الجمهورية الجزائرية الديمقراطية الشعبية RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

وزارة التعليم العالي والبحث العلمي Ministère de l'enseignement supérieur et de la recherche scientifique

جامعة سعد دحلب – البليدة 1 -Université Saad Dahlab Blida 1

> كلية التكنولوجيا Faculté De Technologie

قسم الهندسة المدنية Département de Génie Civil

مذكرة نهاية التخرج

MEMOIRE DE PROJET DE FIN D'ETUDE

Pour l'obtention du diplôme master en Génie Civil

Option : Structure

THÈME

ETUDE D'UN IMMEUBLE DE GRANDE HAUTEUR (IGH) R+25+S/SOLS EN BETON ARME DOTE DES ISOLATEURS SISMIQUES

Encadré par : Pr. ZAHAF Ahmed

Président : Dr. DERBAL Ismail

Examinateur : Dr. TAFRAOUT Salim

Etudié et réalisé par :

CHABNI Adem

ELAICHI Billel

Année universitaire : 2022/2023

RESUME

L'objectif de la présente étude est d'essayer de montrer l'intérêt de l'utilisation des isolateurs sismiques.

En effet dans un premier temps on va faire l'étude classique d'un IGH (immeuble de grande hauteur), R+25 ; analyser les résultats de calcul afin de montrer les différences probables qui peuvent exister par rapport à un bâtiment ordinaire.

La deuxième partie du travail consiste à étudier le même bâtiment R+25 équipé d'isolateurs sismiques au niveau du sous-sols ; analyser les résultats et montrer l'intérêt de ces derniers.

Isolateur, Appui, Parasismique, Passif, élastomère, amortisseur.

Abstract

The objective of this study is to try to demonstrate the importance of using seismic isolators.

Indeed, initially, we will conduct a traditional study of a high-rise building (25 floors) and analyze the calculation results in order to demonstrate the probable differences that may exist compared to a regular building.

The second part of the work involves studying the same 25-story building equipped with seismic isolators at the basement level, analyzing the results, and demonstrating the significance of these isolators.

Insulator, Support, seismic, passive, elastomer, shock absorbers.

الملخص

هدف هذه الدراسة هو محاولة إظهار أهمية استخدام عوازل الزلازل.

في الواقع، في المرحلة الأولى، سنقوم بإجراء در اسة تقليدية لمبنى مرتفع (25 طابقًا) وتحليل نتائج الحساب لإظهار الاختلافات المحتملة التي قد تكون موجودة بالمقارنة مع مبنى عادي.

نتكون الجزء الثاني من العمل من در اسة نفس المبنى المكون من 25 طابقًا والمجهز بعوازل زلزالية على مستوى الطابق السفلي، وتحليل النتائج وإظهار أهمية هذه العوازل

عازل، دعم، زلزالي، سلبي، المطاط الصناعي، امتصاص الصدمات.

REMERCIMENT

Tout d'abord nous remercions Dieu, le tout puissant, de nous avoir donné la volonté et le courage pour élaborer ce modeste travail.

Sans oublier bien sûr nos parents qui nous ont soutenus le long de notre parcours, ainsi que les membres de nos familles respectives.

Nous remercions très sincèrement notre promoteur Mr A. ZAHAF de nous avoir encadré, orienté et donné de son précieux temps afin de nous guider dans ce projet de fin d'études.

Nous remercions avec sincérité aussi Mr F. BELHOUCHET, Mme N. AOUALI et Mr I. DERBAL et tous les enseignants de département de génie civil de l'université Saad DAHLEB (BLIDA01).

> Nous tenons à remercier aussi toutes les personnes qui nous ont aidés de près ou de loin à l'élaboration de ce travail.

> > Mercí infiniment

Dédícace

Je m'incline devant Dieu tout puissant qui m'a ouvert la porte du savoir et m'a aidé à la franchir.

Je dédie ce modeste travail :

A ma chère mère, source d'affectation de courage et d'inspiration qui a autant sacrifié pour me voir atteindre ce jour.

A mon père source de respect et témoignage de ma profonde reconnaissance pour tout l'effort et le soutien incessant qui m'a toujours apporté.

A mes chers frères Nadir et Badre Eddine.

A mes chères sœurs Hadjer et Sarah.

A mon neuve Djawed et mes nièces Maroua et Chaima.

A mes cousins et cousines.

A toute ma famille et à tous ceux qui ont contribué de près ou de loin à ma réussite.

A mon binôme Billel et sa famille pour lequel je souhaite une vie pleine de joie et de réussite.

A mes meilleurs (es) amis(es) Hamza, Abdou, Walid, Imad, Mohamed, Hana, Almas, et Khadidja.

A La promotion génie civil MASTERII 2022-2023, et plus précisément notre déléguée Houda.

A tous ceux que je porte dans mon cœur.

CHABNI Adem

Dédicace

Je m'incline devant Dieu tout puissant qui m'a ouvert la porte du savoir et m'a aidé à la franchir.

Ce travail est entièrement dédié à mes chers parents, Khaled et Nadjia, qui ont toujours été présents pour me soutenir et m'encourager. Leur amour inconditionnel a été ma plus grande force pour arriver là où j'en suis aujourd'hui. J'espère qu'ils sont fiers de moi.

A mes chères frères, Redha, Abderrahmane, Walid,

A ma príncesse petít sœur Douaa,

A toute ma famílle ELAICHI, Karíma, Elhachemí, Amíne (zone gym) et Oussama.

A mon binôme Adem (boss) et sa famille pour lequel je souhaite une vie pleine de joie et de réussite.

Mes aims porches Abdelwahab, Walid, Hessen, Kamel, Mohamed Boudali, Akerm, Amine Otm, , Belkacem ,Anis ,Almas, Khadidja. , Hana ,Houda ,Hadjer.

Je suís reconnaissant envers tous les enseignants qui m'ont guidé vers le succès, ainsi qu'à mes collègues du "Master 2 Structure" et à tous les étudiants du Master 2 génie civil de la Promotion 2023,

Mercí à tous ceux qui ont contribué de près ou de loin à la réalisation de ce travail.

ELAICHI Bíllel.

LISTE DES SYMBOLES

BETON ARME :

- f_{cj} : Résistance en compression à j jour du béton.
- f_{tj} : Résistance à la traction à j jour du béton.
- E_{ij}: Module de déformation longitudinale du béton.
- E_{vi}: Module de déformation différé du béton.
- G : Module de déformation transversale.
- v : Coefficient de poisson.
- f_{bu} : Résistance conventionnelle ultime à la compression.
- ξbc :Déformation unitaire du béton.
- σbc :Contrainte de compression dans le béton.
- γ :Est un coefficient de sécurité.
- θ:Est un coefficient en fonction de la durée d'application de l'action considérée.
- $\overline{\sigma}_{bc}$: Contrainte admissible du béton en compression.
- τ_u : Contraintes limites de cisaillement.
- fsu : Résistance caractéristique ultime de l'acier.
- $\overline{\sigma}_s$: Contrainte admissible d'acier.
- fe : Limite d'élasticité des aciers utilisés.
- η : Coefficient de fissuration.
- N_u : Est l'effort normal ultime
- B_r: Est la section de béton réduite du béton.
- λ : L'élancement de l'élément poteau.
- f : La flèche admissible.
- F_P: L'action sismique horizontale
- L_f : Longueur de flambement.

e₀ : Est l'excentricité de premier ordre, avant application des excentricités additionnelles.

e_a : Excentricité additionnelle traduisant les imperfections géométriques initiales après l'exécution.

e₂ : Excentricité due aux effets du second ordre lié, à la déformation de la structure. Le rapport de la déformation finale due au fluage à la déformation initiale instantané sous la charge considérée, ce rapport est généralement pris égal à 2.

ubu : Moment réduit.

A_s : Section d'armature comprimée.

A'_s : Section d'armature tendue.

 S_t : Escapement des armatures.

A_r : Section d'armature de répartition.

M₀ : Moment fléchissant dans la travée.

Mt : Le moment maximal en travée dans la travée considérée.

M_w : La valeur absolue du moment sur appui de gauche dans la travée considéré.

M_e : La valeur absolue du moment sur appui de droite dans la travée considérée.

M_{ut} : Moment capable de la table de compression.

A_{min} : Section minimale d'armature.

