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Abstract
The new Z

′ gauge boson is one of the consequences of some physics Beyond the Standard
Model. Such a particle can emerge from a gauge extension of the Standard Model by an
additional U(1) symmetry. We are interested in a U(1)X gauge extension, attached with a
Stueckelberg way of attaining the mass of the new Z

′ boson. The Stueckelberg mechanism
is characterized by the scalar σ, which obeys specific gauge transformations, ensuring the
gauge invariance. It can be used as an alternative to the spontaneous symmetry breaking
mechanism by extending the Higgs sector. This model is grounded in the choice taken for
eliminating the unphysical bilinear terms, as well as the choice of the gauge fixing term.
The impact of this Stueckelberg Z ′ is investigated in the context of ”bb̄ → νν̄” scattering
process.

Key words : BSM, U(1) extension of the SM, Stueckelberg mechanism, Z ′ gauge
boson.

Résumé
Le nouveau boson de jauge Z ′ est l’une des conséquences de quelques aspects du physique
au-delà du Modèle Standard. Une telle particule peut émerger d’une extension de jauge du
Modèle Standard par une symétrie supplémentaire U(1). Notre intérêt se porte spécifiquement
sur l’extension de jauge U(1)X , associée à une méthode de Stueckelberg permettant
d’obtenir la masse du nouveau boson Z

′. Le mécanisme de Stueckelberg est caractérisé
par le scalaire σ, qui obéit à des transformations de jauge spécifiques, assurant l’invariance
de jauge. Il peut être utilisé comme une alternative au mécanisme de brisure spontanée
de symétrie en étendant le secteur de Higgs. Le modèle repose sur le choix effectué pour
éliminer les termes bilinéaires non physiques, ainsi que sur le choix du terme de fixation
de jauge. L’impact de ce Z ′ de Stueckelberg est étudié dans le contexte du processus de
diffusion ”bb̄ → νν̄”.

Mots clés : la physique au-delà du Modèle Standard, une extension de jauge U(1)
du Modèle Standard, le mechanisme de Stueckelberg, le nouveau boson de jauge Z ′.
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Introduction

Our desire to demystify the deep underlying structure of our observable universe con-
tributed to shape the very well-known theory in the realm of particle physics, namely ”The
Standard Model of particle physics”. Despite the theoretical consistency of the model, and
its capacity to survive many rigid low-energy experimental tests, the model left so many
unanswered questions. Ranging from fundamental issues such as incorporating gravity,
the hierarchy problem [1], neutrino oscillations [1], to cosmological phenomena; such as
explaining dark matter, dark energy, and comic inflation. Furthermore, experimental in-
consistencies such as the anomalous magnetic dipole moment of the ”muon g − 2” [2], B
meson decay, and the mass of the W boson [3], has made it clear that we need another
source to supply the answers. Therefore, our drive for a new physics is legitimized, such
a source is believed to reside within the realm of physics Beyond The Standard Model,
where various attempts have been made to extend the Standard Model in order to ac-
count for these phenomena, and address these experimental issues. For instance, Grand
Unified Theories, and Supersymmetry have been very appealing theoretical routes to con-
sider, even extra dimensions has been an interesting paradigm for expanding the Standard
Model, while a less compacted solution has been considered in the form of extensions of
the gauge sector of the SM.
However, one particular way of extending the SM has been widely studied, mainly extend-
ing the gauge internal structure by a U(1) gauge symmetry. Many models were proposed
based on such an extension, and they showed great capacity to take into consideration
many phenomena. Such an extension was capable of accommodating cosmological in-
flation scenario [4], it can offer a suitable candidate for dark matter particles [5], it can
account for the light neutrino masses by the seesaw mechanism [6], even accounting for the
observed baryon asymmetry of the Universe via leptogenesis [7], and many more. Such an
extension is always accompanied with the existence of an additional neutral gauge boson,
the so-called Z

′ gauge boson, leading to a more rich phenomenology, given how such a
particle seems to hold a potential for some answers, which make it very appealing to inves-
tigate. The Z ′ bosons have been present in so many locations in the literature [8], and such
particles would have profound implications for particle physics, depending on the mod-
els from where they arise, given the different possible ranges for their masses and couplings.

It is, therefore, interesting to scrutinize a simple bottom up extension of the SM,
where the gauge structure SU(3)C ×SU(2)L ×U(1)Y can be extended by an extra U(1)X
gauge symmetry, leading to the new structure SU(3)C × SU(2)L × U(1)Y × U(1)X [8].
Models with an additional abelian symmetries also allow for kinetic mixing between the
fields, as well as potential Z − Z

′ mixings, which are intriguing implications of such an
extension [9]. On the other hand, providing the new resulting gauge boson with a mass
cannot be achieved via the familiar route with the symmetry-breaking mechanism of the
extended SM with a single scalar doublet, due to the fact that the extra U(1)X symmetry
will remain unbroken. Thus, one must seek a way to break the symmetry, naturally by
extending the scalar sector by an additional doublet, or bi-doublet [10]. Such a possibility
is an interesting take of its own, and it is possible to achieve, but it comes with some
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reliability, mainly the number of additional parameters, and the issue of fine tuning them.
However, such a burden can be avoided via an alternative, the so-called the ”Stueckelberg
mechanism”, where we can attain a massive Z ′ gauge boson without having to break the
additional symmetry, and therefore, having to deal with less parameters.
An economical minimal Stueckelberg extension of the SM can be constructed via adding
one field associated with the extra U(1) symmetry, and one additional scalar field σ called
”Stueckelberg field”, which obeys specific gauge transformations, that ensure the gauge
invariance. Thus, it is a viable procedure to generate the gauge bosons masses in the
context of an extended SM, in addition to the Higgs mechanism [11].

In this thesis work, we are well-motivated to explore the impact of the Z ′ gauge boson,
which can be revealed via studying some of the properties of this particle, such as its mass,
and its couplings to fermions. Such a particle is chosen to be originated from a simple U(1)
gauge extension of the SM, and it obtains its mass via Stueckelberg mechanism, in the
presence of the Higgs mechanism as well to generate the rest of the gauge bosons masses.
The phenomenology of the Z ′ boson is investigated within the context of its coupling to
fermions, both quarks and leptons.
This work is structured as follows; the first chapter is dedicated as an overview of the
Standard model, and Beyond the SM physics, where the SM is briefly explored, as well
as its deficiencies. Therefore, justifying the need for new physics, which will be explored
briefly, then a hasty exploration of some samples of Z ′ models will be carried out. The
second chapter will be marked by a Stueckelberg way of extending the SM, leading the way
to Stueckelberg mechanism, and the acquisition of a massive Z ′ gauge boson. The final
chapter will be characterized by some phenomenology of the Z ′, and its potential discovery
at future colliders, precisely studying the bb̄ → νν̄ Scattering process, and finishing with
some concluding remarks.
We have added some supplements to the work, four appendices to clarify certain concepts
that have been used, as well as some tools such as Feynman rules, and Casimir’s trick for
calculating the square amplitude.
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Chapter 1

The Standard Model and Beyond

Throughout the history of mankind’s scientific inquiries, seeking the fundamental structure
of our universe has been one major interest. From developing models for atomic struc-
tures all the way to constructing a framework based on a quantum field paradigm [12].
Such a step has led to the development of the so called ’the Standard Model of particle
physics’(SM). The Standard Model is heavily built on the framework of quantum field
theory. It describes reality at a very fundamental level, and its success has made it clear
that reductionism might be the path to obtain the final underlying structure behind all
the various physical phenomena that we are capable of observing today.
Under such circumstances, we are motivated to explore what such a model has to offer,
and what sort of open questions that forced us to look for an alternative. At the end,
we will set our preparations to embark on exploring one possible path to obtain such an
alternative.

1.1 The Standard Model of particle physics

The Standard Model is a non-abelian gauge theory1 of the primary constituents of the
observable universe, and their interactions. It is a relativistic local field theory describing
particles in terms of fields.

Historically, the development of such a model took place in stages. Starting from early
development of quantum electrodynamics [13], which gave rise to the conception of gauge
theory for abelian groups. It was followed by Yang Chen-Ning, and Robert Mills extend-
ing this conception to non-abelian groups, which led to incorporate an explanation for
the strong interactions. Another big contribution to the standard model’s construction
was the work of Sheldon Glashow, where in 1961, he managed to combine the electromag-
netic, and weak interactions resulting in the so-called electroweak interaction [14]. After
that, Steven Weinberg [15], and Abdus Salam [16] incorporated the Higgs mechanism into
Glashow’s electroweak interaction.
The modern version of the model didn’t take its form until mid 1970, and the solidity of
the theory increased as more experimental data confirmed it. Starting from direct evi-
dence of quarks [17], to the discovery of the W±, and Z0 bosons in 1983 [18]. Followed by
a proof of the top quark 1995 [19], the tau neutrino 2000 [20], and finally at the top of the
crown, the Higgs boson in 2012 [21]. Thus, the main ingredients of the model have been
set. What’s remaining is to establish how these ingredients fit together to give rise to the
universe we observe around. While the SM describes the fundamental reality as a collec-

1The construction of any particle physics model is based on the gauge principle, which requires the
invariance of the Lagrangian under gauge transformations.
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tion of quantum fields interacting among each other, it really does distinguish between
these quantum fields. Reality according to it is built upon two categories: Fermionic and
bosonic fields.

Fermionic fields, also known as matter fields, are responsible for setting up the deep rigid
structure. They are described by spinors, accompanied with the property of half integer
spin, involving both lepton and quark fields folded in 3 generations. Quarks don’t exist
individually, a propriety known as ”confinement”. However, all fermionic fields obey the
generic Pauli’s exclusion principle. A most common fermionic field is Dirac’s field, which
is a spin ½ field.

The SM provides us with a new outlook at how interactions fundamentally occur. The
entire process got reduced into only exchanging 12 vector bosons, which are the quanta of
bosonic fields. The massless photon mediates electromagnetic interactions, the massless
gluons strong interactions, while the massive Z0 and W mediate weak interactions.
At low energies the 3 interactions seem to be distinguishable, but above the electroweak
scale, the universe begins to exhibit extraordinary levels of symmetry. Manifesting in the
unification of the electromagnetic and weak interactions.
Interestingly enough, the final ingredient is the reason why such a symmetry will break at
the electroweak scale due to a process known as ”Spontaneous Symmetry Breaking”(SSB)2.
Within the context of the standard model specifically, such a process can be achieved via
the postulation of another quantum field, which permeates space-time, named the Higgs
field. Whose quanta are the 0-spin particle called the Higgs boson. The fermions in our
universe acquire a mass proportional to the coupling to the Higgs field, leading to the
famous ”Higgs mechanism” [22].
All SM particles with some of their physical properties are described in the table(B.3)
based on the Particle Data Group (PDG) [23].

The qualitative picture of the standard model mentioned above is insufficient to show
the depth of the theory. The steps of manufacturing the model on the other hand can
reveal how profound such a theory is. And with this regard, the situation is calling for a
rigorous description, mainly the mathematical framework underlying the Standard Model
of particle physics.

1.1.1 The Standard Model Lagrangian

As we mentioned previously, the standard model is built upon the framework of QFT.
Mainly each particle is associated with a dynamical field ψi(x), i = 1......, n, where x =
(x0

, x
1
, x

2
, x

3). The dynamism of those particles is determined through the Lagrangian
density L [ψi(x), ∂µψi(x)](or similarly action S):

S =
∫
dx

4
L [ψi(x), ∂µψi(x)] (1.1)

thus, the entire focus will shift to how we can build such a Lagrangian.

The crucial ingredients that will be needed to construct the Lagrangian, and the SM
as a whole are:

• Symmetries. Precisely the two classes of symmetries :

– Space-time symmetries: Poincaré symmetry in 4 dimensions.
2For an intuitive understanding of the concept, consult appendix(A.2).
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– Internal symmetries.

• Representations of fields.

• A mechanism for Spontaneous Symmetry Breaking.

The model is standing on the pillar of symmetries, such an item has been expressed
in the language of group theory. It shows a spectacular role in giving birth to physical
particles as well as planting the seed for interactions to take place.
The standard model’s gauge symmetry group is defined as :

GSM = SU(3)C × SU(2)L × U(1)Y . (1.2)

This compact gauge group will specify the vector field components of the theory, where C
is the color charge, L indicates a coupling to only the left-handed fermions , and Y is the
weak hypercharge.
On the grand scheme, we can view the SM’s gauge group as two sectors, the strong
sector described by the SU(3)c symmetry, and the electroweak sector described by the
SU(2)L × U(1)Y symmetry.
The strong sector, described by a theory called Quantum Chromodynamics (QCD), is a
non-chiral theory of strong interactions, governed by the SU(3) gauge symmetry, and it
primarily tackles the interactions between colored quarks and gluons. The quark fields
are denoted by qrα, where α = 1, 2, 3 represents the color quantum number, and r =
u, d, s, c, b, t represents the field’s flavors. While the gluon fields are denoted by Gi, there
are 8 massless gluons in the theory playing the role of mediators for the strong interaction,
with a strong gauge coupling gs. The representations for both kind of fields are indicated
in table 1.1.
The QCD’s Lagrangian takes the form [24]:

LQCD = −1
4G

i
µνG

iµν +
∑
r

q̄
α
r i /D

β
αqrβ −

∑
r

mr q̄
α
r qrα +

θQCD

32π2 g
2
sG

i
µνG̃

iµν (1.3)

G
i
µν is the field strength tensor defined as:

G
i
µν = ∂µG

i
ν − ∂νG

i
µ − gsfijkG

j
µG

k
ν . (1.4)

The covariant derivative:
D
µβ
α = ∂

µ
δ
β
α + igs√

2
G
µβ
α (1.5)

G
α
β are the gluon fields in tensor (matrix) notation. Providing that:

G
β
α = (Gαβ)† =

8∑
i=1

λ
i
αβ√
2
G
i
. (1.6)

The dual field strength tensor:
G̃
i
µν = 1

2ϵµνρσG
iρσ

θQCD is a dimentionless constant. When it is set to zero, the theory will exhibit additional
symmetries called accidental symmetries. The strong interactions seem to be reflection
invariant (P), invariant under charge conjugation (C), time reversal (T), and the products
(CP), and (CPT). The last term in (1.3) is referred to as the strong CP term3, when
θQCD ̸= 0 we fall in the problem called the strong CP problem, where the theory violates

3The term is gauge invariant, and it respects the renormalizability of the theory.
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P, T, and CP symmetries.
As we can observe in (1.3), a mass term is included. In QCD, it is permissible to add such
a term, and by hand without ruining the gauge invariance, as opposed to the electroweak
theory, where adding a mass term will cause further complications as we will see later.

However, the remaining factor SU(2) × U(1) is governing the underlying of the elec-
troweak theory of the standard model. It is a chiral unifying theory of both electromagnetic
and weak nuclear interactions. The SU(2) symmetry yielding 3 gauge boson degrees of
freedom W

i
, i = 1, 2, 3 with gauge coupling g, while the U(1) symmetry yields a gauge

boson B with a gauge coupling g′. The fields representations are described in table1.1
The Yang–Mills Lagrangian for the gauge group SU(2) × U(1)is given by [25]:

LY ang–Mills = −1
4W

i
µνW

µνi − 1
4BµνB

µν + ψ̄Li /DψL + ψ̄Ri /DψR (1.7)

where:
W

i
µν = ∂µW

i
ν − ∂νW

i
µ − gϵijkW

j
µW

k
ν (1.8)

Bµν = ∂µBν − ∂νBµ (1.9)

we have incorporated fermionic fields in the Lagrangian. Due to the fact that the theory is
chiral, the right and left fermions behave differently under SU(2) group transformations.
Given that :

ψL,R = [(1 ∓ γ5)/2]ψ. (1.10)

As now we can observe in (1.7), there is no sign of a mass term, simply due to the issue
coming from adding it by hand. Such a problem has led to seeking other ways by which
the particles can gain their masses. It turns out SSB is playing a crucial role in that matter.

This SU(2)×U(1) will be broken by the Vacuum Expectation Value (VEV) of a scalar
field, into a U(1)em at around 100 GeV, through the well-established Brout-Englert-Higgs
mechanism.

Historically speaking, what was firstly introduced was the concept of Spontaneous
Symmetry Breaking in 1964, separately by R.Brout, and F.Englert [26]. As well as
P.Higgs [27]. Through such an idea, we are capable of discerning two phases, the phase
of the unbroken symmetry or before SSB, where the physical states are all invariant under
the displayed symmetry, and they show up as massless states. And a phase after the SSB,
where the symmetry is spontaneously broken, meaning with no external interference, re-
sulting in the physical particles gaining their masses.

The necessity of the mechanism in the SM arose from the fact that a mass term is
actually forbidden, if we want to maintain gauge invariance of the theory. Leading to the
wonder why the physical entities have the property of mass, while symmetries seem to
give the impression that such a thing is not allowed. To allow for such a property again,
we postulated the existence of a scalar field ϕ, in such a way that it will be permissible
to write mass terms. It turns out, if this scalar field will possess a ground state, that will
not share the symmetry of the Lagrangian, that is if the field will acquire a VEV < ϕ >,
then suddenly the mass terms for the particles will be generated.
To see the Higgs mechanism in action, we define the complex iso-doublet scalar field as:

ϕ =
(
φ

+

φ
0

)
(1.11)
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with a potential term:
V (ϕ) = −µ2(ϕ†

ϕ) + λ

4 (ϕ†
ϕ)2

. (1.12)

Acquiring a VEV < |ϕ| > can be easily achieved via seeking the minimum of the potential:

(ϕ†
ϕ)min = 2µ2

λ
(1.13)

resulting in:

< |ϕ| >=

√
2µ2

λ
= v√

2
(1.14)

the form of the Higgs doublet around the minimum will be:

ϕ = 1√
2

(
χ1 + iχ2
v + h+ iχ3

)
. (1.15)

The 3 Nambu-Goldstone bosons, which are contained in φ
+(= χ1 + iχ2) and χ3 are the

result of the breaking of global continuous symmetry (Goldstone’s theorem) [28], they
are not observed in reality due to the fact that they are absorbed by the physical gauge
bosons, and they will contribute into their longitudinal polarization.
The SM gauge group after SSB will be written as :

G
′
SM = SU(3)c × U(1)Q (1.16)

where the electric charge becomes:

Q = T3 + Y

2 (1.17)

Y being the weak hypercharge, and T3 is the 3rd component of the SU(2)L generator.
Their values for various SM’s fields are listed in appendix (B.1).

After SSB, a mixing between the states will lead to the actual physical gauge bosons:

W
±
µ = 1√

2
(W 1

µ ∓ iW
2
µ) (1.18)

Z
0
µ = 1√

g
′2 + g

2
(gW 3

µ − g
′
Bµ) (1.19)

Aµ = 1√
g

′2 + g
2
(g′
W

3
µ + gBµ) (1.20)

leading to the masses,

MW = gv

2 MZ =
√
g

′2 + g
2 v

2
Mγ = 0

it can be written more elegantly in terms of the so called the Weinberg angle θw, which is
the angle between W

3
µ and Bµ. It is defined as :

Tanθw = g
′

g
Cosθw = MW

MZ
(1.21)
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resulting in :

Zµ = CosθwW
3
µ − SinθwBµ (1.22)

Aµ = SinθwW
3
µ + CosθwBµ (1.23)

In conclusion, The universe seems to relay on the interaction of bosons and fermions with
the scalar background Higgs to generate their masses, and as a result the symmetry must
be broken. The validity of the Higgs mechanism has been verified by two experiments :
CMS and ATLAS at the LHC [21].

Now that we have taken a closer look at the Higgs mechanism, and established the
perspective of the two individual theories residing in the SM, it is only natural to seek
the complete comprehension of the theory, which cannot be achieved by only restricting
our sight to QCD, and the electroweak theory separately. Such an understanding can
be sought via constructing the Lagrangian of the theory. Therefore, we can present the
Standard Model Lagrangian in the following form [24]:

LSM = Lgauge + Lf + Lϕ + Lyuk + LGF + LGhost. (1.24)

The first term Lgauge holds the gauge machinery of our model, it takes the simple form:

Lgauge = −1
4G

i
µνG

µνi − 1
4W

i
µνW

µνi − 1
4BµνB

µν
. (1.25)

The second term describes the fermionic sector of the model:

Lf =
3∑
i=1

(q̄iLi /DqiL + ℓ̄iLi /DℓiL + ūiRi /DuiR + d̄iRi /DdiR + ēiRi /DeiR). (1.26)

The chiral nature of the SM is pretty explicit at this point, the left-handed fermions are the
only ones transforming under SU(2)L, while the right handed fermions transform trivially
resulting in them having zero isospin. The left handed particles will be represented by
isospin doublets, and the right handed as isospin singlets:

qiL =
(
uiL
diL

)
=
((

u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

)
uiR = (uR, cR, tR), diR = (dR, sR, bR)

ℓiL =
(
νiL
eiL

)
=
((

νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
µ

)
L

)
eiR = (eR, µR, τR)

only the quarks take part in the strong interaction, since they are characterized by having
a color charge α = (r, b, g), in this case we have repressed the color index.
In addition, No right handed neutrinos are included in the SM.

The representations for fermionic fields are as well stated in table (1.1). In table (1.1), the
numbers within the parentheses indicates the representation of the fields under SU(3)C
and SU(2)L, while the the subscript shows the hypercharge.
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The covariant derivatives:

D
µ
qiL =

(
∂
µ + igs

2 λ
a
G
µ
a + ig

2 τ
i
.W

µ
i + ig

′

6 B
µ

)
qiL

D
µ
ℓiL =

(
∂
µ + ig

2 τ
i
.W

µ
i + ig

′

2 B
µ

)
ℓiL

D
µ
eiR =

(
∂
µ + ig

2 τ
i
W

µ
i + ig

′

2 B
µ

)
eiR

D
µ
uiR =

(
∂
µ + igs

2 λ
a
G
µ
a + 2ig′

3 B
µ

)
uiR

D
µ
diR =

(
∂
µ + ig

2 τ
i
W

µ
i + ig

′

3 B
µ

)
diR

(1.27)

λa are the 3 × 3 Gell Mann matrices, and τb are the 2 × 2 Pauli matrices.

Table 1.1: Representations of various SM fields taken from [29].

Field Representation

Vector Bosons
Bµ (1, 1)0
Cµ (1, 3)0
Gµ (8, 1)0

Fermions

ℓiL (1, 2)− 1
2

eiR (1, 1)−1
qiL (3, 2) 1

6
uiR (3, 1) 2

3
diR (3, 1)− 1

3
Scalar Bosons ϕ (1, 2) 1

2

Coming to the shiny section of the model, the Higgs sector which is the mathematical
background for the Higgs mechanism described above, represented by Lϕ:

Lϕ = (Dµϕ)†
D
µ
ϕ− µ

2
ϕ

†
ϕ− λ

4 (ϕ†
ϕ)2 (1.28)

ϕ is the complex scalar Higgs field, where :

D
µ
ϕ =

(
∂
µ + ig

2 τ
i
W

µ
i − ig

′

2 B
µ

)
ϕ

The next term on the list is called Yukawa term, which represents Yukawa couplings
between the Higgs and the fermions, that describes the mass gained by fermions due to
this interaction. We have:

LY uk = −
3∑

i,n=1
(Γuinq̄iLϕ̃unR + Γdinq̄iLϕdnR + Γeinℓ̄ϕenR) + h.c. (1.29)

Of course, to fix the redundancy, we will have to ”fix the gauge”, and to gain the capacity
to define the propagators, therefore the requirement for the gauge fixing term. It can be
written as:

LGF = − 1
2ξG

F
2
G − 1

2ξA
F

2
A − 1

2ξZ
F

2
Z − 1

ξW
F−F+ (1.30)
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where

F
a
G = ∂

µ
G
a
µ FA = ∂

µ
Aµ FZ = ∂

µ
Zµ + ηηZξZMZφZ

F+ = ∂
µ
W

+
µ + iηξWMWφ

+
F− = ∂

µ
W

−
µ − iηξWMWφ

−
.

The final term to be added is known as ghosts term, ghost fields are an indispensable
feature of gauge theories. And for our case, it if given by Fadeev-Popov ghosts in the
following fashion:

LGhost = ηG

4∑
i=1

(c̄+
∂(δF+)
∂α

i + c̄−
∂(δF+)
∂α

i + c̄z
∂(δFz)
∂α

i + c̄A
∂(δFA)
∂α

i )ci+ηG

8∑
a,b=1

ω̄
a∂(δF aG)

∂β
b
ω
b

(1.31)
where we adopted the convention that c∓, cA, cZ are the electroweak ghosts, while ωa are
the strong ghosts. and ηG = ∓1 is an optional sign convention with no physical implica-
tions.

In conclusion, the overall Lagrangian density of the standard model is given by putting
all the pieces together :

LSM = − 1
4G

i
µνG

µνi − 1
4W

i
µνW

µνi − 1
4BµνB

µν

+
3∑
i=1

(q̄iLi /DqiL + ℓ̄iLi /DℓiL + ūiRi /DuiR + d̄iRi /DdiR + ℓ̄iRi /DℓiR)

−
3∑

i,n=1
(Γuinq̄iLϕ̃unR + Γdinq̄iLϕdnR + Γeinℓ̄ϕenR + Γνin ¯ℓiLϕ̃νnR) + h.c

+ (Dµ
ϕ)†

Dµϕ− µ
2
ϕ

†
ϕ− λ(ϕ†

ϕ)2

− 1
2ξF

2
G − 1

2ξF
2
A − 1

2ξF
2
Z − 1

ξ
F−F+

4∑
i=1

(c̄+
∂(δF+)
∂α

i + c̄−
∂(δF+)
∂α

i + c̄z
∂(δFz)
∂α

i + c̄A
∂(δFA)
∂α

i )ci +
8∑

a,b=1
ω̄
a∂(δF aG)

∂β
b
ω
b

(1.32)
All of the theoretical ingredients for the Standard Model of particle physics can be

summarized by (1.32). The success of this theory was astonishing, it survived rigorous
experimental tests [30], and it proved its capacities to explain most phenomena at low
energy scale. It wasn’t long before the theory started being challenged by issues that can’t
be overlooked. Some of these issues will be mentioned in the following subsection.

