Université de Saad Dahleb 1

Faculté des sciences de la nature et de la vie Département de Biologie et Physiologie Cellulaire

MEMOIRE DE MASTER

En Sciences biologiques Spécialité : Bioinformatique

Etude par outils bioinformatiques de différents variant XPC et de leur impact dans Xeroderma Pigmentosum

Par

Ichrak MEDDAH Karima AISSANI

Devant le jury composé de :

Mme Benmensour	MCA	Présidente	USDB
Mme Eddaikra A.	MCA	Examinatrice	USDB
Mr Bessaad M.	MCB	Promoteur	USDB
Mme Khemili Talbi S.	MCA	Co-promotrice	UMBB
Mme Gussaibia N	MCB	Invité	USDB

Blida, Septembre 2017

ملخص

هذا البحث جزء من الدراسة في السيليكو (in silico) باستعمال برامج معلوماتية و نمذجة جزئية نهدف التعليل مختلف الطفرات وتأثير ها في (xeroderma pigmentosum) . نهدف إلى تدريج قائمة هذه الطفرات التي يمكن ان تغير خصائص البروتين(XPC) و تصميم نموذج هيكله ثلاثي الأبعاد الذي ليس محددا بعد. لهذا الغرض، استخدمنا البرامج المعلوماتية (XCC) و (XCD) و تصميم نموذج هيكله ثلاثي الأبعاد الذي ليس محددا بعد. لهذا الغرض، استخدمنا البرامج المعلوماتية (UCSC) و تصميم نموذج هيكله ثلاثي الأبعاد الذي ليس محددا بعد. لهذا الغرض، استخدمنا البرامج المعلوماتية (UCSC) و (UCSD) لتدريج قائمة الطفرات ودراسة تأثير ها على هذا البروتين، و سيتم استغلال هذه القائمة في جزء النمذجة الجزيئية حيث سنتابع ثلاثة نهج مختلفة لتصميم النموذج ثلاثي الابعاد (النمذجة بالمقارنة بالقائمة في جزء النمذجة الجزيئية حيث سنتابع ثلاثة نهج مختلفة لتصميم النموذج ثلاثي الابعاد (النمذجة بالمقارنة بالتعمل البرنامج Phyre2) و العمار مع الثانية المي المي المي معلى البرنامج Phyre2) معلى الطيات باستعمال البرنامج Phyre3 مع ألى المندية العي مناز المن على الطيات مشتركة مع أب إينيسيو (Ab initio) باستعمال البرنامج Phyre3 معلى الوتين (XPC) المن معتمال البرنامج Phyre3 مع أب اينيسيو (Ab initio) باستعمال البرنامج Phyre3 مع مناز (XPC) باستعمال البرنامج Phyre3 مع مناز (XPC) المتمان التربية (XPC) ما دل على أن النموذج الموتين (XPC) التي مع مدر متوسط التربيع (rms) ما دل على أن النموذج المصمم من طرف البرنامج Phyre3 البرنامج Phyre3 مع جذر متوسط التربيع (rms) ما دل على أن النموذج المصمم من طرف البرنامج المحمم من من من مع جذر متوسط التربيع (rms) ما دل على أن النموذج المحمم من طرف البرنامج المحمم من طرف البرنامج المحمم و أن النموذج المرفي مع در متوسط التربيع مردين (rms) من جزينتين من ما مع دن متوسط التربيع مع مين البروتين (rms) مع دن ما مر من و من البروتين (لمحمم مستقربين (rms) من جزينتين من البروتين مع دن متوسط التربيع مي مع مين و مي مي من مي ما محمم ما بروتين (رمحمم من جزينين الأخرى) . الخمن من ميزينتين ما البروتين المحمم مستقر بين (rms) معيال م

Résumé

Cette recherche fait partie de l'étude in silico (utilisant des approches bioinformatiques et une modélisation moléculaire) pour analyser les différentes variants XPC et leur impact sur Xeroderma pigmentosum. Nous visons à énumérer les SNP qui peuvent modifier les propriétés de la protéine XPC et prédire sa structure 3D qui est inconnue. À cette fin, nous avons utilisé le serveur UCSC et NCBI pour énumérer et étudier les SNP affectant notre protéine, ces dernier seront exploités dans la partie de modélisation moléculaire où nous suivrons trois approches de prédiction de structure 3D différentes par trois programme différents (la modélisation comparative par le programme SwissModel, modélisation par la reconnaissance de repliements par le proframme Phyre2, et reconnaissance des repliements combinés avec ab initio par le programme I-TASSER); en outre l'utilisation du logiciel Pymol nous a pemis de mésurer la similarité structurelle entre les modèles XPC prédits et les fragments XPC expérimentaux en calculant les rms ce qui montre que le model prédit de la XPC par I-TASSER a donné la merileure similarité structurale avec des rms tré faible par rapport aux autres lmodels cela nous a permis de le retenir comme une structure probable de la XPC, ainsi faire une mutagénése de la XPC prédite par I-TASSER selon les SNPs etudiés, un ammarage moléculaire a été effectuée pour calculer l'orientation préférée de deux molécules afin de former un complexe stable (protéines XPC) par le serveur ClusPro. XPC muté selon les SNP associés à la maladie a permis l'analyse de l'impact de la mutation sur les propriétés de la protéine (sa fonction, la formation des complexes).

Mots cles : Xeroderma pigmentosum, NER, SNP, modélisation moléculaire, prédiction structurale.

Abstract

This research is part of the in silico study (using bioinformatic approaches and molecular modeling) to analyze the different XPC variants and their impact on Xeroderma pigmentosum. We aim to enumerate SNPs that can modify the properties of the XPC protein and predict its 3D structure which is unknown. To this end, we used the UCSC and NCBI server to enumerate and study SNPs affecting our protein, the latter will be exploited in the molecular modeling part where we will follow three different 3D structure prediction approaches by three different programs (modeling comparative study by the SwissModel program, modeling by recognition of Phyre2 plots, and recognition of combinations with ab initio by the I-TASSER program); the use of the Pymol software allowed us to measure the structural similarity between the predicted XPC models and the experimental XPC fragments by computing the rms, which shows that the predicted model of the XPC by I-TASSER gave the merileure structural similarity with very small rms compared to other lmodels this allowed us to retain it as a probable structure of the XPC, thus making a mutagenesis of the XPC predicted by I-TASSER according to the SNPs studied, a molecular ammarage was performed to calculate the preferred orientation of two molecules to form a stable complex (XPC proteins) by the ClusPro server. XPC mutated according to the SNP associated with the disease allowed the analysis of the impact of the mutation on the properties of the protein (its function, complex formation)

Key words : Xeroderma pigmentosum, NER, SNP, molecular modéling, structural prediction.

Remerciements.

Ce mémoire n'aurait jamais pu voir le jour sans le courage et la volonté que nous a donné le bon Dieu.

A notre promoteur Mr BESSAAD Mohamed El amine qui nous a honoré de leur confiance et nous a encadré et nous a bien orienté, on vous remercie énormément.

Nos remerciements à Mme KHEMILI-TALBI Souad de nous avoir accueilli avec gentillesse et de nous offrir son aide avec simplicité et ouverture d'esprit.

A Monsieur SENINET Mohamed El Hadi qui nous a mis en disposition des données de séquençage et qui nous a accompagné dans le départ de notre travail.

Nous remercions nos familles qui nous ont accompagnés tout au long de notre carrière académique et leur soutien à nous.

A tous mes enseignants ainsi que les membres de jury qui nous ont fait l'immense honneur de présider et d'examiner ce travail.

Nos remerciements les plus sincères à toutes les personnes qui ont contribuer de près ou de loin à l'élaboration de ce travail.

Liste des abréviations.

- ADN : Acide Désoxyribonucléique.
- **XP** : Xeroderma Pigmentosum.
- EMG : Électromyogramme.
- **IRM** : Imagerie par Résonance Magnétique.
- **UDS** : UnschendUled DNA Synthesis.
- PCR-RFLP : Restriction Fragment Length Polymorphism
- PCR-SSCP : Single Strand Conformation Polumorphism.
- UV : Ultraviolet.
- **DSB** : Double Strand Brin.
- NHEJ : Non-Homologous End-Joining.
- **DNA-Pkcs** : DNA-dependent Protein Kinase.
- **XRCC4** : X-ray repair cross-complementingprotein 4.
- HR : Homologue Recombinaison.
- ATM : Ataxia Telangiectasia Mutated.
- **RPA** : Replication Protein A.
- MMR : DNA Mismatch Repair.
- **PCNA** : Proliferating Cell Nuclear Antigen.
- **RFC** : Replication Factor C.
- MSH : Melanocyte-Stimulating Hormone.
- **BER** : Base Excision Reparation.
- NER : Nucléotide Excision Reparation.
- **6-4PP** : Pyrimidine 6-4 Pyrimidine.
- **GG-NER** : Global Genome NER.
- **TC-NER** : Transcription Coupled NER.
- **CSA/B** : Cockayne Syndrom A/B.
- TFIIH : Transcription Factor II H.
- TTD : Trichothiodystrophie.

ERCC : Excision Repair Complementing Cross.

- **XPA** : Xeroderma Pigmentosum groupe de complémentation A.
- **XPB** : Xeroderma Pigmentosum groupe de complémentation B.
- **XPC** : Xeroderma Pigmentosum groupe de complémentation C.
- **XPD** : Xeroderma Pigmentosum groupe de complémentation D.
- **XPE** : Xeroderma Pigmentosum groupe de complémentation E.
- **DDB2** : DNA Damage-Binding protein 2.
- **XPF** : Xeroderma Pigmentosum groupe de complémentation F.
- **XPG** : Xeroderma Pigmentosum groupe de complémentation G.
- **XPV** : Xeroderma Pigmentosum groupe de complémentation Varient.

POLH : Polymérase êta.

UV-DDB

SNP : Single Nucleotide Polymorphisms.

CNV: Copy Number Variation.

- UCSC : Université Californie Santa Cruz.
- **NCBI :** National Center for Biotechnology Information.
- **3D** : Tridimensionnelle.
- BLAST : Basic Local Alignement Search Tool.
- **PDB** : Protein Data Bank.
- Phyre2: Protein Homology/analogY Recognition Engine V 2.0.
- I-TASSER : Iterative Threading ASSEmbly Refinement.

Liste des figures

Figure 1: Réparation des cassures double brin.	7
Figure 2: Mécanisme de réparation par mésappariement MMR.	9
Figure 3: Modèle du mécanisme de réparation par excision de nucléotide NER	. 11
Figure 4: Localisation chromosomique du gène XPA	. 12
Figure 5: Localisation chromosomique du gène ERCC3	. 13
Figure 6: Localisation chromosomique du gène XPC	. 13
Figure 7:Localisation chromosomique du gène ERCC2	. 14
Figure 8: Localisation chromosomique du gène DDB2.	. 14
Figure 9:Localisation chromosomique du gène ERCC4	. 15
Figure 10:Localisation chromosomique du gène ERCC5	. 16
Figure 11:Localisation chromosomique du gène de POLH	. 16
Figure 12: Protéines qui interagissent avec XPC dans la reconnaissance des dégâts de l'ADN	. 18
Figure 13: Structure du complexe entre XPC (en rose) et TFIIH (en vert) (code pdb : 2rvb)	. 19
Figure 14 : Méthodologie de notre travail de fin de cycle	. 21
Figure 15 : Page d'accueil UCSC	. 22
Figure 16 : Interface de Génome Browser permettant la sélection de paramètres de filtre des SNPs	. 23
Figure 17 : Page d'accueil de Table Browser et de paramètres de filtrage des SNPs annotés	. 24
Figure 18 : Page d'accueil de NCBI.	. 24
Figure 19 : Page d'accueil de Uniprot	. 25
Figure 20 : Page d'accueil de Blastp	. 26
Figure 21 : Page d'accueil de PDB	. 27
Figure 22 : Interface d'interaction de la séquence protéique de XPC dans le serveur Swiss-Model	. 28
Figure 23 : Page d'accueil du Phyre2	. 29
Figure 24 : Page d'accueil de I-TASSER	. 30
Figure 25 : Page d'accueil de STRING.	. 31
Figure 26 : Page d'accueil de ClusPro	. 32
Figure 27 : Page d'application Pymol (mutagenèse)	. 33
Figure 28 : Page d'accueil Interpro	. 34
Figure 29 : Localisation chromosomique du gène XPC (3p25)	. 35
Figure 30 : La liste de tous les SNPs positionnés sur le gène XPC via Génome Browser	. 35
Figure 31 : les listes des SNPs dans Génome Browser.	. 36
Figure 32 : Listes des SNPs annotés dans Table Browser	. 37
Figure 33 : La séquence protéique du XPC sous format fasta tiré de la banque de données Uniprot	. 38
Figure 34 : (A) Structure du complexe Centrine2-XPC déterminée par RMN (code PDB 2a4j) ; (a)	
fragment XPC et (b) Centrine-2.	. 40
Figure 35 : (A) Structure du complexe Centrine2-XC déterminée par diffraction des rayons X (code	,
PDB 2GGM; (a) fragment XPC et (b) Centrine2.	. 41
Figure 36 : (A) Structure du complexe TFIIH-XPC déterminée par RMN (code PDB 2rvb) ; (a)	
fragment XPC et (b) TFIIH.	. 41
Figure 37 : Modèles de structures tridimensionnelles du XPC prédits par SwissModel. ;	. 44
Figure 38 : Modèles de structures tridimensionnelles du XPC prédits par Phyre2 (XPC-Phyre2.pdb)	.45
Figure 39 : Modèles de structures tridimensionnelles du XPC prédits par I-TASSER ; (a) XPC-	
model1-TASSER.pdb,(b) XPC-model2-TASSER.pdb et (c) XPC-model3-TASSER.pdb	. 46

Liste des tableaux

Tableau I: Les groupes de complémentation de XP	17
Tableau II : Signification des couleurs Genome Browser	37
Tableau III : Résultats d'alignement de séquence de XPC contre la PDB généré par Blastp	39
Tableau IV : Tableau récapitulatif des résultats de la prédiction de la structure 3D de la XPC	43
Tableau V : Résultats de la mesure de la similarité structurale des modèles prédits avec les fragments	3
de la XPC déterminés expérimentalement par le calcul des rms4	47
Tableau VI : Valeurs de la fonction de score de ClusPro des complexes prédits et valeurs du rms	
obtenues après superpositions de ces modèles avec les complexes respectifs déterminés	
expérimentalement	51
Tableau VII : Tableau des rs associés à la maladie XPC et leurs localisations dans ses domaines	
protéiques fonctionnels	55

Sommaire

Introduction	1
I. Synthèse bibliographique	
I.1 Xeroderma Pigmentosum.	3
I. 2 Epidémiologie	3
I.3 Symptomatologie	4
I.4 Diagnostic.	5
I.4.1 Tests biologiques	5
I.4.2 Diagnostic de la biologie moléculaire.	5
I.5 Etiologie	5
I.6 Lésions sur l'ADN et leurs réparations	5
I.6.1 Lésions sur l'ADN	5
I.6.2 Systèmes de réparation	6
I.7 Physiopathologie	12
I.7.1 Xeroderma Pigmentosum groupe de complémentation XPA	12
I.7.2 Xeroderma Pigmentosum groupe de complémentation XPB (ERCC3).	12
I.7.3 Xeroderma Pigmentosum groupe de complémentation XPC	13
I.7.4 Xeroderma Pigmentosum groupe de complémentation XPD(ERCC2).	13
I.7.5 Xeroderma Pigmentosum groupe de complémentation XPE(DDB2)	14
I.7.6 Xeroderma Pigmentosum groupe de complémentation XPF(ERCC4)	15
I.7.7 Xeroderma Pigmentosum groupe de complémentation XPG(ERCC5).	15
I.7.8 Xeroderma Pigmentosum groupe de complémentation XPV(POLH)	16
I.8 Protéomique de XPC	17
I.8.1 Reconnaissance des dégâts d'ADN dans GG-NER.	18
I.8.2 Complexe de formation d'incision à TR-NER.	19
II. Matériels et méthodes	
II.1 Matériels	20
II.2 Méthodes	20
II.2.1 Partie 1 : Listes des SNPs	22
a) UCSC	22
b) Le serveur NCBI	24
II.2.2 Partie 2 : Modélisation moléculaire de XPC	25
1. Prédiction de structure 3D de XPC	25
2. Amarrage protéine-protéine	30

3.	Visualisation moléculaire de XPC	32
4.	Recherche de domaines protéiques et localisation des SNPs	33
III. Résu	Iltats et discussions	
III.1 List	e des SNPs par Génome Browser	35
III.2 Mod	délisation moléculaire de la protéine XPC	37
III.2.1	Recherche de similarité de la séquence cible/patrons par Blastp/PDB	38
III.2.2	Collection des structures expérimentales de XPC	40
III.2.3	Prédiction de structure 3D de la protéine XPC	42
a)	Modélisation comparative de la structure de la XPC par Swiss-Model	43
b) Phy	Modélisation par reconnaissance de repliements de la structure de la XPC par re2	.44
c) de	Modélisation de la structure de la XPC par ab initio combinée à la reconnaissance repliements par I-TASSER	e .45
d)	Analyse des modèles des structures prédits pour la XPC	46
III.2.4	Amarrage protéine-protéine (XPC-protéine) par ClusPro	48
III.2.5	Localisation des rs dans la structure de XPC prédite	54
Conclus	ion	58
Référen		60
	ces bibliographiques	00

Xeroderma pigmentosum (XP) est une maladie à transmission autosomique récessive dont la prévalence est très importante en **Afrique de Nord** et en **Moyen Orient** où la consanguinité est plus fréquente.

Elle est due à une sensibilité accrue de l'ultraviolet et de la lumière du soleil, une inefficacité du système de réparation (NER) qui implique un *Xeroderma pigmentosum*.

Cette maladie constitue un groupe de maladies dont huit gènes différents (situés sur des chromosomes différents) qui lorsqu'ils sont mutés entrainent un *Xeroderma pigmentosum*.

Il a été démontré que l'hétérogénéité clinique de cette maladie est liée à un défaut dans les gènes du système de réparation par excision-resynthèse des nucléotides (*Nucleotide Excision Repair*, NER) pour les sept premiers groupes génétiques (A-G), et à une anomalie des gènes de la transcription pour le huitième groupe (*Xeroderma pigmentosum* variant, XPV).

A l'heure actuelle, Il n'existe pas encore de traitement curatif permettant de soigner les malades souffrant de XP : les dommages d'ADN sont cumulés et irréversibles, ainsi le diagnostic précoce de la maladie est capital pour mettre en route sans délais les mesures de photo protection, seul moyen disponible, pour prévenir ou tout au moins retarder l'apparition de néoplasies cutanées et oculaires.

Cette étude s'inscrit dans le cadre de l'étude de différents variant de XPC et de leurs impacts dans *Xeroderma pigmentosum* par outils bioinformatiques dont le but est de lister les SNPs et de modéliser la structure de la protéine XPC par différentes approches de modélisation moléculaire, ainsi étude de son interaction avec d'autres protéines et analyse de l'impact de quelques SNPs sur la fonction de la protéine XPC.

Pour pouvoir couvrir tous les aspects de ce thème, le mémoire a été structuré en trois chapitres :

- ✓ Après une introduction générale, le premier chapitre présente des généralités sur la maladie de *Xeroderma pigmentosum* et une synthèse bibliographique qui présente les différents types de XP et la protéomique de la protéine XPC.
- ✓ Le deuxième chapitre présente la méthodologie du travail. En premier lieu, le listing des SNPs à partir d'un fichier de séquençage d'ADN et d quelques outils bioinformatiques, ensuite la modélisation moléculaire de la protéine XPC.

1

- Le troisième chapitre porte sur l'analyse des résultats dont le but est de déterminer la structure 3D de la protéine XPC et de la valider par quelques SNPs associés à la maladie *Xeroderma pigmentosum*.
- ✓ Et enfin les résultats sont récapitulés sous forme d'une conclusion générale avec quelques recommandations pour les futurs travaux de recherches.

Synthèse Bibliographique

I.1 Xeroderma Pigmentosum.

Les premiers cas décrits de *Xeroderma Pigmentosum* remontent à 1863 par **le Docteur Mortiz Kaposi** dermatologue hongrois qui lui donna son nom. « **Xeroderma** » signifie « peau sèche » et le terme « **Pigmentosum** » fait référence à l'aspect très pigmenté de la peau exposé au soleil (*Encyclopédie Orphanet Grand Public.,2008*), elle est appelée aussi la maladie des enfants de la lune puisque que ce sont les enfants qui subissent.

Xeroderma Pigmentosum est une maladie génétique autosomique récessive caractérisée par une sensibilité accrue à l'ultraviolet et à la lumière du soleil (*Ozoux., 2013*) due à une inefficacité de système de réparation de l'ADN endommagé.

Pour la plupart des enfants elle est caractérisée par des cancers cutanés et de dégénérescences neurologiques, des changements pigmentaires oculaires tels que des taches de rousseur, photophobie, conjonctivite. (*Bhutto et Kirk., 2008*).

Xeroderma Pigmentosum constitue un groupe de maladies, on dénombre en tous huit gènes lorsqu'ils sont mutés entrainent un *Xeroderma Pigmentosum (Ozoux, 2013),* elle est subdivisée en huit groupes de complémentation, selon le gène affecté : XP classique (XPA à XPG) et XP variant (XPV).

La gravité des symptômes, l'âge de leur apparition dépend du gène muté. Dans les formes les plus graves de la maladie, outre l'hypersensibilité à la lumière, les malades peuvent présenter des neuropathies et des anomalies du développement.

I. 2 Epidémiologie.

La prévalence de *Xeroderma Pigmentosum* est estimée à 1/1 000 000 aux **Etats-Unis** et en **Europe** (*Kleijer et al., 2008*), alors que certaines populations présentent une prévalence beaucoup plus élevée comme au **Japon** où elle est estimée à 1/40 000 à 1/100 000(*Hirai et al., 2006*).

En Afrique du Nord (Tunisie, Algérie, Maroc, Libye et Egypte) et au Moyen-Orient (Turquie et Syrie) la prévalence est également augmentée, notamment dans les communautés où la consanguinité est fréquente (*Kraemer et DiGiovanna.,2016*).

Dr Kamel Boucherma a indiqué "...A ce jour, il n'existe pas des statistiques exactes en Algérie qui renseignent sur le nombre de personnes atteintes du *Xeroderma Pigmentosum* mais il dépasse toutefois les 500 cas...".

ALGER, un spécialiste en ophtalmologie à l'hôpital Beni Messous (Alger) a annoncé" ... Plus de 500 enfants souffrant de *Xeroderma Pigmentosum* ou « enfants de la lune » ont été recensés au plan national...".

Dr Boucherma avant de souligner que les enfants atteints de cette maladie dans les régions éloignées n'ont pu être recensés a précisé" ...Ce chiffre a été établi à partir des enfants soumis à des traitements dans les différents hôpitaux du pays...".

