48	30.1/	0.43410
90	95.52	3U.11	U.4/485	90 07	9/.28	37.92	0.03001	90 70	124.04	40.95	0.49284
5/	50./1 רד 101	32.82	0.20/22	57	133.05	29.09	0.20009	97 00	120 04	24.72	0.22113
00	101.//	30.3 22 EF	0.30022	09 00	00.90 17E 01	31.1	0./ 3310	00	129.84	42.38 2E 10	0.40400 0 57006
55 100	110.7	ງວ.ວວ ງງ ງ	0.44044	100	123.01 0/ 77	21 20	0.41042	100	02 /2	21 CO	0.57220
100	110.22	23.2	0.20021	100	54.77	21.20	0.43303	100	95.45	00.1C	0.31304

1	119.75	30.43	0.34069		1	135.87	34.46	0.33981		1	75.15	20.29	0.369851
2	139.94	40.48	0.407		2	142.06	23.44	0.19761		2	39.83	13.05	0.487304
3	127.15	36.55	0.40342		3	149.46	29.55	0.24643		3	80.41	19.07	0.31089
4	137.57	42.44	0.44613		4	115.3	30.4	0.35807		4	81.55	25.19	0.446948
5	134.76	39.3	0.41169		5	128.29	28.44	0.28483		5	112.57	25.46	0.292274
6	151.14	36.44	0.3177		6	120.98	26.79	0.28443		6	117.73	23.06	0.243583
7	126.18	33.79	0.36573		7	132.92	31.61	0.31201		7	90.6	21.26	0.306605
8	138.42	44.36	0.47161		8	183.26	34.88	0.23507		8	59.28	16.26	0.377964
9	131.72	45.04	0.51961		9	122.23	29.39	0.31657		9	108.26	26.49	0.323957
10	181.06	40.5	0.28813		10	130.34	17.07	0.1507		10	120.53	26.29	0.278969
11	179.97	37.38	0.26215		11	129.42	32.3	0.33258		11	94.14	28.02	0.423775
12	147.53	36.09	0.32385		12	130.47	32.18	0.3274		12	74.89	17.55	0.306069
13	125.71	28.14	0.28841		13	141.77	29.18	0.25917		13	89.93	19.27	0.272714
14	128.59	49.59	0.62772		14	157.56	35.44	0.29021		14	71.09	16.78	0.308967
15	125.67	29.15	0.30201		15	83.4	30.1	0.56473		15	84.96	23.06	0.372536
16	208.92	45.67	0.27975		16	126.46	31.61	0.33326		16	54	16.6	0.44385
17	119.04	26.45	0.28567		17	112.51	36.37	0.47767		17	82.17	23.84	0.408709
18	142.87	29.8	0.26355		18	129.81	26.09	0.25154		18	82.44	24.49	0.422606
19	119.43	29.68	0.3307		19	100.46	27.73	0.38127		19	84.94	23.31	0.378225
20	120.72	26.5	0.28126		20	124.53	35.34	0.39623		20	112.79	33.76	0.42718
21	115.76	34.33	0.42159		21	92.87	23.37	0.33626		21	61.57	19.48	0.462818
22	146.81	39.99	0.37437		22	84.95	32.24	0.61165		22	123.29	25.95	0.266591
23	140.66	33.14	0.30822		23	131.67	30.46	0.30096		23	78.67	21.8	0.38333
24	138.76	34.5	0.3309		24	125.64	21.18	0.20276		24	81.59	16.01	0.244129
25	173.08	39.86	0.2992		25	135	24.39	0.2205		25	102.02	26.81	0.356469
26	175.12	33.35	0.23524		26	116.49	23.48	0.25245		26	44.5	14.45	0.480865
27	189.14	37.72	0.24911		27	105.04	24.59	0.30566		27	67.47	18.98	0.391421
28	109.53	28.3	0.34839		28	102.91	27.25	0.36016		28	66.89	19.37	0.407618
29	94.88	18.12	0.23606		29	115.48	17.25	0.17561		29	110.95	15.3	0.159958
30	141.89	26.98	0.23479	D63	30	121.51	20.39	0.20164	D63	30	81.87	17.94	0.280619
31	112.1	30.94	0.38122		31	128.64	34.62	0.36822		31	71.93	19.53	0.37271
32	106.99	38.46	0.56121		32	101.67	30.17	0.42196		32	54.35	19.59	0.563579
33	117.76	24.68	0.26515		33	124.52	29.19	0.3062		33	101.05	26.27	0.351297
34	111.2	34.85	0.45645		34	82.83	18.79	0.29341		34	67.97	16.21	0.313176
35	84.05	19.88	0.3098		35	98.49	25.28	0.34531		35	83.42	20.83	0.332801
36	132.57	31.69	0.31414		36	115.62	25.13	0.27771		36	84.18	25.5	0.43456
37	100.86	25.47	0.33784		37	112.88	24.73	0.28054		37	81.36	17.9	0.282067
38	123.44	22.11	0.2182		38	122.02	33	0.3707		38	80.34	22.33	0.384934
39	111.83	23	0.25892		39	142.11	29.15	0.25806		39	79.74	24.39	0.44065
40	116.28	31.9	0.37805		40	159.14	25.59	0.19161		40	66.9	22.28	0.499328
41	89.84	34.75	0.63079		41	108.54	31.91	0.41642		41	56.51	18.62	0.491423
42	114.82	29.4	0.34418		42	131.99	34.94	0.36002		42	102	16.31	0.190337
43	130.64	32.55	0.33184		43	103.64	22.92	0.28394		43	85.27	20.17	0.309831
44	109.78	23.11	0.26664		44	124.49	29.96	0.31694		44	120.42	18.8	0.185003
45	106.27	24.56	0.30058		45	80.09	21.84	0.37494		45	74.32	17.08	0.298393
46	128.68	31.9	0.32961		46	78.07	24.7	0.46281		46	46.77	16.63	0.551758
47	164.62	31.76	0.23905		47	125.13	30.32	0.3198		47	88.74	24.65	0.384615
48	103	19.53	0.23398		48	148.49	26.21	0.21434		48	126.28	30.96	0.324801
49	89.96	16	0.21633		49	144.53	24.88	0.20794		49	83.65	23.06	0.380591
50	67.84	14.4	0.26946		50	106.67	25.61	0.31594		50	69.98	21.93	0.4564

