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Abstract 

      Constant False Alarm Rate (CFAR) and Order Statistic CFAR (OS CFAR) detectors 

use fuzzy logic to adjust detection thresholds in homogeneous and non-homogeneous 

environments. By using fuzzy logic in addition to the binary logic commonly used, 

these detectors dynamically adapt their thresholds according to variations in the noise, 

allowing more precise detection of targets in different contexts. In particular the fused 

fuzzy logic used in our work offers a flexible approach to model uncertainty and 

optimize detection performance, thereby reducing false alarms and improving the 

efficiency of detection systems. 

Résume 

Les détecteurs CFAR (Constant False Alarm Rate) et OS CFAR (Order Statistic 

CFAR) utilisent la logique floue pour ajuster les seuils de détection dans les 

environnements homogènes et non homogènes. En utilisant la logique floue par apport a 

la logique binaire conventuellement utilisée  , ces détecteurs adaptent dynamiquement 

leurs seuils en fonction des variations du bruit, permettant une détection plus précise des 

cibles dans différents contextes. En particulier la logique floue en fusion utilisée dans 

notre travail  offre une approche flexible pour modéliser l'incertitude et optimiser les 

performances de détection, réduisant ainsi les fausses alarmes et améliorant l'efficacité 

des systèmes de détection. 

 

 ملخص                                                                                     

( الثابتة  الكاذبة  الإنذارات  معدل  كاشفات  الطلب  CFARتستخدم  وإحصائيات   )CFAR (OS 

CFAR)    المنطق الغامض لضبط حدود الكشف في البيئات المتجانسة وغير المتجانسة. وباستخدام

المنطق الغامض بالإضافة إلى المنطق الثنائي الشائع الاستخدام، تقوم هذه الكاشفات بتكييف عتباتها  

لفة.  ديناميكيًا وفقًا للتغيرات في الضوضاء، مما يسمح باكتشاف أكثر دقة للأهداف في سياقات مخت

وعلى وجه الخصوص، يوفر المنطق الغامض المدمج المستخدم في عملنا نهجًا مرنًا لنموذج عدم  

 اليقين وتحسين أداء الكشف، وبالتالي تقليل الإنذارات الكاذبة وتحسين كفاءة أنظمة الكشف.
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GENERAL INTRODUCTION  

Radars and CFAR (Constant False Alarm Rate) detectors are widely used 

technologies in the field of target detection and tracking. Radars are devices that emit 

electromagnetic waves and analyze the reflected signals to detect objects in their 

environment. CFAR detectors, on the other hand, are signal processing algorithms used 

to distinguish targets of interest from false alarms. 

One of the approaches used in designing CFAR detectors is the use of fuzzy logic. 

Fuzzy logic is a branch of mathematics that allows for a more nuanced treatment of truth 

and falsity than traditional Boolean logic. It enables the consideration of partial degrees 

of truth, which can be beneficial in situations where data is imprecise or uncertain. 

In the context of CFAR detectors, the use of fuzzy logic allows for the modeling 

and management of uncertainty associated with radar measurements and detection 

thresholds. By using fuzzy sets to represent signal and noise information, CFAR detectors 

can dynamically adapt their detection thresholds based on environmental conditions. 

For example, in an environment where the noise level varies significantly, a CFAR 

detector using fuzzy logic can adjust its thresholds to maintain a constant false alarm rate. 

It can take into account factors such as noise level variations, target characteristics, and 

performance constraints to determine optimal thresholds. 

By utilizing fuzzy logic, CFAR detectors can provide improved performance by 

adapting their behavior to changing environmental conditions. This enables better 

detection of targets of interest while reducing false alarms 
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1.1 INTRODUCTION  

 This chapter aims to provide a comprehensive overview of the generalities of radar 

technology. It explores and delves into its underlying principles, highlights key applications 

across various domains, and discusses the crucial components that constitute a radar system. By 

gaining insights into these foundational aspects, readers will be equipped with a solid 

understanding of radar technology, paving the way for further exploration into its diverse 

applications and advanced concepts. 

 

Figure 1.1 RADAR. 

1.2 DEFINITION OF RADAR 

 Radar stands for "Radio Detection and Ranging". It is a technology that uses radio 

waves to detect and locate objects in the surrounding environment. The radar system 

sends out a radio signal, which bounces off objects in its path and returns to the radar 

system. By analyzing the characteristics of the returned signal, such as its frequency, 

amplitude, and time delay, the radar system can determine the location, speed, and other 

properties of the objects in its field of view. Radar technology is used in a wide range of 

applications, including air traffic control, weather forecasting, military surveillance, and 

navigate. 
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1.3 CLASSIFICATION OF RADAR SYSTEM  

Depending on the information they must provide, radar equipment uses different 

qualities and technologies. This results in a first classification of radar systems: 

 

                                          Figure 1.2   RADAR classification. 

1.3.1 Secondary RADAR  

Secondary radar is a radar system that operates by sending out an interrogation 

signal to a target, which responds with a coded reply containing identification and other 

information. It is commonly used in air traffic control (ATC) systems and military 

applications for enhanced target identification and tracking. The use of secondary radar 

improves the accuracy and reliability of target identification in crowded airspace. [1] 

1.3.2 Primary RADAR 

Primary radar is a radar system that operates by transmitting radio frequency signals 

and detecting the echoes reflected back from targets in its coverage area. It provides 

information on the range, bearing, and relative motion of the detected objects. Primary 

radar is commonly used in applications such as air traffic control (ATC), weather 

monitoring, and military surveillance. It is particularly useful in situations where the 

targets do not have transponders or are not actively cooperating with radar systems.[2]  

1.3.3 Pulse RADAR  

Pulse radar is a radar system that uses short-duration pulses of radio frequency 

energy to detect and locate targets. By transmitting these pulses and measuring the time 

it takes for the echo to return, pulse radar can determine the range to the target. It is widely 
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employed in various applications such as air traffic control, weather monitoring, and 

military surveillance. [3] 

1.3.4 Continuous wave (CW) RADAR 

Continuous wave (CW) radar is a type of radar system that transmits a continuous, 

uninterrupted signal and measures the phase shift of the reflected signal to determine the 

range and velocity of the target. According to Skolnik (2008), CW radar is commonly 

used for applications that require high accuracy velocity measurements, such as speed 

guns and Doppler radar systems. One of the advantages of CW radar is its simplicity and 

reliability, but it is also susceptible to interference from other sources of radio frequency 

energy. This can limit the effectiveness of CW radar in certain environments, such as 

urban areas with high levels of electromagnetic interference. Despite its limitations, CW 

radar remains an important technology in many fields, including military and civilian 

applications. [4] 

1.3.5 Types of radar  

Radar technology has evolved over the years, and there are now many types of radar 

systems used for a variety of applications. According to Stimson (2015), some of the most 

common types of radar include pulse radar, continuous wave (CW) radar, frequency 

modulated (FM) radar, and Doppler radar. Pulse radar is used for applications that require 

high range resolution, such as weather radar and air traffic control radar systems. CW 

radar is used for applications that require high accuracy velocity measurements, such as 

speed guns and Doppler radar systems. FM radar is used for applications that require high 

target discrimination, such as radar altimeters and ground-penetrating radar systems. 

Doppler radar is used for applications that require the detection of moving targets, such 

as weather radar and air traffic control radar systems. The choice of which type of radar 

to use depends on the specific application and the desired performance characteristics. [5] 

1.4 RADAR COMPONENTS 

Radar systems consist of several key components, including a transmitter, a 

receiver, an antenna, and a signal processor, In addition to these basic components, 

modern radar systems may also include complex digital signal processing algorithms, 

data storage systems, and other advanced features. Another way to categorize radar 

systems is by the number of radar channels they use, Single-channel radar systems use a 
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single transmitter and receiver, while multi-channel radar systems use multiple 

transmitters and receivers to improve performance. Multi-channel radar systems can 

provide improved sensitivity, range, and resolution, but they are also more complex and 

expensive to build and operate. The choice of which type of radar system to use depends 

on the specific application and the desired performance characteristics. [6] 

 

Figure 1.3 The RADAR components. 

1.5 THE PRINCIPLE OF RADAR OPERATION 

Radar operates by transmitting a radio frequency (RF) signal from an antenna and 

then listening for the echoes that bounce back from objects in the environment. The time 

delay between the transmission and reception of the echoes is used to calculate the 

distance to the object, while the Doppler shift of the echoes is used to calculate its 

velocity, the basic principle of radar operation is based on the reflection and scattering of 

electromagnetic waves by objects in their path. By measuring the time delay and 

frequency shift of the reflected waves, radar systems can provide information about the 

location, distance, speed, and other characteristics of objects in the environment. This 

principle has been applied in a wide range of applications, from air traffic control and 

weather monitoring to military surveillance and scientific research.  [7] 
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Figure 1.4 The principle of RADAR operation. 

 

1.6 The Doppler Shift 

The Doppler shift, also known as the Doppler Effect, is a phenomenon observed 

in waves, including radio waves used in radar. It occurs when there is relative motion 

between the wave source and the observer, causing a change in the frequency or 

wavelength of the wave observed by the observer. In radar applications, the Doppler 

shift is used to measure the relative velocity between the radar system and a target, 

another way to describe the Doppler shift in radar is as a frequency change that results 

from the motion of a target relative to the radar antenna. If the target is moving towards 

the radar, the frequency of the reflected signal will be higher than the frequency of the 

transmitted signal, while if the target is moving away from the radar, the frequency of 

the reflected signal will be lower. By measuring the Doppler shift, radar systems can 

determine the velocity and direction of moving targets, which is useful for applications 

such as air traffic control, weather monitoring, and military surveillance. [8]  

The general form of the Doppler shift equation is as follows: 

𝑓
𝑑=

𝑣𝑟
𝜆

                                 (1.1)
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Figure 1.5 Radial speed 𝐕𝐫 

1.7   RADAR EQUATIONS  

1.7.1 Radar range equation 

This equation is used to calculate the maximum range of a radar system, based on 

the transmitted power, the antenna gain, the radar cross section of the target, and the 

noise figure of the receiver. The radar maximum range equation is: 

𝑅𝑚𝑎𝑥 = √
𝑃𝐶 𝐺2𝜆2𝜎

(4𝜋)3𝑆𝑚𝑖𝑛

4
                    (1.2) 

Where: 

• 𝑅𝑚𝑎𝑥 = maximum range. 

• λ = wavelength of the transmitted signal. 

• σ = radar cross section of the target. 

• G=antenna gain. 

• 𝑆𝑚𝑖𝑛 = minimum power. 

1.7.2 Doppler Radar equation 

This equation is used to calculate the Doppler shift of a radar signal, based on the 

velocity of the target and the frequency of the transmitted signal. The basic form of the 

Doppler radar equation is: 

 𝛥𝑓 =  (
2𝑣

𝑐
) × 𝑓0                  (1.3) 
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Where: 

    𝛥𝑓 = Doppler shift 

    v = velocity of the target 

    c = speed of light 

   𝑓0 = frequency of the transmitted signal [16] 

1.8 THE ELECTROMAGNETIC WAVES  

Electromagnetic waves are a fundamental aspect of electromagnetism, which is a 

branch of physics that deals with the interactions between electric and magnetic fields.  

These waves are composed of oscillating electric and magnetic fields that 

propagate through space, carrying energy and momentum. They arise from the 

acceleration or change in velocity of electric charges, which disturbs the surrounding 

electric and magnetic fields, leading to wave formation 

Electromagnetic waves can travel through a vacuum as well as through various 

materials. They are not dependent on a medium for propagation, unlike mechanical 

waves like sound waves.  

Electromagnetic waves find applications in various fields, such as medicine (e.g., 

X-rays and MRI imaging), astronomy (e.g., studying celestial objects using different 

wavelengths), remote sensing, spectroscopy, and scientific research.  

 

Figure 1.6 The electromagnetic waves. 

 



Chapter I:         Generality of radar  

 
10 

𝑬:⃗⃗  ⃗Electric field. 

𝑩:⃗⃗⃗⃗  Magnetic field. 

1.9 CLUTTER AND NOISE 

Clutter and noise are two major sources of interference in radar signals that can 

affect the accuracy and reliability of radar measurements. Clutter refers to the unwanted 

signals that are reflected from stationary or slow-moving objects in the environment, such 

as buildings, mountains, and clutter on the ground. Noise, on the other hand, refers to any 

unwanted signals that are not related to the target being detected, such as thermal noise 

generated by the receiver electronics and atmospheric noise. To mitigate the effects of 

clutter and noise, radar engineers use a variety of techniques, including advanced signal 

processing algorithms, multiple-input multiple-output (MIMO) radar systems, and digital 

signal processing techniques such as averaging and filtering. These techniques are 

constantly evolving as radar technology continues to advance, and they are essential tools 

for researchers, engineers, and technicians working in the field of radar technology. 

1.9.1 Clutter definition  

Clutter in radar technology refers to the unwanted echoes or reflections of radar 

signals that originate from stationary or slow-moving objects in the environment, and are 

received by the radar system along with the echoes from the desired targets. These echoes 

can cause interference and produce a large amount of noise in the radar signal, which can 

make it difficult to detect and measure the signals from moving targets such as aircraft or 

ships. The presence of clutter in the radar signal can reduce the accuracy and reliability 

of the radar measurements, and is a significant challenge in radar technology.  [9] 

1.9.1.1 Non-homogeneous Clutter  

When the reference cells scans the environment in a given direction, different non 

homogeneous situations can affect the configuration of the cells of reference. These 

situations are caused by the presence of interfering targets (targets secondary) and/or 

clutter edge at the reference channel. A clutter edge is characterized by the presence, at 

the level of the cell of reference, of an abrupt transition in the power of the background 

noise. In detection radar, this transition describes the limit between two environments of 

different nature: transition land-sea, clear-cloud zone. . . 
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We will be representing different situations of non-homogeneous environments in the 

next illustrations : 

 

Figure 1.7 cell under test embedded in the clutter region 

 

Figure1.8 cell under test drowned in thermal noise. 
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Figure1.9 Presence of clutter edge and interfering targets. 

The use of the CA-CFAR detector in situations similar to those of the 3 figures 

leads to a large loss of detection or an increase in the rate of false alarm. In the case where 

the cell under test is immersed in clutter (fig 1.7), the cells drowned in thermal noise 

contribute to underestimating the detection threshold, which results in an excessive false 

alarm probability (Pfa). In (1.8) the cell under test being in the thermal noise, the cells 

belonging to the clutter tend to increase the detection threshold and, consequently, to 

degrade the probability of detection. This particular situation is known as the "effect of 

mask” (masking effect). The capture effect, on the other hand, is obtained in the presence 

interference in a homogeneous (uniform) clutter, when these contribute to increasing the 

detection threshold. 