D'après une étude qui a été faite en Algérie les groupes XPA et XPC sont les plus répondus en Afrique du Nord (*Bensenouci et al.,2016*).

I.3 Symptomatologie.

Xeroderma Pigmentosum (XP) doit être suspecté chez les personnes présentant les symptômes suivants : peau, œil, système nerveux et antécédents familiaux (*Kraemer et DiGiovanna.,2016*).

Peau.

-Sensibilité aiguë au soleil.

-Pigmentation marquée des taches de rousseur sur le visage avant l'âge de deux ans.

-Cancer de la peau au cours de la première décennie de la vie.

➢ Yeux.

-Photophobie avec injection conjonctivale importante.

-Une kératite sévère, entraînant parfois une opacification cornéenne et une vascularisation.

-Augmentation de la pigmentation des paupières avec perte de cils.

-Atrophie de la peau des paupières.

Système neuronale.

-Diminution ou absence des réflexes d'étirement tendineux profond. Les vitesses d'EMG et de conduction nerveuse peuvent montrer une neuropathie axonale (ou mixte).

-Perte auditive progressive.

-Microcéphalie acquise. La tomodensitométrie et l'IRM du cerveau peuvent montrer des ventricules agrandis avec l'amincissement du cortex et l'épaississement des os du crâne.

-Trouble cognitif progressif.

I.4 Diagnostic.

Le diagnostic du XP repose sur des observations cliniques de la peau, des yeux et de possibles manifestations neurologiques. Lorsque de jeunes enfants consultent pour une extrême réactivité suite à une exposition au soleil avec l'apparition de nombreuses taches de rousseur sur le visage, le médecin peut suspecter un cas de XP, des tests de réparation de l'ADN sont réalisés après exposition aux UV(*Bensenouci.,2016*).

I.4.1 Tests biologiques.

-UDS, synthèse d'ADN non programmée.

-Mesure de l'hypersensibilité cellulaire aux rayons ultraviolets.

-Le test HCR.

I.4.2 Diagnostic de la biologie moléculaire.

Il est possible d'identifier aisément les mutations des gènes XP soit par PCR-RFLP en utilisant plusieurs enzymes de restriction ou bien par PCR-SSCP pour détecter de nouvelles mutations ponctuelles. La biologie moléculaire nécessite l'utilisation de la radioactivité (*Orita et al., 1989*).

D'autres techniques plus performantes et qui sont l'actualité d'aujourd'hui telles que le séquençage et les outils bioinformatiques.

I.5 Etiologie.

Le XP est dû à des mutations de huit gènes impliqués dans la réparation de l'ADN. Sept d'entre eux, XPA à XPG sont impliqués dans la réparation par excision de nucléotides (NER).

Le gène XPV (POLH) code une ADN polymérase êta qui permet la réplication de l'ADN endommagé par les UV(*Fassihi.,2011*).

I.6 Lésions sur l'ADN et leurs réparations.

I.6.1 Lésions sur l'ADN.

Divers types de lésions apparaissent sur l'ADN elles peuvent être d'origine endogène ou exogène tels que les agents physiques ou chimiques, les cancérogènes chimiques, les radiations ultraviolets ou ionisantes qui entrainent l'apparition des deux lésions majeures entre deux pyrimidines adjacentes (les dimères pyrimidines (6-4) pyrimidines) et de nombreuses lésions mineures (*Ziani., 2014*).

Afin de maintenir l'intégrité du génome, il existe différents systèmes de réparation prenant en charge de façon spécifique une ou plusieurs lésions.

I.6.2 Systèmes de réparation.

Les cassures doubles brins DSB sont induites par les radiations ionisantes et les rayons X et par la réplication de certaines cassures simple brin.

La détection d'un DSB déclenche une cascade de réaction ayant pour but l'arrêt de cycle cellulaire et le recrutement de facteur de réparation (*Ziani., 2014*).

La réparation des DSB se fait par deux principales voies.

a. Recombinaison non homologue par jonction.

La liaison de l'héterodimére KU70-KU80 aux extrémités de l'ADN, suivie par le recrutement et l'activation de la kinase DNA.PKcs dont le rôle est de maintenir à proximité les deux extrémités de cassures, et de recruter et phosphoryler Artenis, ce qui stimule son activité exonucléasique nécessaire à la préparation des extrémités de l'ADN, avant ligation par le complexe XRCC4-ligase IV (*Panier et Boulton, 2014*) (Figure 1a).

b. Recombinaison homologue.

-Cette voie implique le recrutement du complexe MRN constitue des trois molécules Mre11, Nbs1 et Rad50 au niveau des extrémités de la cassure. La phosphorylation de ce complexe par ATM stimule son activité 5'-3'exonucleasique et permet la formation de deux extrémités simple brin 3' qui sont immédiatement protégées par recouvrement de RPA (*Ozoux., 2013*).

-RAD51, en collaboration avec ses paralogues (RAD51B, C, D, XRCC2 et XRCC3), RAD52 et RAD54, qui forment des nucleofilaments autour de ces mêmes extrémités, permet le déplacement de RPA. Ces étapes sont dépendantes des protéines BRCA1 et BRCA2(*Ozoux., 2013*).

-Rad51 par son activité recombinase permet ensuite les étapes de reconnaissance de la séquence homologue sur la chromatide sœur et l'invasion de brin. La nouvelle synthèse de brin est induite à l'extrémité 3' de chaque brin et s'étend au-delà de l'endroit de la lésion. Elle donne naissance à une structure intermédiaire appelée **jonction de Holliday** dont la particularité nécessite l'action d'enzymes spécifiques, les resolvases, pour permettre la restauration des deux fragments d'ADN originaux (*Ozoux., 2013*) (Figure 1b).

Figure 1: Réparation des cassures double brin.

1a- recombinaison non homologue par jonction NHEJ, 1b-Réparation par recombinaison homologue HR et (*Panier and Boulton., 2014*). Une excision de l'altération et le remplacement.

a. Réparation d'un mésappariement.

Cette voie de réparation est activée par la présence des bases mal appariées provenant des erreurs d'incorporation par les ADN polymérases, et des insertions/délétions (d'une à plusieurs bases) résultant de glissements réplicatifs au niveau des séquences répétitives, ou lors de recombinaisons. Elle est organisée en quatre étapes principales (Figure 2) :

- Reconnaissance du mésappariement : L'hétérodimère hMutSα (hMSH2/6) reconnait les mésappariements et les insertions d'une base, et le dimère hMutSβ (hMSH2/3) les insertions/délétions de plusieurs bases (*Larrea et al*, 2010)
- Recrutement d'autres facteurs MMR : L'hétérodimère MutLa (Hmlh1/Hpms2) permet le recrutement des autres protéines impliquées dans les phases d'excision et de resynthèse (PCNA, exo nucléase 1, RPA, RFC, polδ, ligase I) Il interagit aussi avec les complexes MSH et la machinerie de réplication, ce qui est important pour la discrimination du brin néo synthétisé : pour le brin direct au cours de la réplication (*Ziani., 2014*).
- Identification du brin (néo synthétisé) portant l'erreur et dégradation au niveau du mésappariement (*Ziani.*, 2014).
- Resynthèse du brin excisé et ligation : PCNA oriente l'incision induite par hMutLα et stimule son activité endonucléase. Pour le brin indirect, il a été proposé que la discrimination se fasse par la reconnaissance des terminaisons (4 des fragments d'Okazaki existant) (*Ziani., 2014*).

Figure 2: Mécanisme de réparation par mésappariement MMR.

(Ziani, 2014).

b. Réparation par excision de base.

Ce mécanisme de réparation de l'ADN intervient principalement dans la réparation des lésions oxydatives liées au métabolisme cellulaire, mais prend aussi en charge les cassures simple brin induites par les rayonnements ionisants.

Dans le système BER (Réparation par excision de base), des glycosylases spécifiques enlèvent de l'ADN les bases azotées endommagées. Les sites apuriniques/apyrimidiques sont excises, et l'intervalle simple brin (de 1 à 8 nucléotides) est comblé par une ADN polymérase. Ce système répare principalement les adduits de petites tailles (alkylation, oxydation et désamination) et quelques mésappariements pouvant provenir des dommages chimiques ou de l'incorporation erronée d'uracile dans l'ADN (U/G, T/G et peut-être C/C) (*Ozoux., 2013*).

c. Réparation par excision de nucléotide.

-Le système NER (Réparation par excision de nucléotide) cible plusieurs types de lésions, incluant les 6-4PP générées par les ultraviolets. La caractéristique commune a ces lésions est la génération d'une distorsion de la double hélice d'ADN, ce qui permet leur reconnaissance par le système NER (*Gillet et Sharer, 2006*)

-Il existe deux voies de réparation NER, la GG-NER qui agit sur la totalité du génome et la TC-NER qui répare les lésions apparaissant sur les régions activement transcrites, ces deux voies se différentient par l'étape de reconnaissance de la lésion de l'ADN et se rejoignent ensuite en un mécanisme en commun, ouverture de l'ADN autour de la lésion, double incision du brin endommagé, resynthèse et ligation. (**Ziani.,2013**) (Figure 3).

-La reconnaissance des dégâts pendant TC-NER ne nécessite pas de XPC, mais se produit lorsque la machine de transcription est bloquée sur le site de la blessure. Le complexe ARN polymérase bloqué est déplacé afin de permettre aux protéines NER d'accéder à l'ADN endommagé. Ce déplacement est aidé par l'action des protéines CSA et CSB, ainsi que d'autres facteurs spécifiques au TC-NER. Les étapes suivantes de GG- et TC-NER se déroulent de manière essentiellement identique. XPA et le RPA hétérotrimérique se lient alors sur le site de blessure et d'autres aides à la reconnaissance des dégâts.

-Ensuite, les hélicases XPB et XPD, composants du facteur de transcription multi-sous-unités TFIIH dévoilent le duplex ADN au voisinage immédiat de la lésion pour l'enzyme RNA Polymérase-II pour commencer la transcription. Les Endonucléases XPG et ERCC1 (Excision Repair Cross-Complementing Group-1) / XPF clentent ensuite un brin de l'ADN aux positions 3 et 5 du dommage respectivement, générant un oligonucléotide d'approximativement 30 bases contenant la lésion. Cet oligonucléotide est déplacé, ouvrant la voie à la synthèse de la réparation des écarts (réalisée par DNA Pol Delta / Epsilon, ainsi que plusieurs facteurs d'accessoires de réplication). Enfin, le nick dans le brin réparé est scellé par une ADN Ligase, complétant ainsi le processus NER(*Hanawalt.,2000*).

Figure 3: Modèle du mécanisme de réparation par excision de nucléotide NER.

(<u>https://corporate.qiagen.com/</u>).

I.7 Physiopathologie.

Les huit groupes de *Xeroderma Pigmentosum* sont dus à des mutations au niveau de système de réparation par excision de nucléotide NER.

I.7.1 Xeroderma Pigmentosum groupe de complémentation XPA.

Le groupe de complémentation correspond à une forme sévère de XP. Sa prévalence globale est inconnue mais il représente 25% de tous les cas de XP et il s'agit de la forme la plus courante de XP au **Japon**. Les patients présentent les lésions typiques du XP (photosensibilité de la peau avec sensation de brulure, taches de rousseur, et cancers de la peau) associées à des anomalies des troubles du système nerveux central et périphérique, parfois très sévères (détérioration cognitive, dysarthrie, troubles de l'équilibre, aréflexie). Des retards de croissance et du développement sexuel peuvent également être observés chez ces patients (*Kanada et al.,1990*).

Figure 4: Localisation chromosomique du gène XPA

(Gene Cards : <u>http://www.genecards.org/</u>).

I.7.2 Xeroderma Pigmentosum groupe de complémentation XPB (ERCC3).

Le groupe de complémentation B est un sous-type extrêmement rare de XP. Cette maladie autosomique récessive est décrite chez moins de 10 familles.

Certains patients XPB présentent les caractéristiques classiques du XP (photosensibilité de la peau avec brulures et taches de rousseur, tumeurs cutanées et oculaires) avec une gravite variable et de légères anomalies neurologiques. D'autres combinent les caractéristiques classiques du XP avec des manifestations systémiques et neurologiques du syndrome de Cockayne (CS) telles que petite taille, perte d'audition bilatérale et hyperreflexie (complexe XP/CS). XPB est due à des mutations dans le gène XPB (ERCC3), impliqué dans le mécanisme de réparation par excision de nucléotides (NER) (*Fassihi.,2011*).

Figure 5: Localisation chromosomique du gène ERCC3

(Gene Cards : : <u>http://www.genecards.org/</u>).

I.7.3 Xeroderma Pigmentosum groupe de complémentation XPC.

Le groupe de complémentation C est le sous-type le plus fréquent de XP dans la population caucasienne. Les patients représentent environ 25% de tous les cas de XP et plus de 50 cas de XPC ont été rapportés dans la littérature.

Les patients présentent des lésions de la peau typique du XP (taches de rousseur progressives, sècheresse de la peau, cancers de la peau, tumeurs malignes oculaires), mais en général ils ne présentent aucune réactions aigues au soleil (types coup de soleil). Par ailleurs, les patients XPC ne souffrent pas de troubles neurologiques. La maladie est due à des mutations dans le gène XPC (locus 3p25), impliqué dans la reconnaissance des dommages à l'ADN lors de la NER. La transmission est autosomique récessive(*Fassihi.,2011*).

Figure 6: Localisation chromosomique du gène XPC

(Gene Cards : : <u>http://www.genecards.org/</u>).

I.7.4 Xeroderma Pigmentosum groupe de complémentation XPD(ERCC2).

Le groupe de complémentation D est un sous-type de XP qui représente environ 15% des cas de XP. Plus de 30 cas ont été rapportés dans la littérature pour cette maladie dont la transmission est autosomique récessive. Il s'agit d'une forme cliniquement hétérogène qui présente les

manifestations typiques du XP (photosensibilité de la peau avec sensation de brulure, taches de rousseur, sécheresse de la peau, cancers de la peau) associées ou non à des anomalies neurologiques de gravite variable. Certains patients XPD combinent les caractéristiques classiques du XP avec des manifestations systémiques et neurologiques du syndrome de Cockayne (complexe XP/CS), d'autres présentent encore des manifestations de la trichothiodystrophie (syndrome XP/TTD). L'affection XPD est provoquée par des mutations dans le gène XPD (ERCC2) (locus 19q13.2-q13.3), impliqué dans la phase d'ouverture de la molécule d'ADN lors le NER(*Fassihi.,2011*).

(Gene Cards : : http://www.genecards.org/).

I.7.5 Xeroderma Pigmentosum groupe de complémentation XPE(DDB2).

Le groupe de complémentation E est un sous-type extrêmement rare de XP, moins de 10 cas ont été rapportés dans la littérature. La transmission est autosomique récessive. Les patients présentent des symptômes légers du XP et aucune anomalie neurologique. Comme leurs symptômes cutanés sont légers, les patients XPE n'ont pas souvent une photo protection rigoureuse et développent des cancers cutanés graves. La maladie est due à des mutations dans le gène XPF (DDB2) (locus 11p12-p11), impliqué dans l'étape de reconnaissance des dommages lors de la réparation de l'ADN par le NER(*Fassihi.,2011*).

Figure 8: Localisation chromosomique du gène DDB2 (*GeneCards : :* <u>http://www.genecards.org/</u>).

I.7.6 Xeroderma Pigmentosum groupe de complémentation XPF(ERCC4).

Le groupe de complémentation F est un sous-type de XP de sévérité généralement moyenne et dont la transmission est autosomique récessive. Il est représenté presque exclusivement dans la population japonaise. Les patients XPF représentent 6% de tous les cas de XP et moins de 15 cas ont été rapportés dans la littérature. La plupart des patients montrent des signes cutanés très légers et aucune maladie oculaire ou neurologique. La maladie est due à des mutations dans le gène XPF (ERCC4) (locus 16p13.3-p13.13), impliqué dans l'étape de coupure du brin d'ADN endommage lors du mécanisme de réparation de l'ADN par NER (*Fassihi.,2011*).

Figure 9:Localisation chromosomique du gène ERCC4

(GeneCards : : <u>http://www.genecards.org/</u>).

I.7.7 Xeroderma Pigmentosum groupe de complémentation XPG(ERCC5).

Le groupe de complémentation G est un sous-type extrêmement rare de XP. Les patients souffrant de XPG représentent 6% de tous les cas de XP et environ 10 cas ont été rapportés dans la littérature, la plupart en Europe. Les manifestations cliniques peuvent varier. Certains patients présentent un phénotype léger de XP (sensibilité aux UV, lésions cutanées, hyper ou hypo-pigmentation et une incidence accrue de cancer de la peau), d'autres combinent les symptômes de XP avec des manifestations systémiques et neurologiques du syndrome de Cockayne (complexe XP/CS). La maladie est autosomique récessive, elle est due à des mutations dans le gène XPG (ERCC5) (locus 13q33), impliqué dans l'étape de coupure du brin d'ADN endommagé lors de la réparation de l'ADN par NER (*Fassihi,2011*).

Figure 10:Localisation chromosomique du gène ERCC5

(GeneCards : : <u>http://www.genecards.org/</u>).

I.7.8 Xeroderma Pigmentosum groupe de complémentation XPV(POLH).

Xeroderma pigmentosum Variant (XPV) est un sous-type de XP à symptomatologie légère. Pour cette raison, il est souvent diagnostiqué plus tardivement, à la fin de l'adolescence ou vers l'Age de 20 ans. Il est observé chez environ 20% des patients XP et environ 50 cas ont été rapportés dans la littérature, la transmission est autosomique récessive(*Fassihi.,2011*).

Les patients XPV présentent des lésions de la peau, généralement au niveau des parties du corps exposé au soleil, qui évoluent en cancer de la peau aux environ de 20-30 ans avec une fréquence 1.000 fois plus élevée que celle de la population générale. Aucune manifestation neurologique n'est observée. La maladie est due à des mutations dans le gène POLH (XPV) (locus 6p21.1-p12) codant pour l'ADN-polymérase êta (pol-eta) qui est chargé de synthétiser la zone excisée et restaurée la continuité de l'ADN lors de la réparation par NER. *(Kraemer et DiGiovanna,2016).* Les cellules XP-V sont en effet capables de mener à bien le processus de réparation par excision de nucléotides mais présentent un défaut dans la réplication des ADN endommagés par les ultraviolets.

Figure 11:Localisation chromosomique du gène de POLH

(GeneCards : : <u>http://www.genecards.org</u>/).

Groupe	Gène muté	Chromosome/ Locus	Fréquence	Sévérité
XPA	XPA	9/9q22.32	25%	Très sévère avec anomalies neurologique importantes.
XPB	ERCC3	2/2q21.2	Très rare (-de 10 cas au monde)	Recouvrement avec le syndrome de Cockayne.
XPC	XPC	3/3p25	25%	Absence de problèmes neurologiques
XPD	ERCC2	19/19q13.3	15%	Toujours accompagné d'anomalies neurologiques plus ou moins importantes.
XPE	DDB2	11/11p12	Rare	Symptômes relativement légers sans troubles neurologique.
XPF	ERCC4	16/16p13.3	6%	Réparation de l'ADN est totale mais extrêmement lente.
XPG	ERCC5	13/13q33.1	6% Très rare	Recouvrement avec le syndrome de Cockayne.
XPV	POLH	6/6p12	21%	Symptômes en fonction du type de peau. Pas d'affection neurologique.

Tableau I: Les groupes de complémentation de XP (Fassihi.,2012).

*Dans cette étude on s'intéresse sur le gène XPC qui est le plus répondus en **Afrique du Nord** et plus précisément sur la protéine XPC qui a un rolé très important dans le système de réparation par excision de nucléotifde NER.

I.8 Protéomique de XPC.

XPC est une protéine de 940 acides aminés, et une masse de 105,953 Da de la famille des Protéine de réparation d'ADN Rad4 avec des domaines qui peuvent se lier à un ADN endommagé et à des facteurs de réparations. Elle peut être En complexe avec RAD23B et CETN2 dans la voie GG-NER et avec TFIIH dans la voie TR-NER (*Araki et al.,2001*)

I.8.1 Reconnaissance des dégâts d'ADN dans GG-NER.

Les dommages à l'ADN sont reconnus par deux complexes de protéines. Le premier complexe se compose de XPC/RAD23A ou RAD23B ou CETN2. Ce complexe teste l'hélice d'ADN et reconnaît les dommages qui perturbent l'appariement normal de la base, ce qui entraîne la liaison du complexe XPC/RAD23 ou CETN2 au brin d'ADN non endommagé (*Oh et al.,2011*) (Figure12).

Figure 12: Protéines qui interagissent avec XPC dans la reconnaissance des dégâts de l'ADN (https://www.rcsb.org/pdb/home/home.do).

(a): Structure de la protéine RAD23A en bleu avec le code pdb 1tp4

(b): Structure de la protéine RAD23B en vert avec le code pdb 1pve

(c): Structure du complexe Centrine-XPC (centrine en bleu et le fragment de XPC en rouge) avec le code pdb 2ggm.

Le deuxième complexe est une UV-DDB d'ubiquitine ligase qui se compose de DDB2, DDB1, CUL4A ou CUL4B et RBX1. Le complexe UV-DDB est nécessaire pour la reconnaissance des dommages causés par l'ADN induit par UV et peut contribuer à la rétention du complexe XPC : RAD23 : CETN2 sur le site de dommages à l'ADN. Le complexe UV-DDB lie le brin d'ADN endommagé (*Oh et al.,2011*).

I.8.2 Complexe de formation d'incision à TR-NER.

Après que le complexe XPC et le complexe UV-DDB lient un ADN endommagé, un facteur de transcription TFIIH est recruté sur le site de réparation d'excision nucléotidique (NER) (*figure 13*) (*Riedl et al., 2003*). DNA hélicases ERCC2 (XPD) et ERCC3 (XPB) sont des sous-unités du complexe TFIIH. ERCC2 déroule l'ADN autour des dégâts en concert avec l'activité ATPase d'ERCC3, créant une bulle ouverte (*Coin et al., 2007*). Simultanément, la présence du dommage est vérifiée par XPA (*Camenisch et al., 2006*). Deux endonucléases d'ADN, ERCC5 (XPG) et le complexe de ERCC1 et ERCC4 (XPF) sont recrutés dans la structure de bulle ouverte pour former le complexe d'incision qui accise l'oligonucléotide endommagé du brin d'ADN affecté (*Orelli et al., 2010*).

Figure 13: Structure du complexe entre XPC (en rose) et TFIIH (en vert) (code pdb : 2rvb) (<u>https://www.rcsb.org/pdb/home/home.do</u>).

II.1 Matériels

Sur les huit gènes connus du *Xeroderma pigmentosum*, nous avons choisi de travailler sur le gène XPC qui est le plus répondu dans les pays du Maghreb. La liste des SNPs que nous exploitons sont tirés de résultats de séquençage d'ADN de quelques patients tunisiens présentés sous formes des SNPs de des CNVs en position génomiques.