 ϕ_t : Diamètre d'armature transversale. Flèche instantané due à l'ensemble des charges permanentes et d'exploitation supportées par l'élément considéré.

fgv: La flèche différée dues à l'ensemble des charges permanentes.

 f_{gi} : La flèche instantanée due à l'ensemble des charges permanentes. Flèche instantanée due à charges permanentes appliquées au moment de la mise en oeuvre des revêtements et cloisons.

y : Position de l'axe neutre.

I₀: Moment d'inertie de la section totale rendue homogène.

 M_g : Le moment dû à l'ensemble des charges permanentes. Le moment dû aux charges permanentes appliquées à la mise en oeuvre des revêtements.

Tu :Le moment de torsion ultime.

 T_k : Le période du mode K.

- N : Le nombre de niveau au-dessus du sol.
- G : Centre de gravité.
- R : Centre e rigidité.
- V : Effort tranchant.
- M_r: Moment de renversement.
- δk : Les déplacements horizontaux absolus.
- Δk : Les déplacements relatifs.
- R : Coefficient de comportement.
- Q : Facteur de qualité.
- η : Facteur de correction d'amortissement.
- C_T : Coefficient, fonction du système de contreventement.
- At: Section d'armature minimale.
- λg : Est l'élancement géométrique du poteau.
- M_{uf} : Moment fictif.
- A'_{sf}: Section d'armature fictive.

ETUDE DU VENT :

Fw : Force horizontale correspondant à la résultante des forces agissant sur les parois de la construction et de la force composante horizontale appliquée a la toiture.

Fu : Force de soulèvement représentant la composante verticale des forces appliquées à la toiture.

qj : Pression du vent qui s'exerce sur un élément de surface 'J'

Ffrj : Les forces de frottements éventuels.

Cd : Coefficient dynamique de la construction.

W(zj) : Pression nette de l'élément de surface 'J'calculé a la hauteur relative de ce même élément.

qdyn: Pression dynamique du vent.

Cpe : Coefficient de pression extérieur.

Cpi : Coefficient de pression intérieur.

qref : Pression dynamique de référence pour construction permanente.

qtem: Pression dynamique de référence pour construction temporelle.

Ce : Coefficient d'exposition au vent.

Cr : Coefficient de rugosité.

Ct : Coefficient de topographie.

G : Facteur de pointe. Iv : Intensité de la turbulence.

Z : Hauteur considérée.

Kt: Facteur de terrain.

Cpe :1: Coefficient de pression correspondant a 1m2.

Cpe :10: Coefficient de pression correspondant a 10m2.

S : Surface chargé de la paroi considérée.

ISOLATION SISMIQUE :

g : accélération de la pesanteur.

hx : Hauteur du niveau.

ht : Hauteur de l'appui.

k : La rigidité.

keff : La rigidité effective du système d'isolation.

na : Nombre des frettes d'acier.

tr : Epaisseur d'une seule couche en élastomère.

te : L'épaisseur des plaques d'extrémité.

ts : L'épaisseur des frettes d'acier.

y : Distance entre le centre de rigidité du système d'isolation.

A : Section de l'appui. A, B, C : Types de la faille sismique.

BD : Coefficient d'amortissement correspond au tremblement de terre de conception DBE.

BM: Coefficient d'amortissement correspond au tremblement de terre de conception MCE.

CVD : Coefficient sismique correspond au tremblement de terre de conception DBE . **CVM** : Coefficient sismique correspond au tremblement de terre de conception MCE.

D : Le déplacement de conception.

Dy : Déplacement à la plastification.

DTD : Déplacement totale de la conception correspond au tremblement de terre DBE. **DTM** : Déplacement totale de la conception correspond au tremblement de terre MCE. **D'D** : Le déplacement maximal du système d'isolation correspond au tremblement de terre BDE.

D'M : Le déplacement maximal du système d'isolation correspond au tremblement de terre MCE. Eij : Le module d'élasticité instantané.

Fb, **Fs** : Les forces sismiques.

Ff : La force de frottement

FD : Force maximum correspond au tremblement de terre DBE.

FM : Force minimum correspond au tremblement de terre MCE.

Fx : Force appliquée au-dessus du secteur du bâtiment selon la distribution de masse au niveau x.

Fy : Force limite élastique.

G : Module de cisaillement de l'élastomère.

KD,**eff** : Rigidité effective du système d'isolation correspond au tremblement de terre de conception DBE.

KH : Rigidité horizontale de l'élastomère.

KM,eff : Rigidité effective du système d'isolation correspond au tremblement de terre de conception MCE

KDmax : Rigidité effective maximale correspond au correspond au tremblement de terre DBE.

KDmin : Rigidité minimale de système d'isolation correspondant au déplacement minimum.

KMmin : Rigidité minimale de système d'isolation correspondant au déplacement maximum.

K1 : Rigidité élastique.

K2 : Rigidité post-élastique.

Mm : Coefficient de réponse au séisme capable maximum.

N : est la charge verticale reprise par l'appui qui reprise sous le poteau.

NS : L'effort normal maximal à la base du poteau déterminé par la descente de charge.

NV : Coefficient de proximité de la faille active.

R1 : Facteur de réduction de force de conception.

S : facteur de forme.

SA : Type de profil de sol très rocheux.

Sb : Type de profil de sol rocheux.

Sc : Type de profil de sol très dense et roche molle.

Sd : Type de profil de sol raide.

TM : La période effective de la structure d'isolation en seconde correspondant au tremblement de terre maximum MCE.

TD : La période effective de la structure d'isolation en seconde correspondant au tremblement de terre de conception DBE.

Vb : Force sismique.

Vs : Force du cisaillement minimale.

W : Le poids total de la structure.

Z : Coefficient de zone sismique.

ξ : Coefficient d'amortissement.

 $\emptyset \mathbf{1}$, $\emptyset \mathbf{2}$: La matrice modale.

βb : Coefficient d'amortissement du système isolé.

ymax : est la contrainte de cisaillement maximale.

EDC : énergie dissipée par cycle.

FPS: Friction Pendulum System.

HDRB: High Damping Rubber Bearing.

LDRB: Low Damping Rubber Bearing.

LRB: Low Rubber Bearing.

TMD: Tuned Mass Damper

LISTE DES FIGURES

Chapitre I : Introduction sur immeubles de grande hauteur (IGH)

Figure I 1 : Pyramides égyptiennes	.4
Figure I 2 : Tour de Babelé	.4
Figure I 3 : le Home Insurance Building	.4
Figure I 4 : Le centre financier de Hong Kong	.5
Figure I 5 : L'Empire State Building	.5
Figure I 6: Effets sismique sur un bâtiment avec et sans isolation la base	.8

Chapitre II : Présentation de l'ouvrage

Figure II 1 : Diagramme contraintes - déformations à l'ELU	.16
Figure II 2 : Diagramme contraintes - déformations à l'ELS	.16
Figure II 3: Diagramme contrainte-déformations de l'acier à l'E.L.U	.18

Chapitre III : Prédimensionnement des éléments structuraux

Figure III 1: plancher à Corps creux	21
Figure III 2: Coupe transversale Corps creux	21
Figure III 3: Coupe transversale de la poutrelle	22
Figure III 4: Sens porteur des poutrelles X-X	22
Figure III 5: coupe d'une poutrelle	23
Figure III 6: section poutre principale	24
Figure III 7: section poutre secondaire	25
Figure III 8: Coupe de voile en élévation	26
Figure III 9: Coupe de voile en plan	26
Figure III 10: Vues en 3D de l'acrotère.	30
Figure III 11: surface d'influence de poteau central	33
Figure III 12: surface d'influence de poteau de rive	39
Figure III 13: surface d'influence de poteau d'angle	45
Figure III 12: surface d'influence de poteau d'angle	
5	

Chapitre IV : ETUDE ELEMENTS SOUCNAIDR

Figure IV 1: éléments d'un escalier	54
Figure IV 2: Schéma statique d'escalier	55
Figure IV 3: Evaluation des charges.	56
Figure IV 4: Diagrammes des efforts internes	60
Figure IV 5: Diagrammes des efforts internes	65
Figure IV 6: Schéma de ferraillage de volée 2.	69
Figure IV 7: Schéma de ferraillage des volées 1 et 3.	69
Figure IV 8: Acrotère.	70
Figure IV 9: Charges et surcharges agissent.	71
Figure IV 10: Effort interne et moment.	72
Figure IV 11: La section de calcul.	72

Figure IV 12: Schéma de ferraillage de l'acrotère	76
Figure IV 13: Schéma de poutrelle.	77
Figure IV 14: Ferraillage de poutrelle sur travée	91
Figure IV 15: Ferraillage de poutrelle sur appuis.	91
Figure IV 16: Ascenseur.	
Figure IV 17: Schémas représentatifs de diffusion de charge au niveau d	u feuillet
moyen	
Figure IV 18: Ferraillage dalle machine.	