D63

								1				
51	132.02	34.18	0.34935	51	133.45	21.07	0.18749		51	63.75	28.49	0.807998
52	218.76	43.56	0.24863	52	157.6	26.76	0.20452		52	77.69	22.6	0.410238
53	117.34	43.37	0.58632	53	133.64	23.24	0.21051		53	86.35	21.45	0.330508
54	222.99	54.79	0.32574	54	107.41	26.94	0.33478		54	78.21	27.71	0.548713
55	143.33	29.25	0.2564	55	115.43	36.56	0.46355		55	126.2	23.94	0.234109
56	125.21	34.34	0.3779	56	89.56	35.98	0.6/152		56	82.45	24.46	0.421797
57	145.06	34.62	0.31347	57	126.73	29.01	0.29687		57	75.5	26.12	0.528959
58	113.05	31.12	0.37984	58	84.05	25.82	0.44341		58	115.52	29.35	0.340606
59	156.16	39.64	0.3402	59	129.52	22.48	0.21001		59	94.65	18.46	0.242289
60	125.42	36.02	0.40291	60	177.6	29.66	0.20049		60	70.29	21.23	0.432735
61	121.29	34.37	0.39542	61	163.96	33.39	0.25572		61	104.76	19.29	0.225693
62	143.52	26.71	0.22866	62	150.68	33.39	0.28468		62	92.01	31.82	0.528659
63	105.62	38.6	0.57595	63	161.28	31.1	0.2389		63	77.07	23.06	0.426958
64	129.66	38.61	0.42405	64	177.7	26.01	0.1/14/		64	69.05	19.66	0.398056
65	131.85	30.02	0.29481	65	223.36	28.8	0.14803		65	69.53	24.74	0.552355
66	87.78	32.23	0.5802	66	162.43	30.07	0.22/18		66	94.66	18.5	0.24291
67	94.21	36.72	0.63872	67	180.09	29.31	0.19439		67	79.06	23.64	0.426561
68	123.42	23.58	0.23618	68	113.75	37.25	0.48693		68	104.7	21.43	0.257356
69	166.41	44.43	0.36424	69	179.12	30.7	0.20685		69	100.87	31.16	0.446995
/0	164.18	35.28	0.2/3/	70	138.14	31.98	0.30124		70	102.3	17.88	0.211798
/1	156.42	37.15	0.31148	/1	147.38	19.18	0.14961		/1	67.28	24.77	0.582686
/2	128.65	33.47	0.35165	/2	134.79	29.57	0.28103		/2	151.49	26.56	0.212599
/3	122.06	33.73	0.38186	/3	63.3	25.05	0.6549		/3	84.59	24.63	0.410774
/4	100.08	25.9	0.34915	/4	147.6	24.38	0.19786		/4	83.67	16.24	0.240842
75	79.27	25.96	0.48696	/5	151.46	28.78	0.23459		/5	90.92	31.21	0.522693
76	103.66	19.34	0.22936	/6	152.75	26.16	0.20665		/6	78.13	21.06	0.369021
77	132.23	32.04	0.31979	//	90.2	25.38	0.39155		//	87.82	22.44	0.343224
78	153.73	41.83	0.37382	/8	131.86	34.72	0.35742		/8	103.43	38.13	0.58392
79	129.5	29.45	0.29435	79	94.1	21.47	0.29561		/9	87.16	27.04	0.449767
80	154.78	27.2	0.2132	80	136.57	22.21	0.19421		80	95.8	14.89	0.184032
81	128.88	35.31	0.37736	81	95.97	24.57	0.34412		81	122.88	30.96	0.336815
82	95.11	31.68	0.49945	82	144.91	27.84	0.23781		82	74.38	21.67	0.411117
83	124.45	35.91	0.40558	83	122.19	26.99	0.28351		83	78.54	21.46	0.375964