II.2 Méthodes

La méthodologie de notre travail est résumée comme suit selon l'organigramme présenté dans la figure 14 :

En premier lieu, nous avons utilisé des plates formes et des bases de données bioinformatiques pour avoir les listes des SNPs.UCSC a permis d'identifier tous les SNPs du gène XPC connues en utilisant *Génome Browser* et qui par la suite de déterminer ceux qui sont annotés dans *Table Browser*. Le filtrage du fichier du séquençage d'ADN (chromosome 3 : gène XPC) a donnée quelques rs en tirant toutes les informations nécessaires de ces derniers dans la base de données SNP de NCBI. Notre protéine d'intérêt est la protéine XPC dont le code d'accession de sa séquence est Q01831 dans la base de données protéiques Uniprot.

Dans une deuxième partie, nous nous sommes intéressés à la prédiction de la structure tridimensionnelle du XPC par différentes approches de modélisation moléculaire. Un blastp de la séquence de la protéine de références XPC (code d'accession Q011831) contre la banque de données PDB a été effectué pour la recherche de similarité de séquences cible (XPC)/ patrons (séquences dont la structure est connue).

La prédiction de la structure 3D de XPC s'est faite par trois programmes qui se basent sur trois approches différentes :

-Swiss-Model : Méthode de prédiction 3D par modélisation comparative.

-Phyre2 : Méthode de prédiction 3D par reconnaissance de repliements.

-I-TASSER : Méthode de prédiction 3D par *ab initio* combinée à la méthode de reconnaissance de repliements.

Per ailleurs, ^{*}d'après la base de données STRING, la protéine XPC interagit avec plusieurs protéines. Nous nous sommes donc intéressés à l'étude de

*l'amarrage protéines-protéine par le programme ClusPro pour : recherches d'éventuels complexes entre la structure de XPC prédites et la structure des protéines connues en interaction avec cette dernière.

*Les structures issues de PDB, et des modèles d'XPC prédits par SwissModel, Phyre2 et I-TASSER ont été visualisées et leur similarité structurale après superposition a été mesurée après alignement par Pymol.

Dans une troisième partie * Interpro a été utilisé pour déterminer la localisation des rs associés à la maladie XP issue du *Table Browser*. Ces rs ont été étudiés sur le modèle prédit de XPC afin d'analyser l'impact de ces derniers sur les propriétés de la protéine (sa fonction, formation de complexes).

Figure 14 : Méthodologie de notre travail de fin de cycle.
Organisation et traitement des échantillons

Le fichier de séquençage sur lesquels on vas travailler contient 299141 SNP et CNV.Après avoir exclue les CNVs, nous avons filtré par EXCEL les SNPs du chromosome 3 positionnés dans l'intervalle [14145147-14178672] là où se positionne le gène XPC confirmé par NCBI.

Notre travail se subdivise en deux parties une pour étudier les SNPs du gène XPC et l'autre pour la prédiction de la structure 3D de la protéine XPC.

II.2.1 Partie 1 : Listes des SNPs

Connaissant la base de données UCSC qui comporte plusieurs gènes et une masse importante d'information, nous avons opté pour travailler avec UCSC pour ressortir les SNPs connus du gène XPC. L'objectif est d'avoir la lista des SNPs du gène XPC dans *Génome Browser* ensuite ceux qui sont annotés dans *Table Browser*.

a) UCSC

Le site universitaire de UCSC (<u>https://genome.ucsc.edu/</u>) est organisé par l'Université de Californie Santa Cruz (UCSC). Il s'agit d'une offre d'un site web interactif avec accès aux données de la séquence de génomes d'une variété d'espèces de vertébrés et invertébrés et principaux organismes modèles, intégrés à une vaste collection d'annotations alignés.

Figure 15 : Page d'accueil UCSC (<u>https://genome.ucsc.edu/</u>).

-Génome Browser

Génome Browser est utilisé pour déterminer la liste des SNPs. Notre recherche a été limité en utilisant les critères suivants :

All SNPs (147); Common SNPs (147); Flagged SNPs (147): full (Figure 16).

•		Variation	1		refresh
Common SNPs(147) full	All SNPs(147) full	All SNPs(146) hide	All SNPs(144) hide	All SNPs(142) hide	All SNPs(141) hide •
Common SNPs(146) hide	Common SNPs(144) hide	Common SNPs(142) hide •	Common SNPs(141) hide	DGV Struct Var hide •	Flagged SNPs(147) full
Flagged SNPs(146)	Flagged SNPs(144	Elagged SNPs(142)	Flagged SNPs(141) <u>Mult. SNPs(147)</u> hide	Mult. SNPs(146)
Mult. SNPs(144) hide	Mult. SNPs(142) hide	Mult. SNPs(141) hide	niuc .		

Figure 16 : Interface de *Génome Browser* permettant la sélection de paramètres de filtre des SNPs (<u>https://genome.ucsc.edu/cgi-</u>

 $\label{eq:binhgTracks} b=hg38\&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType\\ e=default&virtMode=0&nonVirtPosition=&position=chr3%3A14145147-\\ 14178783&hgsid=607250681_7fs3hq8iwWu2HXHIIfAptFnQeazs \)$

-Table Browser.

 Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables) fournit une interface graphique puissante et flexible pour interroger et manipuler les tableaux d'annotations de *Génome*

 Browser. Etant donné que Table Browser utilise la même base de données que Génome

 Browser, les deux vues sont toujours cohérentes.

Les rs recherchés ont été chargés dans Table Browser (Figure 17).

Figure 17 : Page d'accueil de Table Browser et de paramètres de filtrage des SNPs annotés

(https://genome.ucsc.edu/cgi-bin/hgTables)

b) Le serveur NCBI.

C'est une base de données(<u>https://www.ncbi.nlm.nih.gov/</u>).qui permet de mener des recherches en bioinformatique et d'analyser des données *via* des logiciels. Elle permet la diffusion des travaux de recherche dans le domaine biomédical. Ce serveur constitue une toile communicante vers d'autres serveurs spécialisés dans la génomique fonctionnelle ou comparative.

Vational Center for Sotechnology Information	atabases T			Search
NCBI Home	Welcome to NCBI			Popular Resources
Resource List (A-Z)	The National Center for Biotechnol	ogy information advances science an	d health by providing access to	PubMed
All Resources	biomedical and genomic informatio	n.		Bookshelf
Chemicals & Bioassays	About the NCBI Mission Organ	nization NCBI News & Blog		PubMed Central
Data & Software				PubMed Health
DNA & RNA	Submit	Download	Learn	BLAST
Domains & Structures	Deposit data or manuscripts	Transfer NCBI data to your	Find help documents, attend a	Nucleotide
Senes & Expression	into NCBI databases	computer	class or watch a tutorial	Genome
Genetics & Medicine				SNP
Genomes & Maos				Gene
Homology	T			Protein
Literature				Publinem
Proteins				
Sequence Analysis				NCBI News & Blog
Taxonomy	Develop	Analyze	Research	Yellow fever mosquito, 6 other organism
Training & Tutorials	Use NCBI APIs and code Ibraries to build applications	Identify an NCBI tool for your	Explore NCBI research and	In July RefSeq genome annotations 17 Aug 20
Variation	toraries to cone approactors	Gata analysis task	consourance projects	In July, the NCBI Eukaryotic Genome
				Annotation Pipeline released new
	-=	3 <u>8</u> 6	<u>1</u>	August so ricel Minute: NCBI Hacksthons, a framework for rapid protetyping of pipelines for bioinformatic biomedical informatics and genomics 17 Aug 20 September 2017: NCBI to present EDirect workshop at NLM Minut
				On September 18, 2017, NCBI staff will offer a workshop on EDirect, NCBI's su

Figure 18 : Page d'accueil de NCBI (https://www.ncbi.nlm.nih.gov/).

Ce serveur a été utilisé dans le but de trouver le détail de nos SNPs identifiés, pour vérifier les résultats issus de traitement des SNPs du fichier des résultats de séquençage, les SNPs correspondant au gène XPC et les détails des rs annotés dans *Table Browser*.

II.2.2 Partie 2 : Modélisation moléculaire de XPC

Dans une deuxième partie de notre travail, nous nous sommes intéressés à prédire et à étudier la structure 3D de XPC. En effet, une voie permettant la compréhension de la fonction biologique et des propriétés d'une protéine passe par l'étude de sa structure tridimensionnelle (3D) *(Khemili., 2013)*.

1. Prédiction de structure 3D de XPC

a) La séquence protéique XPC

La séquence protéique XPC a été tirée de la base de données Uniprot (<u>http://www.uniprot.org</u>) avec le code d'accession « Q01831 », elle contient 940 acide aminés avec une masse de 105,953 Da.

Figure 19 : Page d'accueil de Uniprot (<u>http://www.uniprot.org/</u>).

b) Recherche de similarité cible/patrons

La recherche de similarité entre la cible (séquence de XPC Q0131 dont la structure est inconnue) avec les éventuels patrons trouvés dans la *Protein Data Bank* PDB (séquences dont la structures 3D a été déterminée expérimentalement) a été effectuée grâce au programme Blastp. Cette étape est cruciale pour le choix de la méthode de modélisation moléculaire qui pourrait être utilisée pour la prédiction de la structure 3D de notre protéine d'intérêt XPC (Q01831).

1-Blastp

Un outil de recherche d'alignement locale de base (<u>http://blast.ncbi.nlm.nih.gov/Blast.cgi</u>). Il trouve des régions de similarité locale entre les séquences, compare les séquences de nucléotides ou de protéines aux bases de données séquentielles et calcule la signification statistique des correspondances.

NIH) U.S. Nation	al Library of Medicine NCBI National Center 1	or Biotechnology Information			Signina	NCBI
BLAST * » bla	astp suite		Home	Recent Results	Saved Strategies	Help
		Standard Protein BLAST				
blests blaste blast	a minutu minutu					
Enter Query S	Sequence	BLAST# programs search protein databases using a protein query. more-			Resef page Bookman	
Enter accession i	number(s), gi(s), or FASTA sequence(s) 🤬	Cane Covery subnange 📦 From To				
Or, upload file Job Title	Choisissez un fichier Aucun fichier choisi 🤬					
🗄 Align two or m	Enter a descriptive title for your BLAST search 😜 ore sequences 🥹					
Choose Sean	ch Set					
Database Organism Optional	Protein Data Bank proteins(pdb)	y 20 top tara will be shown.				
Exclude	B Models (XM/XP) Uncultured/environmental	sample sequences				
Entrez Query		Tes Create custom database				

Figure 20 : Page d'accueil de Blastp.

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastendPAGETYPE=BlastSearchendL INK LOC=blasthome).

2-Collection de structures expérimentales des patrons de la Protein Data Bank

Cette ressource est alimentée par l'archive des données de Protein Data Bank (<u>https://www.rcsb.org</u>) sur les formes 3D des protéines, des acides nucléiques et des assemblages complexes qui aident à comprendre tous les aspects de la biomédecine et de l'agriculture, de la synthèse des protéines à la santé et à la maladie

Figure 21 : Page d'accueil de PDB. (<u>www.rcsb.org</u>)

c) Prédiction de la structure 3D de XPC

La prédiction de la structure de XPC a été effectué en eu utilisant trois programme SwissModel, Phyre2 et I-TASSER qui se basent sur trois approches de modélisation moléculaires différentes

1-Swiss-Model

SWISS-MODEL (https://swissmodel.expasy.org/) est accessible *via* le serveur Web ExPASy, il se base sur ma méthode de prédiction par modélisation comparative. La prédiction de la structure 3D par la modélisation comparative est fondée sur le fait que deux protéines qui partagent une identité de séquence élevée (plus de 30%) adoptent un même repliement (*Rst,1999 ; Baker and Sali, 2001*). Son principe consiste à aligner la séquence d'une protéine donnée dont la structure est inconnue (cible, dans notre cas la XPC) avec la séquence d'une

ou plusieurs protéines dont la structure a été déterminée expérimentalement par RMN ou Rayons-X (patrons ou références collectées de la PDB) (*Sali and Blundell,1993*). Le serveur Web Swiss-Model prend plus ou moins 30 minutes pour créer des modèles de structure de la cible (en fonction de sa composition en acides aminés)

Start a New Modelling Project					
Target Sequence: (Format must be FASTA, Clustal, plain string, or a valid UniProtKB AC)	Þaste your target sequence here ➡ Upload Target Sequence File				
Project Title:	Untitled Project				
Email:	Optional				
	Search For Templates	Build Model			
	By using the SWISS-MODEL server, you agree to comply with the following t	erms of use and to cite the corresponding articles.			

Figure 22 : Interface d'interaction de la séquence protéique de XPC dans le serveur Swiss-Model (<u>http://swissmodel.expasy.org/interactive</u>)

2-Phyre2

Le programme Phyre2 (Protein Homology/analogY Recognition Engine V 2.0

(http://www.sbg.bio.ic.ac.uk/phyre2)) se base sur la méthode de prédication de structure 3D par la modélisation de reconnaissance de repliements est utilisée pour modéliser par analogie, les protéines qui ont les mêmes repliements que des protéines de structures connues, mais qui n'ont pas de protéines homologues de structure connue. Elle consiste à enfiler la séquence de la cible sur une bibliothèque de repliement afin de déterminer les structures qui correspondent le mieux à la séquence sur la base d'un critère énergétique ou de score. Phyre2 est une suite d'outils disponibles sur le Web pour prédire et analyser la structure, la fonction et les mutations des protéines. L'accent dePhyre2 est de fournir aux biologistes une interface simple et intuitive aux outils de bioinformatique de protéines à la fine pointe de La technologie (*Kelly et al ,2015*). Le serveur Web Phyre2 prend plus ou moins 1 heure pour créer des modèles de structures de la cible (en fonction de sa composition en acides aminés)

Phyre ²	Subscribe to Phyre at Google Groups Email: Subscribe Visit Phyre at Google Groups Y Follow @Phyre2server
Protein Homology/analogY Recognition Engine V 2.0	
	🏭 🔩 😢 📈 🍘
Cambridge 2017 Workshop Older Workshops New Phyre2 pape	r Fast structural search with <u>PhyreStorm</u> (beta-testing
E-mail Address	
Optional Job description	
Amino Acid Sequence 📧	A
Or try the sequence finder	
Modelling Mode 📧 Normal 🖭 Intensive 오	
Phyre Search Reset	

Figure 23 : Page d'accueil du Phyre2 . (<u>*Http://www.sbg.bio.ic.ac.uk./phyre2*</u>)

3-I-Tasser

IterativeThreadingASSEmblyRefinement (http://zhanglab.ccmb.med.umich.edu/I-TASSER/), est une approche hiérarchique de la structure des protéines et de la prédiction de la fonction. Le programme I-TASSER se base sur la modélisation *ab initio* ainsi que la reconnaissance de reploiements. Si peu de similarité de séquence cible/patrons est détectée les méthodes *ab initio* sont utilisées pour prédire la structure de la cible à partir de sa séquence en acides aminés en se basant sur leurs interaction physicochimiques (électrostatiques, van der Waals, liaisons hydrogènes, etc...) entre les atomes des résidus (*Cornell et al., 1995*). Ces méthodes se basent sur l'hypothèse que la structure native des protéines correspond à l'énergie libre minimale en fonction de la longueur de la séquence protéique, ce serveur peut prendre 1 journée a 1 semaine pour créer des modèles de structures de la cible.

Fortein Structure & Function Predictions
(The server complete bit explored protections of <u>severo proteins</u> additional of <u>severo testis</u> from <u>1.52 coditiones</u>) (<u>The template library</u> was updated on <u>2017/07/16</u>)
L-TASSER (Iterative Threading ASSEmbly Refinement) is a hierarchical approach to protein structure and function prediction. It first identifies structural templates from the PDB to multiple threading approach LOMETS, with full-length atomic models constructed by Iterative template fragment assembly simulations. Function insights of the target are then derive by threading the 3D models through protein function database <u>BioLP</u> I-TASSER (as Zhang-Server') was ranked as the No 1 server for protein structure prediction in receiption receiption in receiption in receiption in receipting and our members will study and answer the questions asap
[Queue] [Forum] [Download] [Search] [Registration] [Statistics] [Remove] [Potential] [Decoys] [News] [Annotation] [About] [FAQ]
I-TASSER On-line Server (View an example of I-TASSER output):
Copy and paste your sequence below ([10, 1500] residues in EASTA format). Click here for a sample input:
Or upload the sequence from your local computer: Choisissez un fichier Aucun fichier choisi
Email: (mandatory, where results will be sent to)
Password: (mandatory, please click here if you do not have a password)
ID: (optional, your given name of the protein)
Option I: Assign additional restraints & templates to guide I-TASSER modeling.
Option II: Exclude some templates from I-TASSER template library.
Option III: Specify secondary structure for specific residues.
🗭 Keep my results public (uncheck this box if you want to keep your job private. A key will be assigned for you to access the results)
Run I-TASSER Clear form (Please submit a new job only after your old job is completed)

Figure 24 : Page d'accueil de I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER/),

2. Amarrage protéine-protéine

Afin d'étudier les éventuelles interactions de la protéine XPC (code d'accession Uniprot **Q01831**) avec d'autre protéines nous avons interrogé à la base de donnée String

a-String

La base de données STRING (<u>https://string-db.org/</u>)vise à favoriser et fournir une évaluation critique et l'intégration des interactions protéine-protéine y compris direct (physique) et indirect (fonctionnel).

R STRING			Search Download Help My Data
Protein by name	>	SEARCH	
Protein by sequence	>		Single Protein by Name / Identifier
Multiple proteins	>		
Multiple sequences	>		Protein Name: (examples: <u>#1 #2</u> <u>#3</u>)
Organisms	>		I
Protein families ("COGs")	>		Organism:
Examples	>		auto-detect
Random entry	>		
			SEARCH

Figure 25 : Page d'accueil de STRING. (https://string-db.org/)

Cette recherche nous permet de déterminer des interactions de XPC avec d'autres protéines qui ont un rôle crucial dans le système de réparation de l'ADN.

Après avoir recenser les protéines qui pourraient interagir avec notre XPC, le programme Cluspro a été utilisé pour prédire les éventuels complexes entre XPC et ces dernières

b-ClusPro

Cluspro (<u>http://cluspro.bu.edu/login.php</u>) représente le premier programme entièrement automatisé basé sur le Web pour l'amarrage informatique des structures protéiques. Les utilisateurs peuvent télécharger les fichiers de coordonnées de deux structures protéiques *via* l'interface Web de ClusPro ou entrer les codes PDB des structures respectives que ClusPro va ensuite télécharger à partir du serveur PDB.

ClusPro protein-protein docking					
Welcomet	o Cluspro 2.0				
Recent news: ClusPro server featured on the	cover of February 2017 issue of Nature Protocols				
Use Witho	ut an Account				
Use the server without the	e benefits of your own account				
	Or				
	ogin				
Username:					
Password:					
	Login				
	or				
Sign up for an account					
Forgot Password?					
Forgot	Username?				
Retriev	e Username				

Figure 26 : Page d'accueil de ClusPro .(https://cluspro.bu.edu/login.php)

Après avoir déterminer les protéines en interactions avec XPC et leurs structures PDB, une modélisation de ses interactions par ClusPro est ensuite réalisée avec le modèle de structure prédit retenu de XPC.

3. Visualisation moléculaire de XPC

PyMOL (<u>https://pymol.org/dsc/</u>) est un logiciel de visualisation moléculaire, utilisé pour visualiser les structures des protéines étudiées. Grâce à sa fonction « *align* », PyMol a été utilisé pour mesurer la similarité structurale en calculant le « rms » entre les modèles de XPC prédites (XPC-Swiss-Model1, XPC-Phyre2 et XPC-model3-TASSER) les fragments de structure de XPC déterminés expérimentalement tirés de *Protein Data Bank*

La commande « mutagenesis » de Pymol, nous a, en outre, permis d'obtenir des structures d'XPC mutés selon les rs étudiés. Ces structures mutées vont permettre l'analyse de l'impact de la mutation sur les propriétés de la protéine XPC (notamment ses sites de formation de complexe protéine –protéine)

Figure 27 : Page d'application Pymol (mutagenèse)

4. Recherche de domaines protéiques et localisation des SNP(rs)

Pour localiser les rs dans les domaines protéiques de XPC nous avons interrogé à la base de donnée Interpro.

Interpro (https://www.ebi.ac.uk/interpro/) est une ressource qui fournit une analyse fonctionnelle des séquences de protéines en les classant dans les familles et en prédisant la présence des domaines et des sites importants. Pour classer les protéines de cette façon, InterPro utilise des modèles prédictifs, connus sous le nom des signatures, fournis par plusieurs bases de données différentes (appelées bases de données membres) qui composent le consortium InterPro.

♣ EMBL-EBI Services Research Training About us	EMBL-EBI 💮 Hinx
Search InterPro Examples: IPR020406, kinas	e, P51587, PF02032, GO:0007165
Protein sequence analysis & classification	
Home Search Release notes Download About InterPro Help Contact	
By sequence By domain architecture	
InterProScan Sequence for matches against the InterPro protein signature databases, using InterProScan tool. Enter or paste a protein sequence in FASTA format (complete or not - e.g. PMPIGSKERPTFFEIFKTRCNKADLGPISLN), with a maximum length of 40,000 amino acid long. Please note that you can only scan one sequence at a time.	InterPros Scan InterProScan is a sequence analysis application (nucleotide and protein sequences) that combines different protein signature recognition methods into one resource. More about InterProScan.
Advanced options	Reed more help?

Figure 28 : Page d'accueil Interpro (<u>https://www.ebi.ac.uk/interpro/</u>)

Avant de filtrer les SNPs du gène XPC du fichier de séquençage d'ADN, on avait 17 737 SNPs positionnés sur le chromosome 3. En triant ces SNPs, on a trouvé 4 SNPs touchant le gène XPC ce sont : rs4685074 rs1043943, rs2228000 et rs2733533 afin de les étudier nous avons commencé par voir les listes des SNPs connues sur UCSC.

III.1 Liste des SNPs par Génome Browser

Pour avoir la liste des SNPs on a commencé d'abord par répertorier le gène XPC ; les résultats représentent toutes les formes connues de ce gène. Nous avons choisi celles concernant XPC de l'*Homo Sapiens*, auxquelles on accède par le biais du lien : XPC (uc011ave.3) au chr3 :14145147-14178783 : *Homo sapiens Xeroderma pigmentosum*, groupe de complémentation C(XPC), transcrit variant 1, mRNA. (De RefSeq NM_004628) (figure 27). On obtient la localisation chromosomique et tous les variations existantes dans ce gène, des listes des SNPs sont apparues, liste des SNPs communs ; liste Flagged SNPs et liste de tous les SNPs par Génome Browser (Figure 29).