Chapitre V : ETUDE DE VENT

Figure V1: Action du vent suivant la direction V1 et V2	102
Figure V 2: Hauteur de référence et profil correspondant de la pression dy	namique.103
Figure V 3: convient de diviser les parois	107
Figure V 4: convient de diviser les toitures	108
Figure V 5: valeurs du Cpi	109
Figure V 6: convient de diviser les parois	111
Figure V 7: convient de diviser les toitures	112

Chapitre VI : ETUDE DYNAMIQUE

Figure VI 1: Disposition des voiles de model 2	125
Figure VI 2: spectre de réponse de Model 2.	126
Figure VI 3: Disposition des voiles model 3.	139
Figure VI 4: spectre de réponse de model 3.	140
Figure VI 5: schéma statique de bâtiment sous moment de renversement	150

Chapitre VII : CALUCLE DES ELEMENT RESSETANT

Figure VII 1: schéma de ferraillage de poteau 85*85	164
Figure VII 2: schéma de ferraillage de poteau 80*80	164
Figure VII 3: schéma de ferraillage de poteau 75*75	165
Figure VII 4: schéma de ferraillage de poteau 70*70	165
Figure VII 5: schéma de ferraillage de poteau 65*65	166
Figure VII 6: schéma de ferraillage de poteau 60*60	166
Figure VII 7: schéma de ferraillage de poteau 55*55	167
Figure VII 8: schéma de ferraillage de poteau 50*50	167
Figure VII 9: schéma de ferraillage de poteau 45*45	167
Figure VII 10: schéma de ferraillage de poteau 40*40	167
Figure VII 11: schéma de ferraillage de poteau 35*35	167
Figure VII 13: Ferraillage sur appuis de la poutre 'Niveau RDC-19' d	irection Y-Y.175
Figure VII 12: Ferraillage sur appuis de la poutre 'Niveau RDC-19' d	irection X-X.175
Figure VII 15: Ferraillage sur travée de la poutre 'Niveau RDC-19' de	irection Y-Y.175
Figure VII 14: Ferraillage sur travée de la poutre 'Niveau RDC-19' de	irection X-X.175
Figure VII 16: Ferraillage sur appuis de la poutre 'Niveau 20-26' dan	s les 2 directions.175
Figure VII 17: Ferraillage sur travée de la poutre 'Niveau 20-26' dans	s les 2 directions.175

Eigune VII 19. Egeneillege dy lintegy	177
rigure vii 18: remainage du initeau.	1//
Figure VII 19: détail de noyau 1	180
Figure VII 20: Noyaux1 X1 et X2	180
Figure VII 21: Noyaux1 Y1 et Y2.	180
Figure VII 22: Coupe longitudinale du linteau	188
Figure VII 23: Coupe transversale de linteau.	189
Figure VII 24: schéma de ferraillage de noyau 1 de trumeau de voiles X1	et X2.
	189
Figure VII 25: schéma de ferraillage de noyau 1 de voiles Y1 et Y2	189
Figure VII 26: détail de noyau 2	190
Figure VII 27: Noyaux Y3 et Y4.	190
Figure VII 28: Noyaux X4	190
Figure VII 29: Noyaux X3	190

CHAPITRES VIII ETUDE L'INFRASTRUCTURE :

Figure VIII 1: Radier.	
Figure VIII 2: surface de radier.	
Figure VIII 3: Schéma de ferraillage de la dalle du radier.	
Figure VIII 4: Schéma statique du débord.	
Figure VIII 5: Modes de transmission de charges	
Figure VIII 6: Schéma statique des nervures sens X-X.	
Figure VIII 7: Schéma statique des nervures sens Y-Y	
Figure VIII 8: Schéma de ferraillage des nervures sur appuis.	
Figure VIII 9: Schéma de ferraillage des nervures sur travée	
Figure VIII 10: vue en 2D du voile périphérique.	
Figure VIII 11: vue en 3D du voile périphérique.	

CHAPITRE IX : PROPOSITION D'ISOLATION SISMIQUE

Figure IX 1: Catégorisation des différents mécanismes de contrôle.	226
Figure IX 2: Structure de système du contrôle passif	227
Figure IX 3: Les amortisseurs de système du contrôle passif	228
Figure IX 4: Structure de système du contrôle actif.	228
Figure IX 5: Schéma de comparaison entre l'amortisseur de masse actif (AM	ID) et
l'amortisseur de masse accordée (TMD).	229
Figure IX 6: Système de contreventement.	230
Figure IX 7: Le schéma de système de câble actif.	230
Figure IX 8: Schéma historique de développement de l'isolation à la base	232
Figure IX 9: Bâtiment d'un tribunal en Angleterre	
Traité ayant des isolateurs de base.	232
Figure IX 10: Première application du système d'isolation japonaise au IGH	
Figure IX 11: Réhabilitation des structures à USA par des systèmes d'isolati	ons.234
Figure IX 12: Centre de secours et de gestion de la défense de l'Italie (Marte	elli) et
Al, 2008	234

Figure IX 13: Schéma du réacteur expérimental Jules Horowitz (Cadarache,	
France) avec ses appuis parasismiques visibles dans la partie inférieure	.235
Figure IX 14: Conséquences du séisme de Wenchuan (Chine) en 2008	.235
Figure IX 15: Des structures isolées à la base à Sotchi (Russie)	.236
Figure IX 16: Hôpital d'Erzurum.	.236
Figure IX 17: Bâtiments protégés par les systèmes d'isolation à Wellington	
(Nouvelle Zélande)	.237
Figure IX 18: Bâtiment isolé à la base à Yerevan (Arménie).	.237
Figure IX 19: Siège de CTC à Ain Defla.	.238
Figure IX 20: La grande mosquée d'Alger.	.238
Figure IX 21: Effets d'une secousse sismique sur un bâtiment avec et sans	
isolation à la base.	.239
Figure IX 22: Effet de l'augmentation de la période et du taux d'amortissement	t sur
l'accélération et le déplacement.	.240
Figure IX 23: Appuis à déformation.	.242
Figure IX 24: Appui en élastomère à amortissement élevé.	.243
Figure IX 25: Appuis en élastomère à amortissement faible	.243
Figure IX 26: Appuis en élastomère avec noyau de plomb.	.244
Figure IX 27: Appuis à friction.	.245
Figure IX 28: Les différentes déformations de l'appui à glissement	.246
Figure IX 29: Appuis à pendule glissant	.246
Figure IX 30: Appui utilisé par l'EDF.	.247
Figure IX 31: Appui proposé par N. Mostaghel.	.247
Figure IX 32: Appui à roulement.	.248
Figure IX 33: Le principe de fonctionnement d'appuis à bille	.248
Figure IX 34: Amortisseur en barreau d'acier doux.	.250
Figure IX 35: Amortisseur en barreau de plomb.	.251
Figure IX 36: Amortisseurs en barres courbes en acier doux	.251
Figure IX 37: Principe d'un amortisseur en barre de torsion.	.252
Figure IX 38: Montage d'amortisseurs visqueux en superstructures	.252
Figure IX 39: Les différents types d'amortisseurs visqueux.	.252
Figure IX 40: Amortisseurs à frottement.	.253
Figure IX 41: Amortisseurs à frottement proportionnelle au déplacement	.253
Figure IX 42: amortisseur de vibration magnétique.	.254
Figure IX 43: Emplacement des appuis parasismiques.	.255
Figure IX 44: Montage des isolateurs.	.256
Figure IX 45: Dispositif anti cheminement.	.256
Figure IX 46: Les conditions de voisinage.	.256
Figure IX 47: Boucles d'hystérésis sous chargement cyclique	.262
Figure IX 48: Déplacements du système. Figure IX 48 : Dimensions en plan	.265
Figure IX 49: Appui LRB.	.272
Figure IX 50: Principe et fonctionnement de LRB	.272
Figure IX 51: Les caractéristiques mécaniques de l'isolateur LRB.	.272