84	107.37	31.22	0.40998	84	97.09	25.93	0.36439		84	65.36	27.76	0.738298
85	123.6	29.92	0.31939	85	130.74	28.2	0.27501		85	/0.22	30.9	0.78586
86	80.65	23.99	0.4234	80	110	35.04	0.46745		86	101.31	25.95	0.344347
8/	92.33	31.76	0.52435	8/	120.32	29.8	0.32921		8/	94.94	28.51	0.429174
88	92.56	32.54	0.54215	80	92.39	23.9	0.54896		88	89.31	26.43	0.420324
89	105.13	42.72	0.05451	09	119.9	24.14	0.23209		09	69.24	18.85	0.3/4082
90	129.07	32.1	0.25282	90	123.54	27.62	0.20/95		90	89.09	25.28	0.3901/0
91	203.2	36.6	0.21969	91	115 42	20.49	0.44645		91	102.05	33.07	0.0/5331
92	128.4	23.44	0.22552	92	115.42	29.73	0.34093		92	102.05	10.27	0.359/0
93	92.19	31.91	0.52936	93 04	154.7	22.8	0.20375		93 04	55.91	/10.3	0.22//12
94	90.07	28.95	0.45152	94	150.05	32.74	0.27707		94	72.20	22.3	0.476699
95	111.11	27.93	0.535/8	92	110 4	30.83	0.22744		32	/3.38	24.58	0.203089
90	37.38	33.8/	0.0003	90 07	119.4	30.49	0.44012		90 07	57 57	14.54	0.20134/
97	95.7	35.93	0.00114	97 90	148.85	24.27	0.19401		97 90	57.52 01 1	13.20	0.299593
89	139.34	28.83	0.20088	09	120.32	24.03	0.13334		09	٥١.1 112 م	13.98	0.208284
100	124.16	23.17	0.22943	59 100	1/2 01	25.27	0.24279		100	113.42	28.96	0.342884
movenno	118 0227	29.39	0.31143	movenno	142.01	32.22	0.29347		movenno	/9.43	32.81	0.703775
ecart type	25,07464	6,139282	0.11594	 ecart type	26,09765	6.514921	0.132024		ecart type	22,80114	6.662407	0.128617
ESM	1.447685	0.354452	0.006694	ESM	1.506749	0.376139	0.007622		ESM	1.316424	0.384654	0.007426

			contour		
		ZG	cellulaire	c.noyau	RNC
	126	moyenne	82.417	29.2769	0.60458395
Son	1211	ESM	1.39433752	0.34445158	0.01896739
Sep	006	moyenne	96.1731333	28.6071333	0.48698789
	001	ESM	2.11633832	0.47345114	0.01217964
	126	moyenne	89.4788	28.1173667	0.54639915
Mara	120	ESM	1.60490445	0.30898961	0.01574796
wars	006	moyenne	98.17385	29.2801	0.53288483
	0011	ESM	3.02980933	0.51761312	0.01759254
	12h	moyenne	134.8017	31.3801	0.33216494
Dác	1211	ESM	1.92924669	0.40771737	0.00747004
Dec	00b	moyenne	120.0392	29.4914	0.35515931
	0011	ESM	1.74322606	0.33884491	0.00742382
	124	moyenne	117.4979	33.4837	0.43138725
1	120	ESM	1.49340441	0.37382636	0.00844132
Juin	00h	moyenne	118.033667	31.2137333	0.38126979
	UUN	ESM	1.44768485	0.35445163	0.00669378

Tableau 10 : les valeurs calculées de la surface cellulaire et le diamètre des noyaux de la ZGdurant les différentes saisons chez le bélier D'Man élevé dans la région d'El Meniaa.