1.9.1.2 Clutter Stats Properties  

Maintaining a constant Pfa at a CFAR detector requires the prior knowledge of the 

statistical distribution of the clutter echoes, at the exit of the quadratic detector or the 

envelope detector. This probability density (Pdf) depends on the nature of the clutter 

(land, sea, precipitation, clouds) as well as the resolution and angular aperture of the radar 

used. In low-resolution radars, the fluctuations of clutter echoes are described by 

independent random reflections, having the same order of magnitude. This classical 

modeling leads to consider that the signal received at the input of the detector quadratic 

is a Gaussian process with zero mean and constant variance µ constant (for a uniform 
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region). In linear detection, the envelope signal x, measured at level of cell i, follows a 

Rayleigh distribution  

𝑓𝑥𝑖(𝑥) = (2.
𝑥

𝜇
) . 𝑒𝑥𝑝 (−

𝑥2

𝜇
) , 𝑥 ≥ 0                              (1.4) 

 

 In quadratic detection, the signal x at the level of cell i obeys an exponential law as : 

                                       𝑓𝑥𝑖(𝑥) = (
1

𝜇
) . exp (−

𝑥

𝜇
) , 𝑥 ≥ 0                  (1.5) 

If, at the output of the quadratic detector, the video signal undergoes a non-

integration coherent of M pulses, the amplitudes of the reference cells will be described 

by a Gamma distribution. Indeed, the Pdf of the sum of M processes independent and 

exponential, follows a Gamma law with parameters (µ,M): 

𝑓𝑥𝑖(𝑥) =
𝑥𝑀−1exp (−

𝑥
𝜇)

Γ(𝑀)𝜇𝑀
 , 𝑥 ≥ 0                       (1.6) 

 

Where Γ(M) represents the usual Gamma function: Γ(M)=(M-1)! . It is easy to see 

that for a single-pulse treatment (M=1) the distribution (1.5) coincides with the 

exponential law. 

1.9.1.3 Target Models  

The echo received is linked to the reflective power of the target. In low resolution, 

both classic moving target models are defined by   

a. The target is considered as a set of elementary reflectors of same sizes. The 

envelope x of the reflected signal follows a Rayleigh law.  

𝑓(𝑥) =
𝑥

𝑥0
2 𝑒𝑥𝑝 (−

𝑥2

2𝑥0
2)                          (1.7) 

𝑥0 being the mean value of the signal related to the radar cross section (RCS). 

b. The target is seen as a large reflector surrounded by several small reflectors. 

The envelope of the received signal fluctuates according to the law: 
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                                        𝑓(𝑥) =
9𝑥3

2𝑥0
4 𝑒𝑥𝑝 (−

3𝑥2

2𝑥0
)                       (1.8) 

To study the target signal in the case of several pulses (noncoherent ), it is necessary to 

take into account the movements of the target during the exposure time 𝑇𝑜𝑡   

Two types of fluctuation are considered:  

a. Slowly fluctuating target: the target echo does not change during the emission of 

M pulses (𝑇𝑜𝑡 ). Therefore, the samples received are the same for all impulses; it 

is a single realization of the same random variable (complete correlation from one 

pulse to another). 

b.  Rapidly fluctuating target: The echo changes in value from one pulse to the next. 

The received samples are different realizations of the same random variable (de-

full pulse-to-pulse correlation). [15] 

1.9.2Noise definition  

Noise in radar technology is defined as any unwanted signal that is not related to 

the target being detected, and can include electronic noise, atmospheric noise, and 

interference from other sources. In radar systems, noise can reduce the signal-to-noise 

ratio (SNR), which is a measure of the strength of the desired signal relative to the level 

of the unwanted noise. A low SNR can make it difficult to detect weak signals from 

distant or low-reflectivity targets, and can therefore reduce the accuracy and reliability of 

the radar measurements. To minimize the effects of noise, radar engineers use a variety 

of techniques, including the use of low-noise amplifiers and high-performance analog-to-

digital converters, as well as digital signal processing techniques such as averaging and 

filtering. [10] 

1.10   DEFINITION OF DISTANCE AMBIGUITY  

Range ambiguity in radar technology refers to the inability of a radar system to 

distinguish between two or more targets that are located at different ranges but are at the 

same angle relative to the radar. This can occur when the pulse repetition frequency (PRF) 

of the radar is too low, causing the transmitted pulses to overlap in time and the returned 

echoes to be ambiguous in range. The ambiguity can result in errors in the measurement 

of target range, as the radar system may report the range of the incorrect target. To 
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overcome range ambiguity, radar engineers use a variety of techniques, such as increasing 

the PRF, using pulse compression, or using multiple frequencies. [11] 

 

Figure 1.10 Illustration of distance ambiguity. 

1.11 THE MODEL OF FLUCTUATING TARGETS  

In a radar system, the model of fluctuating targets typically refers to the 

representation of radar returns from moving targets that exhibit variations over time due 

to factors such as motion, clutter, and environmental conditions. The modeling of 

fluctuating targets in radar systems is crucial for signal processing, target tracking, and 

detection algorithms. One commonly used model for fluctuating targets in radar systems 

is the Swerling models. These models were developed by Peter Swerling in the 1950s and 

are widely used to characterize the statistical behavior of radar returns from fluctuating 

targets. Swerling models assume different fluctuation patterns based on the target type 

and radar cross-section (RCS) characteristics. 

From the distributions (1.6) and (1.7) as well as the degrees of fluctuation, the four 

SWERLING models are defined as follows: 

1.11.1 SWERLING I (SWI) Slowly fluctuating target whose signal envelope varies 

according to the law (1.6). 

 

Figure1.11 fluctuation pattern pulses Swerling2 



Chapter I:         Generality of radar  

 
16 

1.11.2 SWERLING II (SWII) Rapidly fluctuating target whose signal envelope varies 

according to the law (1.6) 

 

Figure1.12 fluctuation pattern pulses Swerling II 

 

1.11.3 SWERLING III (SWIII) Slowly fluctuating target whose signal envelope varies 

according to the law (1.7). 

 

Figure1.13 fluctuation pattern pulses Swerling III 

 

1.11.4 SWERLING IV (SWIV) Rapidly fluctuating target whose signal envelope 

varies according to the law (1.7). 

 

Figure1.14 fluctuation pattern pulses Swerling IV 

 

The Swerling model is used to predict the probability distribution of the signal-to-

noise ratio (SNR) of radar signals reflected from targets of different types. This is 

important for designing radar systems that can effectively detect and track targets of 

different sizes and types, and for optimizing the performance of radar systems in 

different environments.  [12] 
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1.12 THE TYPICAL PHASES OF RADAR SIGNAL PROCESSING 

Radar signal processing is a crucial aspect of radar systems that involves various 

techniques and algorithms to extract valuable information from received radar signals. 

Here are the key phases of radar signal processing along with references for further 

exploration: 

1.12.1 Signal Transmission: The radar system emits electromagnetic signals, such as 

pulses or continuous waveforms, to illuminate the target area. 

1.12.2 Signal Reception: The radar receiver captures the echoes reflected by targets in 

the environment. 

1.12.3 Signal Preprocessing: This phase involves techniques such as filtering, 

sampling, and amplification to enhance the quality of the received signal. 

1.12.4 Pulse Compression: Pulse compression techniques, such as matched filtering or 

pulse compression codes, are employed to improve the radar's range resolution and 

detection capabilities. 

1.12.5 Doppler Processing: Doppler processing is used to measure the velocity of 

moving targets.  

1.12.6 Target Detection: Various algorithms, including constant false alarm rate 

(CFAR) detection and adaptive thresholding, are employed to identify targets against 

background clutter and noise. [14] 
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 CONCLUSION  

In conclusion, radar technology has revolutionized many fields and continues to 

play a vital role in modern society. By using radio waves to detect and locate objects in 

the surrounding environment, radar systems have enabled advances in fields such as air 

traffic control, weather forecasting, military surveillance, and navigation. The study of 

radar targets and their behavior is essential for developing effective radar technology for 

a wide range of applications. Overall, radar is a crucial technology that has transformed 

the way we understand and interact with the world around us. 
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2.1 INTRODUCTION 

Detection theory plays a critical role in radar systems by providing the principles 

and tools necessary for detecting and extracting valuable information from radar signals. 

By using mathematical and statistical methods, detection theory allows for the analysis 

of radar signals to detect the presence of targets, estimate their characteristics, and make 

appropriate decisions. 

The main objective of detection theory in radar systems is to separate useful signals 

from unwanted signals or noise. Radar signals can be weakened by various sources of 

noise, such as thermal noise, receiver noise, electromagnetic interference, and more. 

Detection theory provides algorithms and techniques to analyze the signals and detect 

targets in noisy and uncertain conditions. 

In radar systems, detection theory often relies on statistical hypothesis testing. It 

compares observed data with reference models to decide whether a target is present or 

not. Measurements such as signal energy, correlation, coherence, or signal-to-noise ratio 

are used to assess the presence of targets. 

Detection theory also allows for optimizing the performance of radar systems by 

determining appropriate detection thresholds and adjusting system parameters. It takes 

into account factors such as probability of detection, probability of false alarm, system 

sensitivity, and operational constraints to find the right balance between target detection 

and managing false alarms. [17] 

2.2 DEFINITION OF RADAR DETECTION  

Radar detection, also known as radar sensing, is a technology used to detect and 

track objects using radio waves. It employs the principle of sending out radio waves and 

then measuring the time it takes for those waves to bounce back after hitting an object. 

This information is used to determine the distance, speed, and direction of the detected 

object. Radar detection finds extensive applications in various fields, including aviation, 

maritime navigation, weather forecasting, and traffic control. It plays a crucial role in 

providing accurate and real-time information for effective monitoring and decision-

making.  
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Figure 2.1 Radar detection  

 

2.3   RADAR DETECTION THEORY 

The theory of radar detection refers to the principles and techniques involved in 

detecting the presence and characteristics of objects using radar technology. Radar, which 

stands for "Radio Detection and Ranging," is a system that uses electromagnetic waves 

to detect, locate, and track objects such as aircraft, ships, vehicles, or weather phenomena. 

The basic principle of radar detection involves transmitting a radio signal, known as a 

radar pulse, and then measuring the time it takes for the signal to bounce back after hitting 

an object. By analyzing the properties of the returned signal, such as its time delay, 

frequency shift, and amplitude, it is possible to determine the presence, distance, velocity, 

and other characteristics of the object. 

Detection is the operation which consists in making a decision on the existence or 

not of targets in the search space. The basic principle of target detection is based on the 

use of a comparison threshold to extract information from the received signal and to 

distinguish a fluctuation due to noise from that due to a useful signal [10].  

• If the useful signal exceeds the threshold, the target is detected. 

• If the noise exceeds the threshold in the absence of the echo signal, it is said to be 

a false alarm l a probability of false alarm is inversely proportional to the detection 

threshold. So if the threshold is too high, targets may not be detected, and if it is too low 

the probability alarm rate increases as shown in the figure (2.2) : 
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Figure 2.2 Basic functions of a radar detection system. 

2.3 DECISION CRETERION  

A decision criterion is a rule or principle used to evaluate different options or 

alternatives when making a decision. It provides a systematic framework for comparing 

and selecting the most suitable choice based on specific criteria or objectives. We suppose 

the receiver must make a decision based on a single observation of the received signal. 

The interval of values taken by the random variable Y constitutes the space observations 

Z. The latter is partitioned into two regions 𝑍0 and  𝑍1, as that if Y is in 𝑍0, the receiver 

decides in favor of 𝐻0; by against, if Y is in 𝑍1, the receiver decides in favor of 𝐻1.[15] 

The observation space is the union of 𝑍0 and  𝑍1. In other words: 

𝑍 = 𝑍0⋃𝑍1            (2.1) 

 2.3.1 THE BAYES CRITERION  

The use of the Bayes criterion suggests the use of two assumptions. In the first, we 

assume that the exit probabilities of the source are known. These are the prior probabilities 

𝑃(𝐻0)and𝑃(𝐻1). 𝑃(𝐻0)is the probability of the occurrence of the hypothesis 𝐻0, while 

𝑃(𝐻1) is the probability of the occurrence of hypothesis𝐻0. By denoting, respectively, by 
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𝑃0 and 𝑃1 the prior probabilities 𝑃(𝐻0) and 𝑃(𝐻1)and knowing that either hypothesis 

𝐻0or 𝐻1 is always true,  we can write: 

𝑃0 + 𝑃1 = 1         (2.2) 

In the second, we assume that we know the costs associated with each decision. If 

we denote by 𝐷𝑖 , 𝑖 = 0,1, where 𝐷0 denotes "Decide 𝐻0" and 𝐷1denote "Decide 𝐻1," we 

defne 𝐶𝑖𝑗 , i=0,1, as the cost associated with the decision 𝐷𝑖 , knowing that the hypothesis 

𝐻𝑗is true. In other words, P(incurring the cost 𝐶𝑖𝑗 )= P(deciding 𝐷𝑖 , 𝐻𝑗 true), i, j=0.1 

Therefore, the costs for this hypothesis testing problem binary are 𝐶00 for case (1), 𝐶01 

for case (2), 𝐶10 for case (3), and 𝐶11 for case (4). The purpose of the Bayes criterion is 

to determine the rule decision such as the average cost, E[C] also called risk, R is 

minimum. E[C] denotes the “Average Value” operator. We also assume that the cost of a 

wrong decision is greater than that of a wrong decision correct; that's to say: 

𝐶01 > 𝐶11 and  𝐶10 > 𝐶00                      (2.3) 

Given P(𝐷𝑖 ,𝐻𝑗) , the joint probability of deciding Di, knowing that the hypothesis 

Hj is true, the average cost is written: 

𝑅 = 𝐸[𝐶] = 𝐶00𝑃(𝐷0, 𝐻0) + 𝐶01𝑃(𝐷0, 𝐻1) + 𝐶10𝑃(𝐷1, 𝐻0) + 𝐶11𝑃(𝐷1, 𝐻1)     (2.4) 

From Bayes rule we can write:  

𝑃(𝐷𝑖, 𝐻𝑗) = 𝑃(𝐷𝑖|𝐻𝑗)𝑃(𝐻𝑗)                         (2.5) 

 

I=0,1 and j=0,1 

 

The conditional density functions P(𝐷𝑖 |𝐻𝑗), i, j = 0.1, as a function of the regions 

𝑍0 and 𝑍1are then: 

𝑃(𝐷0, 𝐻0) ≡ 𝑃( 𝐷𝑒𝑐𝑖𝑑𝑒𝐻0|𝐻0𝑡𝑟𝑢𝑒) = ∫ 𝑓𝑦|𝐻0
(𝑦|𝐻0) 𝑑𝑦                (2.6)

𝑧0

 

𝑃(𝐷0, 𝐻1) ≡ 𝑃( 𝐷𝑒𝑐𝑖𝑑𝑒𝐻0|𝐻1𝑡𝑟𝑢𝑒) = ∫ 𝑓𝑦|𝐻1
(𝑦|𝐻1) 𝑑𝑦             (2.7)