Figure IX 52: Organigramme de dimensionnement de l'appui LRB.	276
Figure IX 53: les dimensions initiales de l'isolateur	281
Figure IX 54: Accélérogrammes de BLIDA de la composante E-W.	281
Figure IX 55: ajoute propriété de Link dans l'ETABS	282
Figure IX 56: définition de l'appui sismique a déformation LRB dans l'ETAB	S.282
Figure IX 57: définition les propriétés de l'appui sismique LRB dans l'ETABS)
(étape 1,2 et 3)	283
Figure IX 58: définition les propriétés de l'appui LRB dans l'ETABS (détails	de
l'étape 2)	284
Figure IX 59: définition les propriétés de l'appui LRB dans l'ETABS(détails d	le
l'étape 3)	285
Figure IX 60: Définir le ressort dans l'ETABS.	286
Figure IX 61 : étape 1 pour désigner l'appui sismique dans l'ETABS	286
Figure IX 62: étape 2 pour désigner l'appui sismique dans l'ETABS	287
Figure IX 63: Vue en plan de bâtiment isolée (vue en base).	287
Figure IX 64: vue en 3D de bâtiment isolée.	288
Figure IX 65: mode 1 translation suivant Y-Y.	289
Figure IX 66: mode 2 translation suivant X-X.	289
Figure IX 67: mode 3 rotation.	290
Figure IX 68: Accélération de model initiale d'une structure isolée suivant X-J	X.291
Figure IX 69: Accélération de model initiale d'une structure isolée suivant Y-Y	Y.292
Figure IX 70: déplacement de bâtiment isolée (model initiale)	292
Figure IX 71: effort tranchant de bâtiment isolée (model initiale).	293
Figure IX 72: les dimensions finales de l'isolateur	301
Figure IX 73: Accélération de model finale d'une structure isolée suivant X-X	. 303
Figure IX 74: Accélération de model finale d'une structure isolée suivant Y-Y.	304
Figure IX 75: déplacement de bâtiment isolée (model finale)	304
Figure IX 76: effort tranchant de bâtiment isolée (model finale).	305
Figure IX 77: Accélération de bâtiment encastrée sans voiles.	309
Figure IX 78: Accélération de bâtiment encastrée sans voiles.	309
Figure IX 79: les déplacements du dernier niveau des trois structures encastrée	e
(sans voiles, avec voiles) et isolée suivant X	312
Figure IX 80: les déplacements du dernier niveau des trois structures encastrée	e
(sans voiles, avec voiles) et isolée suivant Y	312
Figure IX 81: déplacement inter étage des trois structures encastrée (sans voile	es,
avec voiles) et isolée suivant X	313
Figure IX 82: déplacement inter étage des trois structures encastrée (sans voile	es,
avec voiles) et isolée suivant Y.	313
Figure IX 83: Comparaison accélération maximale des trois structures dans le	sens X.
	314
Figure IX 84: Comparaison accélération maximale des trois structures dans le	sens
Y	314

Figure IX 85: Comparaison des accélérations de différents niveaux pour	les trois
structures dans la direction X	
Figure IX 86: Comparaison des accélérations de différents niveaux pour	les trois
structures dans la direction Y.	
Figure IX 87: Comparaison de l'effort tranchant a la base entre les trois	structures
dans la direction X.	
Figure IX 88: Comparaison de l'effort tranchant a la base entre les trois	structures
dans la direction Y.	

LISTE DES TABLEAUX

Chapitre II : Présentation de l'ouvrage

Tableau II	1: les caractéristiques géométriques du bâtiment	11
Tableau II	2: Type des aciers.	17

Chapitre III : Prédimensionnement des éléments structuraux

Tableau III 1: charge permanente qui convient de poteau central	
Tableau III 2: charge d'exploitation de poteau central	
Tableau III 3: les efforts normaux de poteau central	
Tableau III 4: choix a et b de poteau central.	
Tableau III 5: charge permanente qui convient de poteau Rive	41
Tableau III 6: charge d'exploitation de poteau Rive.	42
Tableau III 7: l'effort normal de poteau Rive	43
Tableau III 8: choix a et b de poteau Rive.	44
Tableau III 9: charge permanente qui convient de poteau d'angle	47
Tableau III 10: charge d'exploitation de poteau d'angle	
Tableau III 11: l'effort normal de poteau d'angle le plus sollicité	49
Tableau III 12: choix a et b de poteau d'angle.	50
Tableau III 13: Vérification de la rigidité de poteau 30*30	51
Tableau III 14: Vérification de la rigidité de poteau 35*35	51
Tableau III 15: Choix final de la section des poteaux.	51
Tableau III 16: Vérification au flambement.	

Chapitre IV : ETUDE ELEMENTS SOUCNAIDR

Tableau IV 1: Poids propre du palier de repose de l'escalier	57
Tableau IV 2: Poids propre du Paillasse	57
Tableau IV 3: Tableaux de pré dimensionnement	58
Tableau IV 4: Charge à l'ELU et l'ELS	58
Tableau IV 5: Ferraillage des escaliers.	60
Tableau IV 6: choix des armatures	61
Tableau IV 7: Vérification à l'E.L.S de l'escalier.	62
Tableau IV 8: Vérification de la flèche de l'escalier.	64
Tableau IV 9: Poids propre du Paillasse.	65
Tableau IV 10: Ferraillage des escaliers.	66
Tableau IV 11: choix des armatures	66
Tableau IV 12: Vérification à l'E.L.S de l'escalier	68
Tableau IV 13: Vérification de la flèche de l'escalier.	68
Tableau IV 14: Charges et surcharges sur les poutrelles.	78
Tableau IV 15: Récapitulation du calcul des sections d'armatures en travée	85
Tableau IV 16: Récapitulation du calcul des sections d'armatures sur appuis	85
Tableau IV 17: Vérification à l'ELS.	87
Tableau IV 18: Calcul de la flèche de poutrelle.	89

Tableau IV 19: ferraillage de panneau de petite portée.	96
Tableau IV 20: ferraillage de panneau de grande portée.	96
Tableau IV 21: ferraillage des dalles en appui	96
Tableau IV 22: Vérification à l'E.L.S	98

Chapitre V : ETUDE DE VENT

Tableau V 1: Coefficient de rugosité.	104
Tableau V 2: Coefficient d'exposition.	105
Tableau V 3: Valeur de la pression de pointe	106
Tableau V 4: Récapitulatif des résultats	106
Tableau V 5: Cpe Pour les parois verticales d'un bâtiment à base rectan	ngulaire.108
Tableau V 6: Les cœfficients de pression externe de la toiture	108
Tableau V 7: Les valeurs des pressions.	110
Tableau V 8: Récapitulatif des résultats	111
Tableau V 9: Cpe Pour les parois verticales d'un bâtiment à base rectar	ngulaire. 112
Tableau V 10: Les cœfficients de pression externe de la toiture	
Tableau V 11: Les valeurs des pressions	113

Chapitre VI : ETUDE DYNAMIQUE

Tableau VI 1: Facteur de qualité (model 1). 123
Tableau VI 2: Dimensions des voiles de model 2
Tableau VI 3: Facteur de qualité pour model 2. 127
Tableau VI 4: participation massique du model 2. 128
Tableau VI 5: Les 3 premiers modes (Model 2). 129
Tableau VI 6: Résultantes des forces sismiques (Model 2). 130
Tableau VI 7: Vérification des déplacements inter étages du model 2 X-X131
Tableau VI 8: Vérification des déplacements inter étages du model 2 Y-Y132
Tableau VI 9: Justification vis-à- vis de l'Effet P-Δ dans le sens 2 X-X133
Tableau VI 10: Justification vis-à- vis de l'Effet P-∆ du model 2 sens Y-Y134
Tableau VI 11: Vérification de l'effort normal réduit de model 2
Tableau VI 12: justification de choix de R pour Model 2. 136
Tableau VI 13: Centres de masse et centre de rigidité
Tableau VI 14: section des poteaux de model 3. 138
Tableau VI 15: Dimensions des voiles de model 3
Tableau VI 16: Facteur de qualité pour model 3. 141
Tableau VI 17: Vérification de la période d'après la rechercher publier par le Dr.
TALEB Rafik142
Tableau VI 18: participation massique de model 3
Tableau VI 19: Les trois premiers modes dans model 3
Tableau VI 20: Résultats des forces sismiques de model 3.
Tableau VI 21: Vérification des déplacements inter étages de model 3 sens X-X.145
Tableau VI 22: Vérification des déplacements inter étages de model 3 Y-Y146
Tableau VI 23: Justification vis-à- vis de l'Effet P- Δ de model 3 dans le Sens x.147