Tableau 11: les valeurs calculées de la surface cellulaire et le diamètre des noyaux de la ZFdurant les différentes saisons chez le bélier D'Man élevé dans la région d'El Meniaa.

		ZF	C.cellule	c.noyau	RNC
	12h	moyenne	88.5944	29.0425667	0.57822603
Son	1211	ESM	1.42470962	0.30756433	0.0152022
Sep	00b	moyenne	78.9295667	25.1543667	0.58104584
	0011	ESM	C.cellulec.noyau88.594429.04256670.1.424709620.307564330.78.929566725.15436670.1.65160610.4986580.109.218327.52063330.1.379412050.338455860.101.833925.41436670.1.746978850.404288390.94.950466729.85473330.1.809060560.371524020.96.938326.254450.2.79285930.491081010.110.822330.65080.119.468829.42156670.1.506748690.376139160.	0.05678	
	12h	moyenne	109.2183	27.5206333	0.35967389
Dác	1211	ESM	1.37941205	0.33845586	0.00690524
Dec	00h	moyenne	101.8339	25.4143667	0.36277544
	0011	ESM	1.74697885	0.40428839	0.00773193
	12h	moyenne	94.9504667	29.8547333	0.53137672
Mar	12h	moyenne ESM	94.9504667 1.80906056	29.8547333 0.37152402	0.53137672 0.01364037
Mar	12h	moyenne ESM moyenne	94.9504667 1.80906056 96.9383	29.8547333 0.37152402 26.25445	0.53137672 0.01364037 0.45113868
Mar	12h 00h	moyenne ESM moyenne ESM	94.9504667 1.80906056 96.9383 2.7928593	29.8547333 0.37152402 26.25445 0.49108101	0.53137672 0.01364037 0.45113868 0.01485465
Mar	12h 00h	moyenne ESM moyenne ESM moyenne	94.9504667 1.80906056 96.9383 2.7928593 110.8223	29.8547333 0.37152402 26.25445 0.49108101 30.6508	0.53137672 0.01364037 0.45113868 0.01485465 0.40968581
Mar	12h 00h 12h	moyenne ESM moyenne ESM moyenne ESM	94.9504667 1.80906056 96.9383 2.7928593 110.8223 1.34013524	29.8547333 0.37152402 26.25445 0.49108101 30.6508 0.32456589	0.53137672 0.01364037 0.45113868 0.01485465 0.40968581 0.00771332
Mar Juin	12h 00h 12h	moyenne ESM moyenne ESM ESM moyenne	94.9504667 1.80906056 96.9383 2.7928593 110.8223 1.34013524 119.4688	29.8547333 0.37152402 26.25445 0.49108101 30.6508 0.32456589 29.4215667	0.53137672 0.01364037 0.45113868 0.01485465 0.40968581 0.00771332 0.35422445

		ZR	C.cellule	c.noyau	RNC
	12h	moyenne	69.5020333	24.1528667	0.60467596
Son	1211	ESM	1.3502607	0.44224289	0.02397212
Seh	00h	moyenne	55.125	19.4729333	0.6262766
	0011	ESM	0.99870956	e c.noyau 33 24.1528667 0 37 0.44224289 0 37 19.4729333 0 36 24.1936333 0 37 24.4936333 0 36 24.4936333 0 37 24.4936333 0 38 22.5294333 0 39 0.46431196 0 33 25.4335667 0 333 25.4335667 0 333 25.4335667 0 333 25.4335667 0 349 0.37011982 0 355 26.41775 0 366 0.4219504 0 37 29.9032333 0 38 24.7424 0 39 0.38465425 0	0.01626495
	12h	moyenne	86.7396	24.4936333	0.41944383
Dác	1211	ESM	1.30316529	0.46431196	0.01096541
Dec	00h	moyenne	83.7314	22.5294333	0.39312616
	0011	ESM	1.17856766	0.40961028	0.00898019
	12h	moyenne	82.0905333	25.4335667	0.53533221
Marc	1211	ESM	1.70235749	0.37011982	0.01493737
111015	00h	moyenne	86.89955	26.41775	0.59091307
	0011	ESM	2.92332229	0.48381147	0.02202251
	12h	moyenne	96.6902667	29.9032333	0.48519254
luin	1211	ESM	1.39288866	0.4219504	0.00984486
Juin	00h	moyenne	92.8798	24.7424	0.38501509
	0011	ESM	1.31642419	0.38465425	0.00742571

Tableau 12 : les valeurs calculées de la surface cellulaire et le diamètre des noyaux de la ZRdurant les différentes saisons chez le bélier D'Man élevé dans la région d'El Meniaa.