𝑧0
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𝑃(𝐷1, 𝐻0) ≡ 𝑃( 𝐷𝑒𝑐𝑖𝑑𝑒𝐻1|𝐻0𝑡𝑟𝑢𝑒) = ∫ 𝑓𝑦|𝐻0
(𝑦|𝐻0) 𝑑𝑦             (2.8)

𝑧0

 

And  

 

𝑃(𝐷1, 𝐻1) ≡ 𝑃( 𝐷𝑒𝑐𝑖𝑑𝑒𝐻1|𝐻1𝑡𝑟𝑢𝑒) = ∫ 𝑓𝑦|𝐻1
(𝑦|𝐻1) 𝑑𝑦                  (2.9)

𝑧0

 

In radar terminology, the probabilities P( 𝐷0 | 𝐻0), P( 𝐷0 | 𝐻1),  P( 𝐷1 | 𝐻0), and P( 

𝐷1 | 𝐻1), represent the probability of null 𝑃𝑁𝑢𝑙𝑙 , of non detection (probability of miss) 

𝑃𝑀 , false alarm (probability of false alarm) 𝑃𝐹, and of detection (probability of 

detection) 𝑃𝐷 , respectively. We also notice that: 

                            𝑃𝑀 = 1 − 𝑃𝐷        (2.10) 

And                                   𝑃𝑁𝑢𝑙𝑙 = 1 − 𝑃𝐹              (2.11) 

Therefore, the probability of a correct decision is: 

           P(right decision) = P( c ) =  P(𝐷0, 𝐻0) + 𝑃(𝐷1, 𝐻1) 

                                                               = 𝑃(𝐷0|𝐻0)𝑃(𝐻0) + 𝑃(𝐷1|𝐻1)𝑃(𝐻1) 

                                                               = (1 − 𝑃𝐹)𝑃0 +

𝑃𝐷                                          (2.12) 

and the probability of an erroneous decision or probability of error is:   

                                   𝑃(𝑊𝑟𝑜𝑛𝑔 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛) = 𝑃(𝜀) = 𝑃(𝐷0, 𝐻1) + 𝑃(𝐷1, 𝐻0) 

                                            = (𝐷0|𝐻1)𝑃(𝐻1) + (𝐷1 ∖ 𝐻0)    

                                                                  = 𝑃𝑀𝑃1 + 𝑃𝐹𝑃0                                        (2.13) 

 

The average cost given by (2.4) then becomes: 

R=E[𝐶] = 𝑐00(1 − 𝑃𝐹)𝑃0 + 𝑐01(1 − 𝑃𝐷)𝑃1 + 𝐶10𝑃𝐹𝑃0 + 𝐶11𝑃𝐷𝑃1                   (2.14) 

In terms of the decision regions defined in (2.6)-(2.9), the average cost can take the 

form: 
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          𝑅 = 𝑃0𝐶00 ∫ 𝑓𝑦|𝐻0
(𝑦|𝐻0) 𝑑𝑦 +

𝑍0

𝑃1𝐶01 ∫ 𝑓𝑦|𝐻0
(𝑦|𝐻1) 𝑑𝑦

𝑍0

+ 𝑃0𝐶10 ∫ 𝑓𝑦|𝐻0
(𝑦|𝐻0) 𝑑𝑦 +

𝑍1

𝑃1𝐶11 ∫ 𝑓𝑦|𝐻1
(𝑦|𝐻1) 𝑑𝑦            (2.15)

𝑍1

 

 

Using (2.1) and the fact that: 

∫ 𝑓𝑦|𝐻0
(𝑦|𝐻0) 𝑑𝑦 = ∫ 𝑓𝑦|𝐻1

(𝑦|𝐻1) 𝑑𝑦 = 1
𝑍𝑍

                 (2.16) 

 

this implies that: 

∫ 𝑓𝑦|𝐻𝑗
(𝑦|𝐻𝑗) 𝑑𝑦 = 1 − ∫ 𝑓𝑦|𝐻𝑗

(𝑦|𝐻𝑗) 𝑑𝑦 , 𝑗 = 0,1           
𝑍0𝑍1

(2.17) 

                                 

where 𝑓𝑦|𝐻𝑗
(𝑦|𝐻𝑗) , j = 0.1, is the probability density function of Y corresponding to 

each hypothesis. Substituting (2.17) into (2.15), we get: 

                        𝑅 = 𝑃0𝐶10 + 𝑃1𝐶11

+ ∫ {[𝑃1(𝐶01−𝐶11)𝑓𝑦|𝐻1
(𝑦|𝐻1)]

𝑍0

− [𝑃0(𝐶10 − 𝐶00)𝑓𝑦|𝐻0
(𝑦|𝐻0)]} 𝑑𝑦                            (2.18) 

We notice that the quantity 𝑃0𝐶10 + 𝑃1𝐶11is a positive constant. Of (2.3), the terms 

𝑃1(𝐶01 − 𝐶11) fy | H1
(y | H1) and 𝑃0(𝐶10 − 𝐶00) fy | H0

(y | H0), are both positive. 

Therefore, the risk is minimized by selecting the region 𝑍0including only values of Y for 

which the second term is greater than the first term. So this then gives an integrand 

negative. Specifically, we assign the 𝑍0 region the points for which : 

𝑃1(𝐶01−𝐶11)𝑓𝑦|𝐻1
(𝑦|𝐻1) < 𝑃0(𝐶10 − 𝐶00)𝑓𝑦|𝐻0

(𝑦|𝐻0)                     (2.19) 

All values of Y for which the second term is less than the former are excluded 

from𝑍0 and assigned to 𝑍1 .  The values for which the two terms are equal do not affect 

the risk and can be assigned to one or the other region. Therefore, we say that whether: 

                        𝑃1(𝐶01−𝐶11)𝑓𝑦|𝐻1
(𝑦|𝐻1) > 𝑃0(𝐶10 − 𝐶00)𝑓𝑦|𝐻0

(𝑦|𝐻0)                        (2.20) 
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then, we decide 𝐻1. Otherwise, we decide 𝐻0. So the rule of decision that results from 

the Bayes criterion (Likelihood Ratio Test or LRT) is: 

                                                            𝐻1 

   𝑓𝑦|𝐻1
(𝑦|𝐻1)

𝑓𝑦|𝐻0(𝑦|𝐻0)
≶

𝑃0(𝐶10−𝐶00)

𝑃1(𝐶01−𝐶11)
                         (2.21) 

                                                            𝐻0 

We define the likelihood ratio (LR) as: 

Λ(𝑦) =
𝑓𝑦|𝐻1

(𝑦|𝐻1)

𝑓𝑦|𝐻0
(𝑦|𝐻0)

                          (2.22) 

and the threshold as: 

𝜂 =
𝑃0(𝐶10 − 𝐶00)

𝑃1(𝐶01−𝐶11)
                           (2.23) 

If we have K observations where K denotes the number of samples 

𝑦1, 𝑦2, …… . . 𝑦𝐾 of the received signal, the likelihood ratio can be expressed as 

following: 

Λ(𝑌) =
𝑓𝑌|𝐻1

(𝑌|𝐻1)

𝑓𝑌|𝐻0
(𝑌|𝐻0)

                                (2.24) 

 

where Y is the received vector 𝑌𝑇 = [𝑌1 𝑌2    …  𝑌𝐾]𝑇  The likelihood statistic 

Λ(Y) is a random variable because it is a function of the random variable Y. Therefore, 

the Bayes criterion which minimizes the average cost leads to the likelihood ratio test 

following: 

          𝐻1 

                                                                𝛬(𝑌) ≶ 𝜂                                    (2.25) 

           𝐻0 

An important remark is related to the fact that the test of the ratio of likelihood is 

simply performed by considering the received vector to get the likelihood ratio so it can 

be compared threshold. Therefore, in real situations where the probabilities a priori and 
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the cost can change, it is the threshold that changes only while the calculation of the 

likelihood ratio is not affected. 

Since the natural logarithm is a strictly monotone function increasing, a decision 

rule equivalent to (2.25) is: 

𝐻1
 

                                                                   ln 𝛬(𝑌) ≶ ln 𝜂                                (2.26) 

𝐻0 

 

If we choose the cost of an erroneous decision equal to 1 and that of a correct 

decision equal to 0, then: 

𝐶01 = 𝐶10 = 1       and          𝐶00 = 𝐶11 = 0                                                        

  

(2.27) 

The risk given by (14) becomes: 

                                                    𝑅 = 𝑃𝑀𝑃1 + 𝑃𝐹𝑃0

= 𝑃(𝜀)                                                         (2.28) 

That is, in this case, minimizing the average cost is equivalent to minimize the 

probability of error. Such receptors are called receivers (with minimum probability of 

error receivers) 

The threshold given by (2.23) is reduced to: 

𝜂 =
𝑃0

𝑃1
                           (2.29) 

If, moreover, the prior probabilities are equal, η is equal to one and the logarithm of the 

threshold becomes zero.[18] 
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2.3.2 THE NEYMAN-PEARSON CRITERION 

In several other applications such as radar detection, it is difficult to assign 

realistic costs and a priori probabilities so that we can use the Bayes criterion in 

situations where it is not possible to know the probabilities a priori. In such cases, we 

use the conditional probabilities PF and PD. The Neyman-Pearson (N-P) test sets the 𝑃𝐹 

to a value α and maximizes the𝑃𝐷. As 𝑃𝑀=1-𝑃𝐷; maximizing 𝑃𝐷is equivalent to 

minimizing 𝑃𝑀. To do this, we form the objective function J such that: 

                               𝐽 = 𝑃𝑀 + 𝜆(𝑃𝐹 − 𝛼)                                                      (2.30) 

where 𝜆(𝜆 ≥ 0)denotes the Lagrange multiplier. Given the space observation Z, there 

are several decision regions 𝑍1 for which 𝑃𝐹=∝. The problem is to determine among 

these regions those which guarantee a minimum 𝑃𝑀. For this, let us write J as a function 

of the regions decision: 

𝐽 = ∫ fy|H1
(y|H1) dy + λ [∫ fy|H0

(y|H0) dy − α
Z1

]
Z0

                              (2.31) 

Using (2.17), (2.31) can be put in the form 

                       𝐽 = ∫ 𝑓𝑦|𝐻1
(𝑦|𝐻1) 𝑑𝑦 + 𝜆 [1 − ∫ 𝑓𝑦|𝐻0

(𝑦|𝐻0) 𝑑𝑦 − 𝛼
𝑍0

]
𝑍0

  

          = 𝜆(1 − 𝛼) + ∫ 𝑓𝑌|𝐻1
(𝑌|𝐻1) − 𝜆𝑓𝑌|𝐻0

(𝑌|𝐻0) 𝑑𝑦
𝑍0

              (2.32) 

 

Consequently, values that minimize J are assigned to the region of decision 𝑍0, 

guaranteeing fy | H1
(y | H1)   fy | H0

(y | H0). The decision rule is then given by: 

                                𝐻1 

                 𝛬(𝑦) =
𝑓𝑦|𝐻1

(𝑦|𝐻1)

𝑓𝑦|𝐻0
(𝑦|𝐻0)

≶ 𝜆                          (2.33) 

                               𝐻0 

 

The threshold η, derived from the Bayes criterion is equivalent to 𝜆, the Lagrange 

multiplier in the Neyman-Pearson test which sets 𝑃𝐹 to ∝ . If we defne fΛ | H0
(y | H0) the 
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probability density function of Λ knowing that 𝐻0 is true, then 𝑃𝐹 =∝ can be rewritten 

as follows: 

                                     𝑃𝐹 = ∫ 𝑓𝑌|𝐻0
(𝑌|𝐻0)𝑍1

𝑑𝑦 = ∫ 𝑓Λ(𝑦)|𝐻0
[𝜆(𝑦)|𝐻0]𝑑𝜆

∞

𝜆
             (2.34) 

 

Such a test is said to be the most powerful of level ∝ (most powerful test of level ∝ ) if 

its probability of rejecting the hypothesis 𝐻0 is ∝. 

 

2.4 EVALUATION OF THE PROBABILITY OF DETECTION AND FALSE 

ALARM 

 

Figure 2.3 Block diagram of a constant false alarm rate detector. 
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The detection of the target signal, drowned in the background noise, is expressed in 

the form of a test of statistical hypotheses. 

• The alternative hypothesis H1, where the target is considered present in the cell under 

test. 

• The null hypothesis H0, where the test cell contains only background noise (noise 

thermal and/or clutter) 

At the input of the quadratic detector, this test can be formulated taking into account 

the attenuation (Fading) and the phase shift of the received signal, x, with respect to the 

emitted wave. Thus, for the Jth emitted pulse, the complex modeling of the received signal 

will be: 

𝐻0 :     𝑥 = 𝑢 + 𝑖𝑣     (Target absence)                        (2.35) 

𝐻1:     𝑥 = (𝑠 + 𝑢) + 𝑖(𝑡 + 𝑣)     (Target presence )                 (2.36) 

With 𝑖2 = −1 In a homogeneous clutter of the Rayleigh type, u and v are variables 

random Gaussians, independent and identically distributed (IID), of mean zero and of 

unity variance. u and v correspond to the components in phase and in Phase quadrature 

of the clutter+noise signal. 

The target echo is modeled by the signal complex : 

s+it = Aexp (𝑖𝜃𝑗)                                      (2.37) 

where A represents the amplitude of the signal and θj its phase shift with respect to 

the signal of reference: 

𝜃𝑗 = 𝜃0 + 2𝜋𝑓𝑑𝑇𝑅                                        (2.38) 

𝑓𝑑 and 𝑇𝑅 correspond, respectively, to the Doppler frequency and to the period of pulse 

repetition. 𝜃0 is a random variable uniformly distributed over the interval [ 0, 2π ]. 

At the output of the quadratic detector, the two statistical hypotheses become: 

 𝐻0 : 𝑥 =
1

2
(𝑢2 + 𝑣2)                                                    (2.39) 

 𝐻1 : 𝑥 =
1

2
((𝑢 + 𝑠)2 + (𝑣 + 𝑡)2)                            (2.40) 
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where, the total signal-to-noise ratio of the target is 

𝑆𝑁𝑅 = (𝑠2 + 𝑡2)/2                                                           (2.41) 

This statistical test leads to two categories of error : 

• We decide 𝐻1 while 𝐻0 is true, it is the probability of false alarm, Pfa. 

• We decide 𝐻0 while 𝐻1 is true, it is the probability of non-detection, 

 𝑃𝑚 = 1 − 𝑃𝑑 . 

Where, 𝑃𝑑 represents the probability of detection (we decide 𝐻1 while 𝐻1 is true). 