Tableau VI 24: Justification vis-à- vis de l'Effet P-∆ de model 3 dans le	Sens y.148
Tableau VI 25: vérification de l'effort normal réduit pour le model 3	149
Tableau VI 26: justification de choix de R pour le model 3	150
Tableau VI 27: Vérification de la stabilité au renversement.	151

Chapitre VII : CALUCLE DES ELEMENT RESSETANT

Tableau VII 1: Contraintes.	153
Tableau VII 2: Tableau des zones.	155
Tableau VII 3: Choix des Armatures des Poteaux.	156
Tableau VII 4: Vérification des Contraintes des Poteaux	157
Tableau VII 5: Vérification des Contraintes des Poteaux	158
Tableau VII 6: Vérification de la contrainte de cisaillement pour les poteaux.	160
Tableau VII 7: Espacements maximales des armatures transversales des potea	ux.162
Tableau VII 8: Choix des armatures transversales pour les poteaux	163
Tableau VII 9: Tableau des zones.	168
Tableau VII 10: Ferraillage des poutres du sens X-X (30x40).	169
Tableau VII 11: Choix des armatures pour les poutres du sens X-X (30 x 40).	169
Tableau VII 12: Ferraillage des poutres du sens Y-Y (30x40).	170
Tableau VII 13: Choix des armatures pour les poutres du sens Y-Y (30 x 40).	170
Tableau VII 14: Vérification de la condition de non fragilité des poutres	171
Tableau VII 15: Vérification des poutres du sens X-X(30x40) à l'E.L.S	172
Tableau VII 16: Vérification des poutres du sens Y-Y(30x40) à l'E.L.S.	172
Tableau VII 17: Vérification de la contrainte de cisaillement des poutres	173
Tableau VII 18: Calcul des armatures transversales	173
Tableau VII 19: Vérification de la flèche pour les poutres	174
Tableau VII 20: les langueur des voiles de noyau 1.	180
Tableau VII 21: Sollicitations de calcul Noyaux Y1 et Y2.	181
Tableau VII 22: Sollicitations de calcul Noyaux X1 et X2.	181
Tableau VII 23: Noyaux Y1 et Y2.	185
Tableau VII 24: Noyaux X1 et X2.	186
Tableau VII 25: fragile de linteaux Noyau 1 X1 et X2.	188
Tableau VII 26: les langueur des voiles de noyau 2.	190
Tableau VII 27: Sollicitations de calcul Noyaux Y3 et Y4.	191
Tableau VII 28: Sollicitations de calcul Noyaux X3	191
Tableau VII 29: Sollicitations de calcul Noyaux X4	192
Tableau VII 30: Noyaux Y3 et Y4.	194
Tableau VII 31: Noyaux X3.	195
Tableau VII 32: Noyaux X4.	196
Tableau VII 33: fragile de linteaux Noyau 1 X3.	196

Chapitres VIII ETUDE L'INFRASTRUCTURE :

Tableau VIII 1: Contraintes sous le radier à l'E.L.U.	
Tableau VIII 2: Contraintes sous le radier à l'E.L.S.	
Tableau VIII 3: Contraintes sous le radier à l'E.L.U.	
Tableau VIII 4: Contraintes sous le radier à l'E.L.S.	
Tableau VIII 5: détermination les moments.	
Tableau VIII 6: Ferraillage des panneaux du radier.	
Tableau VIII 7: Vérification des contraintes à l'E.L.S.	
Tableau VIII 8: Correction de la section d'acier.	
Tableau VIII 9: Répartition des charges dans les nervures (sens X-X)	211
Tableau VIII 10: Répartition des charges dans les nervures (sens Y-Y)	
Tableau VIII 11: Ferraillage des nervures sens (x-x).	
Tableau VIII 12: Ferraillage des nervures sens (y-y).	
Tableau VIII 13: Vérification des contraintes à L'E.L.S.	
Tableau VIII 14: Correction de la section d'acier.	
Tableau VIII 15: Calcul de la poussée des terres.	
-	

Chapitre IX : PROPOSITION D'ISOLATION SISMIQUE

Tableau IX 1: Caractéristiques de caoutchouc.	241
Tableau IX 2: Coefficient sismique.	263
Tableau IX 3: Facteur de la zone sismique Z.	263
Tableau IX 4: Facteur de proximité de la faille active NV.	263
Tableau IX 5: Type de failles sismiques.	264
Tableau IX 6: Les coefficients d'amortissement BD et BM	264
Tableau IX 7: Valeurs de l'analyse dynamique données en fonction des valeu	rs de
l'analyse statique	271
Tableau IX 8: participation massique pour model initiale de la structure isolé	e290
Tableau IX 9: vérification de déplacement inter étage de sens X-X selon UBC	C -97
(Model initiale)	294
Tableau IX 10: vérification de déplacement inter étage de sens Y-Y selon UB	C-97.
	295
Tableau IX 11: vérification de déplacement inter étage de sens X-X selon IBC	C-
2000	296
Tableau IX 12: vérification de déplacement inter étage de sens Y-Y selon IBC	2-
2000	297
Tableau IX 13: Les sections de poteaux après l'augmentation	299
Tableau IX 14: propriétés de l'appui LRB (model final).	302
Tableau IX 15: participation massique pour model finale de la structure isolé	e302
Tableau IX 16: vérification de déplacement inter étage de sens X-X selon UE	3C-97
(Model finale)	306
Tableau IX 17: vérification de déplacement inter étage de sens Y-Y selon UB	C-97
(Model finale)	307

Tableau IX 18: Périodes et facteurs de contribution modale d'une stru	ucture isolé et
structure encastrée avec voiles	
Tableau IX 19: Périodes et facteurs de contribution modale d'une stru	ucture isolé et
structure encastrée avec voiles	

TABLE DES MATIERES

RESUME
Abstract
الملخص
REMERCIMENT
Dédicace
LISTE DES SYMBOLES
LISTE DES FIGURES
LISTE DES TABLEAUX
INTRODUCTION GENERALE1
Chapitre I : Introduction sur immeubles de grande hauteur (IGH)
INTRODUCTION :
I.1. L'évolution des IGH à travers l'histoire4
I.2. Le comportement :6
I.2.1. Résistance au l'effet dynamique :6
a. Systèmes de contreventement :
b. Les systèmes d'isolation parasismiques :7
I.3. Avantages et inconvénients des IGH :
Chapitre II : Présentation de l'ouvrage
II.1. Présentation de l'ouvrage :11
II.1.1. Caractéristiques géométriques du bâtiment :11
II.2. Conception structurelles :
II.3. Caractéristiques mécaniques des matériaux :
a. Béton :
b. Aciers
Chapitre III : Prédimensionnement des éléments structuraux
III.1. Prédimensionnement des planchers :
a. Planchers à corps creux :
a.1. Les poutrelles :
b. Dalles pleines :
III.2. Les poutres :

a. Les poutres principales (longitudinales)	24
b. Les poutres transversales (secondaires)	25
III.3. Les Voiles :	
III.4. Les poteaux :	27
III .4.1. Evaluation des charges et des surcharges de Plancher (DT	R BC 2.2) :
III.4.3. Descente de charge	
III.4.3.1 -Loi de Dégression : (DTR B.C.2.2)	
III.4.3.2-Poteau central :	
III.4.3.3. Poteau de rive :	
III.4.3.4. Poteau d'angle :	45
III.4.3.5. Vérification de la rigidité :	51
III.4.3.6. Choix final de la section des poteaux	51
III.4.3.6. Vérification au flambement :	51
Chapitre IV : Etude Eléments Secondaire	
IV.1. Escalier :	54
IV.2. ETUDE DES L'ACROTERE :	70
IV.3. ETUDE DES PALNCHER :	77
IV.3.1. Etude des poutrelles :	77
IV.3.2. Dalle machine :	92
Chapitre V : Etude De Vent	
	101

V.1. Le calcul D'après le RNV2013 :	101
V.2. Localisation et données concernant le site	102
V.3. Données relatives au site : D'après le RNV2013	102
V.4. Pression dynamique de pointe :	103
V.4.1. Direction vent V1 :	104
V.4.1.a. Coefficient d'exposition auvent	104
V.4.1.b. Le coefficient de rugosité :	104
V.4.1.c. Coefficient d'exposition :	105
V.4.1.e. Valeur de la pression de pointe	106
V.4.1.f. Récapitulatif Direction de vent V1 :	106
V.4.2. La pression aérodynamique :	106