Tableau 13: les valeurs calculées des concentrations du cortisol plasmatique durant la saison

 d'automne

SEPTEMBR	D12	D15	D32	D38	D47	moyenne	ecart type	ESM
7h	5.69455	5.621462	9.766796	4.968921	11.74744	7.559834	3.014803	1.348261
13h	4.068554	4.617962	9.990186	4.121442	5.874283	5.734485	2.487689	1.112529
19h	4.554829	4.245681	9.572656	5.400859	5.320531	5.818911	2.155615	0.96402
1h	4.543426	4.774201	6.477664	4.9051	8.058301	5.751738	1.498299	0.67006

Tableau 14: les valeurs calculées des concentrations du cortisol plasmatique durant la saison de printemps

MARS	D1	D2	D4	D11	D14	moyenne	ecart type	ESM
7H	6.445193	8.896476	4.593454	5.223443	3.858667	5.803446	1.972392	0.882081
13H	4.78564	5.60014	5.939262	3.630498	5.26348	5.043804	0.897732	0.401478
19H	4.701294	4.955418	4.70209	4.663067	5.43257	4.890888	0.324452	0.145099
1H	5.18565	5.713084	3.885527	4.866837	5.918483	5.113916	0.803347	0.359268

Tableau15 : les valeurs calculées des concentrations du cortisol plasmatique durant la saison de la saison d'hiver

DECEMBR	D30	D31	D61	D62	D66	moyenne	ecart type	ESM
7H	3.370506	3.873291	2.751533	4.286189	3.288202	3.513944	0.525033	0.234802
13H	3.371411	2.94622	2.666297	3.081326	3.881798	3.18941	0.414004	0.185148
19H	3.314302	3.301505	3.897183	3.552755	3.706156	3.55438	0.22897	0.102398
1H	3.15121	3.215324	3.288799	4.659049	3.556697	3.574216	0.559709	0.250309

Tableau16: les valeurs calculées des concentrations du cortisol plasmatique durant la saison de la saison d'été

JUIN	D5	D18	D22	D60	D63	Moyennes	ecart type	ESM
7H	21.93706	4.022761	5.37208	6.127502	9.272449	9.346369	6.527292	2.919094
13H	5.117666	5.669897	7.484531	5.053592	11.61423	6.987983	2.474914	1.106815
19H	7.603955	3.462997	4.782491	3.193119	4.484347	4.705382	1.567609	0.701056
1H	6.645668	8.37335	5.038714	4.244703	6.246925	6.109872	1.418127	0.634206

Tableau	17: étude	statistique	(t de	student)	des	différentes	zones	du	cortex	durant	la	saison
d'automr	ne											

corty y/	moy c	moy s	p value	
	1075.672	1070.929	0.032220	
	moy C	moy S	p value	
сар х4	171.7210	216.1557	0.865803	
70 24	moy C	moy S	p value	
20 84	193.0113	200.3000	0.417231	
7E v/	moy C	moy S	p value	
26 24	553.4803	607.0030	0.281597	
	moy C	moy S	p value	
ΖΝ Χ4	246.5783	289.5933	0.031180	
	moy C	moy S	p value	

Tableau 18: étude statistique (t de student) des différentes zones du cortex durant la saison

 du printemps

corty yA	moy c	moy s	p value
cortx x4	1362.580	1326.790	0.621014
	moy C	moy S	p value
сар х4	237.6623	241.3215	0.843432
	moy C	moy S	p value
ZG X4	198.3300	225.1360	0.022231
	moy C	moy S	p value
ZF X4	853.3540	697.4225	0.040574
	moy C	moy S	p value
	308.6820	303.6095	0.814271
	moy C	moy S	p value
	1962.867	2127.451	0.059593

corty y/	moy c	moy s	p value
	1216.486	1212.341	0.941504
cap x4	moy C	moy S	p value
	283.6560	270.3453	0.606143
76 x4	moy C	moy S	p value
ZG X4	229.4023	200.0463	0.010641
	moy C	moy S	p value
ZF X4	732.8160	687.0180	0.345694
	moy C	moy S	p value
	244.9833	260.7170	0.480933
	moy C	moy S	p value
	1963.382	1828.145	0.023878