The decision rule, not requiring a priori knowledge of the statistics of the target signal, is 

based on the Neyman-Pearson criterion. This criterion results in the maximization of 𝑃𝑑, 

maintaining a Pfa less than or equal to a value of set point α. The formulation of this 

criterion amounts to testing the likelihood ratio  

                              𝐻1 

                                                  Λ(𝑋) =
𝑃𝑋0 𝐻1⁄

(𝑥)

𝑃𝑋0 𝐻1⁄
(𝑥)

⋛  𝜆                                      (2.42) 

                                𝐻0 

𝑃𝑥0
𝐻1⁄ (𝑥)represents the conditional probability density (Pdf) of the cell under test 𝑥0 in 

the presence of target, while 𝑃𝑋0
𝐻0⁄ (𝑥)is the conditional Pdf of 𝑋0 in the absence of 

target. λ corresponds to the detection threshold obtained from the constraint Pfa= α , i.e. 

say : 

                                                               ∫ 𝑃Λ
𝐻0

⁄
(𝑥)

∞

𝜆
dx = 𝛼                                        (2.43) 

The resolution of equation (2.42) leads to a detection threshold which is a function 

of the environmental variance (noise+clutter). In reality, clutter is a process not stationary 

whose variance may vary as the reference window sweeps across the cells of range. 

Therefore, the use of a fixed threshold does not allow the regulation of the rate. false 

alarm. In order to guarantee control of the Pfa in the event of a change of the environment, 

the detection threshold is adapted to the background noise by multiplying the local 

estimator Z by the coefficient T, so as to maintain a set point Pfa constant (Fig.2.3). In 

this detection scheme, for a set point value α , the detection and false alarm probabilities 

are given by the probabilities conditional: 
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                                                   𝑃𝑑 = 𝑃𝑟𝑜𝑏(𝑥0 ≥ 𝑇𝑍
𝐻1

⁄ )                           (2.44) 

                                                  𝑃𝐹𝐴 = 𝑃𝑟𝑜𝑏(𝑥0 ≥ 𝑇𝑍
𝐻0

⁄ )                           (2.45) 

Using the Pdf of the Z statistic, we get: 

                                             𝑃𝑑 = ∫ 𝑓𝑧(𝑧) ∫ 𝑃𝑋0
𝐻1⁄

(𝑥)𝑑𝑥𝑑𝑧
∞

𝑇𝑍

∞

0
             (2.46) 

                                                 𝑃𝑓𝑎 = ∫ 𝑓𝑧(𝑧)∫ 𝑃𝑋0
𝐻0⁄ (𝑥)𝑑𝑥𝑑𝑧                 (2.47)

∞

𝑇𝑍

∞

0

 

 

where, Z represents the local estimator, TZ the adaptive threshold and 𝑓𝑍(𝑍)the Pdf 

of the variable random Z. Using the residue theorem, the Pd and Pfa can be expressed in 

terms of moment generating functions (MGF), as follows: 

  𝑃𝑑 = −∑ 𝑅𝑒𝑠 [𝜔−1Φ𝑋0
𝐻1⁄ (𝜔)Φ𝑧(−𝑇𝜔),𝜔𝑖]𝑖            (2.48) 

 𝑃𝑓𝑎  = −∑ 𝑅𝑒𝑠 [𝜔−1Φ𝑋0
𝐻0⁄ (𝜔)Φ𝑧(−𝑇𝜔), 𝜔𝑖]

𝑖
        (2.49) 

 

Where: 

• ΦX0/H1(ω) corresponds to the MGF of the cell under test in the presence of target. 

• ΦX0/H0(ω) corresponds to the FGM of the test cell in the absence of target. 

• ΦZ(ω) is the MGF of the Z statistic. 

• ωi and ωj represent, respectively, the negative real part poles of ΦX0/H1(ω) and 

ΦX0/Ho(ω). 

The MGFs used in equations (2.48) and (2.49) are given by :  

    Φ𝑧(𝜔) = ∫ 𝑓𝑍(𝑧
∞

0
) exp(−𝑧𝜔)𝑑𝑧                                (2.50) 

   Φ𝑋0
𝐻1⁄ (𝜔) = ∫ 𝑃𝑋0

𝐻1⁄ (𝑥) exp(−𝑥𝜔)𝑑𝑥     
∞

0
             (2.51) 

   Φ𝑋0
𝐻0⁄ (𝜔) = ∫ 𝑃𝑋0

𝐻0⁄ (𝑥) exp(−𝑥𝜔)𝑑𝑥
∞

0
                 (2.52) 
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Fig.2.3 shows that CFAR detectors differ only in the form of the estimator Z=f(X1, …, 

XN). On the other hand, equations (2.47) and (2.48) essentially depend of the MGF 

ΦZ(ω). In particular, they make it possible to size the detector, by calculating T for a 

given nominal Pfa. In fact, for Rayleigh clutters, the FGMs ΦX0/H1 and ΦX0/H0 are 

generally known and defined by the next unified relationship : 

Φ𝑋0
𝐻1⁄ (𝜔) =

(1+𝜔)𝜂−𝑀

(1+𝑏𝜔)𝜂
                                 (2.53) 

𝑏 = 1 +
𝑀.𝑆𝑁𝑅

𝜂
                                                    (2.54) 

With : 

M: number of integrated pulses, 

SNR: signal-to-noise ratio per pulse and 

η: target fluctuation parameter. 

The interest of the relations (2.53) and (2.54) is that it brings together the four 

Swerling cases. Actually, the values η=1, M, 2, 2M correspond respectively to the models 

SWI, SWII, SWIII and SWIV. the case η=∞ describes so-called “non-fluctuating” targets. 

Note that FGM ΦX0/H0(ω) of the test cell under the hypothesis 𝐻0 is deduced from (2.53) 

and (2.54), by setting SNR=0. 

2.5 RADAR DETECTION TECHNICS 

 Radar detection techniques encompass a range of methods used to identify and 

track targets in radar systems. These techniques leverage the principles of radar 

technology and signal processing to extract valuable information from the received radar 

signals. Some common radar detection techniques include Pulse-Doppler radar, which 

analyzes frequency shifts caused by the Doppler effect to detect moving targets; 

Continuous Wave (CW) radar, which uses continuous wave transmission and analyzes 

frequency shifts for target detection; Synthetic Aperture Radar (SAR), which generates 

high-resolution images by combining multiple pulses and motion; Moving Target 

Indication (MTI), which filters out stationary clutter to focus on moving targets; Multiple-

Input Multiple-Output (MIMO) radar, which employs multiple transmitters and receivers 

for improved target detection and localization; Frequency Modulated Continuous Wave 

(FMCW) radar, which measures range using the frequency difference between 
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transmitted and received signals; and Passive radar, which utilizes existing 

electromagnetic radiation sources for target detection. These radar detection techniques 

offer diverse capabilities and find applications in fields such as aviation, surveillance, 

navigation, and weather monitoring. Through continuous advancements in radar 

technology, these techniques continue to evolve, enabling more accurate and efficient 

target detection and tracking.       

2.5.1 Optimal detection  

Refers to the process of designing a detection system that maximizes its 

performance in terms of correctly identifying the presence or absence of a specific signal 

or target. It aims to minimize the probability of detection errors, such as false positives 

(incorrectly detecting a signal when it is not present) and false negatives (failing to detect 

a signal when it is present). 

In optimal detection theory, the goal is to find a decision rule that maximizes a 

specified criterion, such as the likelihood ratio test, the Neyman-Pearson criterion, or the 

minimum probability of error criterion. These criteria are designed to optimize the trade-

off between detection performance and the associated costs or risks. 

Optimal detection techniques take into account factors such as noise characteristics, 

signal-to-noise ratio, prior knowledge, and the statistical properties of the signals and 

backgrounds. These factors are used to determine appropriate decision thresholds or 

criteria that optimize the detection performance based on the specific application 

requirements. 

The development of optimal detection techniques involves mathematical modeling, 

statistical analysis, and optimization algorithms. It finds applications in various fields, 

including radar systems, communications, signal processing, biomedical engineering, and 

many others. 

Overall, the goal of optimal detection is to design systems that achieve the highest 

possible detection accuracy, reliability, and efficiency while considering the specific 

constraints and requirements of the given application.  
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2.5.2 Fixed threshold detection  

Fixed threshold detection is a common approach in signal processing and detection 

theory. It involves comparing the measured or observed signal against a predetermined 

threshold to make a binary decision about the presence or absence of a desired signal. 

In fixed threshold detection, a threshold value is set in advance based on the 

characteristics of the signal and the noise. The observed signal is then compared to this 

fixed threshold to determine if it exceeds or falls below the threshold. The decision is 

made based on whether the observed signal is greater than or equal to the threshold 

(indicating signal presence) or less than the threshold (indicating signal absence). 

The choice of the threshold is crucial in fixed threshold detection. If the threshold 

is set too high, it may lead to missed detections (false negatives), where the signal is 

present but not detected. Conversely, if the threshold is set too low, it may result in false 

alarms (false positives), where noise or interference is mistaken for the desired signal. 

The performance of fixed threshold detection can be evaluated using metrics such 

as probability of detection (Pd), probability of false alarm (Pfa), and receiver operating 

characteristic (ROC) curves. The threshold can be adjusted to achieve a desired balance 

between detection probability and false alarm rate, depending on the specific application 

requirements and trade-offs. 

Fixed threshold detection is commonly used in various domains, including 

telecommunications, radar systems, image processing, and biomedical signal analysis. It 

provides a simple and efficient means of detecting signals in scenarios where the signal 

characteristics and noise statistics are reasonably well-known.[] 

2.5.3 Adaptive threshold detection 

 Automatic detection consists of deciding on the absence or presence of a target by 

comparing the echo received with a detection threshold. In decision theory statistics, it is 

a question of choosing between two statistical hypotheses: H0 for the hypothesis null 

(absence of the useful signal) or H1 for the alternative hypothesis (presence of target). 

Each echo received results, in the most general case, from the superposition of the noise 

thermal, clutter reflections and a possible target echo. Thus, the choice of a fixed detection 

threshold (pre-calculated) leads to an intolerable increase in the number false alarms when 

the noise level, in the vicinity of the cell under test (C.T.), undergoes a significant change 
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in clutter. In order to circumvent this problem, we have to use methods of adaptive 

thresholding where the detection threshold is directly related to the noise level in the span 

cells surrounding the cell under test. As shown in Fig.2.4, these cells adjacent lines,  the 

number of which is quite small for reasons of calculation time, form what is called 

"Reference window". They provide an estimate local level of noise and clutter. Fig.2.2 

gives the block diagram of a CFAR (Constant False Alarm Rate) detector, performing, 

for each range cell, comparing the cell under test with an adaptive threshold T.Z. The 

multiplication factor T is calculated in such a way as to maintain a constant false alarm 

probability equal to a setpoint value (Design pfa). The mathematical form of the estimator 

Z=f (X1, X2, … XN) represents the main difference between the various CFAR detectors 

proposed in the radar literature. The class detectors at "average level" (Mean level) is by 

far the most approached and the one that best suited for homogeneous environments. The 

CA-CFAR detector (Cell Averaging) , whose adaptive threshold is obtained by 

calculating the average of the cells of reference, represents the precursor of this category 

of detectors. 

 

Figure 2.4 Reference cell scanning an inhomogeneous environment. 
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 CONCLUSION  

In conclusion, radar detection techniques have evolved to meet the diverse needs of 

various applications. From pulse radar and continuous wave radar to advanced techniques 

like SAR, phased array radar, and cognitive radar, each technique offers unique 

advantages and capabilities. The integration of radar with other sensor modalities and the 

application of artificial intelligence further enhance the performance and versatility of 

radar detection systems. As technology continues to progress, we can expect further 

advancements in radar detection techniques, leading to more accurate, efficient, and 

intelligent systems. 
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3.1 INTRODUCTION  

Constant False Alarm Rate (CFAR) is a technique used in radar signal processing 

to maintain a consistent probability of false alarms in the presence of changing clutter and 

noise levels. CFAR algorithms dynamically adjust the detection threshold based on the 

statistical properties of the background clutter and noise, ensuring accurate target 

detection while minimizing false alarms. 

In radar systems, clutter refers to unwanted signals caused by stationary or slowly 

moving objects, while noise stems from electronic components and environmental 

factors. CFAR techniques overcome the challenge of setting a fixed threshold by using 

nearby reference cells to estimate the local noise level or clutter distribution. This 

estimation helps determine an appropriate threshold that adapts to the specific clutter and 

noise conditions. 

CFAR algorithms are essential for reliable target detection in various radar 

applications, including surveillance, tracking, and navigation. By maintaining a constant 

false alarm rate, CFAR techniques enable radar systems to effectively detect targets while 

minimizing false alarms caused by environmental factors. 

3.2   DETECTION OF CFAR 

3.2.1 Definition  

 CFAR stands for Constant False Alarm Rate. It is a signal processing technique 

used in radar systems to detect and track targets while maintaining a consistent level of 

false alarms 

3.2.2 The Principle Of Detection In CFAR 

The Constant False Alarm Rate (CFAR) principle is widely used in radar systems 

for target detection. CFAR is based on the idea of setting a threshold for detecting targets 

while maintaining a constant false alarm rate in the presence of varying clutter conditions. 

To elaborate on the principle of detection in CFAR, it is essential to understand how 

the statistical properties of the clutter are estimated and how the threshold is computed. 

The clutter properties are typically estimated assuming that the clutter is stationary and 

follows a known statistical distribution, such as Gaussian or Rayleigh. These properties 

can be estimated from neighboring Regions of Interest (ROIs) or from a training dataset 
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collected during a period when no targets are present. The training dataset is used to 

estimate the clutter distribution, and the threshold is then set based on the desired false 

alarm rate. 

The threshold plays a critical role in CFAR, as it determines the tradeoff between 

the probability of detection and the probability of false alarms. The threshold can be set 

based on a fixed false alarm rate, such as 1%, or it can be adaptive, adjusting to changes 

in the clutter level. Adaptive CFAR algorithms utilize feedback from the detections to 

update the clutter statistics and adjust the threshold accordingly. [20] 

 

 

                         Figure3.1   The Bloc Diagram Of a Typical CFAR   Detector 

CFAR is commonly used in radar systems to detect targets in environments with 

high levels of clutter and noise, such as in air traffic control, weather monitoring, and 

military applications. The performance of CFAR algorithms depends on various factors, 

including the clutter properties, the signal-to-noise ratio, the target characteristics, and the 

choice of algorithm. As such, the design and optimization of CFAR algorithms is an 

active area of research in radar signal processing. 

The CFAR principle can be summarized as follows: 
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Reference Cell Selection: A group of reference cells surrounding the cell under test 

is selected. These reference cells should ideally contain only clutter and noise, without 

any significant target signals. 

• Statistical Estimation: The statistical properties of the reference cells are 

calculated, such as the mean, median, or order statistic. These statistics serve as 

estimates for the expected level of clutter and noise. 

• Threshold Determination: The detection threshold is set based on the estimated 

statistical properties of the reference cells. The threshold is adjusted to maintain a 

desired false alarm rate, considering the variability of clutter and noise levels. 