1.1.2 The limitations of the Standard Model

The standard model received a lot of admiration, and acceptance among physicists. Mainly
due to its capacities to provide valid explanations for various physical phenomena. It
wasn’t long before various data started pushing us to consider the borders of this theory.
Thus, the SM might just be a low-energy approximation of another hidden profound theory.

The standard model fails to account for gravitational effects. Only 3 out of 4 fundamental
interactions are part of the model. Gravity as it is manifested in our observable universe
is accounted for by Einstein’s theory of general relativity, but there are no experimental
sings for its compatibility with the standard model. Which means we are in a lack of a
theory that can take into consideration the fundamental interactions altogether. There
certainly has been attempts to solve this issue from the desperate search for a theory of
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quantum gravity to reducing the focus on the prospect of unification, and just aim at the
properties of the fabric of space-time [31, 32].
In addition to the failure of the standard model to account for gravity, and its quantization
like the remaining forces, it also fails to explain other phenomena such as the existence
of only 3 generations or families of fermions. It seems that our observable universe relies
heavily on the first generation to build itself, so it leaves us with an empty hole of whether
the fundamental structure is constructed out of 3 generations or there are more, and if
there is more then the model doesn’t supply us with any predictions of such a thing.
The model does not incorporate a valid explanation for dark matter and dark energy,
which are so far important ingredients for the observable universe, and we can’t speak of
a fundamental theory of our universe which does not take these two elements into consid-
eration. Frankly, this is not the only phenomenon that the model does not account for, it
as well does not have an explanation for cosmic inflation, matter anti-matter asymmetry,
as well as the reason why baryon asymmetry exist in our universe, which showcase how
phenomenologically limited the theory is [24, 29].
The model equally does not provide an explanation for charge quantization, and why the
electroweak section is a chiral theory unlike QCD.

In fact, what would be unsatisfying about the standard model to many physicists is
the number of free parameters within the model. The theory involves 19 parameters4, 18
of these parameters include: the 6 quark masses, the 3 charged leptons masses, 3 mixing
angles, the CP violating phase, 3 coupling constants, the vacuum expectation value, and
θQCD. Leaving us with the final parameter which is the Higgs boson mass measured by the
LHC to be around 125.25 GeV [23]. In addition to the large number of free parameters, it
is unpleasant that theory depends on experimentally determined parameters, which means
their values must be measured independently of the theory, due to the inability of model to
bring forth an explanation, or any form of predictions5. This issue for sure is an indicator
for some that the standard model is the not complete.

An interesting puzzling aspect about this model is the so called the hierarchy problem
of the standard model [24]. It is, in a nutshell, the discrepancy between the light mass of
the Higgs boson, and Planck scale. As we know the measured mass of the Higgs boson
is around 125 GeV, while the plank scale is at around 1019 GeV, the issue of why the
mass of the Higgs is so small compared to the scale of new physics is not answered by the
theory. In addition, according to the model the mass of the Higgs is highly sensitive to
any quantum corrections which can lead to an increase in its mass considerably (quadratic
divergences) [33].
Another issue that falls in the same category is the question of why neutrino masses are
too small in comparison to the quark top mass [33], while the neutrino mass is of order of
few eV the mass of the quark top is around 174 GeV, leading to the wonder of why would
nature host such big differences in particles masses.

Another unknown within the leptonic sector is the mysteries of neutrinos, they are sub-
atomic particles that don’t participate in the strong, and electromagnetic interactions
which make them difficult to detect. First deficiency signal started with the so called the
Solar Neutrino Problem [33], which refers to the inconsistency between the expected, and
observed number of neutrinos from the Sun. Such a discrepancy can be seen through the
table (1.2).

4This number is considered when the SM is with no right handed neutrinos, and when neutrinos are
considered massless.

5Some of the free parameters are listed in appendix(B.2).
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Table 1.2: Various observed data from different experiments indicating the ratio of the
solar neutrino events with respect to the number of events predicted by the Solar Standard
Model [33].

Experiment Data /SSM
37
Cl 0.310 ∓ 0.030

Super K 0.413 ∓ 0.015
71
Ga 0.540 ∓ 0.039

SNO
Scatt 0.540∓0.039

Such results led to the postulation of a phenomenon known as neutrino oscillations, where
neutrinos undergo flavor transformations as they propagate through space. Furthermore,
such a phenomenon can take place if there is a physical property distinguishing between
the various flavors of neutrinos, and given that they have similar gauge couplings, we are
left to assume that what’s different among them is the property of mass. Herein, leading
to the issue at hand, the Standard Model is unable to provide a theoretical description for
neutrino masses, and neutrino oscillations.
However, the nature of neutrinos is still a mystery as well, we don’t know if they are Dirac
or a Majorana particles [34], and not only that the model is unable to fill all these loop-
holes, but also it only includes left-handed neutrinos with no signs for their right-handed
counterparts.

The list of issues doesn’t end here, and what would be critically problematic is the exper-
imental misfit of the theoretical predictions, mainly the muon g − 2 anomaly, and the W
boson mass anomaly.
The capacity of predicting theoretically the magnetic moment of charged leptons was
hugely influential, such an achievement was based on defining the anomalous magnetic
moment as follows:

α = g − gDirac
2 = g − 2

2 (1.33)

But recent experimental evidences from the Muon g−2 collaboration[2] showed a conspic-
uous discrepancy between the measured value and the SM predicted value, a discrepancy
of 4.2σ:

∆αµ = αµ,Exp − αµ,SM = (251 ± 59) × 10−11
. (1.34)

Such an issue was clearly enough to ignite motives to start seeking answers Beyond The
SM.
Similarly, another experimental results reported by CDF II experiment showed a deviation
of 7σ of the W boson mass from the theoretically predicted value [3]:

m
CDFII
W =80.4335 ± 0.0094Gev (1.35)
m
SM
W =80.357 ± 0.006Gev. (1.36)

The newly discovered value of the W boson mass is believed to be one other sign of physics
BSM [35], if it is confirmed by future experiments the anomaly of the W boson mass cer-
tainly cannot be ignored, and it will only require some new layer of physics to make sense
of the empirical results.

In conclusion, the standard model is a ravishing theory, but despite its enormous suc-
cess and its deepest insights, it is still not the final answer. However, in order to extend
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our understating of such a universe, we are in a dire need to understand deeply the stan-
dard model, since such an understanding will constitute the basis to construct new physics,
a physics beyond the standard model.

1.2 Physics Beyond The Standard Model

The limitations of the standard model were only an opening to a new era in physics, such
limitations are but mere indications of a much deeper layer awaiting to be discovered. So,
it is only natural to take a closer look at what such new physics looks like, thus a general
outlook on some models beyond the Standard Model is taken and scrutinized.
We start by looking at some aspects of Physics Beyond the Standard Model, all based
on extending the previous bounded model under the purpose of providing solutions to
its limitations. From exploring some of GUTs, to taking a look at what SUSY has to
offer, and reaching out to specific gauge extensions of the SM. All under the motivation
of inspecting what such a new physics would look like, and it is noteworthy to mention
that we will talk briefly about some models, without the rigorous mathematical details.

1.2.1 Grand Unified Theories and Supersymmetry

The very first compelling route would be unification, which is the major motivation behind
Grand Unified Theories. Such theories are an interesting extension of the Standard Model,
as they aim to unify the 3 fundamental interactions into one, mainly via making the 3
gauge groups SU(3)×SU(2)×U(1) subgroups of one simple6 group. A very much needed
constraint on these theories is the requirement of complex representations, which will help
us extract the chiral structure of the SM once the symmetry is broken. In addition, the
SM’s group is rank 4, therefore the groups G that we are trying to embed in must be at
least rank N − 1 = 4.

One popular proposition is embedding all the gauge groups of the SM in the special
unitary SU(5) group [36], it was the first the grand unified theory, which was put forward
first by H. Georgi and S. Glashow in 1974. Such a choice describes the unified force as
something mediated by the resulting gauge bosons, there will be 24 generators for SU(5),
associated with the vector V a

µ , a = 1, ..., 24. As a result, we will have 12 new gauge
bosons, denoted in the literature X and Y, carrying a color charge and a fractional electric
charge. Fermions on the other hand are described differently, leptons and quarks in this
model are combined into one irreducible representation, leading to possible violation of
baryon number7 [37].
However, the process of SSB of the SU(5) into SU(3)C × SU(2)L × U(1)Y can occur in
a similar way as in the SM, it only requires a scalar field to acquire a VEV, leading the
symmetry to break down at the GUTs scale8 to the SM gauge symmetries. Similarly, such
a process induces the generation of mass for the gauge bosons including the X and Y gauge
bosons, which mediate processes that violate baryon and lepton numbers, an example of
such a process is proton decay, but all the SM bosons will remain massless, and they will
obtain their mass by the electroweak symmetry breaking.
SU(5) model has many physical implications, it provided an explanation for the hyper-
charge quantization which the SM couldn’t, directing the light to early signs of a functional

6A simple group in group theory is a group that has no nontrivial proper normal subgroups.
7Such a step can allow for interactions between leptons and quarks that do not conserve baryon number,

but still conserve B-L number.
8The energy scale at which the couplings unify is defined as MGUT , where M ∼ 1015 GEV
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unified theory. As well as predicting finely the value of the Weinberg angle [38]:

Sin
2(θw) = g

′2

g
2 + g

′2 ≈ 0.21. (1.37)

Maybe the most fascinating prediction is the phenomenon of proton decay, where the
proton can decay into a positron and a neutral pion9: p → e

+
π

0, with a lifetime:

τp ≈ 1
α

2
su(5)

M
4
X

m
5
p

(1.38)

but with the estimated lifetime the model is running into a contradiction with experimen-
tal data given that we didn’t spot any signs of proton decay. In addition to this issue,
SU(5) model fails the B-test [39], which might indicate that the SU(5) model still needs
further extensions.
It is worthy to mention that the above description is related to a minimal SU(5) model,
and some of the issues such as the lifetime of the proton, and the B-test can solved via
adding more particles into the model.

Another choice for a unification group is the SO(10) group, it was first worked upon
by Fritzsch and Minkowski [40]. Such a choice is based on a larger Lie group, the spe-
cial orthogonal group SO(10) with rank 5, and with 45 generators, so there are 45 gauge
bosons. And the model combine the fermions of one family into a 16 dimensional spinor
representation, thus including the right handed neutrinos.
Furthermore, there are a lot of possible ways to break the SO(10) symmetry to GSM ,
some of these paths are shown in figure (1.1)10. And as we know when the symmetry is
spontaneously broken, only the gauge bosons corresponding to the generators that are left
unbroken remain massless.
The model offers some impressive phenomenological predictions [29], one of the predictions
of the model as we stated before is the is the right-handed neutrino, and thus neutrino
masses can be explained by Seesaw models. In addition, axions are naturally embedded
in the model, and can provide a solution to Dark Matter. It contains the necessary in-
gredients to allow for the baryon asymmetry to be generated through the mechanism of
leptogenesis. More consequences can appear from the symmetry breaking chains, since
various configurations can be formed by the scalar fields, resulting in phenomena such as:
domain walls, cosmic strings, or magnetic monopoles.
SO(10) models are very interesting candidate for GUTs, and it constitutes viable models
for Physics Beyond The SM.

To summarize, GUTs aim to find a unified layer from where we can extract all the
phenomenological verified data of the SM. The search incorporated large Lie groups that
might have the SM gauge group as a subgroup, such as SU(5), flipped SU(5), SO(10),
and E6 simple groups models, Pati-Salam Model with the symmetry SU(4) × SU(2) ×
SU(2), and even semi-simple groups such as SU(3) × SU(3) × SU(3) model. These are
but few GUTs examples, the literature is still rich, each model being distinguished by
the gauge symmetries imposed, fermions representations, mechanisms for SSB, and most
importantly a layer of predictions, and physical implications that will play a major role in

9There are more possible decays, such as to other mesons and with a muon instead of an electron, but
the electron/pion final state is the one with largest branching ratio for SU(5).

10The representations next to each path are SO(10) rep. And the notations mean: G51 = SU(5) × U(1),
G5 = SU(5),GP S = SU(4)c × SU(2)L × SU(2)R, G421 = SU(4)c × SU(2)L × U(1)B−L, G3221 = SU(3)c ×
SU(2)L × SU(2)R × U(1)B−L, G3211 = SU(3)c × SU(2)L × U(1)R × U(1)B−L .
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Figure 1.1: Possible symmetry breaking patterns to the GSM . This figure is taken from
[29].

establishing the validity of the model as an acceptable, physically viable unified theory.

The second attractive conception to explore would be Supersymmetry (SUSY) [41], it
is an extension of the SM by a new symmetry, but unlike GUTs, this symmetry is imposed
between fermions and bosons themselves, such that for each fermion there corresponds its
bosonic superpartner, and vice versa.
If, let’s say, Q is a SUSY generator of Grassmann nature, then we have:

Q|fermion > = |boson > Q̄|boson > = |fermion > (1.39)

In such a theoretical framework, fermions and bosons are arranged in the so called su-
permultiplets, they typically contain an equal number of bosonic and fermionic degrees of
freedom, with the same quantum numbers, except for their spin since it should differ by
1/2.

Supersymmetric theories aim to unify all 4 fundamental interactions, including gravity,
and that is why it is predominant in theories such as supergravity, and superstring theories.
This might be the most challenging aspect when it comes to this framework, but certainly
it is not the only motivation guiding it. Some other motivations include:

• Solution to the Hierarchy problem.

• A base for candidate models to account for dark matter.

• Gauge couplings unification.

• Neutrinos masses.

In SUSY algebra [41], we deal with different representations, among these variations we
can construct a representation on a multiplet of fields, these fields will act as components
of the so called ”superfield ”, which lives in the so called superspace. These two notions
are pretty useful to the description of particles in supersymmetric field theories.
The two most basic superfields are the chiral and vector ones, and any renormalizable
supersymmetric Lagrangian pretty much can be constructed primarily out of these two.
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A chiral superfield can contain spin 0 and 1/2 fields, while a vector superfield can contain
spin 1/2 and 1 fields. As an illustration, we can represent quarks and leptons as an em-
bodiment in chiral superfields, while gauge bosons in vector superfields.

For further illustration of the utility of Supersymmetric theories, we take a closer look
at the Supersymmetric Standard Model(SSM) [41]. As the name indicates, SSM is an
extension of the SM that incorporates the formalism of SUSY, which means it is only
natural to seek the new version of the SM ingredients within the formalism. As a starter,
the Minimal Supersymmetric Standard Model(MSSM) is an attractive route, where we
maintain a minimal amount of new particles and interactions necessary. In such a model,
to regard the chiral nature of the SM, we will have to represent our fermions as members of
the chiral superfield, which will result in a Weyl fermion, and a complex scalar as physical
degrees of freedom. For our gauge bosons, they will be part of the vector superfield. As a
result, fermions, and bosons will acquire superpartners: for quarks q, they will have their
spartners ”squarks” q̃, leptons ℓ with ”sleptons”ℓ̃, and for gauge bosons: gluinos g̃, winos
ω̃

∓
, ω̃

3, and bino b̃. As well as, a spartner for the Higgs, the higgsinos H̃1, H̃2.
In addition, an important phenomenological aspect that must be mentioned is the fact
that there is an imposed symmetry on the MSSM model for the sake of conserving the
baryon and lepton number, called the R-parity. Such a constraint prohibits any mixing
between particles and their superpartners [42].
Of course, there is one missing ingredient: a mechanism for SSB. The mechanism would
break the Supersymmetry [42], that is when an auxiliary field acquire a VEV causing
SUSY to break, resulting in a goldstino field.
These are but soft key features about MSSM, its physical implications are what one would
judge to be captivating. Not only that, such a model is capable of solving the hierarchy
problem [42], since the additional particles counterbalance the quantum corrections to the
Higgs mass, but also it provides signatures in leptonic colliders with the diverse channels
that can help probe the sparticles [41]. The existence of those sparticles can play a major
role in our measurements as well, potentially leading to solving issues, such as the anoma-
lous magnetic moment of the muonµ, and increase precision in the values we already have.
Additionally, it constitutes a candidate for dark matter, especially that the model involves
the so called ”the lightest supersymmetric particle” (LSP), which is already a weakly in-
teracting massive particle (WIMP), making it a good start for explaining dark matter.

The MSSM is but one direction, there has been other attempts to incorporate SUSY
such as: Next to Minimal Supersymmetric Standard Model (NMSSM), Supersymmetric
E6 Grand Unified Theory (SE6-GUT), U ′(1) extended Supersymmetric Standard Model
(U(1)’ SSM), Gauge Mediated Supersymmetry Breaking (GMSB) Models, and many more.
Each one motivated by the will to cure the Standard model, and even in their partial fail-
ure they still form a base of insights for further constructions.
Interestingly enough, problems such as proton stability, and the µ problem can be solved
through replacing R-parity with a non-anomalous U(1)’ gauge symmetry, which already
shed the light at the importance of U ′(1) extensions of the Standard Model.

Another layer of physics BSM can be constructed via focusing only the gauge sector
of the SM, and aim to extend it by one or more gauge symmetries. It turns out that such
a process is very interesting to take a look at, and its importance can be seen through
the fact that some of these extensions appear in SUSY, and GUTs symmetry breaking
patterns.
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1.2.2 Gauge extensions of the Standard model

In this subsection, we will dedicate some efforts to see how the gauge sector of the
Standard Model can be extended by further gauge symmetry groups. Mainly navigating
through 2 choices, in order to get a general outline of what this side of BSM formulations is
looking like . Such a step is motivated by the importance of gauge extensions in building a
full fledged model, as well as being a substructure of a fundamental theory of our universe.
Examples of such theories have been described previously. The exploration also will help
preparing the ground specifically for a U(1)′ extension of the SM, since it is our primary
interest for an analytical study of a massive Z ′ boson.

Extending the gauge sector of SM can have many forms, among the various existing
ones in the literature are: Abelian gauge extensions, and Non-Abelian gauge extensions of
the SM. As the name indicates, Abelian gauge extension models are primarily focused on
enhancing the SM structure by adding abelian gauge groups or symmetries, while Non-
Abelian gauge extensions are tilted towards adding non-abelian gauge groups to the SM
gauge sector. Each form has its own strength points and weaknesses, and they range from
the simplest case to the most complicated, all depending on what is added, and what is
omitted in the model considered.

A general abelian extension is widely studied, and the literature is full of various
modifications and imposed constraints. Such models are built on adding the abelian
group U(1) while playing on various parameters, such as adding exotic fields, additional
mechanisms such as the Seesaw Mechanism, Radiative Mechanism, adding new quantum
numbers, or simply considering a general case without further specifications. Among such
models we have the UB−L models [43], which consider the difference between the baryon
number B, and lepton number L a new quantum number for the various particles. Further
elaborations on such models will take place in the following section.
In addition, we can extend the SM based on a very interesting idea, namely that we can
gauge global symmetries generated by family-lepton numbers Le, Lµ, and Lτ [44]. We can
have these linear combinations for an anomaly-free global symmetry :

L1 =Le − Lµ L2 =Le − Lτ L3 =Lµ − Lτ (1.40)

resulting in these possible extensions:

G1 =SU(3)C × SU(2)L × U(1)Y × U(1)L1
(1.41)

G2 =SU(3)C × SU(2)L × U(1)Y × U(1)L2
(1.42)

G3 =SU(3)C × SU(2)L × U(1)Y × U(1)L3
(1.43)

of course, one impressive physical implication is the resulting new gauge bosons Z ′
1, Z

′
2,

and Z
′
3 in each of the these models. The first two can couple to electrons, which already

can tell us a lot about some experimental powers that these two models hold, while the
third one couples to τ, ντ . Each model of course will vary from the mass and the coupling
constants of the new gauge bosons. Such an abelian gauge extension can be further stud-
ied to incorporate a mechanism for neutrino masses [45], for dark matter [46], and even
provide a solution for the magnetic moment of the muon [47].
Another possible model is a right-handed gauge symmetry U(1)R extension, which is a
simple abelian gauge extension under which only the right-handed fermions are charged.
It constitutes one of the promising models capable of incorporating the three right-handed
neutrinos needed. Such a model has been explored in [48].
Not only that, but a possibility for a left-handed gauge symmetry U(1)L extension has
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also been explored, under which we find charged left-handed fermions. And even a combi-
nation of both is possible, and the mathematical setup for such a model has been studied
in [49].
There are many more examples, Abelian gauge extension with four generations, Abelian
gauge extension with vector-like fermions11 Froggatt Nielsen extension of the SM12 and
Stuckelberg extension of the SM [50], which will be tackled in details in the next chapter.
In these previous models, the preserved idea was mainly one additional abelian symmetry,
but in reality there are models incorporating more than one, which makes their field of
studies rich of options, and only experimental evidences can filter the viable models from
the non-viable ones.

Nevertheless, there is also a possibility for Non-Abelian gauge extensions, which open
the door for more varieties. These extensions are based on extending the SM by a non-
abelian symmetries. Given our fixed goals, we will only mention two possible models
among many, namely the so called G(221), and G(331) models.
The G(221) models are based on the symmetry SU(2)1 ×SU(2)2 ×U(1)X , including exam-
ples such as [51]: Left-Right Models(LRM), Lepto-Phobic Models (LPM), Hadron-Phobic
Models(HPM), and Fermio-Phobic Models (FPM). They all share different phenomenology
despite the gauge group in common. G(221) models can be classified by SSB patterns [51],
organized in the following table:

Table 1.3: Two different SSB patterns in G(211) models.

pattern The gauge structure before SSB First stage Second stage
I SU(2)L × SU(2)2 × U(1)X SU(2)2 × U(1)X → U(1)Y SU(2)L × U(1)Y → U(1)em
II SU(2)1 × SU(2)2 × U(1)Y SU(2)1 × SU(2)2 → SU(2)L SU(2)L × U(1)Y → U(1)em

The second breaking pattern can be present mostly in the Un-Unified Models (UUM),
and Non-Universal Models (NUM).
Naturally, a complete model will involve the fermions charge assignments, the state of the
Higgs sector, and of course Yukawa couplings. In addition to the most interesting physical
implications of G(211) viz. the existence of new heavy W ′, and Z

′ bosons.

However, the G(331) models are based on a symmetry of the form SU(3)C ×SU(3)L×
U(1)X , such a model has the capacity to explain why there is 3 families of quarks and
leptons, since the anomalies cancel only when the number of generations is divisible by
three13 [52]. And by that it is considered a model that holds the answer for one of the
puzzling questions we had previously. In these type of models, the symmetry breaking
pattern can occur via the VEV of three scalar triplets, as follows :

SU(3)L × U(1)X → SU(2)L × U(1)Y → U(1)em (1.44)

the hypercharge, and the electric charge within the model are:

Y =βT8 + IX Q =Y + T3
2 (1.45)

11Vector-like fermions are particles whose left and right-handed components transform in a similar way
under the gauge group transformations of the model.

12Froggatt Nielsen mechanism was used to explain the masses and mixing of fermions within the model.
13In the SM, the gauge anomalies cancel for each of the 3 generations of quarks, and leptons. This model

brought back the necessity of the 3 families together to cancel out the anomalies.

18



where, T3, T8 are the Gell-Mann matrices of the SU(3)L, and β, I are parameters of the
model.
The G(331) models offer physical predictions, such as charged spin-1 bosons, bileptons,
which can be seen in e-e scattering, or even p-p scattering at the LHC [53, 54].

To summarize, gauge extensions of the Standard Model are of a great importance to the
search of new physics, since they can be viewed as low energy effective theories of a high
layer of new physics, such as SUSY, and GUTS. Not only that, but they are phenomeno-
logically rich, and they offer answers to many questions we have about the observable
universe. Procedures of gauge extending the SM can vary from just a general Abelian /
Non-Abelian extension, to specific models with additional exotic ingredients, which makes
the experimental endeavor already one step easier.
As we can see, along with some of the theories and models characterizing the new era of
physics, there is one prominent physical implication, namely the existence of new gauge
boson Z

′, which makes the curiosity around it even more persistent. It is only natural
to seek deep knowledge about other locations for such a particle, and further justify our
interest in it.

1.3 Some Samples of Z′ models

As previously described, we have the need for new physics, and among many established
models, U ′(1) models are prominent, and studied on a large scale. Such models are based
on a U

′(1) gauge extension of the Standard Model, and in many cases it yields viable
models for treating many of the SM deficiencies. We will start by taking a look at some of
the interesting U ′(1) models, while focusing on those models due to the presence of a new
massive Z ′ boson. The physics of this new gauge boson is exquisite and prosperous, we
will discuss it briefly as well some methods used for probing its existence experimentally,
and why we have this particular interest in it.

1.3.1 U(1)B−L model

Starting with the U(1)B−L model, it is based on SU(3)c × SU(2)L × U(1)Y × U(1)B−L
symmetry, with a new quantum number B−L (the baryon number B - the lepton number
L), that is conserved, and that also plays the role of a new charge. Under the new UB−L
symmetry fields transform as :

ψL/R → e
iYB−Lθ(x)

ψL/R (1.46)

via introducing a new gauge field Cµ accounting for the new symmetry extension, it will
physically predict the existence of a new gauge boson, namely the new massive Z ′ [55],
with a new coupling constant g′′, and a charge YB−L. Moreover, the existence of this
extra gauge boson is of a great experimental interest. For the sake of uniformity, we will
label it: ZB−L, indicating that it is the result of this B-L model. In the future exam-
ples, we will see that each model is distinguished by the values of the mass and coupling
constants ranges, as well as the mechanisms for SSB, and of course its physical predictions.