Tableau 19: étude statistique (t de student) des différentes zones du cortex durant la saison d'hiver

 Tableau 20 : étude statistique (t de student) des différentes zones du cortex durant la saison d'été

corty y/	moy c	moy s	p value
	1694.521	1559.806	0.052153
cap x4	moy C	moy S	p value
	172.3010	264.0780	0.001069
7G x4	moy C	moy S	p value
20 / .	171.1320	185.9890	0.176019
7F x4	moy C	moy S	p value
	1196.263	958.1417	0.000258
78 x4	moy C	moy S	p value
	302.0787	325.6997	0.358920
M x4	moy C	moy S	p value
	2346.482	2032.745	0.000203

ZG x100	moy C	moy S	p value
c.cellule	82.41700	96.17313	0.0000008
c.noyau	29.27690	28.60713	0.253108
RNC	0.604584	0.486988	0.0000025
ZF x100	moy C	moy S	p value
c.cellule	88.59440	78.92957	0.000011
c.noyau	29.04257	25.15437	0.0000000007
RNC	0.578226	0.581046	0.961754
ZR x100	moy C	moy S	p value
c.cellule	69.50203	55.12500	0.0000000000000000000000000000000000000
c.noyau	24.15287	19.47293	0.00000000000000000
RNC	0.604676	0.626277	0.456176

Tableau 21: étude statistique (t de student) de la surface des cellules et le diamètre des noyaux des différentes zones durant la saison d'automne

Tableau 22: étude statistique (t de student) de la surface des cellules et le diamètre des noyaux des différentes zones durant la saison de mars

ZG x100	moy C	moy S	p value
c.cellule	89.47880	98.17385	0.006132
c.noyau	28.11737	29.28010	0.040901
RNC	0.546399	0.532885	0.574409
ZF x100	ZF x100 moy C		p value
c.cellule	c.cellule 94.95047		0.532082
c.noyau	29.85473	26.25445	0.00000
RNC	0.531377	0.451139	0.000115
ZR x100	moy C	moy S	p value
c.cellule	82.09053	86.89955	0.129749
c.noyau 25.43357		26.41775	0.102289
RNC	0.535332	0.590913	0.030715

ZG x100	moy C	moy S	p value
c.cellule	134.8017	120.0392	0.00000
c.noyau	31.38010	29.49140	0.000396
RNC	0.332165	0.355159	0.029397
ZF x100	moy C	moy S	p value
c.cellule	109.2183	101.8339	0.000964
c.noyau	27.52063	25.41437	0.000073
RNC	0.359674	0.362775	0.764900
ZR x100	moy C	moy S	p value
c.cellule	86.73960	83.73140	0.087403
c.noyau	24.49363	22.52943	0.001590
RNC	0.419444	0.393126	0.063825

Tableau 23: étude statistique (t de student) de la surface des cellules et le diamètre des noyaux des différentes zones durant la saison d'hiver

Tableau 24: étude statistique (t de student) de la surface des cellules et le diamètre des noyaux des différentes zones durant la saison d'été

ZG x100	moy C	moy S	p value
c.cellule	117.4979	118.0337	0.796811
c.noyau	33.48370	31.21373	0.000012
RNC	0.431387	0.381270	0.00004
ZF x100	moy C	moy S	p value
c.cellule	110.8223	119.4688	0.000021
c.noyau	30.65080	29.42157	0.013629
RNC	0.409686	0.354224	0.0000042
ZR x100	moy C	moy S	p value
c.cellule	96.69027	92.87980	0.047245
c.noyau	29.90323	24.74240	0.00000000000000000002
RNC	0.485193	0.385015	0.000000000000003

Tableau 25: caractéristiques générales des lots de béliers de race D'Man élevé dans la région

 d'El Meniaa indiquant leur poids de la surrénale

mois	phase claire/phase sombre	animaux	poids de la surrénale
Septembre 2008	12h	D12	1.2g
		D38	0.9g
		D50	0.9g
	00h	D47	0.7g
		D32	1.2g
		D15	1g
Mars 2009	12h	D11	1.2g
		D1	1.2g
		D3	1.6g
	00h	D2	0.9g
		D4	0.8g
		D14	1.1g
Decembre 2009	12h	D6	0.9g
		D30	1.5g
		D61	1.1g
	00h	D31	1.2g
		D62	1.2g
		D66	1.2g
Juin 2009	12h	D60	1.2g
		D18	1.3g
		D5	1.1g
	00h	D65	0.9g
		D22	1.4g
		D63	1.3g

Données bibliographiques

Matériel et méthodes

Références bibliographiques

Les résultats de ce travail, portant sur l'étude de la fonction corticosurrénalienne chez le bélier d'Man adulte élevé dans la région d'El Meniaa. Nous nous sommes intéressés aux effets du cycle jour/nuit et de la saison sur : l'histologie et la morphométrie du cortex surrénalien ainsi que sur le profil du cortisol plasmatique. Nos résultats seront brièvement rappelés puis discutés comparativement aux donnés de la littérature.