• Target Detection: The radar signal in the cell under test is compared to the 

detection threshold. If the signal exceeds the threshold, a target is declared 

present; otherwise, it is considered clutter or noise. 

• Adaptation: The CFAR algorithm continuously updates the reference cells and 

adjusts the detection threshold as the clutter and noise levels change. This ensures 

that the false alarm rate remains constant despite variations in the background 

environment 

3.2.3 The Radar Environment  

3.2.3.1 Homogeneous Radar Environment  

In a radar system, the environment in which it operates can have a significant impact 

on its performance and the ability to detect and track targets accurately. One such 

environment is a homogeneous radar environment, where the clutter properties and 

statistical characteristics remain relatively constant throughout the surveillance area. 

In a homogeneous radar environment, the clutter exhibits similar statistical behavior 

across the entire radar coverage region. This means that the clutter's characteristics, such 

as its amplitude distribution, spatial correlation, and temporal variations, remain 

consistent over time and space. The clutter may arise from various sources, including 

terrain features, buildings, vegetation, and atmospheric effects. 

When the clutter properties are homogeneous, it simplifies the task of clutter 

estimation and threshold setting in radar signal processing. The statistical properties of 

clutter can be estimated accurately by analyzing a representative sample of clutter returns 

obtained from different regions within the surveillance area. These regions are assumed 
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to have similar clutter characteristics, allowing for the estimation of a common clutter 

model. 

The knowledge of the clutter properties in a homogeneous environment enables the 

radar system to distinguish between target echoes and clutter returns effectively. By 

characterizing the clutter, the radar system can set an appropriate threshold for target 

detection, maintaining a constant false alarm rate while maximizing the probability of 

detecting true targets. 

It is important to note that achieving a truly homogeneous radar environment may 

be challenging in practice, as there can be variations and non-uniformities in clutter 

properties due to factors such as changes in terrain, weather conditions, and man-made 

structures. However, in scenarios where the clutter properties can be considered relatively 

stable and consistent over the surveillance area, the assumption of a homogeneous radar 

environment can provide a useful framework for radar signal processing. |[21] 

3.2.3.2 A Non-Homogeneous Radar Environment 

In a radar system, the environment in which it operates can vary significantly, 

leading to non-homogeneous radar environments. In such environments, the clutter 

properties and statistical characteristics can change spatially and temporally, posing 

challenges for radar signal processing and target detection. 

A non-homogeneous radar environment is characterized by variations in clutter 

behavior across different regions within the surveillance area. These variations can arise 

due to diverse terrain features, vegetation density, atmospheric conditions, and man-made 

structures. As a result, the clutter exhibits different statistical properties, such as varying 

amplitude distributions, spatial correlations, and temporal fluctuations. 

Detecting targets accurately in a non-homogeneous radar environment becomes 

more complex. Estimating clutter properties and setting an appropriate detection 

threshold become challenging tasks. The traditional approach of assuming a common 

clutter model across the entire surveillance area may not be valid in such scenarios. 

To address the non-homogeneity of clutter, advanced radar signal processing 

techniques are employed. These techniques involve adaptive algorithms that dynamically 

estimate the clutter properties within localized regions and adjust the detection threshold 
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accordingly. By considering the local clutter characteristics, these algorithms aim to 

maintain a constant false alarm rate while maximizing the probability of target detection. 

Adaptive clutter estimation algorithms utilize techniques such as spatial filtering, 

temporal averaging, and adaptive thresholding to account for the non-homogeneity in the 

radar environment. These methods use feedback from the radar returns and adaptively 

update the clutter statistics and detection thresholds based on the observed clutter 

variations. 

Dealing with a non-homogeneous radar environment requires sophisticated signal 

processing algorithms and techniques to handle the spatial and temporal variations in 

clutter. These approaches enable the radar system to effectively differentiate between 

target echoes and clutter returns, improving the overall detection and tracking 

performance. [22] 

- Borderline clutter 

Borderline clutter refers to radar returns that lie on the boundary between clutter 

and potential targets. It represents a challenging scenario where distinguishing between 

genuine targets and clutter becomes difficult. Borderline clutter can arise due to various 

factors such as weak or partially obscured targets, clutter with similar characteristics to 

targets, or radar system limitations in differentiating between the two. 

In the presence of borderline clutter, radar signal processing techniques need to 

carefully handle the uncertainty associated with these returns. Advanced algorithms and 

decision criteria are employed to minimize false alarms while maintaining high detection 

probabilities for genuine targets. These techniques often involve the use of adaptive 

thresholding, statistical modeling, and pattern recognition methods to differentiate 

between borderline clutter and true targets. 

Handling borderline clutter is crucial in radar systems to ensure accurate target 

detection and minimize false alarms. By employing sophisticated signal processing 

techniques, the radar system can mitigate the challenges posed by borderline clutter and 

enhance its overall performance. [21] 
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. Multiple targets 

In radar systems, the scenario of multiple targets refers to the presence of more than 

one object within the surveillance area that reflects radar signals. Dealing with multiple 

targets poses challenges in accurately detecting and tracking each individual target and 

distinguishing them from clutter and interference. 

In such scenarios, radar signal processing algorithms need to handle the complexity 

of overlapping returns from multiple targets. Techniques such as pulse-Doppler 

processing, adaptive beamforming, and advanced tracking algorithms are employed to 

separate and track individual targets based on their unique characteristics such as range, 

velocity, and direction. 

The detection and tracking of multiple targets are essential in various radar 

applications, including air traffic control, surveillance, and military operations. Effective 

processing algorithms enable radar systems to detect and track multiple targets 

simultaneously, providing valuable information for situational awareness and decision-

making. [21] 

3.3 The CFAR TECHNIQUE  

The CFAR (Constant False Alarm Rate) technique is a signal processing method 

used in radar and other detection systems to detect and track targets in noisy environments 

while maintaining a constant probability of false alarms. It is particularly useful in 

situations where there is a significant amount of clutter or noise that can cause false 

detections. 

The basic principle of the CFAR technique is to adaptively adjust the detection 

threshold based on the local statistics of the received signal. Instead of using a fixed 

threshold, the CFAR algorithm estimates the statistical characteristics of the background 

clutter and noise and sets a threshold above which a signal will be considered a target. 

There are several variations of the CFAR technique, each with its own algorithm 

and approach. Some common CFAR techniques include: 

• Cell Averaging CFAR (CA-CFAR): This method calculates the average power of 

neighboring cells surrounding the cell of interest. The threshold is then set above 

the estimated clutter level. 
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• Order Statistic CFAR (OS-CFAR): This technique ort the power levels of 

surrounding cells and selects the power level at a specific rank, such as the median 

or the 70th percentile, as the threshold. 

• Greatest of CFAR (GO-CFAR): In this approach, the maximum power level 

among the surrounding cells is used as the threshold. 

• Smallest of CFAR (SO-CFAR): This method sets the threshold to the minimum 

power level among the surrounding cells. 

These CFAR variations provide flexibility in adapting to different signal and clutter 

conditions, and the choice of technique depends on the specific application and system 

requirements. 

By using the CFAR technique, radar systems can maintain a constant probability of 

false alarms while effectively detecting and tracking targets in challenging environments. 

It is widely employed in various applications such as air traffic control, weather 

monitoring, target tracking, and military surveillance. 

The CFAR technique estimates the statistical properties of clutter by assuming it is 

stationary and follows a known probability distribution, such as Gaussian or Rayleigh. 

These clutter properties are estimated either from neighboring Regions of Interest (ROIs) 

or from a training dataset collected during clutter-only periods. Based on these estimated 

clutter properties, a detection threshold is set to achieve the desired false alarm rate. 

One popular CFAR algorithm is the Cell Averaging CFAR (CA-CFAR), which 

estimates the clutter power by averaging the signal power from surrounding cells or 

windows. This adaptive thresholding approach enables the CFAR algorithm to effectively 

handle varying clutter levels and maintain a consistent false alarm rate. [22] 

3.4. The CA-CFAR algorithm 

 3.4.1 Definition 

 CA-CFAR, or Cell Averaging Constant False Alarm Rate, is a signal processing 

algorithm used in radar systems to detect targets in the presence of clutter or interference. 

It is a type of threshold-based detection scheme that is designed to maintain a constant 

false alarm rate over a wide range of clutter levels. 
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The CA-CFAR algorithm works by dividing the radar signal into cells, each 

containing a certain number of samples. The algorithm calculates the average power level 

of the samples within each cell and compares it to the average power level of neighboring 

cells. If the power level in a cell exceeds a certain threshold, it is considered a potential 

target. 

The threshold is chosen based on the desired false alarm rate and the number of 

samples in the cell, and it is adjusted to maintain a constant false alarm rate over a wide 

range of clutter levels. The algorithm is designed to adapt to changes in the clutter level, 

allowing for reliable target detection and tracking in cluttered environments. 

In summary, CA-CFAR is a useful technique for detecting targets in cluttered 

environments and is widely used in modern radar systems. Its ability to maintain a 

constant false alarm rate over a wide range of clutter levels makes it a valuable tool for 

real-time target detection and tracking. 

3.4.2 The principle of detection of CA-CFAR 

The principle of detection in CA-CFAR, or Cell Averaging Constant False Alarm 

Rate, is based on the assumption that the noise or clutter in the radar signal is statistically 

homogeneous across the range of cells. The algorithm works by dividing the range of the 

radar signal into cells, each containing a certain number of samples. 

The principle of detection in CA-CFAR can be explained in the following steps: 

• Divide the radar signal into cells: The algorithm divides the radar signal into a 

grid of cells, each containing a certain number of samples. 

• Calculate the average power level of each cell: The algorithm calculates the 

average power level of the samples within each cell, excluding the samples at the 

edges of the cell to avoid the influence of neighboring cells. 

• Calculate the threshold: The algorithm calculates the threshold based on the 

desired false alarm rate and the number of samples in the cell. The threshold is 

chosen to maintain a constant false alarm rate over a wide range of clutter levels. 

• Compare the power level of each cell to the threshold: The algorithm compares 

the power level of each cell to the threshold. If the power level in a cell exceeds 

the threshold, it is considered a potential target. 
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Figur3.2   Schéma bloc d’un détecteur à taux de fausse alarme constant (CFAR). 

Example of a medium level detector: the CA-CFAR 

In the case of CA-CFAR ,Ζ = ∑ 𝑋i
Ν
i=1  . In single-pulse processing and in the presence 

of a Rayleigh clutter, the Xi are independent and identically distributed according to the 

exponential law 𝑓𝑥𝑖(𝑥) = (1 𝜇⁄ ). 𝑒𝑥𝑝(−𝑥
𝜇⁄ )     The parameter µ depends on the 

content of each reference cell Xi. In general, when Xi is embedded in the clutter and 

contains an interfering target of the SWI or SW2 type, µ is given by: 

𝜇 = 𝜇𝑡(1 + 𝐶𝑁𝑅 + 𝐼𝑁𝑅) (3.1) 

where, µt represents the normalized variance of thermal noise. CNR and INR are the 

Clutter-Noise and Interference-Noise ratios, respectively. 

The test cell X0 is also distributed according to the exponential law with parameter 

𝜇 = 𝜇𝑡 (1 + 𝑆𝑁𝑅) (3.2) 
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In a homogeneous Rayleigh clutter, the estimator Z being the sum of N random IID 

variables with an exponential law, it follows that its distribution is a Gamma law with 

parameters (N, µ), which gives: 

𝑓𝑍 (𝑍) =
𝑍𝑁−1 𝑒𝑥𝑝(−𝑍

𝜇⁄ )

Γ(N)𝜇
  (3.3) 

by replacing f Z(z) by its expression in (2.20.a), we obtain the MGF of Z: 

𝜙𝑍 (𝜔) =
1

(1+𝜔)𝑁
 (3.4) 

For a single pulse treatment, the SWI and SWII models are combined (η= M=1) and the 

MGF of the test cell, under hypothesis H1 will be: 

ΦX0/H1(ω)  =
1

(1+𝑏𝜔)
 (3.5) 

Substituting (3.5) and (3.4) into (3.3) and evaluating the residue at the simple pole –1/b, 

we find for the CA-CFAR 

𝑃𝑑 = (1 +
𝑇

1+𝑆𝑁𝑅
)−𝑁  (3.6) 

the Pfa is easily deduced from (3.6) by setting SNR=0: 

𝑃𝑓𝑎 = (1 + 𝑇)−𝑁 (3.7) 

equation (3.7) allows us to calculate T which maintains a constant setpoint Pfa 
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3.5. OS-CFAR 

3.5.1 Definition   

OS-CFAR, or Ordered Statistic Constant False Alarm Rate, is a signal processing 

algorithm used in radar systems to detect targets in the presence of clutter or interference. 

It is a type of threshold-based detection scheme that is designed to maintain a constant 

false alarm rate over a wide range of clutter levels. 

The OS-CFAR algorithm works by dividing the radar signal into cells, each 

containing a certain number of samples. The algorithm then sorts the samples within each 

cell in ascending order and selects the middle sample as the "test" sample. 

The algorithm calculates the average power level of the "reference" samples, which 

are the samples in the neighboring cells that do not contain the test sample. It then applies 

a threshold to the power level of the test sample based on the desired false alarm rate and 

the number of reference samples. 

If the power level of the test sample exceeds the threshold, it is considered a 

potential target. The algorithm then applies additional tests, such as Doppler filtering or 

phase correction, to further refine the detection and eliminate false alarms. 

The key advantage of the OS-CFAR algorithm is that it is less affected by the 

presence of strong targets in the neighboring cells compared to other CFAR algorithms. 

This is because the algorithm uses the middle sample, which is less likely to be influenced 

by the presence of strong targets. 

In summary, OS-CFAR is a useful technique for detecting targets in cluttered 

environments and is widely used in modern radar systems. Its ability to maintain a 

constant false alarm rate over a wide range of clutter levels and its robustness to strong 

targets in neighboring cells make it a valuable tool for real-time target detection and 

tracking. [23] 

3.5.2 The Detection Principle Of OS-CFAR 

The principle of detection in OS-CFAR (Ordered Statistic Constant False Alarm 

Rate) is based on the assumption that the noise or clutter in the radar signal is statistically 
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homogeneous across the range of cells. The algorithm works by dividing the range of the 

radar signal into cells, each containing a certain number of samples. 

The principle of detection in OS-CFAR can be explained in the following steps: 

• Divide the radar signal into cells: The algorithm divides the radar signal into a 

grid of cells, each containing a certain number of samples. 

• Sort the samples within each cell: The algorithm sorts the samples within each 

cell in ascending order and selects the middle sample as the "test" sample. 

• Calculate the average power level of the reference samples: The algorithm 

calculates the average power level of the "reference" samples, which are the 

samples in the neighboring cells that do not contain the test sample. 

• Calculate the threshold: The algorithm applies a threshold to the power level of 

the test sample based on the desired false alarm rate and the number of reference 

samples. 