V.4.2.a. Coefficient de pression extérieur Cpe :	107
V.4.b. Détermination des coefficients de pression intérieure Cpi :	109
V.4.3. Direction de vent V2 :	111
V.4.4. Calcul des forces de frottement :	114
Chapitre VI : Etude Dynamique	
VI. 1. Objectif de l'étude dynamique :	117
VI. 2. Etapes de l'analyse dynamique :	118
VI. 3. Modélisation de la structure :	118
VI.4. Présentation du logiciel de calcul ETABS :	119
VI. 5. Modélisation de la rigidité :	120
VI.5.a. Modélisation de la masse :	120
VI.5.b. Etude sismiques :	120
VI. 6. Choix de la méthode de calcul :	121
VI.6.a. La méthode statique équivalente :	121
VI.6.b. La méthode dynamique modale spectrale :	121
VI.6.c. La méthode dynamique par accélérogrammes :	121
VI. 7. Model 1 (sans voiles) initiale :	122
VI.7.1. Vérification de la période :	123
VI. 8. Model 2 :	124
VI.8.1. Disposition des voiles de contreventement :	124
VI.8.2. Calcul de la période par la formule empirique :	127
VI.8.3. Calcul de la force sismique par la méthode statique équivalente :	130
VI.8.4. Vérification de déplacement inter étage :	130
VI.8.5. Justification de l'effet p-delta :	133
VI.8.6. Vérification de l'effort normal réduit :	135
VI.8.7. Justification de coefficient de comportement R :	136
VI.8.8. L'excentricité :	136
VI.8.9. Interprétation et remarque pour model 2 :	138
VI.9. Model 3 (model final) :	138
VI.9.1. Calcul de la période par la formule empirique :	141
VI.9.2. Calcul de la force sismique par la méthode statique équivalente :	144
VI.9.2. Vérification de déplacement inter étage :	144

VI.9.6. Vérification de moment de reversement :	150
Chapitre VII : Calcule Des Elément Résistant	
VII.1. Ferraillage des poteaux :	
VII.1.2 Recommandations du RPA99/ Version 2003 [1] :	
VII.1.3 Calcul des ferraillages :	
VII.1.3.a. Choix des armatures :	
VII.1.4. Vérification :	
a. Vérification vis-à-vis de l'Etat Limite de Service :	
b. Vérification de l'effort tranchant :	
VII.1.5. Ferraillage transversal des poteaux :	160
VII.1.6. Schéma des ferraillages de poteaux	164
VII.2. Ferraillage des poutres :	
VII.2.1. Recommandation du « RPA99/Version 2003 » :	
VII.2.2. Calcul du ferraillage :	
VII.2.3. Les vérifications :	171
VII.2.3. a. Vérification vis à vis de l'E.L.S :	171
VII.2.3. b. Vérification de l'effort tranchant :	172
VII.2.3.c. Calcul des armatures transversales :	
VII.2.3.c. Recouvrement des armatures longitudinales :	174
VII.2.4. Schéma ferraillage des poutres :	175
VII.3. Ferraillage des voiles :	176
VII.3.1. Méthode de calcul :	176
VII.3.2. Prescriptions imposées par RPA99 / Version 2003 [1]	176
VII.3.3. Règles communes : (article 7.7.4.3) :	179
VII.3.4.a. Calcul du ferraillage noyau 1 :	179
VII.3.4.b. Ferraillage des linteaux noyau 1 :	
VII.3.4.c. Schéma de ferraillage de noyau 1:	
VII.3.5.a. Calcul du ferraillage noyau 2 :	

Chapitres VIII : Etude L'infrastructure

VIII.1. Les fondations :	198
VIII.1.1. Calcul des fondations :	
VIII.1.2. Radier général :	
VIII.1.2.1. Prédimensionnement de radier :	
a. Dalle :	
b. Nervure :	
VIII.1.2.2. Vérification :	
a. Vérification de la contrainte de cisaillement :	
b. Vérification de l'effet de sous pression :	
c. Vérification au non poinçonnement :	
Caractéristiques géométriques du radier	
d. Vérification des contraintes sous le radier :	
Ferraillage de la dalle du radier :	
Panneau de rive :	207
Panneau intermédiaire	207
Moment en travée :	207
VIII.1.2.4. Ferraillage de la dalle de débord :	
VIII.1.2.5. Ferraillage des nervures :	
a.Calcul des armatures :	213
b. Vérifications nécessaires :	
VII.2. Etude du voile périphérique :	
VIII.2.1. Calcul des forces de poussée sur le mur :	219
VIII.2.2. Sollicitation des murs de soutènement périphérique	
VIII.2.3. Calcul du ferraillage du voile périphérique :	
· un tettannage un vone PertPrieridae .	

Chapitre IX : Proposition D'isolation Sismique

Introduction :	224
IX.1. Systèmes de contrôles :	225
IX.1.1. Systèmes de contrôle passif :	227
IX.1.1.1 : dissipation d'énergie :	227
IX.1.2. Systèmes de contrôle actif :	228
IX.1.2.1. Système d'amortisseur de masse actif AMD :	229
IX.1.4. Systèmes de contrôle hybride :	231
IX.2. Isolation sismique :	231
IX.2.1. Historique :	232
IX.2.2. Application mondiale des systèmes d'isolation :	233
IX.2.3. Objectifs de l'isolation sismique à la base :	239
IX.2.4. Principe de l'isolation sismique à la base :	239
IX.2.5. Les caractéristiques des systèmes d'isolation sismique à la base :.	240
IX.3. Les appuis parasismiques :	240
IX.3.1. Les différents types d'appuis parasismiques :	241
IX.3.1.1 appui à déformation :	241
IX.3.1.2 appuis à glissement :	245
IX.3.1.3 appuis à déformation et à glissement :	246
IX.3.1.3 appuis à roulement :	248
IX.3.2. Choix entre les types d'appuis parasismiques :	249
IX.4. Les Amortisseurs des vibrations dans les structures isolées :	249
IX.4.1 Amortisseurs hystérétiques :	250
IX.4.2 Amortisseurs visqueux :	252
IX.4.3 Amortisseurs magnétiques :	254
IX.5. Dispositions constructives des isolateurs sismiques :	255
IX.6. Les avantages et les inconvénients de l'isolation parasismique :	257
IX.7. Méthodes d'analyse et dimensionnement des isolateurs :	258
IX.7.1. Description des codes parasismiques	258
IX.7.1.1 Le tremblement de terre de conception DBE :	259
IX.7.1.2. Les tremblements de terre maximum MCE :	259
IX.7.2. Méthodes de calcul et d'analyse des structures isolées :	259

IX.7.2.1. La méthode statique équivalente :	259
IX.7.2.2. La méthode d'analyse modale spectrale :	
IX.7.2.3. La méthode d'analyse par accélérogrammes :	
IX.8. CHOIX D'APPUI :	272
IX.9. Méthodologie de dimensionnement des appuis parasismiques :	273
IX.9.1. Dimension de notre appui :	277
IX.9.2. Modélisation de bâtiment isolée :	
IX.9.2.2. Résultats :	
IX.9.2.3. Les vérifications sismiques :	
IX.9.2.4. Interprétation et remarques :	
IX.9.3. MODEL 2 :	
IX.9.4. Modélisation de bâtiment encastrée :	
IX.9.5. Etude comparative :	
IX.9.5.1. Périodes et facteurs de contribution modale :	
IX.9.5.2. Les déplacements :	
IX.9.5.3. Les accélérations :	
IX.9.5.4. L'effort tranchant a la base :	
Conclusion :	
CONCLUSION GENERALE	318
Bibliographie	
ANXXE	

INTRODUCTION GENERALE

Tout au long de l'histoire, dans presque toutes les cultures et civilisations, il y a eu une tendance commune à construire vers le ciel, souvent pour des raisons de grandeur et de prestige. Ces édifices de grande hauteur peuvent prendre diverses formes, de la tour de Babel aux pyramides d'Égypte ou du Mexique, en passant par le minaret des cathédrales et les minarets des mosquées, percés de clochers et de clochers. La grande aventure de ces immeubles de grande hauteur contemporains a commencé timidement et authentiquement à Chicago au XIXe siècle, une ville dont les couches de construction se sont développées si rapidement qu'elle était à égalité avec d'autres villes des États-Unis. Les États ont rapidement adopté cette décision de l'expérience new-yorkaise de Chicago.

