

Nachida Kasbadji Merzouk Mustapha Merzouk

Gisement Energetique Eolien

Profil vertical de la vitesse du vent

SOMMAIRE

1.3 CARACTERISATION HORIZONTALE DE LA VITESSE DU	1.2.3 STABILITE ATMOSPHERIQUE 1.2.3.1 Conditions atmosphériques instables 1.2.3.2. Conditions neutres 1.2.3.3. Conditions stables 1.2.4. Origine du vent 1.3 Caracterisation Horizontale de la Vitesse du 1.3 Caracterisation Horizontale de La Vitesse du
--	--

1.4.3.4 Modele d'extrapolation de Spéra et all	1,4,3,2 Modèle modifié d'extrapolation de Justus	1,4,3,1 Modèle d'extrapolation de Justus et Mikhaill	1,4,3 EXTRAPOLATION DES PARAMETRES DE WEIBULL	1,4,2,5 Loi à coefficient variable	1,4,2,4 Loi de puissance modifiée	1,4,2,3 Loi de puissance	1.4.2.2 Loi de puissance 1/7	1,4,2,1 Loi logarithmique	1.4.2 EXTRAPOLATION VERTICALE DE LA VITESSE DU VENT	1.4.1.6 Travaux de B. Lange et all	1.4.1.5 Travaux de Van Wijk	1.4.1.4 Travaux de Nieuwstadt	1.4.1.3 Récapitulatif de Dyer	1.4.1.2 Travaux de Paulson	1.4.1.1 Modèle de similitude de Monin-Obukov	1.4.1 PROFIL VERTICAL DE LA VITESSE DU VENT	VENT	1.4. EXTRAPOLATION VERTICALE DES PARAMETRES	1.3.2.4 Atlas éolien de Kasbadji Merzouk	1.3.2.3 Atlas Vent de Hammouche	1.3.2.2 Travaux de Bensaad	1.3.2.1 Travaux de Said et all	1.3.2 VARIATION SPATIALE (ATLAS DE L'ALGERIE)	1.3.1.3 Distribution de Rayleigh	1.3.1.2 Distribution hybride de Weibull
29	28	28	28	27	27	26	24	24	24	22	21	21	20	18	17	17	16		16	16	15	15	14	14	13

40	1.7 CONCLUSION
39	1.6.2 EXTRAPOLATION VERTICALE
38	1.6.1 INTERPOLATION HORIZONTALE
38	1.6 POSITION DU PROBLEME
37	1.5.4.2 Matériaux des pâles
37	1.5.4.1 Matériaux du support
36	1.5.4 SOLUTIONS TECHNOLOGIQUES
34	1.5.3.2 Aérogénérateurs de grandes puissances
34	1.5.3.1 Fermes éoliennes
34	1.5.3 INSTALLATION DE GRANDES PUISSANCES
34	1.5.2.2 Eoliennes de pompage électrique
34	1.5.2.1 Eoliennes de pompage mécanique
34	1.5.2 EOLIENNES DE POMPAGE
33	1.5.1 EXPANSION DES APPLICATIONS EOLIENNES
33	1.5 AVANCEES TECHNOLOGIQUES
32	1.4.4.4 Test de Pneumatrikos
31	1.4.4.3 Test de Poje
31	1.4.4.2 Test de Mikhaiel
30	1.4.4.1 Test de Peterson
30	1.4.4 TEST DES MODELES D'EXTRAPOLATION

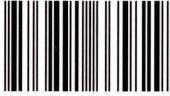
	-
	2.5
-	
-	>
>	3
Z	-
~	-
***	=
(F)	=
\sim	5.00
	12
(3)	
	-
	13
	2
	ϖ
	=
	S
	S
	E
	2
	=
	1
	1
	-
	-
	\simeq
	(F)
	10
	-
	-
	-
	1
	FA
	01
	4
	0
	=
	_
	T
	1
	-
	I

2.3.3.2 Variation mensuelle de la distribution de Weibull	2.3.3.1 Forme de la distribution de Weibull	2.3.3 VARIATION DES PARAMETRES WEIBULL	2.3.2.4 Méthode du maximum de vraisemblable	variabilité des vents	2.3.2.3 Méthode de la vitesse moyenne et de la	l'écart type	2.3.2.2 Méthode de la vitesse moyenne et de	2.3.2.1 Méthode des moindres carrées	2.3.2 METHODE D'AJUSTEMENT	2.3.1.2 Facteur de puissance et indice de variation	et variance type	2.3.1.1 Vitesse moyenne, vitesse cubique moyenne	2.3.1 DEFINITION DES PARAMETRES VENT	2.3 ETUDE STATISTIQUE	2.2.4 VARIATION PLURIANNUELLE DE LA VITESSE DU VENT	2.2.3 VARIATION SAISONNIERE DE LA VITESSE DU VENT	DU VENT	2.2.2 VARIATION JOURNALIERE MOYENNE DE LA VITESSE	2.2.1 MESURE INSTANTANNEE DE LA VITESSE DU VENT	DU VENT	2,2 VARIATION TEMPORELLE DE LA VITESSE MOYENNE	THE STATE OF	2.1 INTRODUCTION
55	52	52	51	51		50		48	48	47	47		47	47	45	43	42		42	41			41