• Compare the power level of the test sample to the threshold: The algorithm 

compares the power level of the test sample to the threshold. If the power level 

in a cell exceeds the threshold, it is considered a potential target. 

• Apply additional tests: The algorithm applies additional tests, such as Doppler 

filtering or phase correction, to further refine the detection and eliminate false 

alarms. 

The principle of detection in OS-CFAR is based on the idea of thresholding the 

power level of the test sample, which is selected as the middle sample in each cell. The 

algorithm adapts to changes in the clutter level by adjusting the threshold based on the 

number of reference samples and the desired false alarm rate. [24] 
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Figure3.3 Block Diagram of OS CFAR Detector 

• Example of a detector using order statistics: OS-CFAR 

In detectors based on order statistics, the reference cells are ranked in ascending order: 

X(1) ≤ X(2) ≤...≤ The OS-CFAR detector [5] uses the k-order statistic to estimate the 

background noise: Z=X(k). Although the reference random variables (the Xi) are IID, 

the order statistics X(k) are neither independent nor identically distributed. If f(x) and 

F(x) respectively represent the Pdf and the Cdf (cumulative density) of the N reference 

cells, then the ordered variable X(k) is distributed according to the law H. A. David: 

𝑓𝑘(𝑋) = 𝑘(
𝑁
𝐾

)[1 − 𝐹(𝑋)]𝑁−𝑘𝐹(𝑋)𝑘−1𝑓(𝑋) (3.9) 

If, in addition, f(x) is an exponential law with normalized parameter (µ=1), then the Pdf 

of X(k) becomes: 

𝑓𝑘(𝑋) = 𝑘 (
𝑁
𝐾

) (1 − 𝑒−𝑋)𝑘−1𝑒−(𝑁−𝑘+1)𝑥      (3.10) 

Using (2.20.a), we evaluate the MGF of Z: 

Φ𝑍(𝜔) =  𝑘(
𝑁
𝐾

) ∫ 𝑒−𝜔𝑋(1 − 𝑒−𝑋)𝑘−1(𝑒−𝑋)𝑁−𝑘𝑒−𝑋𝑑𝑥         
∞

0
(3.11) 

by setting t=e-x, (3.11) becomes: 

Φ𝑍(𝜔) =  𝑘(
𝑁
𝐾

) ∫ 𝑡𝜔+𝑁−𝑘1

0
(1 − 𝑡)𝑘−1𝑑𝑡     (3.12) 
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The evaluation of the usual integral (3.12), gives [30]: 

𝚽𝒁(𝝎) =  ∏ [1 +
𝜔

𝑁+1−𝑗
]
−1

𝑘
𝑗=1 (3.13) 

The substitution of (2.33) and (2.26) in (2.18), as well as the calculation of the residue 

at the pole –1/b, makes it possible to obtain the Pd of the OS-CFAR [5,6], in the 

presence of a SWI or SWII target: 

𝑃𝑑 = ∏
(𝑁−𝑗)

(𝑁−𝑗+
𝑇

1+𝑆𝑁𝑅
)

𝑘−1
𝑗=0     (3.14) 

With 𝑃𝑓𝑎 = 𝑃𝑑𝑆𝑁𝑅=0 

 

3.6 Distributed CA-CFAR and OS-CFAR Detection Using Fuzzy Fusion Rules 

3.6.1 Introduction 

Distributed Constant False Alarm Rate (CA-CFAR) and Order Statistic Constant 

False Alarm Rate (OS-CFAR) detection techniques are widely used in radar signal 

processing to detect targets in the presence of clutter or noise. These techniques can be 

further enhanced by incorporating fuzzy spaces and fuzzy fusion rules, which provide a 

flexible framework to handle uncertainty and imprecision in radar measurements. 

In this approach, each detection cell or sensor computes its local CFAR statistic 

based on the received radar signal and its local clutter statistics. The CFAR statistic 

represents the likelihood of a target being present in the respective cell. These local CFAR 

statistics from all cells are then fused using fuzzy fusion rules, which consider the 

uncertain nature of the measurements. 

Fuzzy fusion rules combine the local CFAR statistics, taking into account their 

uncertainty, and generate a global decision about target presence. By incorporating fuzzy 

logic principles, the fusion process effectively combines the information from multiple 

sensors or cells, providing a more accurate and reliable detection result. The use of fuzzy 

spaces allows for modeling the distribution of clutter or noise, as well as the potential 

presence of targets, which further enhances the detection performance. 

One reference cell or sensor is chosen as a reference for comparison. The reference 

cell represents a region of interest that is expected to have minimal or no target presence. 



chapter III:     analysis of detectors CA CFAR AND OS CFAR 

 
53 

The fused result from the fuzzy fusion process is compared with the CFAR statistic of the 

reference cell. If the fused result exceeds a certain threshold relative to the reference 

statistic, a target is declared to be present; otherwise, it is considered as clutter or noise 

In recent years, the area of decentralized detection has gained importance because 

it offers better performance in terms of reliability, speed and the capacity to handle large 

quantities of data. In this paper, we extend the concept of using fuzzy spaces to adaptive 

threshold based detectors, namely CA-CFAR and OS-CFAR detectors. We consider a 

distributed system in which the local sensors do not produce a binary decision but a value 

(between 0 and 1) of the membership to the false alarm space. 

We analyses the fuzzy CA-CFAR and OS-CFAR detectors and derive their 

appropriate membership functions which map the observations to the false alarm space. 

We examine a two-sensor network with the fuzzy AND and fuzzy OR fusion rules for 

different operators, and we derive the thresholds corresponding to the desired probability 

of false alarm for each case [25]. Some simulation results are presented for homogeneous 

and non-homogeneous backgrounds in the next chapter .    

3.6.2 Analysis of Fuzzy CA-CFAR and OS-CFAR Detectors 

3.6.2.1 Fuzzy CA-CFAR Detector 

The CA-CFAR detector is an adaptive processor which consists of comparing the 

output of the cell under test (CUT ) to an adaptive threshold equal to the sum of the 

content of the reference cells scaled by a factor T to achieve the desired probability of 

false alarm (𝑝𝑓𝑎). This binary detector produces a binary output 𝜇(𝓠) 

Where 𝓠 = [𝑞1, 𝑞2, … , 𝑞𝑁 2⁄  , 𝑞𝐶𝑈𝑇 , 𝑞𝑁+1, … , 𝑞𝑁] as shown in Fig (3.4) 

 

𝜇 :𝒬 → {
1          𝑞𝑐𝑢𝑡    >    𝑇 ∙   ∑ 𝑞𝑖

𝑁
𝑖=1

0         𝑞𝑐𝑢𝑡    <     𝑇 ∙   ∑ 𝑞𝑖
𝑁
𝑖=1

}        (3.15) 

Or equivalently 

𝜇 :𝒬 → {
1      

𝑞𝑐𝑢𝑡 

∑ 𝑞𝑖
𝑁
𝑖=1

 > 𝑇

0    
𝑞𝑐𝑢𝑡 

∑ 𝑞𝑖
𝑁
𝑖=1

  < 𝑇
}         (3.16) 
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In the fuzzy detector proposed in [3.1], the membership function m is defined so 

that it maps the observation space to a value between 0 and 1 indicating the degree to 

which the test is indicative to the hypothesis ‘no signal’ and ‘signal’. 

 

 

Figure3.4 Fuzzy CA-CFAR and OS-CFAR Detectors 

 

The membership function corresponding to the false alarm space was defined as 

                                  𝜇(𝑦𝑖) = 𝑃𝑟(𝑍 > 𝑌𝐼|𝑍~𝑁(0, 𝜎2))         (3.17) 

where 𝑦𝑖is the observation, which is Gaussian. The membership function 

monotonically decreases ensuring that stronger observations are assigned smaller 

membership to the ‘no target’ hypothesis. The fuzzy CFAR criterion adapts the decision 

rule by declaring a target present if 

                                           𝜇(𝑦𝑖) < 𝑃𝑓𝑎                                (3.18) 
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In our case, since the threshold is adaptive, we propose an alternative definition of 

the membership function corresponding to the false alarm space for the CA-CFAR 

detector. 

To be a meaningful definition, we define the membership function for the CA-

CFAR detector for the observation vector 𝒬      as 

                                    𝜇(𝒬) = 𝑃𝑟 (𝑍 >
𝑞𝐶𝑈𝑇

∑ 𝑞𝑖
𝑁
𝑖=1

|𝐻0)                                 (3.19) 

                                   𝑍 = (
𝑞𝐶𝑈𝑇

∑ 𝑄𝑖
𝑁
𝑖=1

)                                                           (3.20) 

Intuitively, if 𝑞𝐶𝑈𝑇 is too much greater than   ∑ 𝑞𝑖
𝑁
𝑖=1 then, the ratio in (3.20) is too 

much greater than T and therefore, 𝜇(𝒬) tends to zero which means that Q is likely to 

correspond to a detection. 

In order to derive the expression of the membership function, we shall first derive 

the probability density function (pdf) of Z under hypothesis H0: 

Since qi are exponentially distributed, we have 

 

𝑍 =
𝑋

𝑌
       where 𝑋 = 𝒬𝐶𝑈𝑇  and 𝑌 = ∑ 𝒬𝑖

𝑁
𝑖=1  

It follows that  

                                     𝑓𝑥(𝑦)=𝑒−𝑥                                         (3.21) 

And 

                                  𝑓𝑦(𝑦) =
1

Τ(𝑁)
∙ 𝑦𝑁−1 ∙ 𝑒−𝑦           (3.22) 

we have  

      𝑓𝑧(𝑍) = ∫ 𝑓𝑥(𝑧 ∙ 𝑦) ∙ 𝑓𝑦(𝑦) ∙ |𝑦|𝑑𝑦
∞

0
         (3.23) 

 

Substituting (3.22) and (3.23) into (3.21), we find       𝑓𝑧(𝑍)to be 

                                 𝑓𝑧(𝑍) =
𝑁

(𝑧+1)𝑁+1
           (3.24) 
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Now, using (3.5), we find the membership function 𝜇(𝑧)to be 

𝜇(𝑧) = ∫
𝑁

(𝑢+1)𝑁+1 ∙ 𝑑𝑢 =
1

(𝑧+1)𝑁
= 1 − 𝐹𝑧(𝑧)

∞

𝑧
              (3.25) 

where  𝑓𝑧(𝑍) is the cumulative distribution function ( CDF ) of Z. 

It is worth noting from (3.11) that if   𝐹𝑧(𝑧); we find the expression of the𝑃𝑓𝑎 of a 

CA-CFAR detector. A target is then declared present if This   𝜇(𝑧) > 𝑇definition ensures 

also the following rules . 

𝜇(𝑧) ∈ [0,1]   ∀𝑍 > 0 

𝑍1 ≥ 𝑍2 ⟹ 𝜇(𝑍1) ≤ 𝜇(𝑍2) 

lim𝑍1
𝑧→0

= 1 

lim𝑍2
𝑧→∞

= 0 

 

It is shown in (3.25) that the random variable formed by applying the cumulative 

distribution function to any continuous random variable is uniformly distributed on [0,1]. 

Therefore the distribution of the membership function 𝜇(𝑍)is uniformly distributed on 

[0,1]. 

3.6.2.2 Fuzzy OS-CFAR detector 

The OS-CFAR detector is a modified version of the CACFAR detector, which was 

first proposed by Rohling to deal with multiple target situations. It consists of rank 

ordering the samples of the reference window according to their magnitudes and the kth 

largest sample is taken as the estimate of the noise power. In order to derive the 

membership function relative to the OS-CFAR detector under hypothesis H0; we follow 

the same reasoning as for the CA-CFAR detector. In this case, the sample of rank (k) , 

𝑞(𝑘)has the following pdf: 
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𝑓𝒬(𝐾)(𝑞𝑘) = 𝐾 (
𝑁
𝑘
) ∙ (1 − 𝑒−𝑦)𝐾−1. 𝑒(−(𝑁−𝑘+1)𝑦)                (3.26) 

Using (3.26), the pdf of 𝑍 =
𝒬𝐶𝑈𝑇

𝒬(𝑘)
⁄      is 

 

𝑓𝑧(𝑧) = ∫ 𝑘
∞

0

(
𝑁
𝑘
) ∙ 𝑦 ∙ 𝑒(−𝑍𝑦) × (1 − 𝑒(−𝑦)𝑘−1

)  ∙ 𝑒(−(𝑁−𝑘+1)∙𝑦) 𝑑𝑦 

                                                                                                                       (3.27) 

After some manipulation (see the Appendix), we find the membership function 

corresponding to the OS-CFAR detector to be 

𝜇(𝓏) = ∏
(𝑁 − 1)

(𝑁 − 𝑖 + 𝓏)

𝑘−1

𝑖=1

 

                                                                                                (3.28) 

We note from (3.28) that if we substitute z by the threshold T, we find the 

expression of the Pfa of the OS-CFAR detector. Next, we will analyse distributed CA-

CFAR and OSCFAR detection using fuzzy fusion rules.[26] 

3.6.3 Distributed CA CFAR AND OS CFAR Detection Using Fuzzy Fusion Rules 

Let us consider a distributed system consisting of two detectors and a fusion center 

as shown in Fig. 2. Each detector receives a vector Q and then computes the value of the 

membership function of the false alarm space. These values (between 0 and1) are sent to 

the fusion center to produce a global membership function according to a fuzzy fusion 

rule. This membership function is compared to a threshold to achieve the desired global 

probability of false alarm. In our work, we consider the fuzzy fusion rules which are the 

counterparts of the logical AND and the logical OR in fuzzy set theory. In fuzzy set 

theory, the truth of any statement is a matter of degree. The operator that preserves the 

results of the AND truth table and also extends to all real numbers between 0 and 1 is the 

MIN function [9]. That is, the statement A and B where A and B are limited to the range 

(0,1 ) is replaced by the function min(A, B). This is also known as the fuzzy intersection 

or conjunction. Hence, the membership function of the intersection of two fuzzy sets D1 

and D2 (where D1 and D2 represent, respectively, detector 1 and detector 2) with 
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membership functions mD1 and mD2 is defined as the minimum of the two individual 

membership functions 

𝜇𝐷1∩𝐷2 =𝑚𝑖𝑛(𝜇𝐷1,𝜇𝐷2)                  (3.29) 

 

Using the same reasoning, the OR operation is replaced by the MAX function also 

known as the fuzzy union or disjunction. That is, the membership function of the union 

of two fuzzy sets D1 and D2 is defined as the maximum of the two individual membership 

functions 

                                              𝜇𝐷1∩𝐷2 =𝑚𝑎𝑥(𝜇𝐷1,𝜇𝐷2)                                (3.30) 

 