Aujourd'hui, avec la densification des centres urbains et la crise du logement et les enjeux du développement durable, ces facteurs imposent l'évolution de l'architecture et le développement des systèmes urbains dans les villes modernes, la verticalité ou verticalité urbaine constitue des tours dites IGH « grands immeubles » sont considérés comme l'une des solutions aux problèmes urbains modernes

Selon des cas rencontrés les IGH ont un comportement qui n'est pas ordinaire tels que : des déplacements importants ainsi que des sections de ferraillages d'éléments structuraux très grande, pour essayer de remédier à cette situation l'utilisation des isolateurs sismiques constitue une solution.

Les appuis parasismiques ou les isolateurs parasismiques sont des dispositifs permettant une isolation partielle entre la fondation et la superstructure. Ils ne laissent passer que des efforts déterminés par leurs propres caractéristiques.

Le présent projet consiste à étudier d'une manière classique un bâtiment de 25 étages et par la suite on va proposer un isolateur sismique de même bâtiment et de faire une comparaison sur les résultats obtenues et bien sur notre travail s'achèvera avec une conclusion générale.

Chapitre I : Introduction sur immeubles de grande hauteur (IGH)

INTRODUCTION :

La construction verticale a joué un rôle essentiel dans l'histoire de l'Est et de l'Ouest. L'utilisation du fer et de l'acier a été une avancée clé dans la construction surélevée.

Ces matériaux offraient une résistance structurelle supérieure, permettant la construction de bâtiments plus hauts et plus grands. L'introduction de la charpente métallique a révolutionné l'architecture en permettant la construction de structures en acier.

Les immeubles de grande hauteur (IGH) sont plus que de simples habitations, ce sont des conceptions complexes modernes et ambitieuses qui s'insèrent entre le ciel et la terre, formant des villes verticales. Ils sont devenus partie intégrante du paysage urbain, offrant un impact distinct des bâtiments de faible hauteur.

Les immeubles de grande hauteur (IGH) en Algérie sont des immeubles d'une hauteur supérieure à 28 mètres, principalement à usage résidentiel ou commercial.

- Immeuble résidentiel à 50 mètres
- 28 mètres de tous les autres bâtiments

Les immeubles de grande hauteur (IGH) sont généralement classés en fonction de leur hauteur, de leur destination et de leurs normes de sécurité.

Voici une classification commune basée sur la taille :

Catégorie 1 : Hauteur inférieure à 28 mètres. Ils sont généralement considérés comme des bâtiments standards et peuvent desservir des bâtiments résidentiels ou à usage mixte.

Catégorie 2 : hauteur de 28 à 50 mètres. Ils sont souvent utilisés à des fins résidentielles, commerciales ou de bureau.

Catégorie 3 : Altitude de 50 à 100 mètres. Ils peuvent abriter des bureaux, des hôtels, des magasins ou des appartements.

Catégorie 4 : Altitude supérieure à 100 mètres. En règle générale, ce sont des gratteciels et des immeubles de grande hauteur qui abritent des bureaux, des hôtels, des entreprises ou des appartements de luxe.

I.1. L'évolution des IGH à travers l'histoire

Tout au long de l'histoire, la construction de hautes structures remonte à l'Antiquité, avec des exemples tels que la tour de Babel et les pyramides d'Égypte.

La première génération ces structures ont été construites en utilisant des méthodes et des matériaux préhistoriques tels que la pierre.

Figure I 2 : Tour de Babelé

Figure I 1 : Pyramides égyptiennes

Au fil du temps, l'homme a été fasciné par ces réalisations architecturales et a

cherché à les reproduire. Cette fascination a été transmise à la deuxième génération,

Immeubles de grande hauteur (IGH) remonte à plusieurs siècles, mais leur développement a connu une accélération importante au cours des deux derniers siècles, notamment dans les grandes villes du monde entier.

Le premier IGH moderne a été construit à Chicago aux États-Unis en 1885,

Figure I 3 : le Home Insurance Building

Le Home Insu rance Building, qui était haut de 10 étages et a été conçu par l'architecte William Le Baron Jenney. Ce bâtiment a été construit en utilisant une structure en acier, qui a permis de réduire le poids de la structure et d'augmenter la hauteur. Le développement de l'architecture et des matériaux de construction s'est poursuivi au fur et à mesure que l'ère industrielle progressait.

La prospérité industrielle a permis le développement de nouveaux matériaux et techniques de construction, ouvrant la voie au troisième génération immeuble de grande hâture travers le monde.

Dans les années 1920 et 1930, de nombreux gratte-ciel ont été construits dans les grandes villes américaines telles que New York et Chicago. Construit en 1931 à New York, l'Empire State Building est l'un des exemples les plus célèbres de cette époque. A cette époque, la construction de gratte-ciel était souvent associée au développement économique et à la modernité.

Après la Seconde Guerre mondiale, la construction de gratte-ciel s'étend à d'autres pays, dont le Japon, l'Asie et l'Europe. Le Financial Center à Hong Kong est un autre exemple remarquable de construction de gratte-ciel dans les années 1970 et 1980.

Figure I 5 : L'Empire State Building

Figure I 4 : Le centre financier de Hong Kong

Plus récemment, la construction de gratte-ciel s'est poursuivie dans des villes émergentes en Asie et au Moyen-Orient, notamment à Dubaï et à Shanghai, où de nouveaux records de hauteur ont été atteints. Le Burj Khalifa,

Construit à Dubaï en 2010, est actuellement le plus haut bâtiment du monde avec une hauteur de 828 mètres.

I.2. Le comportement :

Le comportement d'un immeuble de grande hauteur (IGH) dépend de nombreux facteurs, tels que sa structure, sa conception, les matériaux de construction, les fondations, les systèmes mécaniques et électriques, ainsi que les facteurs externes tels que le vent, les tremblements de terre et les charges agissant sur le bâtiment.

Les bâtiments de grande hauteur sont conçus pour résister aux charges verticales et horizontales, ainsi qu'aux actions dynamiques telles que les vibrations et les chocs sismiques.

I.2.1. Résistance au l'effet dynamique :

La résistance à l'effet dynamique fait référence à la capacité d'une structure à résister aux forces et aux charges qui résultent de mouvements ou d'événements dynamiques, tels que les tremblements de terre, les vents forts, les vibrations, les charges de chocs, etc.

Ils utilisent des méthodes d'analyse telles que l'analyse modale, l'analyse sismique, l'analyse des vibrations, etc., pour évaluer les effets de ces forces sur la structure. Tests et normes de qualité : Les structures doivent être soumises à des tests rigoureux pour évaluer leur résistance à l'effet dynamique. Des normes de qualité strictes sont établies pour garantir que les structures répondent aux exigences de résistance aux forces dynamiques spécifiées.

Les immeubles de grande hauteur dans l'analyse sismique donnent des périodes élevés nous devons diminuer cette période en utilisant :

- Les systèmes de contreventement qui stabilisent la structure des immeubles de grande hauteur se raidissent avec un noyau central

-Les systèmes d'isolation sismique sont des techniques utilisées dans la conception et la construction des bâtiments pour réduire les effets des tremblements de terre.
a. Systèmes de contreventement :

Les systèmes de contreventement sont des éléments structurels utilisés dans la construction pour renforcer la stabilité et la résistance des bâtiments contre les charges latérales, telles que les forces du vent et les séismes.

• Noyau central :

Les bâtiments à noyau central ont un noyau central rigide et solide qui résiste aux forces latérales. Ce noyau est généralement constitué de murs en béton armé ou de noyaux en acier et contient des escaliers, des ascenseurs et des conduits de services.

Le noyau central agit comme une colonne vertébrale du bâtiment, fournissant une résistance contre les forces latérales.

b. Les systèmes d'isolation parasismiques :

Les systèmes d'isolation sismique sont des techniques utilisées dans la conception et la construction de bâtiments pour réduire les effets des tremblements de terre.

Ces isolateurs permettent au bâtiment de se déplacer de manière contrôlée lors d'un tremblement de terre, absorbant ainsi l'énergie sismique et réduisant les contraintes sur la structure.

Les appuis parasismiques, également connus sous le nom d'appuis antisismiques ou d'appuis isolants, sont des dispositifs utilisés dans la construction pour réduire les effets des tremblements de terre sur les structures.

Ces appuis sont généralement utilisés pour les ponts, les passerelles, les bâtiments et les infrastructures soumis à des forces sismiques.