2.3.3.3 Variation des vitesses moyennes 2.4 INTERPOLATION SPATIALE DES PARAMETRES VENT 2.4.1 METHODE D'INTERPOLATION 2.4.2 ATLAS DE LA VITESSE MOYENNE ANNUELLE DU VENT 2.4.2.1 Données utilisées 2.4.2.2 Atlas de la vitesse du vent 2.4.3 ATLAS DE LA VITESSE MOYENNE SAISONNIERE DU VENT 2.4.4 ATLAS MICROCLIMATIQUES DE LA VITESSE MOYENNE DU VENT 2.4.4.1 Présentation du modèle de projection-interpolation 2.4.4.6 Cartographie éolienne de quelques sites 67 2.5.1 PUISSANCE ENERGETIQUE DISPONIBLE 74
--

CHAPITRE 3 : EXTRAPOLATION VERTICALE DES PARAMETRES VENT

4.4.1.2 Qualité des mesures 122 4.4.1.3 Fréquence des vitesses nulles 123	RES AU SOL	4.4 LIMITES DES MODELES 122	4.3 VALIDATION DES MODELES D'EXTRAPOLATION VERTICALE 120	4.2.2 MODELE AILOS 4.9 ATLAS EOLIEN DE L'ALGERIE	4.2 VALIDATION DE LA CARTE DES VENTS 117 4.2.1 Donnees Mesures au sol 117	4.1 INTRODUCTION VERTICALE	CHAPITRE 4: DISCUSSIONS ET SYNTHESE	3.5 CONCLUSION 116 4.6 COMPARAISON DES MODEI ES DENTETE	c – Vitesse moyenne 115 4.5 VENTS DOMINANTS	b – Facteur d'échelle C		109	107	RTICALE DES VITESSES MOYENNES 107	6 102	4.3.1.	
ENERGETIQUE UTIL	TION	TRE 5 : APPLICATION ET PERSPEC	ION	LIEN DE L'ALGERII	CE DES VITESSES N	Į.	VISON DES MODEL	USON DES MODEI	OMINANTS	des machines sur la p	me de rugosité	des mesures	(diversité climatique)	l Faibles hauteurs du mât, nombre de mât	VERTICAL	5 Limites du modèle de projection (Ailos)	


141

141

5.3 APPLICATION AU POMPAGE	144
5.3.1 CHOIX DES SITES D'IMPLANTATION DES MACHINES	144
5.3.2 POMPAGE ELECTRIQUE	144
5.3.3 POMPAGE MECANIQUE	145
5.4 PERSPECTIVES	147
5.4.1 MODELISATION AU SOL	147
5.4.2 MODELE D'EXTRAPOLATION	148
5.5 CONCLUSION	149
CONCLUSION GENERALE	151
REFERENCES	153
NOMENCLATURE	
ANNEXE 1 : PARAMETRES DE WEIBULL A L'ECHELL	Æ
MENSUELLE	
ANNEYE 1 FOH ANGED ADVISED	
ANNEXE 2 : ECHANGE RADIATIF	

Les données vent de 21 stations météorologiques portant sur une période minimale de 10 années ont été traitées et modélisées à l'aide des fonctions de distribution de Weibull ou de hybride-Weibull. Les atlas des vitesses moyennes du vent et du potentiel énergétique éolien ont été élaborés. Les microclimats dégagés par les cartes, ont fait l'objet d'études plus fines par projection de données vent mesurées à 700 hpa vers le sol. Les données vents prélevées à 5 différentes hauteurs d'un pylône installé en zone semi-aride, ont été utilisées pour l'établissement de modèles empiriques d'extrapolation verticale des paramètres de Weibull, par classe de stabilité, s'adaptant au mieux au climat des hauts plateaux. Après extrapolation des paramètres de Weibull, les atlas de la densité de puissance énergétique éolienne récupérable à 50 m, du sol, ont été établis. Enfin, considérant la limite de Betz, les pertes dues aux caractéristiques des éoliennes et les rendement mécanique-électrique, les énergies électriques produites par trois aérogénérateurs de différentes puissances nominales, ont été déterminées ainsi que leurs rendements par rapport au potentiel éolien disponible des sites.

Dr Nachida Kasbadji Merzouk est chercheure au Centre de . Développement des Energies Renouvelables, Alger. Elle est titulaire d'un doctorat en physique énergétique et matériaux de l'Université de Tlemcen. Elle est enseignante à l'université de Blida et membre fondatrice de masters, option Solaire Thermique-Eolien, Photovoltaique et bioclimatique.

978-3-8416-6582-9