				_				
chn3 (n05 1)	2004 2	01.01	14 214 1 112 12 2			N02 2N04	A06_1	N08 2020
(III'0 (p2011)	002110	21101	1412 1411 010 1210			Neo one-	92011	450 0459

	GENCODE v24 Comprehensive Transcript Set (only Basic displayed by default)
HC69049014 1	Simple Nucleotide Polymorphisms (dbSNP 147) Found in N= 12 of Samples
rs2958057	rs3731135 rs3731125 rs3731125 rs3731125 rs3731125
	3729585 rs3731124 rs3731124 rs13899168
	rs3731134 rs3731123
	rs111754034 rs3731122
	rs73142655
	Simple Nucleotide Polymorphisms (dbSNP 147)
rs2958057	rs3/31135 [rs53/524399] rs555149569 [rs5/31136] rs5/31560390 [rs53/31126] rs7/3142655 [rs5/16138935] rs1/41500190
PS777000000	"S//3064/45 [S5/492/324 FS/5/23280] [S222/999] [S4/3/306] [S506/30161] [S3/31125] [S541059622] [S562050] [S3/29129129] DF245604981 DF21944459] DF244692181 DF25469161 DF234916581 DF234916581 DF2646165181 DF2646165181
ng760105600	
r5375887398	rs17948347 rs745717733 rs144766577 rs3731128 rs552615515 rs536138485 rs34885287 rs768239231 rs571943485
rs773425269	rs3731134 rs3731133 rs764288865 rs74666164 rs5316159451 rs776684232 rs3731122 rs73142657 rs546916131
rs759289363	rs5846828 rs3731132 rs183238369 rs767901942 rs548224230 rs542579409 rs756881327 rs1866094688 rs538807951
rs56399928	rs111754034 rs373835009 rs755168872 rs766615570 rs746752737 rs375430489 rs745595322 rs559051946 rs75667182
rs369237642	rs546874983 rs762722262 rs574493911 rs56267823 rs182891354 rs11924449 rs11928553 rs766766779 rs563359589
rs752253088	rs566775346 rs577133935 rs3731131 rs767903129 rs143160566 rs867030712 rs749217996 rs754274961 rs182449128
rs755623628	rs113974468 rs546128995 rs761488596 rs376228736 rs549692238 rs867461743 rs557222883 rs765678988 rs779793959
rs185615248	rs754358149 rs368046403 rs756324688 rs754395363 rs745681373 rs141523491 rs576141705 rs758577535
rs3731138	rs547510609 rs767652766 rs764132707 rs767593223 rs570222725 rs756687221 rs765518257 rs867237867
rs537220290	rs/64843952 rs18/144399 rs/63943391 rs/627221/54 rs/696/5444 rs/78062311 rs569556125 rs115/11489
rs567486887	P3556666750 (577663656) (5777660) (5777626556) (57756767676) (57766767665) (57766767666) (57756767667676767676
re536133288	Pri/20060000 [3501/7005] [370775220] [370705007] [370217702 [35027700] [370707007] [370707007]
rs762692337	rs778535618 rs548382409 rs759355579 rs757503234 rs770682253 rs116815481 rs760984647 rs13099160
rs770738166	rs142959925 rs764145773 rs2228000 rs370847346 rs776709984 rs566383120 rs180708516 rs559979440
rs776637363	rs777270828 rs753791855 rs768776289 rs371154995 rs771842838 rs538572529
rs553350937	rs554699418 rs769768734 rs776865296 rs553804127 rs775141749 rs1888886837
rs572866821	rs565679648 rs192320527 rs202146693 rs745774896 rs192223068
rs3731137	rs770777415 rs771155424 rs369681862 rs760202814 rs183970682
rs201620843	rs666556624 rs7652636996 rs765965433 rs765965433 rs765911638 rs141659116
rs/461921//	F50647361 F5306416004 F5505416004 F550416004 F550416004
rs771753895	1 00250072155 0 157000000770 15700000770 15700000770
rs112060172	rs776668776 rs778448461 rs551948964 rs159881459
rs773211403	rs748701962 rs185035500 rs371556667 rs763492170
rs531422237	rs750718808 rs112013601 rs367961191 rs190269521
rs764151459	rs768979551 rs746805594 rs780185621 rs764529119
	3729585 rs538921333 rs548181699 rs751653845 rs138248160
1	51309920 rs756484727 rs776268342 rs121965091
	3834 /659 P5 /6 /209381 P5 /6 /200381 P5 /6 /200081 P5 /6 /200081 P5 /6 /200081 P5 /6 /200081 P5 /6
	**000000 P57/0201290 P57/01000/0 P57/0007100
	6/99551 rs75576000 rs7596528 rs75960229
	69455788 rs761993864 rs794729654 rs542195165
	532322193 rs552475162 rs752662715 rs527253664
	181068967 rs147900621 rs759927430 rs547005045
	367666121 rs780345675 rs767970072 rs753271987
	5571336457 rs751819500 rs778474786 rs563809491
	rs54530688 rs749950964 rs145385191
	rs////////////////////////////////////
	LP (44001510 L2 (/4004140 L2 /00052553

Figure 29 : Localisation chromosomique du gène XPC (3p25)

Figure 30 : La liste de tous les SNPs positionnés sur le gène XPC via Génome Browser.

Figure 31 : les listes des SNPs dans Génome Browser.

La première ligne de la Figure 31 représente le gène XPC avec 16 exons et 15 introns.

La deuxième ligne représente les SNPs communs $\geq 1\%$ MAF qui sont mappés en un seul emplacement.

La troisième ligne représente tous les SNPs de dbSNP mappés en un seul emplacement.

La dernière ligne représente les SNPs marqué < 1% MAF qui sont mappés en un seul emplacement, Signalé dans dbSNP comme "cliniquement associé".

Dans la section *Options* de coloration de la page de contrôle des pistes, les termes de la fonction sont regroupés en plusieurs catégories, illustrées ici avec des couleurs par défaut :

Noir	Locus	En amont/en aval du gène variant.
	Intron	Intron variant
Vert	Codage synonyme	Variant synonyme
Rouge	Codage non	Gain stop, faux sens variant, perte stop,
	Synonyme	changement du cadre dans la cadre indel.
		Site d'épissage: splice accepteur variant, splice
		donneur variant.
Bleu	Non traduit	5 prime UTR variant, 3 prime UTR variant.
		Non-coding (ncRNA) : (nctranscript variant).

Tableau II : Signification des couleurs Genome Browser.

Table Browser

Après avoir lister la totalité des SNPs dans *Genome Browser*, on passe à identifier les SNPs annotés du génome browser dans table browser (figures 32).

Résultats et discussions

			GENCODE v24 Comprehensive Tran	script Set (only Basic displayed by default)		
GENCODE V24					B	
	table browser query on snot47Flagged					
rs121965892	rs200148127	rs3731152	rs794729655 rs3731130	rs184879571 rs587778759	rs2228082	rs587778757
rs3731177	l rs786205206	rs869025275	rs587778758 rs121965090	rs35629274 rs752088918		rs201273381
rs183167499	rs754673686		rs144766677	rs587778769 rs587778763		
rs375859472			rs183238369	rs587778761 rs794799556		
10010000112	nc55770831		nc101065688	ne55000088 ne704700657		
	1 200 1 200 1		N=767560946	1505222000 15754725007		
			15707003040			
			rs/54532049			
			ns794729654			
			rs587778762			
			rs192285219			
			rs74737358			
			r5200338014			
			rs121965091			
			Simple Nucleotide Polymorph	isms (dbSNP 147) Found in >= 1% of Samples		
Common SNPs(147)						
	••••••		Simple Nucleot	ide Polymorphisms (dbSNP 147)		
A11 SNPs(147)						الشفية الالتقاقية
			Simple Nucleotide Polymorphisms (dbSNP 147) Flagged by dbSNP as Clinically Asso	c	
Flagged SNPs(147)				· · · · · · · · · · · · · · · · · · ·		

Figure 32 : Listes des SNPs annotés dans Table Browser.

La figure 32 représente l'ensemble des résultats de *Genome Browser* et *Table Browser*. La première ligne c'est ceux de Table Browser qui représente celles qui sont annotés parmi Flagged SNP et les trois dernières lignes ceux de Genome Browser.

En allant dans NCBI pour révéler la nature de chaque SNP de nos rs obtenues du filtrage nous avons réalisé que deux de nos rs sont introniques (rs4685074 et rs2733533) l'autre dans la partie UTR 3 prime (rs1043943) et un qui est faux sens variant (rs2228000). Deux de ces SNP (rs2733533 et rs2228000) sont annotés dans *Table Browser*. Nous allons nous intéresser sur le rs2228000 faux sens dont l'allèle ancestral C est remplacé par T (GCG [Ala]=GTG [val]).

Les trois autres (rs4685074, rs2733533 et rs1043943) pourront faire l'objectif d'une autre étude.

III.2 Modélisation moléculaire de la protéine XPC

En premier, la séquence protéique XPC a été récoltée de la banque de données Uniprot (code d'accession Q01831, avec 940aa) (figure 33).

>sp|Q01831|XPC HUMAN DNA repair protein complementing XP-C cells OS=Homo sapiens GN=XPC PE=1 SV=4 MARKRAAGGEPRGRELRSQKSKAKSKARREEEEEDAFEDEKPPKKSLLSKVSQGKRKRGC SHPGGSADGPAKKKVAKVTVKSENLKVIKDEALSDGDDLRDFPSDLKKAHHLKRGATMNE DSNEEEEESENDWEEVEELSEPVLGDVRESTAFSRSLLPVKPVEIEIETPEOAKTRERSE KIKLEFETYLRRAMKRFNKGVHEDTHKVHLLCLLANGFYRNNICSQPDLHAIGLSIIPAR FTRVLPRDVDTYYLSNLVKWFIGTFTVNAELSASEQDNLQTTLERRFAIYSARDDEELVH IFLLILRALQLLTRLVLSLQPIPLKSATAKGKKPSKERLTADPGGSSETSSQVLENHTKP KTSKGTKQEETFAKGTCRPSAKGKRNKGGRKKRSKPSSSEEDEGPGDKQEKATQRRPHGR ERRVASRVSYKEESGSDEAGSGSDFELSSGEASDPSDEDSEPGPPKQRKAPAPQRTKAGS KSASRTHRGSHRKDPSLPAASSSSSSKRGKKMCSDGEKAEKRSIAGIDOWLEVFCEOEE KWVCVDCVHGVVGQPLTCYKYATKPMTYVVGIDSDGWVRDVTQRYDPVWMTVTRKCRVDA EWWAETLRPYQSPFMDREKKEDLEFQAKHMDQPLPTAIGLYKNHPLYALKRHLLKYEAIY PETAAILGYCRGEAVYSRDCVHTLHSRDTWLKKARVVRLGEVPYKMVKGFSNRARKARLA EPQLREENDLGLFGYWQTEEYQPPVAVDGKVPRNEFGNVYLFLPSMMPIGCVQLNLPNLH RVARKLDIDCVQAITGFDFHGGYSHPVTDGYIVCEEFKDVLLTAWENEQAVIERKEKEKK EKRALGNWKLLAKGLLIRERLKRRYGPKSEAAAPHTDAGGGLSSDEEEGTSSQAEAARIL AASWPQNREDEEKQKLKGGPKKTKREKKAAASHLFPFEQL

Figure 33 : La séquence protéique du XPC sous format fasta tiré de la banque de données Uniprot.

La modélisation moléculaire proprement dite s'est basée sur différentes approches de prédiction de la structure tridimensionnelle de XPC (Q01831): la modélisation comparative, la reconnaissance de repliements et l'approche *ab initio*.

III.2.1 Recherche de similarité de la séquence cible/patrons par Blastp/PDB

Un alignement local du XPC (Q01831) s'est fait par le programme blastp contre les séquences stockées dans la *Protein Data Bank*. Cette étape est primordiale pour le choix de la méthode de prédiction de la structure 3D de XPC.

Les résultats sont apparus en trois parties, la première partie est un diagramme avec des barres colorées représentant les séquences possédant les scores les plus élevés avec notre séquence cible.

La deuxième partie représente une liste des séquences avec leurs numéros d'accession, le score de l'alignement, et l'E-value (Tableau III); la troisième partie, des alignements proprement dits de notre séquence cible avec chacune des séquences listées dans la partie 2.

Le tableau représente sept résultats (Tableau III):

-Les trois premières structures représentent la structure de Rad4-Rad23 avec le code pdb (2qsh,2yir,2qsf) avec une similarité de 26% sur 45% de la séquence du XPC.

-Une structure du complexe XPC-TFIIH avec le code pdb (2rvb) avec une similarité de 100% sur 5% de la séquence du XPC.

-Deux structures du complexe XPC-CENTRINE avec le code pdb (20bh,2ggm) avec une similarité de 100% sur 1% de la séquence du XPC.

-Une structure du Passenger Domain Of Plasmid Ecoded Toxin avec le code pdb (20m9) avec une similarité de 40% sur 3% de la séquence du XPC.

Tableau III : Résultats d'alignement de séquence de XPC contre la PDB généré par Blastp.

Séquence similaires à la cible	Score	Pourcentage	Evalue	Pourcentage
	total	des résidus		d'identité
		alignés		
Chaîne A de la structure Rad4-Rad23	129	45%	1e-20	26%
liée à un ADN désapparié de		de 207 à 531 aa		
Saccharomyces cerevisiae				
(2QSH.pdb)				
Chaîne A de la Rad4-rad23 réticulé à un	129	45%	1e-20	26%
ADN normal de Saccharomyces		de 207 à 531 aa		
<i>cerevisiae</i> (4YIR.pdb)				
Chaîne A de la structure du complexe	128	45%	1 ^e -20	27%
Rad4-Rad23 de Saccharomyces		de 202 à 526 aa		
cerevisiae (2QSF.pdb)				
structure du complexe entre le	59.7	5%	4 ^e -11	100%
domaine acide XPC et P62 domaine		de 5 à 52 aa		
de TFIIH de Homo sapiens				
(2RVB.pdb)				
Peptide Centrine2-XPC synthetic	37.0	1%	0,003	100%
construct (20BH.pdb)		de 2 à 18 aa		
complexes Centrine2-XPC (2GGM)	37.0	1%	0,003	100%
synthetic construct		de 1 à 17 aa		
Passenger Domain Of Plasmid	33.5	3%	1,4	40%
Ecoded Toxin <i>Escherichia coli</i> (2OM9.pdb)		de 214 à 243 aa		

D'après ce résultat, nous pouvons déduire que la protéine XPC n'a pas de structure 3D déterminée expérimentalement. Cependant, la structure de quelques fragments qui représentent 5% (2RVB.pdb), 1% (2OBH.pdb) et 1% (2GGM.pdb) de la séquence de XPC ont été déterminées par Cristallographie aux rayons X et par RMN, respectivement. Elles représentent un alignement significatif avec des E-value très petites.

Les structures (2QSH.pdb) 26 % (4YIR.pdb) 26% (2QSF.pdb) 27 % représentent une faible identité de séquences avec la XPC avec des valeurs de E-values très petites de 1e-20/4^e-11.

Par contre, la structure de Passenger Domain Of Plasmid Ecoded Toxin d'Escherichia *coli* représente un alignement de séquence non significatif (aléatoire) avec un E-value supérieurs à 1.

Ce résultat peut nous aider quant au choix de la méthode de modélisation moléculaire à utiliser pour prédire la structure 3D de la XPC. Cette faible identité entre cible et patrons nous a poussé à utiliser les trois approches de prédiction de la structure des protéines afin de pouvoir couvrir toute la séquence de XPC.

III.2.2 Collection des structures expérimentales de XPC

D'après la PDB, la structure de quatre fragments de la XPC en interaction avec d'autres protéines ont été téléchargées. Ces structures pourront servir pour la validation des modèles de structure de XPC prédits qui pourraient présenter une bonne similarité structurale avec les fragments déterminés expérimentalement :

*Structure RMN du domaine C-terminal (T94-Y172) de la centrine humaine 2 en complexe avec un peptide de 17 résidus (N847-R863, que nous avons nommé P1-2a4j) de la protéine du groupe C de *Xeroderma pigmentosum* (code PDB_2A4J)_(Figure 34).

Figure 34 : (A) Structure du complexe Centrine2-XPC déterminée par RMN (code PDB 2a4j) ; (a) fragment XPC et (b) Centrine-2.(Yang et al., 2015).

*Structure cristallographique de la Centrine2 en complexe avec deux peptide de 17 résidus (N847-R863, que nous avons nommé P2c-P2d-2ggm) de la protéine du groupe C de *Xeroderma pigmentosum* (code PDB 2OBH *et* 2GGM) _(Figure35).

Figure 35 : (A) Structure du complexe Centrine2-XC déterminée par diffraction des rayons X (code PDB 2GGM; (a) fragment XPC et (b) Centrine2 (Thompson et Charbonier, 2006).

*Structure de la solution RMN du complexe entre le domaine acide de la XPC et le domaine TFIIH p62 PH (code PDB 2rvb). Cette dernière est une protéine de liaisod'ADN/transcription chez l'*Homo sapiens* (Figure 36).

Figure 36 : (A) Structure du complexe TFIIH-XPC déterminée par RMN (code PDB 2rvb) ; (a) fragment XPC et (b) TFIIH. (Okuda et Nishimura, 2007).

A partir de ces trois fichiers pdb avec les codes pdb (2a4j, 2ggm/2obh et 2rvb), nous a pu extraire les coordonnées pdb des fragments de la XPC à partir des complexes déterminés expérimentalement. Ces fragments ont été nommés :

- P1-2a4j.pdb: fragment du XPC avec 17 aa (de 1à 16) de la chaine B issus du code pdb 2a4j (Figure 34a) ;

- P2c-P2d-2ggm/ P2c-P2d-2obh.pdb : fragment du XPC avec deux chaines C et D du 847 à 826 aa issus du code pdb 2ggm ou 2obh (Figure 35a) ;

- P3-2rvb.pdb: fragment du XPC de la chaine A issus du code pdb 2rvb du 109 à 156 aa (Figure 36a).

De cette manière, nous avons pu également obtenir les coordonnées pdb des structures des protéines qui interagissent avec la XPC. Ces dernières ont été nommées :

- ✓ 2a4jSANSxpc-CETN.pdb qui représente la structure de la centrine issue du code pdb 2a4j du 136 à 166 aa (Figure 34b) ; La centrine est une protéine qui appartient à la superfamille de protéines à mains-EF qui lient le calcium (Ca2+). La centrine 2 régule la division cellulaire lors du cycle du centrosome.
- ✓ 2ggmSANSxpc-CETN.pdb qui représente la structure de la centrine issue du code pdb
 2ggm (Figure 35b) ;
- ✓ 2rvbSANSxpc-TFIIH.pdb qui représente la structure de TFIIH issues du code pdb 2rvb (Figure 36b). TFIIX est un facteur général de transcription pour l'ARN polymérase II possédant une activité hélicase et jouant un rôle pendant l'initiation de la transcription chez les eucaryotes

III.2.3 Prédiction de structure 3D de la protéine XPC

Compte tenu de la faible identité de séquence entre la cible XPC et ses patrons, nous avons opté pour la prédiction de sa structure 3D l'utilisation des trois approches de modélisation moléculaire, à savoir la modélisation comparative, modélisation par reconnaissance de repliements et l'approche *ab initio*. Cette prédiction a été effectuée en utilisant les trois programmes Swiss-Model, Phyre2 et I-TASSER, respectivement. Les résultats de la modélisation de la structure 3D de la XPC avec ces trois programmes est résumé dans le tableau IV.

Programme de prédiction de la structure 3D de la cible	Méthode de prédiction de la structure 3D	Nombre des modèles prédits	Nombre d'acides aminés (aa)	Nomenclature du modèle
Swiss-Model	Modélisation comparative	Deux modèles	176 à 831 aa 109 à 156 aa	 - XPC-SwissModel1.pdb (patron 2qsg.pdb, structure de la RAD4, une protéine impliquée dans la réparation d'ADN) - XPC-SwissModel2.pdb (patron 2rvb.pdb)
Phyre2	Modélisation par reconnaissance de repliements	Un seul modèle	185 à 826 aa	- XPC-Phyre2.pdb (patron 2qsh.pdb (Min et Pavletich,2007), structure de la RAD4, une protéine impliquée dans la réparation d'ADN,)
I-TASSER	Modélisation par <i>ab initio</i> combinée à la reconnaissance de repliements	Trois modèles	940 aa	- XPC-model1-TASSER.pdb - XPC-model2-TASSER.pdb - XPC-model3-TASSER.pdb

Tableau IV : Tableau récapitulatif des résultats de la prédiction de la structure 3D de la XPC

a) Modélisation comparative de la structure de la XPC par Swiss-Model

La modélisation comparative de notre protéine par Swiss-Model s'est basée sur la construction d'un modèle de la protéine cible XPC à partir de sa séquence d'acides aminés sur la base d'une structure expérimentale tridimensionnelle d'une protéine présentant une bonne conservation de séquences. Ce programme a généré deux modèles de structures probables de la XPC :

a) -XPC-SwissModel1 : le patron est la protéine de réparation d'ADN RAD4 (code pdb 2qsg) avec une similarité de séquence de 23,63% du 176 à 831 aa de la protéine XPC.

 b) - XPC-SwissModel2 : le patron est un fragment de la protéine XPC déterminé expérimentalement (code pdb 2rvb) avec une similarité de 100 % du 109 à 156 aa de la protéine XPC

Figure 37 : Modèles de structures tridimensionnelles du XPC prédits par SwissModel. ;

(a) XPC-SwissModel1.pdb, (b) XPC-SwissModel2.pdb.

b) Modélisation par reconnaissance de repliements de la structure de la XPC par Phyre2

La reconnaissance de repliements est un procédé de modélisation utilisé pour modéliser par analogie, les protéines qui ont les mêmes repliements que des protéines de structures connues, mais qui n'ont pas de protéines homologues de structure connue. Elle consiste à enfiler la séquence de la cible sur une bibliothèque de repliements afin de déterminer les structures qui correspondent le mieux à la séquence sur la base d'un critère énergétique ou de score.

Une prédiction de structure de la protéine XPC par reconnaissance de repliements s'est faite par le programme Phyre2 ; un modèle de structure a été prédit (XPC-Phyre2.pdb) sur la base d'un seul patron la structure de la RAD4, une protéine impliquée dans la réparation d'ADN ayant le code pdb 2qsh (Min et Pavletich,2007). Le modèle généré couvre la séquence de la XPC de 185 à 826 aa (figure 38)

Figure 38 : Modèles de structures tridimensionnelles du XPC prédits par Phyre2 (XPC-Phyre2.pdb).

c) Modélisation de la structure de la XPC par ab initio combinée à la reconnaissance de repliements par I-TASSER

XPC-model1-TASSER.pdb, (b) XPC-model2-TASSER.pdb (figure b) et (c) XPC-model3-TASSER.pdb.La modélisation de la structure de la XPC par I-TASSER a généré trois modèles (figure 38): XPC-model1-TASSER.pdb (figure a); XPC-model2-TASSER.pdb (figure b); XPC-model3-TASSER.pdb (figure c). Ces trois modèles de structures ont couvert toute la longueur de la séquence de XPC (940aa).