The MIN and MAX functions mentioned above are not the only operators that could 

model the intersection and union, respectively. Additional fuzzy operators are also used 

and are defined to meet the basic requirements of the boundary monotonicity, 

commutability and associativity (3.30).In our study, we will restrict ourselves to the 

algebraic product operator for the intersection and the algebraic sum operator for the 

union which are defined, respectively, as 

𝜇𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝜇𝐷1 ∙ 𝜇𝐷2 

                                                                                      (3.31) 

𝜇𝑠𝑢𝑚 = 𝜇𝐷1 + 𝜇𝐷2 − 𝜇𝐷1 ∙ 𝜇𝐷2 

                                                                                     (3.32) 

We shall now derive the thresholds at the fusion center corresponding to the fuzzy 

operators considered earlier.[27] 

o Union 

For simplicity, let us denote 𝜇𝐹𝐶    and TFC; the membership function and the 

threshold, respectively, at the fusion center. We have then 

𝜇𝐹𝐶 = 𝑚𝑎𝑥(𝜇𝐷1, 𝜇𝐷2)  (3.33) 

The pdf 𝜇𝐹𝐶is given as (3.33) 
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𝑓𝜇𝐹𝐶(𝑚) = 𝐹𝜇𝐷1(𝑚) ∙ 𝑓𝜇𝐷2(𝑚) + 𝐹𝜇𝐷2(𝑚) ∙ 𝑓𝜇𝐷1(𝑚) 

Since 𝜇𝐷1and 𝜇𝐷2 are uniformly distributed in [0,1] 

𝑓𝜇𝐹𝐶(𝑚) = 2 ∙ 𝑚     0 ≤ 𝑚 ≥ 1 

The 𝑃𝑓𝑎  is then obtained as follows: 

𝑃𝑓𝑎 = ∫ 2
𝑇𝐹𝐶

0

∙ 𝑚 ∙ 𝑑𝑚 = 𝑇2
𝐹𝐶  ⇒ 𝑇𝐹𝐶 = √𝑃𝑓𝑎 

                                                                                                           (3.34) 
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Figure3.5   Phenomena H 

We shall show that the MAX fusion rule is equivalent to the binary AND. First, 

we recall that for identical local detectors and for the binary AND, the probability of 

false alarm  at  the  fusion center  is  expressed in  terms of  the individual probabilities 

of false alarm of each detector(𝑃𝑓𝑎)𝐿  by 

 

 𝑃𝑓𝑎 = (𝑃𝑓𝑎)𝐿
2 ⇒ (𝑃𝑓𝑎)𝐿 = √𝑃𝑓𝑎 

                                                                                                  (3.35) 

So, if the MAX fusion rule declares that there is a detection, this means that 

 

𝑚𝑎𝑥(𝜇𝐷1𝜇𝐷2) < 𝜇𝐷1 ⇔ 𝑚𝑎𝑥(𝜇𝐷1𝜇𝐷2) < √𝑃𝑓𝑎 

⇔ 𝜇𝐷1 < √ 𝑃𝑓𝑎  and 𝜇𝐷2 < √𝑃𝑓𝑎 

⇔ 𝜇𝐷 < (𝑃𝑓𝑎)  and 𝜇𝐷2 < (𝑃𝑓𝑎)𝐿 

From (3.30), we conclude that the binary AND fusion rule declares also that there is a 

detection. 

o  Intersection 

𝜇𝐹𝐶 = 𝑚𝑖𝑛(𝜇𝐷1, 𝜇𝐷2) 

𝑓𝑢𝐹𝐶(𝑚) = 𝑓𝜇𝐷1(𝑚) ∙ (1 − 𝐹𝜇𝐷2(𝑚)) + 𝐹𝜇𝐷2(𝑚) ∙ (1 − 𝐹𝜇𝐷1(𝑚)) = 2 ∙ (1 − 𝑚) 

⟹ 𝑃𝑓𝑎 = ∫ 2(1 − 𝑚)𝑑𝑚 = 1 − (1 − 𝑇𝐹𝐶)
2

𝑇𝐹𝐶

0

 

⟹ 𝑇𝐹𝐶 = 1 − √1 − 𝑃𝑓𝑎 

                                                                                                   (3.36) 

As for the MAX fusion rule, we shall show that the MIN 

Fusion rule is equivalent to the binary OR. In this case, the terms of the local 

probability of false alarm at the fusion center is expressed in terms of the local 
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probabilities of false alarm as 

𝑃𝑓𝑎 = 2 ∙ (𝑃𝑓𝑎)𝐿 − (𝑃𝑓𝑎)𝐿
2 ⇒ (𝑃𝑓𝑎)𝐿 = 1 − √1 − 𝑃𝑓𝑎 

                                                                                                                                             (3.37) 

If the MIN fusion rule declares that there is a detection, this means that  

𝑚𝑖𝑛(𝜇𝐷1,𝜇𝐷2) < 𝑇𝐹𝐶 

                     ⇔ 𝑚𝑖𝑛(𝜇𝐷1,𝜇𝐷2) < 1 − √1 − 𝑃𝑓𝑎 

                   ⇔ 𝜇𝐷1 < 1 − √1 − 𝑃𝑓𝑎    or          𝜇𝐷2 < 1 − √1 − 𝑃𝑓𝑎 

 

From (3.22), it follows that 

𝜇𝐷1 < (𝑃𝑓𝑎)𝐿  OR 𝜇𝐷2 < (𝑃𝑓𝑎)𝐿 

Using (3.4), it is clear that the binary OR fusion rule declares 

that there is a detection 

o 𝐴𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑝𝑟𝑜𝑑𝑢𝑐𝑡  

𝜇𝐹𝐶 = 𝜇𝐷1 ∙ 𝜇𝐷2 

 

 

we have 

𝑓𝜇𝐹𝐶(𝑚) = ∫
𝑑𝑢

𝑢
= − ln𝑚

1

𝑚

 

 

Integrating by parts, we find𝑃𝑓𝑎 to be 

𝑃𝑓𝑎 = ∫ ln(𝑢)
𝑇𝐹𝐶

0
∙ 𝑑𝑢 = 𝑇𝐹𝐶(1 − ln(𝑇𝐹𝐶))                      (3.38) 

o 𝐴𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑠𝑢𝑚  

We have  

𝜇𝐹𝐶 = 𝜇𝐷1 + 𝜇𝐷2 − 𝜇𝐷1 ∙ 𝜇𝐷2 
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Which can also be written as  

𝜇𝐹𝐶 = 1 − (1 − 𝜇𝐷1)(1 − 𝜇𝐷2) 

Since 𝜇𝐷1  and 𝜇𝐷1are uniformly distributed on [0, 1], the random variables 

(1 − 𝜇𝐷1)   and  (1 − 𝜇𝐷2)  are also uni- formally distributed on [0, 1]. From [3.6] and 

integrating by parts, we find 

𝑓𝜇𝐹𝐶(𝑚) = − ln(1 − 𝑚) 

It follows that: 

𝑃𝑓𝑎 = −∫ ln(1 − 𝑚)
𝑇𝐹𝐶

0

∙ 𝑑𝑚 = 𝑇𝐹𝐶 + (1 − 𝑇𝐹𝐶) ∙ ln(1 − 𝑇𝐹𝐶) 

                                                                                                    (3.39) 

3.7 Distributed CFAR (D-CFAR) 

3.7.1 Introduction  

Distributed CFAR (D-CFAR) is a signal processing algorithm used in radar systems 

to detect targets in the presence of clutter or interference. It is a type of CFAR algorithm 

that is designed to operate in a distributed network of sensors or receivers. 

The D-CFAR algorithm works by dividing the range of the radar signal into cells, 

each containing a certain number of samples. The algorithm calculates the average power 

level of the samples within each cell and shares this information with neighboring sensors 

or receivers. 

Each sensor or receiver then calculates the local threshold based on the average 

power level of the samples within its own cell and the average power levels of the 

neighboring cells. If the power level in a cell exceeds the local threshold, it is considered 

a potential target. 

The key advantage of the D-CFAR algorithm is that it allows for distributed target 

detection and tracking in large-scale radar systems, where centralized processing may not 

be feasible or efficient. By sharing information and calculating thresholds locally, the 

algorithm is able to adapt to changes in the clutter level and maintain a constant false 

alarm rate over a wide range of clutter levels. 
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In summary, D-CFAR is a useful technique for detecting targets in cluttered 

environments in large-scale radar systems. Its ability to operate in a distributed network 

of sensors or receivers and maintain a constant false alarm rate over a wide range of clutter 

levels makes it a valuable tool for real-time target detection and tracking in complex 

scenarios. 

3.7.2 Distributed CFAR (D-CFAR) with Data Fusion 

Distributed CFAR (D-CFAR) with data fusion is an approach that combines the benefits 

of distributed target detection and collaborative decision-making. In this technique, the CFAR 

algorithm is implemented across multiple sensor nodes in a wireless sensor network, and the 

detection results from each node are fused to make a collective decision. 

The process involves the following steps: 

Local CFAR detection: Each sensor node independently performs CFAR processing on its 

local measurements to detect potential targets. The CFAR algorithm compares the power of the 

cell of interest with the average power of surrounding reference cells. 

Local detection decision: Based on the CFAR processing, each sensor node makes a local 

detection decision, determining if the cell of interest contains a target or not. 

• Data fusion: The local detection decisions from all the sensor nodes are shared 

and fused. Various fusion algorithms, such as majority voting, weighted averaging, or 

consensus-based methods, can be employed to combine the individual decisions. 

• Global decision: The fused detection results are analyzed to make a global 

decision about the presence or absence of targets. This decision takes into account the 

collective information from multiple nodes and improves the overall detection accuracy. 

By leveraging data fusion, D-CFAR with data fusion enhances the robustness and 

reliability of target detection. It enables collaboration among sensor nodes, allowing them to 

exchange information and collectively make more informed decisions. This approach is 

particularly valuable in scenarios where individual nodes may have limited sensing capabilities 

or face varying noise and clutter conditions. 

Overall, Distributed CFAR with data fusion improves the performance of target detection 

in wireless sensor networks by combining the strengths of distributed processing and 

collaborative decision-making. [29] 

3.7.3. Rule Fusion AND  
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Rule fusion, also known as decision fusion, is a technique used to combine multiple 

decision rules or classifiers to make a collective decision or prediction. It is widely used 

in various domains, including machine learning, pattern recognition, and decision-making 

systems, to improve accuracy, robustness, and overall performance. 

The process of rule fusion involves the following steps: 

Individual rule generation: Multiple decision rules or classifiers are independently 

developed using different algorithms, models, or feature sets. Each rule provides its own 

decision or prediction based on the input data. 

Individual rule evaluation: The performance of each individual rule is assessed 

using appropriate evaluation metrics, such as accuracy, precision, recall, or F1 score. This 

evaluation helps determine the strengths and weaknesses of each rule. 

Fusion strategy selection: A fusion strategy is chosen to combine the decisions or 

predictions from the individual rules. The fusion strategy can be based on majority voting, 

weighted averaging, Dempster-Shafer theory, Bayesian methods, or other fusion 

techniques. The choice of fusion strategy depends on the specific application and the 

characteristics of the individual rules. 

Fusion of decisions: The decisions or predictions from the individual rules are 

combined using the selected fusion strategy. This fusion process aims to integrate the 

diverse information provided by the individual rules and generate a final decision or 

prediction. 

Final decision or prediction: The fused decision or prediction is obtained as the 

output of the rule fusion process. It represents the collective decision that benefits from 

the combined knowledge of the individual rules, leading to improved accuracy and 

robustness. 

3.7.4. Rule Fusion OR 

Rule fusion, also known as decision fusion, is a technique used to combine multiple 

decision rules or classifiers to make a collective decision or prediction. It aims to leverage 

the strengths of different individual rules or classifiers and improve overall system 

performance, accuracy, and robustness. 
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The process of rule fusion involves the following steps: 

• Individual rule generation: Multiple decision rules or classifiers are independently 

created using different algorithms, models, or feature sets. Each rule provides its 

own decision or prediction based on the input data. 

• Individual rule evaluation: The performance of each individual rule is evaluated 

using appropriate metrics such as accuracy, precision, recall, or F1 score. This 

evaluation helps assess the quality and effectiveness of each rule. 

• Fusion strategy selection: A fusion strategy is chosen to combine the decisions or 

predictions from the individual rules. The fusion strategy can vary based on the 

specific application and can include approaches such as majority voting, weighted 

averaging, Dumpster-Shafer theory, Bayesian methods, or other fusion 

techniques. 

• Fusion of decisions: The decisions or predictions from the individual rules are 

combined using the selected fusion strategy. The fusion process aims to aggregate 

the outputs of the individual rules and generate a final decision or prediction that 

benefits from the collective knowledge and diversity of the rules. 

• Final decision or prediction: The fused decision or prediction is obtained as the 

output of the rule fusion process. This decision represents the combined consensus 

or integration of the individual rule outputs and can lead to improved accuracy, 

robustness, and generalization. [30]     

 

Figure3.7 The Bloc Diagram of the OR-CFAR and AND-CFAR Detectors 
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3.8 CFAR LOSS 

 CFAR loss, or Constant False Alarm Rate loss, is a loss function used in machine 

learning models for object detection in images or videos. It is based on the principle of 

CFAR algorithms used in radar systems, which aim to maintain a constant false alarm 

rate over a wide range of clutter levels. 

The CFAR loss function works by dividing the input image or video into a grid of 

cells, each containing a certain number of pixels or frames. The algorithm then calculates 

the average confidence score of the pixels or frames within each cell and applies a 

threshold to this score. 

If the confidence score of a pixel or frame exceeds the threshold, it is considered a 

potential object or target. The algorithm then applies non-maximum suppression (NMS) 

to eliminate duplicate detections and refine the bounding boxes of the objects. 

The CFAR loss function is designed to balance the trade-off between detection 

accuracy and false alarm rate. It penalizes false positives and encourages the model to 

focus on detecting objects in the presence of clutter or noise. 

In summary, CFAR loss is a useful loss function for object detection in images or 

videos, which takes inspiration from CFAR algorithms used in radar systems. Its ability 

to maintain a constant false alarm rate over a wide range of clutter levels makes it a 

valuable tool for real-time object detection and tracking in complex scenarios. 

3.9 THE MONTE CARLO METHOD 

The Monte Carlo method is a computational technique that uses random sampling 

to solve problems in various fields, such as physics, engineering, finance, and computer 

science. The method involves generating a large number of random samples from a 

probability distribution to estimate the numerical value of an unknown quantity or to 

simulate complex systems. 

The Monte Carlo method is particularly useful for problems that involve multiple 

variables or complex systems where analytical solutions are difficult or impossible to 

obtain. The method can provide accurate estimates of the unknown quantity with high 

confidence levels, given enough random samples. 
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The Monte Carlo method has found numerous applications in diverse fields, such as: 

• Physics: Monte Carlo simulations are used to study the behavior of physical 

systems at the atomic and subatomic level, such as particle collisions and quantum 

mechanical systems. 