After the SSB, the particle acquires a mass [56]:

M
2
Z

′
B−L

= 4g′′2
ν

′2 (1.47)
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ν
′ being the B-L symmetry breaking scale, acquired by the singlet complex scalar field χ

leading to breaking the symmetry:

< χ >= ν
′

√
2
. (1.48)

The discovery of such a particle can take place at the LHC, mainly via di-lipton channels
Z

′
B−L → ℓ

+
ℓ

−, they seem to be more efficient compare to Z ′
B−L → qq̄. The Z ′

B−L can be
discovered via the e+

e
− decay channel, one might expect :

Figure 1.2: A simulation showing the peak of Z ′
B−L boson, through the e+

e
− decay channel

in the mass M
Z

′
B−L

region comprised between 800 and 1000. The data was taken from
[56].

This model has a great phenomenological potential [56], since it accounts for the experi-
mental data of neutrinos light masses, given that their masses are produced via the seesaw
mechanism. Add to that its ability to account for the right handed neutrinos, that is
through the existence of 3 SM singlet fermions predicted by the anomaly cancellation con-
ditions. Labeled the 3 right-handed neutrinos, and it accounts for their mixings, through
a matrix called the neutrino mass matrix. Interestingly, the lightest particle among these
right handed neutrinos fulfill the conditions for a dark matter particle, which shows that
the model has the potential to account for dark matter. The model also provides an ex-
planation for the observed baryon asymmetry of the Universe, and that is via the process
of leptogenesis.

1.3.2 Z ′ in LRSM and GUTs

Next on the list of Z ′ models, we have the so called Left-Right Symmetric Model [55], it
introduces us to a faint touch of a GUT scenario, and it is built upon the gauge group:

GLRSM = SU(3)c × SU(2)L × SU(2)R × U(1)Ỹ . (1.49)

As it shows, it introduces an extra SU(2)R leading to right handed singlets to be grouped
together forming right handed doublets under the symmetry, which also means that the
model treats left and right handed fields equally. The model also exhibits a higher degree
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of symmetry compared to the SM, since LRSM is symmetric under parity transformations,
such an additional symmetry is broken when the model is reduced to the SM.
The model [57] offers an explanation for the 3 right-handed neutrinos masses, also via
the See-Saw mechanism, but it required an additional term in the Lagrangian called the
Majorana mass term, in order to adjust the mass of neutrinos to the observed data. It
incorporates charge quantization as a mean to have a renormalizable, and anomaly-free
theory. Not only that, but it solves the CP problem due to mirror-symmetry.

In LRSM, the unphysical states W⃗Lµ, W⃗Rµ, Bµ, with the associated coupling constants
gL, gR, g

′ respectively, will yield after the mixing, the 3 SM physical gauge bosonsW∓
L , Z, γ,

in addition to 3 new massive gauge bosons W∓
R , Z

′
LRSM . Naturally, these gauge bosons

will need a mechanism to acquire the property of a mass. Potentially, the model [58]
allow for two symmetry breaking paths. In the minimal version of the LRSM, there are 3
scalar fields Φ1,Φ2, and Φ3, the two first are triplets under SU(2)R, while the last one is
a bi-doublet under the symmetry SU(2)L × SU(2)R. Needless to say, the model requires
a scalar sector to break (1.49) into Uem. Therefore, using these scalar fields, we can break
the symmetry using the old fashion, we break (1.49) to the SM gauge group, followed up
by the usual SSB leading to Uem. Such a path is constrained by the fact that the VEV of
the left triplets need to be taken as zero. Another path would be to break the symmetry
in the following manner [58]:

SU(2)L × SU(2)R ×U(1)Ỹ → SU(2)L ×U(1)R ×U(1)B−L → SU(2)L ×U(1)Y → U(1)em
(1.50)

The intermediate extra step is just the SM with a U(1) extension. Of course, these steps
take place thanks to 2 complex scalar triplets and one bi-doublet.

After the process of SSB, the particles gain masses(in the approximation v2 >> v
′ [58]:

M
2
Z ≈ v

′2(g2 + g
′′2) (1.51)

M
2
Z

′
LRSM

≈ 2g2
v

2
2

g
2 − g

′′2 + v
′2(g2 − g

′′2) (1.52)

M
2
WL

= g
2
v

′2 (1.53)
M

2
WR

= g
2(v2

1 + v
2
2 + v

′2) (1.54)

where v′ = 1
2vH , and v1, v2, are the VEV of Φ1,Φ2, where v3, v4 are the VEV of Φ3, with

v
′2 = v

2
3 + v

2
4.

As we are capable of inferring so far, there are many locations where the Z ′ neutral
gauge boson arises, being it within a GUT scenario or outside. Another possible location
for a Z

′ would be models coming from a E6 grand unification, where the E6 symmetry
breaking can take the following from:

E6 → SO(10) × U(1)ψ → SU(5) × U(1)χ × U(1)ψ. (1.55)

And as we mentioned in section 1.2.1, the SU(5) symmetry will break into 1.2.
In such a case, the resulting neutral gauge boson can be a linear combination of: Zψ
resulting from U(1)ψ, and Zχ coming from U(1)χ, such as [59]:

Z6 = Zψcos(θ) + Zχsin(θ). (1.56)

Other possible intermediate steps can be illustrated in figure (1.3).
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Figure 1.3: An illustration of some possible intermediate steps throughout the breaking
of the E6 symmetry [60].

This extra gauge boson can be discovered experimentally at the LHC. Hence, experi-
mental quantities such as decay widths are of a great importance. The figure (1.4) shows
the total decay width Γtot(Z

′(θ))14 for certain different values of M
Z

′(θ) and θ.

Figure 1.4: Total decay width Γtot(Z
′(θ)) for certain values of M

Z
′(θ) and θ. The width Γ

is used for Γ(Z ′(θ)).Γ(Z ′(θ)), and M
Z

′(θ) are in GeV.

It is notable that E6 models can be studies in both nonsupersymmetric and supersym-
metric lens. In the supersymmetric case, the U(1)′ symmetry can be broken by the VEV of
the scalar partners of the S and s the conjugate of the right-handed neutrino νc(breaking
R-parity as well).

In conclusion, Z ′ physics is not limited to those few examples mentioned above, there
are more and more theoretical attempts to study this neutral gauge boson, given that
it is expected to be discovered at the LHC in the future. What also can be observed is
the importance of a simple U(1)′ extension of the Standard model, given how diverse the
locations in which we can encounter such an additional symmetry. And for that partic-
ular reason, we will direct our attention, in the next chapter, to how we can extend our
SM Lagrangian in grand details. Discussing the implications of such an extension, and
finishing by putting a strong emphasis on one among many ways of obtaining the mass
term, namely ”the Stueckelberg Mechanism”. This is motivated by how simple the model
is for a Z

′ starter hunt, in addition to the elegance of the procedure, and of course the
prediction of the Z ′ neutral gauge boson’s properties.

14The Z
′(θ) here is the same as gauge boson Z6 mentioned in (1.56).
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Chapter 2

A Stueckelberg Extension of the
Standard Model

An additional U ′(1) symmetry for the SM has proven itself worthy of our consideration.
It is a simple process by which we can put our initial footsteps into the realm of physics
Beyond the Standard Model. For this small endeavor, we will draw our path from a U ′(1)
extension of the SM, how such a process influences the structure of the SM, the various
changes accompanied by adding such a symmetry, then leading our way to the potential
physically viable consequences.

Throughout this journey, various physical implications are discussed, primarily the
additional Z ′ neutral gauge boson. We will attempt to generate the mass term, and show
how an alternative way to the Higgs effect, namely ” Stueckelberg mechanism ”, can help
generate the mass for this new Z

′ without necessarily breaking the new symmetry added.
Such a path shows how seeking economical, simple ways of curing the SM pays off, and
they are good candidate for preparing the ground for more extensive theoretical work.

2.1 U(1)X Extension of The Standard Model

As mentioned before, our main aim is to extend the SM by an abelian U(1)′ gauge sym-
metry. A general U(1) gauge extension can be performed via simple steps, the framework
will involve:

• Introduce the symmetry.

• Introduce the vector content associated with symmetry, and construct the field
strength tensor.

• Introduce a new coupling constant.

• Construct the new covariant derivative.

• Study the various changes on the SM structure, via setting up the mathematical
framework of the model.

• Infer the various physical predictions, such as the existence of a new gauge boson
Z

′.

• Infer its properties (mass, charge, coupling constant..etc), and its impact on the
various sectors of the SM.

• Clarify the constraint imposed on the new values of the new parameters, so that
they fit with the already established SM values.
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And Like any theoretical work, it is necessary to draw the edges on what we will
be dealing with in this section, and this will be accomplished via stating the various
assumptions taken. Such assumptions are summarized as follows:

• Only one additional U(1) element is added to the gauge group.

• We are considering minimal particle content.

• Automatic anomaly cancellation, meaning no need for anomaly cancellation mecha-
nisms1.

• The U(1)X charge is not related to the charge operator2.

It is recommended to mention that the U(1)X model is considered as a generalization,
since the same structure can be found in models such as the minimal B − L model [62],
where the extra abelian symmetry will be assimilated to the B−L gauge symmetry. Same
thing can be said for B + L gauge symmetry [63], and Lµ − Lτ gauge symmetry. Which
gives the advantage of only being restricted to a general case. Furthermore, with minimal
particle content, the model offers phenomenological consequences that are of a great inter-
est to us, since it can accommodate cosmological inflation layouts [64], as well as candidate
for DM [65], and even add 3 generations of right-handed neutrinos and explain the origin
of their tiny masses [66]. Hence, removing the obscurity around fundamental mysteries
of the SM.

A final point to mention, the distinction of the various U ′(1) models existing in the
literature can be seen in:

(a) The coupling constants.

(b) The symmetry U(1)′ breaking scale.

(c) The type of scalar responsible for the U(1)′ breaking.

(d) The charges of the SM fermions and Higgs doublet.

(e) The necessity of additional exotic fields for anomaly cancellation.

After establishing such a clarification, we are ready to build gradually the process
of the extension. Adding the new abelian gauge symmetry will force some changes [11],
starting with the new form of the gauge group:

GSMX
= SU(3)c × SU(2)L × U(1)Y × U(1)X (2.1)

the extra symmetry will have a gauge field associated with it, labeled Cµ.
For the sake of simplicity, we will work with the SM Lagrangian in this from:

LSMX = LfX
+ LgaugeX

+ LϕX
(2.2)

focusing on Lgauge, extending 1.2 by an extra U(1)X will imply :

LgaugeX
= −1

4G
i
µνG

µνi − 1
4W

i
µνW

µνi − 1
4BµνB

µν − 1
4CµνC

µν (2.3)

where Cµν is the associated strength tensor:

Cµν = ∂µCν − ∂νCµ. (2.4)
1Such as the Green-Schwarz mechanism.
2There is a possibility in which such a relatedness can be considered. Such as in [61], where the charge

operator took the form Q = T3 + Y + X.
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The new form for the gauge transformation will be:

ϕ(x) → ϕ
′(x) = e

−igTaθa− i
2g

′
Y Yϕθ

′
Y I− i

2gXXϕθ
′
X I
ϕ(x) (2.5)

where, g′
Y , g

′
X denotes the new associated coupling constants, and Xϕ being the new weak

hypercharge of the scalar doublet ϕ.

The new covariant derivative :

D̄µ = ∂µ + igs
2 λ⃗.G⃗µ − iqW g

2 τ⃗ .W⃗µ − iqBg
′
Y

2 Bµ − iqCgX
2 Cµ (2.6)

qW,B,C are the charges which correspond to the fields on which D̄µ is applied to.

The modifications on the fermionic sector will be displayed as follows :

LfX
=

3∑
i=1

(q̄iLi /̄DqiL + ℓ̄iLi /̄DℓiL + ūiRi /̄DuiR + d̄iRi /̄DdiR + ℓ̄iRi /̄DℓiR) (2.7)

given that :

D̄µ = ∂µ − ig

2

3∑
a=1

τ
a
W

a
µ − ig

′
Y

QfY

2 Bµ − igX
QfX

2 Cµ (2.8)

QfY,X
are the fermions charges under U(1)Y , and U(1)X .

The Higgs part :
LϕX

= (D̄µϕ)†
D̄
µ
ϕ+ V (ϕ) (2.9)

where:
D̄µϕ = (∂µ − ig

2 τaW
a
µ −

ig
′
Y Yϕ
2 Bµ −

igXXϕ

2 Cµ)ϕ (2.10)

Furthermore, considering the most general case implies that the fermion and scalar con-
tents are not restricted to be the same as in the SM. For example, fermions may include
right-handed neutrinos νR, while the scalar sector may include as well more than one Higgs
doublet, or even singlets.

Such an internal structure allow for multiple consequences, among these consequences:
a kinetic mixing between the abelian fields Bµ, Cµ, and an additional gauge boson, labeled
Z

′ gauge boson. In addition to a possibility for a mass mixing between the SM Z boson,
and the new Z

′.

2.1.1 Kinetic mixing

Models with more than one U(1) gauge symmetry always permit the existing of elements
that mix the kinetic terms of the Abelian gauge fields, given it does not violate any known
symmetries [9]. A mixing can only occur if there is more than one field strength tensor,
and they are each neutral under the gauge symmetry considered, which is substantially
why we don’t see mixed terms in the context of the SM. And since we are in the context
of an abelian extension of the SM by a U(1)X symmetry, then a mixing between the the
two U(1)′s is allowed. The kinetic term in such a case can take the general form :

LKinetic = αBµνB
µν + βCµνC

µν + γBµνC
µν (2.11)

after scaling the gauge fields:
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LKinetic = −1
4BµνB

µν − 1
4CµνC

µν − 2ρ
4 BµνC

µν
. (2.12)

The last term is the so-called the gauge kinetic mixing term that is Lorentz and gauge
invariant.
And the requirement that |ρ| < 13, where ρ is some coefficient that parametrizes the
strength of this so-called kinetic mixing operator.

Interestingly enough, even if the gauge kinetic mixing is set to zero at some high energy
scale, for example the GUT scale, it can always be radiatively generated at lower energy
scales via quantum corrections [67]. There are ways to actually get rid of the kinetic
mixing term. One way is to eliminate it by an appropriate rotation in the space of the
abelian gauge fields [9].
In order to see how such a term can be eliminated, we consider an example based the
following non-unitary transformations:

B̃µ = Bµ + ρCµ

C̃µ =
√

1 − ρ
2
Cµ

(2.13)

as a result:
Bµν = B̃µν − ρ√

1 − ρ
2
C̃µν

Cµν = 1√
1 − ρ

2
C̃µν

(2.14)

replacing in (2.12):

LKinetic = −1
4

B̃µν − ρ√
1 − ρ

2
C̃µν

B̃µν − ρ√
1 − ρ

2
C̃
µν


− 1

4
1√

1 − ρ
2
C̃µνC̃

µν − 2ρ
4

B̃µν − ρ√
1 − ρ

2
C̃µν

 C̃
µν√

1 − α
2

(2.15)

implying :
LKinetic = −1

4B̃µνB̃
µν − 1

4 C̃µνC̃
µν
. (2.16)

Thus, the kinetic mixing term was successfully eliminated. One reason why we would seek
such an elimination process is the fact that there are no observable signs of its existence
in the experimental playground. Therefore, building a kinetic-mixing-free model would be
more preferable given the current data that we own.

However, it is always appealing to mention what are major implications that can
arise from these kinetic mixing terms, one implication is the mixing between the Z and
Z

′ coming from the symmetry breaking, with a certain angle that can be determined,
and such a mixing is ρ-dependent [9]. To see clearly how it arises, let’s first see the
modifications imposed on the covariant derivative due to (2.14):

Dµ = ∂µ − ig

2 τaW
a
µ − ig

′
Y

2 Bµ − igXX

2 Cµ

=⇒ Dµ = ∂µ − ig

2 τaW
a
µ − ig

′
Y

2 B̃µ − i

2

 gXX√
1 − ρ

2
− ρg

′
Y√

1 − ρ
2

 C̃µ (2.17)

3Positive kinetic energy.
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we can notice that B̃µ couples to the same generator as Bµ.
Furthermore, the gauge bosons mass matrix would then be written in terms of the orthog-
onal fields A0, Z0, Z

′
0, and it takes the general form:

M =

0 0 0
0 M

2
Z0

δ

0 δ M
2
Z

′

 (2.18)

The phtoton is clearly the massless eigenstate. And as we can see a non-zero δ implies
the Z − Z

′ mixing, and when ρ does not coincide with 0, the fields A0, Z0, Z
′
0 are not

orthogonal. Of course, they can be related to the orthogonal fields A,Z,Z ′ via some
non-unitary transformation: A0

Z0
Z

′
0

 = S

AZ
Z

′

 (2.19)

in such a case, the mass matrix can be written in terms of the orthogonal fields:

M =

0 0 0
0 a b
0 b c

 (2.20)

where the parameters [9]:

a = M
2
Z0

b = −ρsinθ√
1 − ρ

2
M

2
Z0

+ δ√
1 − ρ

2

c =
M

2
Z

′

1 − ρ
2 + −2ρsinθ

1 − ρ
2 δ + ρ

2
sin

2
θ

1 − ρ
2 M

2
Z0

(2.21)

clearly, we can observe that for the mixing to vanish, we require the condition that b = 0,
which implies:

ρ = δ

M
2
Z0
sinθ

(2.22)

which indicates straightforwardly that the Z −Z
′ mixing is ρ-dependent. It is also appar-

ent that due to the mixing there will be some modifications in the properties of the SM Z
boson.

It is worthwhile to mention that a Z − Z
′ mixing can be eliminated via the existence

of discrete symmetries. The importance of this resides, first and foremost, in the fact that
there is no experimental data validating such a mixing, which will necessarily requires a
way to remove it, and it turns out discrete symmetries are a natural way to forbid such a
mixing. It can be easily verified. So let’s consider the discrete symmetry of the following
gauge bosons associated with the two U(1)′s in the model :

B1 ↔ C1 (2.23)

the kinetic Lagrangian that respects the previous symmetry have the form:

LKinetic = −1
4B1µνB

µν
1 − 1

4C1µνC
µν
1 − 2ρ

4 B1µνC
µν
1 . (2.24)

27



At first sight, one must say that the last term on the right can be identified as a mixing
term, but a simple linear combination of B1, and C1 can prove otherwise. Considering :

B = B1 + C1√
2

C = B1 − C1√
2

(2.25)

=⇒ B1µν = 1√
2

[Bµν + Cµν ] C1µν = 1√
2

[Bµν − Cµν ] (2.26)

with such a step, (2.24) will be re-arranged to showcase that there is no kinetic mixing
term. Therefore, by mere existence of discrete symmetries within the model we can ensure
that no Z − Z

′ mixing is allowed.

As a final note, in the non-abelian case, the field strengths Bµν
i and C

µν
i will not be

considered gauge invariant quantities, and thus any terms proportional to them will be
forbidden.
Now that we have briefly talked about the potential kinetic mixing that can arise due
to the abelian extension we considered, it is safe to assume from now on that we won’t
be considering it in future development for the sake of simplicity, and to keep the model
experimentally consistent. In the following subsection, we would direct our efforts towards
the mass term, and how can the neutral gauge bosons within our model gain their masses.

2.1.2 Neutral Gauge Bosons Masses

Naturally, to obtain the mass term, we will employ the well-established Higgs mechanism.
The Higgs doublet, before SBB and after, famously takes the form:

ϕ =
(

φ
+

1√
2 (v + h+ iχ3)

)
→< ϕ >=

(
0

1√
2(v + h)

)
(2.27)

Given that we are interested in obtaining the mass for the Z,Z ′ and γ, it is useful to focus
on the relevant factors only:

LM → (D̄µ < ϕ >)†(D̄µ < ϕ >) = |D̄µ < ϕ > |2 (2.28)
and D̄µ is given by 2.10.
Making use of :

1
2τaW

a
µ = 1√

2

 W
3
µ√
2 W

+
µ

W
−
µ −W

3
µ√
2

 (2.29)

W
−
µ , W

+
µ are given in 1.18.

We find :

|Dµ < ϕ > |2 → |−ig(v + h)
2 W

+
µ |2 + | ig(v + h)

2
√

2
W

3
µ− i(v + h)

2
√

2
g

′
Y YϕBµ− i(v + h)

2
√

2
gXXϕCµ|2

(2.30)
given our interest, we can take only the relevant terms from the neutral current. Leading
to :

→ g
2
v

2

4 W
+
µ W

−µ + g
2
v

2

8 W
3
µW

3µ +
g

′2
Y Y

2
ϕ v

2

8 BµB
µ +

g
2
XX

2
ϕv

2

8 CµC
µ

−
gg

′
Y Yϕv

2

8 W
3
µB

µ −
ggXXϕv

2

8 W
3
µC

µ −
g

′
Y gYϕv

2

8 BµW
3µ

+
g

′
Y gXYϕXϕv

2

8 BµC
µ −

ggXXϕv
2

8 CµW
3µ +

g
′
Y gXYϕXϕv

2

8 CµB
µ
.

(2.31)
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Such an expression can be put in the following form :

LM → g
2
v

2

4 W
+
µ W

µ− +
(
W

3µ
B
µ

C
µ
)
M

W
3
µ

Bµ
Cµ

 (2.32)

where the matrix M can be easily deduced :

M =


g

2
v

2

8 −gv
2

8 g
′
Y Yϕ −gv

2

8 gXXϕ

−gv
2

8 g
′
Y Yϕ

v
2

8 (g′
Y Yϕ)2 v

2

8 g
′
Y gXYϕXϕ

−gv
2

8 gXXϕ
v

2

8 g
′
Y gXYϕXϕ

v
2

8 (gXXϕ)2

 (2.33)

after diagonalization:

MDiag =

0
0

v
2

8 (g2 + g
2
XX

2
ϕ + g

′2
Y Y

2
ϕ )

 (2.34)

we can identify the mass of the Z boson : MZ = v
2

8 (g2 + g
2
XX

2
ϕ + g

′2
Y Y

2
ϕ , while the

remaining terms can be identified with the mass of the massless photon and the Z ′ boson:
Mγ = M

′
Z = 0

Clearly, we have an issue. The Z ′ boson is massless, and this is not phenomenologically
possible, otherwise it would have been observed already. The origin of the issue will be
tracked down to the additional symmetry UX we added, we conclude that the symmetry
wasn’t broken by the Higgs doublet. Resulting in this symmetry breaking pattern at the
electroweak scale:

SU(2)L × U(1)Y × U(1)X → U(1)em × U(1)′
Z (2.35)

Therefore, we need to give the Z ′ its mass. This can be achieved via multiple methods,
one of them is via the Higgs mechanism, where we will introduce a new singlet complex
scalar field χ with a certain VEV vχ to break the extra U(1)X . The singlet’s VEV should
be about an order of magnitude larger than the typical Higgs doublet’s VEV, since a Z ′

has not yet been observed. Of course, such a procedure will have additional phenomeno-
logical implications, that can be studied within the frame of a particular model. More
details on the approach can be consulted in [10].
Another possibility, which turns out to be our main interest in this section is an approach
where the Z ′ can obtain its mass without necessarily breaking the extra symmetry we
added. Such a mechanism is the well-known ”Stueckelberg mechanism”. Through such a
mechanism, we will preserve the symmetry, thus keeping the model at a minimum number
of parameters, and the neutral gauge boson will acquire its mass via a coupling to a new
scalar field σ that we will introduce. More details on the approach will be discussed in
the upcoming section.

2.2 Stueckelberg Extension

One of the most interesting paths to investigate when trying to extend the SM is a Stueckel-
berg way of extending the SM, in which the extra gauge boson resulting from the additional
U(1)X symmetry can couple to an axionic scalar field4, namely Stueckelberg field σ. In

4We refer to σ as an axionic scalar because of the pseudo-scalar nature that it possesses.
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this following section, we will attempt to take a look at the minimal 5Stueckelberg contri-
bution to the extended SM, followed up by how the new Z

′ boson can obtain its mass, in
a relatively new manner, without breaking the symmetry, and via a coupling to the field σ.

Originally, in 1938 Stueckelberg [68] proposed to reformulate the Proca action for the
massive vector field by introducing a new scalar field B(x) of positive definite metric
accompanied with the four-vector components Aµ, resulting in five fields, to describe the
3 polarizations of a massive vector field, while maintaining Lorentz covariance, and gauge
invariance. Thus, Stueckelberg’s field was a brilliant idea to recover the gauge invariance
broken by adding a mass term. He postulated that B(x) obeys the same equation as Aµ
and has the same mass:

(∂2 +m)B(x) = 0 (2.36)

A historical review about Steuckelberg method can be found in reference [68].