Figure 39 : Modèles de structures tridimensionnelles du XPC prédits par I-TASSER ; (a) XPC-model1-TASSER.pdb,(b) XPC-model2-TASSER.pdb et (c) XPC-model3-TASSER.pdb.

d) Analyse des modèles des structures prédits pour la XPC

Toutes les structures issues de la modélisation moléculaire ont été visualisées par PyMol. Pour mesurer leur similarité structurale par le calcul des rms, un alignement de structure de ces modèles a été effectué par PyMol. Le RMS mesure la distance entre les C α après superposition optimale des deux fragments ; plus le rms est petit plus les modèles de structures sont proches Tableau V.

	XPC-	XPC-	XPC-	XPC-	XPC-	
	model1-	model2-	model3-	Phyre2	SwissModel1	
	TASSER.pbb	TASSER.pdb	TASSER.pdb	.pdb	.pdb	
	$17 v_0 040$	17 va 040	$17 v_{0} 040$	17 vs	17 vs 655	Nombre
	17 VS 940	17 VS 940	17 VS 940	465		d'aa
	17	16 atomes	14 atomes	7	13 atomes	Atomes
P1-2a4j.pdb	17 atomes			atomes		alignés
	5.033	3.418	1.897	3.168	5.008	RMS
	33 vs 040	33 vs 040	33 vs 040	33 vs	33 vs 655	Nombre
	55 18 740	55 VS 940	55 18 740	465		d'aa
P2c-P2d-	17 stomes	17 atomes	17	12	15 atomes	Atomes
2ggm.pdb	17 atomes		17 atomes	atomes		alignés
	4.487	2.650	1.672	7.254	7.242	RMS
	48 vs 940	48 vs 940	48 vs 940	48 vs	48 vs 655	Nombre
				465		d'aa
P3-2rvb.pdb	18 atomes	48 atomes	45 atomes	17	22 atomes	Atomes
Ĩ	+0 atomes			atomes		alignés
	15.081	15.957	15.554	7.111	7.136	RMS
	465 ys 940	465 vs 940	465 ys 940		465 vs 465	Nombre
VDC Dhame?	100 10 710					d'aa
APC-Phyre2	359 atomes	343 atomes	344 atomes		325 atomes	Atomes
.pub			5 TT utomes			alignés
	2.868	0.325	0.310		0.430	RMS
XPC-	655 vs 940	655 vs 940	655 vs 940	655 vs		Nombre
SwissModel1	055 13 740		055 18 940	465		d'aa
ndh	110 stomes 122 stomes		All atomas	325		Atomes
.puu	++9 atomes	423 atomes 411		atomes		alignés
	3.485	1.676	1.027	0.430		RMS

Tableau V : Résultats de la mesure de la similarité structurale des modèles prédits avec lesfragments de la XPC déterminés expérimentalement par le calcul des rms

D'après les résultats des rms calculés entre les structures des modèles prédits par les différents programmes de prédiction de structures 3D avec celles des fragments déterminées expérimentalement (P1-2a4j, P2c-P2d-2ggm et P3-2rvb), nous pouvons suggérer que le modèle de structure **3** de la protéine XPC généré par le programme I-TASSER est celui qui présente une meilleure similarité structurale avec les structures expérimentales avec des valeurs de rms très faibles comparés aux autres modèles prédits. La comparaison des structures des modèles prédits avec celles des fragments déterminés expérimentalement de la XPC permet de discriminer certains modèles de structures. C'est pour cette raison que pour la suite de notre

travail, nous avons retenu la structure du modèle 3 prédit par I-TASSER comme structure 3D probable de la XPC. L'alignement de structures est illustré dans la Figure 39 ; la structure de XPC-modèl3-ITASSER en bleu est alignés avec les fragments de XPC P1-2a4j en jaune, P2c-P2d-2ggm en magenta et p3-2rvb en vert.

Figure 40 : Superposition des structures des fragments déterminées expérimentalement avec la structure du modèle 3 prédit par I-TASSER .

III.2.4 Amarrage protéine-protéine (XPC-protéine) par ClusPro

L'amarrage de protéines (appelé aussi le *docking* ou l'ancrage) consiste à prédire la conformation optimale stable d'un complexe de protéines ou protéine-ligand à partir des structures individuelles des partenaires dans leur état non lié. La stabilité de ces complexes est essentiellement évaluée selon la complémentarité géométrique (ou structurelle) et la complémentarité chimique. La combinaison de ces paramètres conduit à la formation du complexe moléculaire (Khemili, 2013).

Pour connaître les éventuelles protéines qui pourrait interagir avec notre protéine XPC, nous avons interrogé la base de données String. Les résultats de cette recherche ont montré que, la XPC interagit avec une dizaine de protéines (Figure 41) ;

- ✓ RAD23A, RAD2B : Le récepteur de la chaîne multi ubiquitine impliqué dans la modulation de la dégradation protéasomique, lié aux chaînes de poly ubiquitine, proposé d'être capable de se lier simultanément au protéasome 26S et aux substrats poly ubiquités et à délivrer des protéines ubiquitines au protéasome.
- ✓ GTFIIH : Facteur général de transcription IIH, polypeptide 1, 62 kDa; Composant du facteur de transcription basal du noyau-TFIIH impliqué dans la réparation de l'excision nucléotidique (NER) de l'ADN et lorsqu'il est en complexe avec CAK, dans la transcription de l'ARN par ARN polymérase II.
- ✓ CETN2 : Centrine, EF-main protéine, 2; Joue un rôle fondamental dans la structure et la fonction du centre d'organisation des microtubules, nécessaire pour la duplication de centriole et la formation correcte de la broche, avoir un rôle dans la régulation de la cytokine et de la stabilité du génome grâce à la coopération avec CALM1 et CCP110.

Toutes ces interactions s'agissent des interactions directes avec la XPC mais il existe d'autres interactions par des protéines intermédiaires tel que : XPA, DDB2, ERCC2, ERCC3, ERCC4 et ERCC5.

Figure 41 : Interactions XPC-Protéines d'après la base des données String.

Compte tenu de la disponibilité du complexe expérimental du XPC-Centrine2, nous avons utilisé le serveur ClusPro2.0 pour prédire les éventuelles conformations de ce complexe en prenant le modèle 3 généré par I-TASSER comme récepteur 1 et la structure de la centrine 2 (issus du code pdb 2ggm) comme récepteur 2. Cette étude permet :

- ✓ De tester la fiabilité du programme ClusPro à déterminer le bon complexe protéineprotéine (dans notre cas XPC-centrine2 du code pdb 2ggm, et XPC- TFIIH1 du code pdb 2rvb),
- ✓ De valider la structure du modèle 3 générée par I-TASSAR si un des complexes prédits par ClusPro correspond à celui déterminé expérimentalement.

Nous avons finalement retenu 30 modèles pour chacun des complexes XPC-centrine2 et XPC-TFIIH1. La comparaison entre les complexes prédits avec ceux déterminés expérimentalement (codes pdb 2ggm et 2rvb) a été effectué par la mesure du rms après superposition des structures par PyMol (tableau VI).

Ces résultats suggèrent que ClusPro est en mesure de prédire de façon fiable la structure des complexes et que le modèle de la structure 3 généré par I-TASSER pourrait correspondre à la structure native de la XPC. Le Tableau représente RMS dont les modèles XPC-CETN22 et XPC-TFIIH23 sont les modèles les plus probable d'où ils représentent une similarité avec leurs modèles expérimentales 2GGM et 2RVB respectivement et ils représentent un RMS petit (RMS XPC-CETN22 = 0.701; XPC-TFIIH23 = 0.644. Le score énergétique de ClusPro de chaque complexe est très petit -808.3 et -748.9 de XPC-CETN22 et XPC-TFIIH23 respectivement.

Tableau VI : Valeurs de la fonction de score de ClusPro des complexes prédits et valeurs du rms obtenues après superpositions de ces modèles avec les complexes respectifs déterminés expérimentalement

Las modèlas	2CCM	Le score	Les modèles	DIVD	Le score
Les modeles	2001	énergétique		2KVD	énergétique
XPC-CETN1	0.780	-1002.0	XPC-TFIIH1	0.891	-874.4
XPC-CETN2	0.798	-914.3	XPC-TFIIH2	1.081	-853.2
XPC-CETN3	0.814	-982.4	XPC-TFIIH3	0.932	-846.3
XPC-CETN4	17.44	-942.4	XPC-TFIIH4	1.066	-815.8
XPC-CETN5	0.800	-947.9	XPC-TFIIH5	1.131	-893.8
XPC-CETN6	0.864	-992.3	XPC-TFIIH6	1.021	-759.6
XPC-CETN7	0.836	-860.3	XPC-TFIIH7	0.869	-766.6
XPC-CETN8	0.866	-944.8	XPC-TFIIH8	0.779	-783.6
XPC-CETN9	0.784	-942.1	XPC-TFIIH9	1.047	-747.6
XPC-CETN10	0.913	-861.8	XPC-TFIIH10	0.937	-828.3
XPC-CETN11	0.918	-854.0	XPC-TFIIH11	0.795	-738.9
XPC-CETN12	0.742	-866.8	XPC-TFIIH12	0.930	-729.6
XPC-CETN13	0.870	-884.0	XPC-TFIIH13	0.888	-810.9
XPC-CETN14	0.874	-824.8	XPC-TFIIH14	0.981	-802.0
XPC-CETN15	0.893	-861.4	XPC-TFIIH15	0.834	-805.4
XPC-CETN16	0.762	-876.7	XPC-TFIIH16	0.986	-755.0
XPC-CETN17	0.918	-865.9	XPC-TFIIH17	1.271	-750.8
XPC-CETN18	0.849	-822.6	XPC-TFIIH18	0.777	-747.4
XPC-CETN19	0.835	-965.0	XPC-TFIIH19	0.816	-854.6
XPC-CETN20	0.866	-824.6	XPC-TFIIH20	0.906	-728.0
XPC-CETN21	0.735	-909.1	XPC-TFIIH21	1.041	-805.3
XPC-CETN22	0.701	-808.3	XPC-TFIIH22	0.790	-809.7
XPC-CETN23	0.779	-862.4	XPC-TFIIH23	0.644	-748.9
XPC-CETN24	0.814	-840.9	XPC-TFIIH24	0.942	-791.5
XPC-CETN25	0.816	-885.1	XPC-TFIIH25	1.029	-749.8
XPC-CETN26	0.829	-970.0	XPC-TFIIH26	0.972	-792.4
XPC-CETN27	0.948	-837.3	XPC-TFIIH27	1.013	-762.2
XPC-CETN28	0.904	-839.0	XPC-TFIIH28	0.902	-718.4
XPC-CETN29	1.072	-918.0	XPC-TFIIH29	1.128	-718.0
XPC-CETN30	0.922	-886.8	XPC-TFIIH30	0.776	-773.7

Figure 42 : Superposition de la structure du complexe XPC-CETN prédite par ClusPro (vertrouge) avec celle déterminée expérimentalement (code PDB 2ggm) en jaune fragment XPC et en Cyan la chaine de Centrine2.

Figure 43 : La structure du complexe XPC-TFIIH prédite par ClusPro .

Pour mieux comprendre les propriétés structurales et fonctionnelles de la XPC, nous nous sommes intéressés à la localisation des rs SNPs annotés qui sont associé à la maladie XP (Flagged SNPs) (Voir annexe V).

III.2.5 Localisation des rs dans la structure de XPC prédite

Pour pouvoir localiser nos rs dans les domaines protéiques fonctionnels dans notre protéine XPC nous avons interrogé la base de données InterPro (figure 45, Tableau VII).

Domains and repeats						
	► Domain 940					
Detailed signature matches						
IPR004583 DNA repair protein Rad4 16-894						
IDD010026 DNA repair protein Parl4 subgroup 178,866	PTHR12135 (DNA REPA)					
	► TIGR00605					
IPR018325 Rad4/PNGase transglutaminase-like fold 501-625						
	► PF03835 (Rad4)					
IPR018326 Rad4 beta-hairpin domain 1 632-861/630-682	► PE10403 (BHD 1)					
	 SM01030 (BHD_1_2) 					
IPR018327 Rad4 beta-hairpin domain 2 684-744/685-744						
	 SM01031 (BHD_2_2) PF10404 (BHD_2) 					
IPR018328 Rad4 beta-hairpin domain 3 751-825/751-823						
	 SM01032 (BHD_3_2) PF10405 (BHD_3) 					
no IPR Unintegrated signatures						
0 0	► Coil					
	 FTHR12130:SF4 (DNA) SSF54001 (Cysteine) 					
	mobidb-lite (disord)					

Figure 44 : Les domaines protéiques du XPC d'après la base de données InterPro.

Tableau VII : Tableau des rs associés à la maladie XPC et leurs localisations dans ses Domaines protéiques fonctionnels.

		Positions		
*0	Dásidu ahanga	dans la	Domainas	
18	Residu change	séquence	Domaines	
		protéique		
rs587778757	$S[Ser] \Rightarrow RArg]$	18		
rs2228002	$R [Arg] \Rightarrow R [Arg]$	100		
rs587778763	$V[Val] \Rightarrow L[Leu]$	160		
rs587778759	$K[Lys] \Rightarrow N[Asn]$	199		
rs552222088	$R[Arg] \Rightarrow C[Cys]$	240		
rs587778761	$P [Pro] \Rightarrow S [Ser]$	246		
rs587778760	$Y [Tyr] \Rightarrow C [Cys]$	252		
rs35629274	$F[Phe] \Rightarrow C[Cys]$	287		
rs184879571	$S[Ser] \Rightarrow C[Cys]$	291		
rs74737358	$P[Pro] \Rightarrow H[His]/R[Arg]/L[Leu]$	334		
rs200338014	$P[Pro] \Rightarrow A[Ala] / S[Ser]$	334	Protéine de réparation	
rs192285219	$A [Ala] \Rightarrow V [Val]$	341	d'ADN Rad4	
Rs121965090	$R [Arg] \Rightarrow W [Trp]$	393		
rs587778762	$E [Glu] \Rightarrow G [Gly]$	410		
rs794729654	$K [Lys] \Rightarrow R [Arg]$	431		
rs2228000	$R[Arg] \Rightarrow V [Val]$	499		
rs3731130	$M [Met] \Rightarrow I [Ile]$	513		
rs754532049	$V [Val] \Rightarrow A[Ala]$	548	Le pli de type	
rs121965088	$R [Arg] \Rightarrow Ter$	579	transglutaminase Rad4 /	
rs183238369	$R [Arg] \Rightarrow C [Cys]$	594	PNGase	
rs144766677	$F [Phe] \Rightarrow S [Ser]$	614		
rs587778758	$Y [Tyr] \Rightarrow H [His]$	641	Domaine Rad4 beta-hairpin 1	
rs3731152	$T [Thr] \Rightarrow M [Met]$	689	Domaine Rad4 beta-hairpin 2	
rs786205206	$N [Asn] \Rightarrow K [Lys]$	754	Domaine Rad4 beta-hairpin 3	
rs200148127	$G [Gly] \Rightarrow S [Ser]$	802		
rs375859472	P [Pro] \Rightarrow L [Leu]	874	Domaine Rad4 beta-hairpin 3 et domaine d'interaction avec TFIIH	
rs55779831	$G [Gly] \Rightarrow E [Glu]$	846	Protéine de réparation d'ADN Rad4 et domaine d'interaction avec TFIIH	
rs183167499	$A [Ala] \Rightarrow G [Gly] / V [Val]$	878		

La localisation de ces rs pathogénes dans la structure du modèle 3 de la XPC prédit par I-TASSER est illustrée dans la figure 45.

Figure 45 : L'ensemble des rs pathogènes (en sticks roses) positionnés sur la structure du modèle 3 de la XPC prédit par I-TASSER (en cartoon vert).

D'après le tableau VI nous remarquons que la position des rs pathogènes touchent principalement les domaines fonctionnels de la Protéine de réparation d'ADN Rad4. Le domaine de pli de type transglutaminase Rad4 / PNGase, domaine Rad4 beta-hairpin 1, le domaine Rad4 beta-hairpin 2 , le domaine Rad4 beta-hairpin 3

Par ailleurs, aucun rs pathogène n'est trouvé dans le domaine d'interaction de la XPC avec la centrine 2 (du 847 à 866aa). Cependant, 3 rs ont été observés dans le domaine d'interaction de la XPC avec le TFIIH (de 816 à 940 aa) ; le rs375859472 où le résidu P [Pro] en position 874 est substitué par une L [Leu], le rs55779831 où le résidu G846 [Gly] est substitué en E [Glu] et le rs183167499 où le résidu A878 [Ala] est substitué par une G [Gly]. Ces mutations jouent un rôle primordial dans le fonctionnement et la pathogénicité de la XPC par la modification de ses propriétés structurales. (Figure 46).

Figure 46 : rs (en rouge) positionnés dans le domaine d'interaction entre la structure de la protéine XPC prédite par I-TASSER (en vert) et le domaine TFIIH (en bleu).

Conclusion et **Perspectives**

Xeroderma pigmentosum est une maladie de transmission autosomique récessive, elle est due à une sensibilité accrue de l'ultraviolet et de la lumière du soleil. A ce jour on dénombre huit gène de XP : XP classique (de A à G) et XPV dont le plus répondus dans les pays du Maghreb est le XPC. Cette protéine est impliquée dans le système de réparation de l'ADN (*Nucleotide Excison Repair* NER). La structure 3D des protéines est très importante puisqu'elle détermine ses propriétés biochimiques et fonctionnelles. Cependant, il n'existe pas encore de structure 3D de la protéine XPC jusqu'à ce jour.

L'objectif de ce mémoire est de lister les SNPs touchant la XPC et de voir leur localisation sur un modèle de structure 3D de cette protéine prédit *in silico*. L'étude s'est basée sur deux étapes ; une pour lister les SNPs et l'autre pour la modélisation de la structure 3D de la protéine XPC. Cette dernière étape a comporté deux phases; la prédiction de la structure de la XPC et l'amarrage protéine-protéine (XPC-protéine).

D'après nos résultats, compte tenu de la faible similarité de séquences entre la cible (XPC) et les patrons (issus de la protein Data Bank) effectuée par Blastp, trois méthodes de prédiction de la structure 3D ont été utilisées ; la modélisation comparative par le serveur web SwissModel, la reconnaissance de repliements par le serveur web Phyre2 et la méthode *ab initio* combinée à la reconnaissance de repliements par le serveur I-TASSER.

Plusieurs modèles de structure 3D ont été générés par ces trois méthodes et nous n'avons retenu qu'un seul modèle d'après sa forte similarité structurale mesurée par le calcul des rms après superposition par PyMol avec les fragments de XPC dont la structure a été déterminée expérimentalement. Ce modèle a été généré par le programme I-TASSER. Il est important de souligner que I-TASSER a été démontré étant le meilleur serveur de prédiction de structure 3D d'après les concours d'évaluation CASP 2006-2016 (CASP7, CASP8, CASP9, CASP10, CASP11 et CASP12) (*Critical Assessment of techniques for protein Structure Prediction*, http://www.predictioncenter.org/casp10/index.cgi).

D'autre part, la localisation des sites de liaisons ou d'interactions entre les protéines ou entre les protéines et des ligands est d'une importance fondamentale pour la compréhension de la fonction biochimique des protéines et la conception des médicaments. Dans cette optique, nous avons effectué des amarrages entre le modèle de la structure de la XPC prédite avec I-TASSER et les protéines connues en interaction avec la XPC, notamment la centrine 2 et la TFIIH par le serveur ClusPro2.0. Les résultats montent la fiabilité de ce serveur de prédire les bons

complexes XPC-centrine2 et XPC-TFIIH, et donc, la validation du modèle de structure de la XPC prédit.

En outre, une mutagenèse effectuée sur la structure la protéine XPC prédite par PyMol nous a permis de localiser les différents rs pathologique de la XPC. Les observations effectuées permettent la compréhension de l'impact de la mutation sur les propriétés de la protéine XPC.

Tous ces résultats suscitent de nouvelles interrogations, et ouvrent donc la voie à des futures études dans le volet bioinformatique et/ou expérimental.

La structure 3D de la protéine XPC permet la connaissance de leurs fonctions et de mieux comprendre les mécanismes physiopathologiques du XPC et peut être à long terme d'envisager des perspectives thérapeutiques. Dans l'avenir le diagnostic moléculaire de cette pathologie et la prise en charge des patients peut être faciliter par la compréhension du fonctionnement de la protéine XPC et sa formation de complexes.

Références bibliographiques

А

Araki M, Masutani C, Takemura M,Sugasawa K, Kondoh J, Ohkuma Y, Hanaoka F, 2001,'Centrosome Protein Centrin 2/Caltractin 1 Is Part of the Xeroderma Pigmentosum Group C Complex That Initiates Global Genome Nucleotide Excision Repair', The journal of Biological of Chemistry, Vol 276,n°22,pp.18665-18672.

В

Baker, D., & Sali, a. (2001). Protein structure prediction and structural genomics. *Science* (*New York, N.Y.*), 294(5540), 93–6. doi:10.1126/science.1065659

Bensenouci Salima.,Louhibi Lotfi.,Hubert De Verneuil.,Mahmoudi Khadidja.,Saidi-Mekhtar Nadhira.,2016,'Diagnosis of xeroderma pigmentosum groups A and C by detection of two prevalent mutations in west Algerian population : A rapid genotyping tool for the frequent XPC mutation c.1649_1644delTG',BioMed Research International, vol2016,pp.1-7.

Bensenouci Salima, 2016, 'Etude moléculaire de la maladie xeroderma pigmentosum dans la région de l'Ouest Algerian', Thèse de Doctorat LMD, Université des Sciences et de la technologie d'Oran Mohammed boudiaf, Oran.pp.170.

Bhutto Abdul Manan and Kirk Sandra H,2008,'population distrubition of xeroderma pigmentosum',edit molécular méchanisms of xeroderma pigmentosum, Pakistan,pp.138-143.

С

Camenisch Ulrike, Dip Ramiro, Sylvie Briand Schumacher, Schuter Benjamin, Naegeli Hanspeter,2006, 'Recongnition of helical kinks by xeroderma pigmentosumgroup A protein Triggers DNA excision repair', nature structural and molecular biology, vol 13, n°3, pp.278-284.

Coin Frederic, Oksenych Valentyn, Egly Jean-Marc,2007,'Distinct Roles for the XPB/p52 and XPD/p44 Subcomplexes of TFIIH in Damaged DNA Opening during Nucleotide Excision Repair', Molecular Cell, Vol 26,pp.246-256.

Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., & Kollman, P. A. (1995). A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. *Journal of the American Chemical Society*, *117*(19), 5179–5197. doi:10.1021/ja00124a002

E

Encyclopédie Orphanet Grand Public, <u>www.orpha.net/data/patho/Pub/fr/</u> Xeroderma Pigmentosum -FRfrPub3253v01.pdf | Juin 2008.

F

FASSIHI, Dr Hiva. Xeroderma pigmentosum. Orpha.net. [En ligne] Mai 2011. [Citation : 18 Novembre 2012.] <u>http://www.orpha.net</u>.

G

GeneCards : The Human Gene Database. <u>http://www.genecards.org/</u> .