• Engineering: Monte Carlo simulations are used for reliability and risk analysis in 

engineering systems, such as structural design and safety assessments of nuclear 

power plants. 

• Finance: Monte Carlo simulations are used for option pricing, risk management, 

and portfolio optimization in finance. 

• Computer Science: Monte Carlo methods are used for algorithmic analysis, 

optimization, and machine learning. 

The Monte Carlo method was first introduced by Stanislaw Ulam and John von 

Neumann in the 1940s, and its name originates from the famous casino in Monaco. The 

method has since become an essential tool in various fields, and its applications continue 

to expand. [31] 
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CONCLUSION 

The CA-OS CFAR algorithm combines the advantages of the Cell Averaging (CA) 

and Order Statistics (OS) approaches to achieve robust target detection in various noise 

environments. By estimating the local background level through the CA technique and 

utilizing the statistical properties of the surrounding cells with the OS method, the CA-

OS CFAR provides reliable target detection while adapting to changing clutter and noise 

conditions 

In conclusion, the analysis of CA-OS CFAR detectors, guided by a professor, offers 

valuable insights into radar signal processing, enhancing target detection by mitigating 

false alarms and adapting to changing clutter and noise conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

CHAPITRE 4   

Simulation and interpretation 
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4.1 INTRODUCTION 

In this thesis, multiple scenarios are analyzed using the concept of using fuzzy 

spaces to adaptive threshold based detectors, namely CA-CFAR and OS-CFAR detectors. 

We consider a distributed system in which the local sensors do not produce a binary 

decision but a value (between 0 and 1) of the membership to the false alarm space. We 

analyze the fuzzy CA-CFAR and OS-CFAR .We examine a two-sensor network with the 

fuzzy AND and fuzzy OR fusion rules for different operators, and we derive the 

thresholds corresponding to the desired probability of false alarm for each case. In our 

simulation, we will be presenting the variation of the probability of detection for the CA-

CFAR and OS-CFAR detectors as a function of the SNR by varying the number of N 

cells. These representations are made for the two CFAR types studied in the previous 

chapter CA and OS–CFAR. The simulation results are presented for homogeneous and 

non-homogeneous backgrounds. [32] 

The detection probabilities are simulated from Monte Carlo trials using Matlab 

tools. 

We are using the following hypothesis: 

K = (3/4)×N. 

The noise variance is normalized to 1. 

SNR signal to noise Ratio : 0 : 2.5 : 30 dB. 

N represents the reference window size . 

Pfa defined the probability of false alarm fixed to 10-4. 

T is the threshold and is derived from probabilities of false alarm expression of 

each detector: 
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Table 4.1 Values of T with different N.  

 

4.2 BINARY DECISION CA AND OS CFAR SIMULATION  

4.2.1 The case of homogeneous environment 

In this case we will be studying the performance of a CA CFAR detector assuming 

the number of reference cells to be 16 and 24 and  pfa=10^-4. 

 

 

Figure 4.1  the probability of detection of the two detectors CA and OS CFAR plotting 

SNR in an homogeneous background where pfa=10^-4. 
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Interpretation of figure 4.1 

In the previous figure algorithms have been developed for calculating detection 

probabilities and plotting SNR function of the two techniques used (CA and OS-CFAR). 

the simulation was carried out for a probability of false alarm pfa=10−4 and a number of 

reference cells N= 16 and 24. we note that the detectors of CA and OS CFAR give 

probabilities of detection closer and the more we increase the number of cell references 

the higher probability of detection gets. 

4.2.2 The case of non-homogeneous environment 

 In this case the detection is difficult because there are interfering targets we did the 

simulation to see which is the capable detector that gives us greater detection in this 

environment. And the results are shown in the following figures.  

In (N,k) configuration related to OSCFAR algorithm the number of interference 

targets must not exceed N-k in other words the OSCFAR algorithm maintains its 

robustness as long as the number of interferences is close to or equal to N-k 

 For the number of cells N=16,pfa =10^-4 and  changing the number of the 

interference targets between 1 and 3 the results are  shown in the next figures . 

 

Figure 4.2: the probability of detection of the two detectors CA CFAR and OS CFAR 

plotting SNR in non-homogeneous background with one interfering target at the cell 

[8]. 
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Figure 4.3  The probability of detection of the two detectors CA CFAR and OS CFAR 

plotting SNR in non-homogeneous background with three interfering targets at the cells 

[8, 10, 23]. 

Interpretation of figures 4.2 and 4.3 

 We have on the graphs of figures 4.2 and 4.3, the representations of the 

probabilities of detection as a function of the SNR ratio for a false alarm probability (Pfa 

= 10−4) and N=16.the results shows a decrease in the CA-CFAR and OS-CFAR curve. 

Which is due to the interfering targets. 

 As the number of interfering targets increases, the probability of detection 

decreases, and each time we notice that the CA curve decreases considerably. 
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 Next simulation we assume the number of cells N=24,pfa =10^-4 and  changing 

the number of the interference targets between 2 and 4 the results are  shown in the 

following figures . 

 

 

 

Figure 4.4 the probability of detection of the two detectors CA and OS CFAR plotting 

SNR in non-homogeneous background N=24 with two interfering targets in the cells 

[1,17]. 
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Figure 4.5 the probability of detection of the two detectors CA and OS CFAR plotting 

SNR in non-homogeneous background N=24 with 4 interfering targets in the 

cells[5,9,16,21]. 

Interpretation of figure 4.4 and 4.5 

 We have on the graphs of figures 4.4 and 4.5, the representations of the 

probabilities of detection as a function of the SNR ratio for a false alarm probability (Pfa 

= 10−4) and N=24. It is easily noted from the results that the higher the number of cells, 

the greater the probability of detection gets, and if the number of interfering targets is 

less, the probability of detection is greater big and vice versa the more we add the 

interferences the more the probability of detection gets. In these examples, the number of 

reference cells is large and we be adding interference targets. It is noted that the 

probability of detection of CA-CFAR has been reduced. 
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For (N,k) configuration the number N=16 avec 4 interferences et N=24 avec 6 

interference 

 

Figure 4.6 the probability of detection of the two detectors CA and OS CFAR plotting 

SNR in non-homogeneous background N=16 with 4 interfering targets in the cells [8, 

10,21,23]. 

 

Figure 4.7 The probability of detection of the two detectors CA and OS CFAR plotting 

SNR in non-homogeneous background N=24 with 6 interfering targets in the cells 

[1,8,10,17,21,23]. 
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In the last 2 figures we experienced the worst case when we put the maximum 

number of interferences for N=16 we added 4 interference and N=24 we put 6 

interferences and from all the simulation we have done we conclude that the algorithm 

CA-CFAR gives the best performance in a homogeneous environment, the detector CA 

CFAR was observed to be growing faster than the algorithm OS CFAR. So both of them 

detectors give us good detection. Remarkably, in the presence of interference, OS CFAR 

is still better than CA CFAR that lose its performances in a non-homogeneous 

environment. The probability of detection depends on the number of the cell of references 

and the number of the interfering targets in the case of the non-homogeneous background. 

4.3 DISTRIBUTED CA-CFAR DETECTION USING FUZZY FUSION RULES 

To illustrate the performance of the distributed CACFAR and OS-CFAR detection 

using fuzzy spaces and fuzzy fusion rules in homogeneous and non-homogeneous 

backgrounds. We simulated the probability of detection. we assume that pfa=10^-4 and 

changing the number of the cells of reference between 16 and 24 we got the following 

results in both homogeneous and non-homogeneous backgrounds. 

4.3.1 The case of homogeneous background 

We will now study the performance of CA CFAR detector by simulating the 

probability of detection for the case of a two-sensor network. we assume that N=16 in the 

first one and N=24 for the second and pfa=10^-4 for both simulations. 
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Figure4.8  Distributed CA-CFAR for two sensors with MIN, MAX, Algebraic sum and 

algebraic product fusion rules in homogeneous background N=16. 

 

Figure4.9 Distributed CA-CFAR for two sensors with MIN, MAX, algebraic sum and 

algebraic product fusion rules in homogeneous background N=24. 
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Interpretation of figure 4.8 and 4.9  

By comparing the performances of the four fusion rules considered for the CA-

CFAR detector and a homogeneous background. This comparison demonstrates the 

superiority of the algebraic product fusion rule over all the others. And by taking the 

length of the cells of reference as a variable parameter and fixing the probability of false 

alarm, according to the simulation results it is interesting to note that in order to ensure a 

high probability of detection use a higher length of the cells of reference. 

4.3.2 The case of non-homogeneous background 

 

 

Figure4.10 Distributed CA-CFAR for two sensors with MIN, MAX, algebraic sum and 

algebraic product fusion rules in  non-homogeneous background N=16 with 1 

interfering target in detector 1 and 2. 
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Figure4.11 Distributed CA-CFAR for two sensors with MIN, MAX, algebraic sum and 

algebraic product fusion rules in non-homogeneous background N=16 with 2 interfering 

targets in detector 1 and 2 interfering targets in detector 2. 

 

 

Figure4.12 Distributed CA-CFAR for two sensors with MIN, MAX, algebraic sum and 

algebraic product fusion rules in non-homogeneous background N=24 with 2 interfering 

targets in detector 1 and 2 interfering targets in detector 2. 
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Figure4.13   Distributed CA-CFAR for two sensors with MIN, MAX, algebraic sum 

and algebraic product fusion rules in non-homogeneous background N=24 with 2 

interfering targets in detector 1 and 4 interfering targets in detector 2. 

Interpretation of figures 4.10, 4.11, 4.12 and 4.13  

In this case we illustrate the performance of the CA CFAR in non-homogeneous 

background and by changing the length of the cells of reference between 16 and 24 and 

adding more interfering targets each simulation to get the following results that shows 

that the probability of detection is seriously degraded for all the fuzzy fusion rules (MIN, 

MAX, algebraic sum and algebraic product). This is due to the mismatch of the 

environment.  
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4.4 DISTRIBUTED OS-CFAR DETECTION USING FUZZY FUSION RULES 

4.4.1 The case of homogeneous background 

 

We plot the probability of detection of the distributed OS-CFAR against the 

signal-to-noise ratio (SNR) for a homogeneous and non-homogeneous background .by 

taking N=16 and N=24 and pfa of 10^-4. 

 

 

Figure4.14 Distributed OS-CFAR for two sensors with MIN, MAX, algebraic sum and 

algebraic product fusion rules in homogeneous background N=16. 
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Figure4.15: Distributed OS-CFAR for two sensors with MIN, MAX, algebraic sum and 

algebraic product fusion rules in homogeneous background N=24. 

Interpretation 4.14 and 4.15  

These last two simulation results show the performance of the distributed system 

where the local detectors are OS CFAR detectors in a homogeneous background. And as 

an observation it is the same as the one of the CA CFAR simulation results. 
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4.4.2 The case of non-homogeneous background 

In the next simulation we will be testing the fusion rules of OS CFAR with two 

detectors in the non-homogeneous background to see the effect of interfering targets on 

its performances. 

 

 

Figure4.16 Distributed OS-CFAR for two sensors with MIN, MAX, algebraic sum and 

algebraic product fusion rules in non-homogeneous background N=16 with 1 interfering 

targets in detector 1 and 2. 
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Figure4.17 Distributed OS-CFAR algorithm for two sensors with MIN, MAX, 

algebraic sum and algebraic product fusion rules in non-homogeneous background 

N=16 with 2 interfering targets in detector 1 and 2 interfering targets in detector 2. 

 

 

Figure4.18 Distributed OS-CFAR algorithm for two sensors with MIN, MAX, 

algebraic sum and algebraic product fusion rules in non-homogeneous background 

N=24 with 2 interfering targets in detector 1 and 2. 
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Figure4.19 Distributed OS-CFAR algorithm for two sensors with MIN, MAX, 

algebraic sum and algebraic product fusion rules in non-homogeneous background 

N=24 with 3interfering targets in detector 1 and 3 interfering targets in detector 2. 

Interpretation of figures 4.16, 4.17, 4.18 and 4.19: 

 From the performance curves, it is very clear to notice again that the algebraic 

product operator gives the highest probability of detection with a small degradation by 

adding more and more interfering targets each simulation and it is helping when putting 

some length for the reference cells to higher the probability of detection. 
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Figure 4.20 Distributed CA CFAR and OS CFAR algorithms for two sensors with 

algebraic product fusion rules in non-homogeneous background N=16 with 2 interfering 

targets in detector 1 and 2 interfering targets in detector 2. 

 

 

Figure 4.21 Distributed CA CFAR and OS CFAR algorithms for two sensors with 

algebraic product fusion rules in non-homogeneous background N=24 with 3 interfering 

targets in detector 1 and 3 interfering targets in detector 2. 

Interpretation of Figures 4.20 and 4.21 

Just like we notice earlier from comparing the results that the algebraic product 

gives the best performances for both algorithms but still the OS CFAR algorithm more 

efficient than the CA CFAR algorithm in the non-homogeneous background. 
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CONCLUSION  

In this simulation we have extended the concept of radar CFAR detection by fuzzy 

logic to adaptive threshold detectors. We have provided a detailed derivation of the 

probability of false alarm as well as its corresponding threshold at the fusion center for 

different fuzzy fusion rules we come to conclude that in multiple-target situations, the 

algebraic product fusion rule is more robust than the others. And each detector loses some 

of its ability of detection in the non-homogeneous background no matter which detector 

and the kind of detection we use. 
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GENARAL CONCLUSION 

CFAR (Constant False Alarm Rate) and OS CFAR (Order Statistic CFAR) 

detectors, using fuzzy logic, have demonstrated robust performance in the homogeneous 

background. By exploiting the flexibility of fuzzy logic, these detectors are able to adapt 

to variations in noise and dynamically adjust their detection thresholds. 

In homogeneous environments, these detectors allow precise detection of targets 

while maintaining a constant false alarm rate. They are able to model uncertainty and 

adjust for environmental conditions, which improves their robustness and ability to 

distinguish target signals from random variations in noise. 

In non-homogeneous background, the OS CFAR detectors also can perform well. 

Fuzzy logic allows it to adapt to background changes, account for spatial and temporal 

noise variations, and detect targets even in complex environments. 

The use of fuzzy logic in these detectors makes it possible to optimize the detection 

performance by taking into account the uncertainty and ambiguity present in the radar 

data. It offers a flexible approach for modeling imperfect knowledge and allows detection 

thresholds to be adjusted adaptively based on target characteristics and environmental 

conditions. 

 CA CFAR and OS CFAR detectors using fuzzy logic provide reliable and robust 

performance in homogeneous environment, OS CFAR seems to perform better than CA 

CFAR in terms of target detection in non-homogeneous environment this detector is able 

to adapt to variations in noise and other interfering targets. 

Their ability to adapt to variations in noise and model uncertainty makes them 

valuable for target detection in complex environments. Fuzzy logic thus offers a powerful 

approach to improve detection performance and reduce false alarms, contributing to more 

efficient and reliable detection systems. 
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