The general scheme followed in order to make use of Stueckelberg’s ideas starts with
identifying the gauge invariant, and the non-gauge invariant elements in the Lagrangian.
Taking as an example massive vector fields, the gauge invariant element would be the
Maxwell Lagrangian, while the non-invariant part would simply be the mass term. So,
after making such an identification, Stueckelberg field will be included as a parameter of
the gauge transformation of the invariant part, and its own gauge symmetry is defined as
the composition of original gauge transformations, which will result in a compensation by
the gauge transformation of Stueckelberg field to the change of the non-invariant part of
the Lagrangian.
Let’s see how the above description fits with a simple case, mainly for a massive vector
Aµ. In such a scenario, Stueckelberg field will be denoted σ(x). Stueckelberg Lagrangian
will then be [69]:

LStueck = −1
4FµνF

µν − 1
2
(
mAµ + ∂µσ

) (
mA

µ + ∂
µ
σ
)

(2.37)

with an obvious mass term. And the gauge transformations will be 6:

Aµ → Aµ + ∂µϵ

σ → σ −mϵ
(2.38)

the gauge invariance through such transformations of the Lagrangian can be easily verified.
The total Lagrangian takes then the from, after fixing the gauge:

Ltot = −1
4FµνF

µν − m
2

2 AµA
µ − 1

2ξ (∂µA
µ)2 − 1

2∂µσ∂
µ
σ − ξm

2

2 σ
2 (2.39)

where the gauge fixing term added was:

LGF = − 1
2ξ
(
∂µA

µ + ξmσ
)2 (2.40)

where it can be seen that the mixing terms between A
µ and σ has been canceled out, we

say that the fields have been decoupled.

We can conclude that the general scheme includes two parts. One is the extension of
the standard mass term through a mixing term that involves a differential of the scalar

5Minimal in the context of only adding one σ field, and one abelian vector field Cµ.
6Through such a split, σ takes the role of the longitudinal component of the massive vector
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field added. The second part is the choice of a special gauge fixing term to cancel out
the mixing between the scalar and the gauge field. And we managed to acquire a massive
vector field without spoiling gauge invariance.

We are now motivated to use Stueckelberg’s ideas in the context of the extended SM.
To see specifically how the previous idea can be used in the context of the SM, [70] has
a detailed work on how a Stueckelberg massive U(1) can be combined with the SM, and
what are the phenomenological consequences of such a process. In our case, we want to
take Stueckelberg idea, and apply it to an extended version of the SM.

2.2.1 Stueckelberg Lagrangian

As indicated earlier, we are interested in a Stueckelberg’s contribution to the SM, more
precisely a minimal Stueckelberg extension of the SM, while making sure that the gauge
invariance is not spoiled. In the following context, we will explore how the SM Lagrangian
will be extended by a simple abelian vector, in addition to a Stuecklberg’s kind of coupling
through a Stueckelberg field σ. For the the sake of simplicity, we won’t bother taking the
entire SM Lagrangian, we will focus only on the relevant parts for the extension:

LSM ⊃ −1
4W

a
µνW

aµν − 1
4BµνB

µν −Dµϕ
†
D
µ
ϕ− V (ϕ†

ϕ) (2.41)

where like usual, Wµν , Bµν are the SU(2)L, U(1)Y field strengths respectively, and ϕis the
Higgs doublets with a potential V (ϕ†

ϕ) attaining its minimum at v
2 .

For a minimal Stuckelberg extension [71], we only add minimal fields content to the
previous Lagrangian, mainly we add one more abelian vector field Cµ associated to a U(1)X
with a field strength Cµν , and one axionic scalar σ. Leading to the effective Lagrangian:

LStSM = LSM + LSt

LSt = −1
4CµνC

µν − 1
2
(
∂µσ +M1Cµ +M2Bµ

)2 (2.42)

M1,2 are mass parameters related to the Stueckelberg extension.

The gauge invariance for U(1)Y :

δYBµ = ∂µϵY

δY σ = −M2ϵY
(2.43)

and for U(1)X :
δXCµ = ∂µϵX

δXσ = −M1ϵX
(2.44)

It is important to mention that in the context of our extension, the σ field has Stueck-
elberg coupling to all the abelian gauge bosons, i.e. Bµ, Cµ, while we assume that the
charged gauge bosons are neutral under the U(1)X symmetry.
In order to observe the effects of a minimal Stueckelberg extension, it is required to gen-
erate the modified version of the mass matrix, which is what will attempt to do at the
point of the development.
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2.2.2 Stueckelberg Mechanism and the Mass matrix

The expected question that would arise at this level is how can we possibly generate the
mass of the gauge bosons, and naturally we would lean towards familiarity, that is to say,
a symmetry breaking process with the Higgs mechanism. Such an initial guess would take
us from the usual electro-weak symmetry breaking via the Higgs doublet to breaking the
additional U(1)X , such a procedure is similar to that of the SM.
We can safely expect a symmetry breaking pattern to take the following form :

SU(3)C × SU(2)L × U(1)Y︸ ︷︷ ︸
Higgs ϕ

×U(1)X . (2.45)

And in order to give the new Z
′ a mass we would break the remaining symmetry using,

let’s say, the scalar field χ:

SU(3)C × SU(2)L × U(1)Y︸ ︷︷ ︸
Higgs ϕ

×U(1)X︸ ︷︷ ︸
χ

→ SU(3)C × U(1)em. (2.46)

Such a thinking process is completely valid, the mass of this boson will be generated in
several ways, for instance via spontaneous symmetry breaking of a scalar, which is singlet,
or doublet under the SU(2) symmetry group. But it is here where Stueckelberg’s idea
can play a role. Due to his thought process, we can explore an alternative to the previous
mechanism, and obtain a massive Z ′ boson without having to break the additional sym-
metry, especially that breaking it will cost us the price of additional parameters that have
to be finely tuned. This is what ”Stueckelberg mechanism” is capable of offering to our
current subject of study.

It is noteworthy to mention that the SM’s Higgs mechanism cannot be replaced by
Stuckelberg mechanism, since extending such a mechanism7 to non-abelian gauge theo-
ries will violate unitarity8. Therefore, in the context of the SM, we will risk losing the
renormalizability of the theory. Which justifies the fact that we are only interested in the
mechanism insofar of an abelian context, that to say, only to the U(1)′s symmetries.
It is equally important to also have a clear distinction between the utility of both the
Higgs, and Stuckelberg mechanisms. One primary aspect is the physical consequences of
both, while the Higgs effect is associated with the existence of the Higgs boson, Stueckel-
berg’s way of attaining mass has no visible physical signs, since all the degrees of freedom
will be absorbed by the vector boson, with none left to observe.

We are finally ready to use the above extension to obtain the neutral gauge bosons
masses, since we can’t replace the Higgs mechanism in the SM, we will consider both
processes, with the scalar sector being neutral under the additional symmetry. That is to
say:

SU(3)C × SU(2)L × U(1)Y︸ ︷︷ ︸
Higgs ϕ

×U(1)X . (2.47)

SU(3)C × SU(2)L × U(1)Y × U(1)X︸ ︷︷ ︸
Stueckelberg σ

. (2.48)

thus with the electro-weak symmetry breaking, the mass terms of the neutral gauge
bosons will align with the following form:

−1
2V

T
µ M

2
StueckV

µ (2.49)

7Stueckelberg mechanism is only compatible with abelian gauge symmetries.
8Because the longitudinal components of the vector fields cannot be decoupled from the physical Hilbert

space.
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where:

Vµ =

W
3
µ

Bµ
Cµ

 (2.50)

while the mass matrix will end up taking the following shape:

M
2
Stueck =


M

2
1 M1M2 0

M1M2 M
2
2 + v

2

4 g
′2 −v

2

4 gg
′

0 −v
2

4 gg
′ v

2

4 g
2

 (2.51)

it is easily verified that Det(M2
Stueck) = 0, which means we should expect a one eigenvalue

to be equal to 0.

After diagonalizaton :

M
2
StueckDiag

=

0 0 0
0 M

2
− 0

0 0 M
2
+

 (2.52)

where:

M
2
± = 1

8
[
4M2

1 + 4M2
2 + g

2
v

2 + g
′2
v

2 ±√(
4M2

1 + 4M2
2 + g

2
v

2 + g
′2
v

2
)2

− 16
(
M

2
1 g

2
v

2 +M
2
2 g

2
v

2 +M
2
1 v

2
g

′2
)] (2.53)

we can rewrite this in a more presentable manner:

M
2
± = 1

2

[
v

2

4 (g2 + g
′2) +M

2
1

(
1 + M

2
2

M
2
1

)
±√√√√(v2

4 (g2 + g
′2) +M

2
1

(
1 + M

2
2

M
2
1

))2

− 4M2
1

(
v

2

4 (g2 + g
′2) + M

2
WM

2
2

M
2
1

) (2.54)

making use of Stueckelberg parameters, where:

δ = M2
M1

M
2
0 = v

2

4 (g2 + g
′2)

(2.55)

resulting in:
M

2
± = 1

2
[
M

2
0 +M

2
1
(
1 + δ

2
)

±√(
M

2
0 +M

2
1
(
1 + δ

2
))2

− 4M2
1
(
M

2
0 +M

2
W δ

2
)]
.

(2.56)

Of course, the zero-eigen mode is associated with the masseless photon, and the heavy
mass M2

+ is identified as the mass of the Z ′ boson M
′
Z , while the lighter mass M2

− as
the mass of the Z boson M

2
Z . The total degrees of freedom indicates that the two gauge

bosons out of the 3 will get massive by absorbing the two scalars.
In the limit, M2 <<< M1, we notice that the Stueckelberg sector decouples from the SM.
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2.3 Generalized Stueckelberg Effect

As our theoretical development progressed so far, we have seen that a neutral Z ′ gauge
boson can be obtained via a simple bottom-up extension of the SM, it was achieved via
the addition of a U(1)X symmetry. And in the previous section, we have investigated a
Stueckelberg technique that allow the resulting Z ′ to obtain a mass. But throughout the
process, we assumed that the scalar sector is left unaffected, and that is neutral under the
gauge symmetry, which led us to wonder what if such an assumption is discarded ? It
turns out we can approach the process from a different angle, this time it will be through
building an invariant construct from the Stueckelberg field, to be injected later on in the
mass term [11]. In this section, we will explore such a pathway, which we referred to it, in
this thesis work, as the ”Generalized Stueckelberg Effect”. We won’t exclude Cµ from the
scalar covariant derivative, and we will attempt to derive the new modified mass matrix,
to finally write the mass of the Z ′.

2.3.1 Generalized Stueckelberg Lagrangian

We start off by tracing the idea of Stueckelberg again, while keeping in mind that the
purpose is to put together ingredients to add to the Lagrangian, which may result in a
mass term without having to lose gauge invariance.

The Stueckelber’s field σ(x), which obeys the following gauge transformation :

σ(x) → σ
′(x) = σ(x) −Mθ(x) (2.57)

such a field can enable the construction of the invariant quantity:

Γµ = Aµ + 1
M
∂µσ (2.58)

with:
Aµ(x) → A

′
µ(x) = Aµ(x) + ∂µθ(x). (2.59)

The first attempt was to build the following construct :

LM = 1
2M

2ΓµΓµ (2.60)

such a procedure is considered a failure given that it doesn’t generate a mass for the scalar
field σ(x), and it yields extra bilinear terms which are hard to justify physically [11].
Nevertheless, the issue can be repaired if we consider a different form for the invariant
construct :

∆ = σ − 1
M
∂µA

µ (2.61)

under certain restrictions, the mass term can be written as :

LM = −1
2M

2∆2
. (2.62)

Historically, the fundamental issue with Stueckelberg theory was the issue of mass de-
generacy of the scalar σ(x), resulting in it not gaining much interest at that time [11].
However, the elegance of the idea should not be dismissed, and for that reason, we can
attempt a different construct.
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Making use of the two quantities:

Γµ = ∂µσ +MYBµ +MXCµ (2.63)

and:
∆ = σ − 1

MY
∂µB

µ − 1
MX

∂µC
µ (2.64)

under the restriction:
(□ +M

2
Y )θ′

Y = (□ +M
2
X)θ′

X = 0 (2.65)

where M2
Y , and M

2
X are parameters of a mass dimension. They can also be referred to

as Stueckelberg parameters, since their presence is characterized solely to a Stueckelberg
extension.

The new transformation for the Stueckelberg’s scalar :

σ → σ
′ = σ −MY θ

′
Y −MXθ

′
X . (2.66)

Making use of these ingredients, we are now in a position to construct the Stueckelberg
Lagrangian9, which initially takes the form:

LS = 1
2M2 (M2 + λ1ϕ

†
ϕ)ΓµΓµ − 1

2(M2 + λ2ϕ
†
ϕ)∆2 (2.67)

where λ1, and λ2 are new coupling constants. And M is the parameter of mass.
In such a construction, we permit the Higgs field to couple with σ, allowing the latter to
secure its mass.

The previous Lagrangian is valid as long as we are not considering SSB, otherwise consid-
ering a SSB in the Higgs sector implies replacing the factor ϕ†

ϕ with v
2

2 , leading to mass,
and bilinear terms. In such a phase, the Stueckelberg Lagrangian will be written as :

LS = Lσ + Lbil + Lgf (2.68)

the first term is the free scalar Lagrangian. When expanding 2.67, and isolating the scalar,
we find:

Lσ = 1
2(1 + λ1v

2

2M2 )∂µσ1∂
µ
σ1 − 1

2M
2(1 + λ2v

2

2M2 )σ2
1 (2.69)

we can rewrite 2.69 in a clean manner :

Lσ = 1
2∂µσ∂

µ
σ − 1

2M
2
σσ

2 (2.70)

where,

σ =

√
1 + λ1v

2

2M2σ1 =
√
Zσσ1 (2.71)

and the physical mass of Stueckelberg scalar can then be written as:

Mσ = M

√
(1 + λ2v

2

2M2 )(1 + λ1v
2

2M2 )−1 (2.72)

the bilinear terms representing mixed terms between σ, Bµ and Cµ, will show up after the
expansion as :

9Stuecklberg Lagrangian is a kinetic gauge invariant term, valid for abelian massive vector fields.
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Lbil =(1 + λ1v
2

2M2 )MY ∂µσB
µ + (1 + λ2v

2

2M2 )M
2

MY
σ∂µB

µ

+(1 + λ1v
2

2M2 )MX∂µσC
µ + (1 + λ2v

2

2M2 )M
2

MX
σ∂µC

µ
.

(2.73)

we can consider a simple outcome via canceling the bilinear terms, and that is achieved
by imposing the constraint MX = −MY , or since it has no physical relevance we can just
take the constraint to be MX = MY .

Finally, the last piece of the Lagrangian would be the gauge fixing terms, taking the
form:

Lgf = − M
2

2M2
Y

(
1 + λ2v

2

2M2

)(
(∂µB

µ)2 + (∂µC
µ)2 + 2∂µB

µ
∂νC

ν
)

(2.74)

such a term can be rewritten in a concise manner :

Lgf = − 1
2ωB

(
∂µB̃

µ
)2

(2.75)

where the following change was imposed:

Bµ = 1√
2
B̃µ + 1√

2
C̃µ

Cµ = 1√
2
B̃µ − 1√

2
C̃µ

(2.76)

and :
ωB = M

2
Y

2M2

(
1 + λ2v

2

2M2

)
. (2.77)

And by this, the final Stueckelberg Lagrangian is all set up :

LS = 1
2∂µσ∂

µ
σ − 1

2M
2
σσ

2 − 1
2ωB

(
∂µB̃

µ
)2

(2.78)

Followed up by this construction, we will try next to see how (2.76), and (2.67) can help
us get the new modified mass matrix, and thus the mass of the new Z

′.

2.3.2 Stueckelberg masses

Now we are ready to see the neutral gauge bosons masses, starting from the changes
imposed on the covariant derivatives from 2.76:

Dµ < ϕ >=
(
∂µ − ig

2 τaW
a
µ −

(
ig

′
Y Yϕ

2
√

2
+
igXXϕ

2
√

2

)
B̃µ −

(
ig

′
Y Yϕ

2
√

2
−
igXXϕ

2
√

2

)
C̃µ

)
< ϕ >

(2.79)
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Focusing on the relevant parts of |Dµ < ϕ > |2, amounting to :

→ g
2
v

2

4 W
+
µ W

−µ + g
2
v

2

8 W
3
µW

3µ +
v

2(g′
Y Yϕ + gXXϕ)2

16 B̃µB̃
µ +

v
2(g′

Y Yϕ − gXXϕ)2

16 C̃µC̃
µ

−
gv

2(g′
Y Yϕ + gXXϕ)

8
√

2
W

3
µB̃

µ −
gv

2(g′
Y Yϕ − gXXϕ)

8
√

2
W

3
µC̃

µ −
gv

2(g′
Y Yϕ + gXXϕ)

8
√

2
B̃µW

3µ

+
v

2(g′
Y Yϕ + gXXϕ)(g′

Y Yϕ − gXXϕ)
16 B̃µC̃

µ −
gv

2(g′
Y Yϕ − gXXϕ)

8
√

2
C̃µW

3µ

+
v

2(g′
Y Yϕ + gXXϕ)(g′

Y Yϕ − gXXϕ)
16 C̃µB̃

µ
.

(2.80)
Now, to derive the contribution from the Stueckelberg Lagrangian to the mass term,

we focus also on the relevant parts in (2.67). Implying:

LS → 1
2M2

(
M

2 + v
2
λ1
2

)
ΓµΓµ (2.81)

it expands to,

→ 1
2M2

(
M

2 + v
2
λ1
2

)[(
M

2
X

2 + M
2
Y

2 +MXMY

)
B̃µB̃

µ

+
(
M

2
X

2 + M
2
Y

2 −MXMY

)
C̃µC̃

µ +
(
M

2
X −M

2
Y

)
B̃µC̃

µ

] (2.82)

by incorporating the constraint MX = MY , we notice clearly that the two last factors to
the right vanish. So that the Stueckelberg mass contribution will simply be:

→ M
2
X

M
2

(
M

2 + v
2
λ1
2

)
B̃µB̃

µ
. (2.83)

From (2.73), and with the constraint imposed, we know that the coefficient must satisfy :(
1 + v

2
λ1

2M2

)
MX =

(
1 + v

2
λ2

2M2

)
M

2

MX
(2.84)

which enables us to rewrite (2.83) as:

→
(

1 + v
2
λ2

M
2

)
M

2
B̃µB̃

µ (2.85)

finally, the set up is ready to obtain the modified mass matrix. For the sake of sim-
plicity, we use :

M
2
W = g

2
v

2

4 ηϕ =
g

′
Y Yϕ + gXXϕ

g
(2.86)

εϕ =
g

′
Y Yϕ − gXXϕ

g
(2.87)
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We combine the mass contribution, and making use of the above notation, we obtain :

LM → M
2
WW

+
µ W

−µ + M
2
W

2 W
3
µW

3µ +
[
M

2
W η

2
ϕ

4 +
(

1 + v
2
λ2

M
2

)
M

2
]
B̃µB̃

µ +
M

2
W ε

2
ϕ

4 C̃µC̃
µ

−
M

2
W ηϕ

2
√

2
W

3
µB̃

µ −
M

2
W εϕ

2
√

2
W

3
µC̃

µ −
M

2
W ηϕ

2
√

2
B̃µW

3µ

+
M

2
W ηϕεϕ

4 B̃µC̃
µ −

M
2
W εϕ

2
√

2
C̃µW

3µ +
M

2
W ηϕεϕ

4 C̃µB̃
µ
.

(2.88)
rewritten in the from:

LM → M
2
WW

+
µ W

µ− +
(
W

3µ
B̃
µ

C̃
µ
)
M

W
3
µ

B̃µ
C̃µ

 (2.89)

where the mass matrix M is now:

M
′ =


M

2
W
2 −M

2
W

2
√

2 ηϕ −M
2
W

2
√

2 εϕ

−M
2
W

2
√

2 ηϕ
M

2
W
4

(
η

2
ϕ + 4µ2

)
M

2
W
4 ηϕεϕ

−M
2
W

2
√

2 εϕ
M

2
W
4 ηϕεϕ

M
2
W
4 ε

2
ϕ

 (2.90)

and we have labeled a new coefficient :

µ
2 = M

2

M
2
W

(
1 + v

2
λ2

2M2

)
= Zσ

M
2
σ

M
2
W

. (2.91)

A diagonalization will lead to :

M
′
Diag =

0 0 0
0 M

2
− 0

0 0 M
2
+

 (2.92)

where:

M
2
± = M

2
W

8

[
2 + 4µ2 + η

2
ϕ + ε

2
ϕ ±

√
4(−8µ2 − 4µ2

εϕ) + (2 + 4µ2 + ε
2
ϕ + η

2
ϕ)2
]

(2.93)

the lighter mass will be identified as the Z boson mass M2
− = M

2
Z . Constraining it

with the well established SM value:

MZ = MW

cosθW
→
{
ηϕ = 0
ε

2
ϕ = 2tan2

θW
(2.94)

which will retain the mass matrix to have the new form:

M
′ = M

2
W

4

 2 0 −2tanθW
0 4µ2 0

−2tanθW 0 2tan2
θW

 (2.95)

finally, the mass of the gauge boson Z
′ :

M
′
Z = MWµ = M

√
1 + v

2
λ2

2M2 . (2.96)
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The mass of the new gauge boson was generated wihout having to break the new
symmetry added, and with a very economical number of parameters. The model con-
tains only two additional elements, the field σ with a mass Mσ, and a gauge boson Z ′ with
a mass M ′

Z , both of these quantities depends on 3 other unknown parameters M , and λ1,2.

Finally, the Stueckelberg mechanism has proven itself useful when it comes to the
generation of the mass for an abelian gauge boson, without having to break the additional
symmetry, and while maintaining gauge invariance. We have examined such a procedure
in the case of a gauged U(1)X extension of the SM. However, to an experimentalist the
theoretical procedures are half cooked, and such a gauge boson has to be sought at the
heart of particle accelerators. An exploration of the Stueckelberg Z ′ has been analyzed in
different references [72, 73], which shows promising prospects for its discovery. Specifically,
Stueckelberg’s extensions allow for narrow resonances, in our case associated with the Z ′.
Such a narrow resonance can potentially be discovered using the dilepton production in
the Drell-Yan process. More details have been carried out in [72], where in such an analysis
it was indicated that a narrow Z

′ resonance of a Stueckelberg origin can be explored up to
about 2 TeV with 100 fb−1 integrated luminosity10, and even up to 2.5 TeV with 300 fb−1

integrated luminosity, and an exploration can even be carried out to 3 Tev with 1000 fb−1

of integrated luminosity. For a better illustration of these results, we have taken partial
data from [72], shown in figure (2.1).

Figure 2.1: A plot of the discovery limits of Z ′ in StSM with the discovery limit defined by
5
√
NSM , or by 10 events, whichever larger. The inflections in the plots are precisely the

points of transitions between the two criteria. Regions to the left and above each curve
can be probed by the LHC at a given luminosity. The top point on each curve corresponds
to ε = .061. The analysis is done for the ATLAS detector but similar results hold for the
CMS detector.

Furthermore, the experimental search of this new gauge boson is of a great interest to
our work, regardless of its origins. For this purpose, we will generalize our focus in the
upcoming chapter to some phenomenological consequences associated with a general Z ′

gauge boson. Such an exploration will be compacted, since the main aim is to give general
feature on Z ′ searches, that will help us interpret our final results regarding the impact of
the Z ′.

10For more details about the experimental terminology being used, check Appendix (C)
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Chapter 3

Identification of the new Z′ gauge
boson

The Z ′ neutral gauge boson has been predicted by many models of physics BSM, and we
have seen it can be a result of a U(1)X extension of the SM. As any theoretical prediction,
experimental talk needs to take place. Given that there are many locations from where
this new Z

′ can originate, it is crucial to answer questions such as : is it possible to observe
such a boson at the LHC?. If so then, by which means we can detect its existence ?, and
how can we identify which model is actually valid given the measurements we have ?,
and many more. For that purpose, we will attempt to explore some of these questions,
starting from general procedures to identify such a particle, to narrowing our interest to a
specific scattering process, namely the bb̄ → νν̄ scattering process. Where the Stuckelberg
Z

′ boson is exchanged, so that we can infer what might be the effect of such an entity,
if it exists. Finally, a discussion around the variations of the differential cross section is
planned, leading to concluding remarks about the model under scrutiny.

3.1 Z′ Phenomenology

After the hard work of seeking theoretical models that can supply us with insights about
the new coating of physics BSM, it is heavily important to validate our theoretical work
with some experimental data, or at least shed some light on which of our many models
is the closest to describe our actual physical world. Being motivated by such a purpose,
it is necessary to take a look at what available tools we have to probe the existence of
the new neutral Z ′. It is expected that strenuous searches for the signature of this new
Z

′ will be performed at present, and future high energy colliders. And given that the Z ′s
can be massive enough to fall outside the scope of CERN LHC’s discovery reach, in which
case indirect signatures of Z ′ exchanges are more likely to be beneficial, and more likely
to take place at future colliders, which justifies our interest.

The entire experimental process can be summarized as follows:

• Probe and identify the existence of the new Z
′ gauge boson.

• Measure the properties of this new Z
′ boson (characterization of its spin and cou-

plings ..etc.).

• Compare the experimental measurements with the theoretical predictions, and iden-
tify the origin the of the Z ′.
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It is known that the Z ′ is a neutral gauge boson with spin-11, and without a color
charge. In addition to the assumption that it is similar to the SM Z boson, in the sense
that it is expected to be a very short–lived particle. Such a particle has very high chances
to be observed at the next generation of colliders, and therefore, the study of the Z ′ phe-
nomenology is a crucial part of the scientific program of every future collider. We can take
glimpses at its existence through its decay products, or its indirect effects. And we can
observe it in very high energy processes, where the energy of the particles collided must
be high enough to produce it. We can also infer its existence in precision experiments,
where the experimental errors with the errors due to the theoretical predictions must be
smaller than the derivations caused by the Z ′ [74, 75].
If such a boson exists, and is accessible at the TeV scale, it is possible that it may first be
directly produced via the Drell-Yan process at the LHC, provided the Z ′ couples to both
quarks and leptons, since the majority of the models assume that. But if the Z ′ does not
couple to leptons, then it cannot be produced at the NLC. In this case, searches at the
LHC would also be difficult. If the Z ′ couples only to leptons, then the NLC give a unique
mean to study it. It is possible that a Z ′ even if it exists, it may not be seen at the LHC
due to its mass, and the nature of its couplings to fermions. However, in such a scenario,
the NLC might be the solution [76], since it can extend the search reach for some models,
and it may be able to determine both the mass and couplings of the Z ′. In the case where
the mass of the Z ′ is less than the NLC center-of-mass energy, we can aim to determine
all of the Z ′ couplings to fermions by sitting on-resonance and repeating the LEP/SLC
experimental program. Another possibility is M ′

Z >
√
s, in such a case the deviations in

the cross section, and the asymmetries for various flavors can be used to look for indirect
Z

′ effects, this indirect reach can be as large as M ′
Z = 10

√
s. This methodology can be

applied the same way we carried out the observation of the Z-SM at PEP, PETRA, and
TRISTAN below the resonance.