Nos résultats indiquent que :

- l'épaisseur du cortex surrénalien et plus développée en phase claire qu'en phase obscure au cours des différentes saisons (automne, hiver, printemps, été);
- présentant une épaisseur maximale en été, relativement faible en automne et en printemps et très faible en hiver
- ▶ La concentration plasmatique du cortisol est élevée en été et basse en hiver.

Il parait que ces variations peuvent être entrainées par la lumière et la photopériode chez la plus part des espèces vertébrés (Woodly et al., 1973).

L'ensemble des résultats montre l'existence d'une intime relation entre l'hypertrophie du cortex surrénalien, l'épaisseur de la zone fasciculée et l'activité glucocorticoïde puisque la ZF occupe la plus grande surface du cortex et elle est responsable de la production du cortisol.

L'augmentation de l'épaisseur de la ZF est due soit à une multiplication remarquable des cellules de la ZF (hyperplasie cellulaire) ou soit à une augmentation du volume cellulaire (hypertrophie), ce qui a été déjà signalé par les travaux de **Zatra en 2008**, qui a rapporté que chez le rongeur *Gerbilustarabuli*, une hypertrophie du cortex surrénal due essentiellement à celle de la zone réticulée ainsi qu'a celle des cellules fasciculaires.

Une hypertrophie corticosurrénalienne après castration (ou repos sexuel) a été observée chez plusieurs espèces animal aussi bien sur plan pondéral que structural. Ces constatations sont rapportées chez le mouton (Canny et al., 1999), le rat (Hall et korenchevsky, 1938 ; Ito et al., 1952 ; Carter, 1979 ; Rifka et al., 1978 ; Bougrid, 1984 ; Larbi et Bouamrane, 2002) la souris sauvage (Sakiz, 1964) et transgénique (Rahmane et al., 2004 ; Johnson et al., 2006), le lapin (Chela et Meftouh, 2003), ainsi que quelques rongeurs des régions désertiques comme *Psammomysobesus* (Boudoucha, 1990 ; Gernigeon et al., 1992 ; Belhocine et gernigeon-Spychalowicz 1996 ; Benmouloud, 2003), la gerbille *Gerbilustarabuli* (Zatra, 2008)

Une autre étude récente menée par Pihlajoki (2015), montre l'existence d'une progéniture cellulaire au niveau des zones capsulaires, sous capsulaires et juxta-médullairede la surrénale, ces cellules participent au remodelage des différentes couches du cortex surrénal en réponse aux besoins physiologiques extrêmes. Ceci peut se manifesté par une régionalisation cellulaire, telle que la transformation des cellules glomérulaires en cellules fasciculaires. Cette régionalisation est sous le contrôle de nombreux facteurs endocrines (Adenocorticotropine, angiotensine II, insuline related growth hormones, LH, activine et inhibine) et paracrines (fibroblastes growth hormone, sonichedgehog (SHH), delta like hormone1, WnT/B-catenine)

Chez nos béliers d'Man, les cellules de la zone fasciculée sont volumineuses, cubiques avec un cytoplasme abondant riche en vacuoles lipidiques d'où l'aspect spumeux des cellules avec des noyaux visibles à forme ronde ou ovoïde comme trouvé chez l'Homme et le rat (**Dietert**, **1969 ; Wheater et al., 2001**).

Dans notre étude, l'existence des variations saisonnières de l'épaisseur corticosurrénalienne chez les béliers de race d'Man est caractérisée par une augmentation en été, relativement faible en printemps et très bas en automne et en hiver.

Nous avons trouvé que l'épaisseur du cortex varie en fonction de la saison en relation avec la durée du jour: elle est très développée quand la photopériode est longue (été), et plus faible quand la photopériode est courte (hiver), nos résultats sont similaires aux résultats retrouvé chez le porc (**Becker et al., 1985**) et la chèvre (**Alila-Johanasson et al., 2003**).

Nos résultats ne concorde pas à ceux de Malpaux et al.,(1996) qui rapporte que chez le bélier l'épaisseur du cortex est très importante au automne et faible en printemps.