Gillet Ludovic C J and Scharer Oriando D,2006, 'Molécular Mechanisms of Mammalian G lobal Genome Nucleotide Excision Repair', chemical reviews, Vol 106, n°2,pp.253-276.

${\mathcal H}$

Hanawalt Philipe C, 2000,'The bases for Cockayne syndrome', Nature, vol 405, 415-416.

Hirai Yuku, Kodama Yoshiaki, Moriwaki Shin-Ichi, Noda Asao,Cullings Harry M,MacPhee Donald G,Kodama Kazunori, Mabuchi Kiyohiko,Kreamer Kenneth H,Land Charles E,Nakamura Nori,2006,'Heterozygous individuals bearing a founder mutation in the XPA DNA repair gene comprise nearly 1% of the Japanese population',Fondamental and molecular mechanisms of mutagenesis, vol601,pp.171-178.

К

Kanda T, Oda M, Yonezawa M, Tamagawa K, Isa F, Hanakago R, Tsukagoshi H,1990, 'Peripheral neuropathy in xeroderma pigmentosum',journal of Neurology.

Kelley Lawrence A,Mezulis Stefans, Yates Christopher M, Wass Mark N, Sternberg Michael J E,2015,'The Phyre web portal for protein modeling prediction and analysis',Nature protocols, vol 10, n°6,pp 845-858.

Khemili Souad, 2013, 'Prédiction des épitopes B de l'allergène Der p 5 et étude in silico de la structure et de l'état oligomérique des allergènes d'acariens des familles 5 et 21', Thèse de Doctorat universite m'hamed bougara de boumerdes, pp.189.

Kleijer Win J,Laugel Vincent,Berneburg Mark,Nadro Tiziana, Fawcett Heather,Gratchev Alexei,Jaspers Nicolas G J,Sarasin Alain,Stefanini Miria, Lehmann Alan R,2008,'Incidence of DNA repair defeciency disorders in western Europe : xeroderma pigmentosum Cockayne syndrome and trichothiodystrophy,DNA repair 7,pp.744-750.

Kraemer Kenneth, DiGiovanna John J,2016, 'Xeroderma Pigmentosum'GeneReviews,[En ligne], <u>https://www.ncbi.nlm.nih.gov/books/NBK1397/</u>.

L

Larrea Andres A, Lujan Scott A, Kurkel Thomas A,2010,'DNA Mismatch Repair',cell 141,pp.730-731.

0

Oh Kyu-Seon, Imoto Kyoko, Emmert Steffen, Tamura Deborah, DiGivanna Jhon J, Kreamer Kenneth H,2001,'Nucleaotide Excision Repair Proteins Rapidly Accumulate but fail to Persist in Human XP-E(DDB2 Mutant) Cells,Photochemistry and photobioogy,vol 87,729-733. Orelli Barbara, McCledon Brooke, Tsodikov Oleg V, Ellenberger Tom, Niedrnhofer Laura J, Scha Orlando,2010,'The XPA-binding domain of ERCC1 is Requiered for Nucleotide Excision Repair but Not Other DNA Repair Pathways',Biological Chemistry, Vol 285,n°6, pp.3705-3712.

Orita M,Iwahana H, Kanazawa H, Hayashi K, Sekiya T,1989,'Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms',Proceedings of the National Academy, Vol 86, pp.2766-2770.

Ozoux Barbara,2013, 'xeroderma pigmentosum,Actualisation des connaissances sur la maldie et les traitements associés',Thèse de Doctorat en pharmacie,Université Toulouse III Paul Sabatier,Toulouse,pp.104.

Р

Panier Stephanie and Boulton Simon J,2014,'Double strand break repeir : 53BP1 comes into focus',nature reviews molecular cell biology,Vol 15, pp.7-18.

Q

QIAGEN un fournisseur mondial d'échantillons moléculaires et de technologies de dosage. https://www.qiagen.com/dz/

R

Riedl Thilo, Hanaoka Fumio and Egly Jean-Marc,2003,'The comings and goings of nucleotide excision repair factors on damaged DNA',The EMBO journal, Vol 12, n°19,pp.5293-5303.

Rost, B. (1999). Twilight zone of protein sequence alignments. *Protein engineering*, *12*(2), 85–94. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10195279

S

Sali, A., & Blundell, T. (1993). Comparative Protein Modelling by Satisfaction of Spatial Restraints. Protein Structure by Distance Analysis, 234, 779–815. Retrieved from http://books.google.com/books?hl=en&lr=&id=LKxFL1ksNH8C&oi=fnd&pg=PA64& dq=Comparative+Protein+Modelling+by+Satisfaction+of+Spatial+Restraints&ots=gd7 $RSC5Vwf\&sig=Z42X6_bvfobz_hnfLleJFBJoUd0$

Z

Ziani Salim,2014, 'etude du complexe de réparation par excision de nucléotide,Thèse de Doctorat,Université de Strasbourg,pp.87.

Annexe I : démarche Génome Browser.

La page d'accueil Génome Browser.

SUNID PUAT & OF2F & Genou	ne Browser Gateway
Genomes Genome Browser Tools Mirrors	rs Downloads My Data Help About Us
Browse/Select Species	Find Position
POPULAR SPECIES Musan Mase Rat Putty Worm Variation Enter species or common name	Human Assembly Dec. 2013 (GRCh38/hg38) Position/Search Term Entex Position/Search Term Lats 147-14 178 783 (9)
Chimp Bonobo Gorilla Orangutan Gibbon Green monkey Crab-eating macaque Baboon (anubis) Baboon (anubis) Baboon (anubis) Baboon (anubis) Baboon (anubis) Baboon (anubis) Baboon (anubis) Baboon (anubis) Golden snub-nosed monkey Golden snub-nosed monkey Tarsier Mouse lemur	UCSC Genome Browser assembly ID: hg38 Sequencing/Assembly provider ID: GRCh38 Genome Reference Consortium Human Reference 38 (GCA_00001405.15) Assembly date: Dec. 2013 Accession ID: GCA_00001305.2 NCBI Genome information: NCBI genome/51 (Homo sapiens) NCBI Assembly information: NCB Bioproject: 31257 Search the assembly: Search the assembly: By position or search term: Use the "position or search term" box to find areas of the genome associated with many different attributes, such as a specific chromosomal coordinate range; mRNA, EST, or STS marker names; or keywords from the Gen8mak description of an mRNA. More information, including sample queries. By gene name: Type a gene name into the "search term" box, choose your gene from the drop-down list, then press "submit" to go directly to the assembly location associated with that gene. More information. By track type: Click the "track search" button to find Genome Browser tracks that match specific selection criteria. More information.
Mouse Rat Chinese hamster Kangaroo rat Naked mole-rat	Download sequence and annotation data: Using rsync (recommended) Using FTP Using HTTP Data use conditions and restrictions Acknowledgments

Après avoir les résultats des gènes connus.

Known Genes

XPC (uc011ave.3) at chr3:14145147-14178783 - Homo sapiens xeroderma pignentosum, complementation group C (XPC), transcript variant 1, mRNA. (from RefSeq NN 004628)
RPC (urd62ptn.1) at chr3:14168271-141786271 - The sequence shown here is derived from an Ensembl automatic analysis pipeline and should be considered as preliminary data. (from UniProt
XPC (ur062grm.1) at chr3:14164907-14170614 - xeroderma pigmentosum, complementation group C (from HSWC XPC)
XPC (uc662g1.1) at chr3:14164366-14178460 - xeroderma pigmentosum, complementation group C (from HSNC XPC)
XPC (uc662etk.1) at chr3:14158887-14167267 - xeroderma pigmentosum, complementation group C (from HSWC XPC)
XPC (uc662ete.1) at chr3:14147467-14148928 - xeroderma pigmentosum, complementation group C (from HSNC XPC)
XPC (uc062gtd.1) at chr3:14145729-14178601 - Involved in global genome nucleotide excision repair (06-NER) by acting as damage sensing and DNA-binding factor component of the XPC comp
RAD23A (uc002mux.3) at chr19:12945888-12953642 - Homo sapiens RAD23 homolog A, nucleotide excision repair protein (RAD23A), transcript variant 1, mRNA. (from RefSeq NM_005053)
R4023A (uc081rip.2) at chr19:12945892-12953591 - Homo sapiens R4023 homolog A, nucleotide excision repair protein (R4023A), transcript variant 3, mRNA. (from RefSeq NM_001278363)
R4023A (uc002mr2.3) at chr19:12945876-12953623 - Homo sapiens R4023 homolog A, nucleotide excision repair protein (R4023A), transcript variant 2, mRNA. (from RefSeq NM_001270362)
CUL44 (uc658ymh.1) at chr13:113208836-113267108 - Core component of multiple cullin-RING-based E3 ubiquitin-protein ligase complexes which mediate the ubiquitination of target protein
GTF281 (uc001moh.3) at chr11:18322596-18367044 - Homo sapiens general transcription factor IIH subunit 1 (GTF2H1), transcript variant 1, mRNA. (from RefSeq NU_005316)
GTF2H1 (uc001moi.3) at chr11:18322255-18366261 - Homo sapiens general transcription factor IIH subunit 1 (GTF2H1), transcript variant 2, mRNA. (from RefSeq NM_001142307)
GTF2H1 (uc009yhm.3) at chr11:18322567-18366813 - Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to GAK,
0082 (uc858bbr.1) at chr11:47215137-47238849 - Required for DNA repair. Binds to DOB1 to form the UV- damaged DNA-binding protein complex (the UV-DOB complex). The UV- DDB complex may
DDB2 (uc858bbl.1) at chr11:47214992-47239189 - Required for DNA repair. Binds to DDB1 to form the UV- damaged DNA-binding protein complex (the UV-DDB complex). The UV- DDB complex may
0082 (uc009yli.2) at chr11:47215137-47238849 - Repuired for DNA repair. Binds to DOB1 to form the UV- damaged DNA-binding protein complex (the UV-DOB complex). The UV- DOB complex may
CUL44 (uc021rmv.3) at chr13:113209544-113263582 - Homo sapiens cullin 44 (CUL44), transcript variant 1, mRNA. (from RefSeq NV_001008895)
CUL44 (uc832app.2) at chr13:113208193-113265072 - Homo sapiens cullin 44 (CUL44), transcript variant 3, mRN4. (from RefSeq NU_001278513)
CUL44. (uc021rmu.2) at chr13:113208772-113265077 - Homo sapiens cullin 44 (CUL44), transcript variant 2, mRNA. (from RefSeq NU_003589)
(ETN2 (uc004fgq.4) at chrX:152826973-152838777 - Homo sapiens centrin 2 (CETN2), mRNA. (from RefSeq NM_804344)
EBCC3 (uc002toh.1) at chr2:127257200-127294176 - Homo sapiens excision repair cross-complementation group 3 (ERCC3), transcript variant 3, mRNA. (from RefSeq NM_001303418)
RAD238 (uc004bde.4) at chr9:107283279-107332194 - Homo sapiens RAD23 homolog B, nucleotide excision repair protein (RAD23B), transcript variant 1, mRNA. (from RefSeq NM_0028F4)
RAD238 (uc022bij.2) at chr9:107284653-107332192 - Homo sapiens RAD23 homolog B, nucleotide excision repair protein (RAD23B), transcript variant 3, mRNA. (from RefSeq NM_001244724)
<u>0082 (uc001neb.3) at chr11:47214942-47239240</u> - Homo sapiens damage specific DNA binding protein 2 (DD82), transcript variant WT, mRNA. (from RefSeq WM_000187)
<u>DDB2 (uc00Inee.3) at chr11:47215137-47238849</u> - Homo sapiens damage specific DNA binding protein 2 (DDB2), transcript variant D1, mRNA. (from RefSeq NM_001300734)
0081 (uc001nrc.6) at chr11:61294451-61333366 - Homo sapiens damage specific DNA binding protein 1 (DDB1), mRNA. (from RefSeq NM_001923)
<u>SIRT1 (uc001jnd.3) at chr10:67884669-67918390</u> - Homo sapiens sirtuin 1 (SIRT1), transcript variant 1, mRNA. (from RefSeq NV_012238)
HMG81 (uc058udx.1) at chr13:30458147-30617597 - DNA binding proteins that associates with chromatin and has the ability to bend DNA. Binds preferentially single-stranded DNA. Involved
HVGB1 (ucGSBudt:1) at chr13:30460007-30465242 - DNA binding proteins that associates with chromatin and has the ability to bend DNA. Binds preferentially single-stranded DNA. Involved
HKB1 (uc658udy.1) at chr13:3045050-30464310 - DNA binding proteins that associates with chromatin and has the ability to bend DNA. Binds preferentially single-stranded DNA. Involved
HK81 (uc001usx.5) at chr13:30456704-304653955 - Homo sapiens high mobility group box 1 (HK81), transcript variant 2, mRHA. (from RefSeq WH_002128)
<u>SLCEAR2 (ucB3LT)/2) at chrX:14421461-74533917</u> - Homo sapiens solute carrier family 16 member 2 (SLCEAR2), mRUA. (from RefSeq NU_886517)

En précisant ce que nous voulons avoir.

-		Mapping and Sequ	encing		refresh
Base Position	Alt Map	Assembly	Centromeres	Chromosome Band	Clone Ends
hide 🔻	hide 🔻	hide 🔻	hide 🔻	hide 🔻	hide 🔻
EISH Clones	Gap	GC Percent	GRC Contigs	GRC Incident	GRC Patch Release
hide 🔻	hide •	hide •	hide 🔻	hide 🔻	hide 🔻
Hg19 Diff	INSDC	LRG Regions	Restr Enzymes	Scaffolds	Short Match
STS Markers	nide •	nide *	nide •	nide •	nide •
hide •					
-		Genes and Gene Pre	edictions		refresh
GENCODE v24	NCBI RefSeg	All GENCODE	AUGUSTUS	CCDS	CRISPR
full 🔻	hide 🔻	hide •	hide 🔻	hide 🔻	hide 🔻
Geneid Genes	Genscan Genes	IKMC Genes	LRG Transcripts	MGC Genes	Non-coding RNA
hide T	hide •	Mapped	hide T	hide T	hide T
		nide •	Dfam in LICSC		
Old UCSC Genes	ORFeome Clones	Other RefSeq	Gene	RetroGenes V9	SGP Genes
hide 🔻	hide •	hide •	hide 🔻	hide v	hide v
SIB Genes	TransMap	UCSC Alt Events	UniProt		
hide 🔻	hide •	hide 🔻	hide 🔻		
-		Phenotype and Lite	erature		refresh
OMIM Alleles	ClinGen CNVs	ClinVar Variants	Coriell CNVs	COSMIC Regions	Development Delay
hide 🔻	hide 🔻	hide 🔻	hide 🔻	hide 🔻	hide 🔻
Gene Interactions	GeneReviews	GWAS Catalog	OMIM Genes	OMIM Pheno Loci	UniProt Variants
nide 🔻	nide 🔻	nide •	nide •	nide •	nide •
<u>-</u>		mRNA and ES	51		refresh
Human ESTs	Human mRNAs	Other ESTs	Other mRNAs	SIB Alt-Splicing	Spliced ESTs
nide •	nide •	Expression	nide •	nide •	nide •
	Affer ONE 411	Affect 1400	Affect 105	CNE Atlas 2	CIM/IDC with Dibecom
bide V	hide T	hide V	hide T	bide	hide
-	mac	Regulation	mac	nide to the second seco	refresh
S ENCODE		rtogunutori			Tentesti
Regulation	CpG Islands	ORegAnno			
hide 🔻	hide 🔻	hide •			
-		Comparative Gen	omics		refresh
Conservation	Cons 7 Verts	Cons 20 Mammals	Primate Chain/Not	Placental	<u>Vertebrate</u>
hide •	hide •	hide •	hide •	Chain/Net	Chain/Net
				hide 🔻	hide 🔻
-		Variation			refresh
Common SNPs(147)	All SNPs(147)	All SNPs(146)	All SNPs(144)	All SNPs(142)	All SNPs(141)
pack 🔻	pack T	hide 🔻	hide •	hide 🔻	hide 🔻
Common SNPs(146)	SNPs(144)	Common SNPs(142)	SNPs(141)	DGV Struct Var	Flagged SNPs(147)
hide 🔻	hide T	hide *	hide •	hide •	pack 🔻
Flagged SNPs(146)	Flagged SNPs(144)	Flagged SNPs(142)	Flagged SNPs(141)	Mult. SNPs(147)	Mult. SNPs(146)
hide 🔻	hide 🔻	hide 🔻	hide •	hide 🔻	hide 🔻
Mult. SNPs(144)	Mult. SNPs(142)	Mult. SNPs(141)			
nide •	nide •	nide •			
		Repeats			refresh
RepeatMasker	Interrupted Rpts	Microsatellite	RepeatMasker Viz.	Segmental Dups	Self Chain
Simple Reports	WM + SDuct	nice •	Tilde •	nide •	nide •
hide •	hide •				
		refresh			

Annexe II : démarche Table Browser.

Page d'accueil Table Browser et la sélection des SNPFlagged.

Table Browser

Use this program to retrieve the data associated with a track in text format, to calculate intersections between tracks, and to retrieve DNA sequence covered by a track. For help in using this application see <u>Using the Table Browser</u> for a description of the controls in this form, the <u>User's Guide</u> for general information and sample queries, and the OpenHelix Table Browser <u>tutorial</u> for a narrated presentation of the software features and usage. For more complex queries, you may want to use <u>Galaxy</u> or our <u>public MySQL server</u> . To examine the biological function of your set through annotation enrichments, send the data to <u>GREAT</u> . Send data to <u>GenomeSpace</u> for use with diverse computational tools. Refer to the <u>Credits</u> page for the list of contributors and usage restrictions associated with these data. All tables can be downloaded in their							
entirety from the Sequence and Annotation Downloads page.							
clade: Mammal v genome: Human v assembly: Dec. 2013 (GRCh38/hg38) v							
group: Variation track: Flagged SNPs(147) add custom tracks track hubs							
table: snp147Flagged describe table schema							
region: O genome O position chr3:14144220-14177856 lookup define regions							
identifiers (names/accessions): paste list upload list							
filter: create							
intersection: create							
correlation: create							
output format: selected fields from primary and related tables • Send output to Galaxy GREAT GenomeSpace							
output file: (leave blank to keep output in browser)							
file type returned:							

get output summary/statistics

	箭 Gen	omes	Genome Browser	Tools	Mirrors	Downloads	My Data	Help	About Us	
Se	elect Fields from hg38.snp147Common									
	h in									
	DIN	_								
	chrom	R	eference sequence	chromosor	ne or scatto	d				
	chromStart	S	tart position in chron	n						
	chromEnd	E	nd position in chrom							
	name	d	SNP Reference SN	IP (rs) ider	ntifier					
	score	N	ot used							
	strand	W	hich DNA strand co	ntains the	observed al	leles				
	refNCBI	R	eference genomic se	equence fr	om dbSNP					
	refUCSC	R	eference genomic se	equence fr	om UCSC la	ookup of chrom	,chromStart,	chromEnd		
	observed	T	he sequences of the	observed	alleles from	rs-fasta files				
	molType	S	ample type from exe	emplar sub	mitted SNP	s (ss)				
	class	С	lass of variant (single	e, in-del, n	amed, mixe	d, etc.)				
	valid	V	alidation status of the	e SNP						
	avHet	A	verage heterozygosi	ity from all	observation	s. Note: may b	e computed of	on small nu	umber of samples.	
	avHetSE	S	tandard Error for the	e average	neterozygos	ity				
	func	F	unctional category of	f the SNP	(coding-syn	on, coding-non	synon, intron	, etc.)		
	locType	T١	pe of mapping infer	red from s	ize on refer	ence; may not	agree with cla	ass		
	weight	T	he quality of the align	nment: 1 =	unique ma	oping, 2 = non-	unique, 3 = n	nany matcl	hes	
	exceptions	U	nusual conditions no	ted by UC	SC that may	indicate a pro	blem with the	data		
	submitterCo	ount N	umber of distinct sub	omitter har	dles for sub	mitted SNPs for	or this ref SN	P		
	submitters	Li	st of submitter hand	les						
	alleleFreqC	Count N	umber of observed a	alleles with	frequency (iata				
	alleles	0	bserved alleles for w	which frequ	ency data a	re available				
	alleleNs	C	ount of chromosome	es (2N) on	which each	allele was obse	erved. Note: t	his is extra	apolated by dbSNP from submitted frequencies and total sample 2N, and is not always an integer	
	alleleFreqs	A	lele frequencies							
	bitfields	S	NP attributes extract	ted from d	SNP'S SNP	_bitfield table				
_	_									
ge	t output car	ncel	heck all clear all							

La listes des rs obtenues.

rs121965092 rs3731177 rs183167499 rs375859472 rs55779831 rs200148127 rs786205206 rs754673606 rs3731152 rs869025275 rs794729655 rs587778758 rs144766677 rs183238369 rs121965088 rs767569346 rs754532049 rs3731130 rs794729654 rs587778762 rs121965090 rs192285219 rs74737358 rs200338014 rs121965091 rs184879571 rs35629274 rs587778760 rs587778761 rs552222088 rs587778759 rs752088918 rs587778763 rs794729656 rs794729657 rs2228002 rs587778757 rs201273381

Paste In Identifiers for Common SNPs(147)

Please paste in the identifiers you want to include. The items must be values of the **name** field of the currently selected table, **snp147Common**. (The "describe table schema" button shows more information about the table fields.) Some example values: rs10027781

rs10027781 rs10028680 rs10015607 rs10013607 rs10077230

Copier coller les rs

submit clear cancel

Table Browser (Input Identifiers)

Use this program to retrieve the data associated with a track in text format, to calculate intersections between tracks, and to retrieve DNA sequence covered by a track. For help in using this application see <u>Using the Table Browser</u> for a description of the controls in this form, the <u>User's Guide</u> for general information and sample queries, and the OpenHelix Table Browser <u>tutorial</u> for a narrated presentation of the software features and usage. For more complex queries, you may want to use <u>Galaxy</u> or our <u>public MySQL server</u>. To examine the biological function of your set through annotation enrichments, send the data to <u>GREAT</u>. Send data to <u>GenomeSpace</u> for use with diverse computational tools. Refer to the <u>Credits</u> page for the list of contributors and usage restrictions associated with these data. All tables can be downloaded in their entirety from the <u>Sequence and Annotation Downloads</u> page.

clade: Mammal • genome:	Human 🔹	assembly: Dec. 2013 (GF	(Ch38/hg38) 🔻
group: Variation	track: Flagged SNPs(147) • manage custom tracks	track hubs
table: snp147Flagged	 describe table sche 	ema	
region: O genome O position ch	nr3:14145147-14178783	lookup define regions	
identifiers (names/accessions):	paste list upload list clear	list	
filter: create			
intersection: create			
correlation: create			
output format: custom track	▼ Se	nd output to 🔍 Galaxy 🛛	GREAT GenomeSpace
output file:	(leave blank to ke	eep output in browser)	
file type returned: plain text	gzip compressed		
get output summary/statistics			

Pour avoir les rs annotés dans Génome Browser.