Before we attempt to talk about ways to probe the existence of the Z ′, it is advisable
to set forth some global ideas about the properties of the Z ′ particle, while ignoring for
now the constraints imposed by our specific choice of the model. Starting with the Z ′

couplings to fermions [74], generally we can expect that the particle to have 24 distinct
couplings, to the 12 different fermions with different chiralities (L,R). In such a case, the
coupling is said to be Non-universal 2, which can allow for flavor changing neutral cur-
rents3 (FCNC) in low-energy processes. In such a case, the Z ′ mass must be of order
∼ 100 TeV or more, which makes it outside the scope of the LHC.
However, if there will be a mechanism to repress the FCNC4, then we can expect that the
Z

′ can be light enough to be observed at the LHC. In such a case, the number of couplings
can be reduced to 8 couplings, and they are said to be generation-independent couplings.
The couplings of a Z ′ boson to the first-generation fermions can be written in the following
manner:
Z

′
µ

(
g
L
uuLγ

µ
ūL + g

L
d dLγ

µ
d̄L + g

R
u uRγ

µ
ūR + g

R
d dRγ

µ
d̄R + g

L
ν νLγ

µ
ν̄L + g

L
e eLγ

µ
ēL

+gRe eRγ
µ
ēR
) (3.1)

where u, d, ν, e are the quarks and lepton fields in the mass eigenstate basis, and the coef-
1It is important to mention that the spin-1 Z

′ here is the result of a gauge extension of the SM,
while there are other theoretical interpretations, such as: a spin-0 in R-parity violating SUSY, a spin-2
Kaluza-Klein(KK) excitation of the graviton as in the Randall-Sundrum(RS) model, or even a spin-1 KK
excitation from some extra dimensional model [74].

2Family or generation-dependent.
3They are interactions that allow for a change in the flavor of a fermion without altering its electric

charge.
4Examples of such mechanisms is the Glashow–Iliopoulos–Maiani GIM mechanism.
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ficients gLu , g
L
d , g

R
u , g

R
d , g

L
ν , g

L
e , g

R
e are real dimensionless parameters.

And as we said previously, If the Z
′ couplings to quarks and leptons are family-

universal, then these seven parameters simply describe the Z
′ couplings to all the SM

fermions. However, if the Z ′ couplings to fermions are non-universal, then Eq. (3.1) will
be written with family indices i, j = 1, 2, 3 labeling the quark and lepton fields.
Not only the coupling to fermions is a parameter of interest, there are other quantities
that are relevant to the new gauge boson Z

′ [75]. To summarize:

• Coupling strength.

• Vector, and axial coupling to fermions.

• The Z − Z
′ mixing angle.

• The mass and width of the mass-eigenstate.

All of the above parameters are important for the process of Z ′ searches. Such searches
can be categorized into two categories: Direct and Indirect searches [74]. Indirect searches
simply focus on looking for deviations from the SM already verified data that can be
associated as a cause for the presence of the Z ′ particle. This can involve for example,
precision electroweak measurements at above(or below) the Z-pole, the cross section and
forward backward asymmetry ..etc. Indirect searches for Z ′ bosons are carried out at
electron-positron colliders, since these type of colliders are characterized by high-precision
measurements of the properties of the SM-Z gauge boson. Some of the available con-
straints come from the Z −Z

′ mixing, and they are model-dependent. The current limits
are from the CERN LEP collider, which puts lower bound limits on the Z ′ mass, it is
constrained to be heavier than a few hundred GeV.
While in direct searches, we mostly rely on the Drell-Yan process 5, these searches are
carried out at hadron colliders, since they allow for better access to the highest energies
available. The process is based on a search for high-mass dilepton resonances, where the
Z

′ boson would be produced by quark-antiquark annihilation, and decays to an electron-
positron pair or a pair of opposite-charged muons. The most strict current limits come
from the Fermilab Tevatron, and depend on the couplings of the Z ′ boson. 6.

To our own interest, we will just take a brief look at what the identification of the new
Z

′ gauge boson would look like, considering first possible signatures at e+
e

− Colliders,
then its identification using the process pp(pp̄) → ℓ

+
ℓ

− +X. Lastly, using b and t quarks
in the context of restricting the Z ′ couplings to only third generation fermions.

3.1.1 Search for the Z ′ at e+e− Colliders

As we established previously, theoretically the Z ′ is a neutral particle, colorless, and it’s
its own anti-particle7. Its origins are also diverse, since it appears in so many locations
within the theoretical literature of physics BSM, as we have seen in section (1.3). Exper-
imentally, the Z ′ is a resonance, it is expected to be heavy than the ZSM boson, and it
can be observed at the LHC.

5It is a process proposed by Sid Drell and Tung-Mow Yan to describe high-mass lepton-pair production
in hadron-hadron collisions.

6which also control the production cross section.
7Self adjoint.
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Many processes can be sensitive to a Z ′ [75], among these we can use fermion pair pro-
duction, or Bhabha and Møller scatterings, since they have larger event rates compared
to fermion pair production. On the other hand, W pair production is extremely sensitive
to ZZ ′ mixing, and this sensitivity can be enhanced at very high energies. In addition to
e

−
e

+, and µ
−
µ

+ collisions, which have the capacity to yield different reactions that can
probe some properties of an extra Z ′ boson. Although we will explicitly mention mostly
e

−
e

+ collisions, the ideas are also applicable to µ−
µ

+ o µ−
µ

− collisions.

At e−
e

+ colliders, the discovery limits are indirect, they will be mostly from deviations
from the SM predictions for various cross sections, and from asymmetries due to inter-
ference between the Z ′ propagator, and the γ, Z propagators [75], such an effect can be
assimilated to the scenario where PEP/PETRA saw the SM-Z as deviations from QED
predictions.
Considering the simple reaction e

+
e

− → ff̄ , where f = (e, µ, τ, u, d, c, s, b, t). The cross
section in this case takes the from:

dσL
dcosθ

= πα
2

4s
[
|CLL|2(1 + cosθ)2 + |CLR|2(1 − cosθ)2

]
(3.2)

where the coupling parameters Cij are written in terms of the SM-Z couplings, and the
Z

′ couplings.
Once we have (3.2), we can compute the rest of the quantities of interest such as the total
differential cross section :

dσ

dcosθ
= 1

2

[
dσL
dcosθ

+ dσR
dcosθ

]
(3.3)

Specifically, we can use this reaction, and look at the Z ′ through its effects in some
observables, among these we mention [77]:

• The cross section to some specific fermionic final state σf .

• The ratio of the hadronic to the QED point cross section R
had = σ

had

σ0
.

• The forward-backward asymmetry to a certain fermion f in the final state AfFB.

• The left-right asymmetry with a fermion in the final state AfLR.

• The left-right asymmetry with hadrons in the final state AhadLR .

• The tau polarization Pτ .

The form of the amplitude for e+
e

− → (γ, Z, Z ′) → ff̄ can be written as :

M =
∑
n

g
2
n

s−m
2
n

v̄(e)γβ[ve(n) − γ5ae(n)]u(e)ū(f)γβ[vf (n) − γ5af (n)]v(f) (3.4)

the summation runs over the exchanged gauge bosons. And ae, af are the couplings.

In addition, to get the so-called discovery limits for new physics, which in this case
implies evidence for extra neutral gauge bosons, we look for statistically significant devia-
tions from the SM expectations. Figure (3.1) plays the role of an illustrative example, as
in how a number of observables behave with their standard model values, and for various
Z

′ from different models, in function of the Z ′ mass [77].
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Figure 3.1: Some e+
e

− observables showing their standard model values, and their values
for a Z

′ as a function of M ′
Z for

√
s = 500GeV . The solid line is the standard model

value, the dashed line is for Zχ (from GUTs), the dotted line for Zη, the dot-dashed
line for ZLR(Left-Right SM), and the dot-dot-dash line for ZALR(The alternative Left-
Right Symmetric Model). The error bars are based on the statistical error assuming an
integrated luminosity of 50fb−1.

It is note worthy that we mentioned only few observables, the full data is mentioned in
reference [77]. In addition to the fact that the data above didn’t include b-quark tagging
efficiencies in the statistical errors, therefore some of the error bars should be bigger than
what is shown.

We can also probe the Z ′ using Bhabha and Møller scatterings, but this would be probing
the Z ′ couplings to electrons only. Bhabha events are considered as additional observables
in e

+
e

− collisions, while Møller scattering requires the e−
e

− option of a linear collider.
In Bhabha scattering [75], electrons and positrons appear in the final state, and the angu-
lar distribution of such a scattering is peaked in the forward direction. In such a case, the
neutral gauge bosons are exchanged in the s and t channels. While on the other hand, in
Møller scattering, only electrons appear in the final state, and the scattering has a sym-
metrical angular distribution. In addition to the neutral gauge bosons being exchanged
this time in the t and u channels. Such processes are insensitive to Z − Z

′ mixing, and
therefore neglecting the mixing is generally assumed.

For illustrative purposes, the Born cross section of Bhabha scattering including the Z ′

exchange is [75]:
dσ

dc
= πα

2

2s (f0 + (λ+ − λ−)f1 + λ+λ−f2) (3.5)
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where the fk derive from the squared sum of matrix elements Mu with s- and t-channel
exchange of a photon, Z-boson, or Z ′-boson.
Among the various observables, with Bhabha scattering one can use unpolarized beams to
measure contributions proportional to f0, while with polarized electrons one can attempt
to measure the left-right asymmetry ALR, given that it is sensitive to contributions pro-
portional to f1. And with two polarized beams, we are allowed to access a measurement of
the asymmetryA2L, which is a quantity sensitive to contributions proportional to f2. And
it is worth mentioning that such process gives us the advantage to probe new information,
since fermion pair production, and W pair production for example don’t supply further
data if we are to use two polarized beams [75].
Furthermore, with Møller scattering we can have both electron beams as highly polarized
beams, which would enable one to measure several angular distributions, such as:

1
σ

dσ

dc
,

1
σ
LL

dσ
LL

dc
,

1
σ
RR

dσ
RR

dc
,

1
σ
LR

dσ
LR

dc
(3.6)

As we can see, indirect searches can be pretty helpful as way to obtain more data about
the potential Z ′ boson. In addition to Bhabha and Møller scatterings, one can even make
use of the process e+

e
− → W

+
W

− to infer some Z ′ properties, but such a reaction is
sensitive to a Z ′ particle only in the case of a non-zero Z − Z

′ mixing, more details can
be found in [75].

Moreover, since we have tackled briefly how the Z ′ searches are looking like in e
−
e

+

collisions, it is also worth mentioning that promising prospects also are present in hadronic
colliders, and the Z ′ signal can also be observed from direct production at pp/pp̄ colli-
sions, with the constraint that the Z ′ mass is smaller than the center-mass-energy of the
colliding protons. The Z ′ can be detected through its decay products, since it would show
up as resonances in the invariant mass distribution of the decay products, which can be
challenging in hadronic colliders, in the case of the Z ′, its decay products must be sepa-
rated from the SM background, otherwise it will be unlikely to spot its existence. We can
distinguish many possible processes that can be judged to be useful in hadron collisions,
and have the potential to gather further information about the Z ′. Among these processes,
we mention the possibility of the Z ′ decaying to a pair of fermions Z ′ → ff̄ , which will be
of our interset to investigate in the upcoming subsection. To a W pairs, but this is only
possible if there is Z−Z

′ mixing. In addition to high order processes such as: a rare decay
Z

′ → f1f̄2V , where V = W,Z, and f1, f2 are just ordinary fermions. And an associated
Z

′ production with other gauge bosons, pp → Z
′
V , where V = Z,W, γ [75].

Our interest would be biased toward the search of Z ′ in the so-called Drell-Yan (DY)
process, given that these processes have been studied for over 40 years, which makes us
more familiarized with such a thing, and in addition to the fact that the discoveries of the
SM W, and Z resonances at the Super Proton Synchrotron (SPS) were thanks to these
channels. Furthermore, the signals of the Drell-Yan channels can be considered as one of
the cleanest especially with the difficult environment of a high-energy hadronic collider
as we mentioned prevsiously. And since these processes involve the production of lepton-
anti-lepton pairs with high invariant mass, then when it comes to the final state one woud
try to identify a purely leptonic frame, and since there would be no color charge in the
final state then we will be dealing with fewer diagrams, making the entire procedure a
simple process to study. On the other hand, the cross-section is also lower compared to
other non-leptonic processes, with Less backgroud, therefore, easier identification. Which
overall ensure a high efficiency even with the reduced event-rate.
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Taking for example the reaction:

pp(pp̄) → (γ, Z, Z ′)X → ff̄X (3.7)

This reaction is much less sensitive to Z−Z ′ mixing, so it is permissible to take any Z−Z ′

mixing effects as neglegeable. In such a case the Born cross section of a produced Z ′, and
that will decay to a fermion pair is [75] :

σ
f
A =

∑
q

∫ 1

0
dx1

∫ 1

0
dx2σA(sx1x2; qq̄ → ff̄)GqA(x1, x2,M

2
Z

′)θ(x1x2s−M
2∑) (3.8)

after we used the notation:

σA
(
pp(pp̄) → (γ, Z, Z ′)X → ff̄X

)
≡ σ

f
A (3.9)

where:
√
s is the center of mass energy, M∑ is the sum of the masses of the particles in

the final state, σA, A = T, FB are the total, Forward-Backward Born cross sections, and
G
q
A(x1, x2,M

2
Z

′) are the structure functions for quarks, A = T, FB. They can be given by
the expressions given in reference [75].

We can re-write 3.8 in terms of the rapidity ”y”, since:

x1,2 =

√
Q

2

s
e

±y (3.10)

resulting in :

σ
f
A =

∑
q

M

s

∫ s

M∑ dQ
2
∫ y

max

−ymax
dyσA(sx1x2; qq̄ → ff̄)GqA(x1, x2,M

2
Z

′)θ(x1x2s−M
2∑)

(3.11)
The fermions coming from Z

′ decay have an invariant mass, but also other fermion pairs
with the same invariant mass can result from other places such as being produced by
gluons, photon or Z boson.
We can neglect the interference with the SM contribution to ff̄ production, which is a
good approximation for a narrow Z

′ resonance, such as a Stueckelberg Z ′ as we mentioned
in the previous chapter. In such a case, Z ′ production, in the s-channel, would have a
cross section of the form [78]:

σ(pp → Z
′
X → ff̄) ≈ π

48s
∑
q

c
f
qwq(s,M

′2
Z ) (3.12)

The functions wq carry the information about all the parton distributions and QCD cor-
rections, while the coefficients cfq carry all the dependence on the Z ′ couplings, and they
are defined as :

c
f
q = [(gLq )2 + (gRq )2]B(Z ′ → ff̄) (3.13)

3.1.2 Identification of the Z ′ using b and t quarks

Given the possibility that the neutral gauge boson Z
′ can be discovered at the Large

Hadron Collider program, it is worthy to walk through a brief description of how a Z ′ de-
caying to b- and t-quark final states can act as an effective way for not only identifying for
the particle, but also for measuring its properties and have a way to discriminate between
the various theoretical models predicting its existence.
One important feature when it comes to the new gauge boson is its coupling to fermions,
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its coupling to leptons for example can be measured using 3 ingredients : the cross section
to leptons, the forward backward asymmetry AFB, and the width Γ

Z
′ . While when it

comes to quarks, the quark couplings can be measured through processes where we can
identify the b and t quarks in the final states, since it can be an extremely powerful to
measure those couplings and use them to draw the distinction between the available mod-
els.
Some research have pointed out the possibility of using the 3rd generation quarks to iden-
tify any additional gauge bosons [78], and it proved itself useful to actually provide a tool
to distinguish between the models, while using the 3rd generation t and b quarks showed
more promising aspects, specially when it comes to differentiate between models of extra
neutral gauge boson, since identifying heavy quark flavors as final states render the task
of measuring individual quark couplings musch easier compared to light quarks.
The two quantities of inetrest would be to compute the cross sections σ → Z

′ → bb̄,
σ → Z

′ → tt̄, as described by the Drell-Yan cross section with the extra Z ′. According to
[78], measuring the latter at the LHC would be accompanied by two challenging aspects.
First is the issue with achieving sufficiently high b- and t-quark identification efficiencies,
so that the resulting data can be statistically sufficient to discern between models. While
the other challenge resides in having the capacity to distinguish the Z ′ signal from the
large SM QCD backgrounds.
Not only that, but most of the work done in the literature was executed under the as-
sumption that these Z ′ bosons interact universally with the fermions of all families, but
when considering otherwise, it was shown for example that a neutral gauge boson inter-
acting differently with the heaviest fermions naturally leads to a realistic mass hierarchy
and Kobayashi-Maskawa mixing matrix. Other theoretical work showed that excluding
the coupling of the Z ′ boson to only the third generation has many implications worth
considering, such an assumption has been explored by many so far [79, 80]. In our case, we
work through a brief overview of how using b and t quarks can either facilitate or makes
the Z ′ difficult to achieve.
An additional Z ′ coupling to only the third generation fermions can be expected to con-
tribute to processes where τ , b and t quarks are produced, given that the quarks of the
third family are significantly heavier than those of the other two families, so one may spec-
ulate that such a boson may be involved in the formation of this difference, and thereby
interact directly with these quarks.
Examples can be shown involving b quarks, where the Z ′ gauge particle can be produced
via gluon splitting in the LHC experiments, and its decay into also a pair of b-quarks [81],
as the figure (3.2)shows. Other possible production modes at (pp/pp̄) colliders can be

Figure 3.2: A Feynman diagram for the production of a Z ′ boson via gluon splitting and
a pair of b-quarks, in addition to its decay to a pair of b-quarks.
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quark annihilation bb̄, which means via the annihilation of a b quark from one proton (or
anti-proton) and ab̄ from the other. In such a case, The matrix element is proportional
to [79]:

M = g
2
Z

′

[
v̄(p2)γµ(v′

b − a
′
bγ5)u(p1)

] −g
µν+

kν kµ

M
′
Z

k
2 −M

′2
Z + iM

′
ZΓ′

Z

[
ū(q)γν(v′

q − a
′
qγ5)v(q̄)

]
(3.14)

where p1,2 are the momenta of the incident proton, and antiproton, and q/q̄ are the final-
state quark and antiquark momenta. With k = p1 + p2.
Furthermore, For the decay of the Z ′ to a certain fermion ant-ifermion pair, we consider
the following fermionic partial decay width at the tree level:

Γf = g
′2
ZM

′
Z

12π

√√√√1 −
(

2mf

M
′
Z

)2 [
v

′2
f

(
1 +

2m2
f

M
2
Z

′

)
+ a

′2
f

(
1 −

4m2
f

M
′2
Z

)]
(3.15)

where: M ′
Z denotes the mass of the Z ′, mf is the mass of the fermions, and v

′
f , a

′
f repre-

sents the vector and axial couplings respectively.
In such a case the total fermionic width takes the form:

Γ′
Z = Γb + Γt + Γτ + Γντ (3.16)

At the LHC the sea-quark and gluon distributions are much less suppressed, so it is
only natural to wonder if the Z ′ production can compete with the QCD background. Such
an analysis was carried out in reference [79], where it was noticeable that it would be
extremely hard to lay down the hand at the discovery such vector bosons in hadronic
collisions.

However, searches for new resonance using the other elements in the third generation
are also interesting to consider. The top quark (t) is the most massive known fundamental
particle in the SM. It has a Yukawa coupling to the Higgs field that is near unity, and it
is also a factor contributing to the hierarchy problem, where the largest corrections to the
Higgs mass arise from top quark loops. Thus, it is natural to question the possibility of
this particle to host the answer to the issues we are facing with the SM.

An interesting place to look at a vector-like Z ′ boson was proposed in [80], where
an analytical study was carried out about the production of a Z

′ at the CERN’s Large
Hadron Collider (LHC), using p − p collisions at

√
s = 13TeV , and 14TeV . Specifically,

the work was done under the assumption that the new particle has couplings only to the
third generation of fermions, referred to as ”tritogenophilic”. Such an assumption was
motivated by the fact that many searches conducted so far at the LHC are built upon on
the assumption that additional new particles have similar couplings to all generations of
fermions8, thus this might be one leading factor for why extensive searches have found no
firm indication of new phenomena so far. The Z ′ is produced through the fusion of a tt̄
pair, and can decay to a pair of b quarks (Z ′ → bb̄), as the figure (3.3) indicates.

In addition, table (3.1) indicates the production cross sections for different Z ′ masses,
considering pp collisions at

√
s = 13TeV , and 14 TeV. While also considering two possible

scenarios, one where gq = 0 which implies that the couplings of the Z ′ to light quarks are
suppressed. And the case gq = 1, which allows for couplings to light quarks, and thus it
opens the possibility for other tt̄Z ′ production processes to contribute.
The couplings of the Z ′ to the first and second generation SM quarks is defined as g

Z
′
qq̄

=

8including couplings to the partons inside the proton.
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Figure 3.3: A Feynman diagram for the production of a Z ′ boson through the fusion of a
top quark pair, exhibiting a potential to decay to a pair of bottom quarks, and the two
spectator top quarks decay semi-leptonically.

gq × gZqq̄
, where gZqq̄

is the SM Z boson coupling to first and second generation quarks,
and gq is the “modifier” for the coupling. Furthermore, the couplings of the Z ′ to the
third generation SM quarks is defined as g

Z
′
b/t,b̄,t̄

× gZb/t,b̄,t̄
, where the modifier in this case

is taken as the modifier to the Sequential Standard Model couplings, and it is referred to
as g

Z
′
b/t,b̄,t̄

.

Table 3.1: Signal cross sections, taken from [80], for different Z ′ masses and couplings to
first and second generation quarks. The values in this table are calculated withg

Z
′
b/t,b̄,t̄

= 1.

13 TeV 14 TeV
Z

′ mass (GeV) σgq=0 σgq=1 σgq=0 σgq=1
250 51.34 72.87 64.32 90.21
300 32.61 47.73 41.22 58.94
325 26.40 39.47 33.48 48.33
350 21.58 32.84 27.14 40.53
375 17.71 27.48 22.50 33.77
400 14.58 23.14 18.97 28.62
500 7.379 12.53 9.557 15.67
750 1.700 3.546 2.315 4.516
1000 0.502 1.285 0.703 1.681
2000 0.011 0.066 0.017 0.093

The data presented in the table is interesting to look at given how various coupling
scenarios for the Z ′, being it suppressed couplings to light flavour quarks (gq = 0), en-
hanced couplings to third generation fermions, and preferential couplings to top and bot-
tom quarks (g

Z
′
b/t,b̄,t̄

= 1), have the capability to alter the discovery potential of the particle.
The work done in [80] shines the light on an important issue that must be looked at in
the future, as the LHC continues to run with pp collisions at the highest energy, it became
an important matter to ponder on why certain searches for new physics have not provided
strong evidence for and consnew physics, and thus considering some unexplored possibili-
ties. Among these possibilities a Z ′ boson that favors higher-generation fermions, or the
so-called ”An anogenophilic Z ′”, and in particular coupling to third generation fermions
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” A tritogenophilic Z ′. The scenario of an anogenophilic Z ′ has been explored for various
cases, we mention a case in which the new boson is produced Z ′ boson is produced by top
quarks and decaying to tau leptons, as the figure (3.4) indicates. Or a case in which the
”Top-philic Z ′” is produced [82], at the LHC, in association with two top quarks at the
tree level, or with a jet at the one-loop level, and can decay to two top quarks, since it
was mentioned that the 3 dominant decay modes of the Z ′ boson are:

Γ(Z ′ → µ
−
µ

+) = c
2
Lc

2
E

24π M
′
Z

Γ(Z ′ → νν̄) = c
2
L

24πM
′
Z

Γ(Z ′ → tt̄) =
ctR
8π

(
1 − m

2
t

M
′2
Z

)√√√√1 − 4 m
2
t

M
′2
Z

M
′
Z

(3.17)

The coupling to the top quarks is defined as ct =
√
c

2
L + c

2
R, where cL, cR are compo-

nents that couple only to left-handed and right-handed top-quarks respectively.

Figure 3.4: Representative Feynman diagrams for Z ′ production via t − t̄ fusion (to the
left) and t− t̄ associated production (to the right), taken from [83].

In conclusion, final states containing heavy flavor quarks such as the top quark have yet
to be explored to their fullest potential, and with the increase interest in the Z ′ potential
discovery, this new frontier is waiting to be explored, and considered in future Z ′ searches
at the LHC, by both the ATLAS and the CMS collaboration.