Chez notre race d'Man, le volume cellulaire et nucléaire de la zone glomerulée, fasciculée et réticulée est très importante en été par rapport au reste des saisons, ceci peut s'expliquer par le besoin accru des cellules glomerulées en eau et électrolytes ou les conditions du milieu sont favorable, et probablement par une éventuelle activité glucocorticoïde des cellules fasciculées résultant de l'état de stress engendré par la chaleur remarquable au cour de la saison, et par une hypertrophie des cellules réticulées qui pourrait être dû à l'augmentation du volume cytoplasmique mais aussi a l'augmentation de l'activité mitotique de la zone **(Kasprzak et al., 1986).**

Mise à part la lumière et la photopériode, il existe deux autres éléments qui déterminent les rythmes saisonniers du cortex surrénalien : la latitude du biotope et l'espèce.

Au Sahara algérien, le rat des sables *Psammomysobesus* est caractérisé par une activité glucocorticoïde maximale en automne (Amirat et al., 1980 ; Amirat et Brudieux, 1993). Au niveau de la même région saharienne, le dromadaire *Camelus dromedarius* présente un rythme saisonnier de l'activité glucocorticoïde importante en été, en automne et en hiver et des valeurs plus basses au printemps (Khaldoun et al., 1999).

Dans cette 2eme partie de la discussion nous rapportons une relation entre l'épaisseur du cortex surrénalien (épaisseur de la ZF) et la concentration du cortisol plasmatique durant les différentes saisons de l'année chez le bélier d'Man adulte élevée dans la région d'El Meniaa.

D'après nos résultats, les teneurs plasmatiques retrouvées chez le bélier d'Man varient entre 3.1 et 9.3ng/ml, des valeurs nettement plus élevé (15.4ng/ml) sont retrouvées chez le bélier de race Tadmit (**Mesbah, 1978**), alors qu'elles sont nettement plus élevées (60.3 ng/ml) chez le bélier issu de croisement Romanov-Ouled Djallal(**Mesbah, 1978**).D'autres auteurs signalent des valeurs plus faibles que celles retrouvées chez le bélier d'Man: entre 0.2 et 10ng/ml, (**Mc Natty et al, 1972**) et entre 3.54 et 5.94 ng/ml (**Holley et al., 1975**) ; comparées à celles de la plupart des autres espèces, elles sont nettement plus faibles : 73.6 ng/ml chez le chevreuil (Seal et al., 1983), 9.6 à 45 ng/ml chez le dromadaire (**Ait-Iftene, 1986**) et entre 25 et 42 ng/ml chez la gazelle (**Howard et al., 1983**).

L'augmentation de la concentration du cortisol suggère que l'activité de la zone fasciculée est en relation directe, avec la lumière durant la phase claire. Ceci a été déjà signalé par les travaux de **Amokrane (2005)** qui a rapporté que la concentration des glucocorticoïdes est relativement élevé le jour et faible la nuit ces résultats sont similaires à nos résultats.

D'autres parts, nos résultats montrent, que la concentration du cortisol est très importante en saison estival dont une épaisseur importante de la ZF, faible au printemps et très faible en automne et hiver (épaisseur réduite de la ZF), ce qui explique l'interrelation entre l'augmentation de la ZF et l'élévation de la sécrétion de l'hormone. Impliquant de ce fait, l'influence de la photopériode sur l'activité glucocorticoïde. En effet chez le rongeur *Gerbilustarabuli*, les cellules de la ZF présentent une richesse en liposome avec une forme et une taille variable, présence des mitochondries à crêtes tubulaires ou tubulo-visiculaires et du réticulum endoplasmique lisse (**Idelman, 1970 ; Magalhxes, 1974 ; Tamaoki, 1973 ;**

Kobayashi, 1977 ; Munoz et al., 1997 ; Hammoum et al., 2008).Contrairement chez le Renne, les valeurs des glucocorticoïdes sont plus élevées en hiver qu'en été (**Ringberglund-Larsen et al., 1977**). chez le cerf à queue blanche (**Bubenick et al., 1975, 1983, 1984**), chez le mérion (**Bennani-Kabchi, 1988**)et chez le rat des sables (**Amirat, 1989**) ; ces variations peuvent être dues aux variations des facteurs climatiques et photopériodiques.

Il est bien établi que, en fonction des saisons, les variations de l'ensoleillement sont capables de modifier le rythme de sécrétion des glucocorticoïdes (**Cutalo et al., 2005**).