Output snp147Flagged as Custom Track
Custom track header:
name= tb_snp147Flagged
description= table browser query on snp147Flagged
visibility= pack •
uri=
Create one BED record per:
Whole Gene
Upstream by 200 bases
O Downstream by 200 bases
Note: if a feature is close to the beginning or end of a chromosome and upstream/downstream bases are added, they may be truncated in order to avoid extending past
the edge of the chromosome.
get custom track in table browser get custom track in file
get custom track in genome browser cancel

Annexe III : démarche Blastp.

Page d'accueil Blast.

Copier-coller la séquence protéique afin de modifier les paramètres.

blastn blastp blast	s tblastn tblastz							
Enter Query	Sequence BLASTP programs search protein databases using a protein query. more							
Enter accession	number(s), gi(s), or FASTA sequence(s) 😡 <u>clear</u> Query subrange 😡							
Cop	pier coller la From							
seq								
Or, upload file Job Title	Choisissez un fichier Aucun fichier choisi 🤢							
Enter a descriptive title for your BLAST search 😡								
Choose Sear	ch Set							
Database	Protein Data Bank proteins(pdb) V							
Organism Optional	Enter organism name or id-completions will be suggested Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.							
Exclude	Models (XM/XP) Uncultured/environmental sample sequences							
Entrez Query Optional	Finter an Entrez query to limit search 😡							
Program Sele	ection							
Algorithm	 blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST) PHI-BLAST (Pattern Hit Initiated BLAST) DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) Choose a BLAST algorithm 							
BLAST	Search database Protein Data Bank proteins(pdb) using Blastp (protein-protein BLAST)							

Résultats de SwissModel : XPC-SwiwwModel1.

	Oligo-State O Ligands MONOMER None			GMQ8 0.30	E QMEAN -6.44 ■
Model 01	Global Quality QMEAN Cβ All Atom Solvation Torsion	-6.44 -3.58 -1.70 -1.26 -5.36	Local Quality	Comparison	Standard Set of FCB Structures - Standard Set of FCB
	TemplateSeq Identity2qsg.1.C23.63%	Coverage	Description DNA repair protein R	AD4	^
	Oligo-state hetero-oligomer	Method X-ray, 3.10 Å	Seq Similarity 0.32	Range 176 - 830	Coverage 0.50
	Model-Template Alignme	nt			^
Model_01 MAR KRAAGGE PRGRI 2030.1.C	ELRSQKSKAKSKARREE	EEEDAFEDEKPPK	KSLLSKVSQGKRKRGCSHP	GGSADGPAKKKY	JAKVIV 80
Model_01 KSENLKVIKDEALS	DGDDLRDFPSDLKKAHH:	L KRGATMN EDSNE	EEESENDWEEVEELSEPV	LGDVRESTAFSI	RSLLPV 160
2qsg.1.C Model_01 KPVEIEIETPEQAK	IRERSEKIKLEFETYLR	RAMKRFNKGVHED	THEVHLLCLLANGFYRNNI	CSQPDLHAIGLS	EVAGV 8
2qsg.1.C EDISVEIKPSSKRN:	S D <mark>A RRTS</mark> R	N DC SNEERKRRKY	FHMLYLVCLMVHGFIRNEW	DNS <mark>KRLSRKLS</mark> N	ILVPEK 79
Model_01 FTRV-LPR-DV 2qsg.1.C VFELDHPQKDEELF	DTYYLSNLVKW LRSTRKLLDG L KKCMEL	FIGTFTVNAEL NQKHWK II) KKYDN	EGLYMRI <mark>(KEIEMSAN</mark> NKR	<mark>DNLQTTLE</mark> KFKILK <mark>RSDFL</mark> I	RRFAI 289 R-A-VS 157
Model_01		PIPLKSATAKGKK	PSKERLTADPGGSSETSSO	VLENHTKPKTSP	CGTKQE 369
Model_01 BTFAKGTCRPSAKG	KRNKGGRKKRSKPSSSE	EDEGPGDKQEKAT	QRRPHGRERRVASRVSYKE	ESGSDEAGSGSI	FELSS 449
2qsg.1.CLN			GNN	(A Y K -	208
Model_01 GEASD PSDEDSEPG	PPKORKAPAPORTKAGS	KSASRTHRGSHRR	DPSLPAASSSSSSSKRGKK	MCSDGEKAEKRS	VKYPI 215
Model_01 QWLEVFCEQEEKWV 2qsg.1.C FWCEVW FSK FWT	CVDCVHG-VVGQPL TVDPVNLKTIDQVRLHS	TCY <mark>KYATR</mark> Klapkgva CCB rn	PMTYVVGIDSDGWVRDVTQ MLRYVIRDDRKYGCRDVTR	RYDPVWMTVTRE RYAQW(MNSKVRI	CCRVD - 599 KRIIK 295
Model_01 AEWWAETLRP 2qsg.1.C IOFGEKWFRKVITA	Y <mark>QSP</mark> - <mark>FMDREKKEDLEF</mark> Dhhrkri <mark>(Kiddyedqyf</mark>	OAKHMDOPLPTAI FORDESBGIPDS(GLYKNHPLYALKRHLLKYE QDDKNHPYYYDCODIKQIQ	AIYPE <mark>T</mark> AAILGY Dorpetaailgy	CRGE - 673
Model_01 AVYSRDCVI 2gsg.1.CKVGKVDKVYAKRDD	HTLHSRDTWLKKARVVR	LGEVPYKMVKGFS IGSRCKKVIKRIV	NRARKAR LAEPOLREENDL	GLFGYWOTEEYC RLDSFEDTEDY	IPPVAV 747 IPPLAS 447
Model_01 - DGKVPRNEFGNVY	LFLPSMMPIGCVQLNLP	NLHRVARKLDIDC	VQAITGFDFH - GGYSHPVT	DGYIVCEEFKD	LLTAW 825
2qsg.1.CASGEIIKNIFGN	VFAPTMIPGNCCLVDNP	VAIKAARPLGVEF	APAVTSFREERGSIVKPVL	SGIVVARWLREA	IETAI 527
Model_01 ENEQAVIERKEKEK 2gsg.1.CDG(IEP	KEKRALGNWKLLAKGLL	I RERLKRRYGPKS	EAAAPHTDAGGGLSSDEEE	GTSSQAEAARII	LAASWP 905
Model_01 QNREDEEKQKLKGG	PKKTKREKKAAASHLFP	FEQL			940
2qsg.1.C					

	Oligo-State MONOMEI	Ligands R None		GMQE 0 0.03	QMEAN -4.05 ♥
Mode	Global Qual QMEAN Cβ All Atom Solvation Torsion	ty -4.05 -1.53 -1.39 -1.43 -1.43 -4.21	Local Quality Local Quality tomate the set of the set of the set the set th	Comparison Comparison with Non-reductive of the second s	A Set of FOB Structures
	Template S 2rvb.1.A	Coverage	Description DNA repair protein complet	menting XP-C cells	^
	Oligo-state hetero-oligi	Method omer NMR	Seq Similarity 0.61	Range Cov 109 - 156 0.0	verage 5
	Model-Templ	ate Alignment			^
Model_02 MA 2rvb.1.A	R KRAAGGE PRGRELR SQKSKAK	SKARREEEEEDAFEDEKI	PPKKSLLSKVSQGKRKRGCSH	PGGSADGPAKKKVAK'	VIV 80
Model_02 KS	ENLKVIKDEALSDGDDLRDFPS	DLKKAHHLKRGATMNEDS	SNEEEEESENDWEEVEELSEP	VLGDVRESTAFSRSL	LPV 160
Model_02 KP	VEIEIETPEQAKTRERSEKIKI	EFETYLRRAMKRFNKGVI	HEDTH KVHLLCL LANGFYR NN	ICSQPDLHAIGLSII	PAR 240
2rvb.1.A Model_02 FT 2rvb.1.A	RVLPRDVDTYYLSNLVKWFIGT	FTVNAELSASEQDNLQT	ILERR FAIYSAR DDEELVH I F	LLILR ALQLLTR LVL:	5LQ 320
Model_02 PI	PLKSATAKGKKPSKERLTADPG	GSSETSSQVLENHTKPKI	ISKGTKQEETFAKGTCRPSAK	GKRNKGGRKKRSKPS	SSE 400
Model_02 ED	E G P G D K Q E KA T Q R R P H G R E R R V	ASRVSYKEESGSDEAGS	GSDFELSSGEASDPSDEDSEP	G P P K Q R K A P A P Q R T K I	A.G.S. 480
Model_02 KS 2rvb.1.A	ASRTHRGSHRKDPSLPAASSSS	SSSKRGKKMCSDGEKAEI	KRSIAGIDQWLEVFCEQEEKW	VCVDCVHGVVGQPLT	CYK 560
Model_02 YA 2rvb.1.A	T K PMT Y V V G I D S D G W V R D V T Q P	YDPVWMTVTRKCRVDAEV	WWAETLRPYQSPFMDREKKED	LEFQAKHMDQPLPTA:	IGL 640
Model_02 YK 2rvb.1.A	NHPLYALKRHLLKYEAIYPETA	AILGYCRGEAVYSRDCVI	HTLHSRDIWLKKARVVRLGEV	P Y KMV KG F S N R A R KAI	RLA 720
Model_02 EP 2rvb.1.A	QLREENDLGLFGYWQTEEYQPP	VAVDGKVPRNEFGNVYLI	FLPSMMPIGCVQLNLPNLHRV	ARKLDIDCVQAITGF	DFH 800
Model_02 GG 2rvb.1.A	YSHPVIDGYIVCEEFKDVLLIA	WENEQAVIERKEKEKE	KRALGNWKLLAKGLLIRERLK	RRYGPKSEAAAPHTD	A.G.G 880
Model_02 GL 2rvb.1.A	SSDEEEGTSSQAEAARILAASW	PQNREDEE KQKLKGG PKI	KI KRE KKAAASH L FPFEQL		940

Résultats de SwissModel : XPC-SwiwwModel1.

Annexe IV : alignement pymol des structures prédites de I-TASSER avec les autres structures.

L'alignement est illustré dans la Figure la structure de XPC-modèl1-ITASSER (a) est alignés avec des fragments de XPC P1-2a4j (b), P2c-P2d-2obh (c) et p3-2rvb (d) et ensuite avec XPC-Phyre2 et enfin la structure de XPC-SwissModel1

L'alignement est illustré dans la Figure la structure de XPC-modèl2-ITASSER (a) est alignés avec des fragments de XPC P1-2a4j (b), P2c-P2d-2obh (c) et p3-2rvb (d) et ensuite avec XPC-Phyre2 et enfin la structure de XPC-SwissModel1

(d)

Annexe V : Tableau des rs associés à la maladie XPC ainsi leurs détails

La première colonne représente les rs, la deuxième colonne représente leur localisation dans l'exon ensuite les trois colonnes qui se suit représentent l'allèle et la position protéique de chaque aa et la dernière colonne représente la s séquences fasta de chaque rs.

rs	Exn	Allèle change	Position	Résiduel change	séquence fasta
			protéique	-	
rs587778757	01	$AGC \Rightarrow CGC$	18	S [Ser] ⇒ R [Arg]	>gnl dbSNP rs587778757 allelePos=51 totalLen=101 taxid=9606 snpclass=1 alleles='A/C' mol=Genomic build=142
					TGGCTCGGAA ACGCGCGGCC GGCGGGGAGC CGCGGGGACG CGAACTGCGC
					GUUAGAAALU UAAGGUUAAG AGUAAGGUUU GGUGIGAGGA GGAGGAGGAG
rs201273381	01	GGA ⇒ CGA	13	$G [Gly] \Rightarrow R [Arg]$	>gnl dbSNP rs201273381 allelePos=201 totalLen=401 taxid=9606 snpclass=1 alleles='C/G' mol=Genomic build=150
					CGGGCTGCCC CCACGGCGCG GAACGCGCGC AGCAACCTCC ACCAGGCCTC CGCGTCTGGA
					CTCCCGCCCT GCCTCTGGGC CTCCTCCGCC CACCGGCGGC GTCTCCCGCG AAGCCCGCTG
					CTGGCTGCGC AGTTCGCGTC
					S
					CCGCGGCTCC CCGCCGGCCG CGCGTTTCCG AGCCATGTTG CTTGTCTGGG CAAATTCCAC
					TTCGCGAGTG ACGCACCCGG CCGCGATGCG CTAGAACGCC GGCCCCGCCC CGAGGCGGTG
					TACCCGTGGC CACTAAAAAA
rs2228002	03	$AGG \Rightarrow AGA$	100	$R [Arg] \Rightarrow R [Arg]$	>gnl dbSNP rs2228002 allelePos=256 totalLen=511 taxid=9606 snpclass=1 alleles='A/G' mol=Genomic build=150
					TCTTTCACAC GATCTAGATT GTAGGTTTTT TAACAGCACA TCTGGTAGTA ATTAGACAGA
					TGATCAGAGC ACATCTTGAT GAGATTTGGA ACACATGTTG ATGGAGGAAG TGAGGCTCAG
					AGUTIAUTAA TUATUTITIAA ATAGTIGUAA UAGATUTUCA ATAAATAGGA GGGGTTTIAA AAATTCCATT TAGCTTGAAT GGAACACTAG GATGTCTGAG TCTTCTTCAT CTTCCTTCCT
					GTGGTCTTTA CACAG
					R
					GACTITICCAA GTGACCTCAA GAAGGCACAC CATCTGAAGA GAGGGGCTAC CATGAATGAA
					GAUAGUAAIG AAGAAGAGGAAGAAAGIGAA AAIGAITGGG AAGAGGITGA AGGIGAAACA Tetteetteg titteagaac tgittggite tgittgtttt titgittgat tetgittgga
					GTCAGATCAC TAATTGCAAT CCTTTTGTTT TCTTTTGAGC TAATTAGACC ACAGATAAGG
					TTGTACTAGG GACTT
	0.1	$OTC \rightarrow TTC$	160	$X_{1} X_{2} \to I_{1} I_{2} I_{2}$	م من المارين من
1858///8/63	04	GIG ⇒ TIG	160	v [vai] ⇒ L [Leu]	>gnijuosivrjisso///8/05janelePos=51fotaiLen=101ftaxid=9006jsnpclass=1/alleles='G/1'jmol=Genomic/build=144 TGCTGGGTGA CGTGAGAGAA AGTACAGCCT TCTCTCGATC TCTTCTGCCT
					К
					TGAAGCCAGT GGAGATAGAG ATTGAAACGC CAGAGCAGGC GAAGACAAGA
rs587778759	05	$AAA \Rightarrow AAC$	199	$K [Lvs] \Rightarrow N [Asn]$	>gnlldbSNPlrs587778759 allelePos=51 totalLen=101 taxid=9606 snpclass=1 alleles='A/C' mol=Genomic build=150
					AAACTGGAGT TTGAGACATA TCTTCGGAGG GCGATGAAAC GTTTCAATAA
					M
rs587778761	06	$CCT \rightarrow TCT$	246	$P[Pro] \rightarrow S[Ser]$	GGGGTCCATG AGGACACACA CAAGGTAAGG GCAAGGAATG ATGGGGGAAGG >mlldbSNDirs587778761 allelePos=51 totalLen=101 tavid=9606 snnclass=1 alleles='C/T' mol=Genomic build=150
13507770701			240	- [110] - 2 [361]	TGCATGCTAT TGGCCTGTCC ATCATCCCAG CCCGCTTTAC CAGAGTGCTG
					Y
#=5077707/0	05	TAC - TOC	252	\mathbf{V} [Tend $\rightarrow \mathbf{C}$ [Cend	CTCGAGATGT GGACACCTAC TACCTCTCAA ACCTGGTGAA GTGGTAAGGC
1838///8/60	00	TAC ⇒ TGC	252	$1 [1yr] \Rightarrow C [Cys]$	>guijuosixrjisso/i/io/oujaneteros=51[totailen=101[taxid=9006]snpclass=1[atteles='A/G'[mol=Genomic]build=150
					R
					CTACCTCTCA AACCTGGTGA AGTGGTAAGG CCCTCCGCTT GTCCTGCAGA
rs552222088	06	$CGC \Rightarrow TGC$	240	$R [Arg] \Rightarrow C [Cys]$	>gnl dbSNP rs552222088 allelePos=51 totalLen=101 taxid=9606 snpclass=1 alleles='A/G' mol=Genomic build=150
					GTTTGAGAGG TAGTAGGTGT CCACATCTCG AGGCAGCACT CTGGTAAAGC R
					GGCTGGGATG ATGGACAGGC CAATAGCATG CAGATCTGGC TGGCTGCAGA
rs184879571	07	$TCT \Rightarrow TGT$	291	S [Ser] ⇒ C [Cys]	> gnl dbSNP rs184879571 allelePos=201 totalLen=401 taxid=9606 snpclass=1 alleles='A/C/G' mol=Genomic build=15000000000000000000000000000000000000
		$TCT \Rightarrow TTT$			AGACCTTAGA GGCATCATGT AGCTATTCTG GGCTTCAGCA GCTATCAACG TCATTATGAG
					ATCATTAGTT AACAGTACTG ATAAAAAAACA GTGATCCGGG AGGATCACTT ACATGGACCA
					ATTCCTCATC ATCTCGAGCA
					V
					AGTAAATAGC AAATCTCCTT TCCAATGTAG TCTGCAGGTT ATCTTGTTCA CTGGCTGAAA
					GTUTGUALT AAUTGIAAAL GTUUAATGA AUUTGGGGAAAGGAAGGGAATUUTIGTGT CAGAGGTCAG GGCAAAGGGGAATTTTCATT TCCAGCCAAGAAAAAAAAAA
					ATCGTGAGAC CCGCCTGCCT
rs35629274	07	$TTT \Rightarrow TGT$	287	$F [Phe] \Rightarrow C [Cys]$	> gnl dbSNP rs35629274 allelePos=301 totalLen=601 taxid=9606 snpclass=1 alleles='A/C' mol=Genomic build=15000 snpclass=1 alleles='A/C' mol=Genomic build=1500 snpclass=1 alleles='A/C' mol=Genomic build=1500 snpclass=1 alleles='A/C' mol=Genomic build=1500 snpclass=1 snpclass
					CCACAACTAG AGGCGATAGG GAGGAAAAGCA TACAGGCCCT CCACTCAGAC TCTGATCCCA
					CTTCAGCAGC TATCAACGTC ATTATGAGGA CTGAATAAGG TAGTGTCGGT AACACACCTG
					GAATGGCATC TGGCACATGG CTGCCATTAT CATTAGTTAA CAGTACTGAT AAAAAACAGT
					GATCCGGGAG GATCACTTAC ATGGACCAAT TCCTCATCAT CTCGAGCAGA GTAAATAGCA
					M
					AICICCITIC CAAIGIAGIC IGCAGGIAI CITGITCACI GGCIGAAAGI ICIGCAHAA CTGTAAATGT TCCAATGAAC CTGGGGAGAA AGCAGGCATT CCTTGTGTCA GAGGTCAGGG
					CAAAGGGGAA TTTTCATTTC CAGCCAAGAA AATAAAAAGA GGGAGTGAAT CGTGAGAGACCC
					GCCTGCCTCT GTCCTACTTT CCCCAGCCCG TCTAGCTAAC TCCTATCATC ACTGCAGACC
					CAGCTCAGAC TTTACCTCCT TGGGGAGCCT TCCCAGACCT CCCAGCTGAG AAAAGCGCCC