In this section, we have shed some beams of light upon the vast Z ′ phenomenology,
what we mentioned is still just a brief overview of the potential Z ′ searches, many refer-
ences offer more. To our particular goal, we will carry the previous package of data, and
we will attempt to compute the amplitude of a simple reaction bb̄ → (Z,Z ′)νν̄, and try to
interpret the resulting data with the amount of knowledge package we currently carry.
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3.2 bb̄ → νν̄ Scattering process

The Z
′ influence is of great interest to investigate, and as we saw earlier, its coupling

to fermions might be a strong route to probe its existence. Being motivated by such
arguments, we try to consider a simple process including the Z ′ contributions. Such an
attempt will be worked on in the context of the model we developed in chapter (2), and
throughout the details of the work, we will mention the assumption adopted, as well as
inferring some as a result of some choices we made.
The reaction under consideration is :

bb̄ → (Z,Z ′) → νν̄ (3.18)
as it can be seen, the photon γ is not a factor participating in the reaction, due to the
simple reason that neutrinos don’t interact with photons. This will be of some importance
later on to set up some constraints.
Given our interest, we will focus on the gauge fermions interactions, and this will be given
by :

Lf =
3∑
i=k

[
iq̄kLγ

µ
D

(q)L
µ qkL + iℓ̄kLγ

µ
D

(ℓ)L
µ ℓkL + iūkRγ

µ
D

(u)R
µ ukR + id̄kRγ

µ
D

(d)R
µ dkR

+iēkRγ
µ
D

(e)R
µ ekR

]
(3.19)

where, we distinguish :

D
(f)L
µ =

[
∂µI − i

2gτaW
a
µ − i

2
√

2
(g′
Y Yf + gXXf )B̃µI − i

2
√

2
(g′
Y Yf − gXXf )C̃µI

]
D

(f)R
µ =

[
∂µ − i

2
√

2
(g′
Y Yf + gXXf )B̃µ − i

2
√

2
(g′
Y Yf − gXXf )C̃µ

] (3.20)

B̃µ, C̃µ are given by (2.76). And using a similar notation to the one we adopted here
(2.86):

D
(f)L
µ =

[
∂µI − i

2gτaW
a
µ − ig

2
√

2
ηf B̃µI − ig

2
√

2
εf C̃µI

]
D

(f)R
µ =

[
∂µ − ig

2
√

2
ηf B̃µ − ig

2
√

2
εf C̃µ

] (3.21)

the relevant terms for a neutral current would then be:
if̄γ

µ
D

(f)
µ f →

[
iq̄3Lγ

µ
D

(q)L
µ q3L + iℓ̄kLγ

µ
D

(ℓ)L
µ ℓkL + id̄3Rγ

µ
D

(d)R
µ d3R

]
(3.22)

where the fermionic fields are explicitly written in (1.27). This will lead to :

if̄γ
µ
D

(f)
µ f → i

(
t̄ b̄

)
L

(
γ
µ
∂µ 0
0 γ

µ
∂µ

)(
t
b

)
L

+ g

2
√

2

(
t̄ b̄

)
L
γ
µ

 W
3
µ√
2 W

+
µ

W
−
µ −W

3
µ√
2

(t
b

)
L

+ g

2
√

2
ηq
(
t̄ b̄

)
L

(
γ
µ
B̃µ 0
0 γ

µ
B̃µ

)(
t
b

)
L

+ g

2
√

2
εq
(
t̄ b̄

)
L

(
γ
µ
C̃µ 0
0 γ

µ
C̃µ

)(
t
b

)
L

+ i
(
ν̄kL ēkL

)(γµ∂µ 0
0 γ

µ
∂µ

)(
νkL
ekL

)
+ g

2
√

2

(
ν̄kL ēkL

)
γ
µ

 W
3
µ√
2 W

+
µ

W
−
µ −W

3
µ√
2

(νkL
ekL

)

+ g

2
√

2
ηℓ
(
ν̄kL ēkL

)(γµB̃µ 0
0 γ

µ
B̃µ

)(
νkL
ekL

)
+ g

2
√

2
εℓ
(
ν̄kL ēkL

)(γµC̃µ 0
0 γ

µ
C̃µ

)(
νkL
ekL

)
+ ib̄Rγ

µ
∂µbR + g

2
√

2
ηdb̄Rγ

µ
B̃µbR + g

2
√

2
εdb̄Rγ

µ
C̃µbR

(3.23)
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Expanding (3.23), and selecting once again the relevant terms for a neutral current, re-
sulting in :

→ −g

4 b̄Lγ
µ
W

3
µbL + g

2
√

2
ηbL

b̄Lγ
µ
B̃µbL + g

2
√

2
εbL

b̄Lγ
µ
C̃µbL

+ g

4 ν̄kLγ
µ
W

3
µνkL + g

2
√

2
ηνL

ν̄kLγ
µ
B̃µνkL + g

2
√

2
ενL

ν̄kLγ
µ
C̃µνkL

+ g

2
√

2
ηbR

b̄Rγ
µ
B̃µbR + g

2
√

2
εbR

b̄Rγ
µ
C̃µbR

(3.24)

After reaching such a stage, it is necessary to switch to the physical state Zµ, Z
′
µ, γ. To

achieve such a purpose, one might use the general parametrization:

O =

cψcϕ − sθsϕsψ sψcϕ + sθsϕcψ −cθsϕ
cψsϕ + sθcϕsψ sψsϕ − sθcϕcψ cθcϕ

−cθsψ cθcψ sθ

 (3.25)

where: c, s represent the Cos, Sin of the respective angles (θ, ψ, ϕ).
While such a choice is valid, but our narrow focus will be leaning towards maintaining
familiarity; in such a situation, our choice will be made to assimilate the parametrization
to the of the SM. We choose :

Zµ = cosθwW
3
µ − sinθwC̃µ = cosθwW

3
µ − sinθw

(
Bµ√

2
−
Cµ√

2

)
Aµ = sinθwW

3
µ + cosθwC̃µ = sinθwW

3
µ + cosθw

(
Bµ√

2
−
Cµ√

2

)
Z

′
µ = B̃µ

(3.26)

It is note worthy that such a choice will automatically make the gauge fixing in (2.75)
relevant to the Z ′ field.
Leading to : W

3
µ

C̃µ
B̃µ

 =

 cosθw sinθw 0
−sinθw cosθw 0

0 0 1


ZµAµ
Z

′
µ

 (3.27)

replacing in (3.24) will yield:

→ −g

4 b̄Lγ
µ[cosθwZµ + sinθwAµ]bL + g

2
√

2
ηbL

b̄Lγ
µ
Z

′
µbL + g

2
√

2
εbL

b̄Lγ
µ[−sinθwZµ

+ cosθwAµ]bL
+ g

4 ν̄kLγ
µ[cosθwZµ + sinθwAµ]νkL + g

2
√

2
ηνL

ν̄kLγ
µ
Z

′
µνkL + g

2
√

2
ενL

ν̄kLγ
µ[−sinθwZµ

+ cosθwAµ]νkL
+ g

2
√

2
ηbR

b̄Rγ
µ
Z

′
µbR + g

2
√

2
εbR

b̄Rγ
µ[−sinθwZµ + cosθwAµ]bR.

(3.28)
Finally, a rearrangement will lead to :

→
[
g

2
√

2
ηbL

]
b̄Lγ

µ
Z

′
µbL +

[
−g

4cosθw − g

2
√

2
εbL

sinθw

]
b̄Lγ

µ
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+
[
−g
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2
√

2
εbL

cosθw

]
b̄Lγ

µ
AµbL

+
[
g

2
√

2
ηνL

]
ν̄kLγ

µ
Z

′
µνkL +

[
g

4cosθw − g

2
√

2
ενL

sinθw

]
ν̄kLγ

µ
ZµνkL

+
[
g

2
√

2
ηbR

]
b̄Rγ

µ
Z

′
µbR +

[
− g

2
√

2
εbR

sinθw

]
b̄Rγ

µ
ZµbR +

[
g

2
√

2
εbR

cosθw

]
b̄Rγ

µ
AµbR

(3.29)
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with the constraint : [
g

4sinθw + g

2
√

2
ενkL

cosθw

]
= 0 (3.30)

At this level, we have successfully wrote the relevant terms to our computations, and it
is easier to proceed from here and deduce the relevant Feynman diagrams, thus embarking
on calculating the amplitude for the reaction at hand. But, what would be preferable to
do is to rewrite the vertices in a more concise manner, and to find (η/ε)bL,bR,ν

in terms of
the known parameters of the SM, for the purpose of easing the comparison later on.

Starting with:
bL = (1 − γ5

2 )b b̄L = b̄(1 + γ5
2 )

bR = (1 + γ5
2 )b b̄R = b̄(1 − γ5

2 )

νkL = (1 − γ5
2 )νk

(3.31)

as (1.10) indicates9.
As a result of making use of (3.31), we obtain:

if̄γ
µ
D

(f)
µ f → g

4
√

2

[
(ηbL

+ ηbR
) + (ηbR

− ηbL
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µ
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√
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4
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)γ5
]
ν̄kγ

µ
Z

′
µνk

+
[(
g

8cosθw − g

4
√

2
ενL

sinθw

)
−
(
g

8cosθw − g

4
√

2
ενL

sinθw

)
γ5

]
ν̄kγ

µ
Zµνk

(3.32)
All what’s remaining is the parameters η(bL,bR,ν), ε(bL,bR,ν). εν can be easily determined

from (3.30):

εν = −
√

2tanθw (3.33)
While in order to determine the remaining factors, we will rewrite the covariant deriva-

tive in (3.21) in terms of the physical states. In the upcoming procedure, we will drop the
chirality distinctions, for the sole reason that they won’t make any difference, except mak-
ing the procedure a strenuous work. We will bring it back when we acquire the final results.

Starting from:

D
(f)
µ =

[
∂µI − ig(T+W

+
µ + T−W

−
µ ) − igT3W

3
µ − ig

2
√

2
ηf B̃µI − ig

2
√

2
εf C̃µI

]
(3.34)

where: T± = T1 ± iT2, and W
±
µ are given by (1.18).

Using (3.27), resulting in :

D
(f)
µ =

[
∂µI − ig(T+W

+
µ + T−W

−
µ ) − igcosθw

(
T3 −

εf tanθw

2
√

2
I
)
Zµ − ig

(
ηf

2
√

2
I
)
Z

′
µ

−igsinθw

(
T3 +

εf

2
√

2tanθw
I
)
Aµ

]
(3.35)

9Knowing that : γ
†
5 = γ5, γ

5
γ

µ = −γ
µ
γ

5, and γ
2
5 = 1.
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labeling the generators as:
QZ = T3 −

εf tanθw

2
√

2
I

Q
′
Z =

ηf

2
√

2
I

QA = T3 +
εf

2
√

2tanθw
I

(3.36)

After such a step, the methodology will consist of identifying the factor in terms of some-
thing known, in this case YSM . So, we will attempt to write ηf , εf in terms of YSM .
The parameter εf can be easily deduced via identifying the charge operator of that of the
SM: 

QSM = T3 + YSM
2 I

QA = T3 +
εf

2
√

2tanθw
I

⇒ εf =
√

2tanθwYSM ⇐⇒ εf =
√

2g′

g
YSM (3.37)

Now, to obtain ηf , we make use of:

ηϕ = 0 → g
′
Y Yϕ = −g′

XXϕ

εϕ =
√

2tanθw →
2g′
Y Yϕ
g

=
√

2g
′

g

(3.38)

which will lead to:
Yϕ = g

′
√

2g′
Y

⇐⇒ g
′
Y = g

′
√

2Yϕ

Xϕ = − g
′

√
2g′
X

⇐⇒ g
′
X = − g

′
√

2Xϕ

(3.39)

combining (3.39) with:

ηf =
g

′
Y Yf + g

′
XXf

g

εf =
g

′
Y Yf − g

′
XXf

g

(3.40)

will yield:

ηf = g
′

√
2g

[
Yf
Yϕ

−
Xf

Xϕ

]

εf = g
′

√
2g

[
Yf
Yϕ

+
Xf

Xϕ

] (3.41)

making use of (3.37):
g

′
√

2g

[
Yf
Yϕ

+
Xf

Xϕ

]
=

√
2g′

g
YSM

⇐⇒
[
Yf
Yϕ

+
Xf

Xϕ

]
= 2YSM

(3.42)

and replacing in the expression of ηf , and pulling Xf , such that :

Xf = g
′
Y

g
′
X

Yf −
√

2g′

g
′
X

YSM (3.43)
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which will enable us to write the expression of ηf :

ηf = 2g′
Y

g
Yf −

√
2g′

g
YSM (3.44)

So that all what’s remaining is Yf . The determination of the factor can be easily
achieved if we impose the conditions of anomaly cancellation, thus ensuring that our model
is anomaly free, and at the same time obtaining the final expressions. The conditions are
:

Tr[Y] = Tr[X] = 0
Tr[Y3] = Tr[Y2X] = Tr[YX2] = Tr[X3] = 0

(3.45)

and since we know that the YSM fulfills the conditions Tr[YSM ] = Tr[Y3
SM ] = 0, then the

easiest choice available is to choose Yf ∝ YSM . Then we can write :

Yf = κYSM (3.46)

leading to :

ηf =
[

2g′
Y

g
κ−

√
2g′

g

]
YSM = ϱYSM (3.47)

As we can see, ϱ is family-universal, and that is exactly the reason why at the beginning
we dropped the chirality distinctions. By bringing it back we can finally write:

ηfL
= ϱY

fL
SM ηfR

= ϱY
fR
SM

εfL
=

√
2g′

g
Y
fL
SM εfR

=
√

2g′

g
Y
fR
SM

(3.48)

And finally, we have obtained the final form of the vertices, we write:

if̄γ
µ
D

(f)
µ f → gϱ

4
√

2

[
(Y bL
SM + Y

bR
SM ) + (Y bR

SM − Y
bL
SM )γ5

]
b̄γ
µ
Z

′
µb

+
[(

−g

8cosθw − g
′

4 sinθw(Y bL
SM + Y

bR
SM )

)
+
(
g

8cosθw − g
′

4 sinθw(Y bR
SM − Y

bL
SM )

)
γ5

]
b̄γ
µ
Zµb

+
[(

−g

8sinθw + g
′

4 cosθw(Y bL
SM + Y

bR
SM )

)
+
(
g

8sinθw − g
′

4 cosθw(Y bR
SM − Y

bL
SM )

)
γ5

]
b̄γ
µ
Aµb

+ gϱ

4
√

2
[
(Y νL
SM ) − (Y νL

SM )γ5
]
ν̄kγ

µ
Z

′
µνk

+
[(

g

8cosθw − g
′

4 sinθwY
νL
SM

)
−
(
g

8cosθw − g
′

4 sinθwY
νL
SM

)
γ5

]
ν̄kγ

µ
Zµνk

(3.49)
we can make use of the fact that e = gsinθw = g

′
cosθw, and further useful simplifications

will lead to:

if̄γ
µ
D

(f)
µ f → gϱ

4
√

2

[
(Y bL
SM + Y

bR
SM ) + (Y bR

SM − Y
bL
SM )γ5

]
b̄γ
µ
Z

′
µb

+ g

4cosθw

[(
−1 + sin

2
θw

2 − sin
2
θw(Y bL

SM + Y
bR
SM )

)
+
(

1 − sin
2
θw

2 − sin
2
θw(Y bR

SM − Y
bL
SM )

)
γ5

]
b̄γ
µ
Zµb

+ e

4

[(
−1

2 + (Y bL
SM + Y

bR
SM )

)
+
(1

2 − (Y bR
SM − Y

bL
SM )

)
γ5

]
b̄γ
µ
Aµb

+ gϱ

4
√

2
[
(Y νL
SM ) − (Y νL

SM )γ5
]
ν̄kγ

µ
Z

′
µνk

+ g

4cosθw

[(
1 − sin

2
θw

2 − sin
2
θwY

νL
SM

)
−
(

1 − sin
2
θw

2 − sin
2
θwY

νL
SM

)
γ5

]
ν̄kγ

µ
Zµνk

(3.50)
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As we can see, the vertices are of the form:

L
Z

′
f̄f

=
∑
f

ψ̄fγ
µ(c′

vf
+ c

′
Af
γ5)ψf

LZf̄f =
∑
f

ψ̄fγ
µ(cvf

+ cAf
γ5)ψf

LAf̄f =
∑
f

ψ̄fγ
µ(c′′

vf
+ c

′′
Af
γ5)ψf

(3.51)

where cvf
, c

′
vf
, c

′′
vf

, cAf
, c

′
Af
, c

′′
Af

and are called vector and axial couplings, respectively.

Furthermore, we have obtained the relevant vertices to our computations, as a final
step we will calculate the vector and axial couplings for the two vertices :Z ′

f̄f, Zf̄f . The
results are indicated in the tables (3.2, 3.3).

Table 3.2: The values of the vector and axial couplings c′
vf
, c

′
Af

for the vertex Z ′
f̄f .

f c
′
vf

c
′
Af

b − gϱ

12
√

2 − gϱ

4
√

2
νk − gϱ

4
√

2
gϱ

4
√

2

Table 3.3: The values of the vector and axial couplings cvf
, cAf

for the vertex Zf̄f .

f cvf
cAf

b
(

g
4cosθw

)(
−3+5sin2

θw
6

) (
g

4cosθw

)(
1+sin2

θw
2

)
νk

(
g

4cosθw

)(
1+sin2

θw
2

) (
g

4cosθw

)(
−1−sin2

θw
2

)

The values of Y f
SM can be found in appendix (B).

In conclusion, we are ready to draw the Feynman diagrams associated with the in-
teraction Lagrangian we have obtained, and embark on the procedure of calculating the
Feynman amplitude for the transition, and its square value, since we need it to evaluate
the differential cross section later on.

3.2.1 The square amplitude |M |2 of the scattering process

The scattering process under evaluation is :

b(p1) + b̄(p2) → νk(p3) + ν̄k(p4) (3.52)

Given the expression (3.49), we are in a position to infer and draw the associating
Feynman diagrams. Thus, we obtain the diagrams illustrated in figure(3.5).

Making use of these diagrams, we will attempt to use the Feynman rules10, and derive
10The rules are mentioned in appendix (D).
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Figure 3.5: Feynman Diagrams for the process bb̄ → νν̄

the amplitude associated with each diagram, so we can compute the square amplitude of
the entire process. Such that :

|M |2 = |M1 + M2|2 (3.53)

Starting off with the first diagram:

iM1 =
[
v̄
s2(p2)iγα(c′

vb
+ c

′
Ab
γ5)us1(p1)

] [ −igαβ
k

2 −M
2
Z

′ + iϵ

] [
ū
s3(p3)iγβ(c′

vνk
+ c

′
Aνk

γ5)vs4(p4)
]

(3.54)
leading to :

M1 = −1
k

2 −M
2
Z

′ + iϵ

[
v̄
s2(p2)γβ(c′

vb
+ c

′
Ab
γ5)us1(p1)

] [
ū
s3(p3)γβ(c′

vνk
+ c

′
Aνk

γ5)vs4(p4)
]

(3.55)
similarly for the second diagram:

iM2 =
[
v̄
s2(p2)iγα(cvb

+ cAb
γ5)us1(p1)

] [ −igαβ
k

2 −M
2
Z + iϵ

] [
ū
s3(p3)iγβ(cvνk

+ cAνk
γ5)vs4(p4)

]
(3.56)

which leads to :

M2 = −1
k

2 −M
2
Z + iϵ

[
v̄
s2(p2)γβ(cvb

+ cAb
γ5)us1(p1)

] [
ū
s3(p3)γβ(cvνk

+ cAνk
γ5)vs4(p4)

]
(3.57)

where k2 = (p1 + p2)2, and the vector / axial couplings are given by the tables (3.2, 3.3).
The square amplitude then can be calculated, the starting expression would then be:

|M |2 = (M1 + M2)(M1 + M2)† (3.58)

which can be explicitly written as:

|M |2 =
(

−1
k

2 −M
2
Z

′ + iϵ

[
v̄
s2(p2)γβ(c′

vb
+ c

′
Ab
γ5)us1(p1)

] [
ū
s3(p3)γβ(c′

vνk
+ c

′
Aνk

γ5)vs4(p4)
]

− 1
k

2 −M
2
Z + iϵ

[
v̄
s2(p2)γβ(cvb

+ cAb
γ5)us1(p1)

] [
ū
s3(p3)γβ(cvνk

+ cAνk
γ5)vs4(p4)

])
×(

−1
k

2 −M
2
Z

′ − iϵ

[
ū
s3(p3)γα(c′

vνk
+ c

′
Aνk

γ5)vs4(p4)
]† [

v̄
s2(p2)γα(c′

vb
+ c

′
Ab
γ5)us1(p1)

]†
− 1
k

2 −M
2
Z − iϵ

[
ū
s3(p3)γα(cvνk

+ cAνk
γ5)vs4(p4)

]† [
v̄
s2(p2)γα(cvb

+ cAb
γ5)us1(p1)

]†)
(3.59)
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which leads to:

|M |2 =
(

1
(k2 −M

2
Z

′)2 + ϵ
2

[
v̄
s2(p2)γβ(c′

vb
+ c

′
Ab
γ5)us1(p1)

] [
ū
s3(p3)γβ(c′

vνk
+ c

′
Aνk

γ5)vs4(p4)
]

[
ū
s3(p3)γα(c′

vνk
+ c

′
Aνk

γ5)vs4(p4)
]† [

v̄
s2(p2)γα(c′

vb
+ c

′
Ab
γ5)us1(p1)

]†)
+
(

1
(k2 −M

2
Z)2 + ϵ

2

[
v̄
s2(p2)γβ(cvb

+ cAb
γ5)us1(p1)

] [
ū
s3(p3)γβ(cvνk

+ cAνk
γ5)vs4(p4)

]
[
ū
s3(p3)γα(cvνk

+ cAνk
γ5)vs4(p4)

]† [
v̄
s2(p2)γα(cvb

+ cAb
γ5)us1(p1)

]†)
+
(

1
(k2 −M

2
Z

′)(k2 −M
2
Z) + iϵM

2
Z

′ − iϵM
2
Z + ϵ

2

[
v̄
s2(p2)γβ(c′

vb
+ c

′
Ab
γ5)us1(p1)

]
[
ū
s3(p3)γβ(c′

vνk
+ c

′
Aνk

γ5)vs4(p4)
] [
ū
s3(p3)γα(cvνk

+ cAνk
γ5)vs4(p4)

]†
[
v̄
s2(p2)γα(cvb

+ cAb
γ5)us1(p1)

]†)
+
(

1
(k2 −M

2
Z

′)(k2 −M
2
Z) − iϵM

2
Z

′ + iϵM
2
Z + ϵ

2

[
v̄
s2(p2)γβ(cvb

+ cAb
γ5)us1(p1)

]
[
ū
s3(p3)γβ(cvνk

+ cAνk
γ5)vs4(p4)

] [
ū
s3(p3)γα(c′

vνk
+ c

′
Aνk

γ5)vs4(p4)
]†

[
v̄
s2(p2)γα(c′

vb
+ c

′
Ab
γ5)us1(p1)

]†)
(3.60)

In order to compute this expression, we will make use of the so-called Casimir’s trick for
calculating the square amplitude 11. And we will calculate each term separately, starting
with :

|M1|2 ∼
[
v̄
s2(p2)γβ(c′

vb
+ c

′
Ab
γ5)us1(p1)

] [
ū
s3(p3)γβ(c′

vνk
+ c

′
Aνk

γ5)vs4(p4)
]

[
v̄
s4(p4)γ0(c′

vνk
+ c

′
Aνk

γ5)γ0
γ
α
u
s3(p3)

] [
ū
s1(p1)γ0(c′

vb
+ c

′
Ab
γ5)γ0γαv

s2(p2)
] (3.61)

we sum over the spins gradually, and using the completeness relations:∑
si=1,2

u
si
i ū

si
i = (/pi +mi)∑

si=1,2
v
si
i v̄

si
i = (/pi −mi)

(3.62)

we obtain:∑
s4

|M1|2 ∼
[
v̄
s2(p2)γβ(c′

vb
+ c

′
Ab
γ5)us1(p1)

]
Tr
[
ū
s3(p3)γβ(c′

vνk
+ c

′
Aνk

γ5)(/p4 −m4)γ0(c′
vνk

+ c
′
Aνk

γ5)γ0
γ
α
u
s3(p3)

]
[
ū
s1(p1)γ0(c′

vb
+ c

′
Ab
γ5)γ0γαv

s2(p2)
] (3.63)

similarly,∑
s1,s4

|M1|2 ∼ Tr
[
v̄
s2(p2)γβ(c′

vb
+ c

′
Ab
γ5)(/p1 +m1)γ0(c′

vb
+ c

′
Ab
γ5)γ0γαv

s2(p2)
]

Tr
[
ū
s3(p3)γβ(c′

vνk
+ c

′
Aνk

γ5)(/p4 −m4)γ0(c′
vνk

+ c
′
Aνk

γ5)γ0
γ
α
u
s3(p3)

] (3.64)

11More details can be found in appendix ( E.)
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using the cyclic symmetry property of the traces, we find:∑
s1,s2,s3,s4

|M1|2 ∼ Tr
[
γβ(c′

vb
+ c

′
Ab
γ5)(/p1 +m1)γ0(c′

vb
+ c

′
Ab
γ5)γ0γα(/p2 −m2)

]
Tr
[
γ
β(c′

vνk
+ c

′
Aνk

γ5)(/p4 −m4)γ0(c′
vνk

+ c
′
Aνk

γ5)γ0
γ
α(/p3 +m3)

] (3.65)

via averaging over the initial spins, we get:

< |M1|2 > ∼ 1
4Tr

[
γβ(c′

vb
+ c

′
Ab
γ5)(/p1 +m1)γ0(c′

vb
+ c

′
Ab
γ5)γ0γα(/p2 −m2)

]
Tr
[
γ
β(c′

vνk
+ c

′
Aνk

γ5)(/p4 −m4)γ0(c′
vνk

+ c
′
Aνk

γ5)γ0
γ
α(/p3 +m3)

] (3.66)

working on each trace separately will yield:

Tr
[
γβ(c′

vb
+ c

′
Ab
γ5)(/p1 +m1)γ0(c′

vb
+ c

′
Ab
γ5)γ0γα(/p2 −m2)

]
=

c
′2
vb
Tr[γβ/p1γ

0
γ0γα/p2] −m2c

′2
vb
Tr[γβ/p1γ

0
γ0γα] + c

′
vb
c

′
Ab
Tr[γβ/p1γ

0
γ5γ0γα/p2]

−m2c
′
vb
c

′
Ab
Tr[γβ/p1γ

0
γ5γ0γα] +m1c

′2
vb
Tr[γβγ

0
γ0γα/p2] −m1m2c

′2
vb
Tr[γβγ

0
γ0γα]

+m1c
′
vb
c

′
Ab
Tr[γβγ

0
γ5γ0γα/p2] −m1m2c

′
vb
c

′
Ab
Tr[γβγ

0
γ5γ0γα] + c

′
vb
c

′
Ab
Tr[γβγ5/p1γ

0
γ5γ0γα/p2]

−m2c
′
vb
c

′
Ab
Tr[γβγ5/p1γ

0
γ0γα] + c

′2
Ab
Tr[γβγ5/p1γ

0
γ5γ0γα/p2] −m2c

′2
Ab
Tr[γβγ5/p1γ

0
γ5γ0γα]

+m1c
′
Ab
c

′
vb
Tr[γβγ5γ

0
γ0γα/p2] −m1m2c

′
Ab
c

′
vb
Tr[γβγ5γ

0
γ0γα] +m1c

′2
Ab
Tr[γβγ5γ

0
γ5γ0γα/p2]

−m1m2c
′2
Ab
Tr[γβγ5γ

0
γ5γ0γα].