rs	Exon	Allèle change	Position protéique	Résiduel change	séquence fasta
rs192285219	09	$GCG \Rightarrow GTG$	341	$A [Ala] \Rightarrow V [Val]$	$\label{eq:solution} > gnl dbSNP rs192285219 allelePos=201 totalLen=401 taxid=9606 snpclass=1 alleles='A/C/G' mol=Genomic build=15000000000000000000000000000000000000$
					120 TGTCTCCTGG GCCCTCATCT TCCTCGCTGG AGGAGGGCTT GCTCCGTTTC TTTCTGCCTC CCTTGTTCCT CTTCCCTTTG GCACTTGGCC TGCAGGTGCC CTTAGCAAAG GTTTCCTCTT GTTTGGTTCC TTTGCTGGTC TTTGGTTTGG
					CAGTCAATCT TTCCTTGGAA GGTTTCTTTC CCTTAAACAG AATAAGAAAT TTTGCTTTT TTTCTCCCCC CTCTTTGCT AATGATATGA TAGAAATCCT GTAATCTAAT AGGGTTAAGT CACCAGCTAG AGAACCAATA CATCAAGATG TCCCCAGCTC AGACAGTGAT CAACCAGCTA TCCTTCAGGG TTGTATGTAT
rs74737358	09	$CCT \Rightarrow CAT$	334	$P[Pro] \Rightarrow H[His]$ $P[Pro] \Rightarrow P[Arg]$	>gnl dbSNP rs74737358 allelePos=251 totalLen=501 taxid=9606 snpclass=1 alleles='A/C/G/T' mol=Genomic build = 150
		$CCT \Rightarrow CTT$		$P [Pro] \Rightarrow L [Leu]$	CGGACGTCGC TGGGTTGCCT TCTCCTGCTT GTCTCCTGGG CCCTCAICTT CCTCGCTGGA GGAGGGCTTG CTCCGTTTCT TTCTGCCTCC CTTGTTCTC TTCCCTTGG CACTTGGCCT GCAGGTGCCC TTAGCAAAGG TTTCCTCTTG TTTGGTTCCT TTGCTGGTCT TTGGTTGG
rs144766677	09	TTT ⇒ TCT	614	F [Phe] → S [Ser]	GTTTCTTTCC CTTAAACAGA ATAAGAAATT TTGCTTTTTT TTCTCCCCCCC TCTTTTGCTA ATGATATGAT AGAAATCCTG TAATCTAATA GGGTTAAGTC ACCAGCTAG GAACCAATAC ATCAAGATGT CCCCAGCTCA GACAGTGATC AACCAGCTAT CCTTCAGGGT TGTATGTATG TATTGGCTAA AATCTGTAGC ATCTTAGATA AGGCCACAGT ATAATTCTTT TCACCCTAAC TGTAAAGAGA CGTAAAGAGA
				- [end] [end]	aCTAAAATTA AGGCAGCAAC TGCCCCAGCT TTAIATGGCT GTGACAATTA AATGAGACAA CCCATTAAAA ACACCCAACA TGCTCGGG CCATATATAAG GTGCTCAAAA ACAGGAATAA TTTTAATAAC CTGACTGTGT CTTGGAGCCC CTGGCAGCCA AGGCCTTACC TCCAAGTCTT CTTTCTTCTC CCTGTCCATA R
					ATGGGCTCTG GTATGGTCTC AAGGTCTCGG CCCACCACTCAGCATCAACC CGGCACTTGC GGGTCACTGT CATCCAGACT GGGTCGTACC TCTGTGTGAC ATCTCGGACC CAGCCGTCAC TGTCAATGCC CACCACATAG GTCATGGGCT TGGTGGCGTA CTTGTAACAG GTCAGAGGGCT GGCCCACCACACCGTGCACA
rs183238369	09	$CGC \Rightarrow TGC$	594	$R [Arg] \Rightarrow C [Cys]$	$\label{eq:sigma} > gnl dbSNP rs183238369 allelePos=201 totalLen=401 taxid=9606 snpclass=1 alleles='A/G' mol=Genomic build=1500' mol=Genomic build=15$
					CCATTAAAAA CACCCAACAT AGTGCTGGGC ATATATAAGG TGCTCAAAAA CAGGAATAAT TITAATAACC TGACTGTGTC TIGGAGCCCC TGGCAGCCAA GGCCTTACCT CCAAGTCTTC TITCTTCTCC CIGTCCATAA ATGGGCTCTG GTATGGTCTC AAGGTCTCGG CCCACCACTC AGCATCAACC CGGCACTTGC R
rs121965088	09	CGA ⇒ TGA	579	$R [Aro] \Rightarrow Ter[*]$	GGTCACTGTC ATCCAGACTG GGTCGTACCT CTGTGTGACA TCTCGGACCC AGCCGTCACT GTCAATGCCC ACCACTAGG TCATGGACCTT GGTGGCGTAC TTGTAACAGG TCAGAGGCTG GCCCACCACACCGTGCACAC AGTCTACACA TACCCACTTT TCCTCCTGCT CACAGAACAC CTCTAGCCAC TGGTCTATAC SoulidisSNPir121050983101eP0e2511trat11 en=5011travid=9606(spnclass=1lalleles=C/Ttmol=Genomiclbuild=15
18121905088	09	CGA ⇒ IGA	579	[OPA]	
					AAGCTIGCCA GCGCCAICCT CAAGCICITIC AAGCAGIAAA AGAGGCAAGAAAAIGIGCAG CGAIGGIGAG AAGGCAGAAAAAAAAAAAAAAAAAAAAAA
					GAGATGTCAC ACAGAGGTAC GACCCAGTCT GGATGACAGT GACCCGCAAG TGCCGGGTTG ATGCTGAGTG GTGGCCCGAG ACCTTGAGAC CATACCAGAG CCCATTATG GACAGGGAGA AGAAAGAGA CTTGGGCGAGGTA AGGCCTTGGC TGCCAGGGGC TCCAAGGACAC AGTCAGGTTA TTAAAATTAT TCCTGTTTTT GAGCACCTTA TATAIGCCCA GCACTAIGTT GGGTGTTTTT AATGGGTTGT
rs767569346	09	$TAC \Rightarrow TAA$ $TAC \Rightarrow TAG$ $TAC \Rightarrow TAT$	559	$Y [Tyr] \Rightarrow Ter[*]$ [OCH] $Y [Tyr] \Rightarrow Ter[*]$	>gnl dbSNP rs767569346 allelePos=51 totalLen=101 taxid=9606 snpclass=1 alleles='A/C/G/T mol=Genomic build =150 CCGTCACTGT CAATGCCCAC CACATAGGTC ATGGGCTTGG TGGCGTACTT
				[AMB] V $[Tyr] \Rightarrow V [Tyr]$	N TAACAGGTCA GAGGCTGGCC CACCACACCG TGCACACAGT CTACACATAC
rs754532049	09	$GTG \Rightarrow G$	548	$V [Val] \Rightarrow A [Ala]$	>gnl dbSNP rs754532049 allelePos=51 totalLen=101 taxid=9606 snpclass=2 alleles='-
					N-A JINO-Genomicjonale 144 GGCTTGGTGG CGTACTTGTA ACAGGTCAGA GGCTGGCCCA CCACACCGTG N
rs3731130	09	$ATG \Rightarrow ATA$	513	M [Met] ⇒ I [Ile]	CACAGTCTAC ACATACCCAC TTTTCCTCCT GCTCACAGAA CACCTCTAGC >gnl dbSNP rs3731130 allelePos=256 totalLen=511 taxid=9606 snpclass=1 alleles='A/C/G' mol=Genomic build=15
		$ATG \Rightarrow ATC$		M [Met] ⇒ I [Ile]	0 GTCTTATAAA GAGGAGAGTG GGAGTGATGA GGCTGGCAGC GGCTCTGATT TTGAGCTCTC CAGTGGAGAA GCCTCTGATC CCTCTGATGA GGATTCCGAA CCTGGCCCTC CAAAGCAGAG GAAAGCCCCC GCTCCTCAGA GGACAAAGGC TGGGTCCAAG AGTGCCTCCA GGACCCATCG TGGGAGCCAT CGTAAGGACC CAAGCTTGCC AGCGGCATCC TCAAGCTCTT CAAGCAGTAA AAGAGCCAAG AAAAT
					V TGCAGCGATG GTGAGAAGGC AGAAAAAAGA AGCATAGCTG GTATAGACCA GTGGCTAGAG GTGTTCTGTG AGCAGGAGAAAAGTGGGTA TGTGTAGACT GTGTGCACGG TGTGGTGGGC CAGCCTCTGA CCTGTTACAA GTACGCCACC AAGCCCATGGA CCTATGGGT GGGCATGAC AGTGACGGCT GGGTCCGAGATGTCACACAG AGGTACGACC CAGTCTGGAT GACAGTGACC CGCAAGTGCC GGGT
rs794729654	09	$AAA \Rightarrow A$	431	K [Lys] ⇒ R [Arg]	>gnl dbSNP rs794729654 allelePos=51 totalLen=101 taxid=9606 snpclass=2 alleles='- /AA' mol=Genomic build=144 GCGACGTCCG CATGGCCGGG AGCGGCGGGT GGCCTCCAGG GTGTCTTATA N
rs587778762	09	GAG ⇒ GGG	410	$\mathbf{E} \; [\mathbf{Glu}] \Rightarrow \mathbf{G} \; [\mathbf{Gly}]$	GAGGAGAGIG GGAGIGAIGA GGCIGGCAGC GGCACC GGCICIGAIT ITGAGCICIC >m ldbSNPipSS77787621ldlePos=51lotaLten=101ltaxid=960fsppclass=1lalleles='A/G' mol=Genomic build=150 GAGCAAGCCC TCCTCCAGCG AGGAAGATGA GGGCCCAGGA GACAAGCAGG R
Re121065000	00	CGG → TGC	302	$R [Arg] \rightarrow W [Two]$	GAAGGCAACC CAGCGACGTC CGCATGGCCG GGAGCGGCGG GTGGCCTCCA
13121903090	09	200 - 100	373	n [mg] → w [1rp]	Comparison parameter of a signal comparison parameter of the second
					ITEJALGAIA ICAIIAUCAA AAUAGGGGGG AGAAAAAAA GCAAAAITIC ITAITCIGIT TAAGGGAAAG AAACCTTCCA AGGAAAGATI GACTGCGGGT CCAGGAGGCT CCICAGAAAC TTCCAGCCAA GTTCTAGAAA ACCACACCAAACCAAAGACCAGCAAAGGAA CCAAACAAGA GGAAACCTTT GCTAAGGGCA CCTGCAGGCC AAGTGCCAAA GGGAAGAGGA ACAAGGGAG CAGAAAGAAA
					Y GGAGCAAGCC CTCCTCCAGC GAGGAAGATG AGGGCCCAGG AGACAAGCAG GAGAAGGCAA CCCAGCGACG TCCGCATGGC CGGGAGCGGC GGGTGGCCTC CAGGGTGTCT TATAAAGAGG AGAGTGGGAG TGATGAGGCT GGCAGCGGCT CTGAITTTGA GCTCTCCAGT GGAGAGCCT CTGATCCCTC TGATGAGGAT TCCGAACCTG GCCCTCCAAA GCAGAGGAAA GCCCCCGCTC CTCAGAGGAC
rs200338014	09	$\begin{array}{l} \mathbf{C}\mathbf{C}\mathbf{T} \Rightarrow \mathbf{G}\mathbf{C}\mathbf{T} \\ \mathbf{C}\mathbf{C}\mathbf{T} \Rightarrow \mathbf{T}\mathbf{C}\mathbf{T} \end{array}$	334	$\begin{array}{l} P \left[Pro \right] \Rightarrow A \left[Ala \right] \\ P \left[Pro \right] \Rightarrow S \left[Ser \right] \end{array}$	>gnl dbSNP rs200338014 allelePos=51 totalLen=101 taxid=9606 snpclass=1 alleles='A/C/G' mol=Genomic build=1 50
					GGAAGTTTCT GAGGAGCCTC CTGGATCCGC AGTCAATCTT TCCTTGGAAG V
					TTTCTTTCCC TTAAACAGAA TAAGAAATTT TGCTTTTTTT TCTCCCCCCT

rs	Exon	Allèle change	Position	Résiduel change	séquence fasta
rs587778758	10	TAT ⇒ CAT	641	Y [Tyr] ⇒ H [His]	>gnlldbSNP rs587778758 allelePos=51 totalLen=101 taxid=9606 snpclass=1 alleles='C/T' mol=Genomic build
					Y
					ATAAGAACCA CCCTCTGTAT GCCCTGAAGC GGCATCTCCT GAAATATGAG
rs3731152	11	ACG ⇒ ATG	689	$T [Thr] \Rightarrow M [Met]$	>gnl dbSNP rs3731152 allelePos=256 totalLen=511 taxid=9606 snpclass=1 alleles='C/T' mol=Genomic build= 150
					TGCAGATTAG GGTTTGTAAG TGGACACATC CCCCAAAAGACAGGCAGTCC ACGTTCAAGG
					CIGTITIGCCT AGCACAGCIT CICIGGGCCC CCIAGGAGCT CGGCCIGCTC CAGGGIGGCI GAACCTGAGG AGGGAGCCTG CAGGGCTGCG CTCTCCACTG TCCCGCATTC CCGCAGTGGG
					GCTGTGGACT GAGTTACCTT TGTGTCCTGT GTTGGTTCCA CAGGGATTGT GTGCACACTC
					TGCAITCCAG GGACA Y
					GTGGCTGAAG AAAGCAAGAG TGGTGAGGCT TGGAGAAGTA CCCTACAAGG TAACTGGAGC
					AGAGAAGTGA TGATGAGGCAG IGGIGACACA GGCCIGIAGC IGAGCGGGAG AGCIGGGGGC AGAGAAGTGA TGATGAGCCT CCCAGTCCTG CCCAGGATCC TGATCAGAAA TGTCTCACTT
					TCCCGGCTTG AGCAGGATTC AAGGAGGAGA GAAACATTTA AATTGTCTTA TTAATAAGAC
rs200148127	13	$GGC \Rightarrow AGC$	802	G [Gly] ⇒ S [Ser]	AITIGIAAGA AAIGG >gnlldbSNP rs200148127 allelePos=201 totalLen=401 taxid=9606 snpclass=1 alleles='C/T' mol=Genomic buil
					d=150
					CGTTCCCTCT GGAGGGAAGC CAGAATTGGT AAAGCACTGA CTTTGCAAAT CCAGTGTAAC ATCCTGAAAA TTGGAGCCAC CAGGCCTCAA CTCCCAGCAG CCCCATGCCA GCTTTCCATC
					CCCATCTCTG GAGCCACCCC TCCCCATCCC TGTGTTTAGC CTCCATCGAA GGCCCCTCAC
					GCACACGGGA TGGGAGIAGC Y
					GCCATGGAAA TCAAAGCCAG TGATGGCCTG GACACAGTCG ATGTCCAGCT TGCGGGCCAC
					GCGGIGIAGA TIGGGCAGGI TCAGCIGGAC ACAGCCAAIA GGCAICAIGC IGGGCAGGAA GAGGTACACA TTCCCAAACT CGTTCCGGGG CACCTGIGTC GGGTGAGCAA GTCAGCATT
					GGCCAGCAGG GGAACAAGGC
rs786205206	13	$AAC \Rightarrow AA$	754	$N [Asn] \Rightarrow K [Lys]$	>gnl dbSNP rs786205206 allelePos=51 totalLen=101 taxid=9606 snpclass=2 alleles='- /C' mol=Genomic build=144
					CCCCTGCTGG CCAAATGCTG ACTTGCTCAC CCGACACAGG TGCCCCGGAA
					N GAGTTTGGGA ATGTGTACCT CTTCCTGCCC AGCATGATGC CTATTGGCTG
rs55779831	15	GGG ⇒ GAG	846	$G [Gly] \Rightarrow E [Glu]$	$\label{eq:solution} > gnl dbSNP rs55779831 allelePos=121 totalLen=241 taxid=9606 snpclass=1 alleles='C/G/T' mol=cDNA builders=121 taxid=9606 snpclass=1 alleles=121 taxid=9606 snpclass=1 alleles='C/G/T' mol=cDNA builders=121 taxid=9606 snpclass=1 alleles='C/G/T' mol=cDNA builders=121 taxid=9606 snpclass=121 taxid=9606 snpclass=120 snpcl$
		G G G ⇒ G C G		$G [Gly] \Rightarrow A [Ala]$	=144 TCTCCAAGAA ACTGACCCTG AGCTTGTCTT CTCTGCAAAG AACCTGCACT GACCTTGGGC
					CCGTAGCGAC GCTTCAGCCT CTCCCTGATG AGCAGACCTT TGGCCAGCAA CTTCCAGTTC
					B CTAGAGCCCG CTTCTCCTTT TTCTGCAGGC AAAAATGAAG TGGGAGAAAA GTGTTAAGCA
					CTGACATTTT CAGGAAAAAT ATTAAGATGG AAACTGTGAA TGTAAAGACA GATATATACA
rs3731177	16	AAA ⇒ CAA	928	$\mathbf{K} [\mathrm{Lys}] \Rightarrow \mathbf{Q} [\mathrm{Gln}]$	>gnl dbSNP rs3731177 allelePos=256 totalLen=511 taxid=9606 snpclass=1 alleles='A/C' mol=Genomic build= 150
					TGCTGCCTCT TCATGGGGGCT TCCTGGTATC TGATTACTGA CCCTCGCCTG TGTCCTCCCA
					CCACTGCCAC CTGTCCAGAG TGAGGCAGCA GCTCCCCACA CAGATGCAGG AGGTGGACTC TCTTCTGATG AAGAGGAGGG GACCAGCTCT CAAGCAGAAG CGGCCAGGAT ACTGGCTGCC
					TCCTGGCCTC AAAACCGAGA AGATGAAGAA AAGCAGAAGC TGAAGGGTGG GCCCAAGAAG
					ACCAAAAGGG AAAAG M
					AAGCAGCAGC TTCCCACTG TTCCCATTTG AGAAGCTGTG AGCTGAGCGC CCACTAGAGG
					GGCACCCACCAGTTGCTGCT GCCCCACTAC AGGCCCCACA CCTGCCCTGG GCATGCCCAG CCCCTGGTGG TGGGGGGCTTC TCTGCTGAGA AGGCAAACTG AGGCAGCATG CACGGAGGCG
					GGGTCAGGGG AGACGAGGCC AAGCTGAGGA GGTGCTGCAG GTCCCGTCTG GCTCCAGCCC
rs183167499	16	GCA ⇒ GGA	878	$A [Ala] \Rightarrow G [Glv]$	11G1CAGA11 CACCC >gnl dbSNP rs183167499 allelePos=201 totalLen=401 taxid=9606 snpclass=1 alleles='A/C/G'lmol=Genomiclb
		GCA ⇒ GTA		$A [Ala] \Rightarrow V [Val]$	uid=144
					GGCGCTCAGC TCACAGCIGC TCAAAIGGGA ACAGGIGGGA AGCIGCTGCI TICITITICCC TITTGGTCTT CTTGGGCCCA CCCTTCAGCT TCTGCTTTTC TICATCTTCT CGGTTTTGAG
					GCCAGGAGGC AGCCAGTATC CTGGCCGCTT CTGCTTGAGA GCTGGTCCCC TCCTCTTCAT
					CAGAAGAGAGTCCACCICCT V
					CATCTGTGTG GGGAGCTGCT GCCTCACTCT GGACAGGTGG CAGTGGTGGG AGGACACAGG
					CUAGGGI IAG IAAICAGAIA CUAGGAAGCC CCAIGAAGAG GCAGCAAGIT CCCAGCCTGC CCTAAGCTGT GTAACTCTGG GAGGACAAGG GCAIGGGACA GGGCAGGGAG AGAGCCCAGA
	1.	000	004		
rs375859472	16	CCC⇒CIC	824	ľ [Pro] ⇒ L [Leu] 	>gnljdbSNP[rs3/58594/2]allelePos=101[totalLen=201]taxid=9606[snpclass=1]alleles='A/G'[mol=Genomic]buil d=150
					GTTTTGAGGC CAGGAGGCAG CCAGTATCCT GCCCGCTTCT GCTTGAGAGC TGGTCCCCTC
					CICTICAICA GAAGAGAGIC CACCICCIGC AICTGTGTGG R
					GAGCTGCTGC CTCACTCTGG ACAGGTGGCA GTGGTGGGAG GACACAGGCGAGGGTTAGTA
					ATCAGATACC AGGAAGCCCC ATGAAGAGGC AGCAAGTTCC

Annexe VI : Tableau d'énergie de Cluspro.

Tableau d'énergie de Cluspro de modèle XPC-modèle3-I-TASSER avec centrine.

Cluster	Members	Representative	Weighted Score
0	95	Center	-890.7
		Lowest Energy	-1002.0
1	72	Center	-891.4
		Lowest Energy	-914.3
2	60	Center	-945.5
		Lowest Energy	-982.4
3	53	Center	-842.0
		Lowest Energy	-942.4
4	42	Center	-775.3
		Lowest Energy	-947.9
5	35	Center	-002.3
		Lowest Energy	-992.3
6	21	Contor	-332.3
	5.	Lowest Energy	-960.3
7	20	Contor	-768.0
	30	Center	-708.0
8		Lowest Energy	-944.6
l °	25	Center	-821.1
		Lowest Energy	-942.1
9	25	Center	-861.8
		Lowest Energy	-861.8
10	21	Center	-792.5
		Lowest Energy	-854.0
11	20	Center	-790.7
		Lowest Energy	-866.8
12	19	Center	-818.8
		Lowest Energy	-884.0
13	19	Center	-766.8
		Lowest Energy	-824.8
14	18	Center	-818.6
		Lowest Energy	-861.4
15	18	Center	-876.7
		Lowest Energy	-876.7
16	17	Center	-858.1
		Lowest Energy	-865.9
17	17	Center	-822.6
		Lowest Energy	-822.6
18	14	Center	-860.3
		Lowest Energy	-965.0
19	14	Center	-905.0
	14	Lowest Eporav	-024.0
20	14	Contor	707.0
	14		-191.0
21	10	Contered	-909.1
~	13	Center	-112.1
22	40	Lowest Energy	-808.3
~~	13	Center	-/81.2
23		Lowest Energy	-862.4
23	13	Center	-836.9
- 24		Lowest Energy	-840.9
24	13	Center	-858.0
		Lowest Energy	-885.1
25	12	Center	-794.8
		Lowest Energy	-970.0
26	11	Center	-765.7
		Lowest Energy	-837.3
27	11	Center	-791.0
		Lowest Energy	-839.0
28	11	Center	-823.3
		Lowest Energy	-918.0
29	10	Center	-816.4
		Lowest Energy	-886.8
L			

Tableau d'énergie de Cluspro de	modèle XPC-modèle3-I-TASSER avec TFIIH.
---------------------------------	---

Cluster	Members	Representative	Weighted Score
0	64	Center	-838.4
		Lowest Energy	-874.4
1	51	Center	-719.5
		Lowest Energy	-853.2
2	51	Center	-811.4
		Lowest Energy	-846.3
3	49	Center	-750.5
		Lowest Energy	-815.8
4	40	Center	-893.8
		Lowest Energy	-893.8
5	40	Center	-726.2
		Lowest Energy	-759.6
6	39	Center	-754.5
		Lowest Energy	-766.6
7	38	Center	-716.7
		Lowest Energy	-783.6
8	30	Center	-747.6
		Lowest Energy	-747.6
9	28	Center	-783.8
		Lowest Energy	-828.3
10	26	Center	-713.1
		Lowest Energy	-738.9
11	25	Center	-710.9
	25	Lowest Energy	-710.5
12	23	Center	-690.0
	23	Lowest Eporav	-030.0
13	22	Contos	-010.5
	23	Center	-802.0
14	22	Lowest Energy	-802.0
	23	Center	-767.9
15	22	Lowest Energy	-805.4
	23	Center	-739.4
16	20	Lowest Energy	-755.0
	20	Center	-704.2
17	10	Lowest Energy	-750.8
	18	Center	-706.9
18	10	Lowest Energy	-/4/.4
	18	Center	-/36.1
10		Lowest Energy	-854.6
	17	Center	-728.0
20		Lowest Energy	-728.0
20	16	Center	-745.2
21		Lowest Energy	-805.3
21	16	Center	-809.7
22		Lowest Energy	-809.7
~ ~	15	Center	-748.9
22		Lowest Energy	-748.9
23	14	Center	-706.8
24		Lowest Energy	-791.5
24	14	Center	-703.0
		Lowest Energy	-749.8
25	13	Center	-718.2
		Lowest Energy	-792.4
26	12	Center	-728.0
		Lowest Energy	-762.2
27	11	Center	-718.4
		Lowest Energy	-718.4
28	11	Center	-706.7
		Lowest Energy	-718.0
29	10	Center	-691.4
		Lowest Energy	-773.7

Résumé

Cette recherche fait partie de l'étude in silico (utilisant des approches bioinformatiques et une modélisation moléculaire) pour analyser les différentes variants XPC et leur impact sur Xeroderma pigmentosum. Nous visons à énumérer les SNP qui peuvent modifier les propriétés de la protéine XPC et prédire sa structure 3D qui est inconnue. À cette fin, nous avons utilisé le serveur UCSC et NCBI pour énumérer et étudier les SNP affectant notre protéine, ces dernier seront exploités dans la partie de modélisation moléculaire où nous suivrons trois approches de prédiction de structure 3D différentes par trois programme différents (la modélisation comparative par le programme SwissModel, modélisation par la reconnaissance de repliements par le proframme Phyre2, et reconnaissance des repliements combinés avec ab initio par le programme I-TASSER); en outre l'utilisation du logiciel Pymol nous a pemis de mésurer la similarité structurelle entre les modèles XPC prédits et les fragments XPC expérimentaux en calculant les rms ce qui montre que le model prédit de la XPC par I-TASSER a donné la merileure similarité structurale avec des rms tré faible par rapport aux autres lmodels cela nous a permis de le retenir comme une structure probable de la XPC, ainsi faire une mutagénése de la XPC prédite par I-TASSER selon les SNPs etudiés, un ammarage moléculaire a été effectuée pour calculer l'orientation préférée de deux molécules afin de former un complexe stable (protéines XPC) par le serveur ClusPro. XPC muté selon les SNP associés à la maladie a permis l'analyse de l'impact de la mutation sur les propriétés de la protéine (sa fonction, la formation des complexes).

Mots cles : Xeroderma pigmentosum, NER, SNP, modélisation moléculaire, prédiction structurale.