(3.67)
and,

Tr
[
γ
β(c′

vνk
+ c

′
Aνk

γ5)(/p4 −m4)γ0(c′
vνk

+ c
′
Aνk

γ5)γ0
γ
α(/p3 +m3)

]
=

c
′2
vνk
Tr[γβ/p4γ

0
γ

0
γ
α
/p3] −m3c

′2
vνk
Tr[γβ/p4γ

0
γ

0
γ
α] + c

′
vνk
c

′
Aνk

Tr[γβ/p4γ
0
γ5γ

0
γ
α
/p3]

+m3c
′
vνk
c

′
Aνk

Tr[γβ/p4γ
0
γ5γ

0
γα] −m4c

′2
vνk
Tr[γβγ0

γ
0
γ
α
/p3] −m4m3c

′2
vνk
Tr[γβγ0

γ
0
γ
α]

−m4c
′
vνk
c

′
Aνk

Tr[γβγ0
γ5γ

0
γ
α
/p3] −m4m3c

′
vνk
c

′
Aνk

Tr[γβγ0
γ5γ

0
γ
α] + c

′
vνk
c

′
Aνk

Tr[γβγ5/p4γ
0
γ

0
γ
α
/p3]

+m3c
′
vνk
c

′
Aνk

Tr[γβγ5/p4γ
0
γ

0
γ
α] + c

′2
Aνk

Tr[γβγ5/p4γ
0
γ5γ

0
γ
α
/p3] +m3c

′2
Aνk

Tr[γβγ5/p4γ
0
γ5γ

0
γ
α]

−m4c
′
Aνk

c
′
vνk
Tr[γβγ5γ

0
γ

0
γ
α
/p3] −m4m3c

′
Aνk

c
′
vνk
Tr[γβγ5γ

0
γ

0
γ
α] −m4c

′2
Aνk

Tr[γβγ5γ
0
γ5γ

0
γ
α
/p3]

−m4m3c
′2
Aνk

Tr[γβγ5γ
0
γ5γ

0
γ
α].

(3.68)
working out the traces 12, and a simplification will result in:

Tr
[
γβ(c′

vb
+ c

′
Ab
γ5)(/p1 +m1)γ0(c′

vb
+ c

′
Ab
γ5)γ0γα(/p2 −m2)

]
= 4m1m2(c′2

Ab
− c

′2
vb

)gβα
+ (c′2

Ab
+ c

′2
vb

)
[
4p2βp1α − 4(p2p1)gβα + 4p1αp2β

]
(3.69)

and,

Tr
[
γ
β(c′

vνk
+ c

′
Aνk

γ5)(/p4 −m4)γ0(c′
vνk

+ c
′
Aνk

γ5)γ0
γ
α(/p3 +m3)

]
= 4m4m3(c′2

Aνk
− c

′2
vν

)gβα

+ (c′2
Aνk

+ c
′2
vνk

)
[
4pβ3p

α
4 − 4(p3p4)gβα + 4pα3 p

β
4

]
(3.70)

12Some details about the calculations are carried out in appendix (E).
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resulting in,

< |M1|2 >∼ 4m1m2m3m4(c′2
Aνk

− c
′2
vνk

)(c′2
Ab

− c
′2
vb

)

+ 8(c′2
Ab

+ c
′2
vb

)(c′2
Aνk

+ c
′2
vνk

)[(p2.p3)(p1.p4) + (p2.p4)(p1.p3) − (p3.p4)(p2.p1) + (p2.p1)(p3.p4)]

− 8m1m2(p3p4)(c′2
Ab

− c
′2
vb

)(c′2
Aνk

+ c
′2
vνk

) − 8m3m4(p2.p1)(c′2
vb

+ c
′2
Ab

)(c′2
Aνk

− c
′2
vνk

)
(3.71)

finally replacing m1,2 = mb,m3,4 = mν = 0, we obtain:

< |M1|2 > = 8
(k2 −M

2
Z

′)2

[
m

2
b(c

′2
Ab

− c
′2
vb

)(c′2
Aνk

+ c
′2
vνk

)(p3.p4)

+(c′2
Ab

+ c
′2
vb

)(c′2
Aνk

+ c
′2
vνk

)[(p2.p3)(p1.p4) + (p1.p3)(p2.p4)]
] (3.72)

Similarly for the second term, which is just |M2|2:

|M2|2 ∼
[
v̄
s2(p2)γβ(cvb

+ cAb
γ5)us1(p1)

] [
ū
s3(p3)γβ(cvνk

+ cAνk
γ5)vs4(p4)

]
[
ū
s3(p3)γα(cvνk

+ cAνk
γ5)vs4(p4)

]† [
v̄
s2(p2)γα(cvb

+ cAb
γ5)us1(p1)

]† (3.73)

a similar treatment will lead to the following expression;

< |M2|2 > ∼ 1
4Tr

[
γβ(cvb

+ cAb
γ5)(/p1 +m1)γ0(cvb

+ cAb
γ5)γ0γα(/p2 −m2)

]
Tr
[
γ
β(cvνk

+ cAνk
γ5)(/p4 −m4)γ0(cvνk

+ cAνk
γ5)γ0

γ
α(/p3 +m3)

] (3.74)

while following the same previous procedure will yield the following result :

< |M2|2 >∼ 4m1m2m3m4(c2
Aνk

− c
2
vνk

)(c2
Ab

− c
2
vb

)

+ 8(c2
Ab

+ c
2
vb

)(c2
Aνk

+ c
2
vνk

)[(p2.p3)(p1.p4) + (p2.p4)(p1.p3) − (p3.p4)(p2.p1) + (p2.p1)(p3.p4)]

− 8m1m2(p3p4)(c2
Ab

− c
2
vb

)(c2
Aνk

+ c
2
vνk

) − 8m3m4(p2.p1)(c2
vb

+ c
2
Ab

)(c2
Aνk

− c
2
vνk

)
(3.75)

resulting in,

< |M2|2 > = 8
(k2 −M

2
Z)2

[
m

2
b(c

2
Ab

− c
2
vb

)(c2
Aνk

+ c
2
vνk

)(p3.p4)

+(c2
Ab

+ c
2
vb

)(c2
Aνk

+ c
2
vνk

)[(p2.p3)(p1.p4) + (p1.p3)(p2.p4)]
] (3.76)

The mixed terms will also be treated in a similar fashion, resulting in:

2 < M1M
†
2 > = 16

(k2 −M
2
Z

′)(k2 −M
2
Z)

[
m

2
b(c

′
Ab
cAb

+ c
′
vb
cvb

)(c′
Aνk

cAνk
− c

′
vνk
cvνk

)(p3.p4)

+(c′
Ab
cAb

+ c
′
vb
cvb

)(c′
Aνk

cAνk
− c

′
vνk
cvνk

)[(p2.p3)(p1.p4) + (p1.p3)(p2.p4)]
]

(3.77)
Which enables us to finally write the expression for the square amplitude of our process:
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< |M |2 > = 8m2
b

(c′2
Ab

− c
′2
vb

)(c′2
Aνk

+ c
′2
vνk

)

(k2 −M
2
Z

′)2 +
(c2
Ab

− c
2
vb

)(c2
Aνk

+ c
2
vνk

)

(k2 −M
2
Z)2

+2
(c′
Ab
cAb

+ c
′
vb
cvb

)(c′
Aνk

cAνk
− c

′
vνk
cvνk

)

(k2 −M
2
Z)(k2 −M

2
Z

′)

 (p3.p4)

+ 8

(c′2
Ab

+ c
′2
vb

)(c′2
Aνk

+ c
′2
vνk

)

(k2 −M
2
Z

′)2 +
(c2
Ab

+ c
2
vb

)(c2
Aνk

c
2
vνk

)

(k2 −M
2
Z)2

+2
(c′
Ab
cAb

+ c
′
vb
cvb

)(c′
Aνk

cAνk
− c

′
vνk
cvνk

)

(k2 −M
2
Z)(k2 −M

2
Z

′)

 [(p2.p3)(p1.p4) + (p1.p3)(p2.p4)]

(3.78)
The expression (3.78) can be simplified further by making use of the values of the

axial and vector couplings mentioned in tables (3.2, 3.3). In our case, we maintain the
compacted form, since it is easier to handle for our next step of calculating the differential
cross section ” dσdΩ” associated with the process under study.

3.2.2 The differential cross section

We have taken formerly a close look at the procedure of calculating the Feynman ampli-
tude, and its square value associated with our scattering process. What hasn’t been shown
yet is the value of the differential cross section, which is the purpose of this subsection.

We are interested in calculating dσ
dΩ in the center of mass frame, in the case of unpolar-

ized particles, where the scattering will look something similar to what is shown in figure
(3.6).

Figure 3.6: An illustration of a scattering process in the center of mass frame.

The differential cross section will take the form:

dσ

dΩ =
( ℏc

8π

)2 |p⃗f |
|p⃗i|

< |M |2 >
(E1 + E2)2 (3.79)

we consider natural units ℏ = c = 1, thus:

dσ

dΩ = 1
64π2

|p⃗3|
|p⃗1|

< |M |2 >
(E1 + E2)2 . (3.80)
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The 4-momenta associated with the incoming, and outgoing particles can be written
as:

p1 = (E1, p⃗1) p2 = (E2, p⃗2) (3.81)
p3 = (E3, p⃗3) p4 = (E4, p⃗4) (3.82)

we consider the case where E1 = E2 = E3 = E4 = E, and we make use of the formula :

Ei =
√
m

2
i + p⃗

2
i

(3.83)

combined with the fact that p⃗1 + p⃗2 = 0 in the center of mass frame, and m1 = m2 = mb,
m3 = m4 = 0, we obtain13:

|p⃗1| =
√
E

2 −m
2
b

|p⃗3| = E
(3.84)

leading to :

p1 =
(
E, 0, 0,

√
E

2 −m
2
b

)
p2 =

(
E, 0, 0,−

√
E

2 −m
2
b

)
(3.85)

p3 = (E, 0, Esinθ,Ecosθ) p4 = (E, 0,−Esinθ,−Ecosθ) (3.86)
where we have chosen a particular frame.

We can now work out the dot products :

p1.p3 = E
2 − p⃗1p⃗3 = E

2 − (|p⃗1||p⃗3|cos(π − θ)) = E
2 + E

√
E

2 −m
2
bcosθ

p1.p4 = E
2 − E

√
E

2 −m
2
bcosθ

p2.p4 = E
2 + E

√
E

2 −m
2
bcosθ

p2.p3 = E
2 − E

√
E

2 −m
2
bcosθ

p3.p4 = 2E2

(3.87)

leading to :

(p2.p3)(p1.p4) + (p1.p3)(p2.p4) = E
4


1 −

√
1 − m

2
b

E
2 cosθ

2

+

1 +

√
1 − m

2
b

E
2 cosθ

2


= 2E4
[
1 +

(
1 − m

2
b

E
2

)
cos

2
θ

]
(3.88)

enabling us to write < |M |2 > in function of E, and θ:

< |M |2 > = 16m2
bE

2

(c′2
Ab

− c
′2
vb

)(c′2
Aνk

+ c
′2
vνk

)

(k2 −M
2
Z

′)2 +
(c2
Ab

− c
2
vb

)(c2
Aνk

+ c
2
vνk

)

(k2 −M
2
Z)2

+2
(c′
Ab
cAb

+ c
′
vb
cvb

)(c′
Aνk

cAνk
− c

′
vνk
cvνk

)

(k2 −M
2
Z)(k2 −M

2
Z

′)


+ 16E4

(c′2
Ab

+ c
′2
vb

)(c′2
Aνk

+ c
′2
vνk

)

(k2 −M
2
Z

′)2 +
(c2
Ab

+ c
2
vb

)(c2
Aνk

c
2
vνk

)

(k2 −M
2
Z)2

+2
(c′
Ab
cAb

+ c
′
vb
cvb

)(c′
Aνk

cAνk
− c

′
vνk
cvνk

)

(k2 −M
2
Z)(k2 −M

2
Z

′)

[1 +
(

1 − m
2
b

E
2

)
cos

2
θ

]
(3.89)

13|p⃗1| = |p⃗2|, and |p⃗3| = |p⃗4|.
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we can clearly see that, in the case where mb <<< E, we are allowed to work with the
approximation : [

1 +
(

1 − m
2
b

E
2

)
cos

2
θ

]
∼
[
1 + cos

2
θ
]

(3.90)

< |M |2 > = 16m2
bE

2

(c′2
Ab

− c
′2
vb

)(c′2
Aνk

+ c
′2
vνk

)

(k2 −M
2
Z

′)2 +
(c2
Ab

− c
2
vb

)(c2
Aνk

+ c
2
vνk

)

(k2 −M
2
Z)2

+2
(c′
Ab
cAb

+ c
′
vb
cvb

)(c′
Aνk

cAνk
− c

′
vνk
cvνk

)

(k2 −M
2
Z)(k2 −M

2
Z

′)


+ 16E4

[
1 + cos

2
θ
] (c′2

Ab
+ c

′2
vb

)(c′2
Aνk

+ c
′2
vνk

)

(k2 −M
2
Z

′)2 +
(c2
Ab

+ c
2
vb

)(c2
Aνk

+ c
2
vνk

)

(k2 −M
2
Z)2

+2
(c′
Ab
cAb

+ c
′
vb
cvb

)(c′
Aνk

cAνk
− c

′
vνk
cvνk

)

(k2 −M
2
Z)(k2 −M

2
Z

′)

 .
(3.91)

Finally, the unpolarized differential cross section in the case of mb <<< E:

dσ

dΩ = m
2
b

16π2

(c′2
Ab

− c
′2
vb

)(c′2
Aνk

+ c
′2
vνk

)

(k2 −M
2
Z

′)2 +
(c2
Ab

− c
2
vb

)(c2
Aνk

+ c
2
vνk

)

(k2 −M
2
Z)2

+2
(c′
Ab
cAb

+ c
′
vb
cvb

)(c′
Aνk

cAνk
− c

′
vνk
cvνk

)

(k2 −M
2
Z)(k2 −M

2
Z

′)


+ E

2(1 + cos
2
θ)

16π2

(c′2
Ab

+ c
′2
vb

)(c′2
Aνk

+ c
′2
vνk

)

(k2 −M
2
Z

′)2 +
(c2
Ab

+ c
2
vb

)(c2
Aνk

+ c
2
vνk

)

(k2 −M
2
Z)2

+2
(c′
Ab
cAb

+ c
′
vb
cvb

)(c′
Aνk

cAνk
− c

′
vνk
cvνk

)

(k2 −M
2
Z)(k2 −M

2
Z

′)



(3.92)

it implies that the form of the differential section can be written as14:

dσ

dΩ = A(E,M
Z

′ , ϱ) +B(E,M
Z

′ , ϱ)cos2
θ (3.93)

where :

A(E,M
Z

′ , ϱ) = aE
2

(4E2 −M
2
Z

′)2 ϱ
4 + b

(4E2 −M
2
Z

′)2 ϱ
4 − cE

2

(4E2 −M
2
Z

′)(4E2 −M
2
Z)
ϱ

2

− d

(4E2 −M
2
Z

′)(4E2 −M
2
Z)
ϱ

2 + fE
2

(4E2 −M
2
Z

′)(4E2 −M
2
Z)
ϱ+ g

(4E2 −M
2
Z

′)(4E2 −M
2
Z)
ϱ

+ hE
2

(4E2 −M
2
Z)2 + k

(4E2 −M
2
Z)2

(3.94)
14It is note worthy that a QCD correction must take place in order to acquire the correct value of the

cross section. Given that the quarks in the initial states have an internal degree of freedom, that is the
color charge (r,b,g), the correct value for the cross section would just be 3σ.
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and,

B(E,M
Z

′ , ϱ) = a
′
E

2

(4E2 −M
2
Z

′)2 ϱ
4 − b

′
E

2

(4E2 −M
2
Z

′)(4E2 −M
2
Z)
ϱ

2 + c
′
E

2

(4E2 −M
2
Z

′)(4E2 −M
2
Z)
ϱ

+ d
′
E

2

(4E2 −M
2
Z)2

(3.95)
a, b, c, d, f, g, h, a

′
, b

′
, c

′
, d

′ are real numbers. which can be obtained using the following
numerical substitutions:

g = 0.6483 mb = 4.18 GeV MZ = 91.1876 GeV (3.96)
cosθw = 0.88153 sin

2
θw = 0.23152. (3.97)

What can be observed is that the differential cross section depends on 4 crucial
variables:”E, ϱ, θ,M

Z
′”. Therefore, in order to infer how this quantity is subjected to

those variables, we make use of Mathematica, and we pass to a numerical evaluation of
the differential cross section, with certain choice of fixed values. Among the values that
should be fixed is the range of the variable ϱ, this can be inferred by drawing the variation
of the couplings in function of ϱ. The results are shown in (3.7).

(a) Variation of the axial and vector
couplings of the b quark in function of
the parameter ϱ.

(b) Variation of the axial and vector
couplings of the neutrino νk in function
of the parameter ϱ.

Figure 3.7: Variation of the axial and vector couplings of the vertex Z
′
ff for both b

quarks, and neutrinos in function of the parameter ϱ.

As can be observed, the couplings diverge for bigger values of ϱ, thus to be confined
to the perturbative range, a choice of −2 < ϱ < 2 can be made.
Taking such a choice, and choosing: E = 1 TeV, θ = π, we can compute the variation of
the differential cross section in function of the variable ϱ, with 4 different values for the
mass of the Z ′. The results are depicted in (3.8).

Taking ϱ = 1, θ = π, and different Z ′ mass values, we can also illustrate the variation of
the differential cross section in function of the energy. In such a situation, it is important to
pay attention to the poles originating from the propagators in (3.92), such that 2E = M

Z
′ .

For such a case, we make use the energy of center of The mass
√
s = 2E. The results are

shown in (3.9).
An evaluation of the variation of the differential cross section in function of the angle

θ can also be drawn, as depicted in(3.10).
Furthermore, the variation of the differential cross section can be seen as well in func-

tion of the mass of the Z ′, while fixing the values: E=1 Tev, θ = π, ϱ = 1. The results
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Figure 3.8: A plot showing the variation of the differential cross section in function of the
parameter ϱ, and through 4 different values for the Z ′ mass.

Figure 3.9: A plot showing the variation of the differential cross section in function of
√
s,

with 3 different values for the Z ′ mass. And for the fixed values θ = π, ϱ = 1.

Figure 3.10: A plot showing the variation of the differential cross section in function of θ,
with 4 different values for the Z ′ mass. And for the fixed values E= 1 TeV, ϱ = 1.
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are shown in (3.11).

Figure 3.11: A plot showing the variation of the differential cross section in function of
M
Z

′ , with the values: E=1 TeV, θ = π, ϱ = 1. The mass of the Z ′ is taken with GeV.

3.3 Discussion

The examined Stueckelberg Z
′ gained its mass via the generalized Stueckelberg mech-

anism, where its mass is dependent on two free parameters: M,λ2. The Stuckelberg
contribution to the mass term was controlled by two major elements: the bilinear term
cancellation constraint MX = MY , and the gauge fixing choice of the fields B̃µ, C̃µ. The
model got further cornered by our third choice, where the parametrization was picked to
assimilate the SM’s parametrization, while selecting the Z ′

µ field as a pure state of B̃µ.
This contributed to shape very strictly the parameter of mass, as well as the couplings to
fermions.

The first crucial result of our work was the dependence of the Z ′ couplings to both b
quarks, and neutrinos νk on the parameter ϱ, which due to our specific choice that all the
hypercharges Yf are proportional to those of the SM, the parameter ended up being uni-
versal to all the fermions. Such a result enabled us to plot the variation of the couplings
in terms of the parameter ϱ, which shows that the Z ′ couplings are relatively stronger
compared to the ZSM couplings. In addition to the observation that a decoupling will
occur at the limit ϱ → 0. Such results contributed to impose a specific range for the ϱ
values, mainly to ensure that the couplings remain within the perturbative range, that to
say −2 < ϱ < 2.
It is note worthy that the results obtained were influenced by the choice made for the
physical field Z

′
µ, since it has been chosen as a pure state of B̃µ.

Through the calculations, we managed to obtain the unpolarized differential cross sec-
tion, which can be written in the form (3.93), after assuming that mb << E, which can be
interpreted as us dealing with high energy scales. Such an expression shows its dependence
on the 4 parameters: M

Z
′ , E, ϱ, θ. A variation of the differential cross section in function

of the center of mass energy
√
s is depicted in (3.9). It displays two resonances, at the

poles :
√
s = M

′
Z = 800, 1500 GeV. The two resonances are the particle being spotted.

If by experimental measurements in the future we obtain values for the differential cross
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section, then through such values we can both confirm the existence of the particle, as
well as fixing its mass.

In addition, a variation of the differential cross section in terms of the universal pa-
rameter ϱ can also be studied. The results shown in (3.8) reveal the influence of such a
parameter, which puts a heavy emphasis on the role played by the couplings on the Z ′

detection. At first sight, we can see that the effect of the mass is relatively similar among
the masses M

Z
′ = 200, 800, 1000 GeV, while noticeable difference can be spotted in the

plot associated with M
Z

′ = 1500 GeV. Furthermore, we observe a vanishing differential
cross section for all of the plots at the limit ϱ → 0. It can be interpreted as a difficulty to
observe the Z ′ particle when it doesn’t couple to fermions.

A plot of the variation of dσ
dΩ in function of the angle θ, while fixing the remain-

ing parameters E= 1 TeV, ϱ = 1, is shown in (3.10). We can see the 3 plots with
M

′
Z = 200, 800, 1000 GeV behaving relatively the same, with the mass M ′

Z = 1000 Gev
having the highest value for the differential cross section compared to the other two. An
apparent difference is seen with the mass M ′

Z = 1500 GeV. It seems that once again the
role of the Z ′ mass can be discerned.

Moreover, the influence of the mass of the Z ′ gauge boson on the differential cross sec-
tion can be seen clearly in the plot (3.11). At energy 1 TeV, the differential cross section
seems to increase as we go to high mass ranges. At the beginning, the increase appears
at a slow pace for masses less than M

′
Z < 1000 GeV. Then, as we are moving to masses

of the scale M ′
Z = 1500 GeV and above, the increase in its value escalates considerably.

Once again, showcasing that indeed the parameter of mass has an important role to play.
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Conclusion

Throughout this modest scientific inquiry, we attempted to formulate a presentable frame
of the impact of the Z ′ gauge boson, by means of one of the BSM formulations, namely
a simple U(1)X extension of the Standard Model with minimal field content. Such an ex-
tension was carried out by making use of the Stueckelberg mechanism, under the purpose
of obtaining the mass of the extra gauge boson Z

′, as an economical alternative to the
spontaneous symmetry breaking mechanism by extending the Higgs sector.

In chapter 1, we initiated the path by an overview of the Standard Model of particle
physics, through a brief construction of its Lagrangian. We attached a justified list of
the Standard Model’s limitations to vindicate the necessity of physics BSM. Then, a brief
expedition of such a realm has taken place to assess the importance of one particularity,
namely Z ′ physics.

In chapter 2, the strategy was marked by a choice of one of the BSM formulations,
called a minimal Stueckelberg extension of the SM. It is based on enlarging the gauge
structure of the SM by a U(1)X gauge symmetry, and adding a Stueckelberg scalar σ.
Throughout the analysis, a brief discussion about the possibility of kinetic, and mass mix-
ing has taken place, mainly to reach the conclusion that, even though theoretically mixing
abelian fields is possible, but due to the absence of any experimental signs, it is preferable
to build a kinetic mixing free model. In addition to how a mass mixing can be eliminated
as well. Then, the necessity for a mechanism to acquire the mass of the new gauge boson
Z

′ has been established by showing that relying only on the Higgs sector of the SM will
yield a massless Z ′, which is phenomenologically impossible. Thus, instead of seeking
another extension of the Higgs sector, the mass of the Z ′ gauge boson can be attained via
the Stueckelberg mechanism without breaking the additional gauge symmetry. The mass
generation comes from a coupling to the Stueckelberg scalar σ, which has coupling to all
of the gauge bosons, and which is characterized by its special gauge transformation with
the two mass-dimension parameters MX ,MY .
The study is heavily based the step of the bilinear terms cancellation in the Lagrangian
by imposing a constraint, combined with a specific choice of the unphysical fields B̃µ, C̃µ
providing the gauge fixing term. As a result, the mass matrix was rendered simple to
handle, and with very few associated free parameters.

Chapter 3 was an important element of our research inquiry, since it was marked by
the attempt to pin point the impact of the Z ′, in order to help us assimilate the potential
of its discovery. A short phenomenological approach was executed, firstly by pinning what
might be relevant to the Z ′ empirical search, such as its coupling to fermions. Secondly,
its potential discovery in e

+
e

−, and pp̄ colliders was implemented, as well as using third
generation quarks to identify it. It is worth mentioning that the data stated weren’t at-
tached to a specific origin for the Z ′ particle.
Furthermore, given the importance of the Z

′’s coupling to fermions, an application to
infer its effect in the scattering process bb̄ → νν̄ was further developed. The scattering
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process includes both contributions from the Z, and Z ′, while the Z ′ gauge boson is origi-
nating from a generalized Stueckelberg extension of the SM. Its couplings to the b quark,
and neutrinos has been constructed so that they are proportional to the SM hypercharge,
mainly via choosing the simplest option for anomaly cancellation. Resulting in the ap-
pearance of an important parameter ϱ, that was shown to be universal. A nice feature of
the analysis is the acquisition of the unpolarized differential cross section in function of
only 4 free parameters: M

Z
′ , E, ϱ, θ, while considering the case of very high energies, in the

case mb <<< E. Such a feature enabled us to discuss the influence of the Z ′ gauge boson
through two of its properties. Thus, inferring that the Z ′ mass plays an important role,
alongside with its couplings to fermions being characterized by that one proportionality
factor.

In conclusion, the model under scrutiny has the power of yielding few free parameters
to fix, which makes the procedure of fine tuning less of labor to handle. But it didn’t
fail to account for a fraction of the Z ′ impact in physics, and how such an impact can
manifest via only two of the Z ′ properties. Further development of the work, and further
phenomenological examination are required before making any definitive claim.
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Perspectives

Along the journey of this modest research procedure, we had the capacity to draw a frame
on the model studied, given the large range of possibilities. Thus, starting from this lo-
calized work, we can suggest further directions that can be taken in the future to extend
this scientific inquiry.

1. Study the scattering process proposed at higher orders, under the assumption that
the new particle has couplings only to the third generation of fermions, the so-called
the tritogenophilic Z ′.

2. Pick a different choice of parametrization, such as the general case, and discuss the
various coupling patterns.

3. Investigate different choices for the bilinear terms cancellation for the construction
of the Stueckelberg Lagrangian, and other possibilities for anomaly cancellation con-
ditions, or mechanisms.

4. Investigate the observability of the Stueckelberg Z
′, such as the question of which

process can be considered the best to probe its existence.
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Appendix A

Fundamental Concepts

This section is meant to provide the reader with some background knowledge of some
key-concepts that are useful to deepen the understanding of the Standard Model.

A.1 Basics of Group Theory

A very important concept that has been excessively used is the conception of symmetries,
or a symmetry transformation. A symmetry transformation is a transformation that can
act on the states of a theory, and the operators, while it preserves all the physics. We can
write :

|ψ > = U |ψ > O = UOU
∗ (A.1)

An internal symmetry is a symmetry in which a local operator O is transformed into a
local operator at the same point. Such symmetries can be considered separately from
spacetime symmetries, such as translations, rotations, and boosts.

Furthermore, a symmetry group is an algebraic structure that plays a central role in
the construction of the SM. Interestingly enough, it is not the symmetry groups them-
selves that are of primary significance, but instead the so-called representations of these
symmetry groups. A representation R is defined as a homomorphism between the group
G, and the set of linear operators, acting on a vector field :

R : G → GL(n, F ) (A.2)

in simple terms, if we have a set of matrices associated with elements of a group, and
which satisfy the condition of respecting the group law, then these matrices are called a
representation of the group. In any representation, the identity element of the group must
be mapped into the identity matrixI.
A representation can be classified into two categories: reducible rep1, or irreducible rep.

The groups that are of our interest are namely Lie groups, such groups are characterized
by the so-called generators Ta, where Ta = −∂ag|e. Those generators satisfy commutation
relations:

[Ta, Tb] = ifabcTc (A.3)

the fabc are called the structure constants of the group.

1A reducible rep has a matrix form with block diagonal matrices.
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Every group has a representation, called the singlet or trivial representation, where
the element gets mapped to the identity matrix. In addition, every group also contains a
representation called the adjoint representation, set up by n× n real matrices. If we con-
sider an abelian group for example, the structure constant vanishes, and thus the adjoint
representation is the same as the singlet representation. While for the group of rotations
SU(2), the adjoint rep is actually the spin-one representation.

The 3 main gauge groups used in the SM are U(1), SU(2), and SU(3). The group
U(1) for example is the familiar group of phase rotations, parameterized by θ, and with the
famous element eiθ. More information about the remaining groups are mentioned below.

A.1.1 Gauge group SU(2)

The SU(2) is the simplest non-abelian group, it is a 3-dimensional group, its group ele-
ments are defined as:

g(X) = e
iX

a
J

a

(A.4)

these group elements are unitary, and have determinant +1, with the requirements that:

(Ja) = (Ja)†
Tr(Ja) = 0 (A.5)

the Lie algebra of the group is defined as well:

[Ja, Jb] = iϵabcJc (A.6)

defining Ja = σa
2 , where σa are Pauli matrices2.

Such a definition provides a simple representation, which corresponds to 2 × 2 unitary
matrices.

A.1.2 Gauge group SU(3)

The group SU(3) is the exact equivalent of SU(2), but in 3 complex dimensions rather
than two. Generally, a SU(n) matrix has n2 − 1 free parameters, thus for n = 3, we have
8 independent degrees of freedom, meaning 8 generators of the group. As an analogy to
Pauli matrices, there are Gell-Mann matrices λa.
For the Lie algebra :

[λk2 ,
λl
2 ] = i

∑
m

fklm
λm
2 (A.7)

where fklm are the structure constants of the group.
In addition to the fact that the renormalization condition requires :

Tr(λi, λj) = 2δij (A.8)

A.2 Spontaneous Symmetry Breaking

The gauge principle is crucial to the construction of the Standard Model, not only that
but in general it can serve as a dynamical principle to help guide us constructing theories.
As a matter of fact, global gauge invariance combined with Noether’s theorem implies the
existence of a conserved current, while local gauge invariance necessitates the existence
of massless vector gauge bosons. And it was at this level that we faced an issue, this

2In our work, we have adopted the notation τa for Pauli matrices.
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(a) The unbroken symmetry
of the rod: rotational invari-
ance.

(b) Explicitly bro-
ken symmetry: the
bending of the rod
due to an exter-
nal force, thus los-
ing the rotational
invariance.

(c) Spontaneously
broken symmetry:
the bending of the
rod in an arbi-
trary direction, the
ground state breaks
the rotational in-
variance.

Figure A.1: An illustration of the concept of spontaneous symmetry breaking in the case
of bending a rod.

gauge principle has led to theories in which all the interactions are mediated by massless
vector bosons. To our knowledge, only the photon and the gluons are massless, but the
vector bosons mediating the weak interactions, the so-called the W and Z bosons, are in
reality massive. Such a problem has been solved via a phenomenon called ”Spontaneous
Symmetry Breaking”, where the Lagrangian of the theory still obeys the symmetries, and
is still invariant under the symmetries of the theory, but the physical vacuum does not
conserve the symmetry.
For the sake of exemplification, let’s consider the rotational symmetry of a rod around its
axis as it is depicted in figure (A.1a). We can break the symmetry by applying an external
force to only one end of the rod, leading to the rod bending, and thus losing its rotational
symmetry, as we can see in figure(A.1b). This case in particular is what we refer to as an
explicit symmetry breaking, such a breaking is caused by an external force that is involved
in the equations of motion. On the other hand, we can obtain the case of a spontaneous
symmetry breaking if we apply the force in the longitudinal direction of the rod, as the
figure (A.1c) indicates. At first sight, we notice that the rod will now also bend, and is no
longer rotationally invariant, but it can be seen otherwise by focusing on the properties of
spontaneously broken state. Starting with the direction of the bending, such a direction
is completely arbitrary, which shows that there are multiple ground states, implying the
degeneracy of the ground states. In addition to the fact that these directions are related to
the rotational symmetry, which demonstrates that the symmetry did actually not vanish,
but it is ‘hidden‘. This implies that the equations of motion still respect the rotational
symmetry, but the ground states do not.
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Appendix B

Standard Model’s parameters

We present here a summary of the values for the various parameters of the standard model
as has been determined so far, and which were relevant to our work.

B.1 Values of T3, Y, and Q in the SM

Recall:

QSM = T3 + YSM
2 (B.1)

thus,

Table B.1: Values of T3, Y, and Q of various SM’s fields

Field ℓL ℓR νL uL dL uR dR φ
+

φ
0

T3 −1
2 0 1

2
1
2 −1

2 0 0 1
2 −1

2
Y - 1 - 2 -1 1

3
1
3

4
3 −2

3 1 1
Q -1 -1 0 2

3 −1
3

2
3 −1

3 1 0

B.2 The free parameters of the SM

The Standard Model contains at least 26 free parameters :

⇒ 3 gauge couplings(gs, g, g
′).

⇒ 6 quarks masses.

⇒ 6 lepton masses.

⇒ The 4 independent values in the Kobayashi-Maskawa matrix.

⇒ The 4 independent values in the Pontecorvo-Maki-Nakagawa-Sakata matrix1.

⇒ Higgs mass.

⇒ VEV of the Higgs field
1If we consider the Standard Model with its original formulation with massless neutrinos, the 4 pa-

rameters of the PMNS matrix should not be listed, and therefore we count only obtaining 19 parameters.
While if we consider the SM with massive neutrinos, we count the 25 free parameters
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⇒ 1 CP- violating angle.

We present the values of some parameters that has been set up by experiment in table
(B.2).

Table B.2: Values of some parameters of the SM.

Parameter Description Value (dimensionless)
θ12 CKM 12−mixing angle 13.1◦

θ23 CKM 23−mixing angle 2.4◦

θ13 CKM 13−mixing angle 0.2◦

δ CKM CP−violating phase 0.995
g

′
U(1) gauge coupling 0.357

g SU(2) gauge coupling 0.652
gs SU(3) gauge coupling 1.221

θQCD QCD vacuum angle ∼ 0
V the Higgs field VEV 246 GeV

Other values such as the masses of the various quarks, and fermions are listed in ta-
ble(B.3).

B.3 Some of the properties of SM particles

The following table indicates some of the properties of SM particles based on the PDG [23].
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Appendix C

Particle Physics terminology

This appendix serves as a guideline to understand the various concepts that has been used
in this thesis work, mainly focusing on the field of particle physics and its experimental
most-often used concepts.

• Cross section : it is a measure of the probability that a specific process or reaction
will occur. It concerns the interactions of elementary particles, nuclei, or atoms
with each other. As an illustration, given a particle approaching another particle,
the cross section for this process is simply the probability that the two particles
interact with each other. Geometrically, the cross-section can be thought of as the
area within which a reaction will occur as the figure (C.1) indicates, henceforth it
has the units of an area.

The strength of an interaction can be described by the cross section, and it is

Figure C.1: A geometrical interpretation of the concept of the cross section.

measured in barn = 10−28
m

2.

• Resonance: A resonance ideally appears as a peak in the total cross section, found
around a certain energy of scattering experiments. Sometimes it is used to describe
particles with very short lifetimes; for the purpose of illustration, consider the fol-
lowing process: A+B → O → C +D. The cross section in this case is given by the
Breit-Wigner formula:

σi→O→f = π

k
2

ΓiΓf
(E − E0)2 + Γ2

4

(C.1)

where: Γi is the is the partial width of the resonance to decay to the initial state A
+ B, Γf is the partial width of the resonance to decay to the final state C + D, Γ
is the full width of the resonance, k is the wave-number of the incoming projectile,
E is the centre-of-mass energy of the system, and E0 is the rest mass energy of the
resonance.
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As can be seen, σ is non-zero at any energy, but has a sharp peak at energies E ∼ E0.
The sharp peak is known as resonance. Longer lived intermediate particles have
smaller Γ, and hence they exhibit sharper peaks.

• Decay width: it is a measure of the probability of a specific decay process to occur
within a given amount of time in the parent particle’s rest frame.
When measurements are made of the rest mass energy of an unstable particle with
no instrument errors a graph is obtained as in figure (C.2).The width of such a
distribution is called the decay width Γ, and is measured in units of energy.

Long-lived particles have narrow widths and well-defined energies. Short-lived

Figure C.2: A visualization of the conception of decay width.

particles have large widths and less well defined energies. When the state is so
short-lived that its width Γ is similar to its mass, then the decay is so rapid that it
is no longer useful to think of it as a particle.
It is related to the particle lifetime as : Γ = 1

τ , and it’s related tothe uncertainty in
energy as follows: Γ = 2∆E = ℏλ = ℏ

τ . And if a particle has multiple decay modes,
then one can associate a decay rate for each mode, and the total rate, will be the
sum of the partial decay widths rates: Γtot = ∑n

i Γi.
From such a quantity, we can derive another quantity of interest called the branching
fractions, which refer to the probabilities of the decay by individual modes. The
branching fraction of a certain mode i:

Bi = Γi
Γtot

(C.2)

• Tree level / leading order: terms used to refer to the simplest diagrams for any
process with the smallest number of g factors, where they contain no closed loops.

• Center of mass-energy: also known as the CM energy or ECM is the total energy
of a collision in the center-of-mass frame of reference 1, measured in units of electron
volts (eV), giga-electron volts (GeV), or tera-electron volts (TeV). It is given by :

ECM =
√
s (C.3)

where s is the square of the total energy of the collision in the laboratory frame.

• Vector / axial couplings: the couplings of a particle can be expressed in terms of
two quantities: the vector coupling Vµ, which is the quantity that get to be presented

1The center-of-mass frame is a frame in which the total momentum of the two colliding particles is zero.
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as ∝ Vµψ̄γ
µ
ψ, and a second quantity labeled the axial coupling, which is presented

as ∝ Vµψ̄γ
µ
γ

5
ψ.

• Drell-Yan process: it is a process first proposed by Sid Drell, and Tung-Mow
Yan as an attempt to describe high-mass lepton-pair production in hadron-hadron
collisions, in such a process a quark of momentum fraction p

′
1 originating from one

hadron of momentum P1 annihilates with an anti-quark of momentum fraction p
′
2

coming from another hadron of some momentum P2. Resulting in the formation of
a virtual particle with a certain momentum q, and a large invariant mass, which will
decay into a pair of leptons. An example is shown in figure (C.3) shows.

Figure C.3: An example illustrating a Drell-Yan process, where a quark and anti-quark
annihilate, forming a photon decaying into a pair of leptons.

• Luminosity, and integrated luminosity : these two quantities are important
parameters for particle accelerators, since they provide data about their performance.
The luminosity is defined as:

L = 1
σ

dN

dt
(C.4)

which just the ratio of the number of events detected in frame of time to the cross
section. While the integrated luminosity is defined as :

Lint =
∫
Ldt (C.5)

Each particle accelerator seek the maximization of such quantities, since they allow
for high performance, and thus more accessible data.
Table (C.1) serves as an illustration of some of the values of the luminosity for
different particle accelerators.

Table C.1: some of the values of the luminosity for different particle accelerators with
their specified type of interactions.

Collider Type of interaction L(cm−2
.s

−1)
LHC p + p 2.1 × 1034

LHC pb + pb 8.5 × 1029

PEP e
− + e

+ 3 × 1033

LEP e
− + e

+ 1 × 1032

Tevatron p+ p̄ 4 × 1032

• Standard deviation σ: it is a measure of how incompatible a set of data is, given
a certain hypothesis. The higher the number of sigma, the more incompatible the
data are with the hypothesis.
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• Event rate: it is defined as: luminosity L × cross section σ.

• Background: the background is considered the set of results expected to be seen.
If an experiment shows more instances, which means excess of a certain type of event
than what is expected theoretically, then it is to be seen as part of the background.
It is usually used to search for signs of new physics.

• Invariant mass: when using the term mass, we usually refer to the rest mass ”m”,
which is proportional to the inertia of the particle when it is at rest. Furthermore,
when a particle decays, its mass before the decay can be calculated from the ener-
gies and momenta of the decay products. The mass value being inferred is called
”invariant”, due to the fact that it is independent of the reference frame in which the
energies and momenta are measured. Such a concept can be generalized and used
in different processes rather than just decay processes.

• Rapidity y: it is a dimensionless variable describing the rate at which the particle
is moving with respect to a specific frame of reference. It is defined as :

y = tanh
−1
hβ = 1

2Ln
1 + β

1 − β
(C.6)

where β = v
c . While, if one wishes to have the expression in function of E,P , then

a simple replacement β = P
E will do the job.

• Born cross section: the term is used to refer to the term to the calculated cross
section at lowest order in perturbation theory.

• Forward-Backward Asymmetry : it is a physical observable, dominantly used
when the mass distribution exhibits a form of asymmetry. it is defined as

AFB = σF − σB
σF + σB

(C.7)

where σF is the cross section for fermion production in the forward hemisphere
[0◦
, 90◦], and σB is the cross section for fermion production in the backward hemi-

sphere [90◦
, 180◦].
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Appendix D

Feynman Rules

This part is dedicated as a supplement for the purpose of clarifying the central rules used
to calculate scattering amplitudes and cross sections, such a conception is called Feynman
rules.

The following items are the recipe and the ingredients necessary to calculate (−iMfi

) for a given Feynman diagram for tree-level processes.
To obtain iM , we construct the Feynman rules in the following way, and of course based
on a certain diagram:

1. External lines: they are are represented by the appropriate polarization vector or
spinor, as table (D.1) indicates.

Table D.1: The Feynman rules for the external lines in Feynman diagrams.

Particle Feynman rule
Ingoing fermion u

Outgoing fermion ū

Ingoing anti-fermion v̄

Outgoing anti-fermion v

Ingoing photon ϵ
µ

Outgoing photon ϵ
µ∗

Ingoing scalar 1
Outgoing scalar 1

2. The propagator:the propagator gives us information about the contribution to the
amplitude from a particle traveling through space and time. it is defined as ”i” times
the inverse of the kinetic operator in the momentum space1.

Spin 0 : i

q
2 − (mc)2

Spin1
2 :

i(/q +mc)
q

2 − (mc)2

Spin 1 :


Massless :

−igµν
q

2

Massive:
−i[gµν − qµqν/(mc)

2]
q

2 − (mc)2

(D.1)

1Sometimes we make use of the substitution ∂
µ → −ip

µ.
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The general form for a propagator is : i

p
2−m2+iϵ

.

3. vertices: vertices graphically are points where lines join together. they represent
positions where particles are created or annihilated. They originate from the inter-
action term in the Lagrangian in the momentum space. They are represented by ”i”
times factors of the coupling constants.

The process of implementation will take place as follows:

1. Draw all topologically distinct diagrams.

2. Associate for each incoming/ outgoing particle, incoming/ outgoing antiparticle a
factor, like the table (D.1) indicates.

3. For each internal line associate the convenient propagator.

4. Associate the relevant vertex factor for each vertex on the diagram.

5. A factor ”-1” between diagrams that differ by exchange of fermionic lines.

while the steps for calculating the unpolarized scattering cross-section:

(i) Write −iM using the Feynman rules.

(ii) Squaring M , and using the Casimir trick to obtain traces.

(iii) Evaluating the traces.

(iv) Applying the appropriate kinematics of the chosen frame.

(v) Integrating over the phase space.

Some remarks to add:

(A) Internal lines are integrated over all time and space.

(B) Extra rules are needed for diagrams containing loops.

(C) There is a symmetry factor to take into consideration if there are identical particles
in the final state.

(D) In higher orders it is necessary to correct the external lines with some factors.

82



Appendix E

Casimir’s trick and the square
amplitude |M |2

This appendix is meant to incorporate details about the so-called Casimir’s trick, that we
made use of to calculate the square amplitude in the subsection(3.2.1).
In our case, our amplitude was of the from:

M ∼ ū
s1Γus2

2 → |M |2 ∼ [ūs1
1 Γus2

2 ][ūs2
2 Γ̄us1

2 ] (E.1)

which can be proven:
|M |2 ∼ [ū1Γu2][ū1Γu2]†

∼ [ū1Γu2][u†
1γ

0Γu2]†

∼ [ū1Γu2][u†
2Γ†

γ
0
u1]†

∼ [ū1Γu2][u†
2γ

0
γ

0Γ†
γ

0
u1]†

∼ [ū1Γu2][ū2Γ̄u1]†

(E.2)

and as we saw, a sum over all the spins, as well as averaging over the initial spins results
in: ∑

s2

|M |2 ∼ Tr[ū1Γ(/p2 +m2)Γ̄u1]
∑
s2,s1

|M |2 ∼ Tr[Γ(/p2 +m2)Γ̄(/p1 +m1)]

< |M |2 > ∼ 1
2Tr[Γ(/p2 +m2)Γ̄(/p1 +m1)]

(E.3)

The factor 1
2 came from the action of averaging over the initial spins, for each spin coming

from an initial state we multiply by 1
2 . If neither of the spins is in the initial state, then

the factor is 1. However, the previous procedure justifies what we have obtained in the
expressions (3.66, 3.74).
Furthermore, in order to show how we worked out the traces, we just take an example of
(3.67, 3.68). The rest has been worked out exactly in a similar fashion.

c
′2
vb
Tr[γβ/p1γ

0
γ0γα/p2] = c

′2
vb
Tr[/p2γβ/p1γ

0
γ0γα] = c

′2
vb
p
µ
2p

ν
1Tr[γµγβγνγα]

= c
′2
vb
p
µ
2p

ν
1Tr[γµγβγνγα] = c

′2
vb

[4p2βp1α + 4p2αp1β − 4(p2p1)gβα]
(E.4)

where : γ0
γ0 = (γ0)2 = 1, /p2 = γµp

µ
2 , and /p1 = γνp

ν
1 . And the property:

Tr[γκγλγµγν ] = 4gκλgµν + 4gκνgλµ − 4gκµgλν (E.5)
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The second term:

−m2c
′2
vb
Tr[γβ/p1γ

0
γ0γα] = −m2c

′2
vb
Tr[γβ/p1γα] = −m2c

′2
vb
p
ν
1Tr[γβγνγα] = 0 (E.6)

because the traces of a single γ matrix is zero, and similarly the trace of any odd number
of γ matrices.

Also,

c
′
vb
c

′
Ab
Tr[γβ/p1γ

0
γ5γ0γα/p2] = −c′

vb
c

′
Ab
Tr[γβ/p1γ

0
γ0γ5γα/p2] = −c′

vb
c

′
Ab
Tr[γ5γα/p2γβ/p1]

= −c′
vb
c

′
Ab
p
µ
2p

ν
1Tr[γ5γαγµγβγν ] = 4ic′

vb
c

′
Ab
p
µ
2p

ν
1ϵαµβν

(E.7)
where γ5 anti-commutes with all γ-matrices, and : Tr[γ5

γ
κ
γ
λ
γ
µ
γ
ν ] = −4iϵκλµν .

The next term,

−m2c
′
vb
c

′
Ab
Tr[γβ/p1γ

0
γ5γ0γα] = m2c

′
vb
c

′
Ab
Tr[γβ/p1γ5γα] = m2c

′
vb
c

′
Ab
Tr[γ5γαγβ/p1] = 0

(E.8)
because:

Tr[γ5] = 0 Tr[γ5
γ
ν ] = 0

Tr[γ5
γ
µ
γ
ν ] = 0 Tr[γ5

γ
λ
γ
µ
γ
ν ] = 0

We can write all the vanishing terms:

m1c
′2
vb
Tr[γβγ

0
γ0γα/p2] = 0

m1c
′
vb
c

′
Ab
Tr[γβγ

0
γ5γ0γα/p2] = 0

−m1m2c
′
vb
c

′
Ab
Tr[γβγ

0
γ5γ0γα] = 0

−m2c
′
vb
c

′
Ab
Tr[γβγ5/p1γ

0
γ0γα] = 0

−m2c
′2
Ab
Tr[γβγ5/p1γ

0
γ5γ0γα] = 0

−m1m2c
′
Ab
c

′
vb
Tr[γβγ5γ

0
γ0γα] = 0

+m1c
′
Ab
c

′
vb
Tr[γβγ5γ

0
γ0γα/p2] = 0

+m1c
′2
Ab
Tr[γβγ5γ

0
γ5γ0γα/p2] = 0

+ c
′
vb
c

′
Ab
Tr[γβγ5/p1γ

0
γ5γ0γα/p2] = 0

(E.9)

where the remaining terms are:

−m1m2c
′2
vb
Tr[γβγ

0
γ0γα] = −4m1m2c

′2
vb
gβα

c
′2
Ab
Tr[γβ/p1γα/p2] = c

′2
Ab

[4p2βp1α + 4p2αp1β − 4(p2p1)gβα]

−m1m2c
′2
Ab
Tr[γβγ5γ

0
γ5γ0γα] = 4m1m2c

′2
Ab
gβα

(E.10)

All of the remaining results we have obtained can be replicated following exactly the
same previous procedure.
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