Appuis élastomères : Les appuis élastomères utilisent des matériaux élastomères (tels que le caoutchouc) pour permettre un mouvement horizontal entre les parties de la structure. Ces matériaux absorbent l'énergie sismique en se déformant et en se comprimant lors d'un tremblement de terre.

Figure I 6: Effets sismique sur un bâtiment avec et sans isolation la base.

I.3. Avantages et inconvénients des IGH :

> Les Avantages :

- Les IGH jouent un rôle primordial dans la structuration de la ville modern
- Les IGH sont des Outils marketing et une Démonstration de richesse, de capacité d'investissement, les gratte-ciels sont aussi une démonstration de maîtrise technologique, de dynamisme du tissu industriel et économique local.
- Un symbole de la ville moderne et généralement utilisé comme un repère ou un point d'appel dans cette ville.
- Les IGH donnent un aspect touristique et économique important.
- Les IGH sont considéré comme des solutions contre la densification et l'extension des villes.
- Un aspect esthétique et modern dans le paysage urbain.

Les Inconvénients :

- Les problèmes de circulation des personnes posant problème pour leur évacuation et l'accès des secours.
- Le risque des incendies et des aléas naturelles comme le séisme, cyclone et
- Les explosions et les attentats.
- Le Coût trop élevé de la réalisation de ces immeubles.
- Utilisation moins efficace de l'espace après 5 à 7 étages dus à des espaces nécessaires aux services (escaliers, ascenseurs, gaines de ventilation, gaines électriques, toilettes, etc.).

Conclusion :

Les immeubles de grande hauteur est un processus complexe qui nécessite des connaissances approfondies.

Des ingénieurs en structure spécialisés sont souvent impliqués dans l'exécution de calculs et d'analyses approfondis pour assurer la résistance structurelle.

Chapitre II : Présentation de l'ouvrage

Introduction :

Ce chapitre comporte des descriptions générales concernant notre étude, telle que les dimensions de l'ouvrage et les éléments composantes de ce dernier, la classification de l'ouvrage selon RPA 99 version 2003, ainsi que les matériaux utilisés et ces caractéristiques, et les différentes principales hypothèses de calcul en béton armé.

II.1. Présentation de l'ouvrage :

Dans cette présentation, nous allons examiner les caractéristiques clés de notre bâtiment qui est immeuble de grande hauteur (IGH) en Béton Armé R+25 à usage d'habitation, ainsi que les défis techniques et environnementaux associés à sa construction.

Car il n'excite pas notre projet en réalité on propose qu'il soit situé à Blida centre, selon le règlement parasismique algérien (RPA99 version2003) elle est classée comme étant une zone sismicité élevée (zone III) et zone de vent I selon le RNV version 2013.

Cet ouvrage est classé comme étant un ouvrage de grande importance (groupe 1B) car sa hauteur dépasse 48 m.

Le site est considéré comme meuble (S3).

II.1.1. Caractéristiques géométriques du bâtiment :

Avec ses 25 étages, ce bâtiment est l'un des plus hauts de la ville. Cette hauteur offre plusieurs avantages, notamment une vue imprenable sur les environs et une meilleure isolation phonique.

De plus, la hauteur permet de maximiser l'utilisation de l'espace disponible, en particulier dans les zones urbaines denses où le terrain est limité.

Tableau II 1: les caractéristiques géométriques du bâtiment.

h _{ec} (m)	H(m)	B(m)	L(m)	S (m ²)	
3,06	79,96	25,50	21,10	538,05	

II.2. Conception structurelles :

II.2.1. Ossature :

Le bâtiment qui fait l'objet de notre étude est constitué par un système de contreventement de structures en portique par des voiles en béton armé suivant les deux sens selon le règlement parasismique algérien.

II.2.2 Les Planchers :

Les planchers sont des éléments plans dont l'épaisseur est faible par rapport à leurs dimensions.

Le rôle essentiel des planchers est d'assurer la transmission des charges verticales aux éléments porteurs de l'ossature (poteaux ou voiles).

Notre structure comporte deux types de planchers :

- Plancher en corps creux pour le modèle 2.

- Plancher en dalle pleine pour le modèle 3.

II.2.3 Escaliers :

Servent à relier les niveaux successifs et à faciliter les déplacements, réalisés en béton armé coulé sur place.

Type d'escalier a été utilisé :

• Escalier à trois volées et deux paliers intermédiaire.

II.2.4. Maçonnerie :

Les murs de notre structure seront exécutés en brique creuse.

Murs extérieurs : ils sont constitués d'une double cloison de 30cm d'épaisseur.
 Brique creuse de 15 cm d'épaisseur pour la paroi externe du mur. L'âme d'air de 5 cm d'épaisseur.
 Brique creuse de 10 cm d'épaisseur pour la paroi interne du mur.

- Murs intérieurs : ils sont constitués par une cloison de 10 cm d'épaisseur qui sert à séparer deux services et une double cloison de 25 cm d'épaisseur qui sert à séparer deux logements voisins (une cloison de 10cm d'épaisseur pour la face externe et interne).

II.2.5. Revêtement Le revêtement du bâtiment est constitué par :

- Un carrelage de 2cm pour les chambres, les couloirs et les escaliers.
- De l'enduit de plâtre pour les murs intérieurs et plafonds
- Du mortier de ciment pour crépissages des façades extérieurs.

II.2.6 Ascenseurs :

La structure comporte une cage d'ascenseur du sous-sol jusqu'au 25ème étage.

II.2.7 Infrastructure :

Elle sera réalisée en béton armé coulée sur place, elle doit constituer un ensemble résistant et rigide capable de remplir les fonctions suivantes :

- Réaliser l'encastrement de la structure dans le sol.
- Limiter les tassements différentiels.

• Transmettre les charges horizontales (charges sismiques) et les charges verticales au sol d'assise de la structure.

• La catégorie de site S3 : site meuble.

II.3. Caractéristiques mécaniques des matériaux :

Les caractéristiques mécaniques des matériaux utilisés dans le calcul du bâtiment doivent être conformes aux règles techniques de construction et de calcul des ouvrages en béton armé (BAEL) et à la réglementation en vigueur en Algérie.

a. Béton :

II. 3. a.1. Composition du béton :

Le béton est un matériau constitué par le mélange dans des proportions convenables, de ciment, de granulats (graviers, sable) et d'eau.

La composition courante de 1 m^3 cube de béton est :

350 kg de ciment CPA 325

400 L de sable Dg ≤5mm

800 L de gravillons 5mm≤Dg≤25mm

175 L d'eau de gâchage

Pour sa mise en œuvre, le béton doit être maniable et il doit présenter certains

II.3. a.2. Résistance du béton :

Résistance du béton à la compression :

Le béton est caractérisé par sa résistance à la compression à « J » jours, généralement à 28 jours.

Cette valeur est déterminée par des essais sur des éprouvettes cylindriques de 200,96 cm² de section et de 32 cm de hauteur.

$$j \leq 28jours \rightarrow f_{cj} = 0,685f_{c28}\log(j+1)$$

 $j = 28jours \rightarrow f_{cj} = f_{c28}$

 $j > 28 jours \rightarrow f_{cj} = 1, 1 f_{c28}$

Pour notre étude on a : fc28 = 30MPa

Résistance du béton à la traction :

La résistance à la traction est déterminée par plusieurs essais ; parmi ces essais on peut citer : Traction directe sur les cylindres précédents en collant des têtes de traction.

Traction par fendage en écrasant un cylindre de béton placé horizontalement entre les plateaux d'une presse (essai Brésilien). Traction – flexion : à l'aide d'une éprouvette prismatique de côté « a » et de longueur « 4a » reposant sur deux appuis horizontaux et soumise à la flexion

La résistance à la traction est notée par « ftj », elle est définie par la relation : $f_{ij} = 0.6 + 0.06 f_{cj}$ (*MPa*)

fc28 = 30 MPa, on trouve ftj = 2,4 MPa

> Module de déformation longitudinale :

Ce module est connu sous le nom de module de « Young ou module de déformation longitudinale », il est défini sous l'action des contraintes normales d'une longue durée ou de courte durée d'application.

- Module d'élasticité instantané « Eij » :

Il est mesuré à partir de la courbe (σ - ξ) d'un test de courte durée, il représente le module d'élasticité sous chargement accidentel

$$E_{ij} = 11000 \big(f_{cj} \big)^{1/3}$$

- Module d'élasticité différé « Evj» :

Il est mesuré à partir de la courbe (σ - ξ) d'un test de longue durée, il représente le module d'élasticité sous chargement durable ou transitoire

$$E_{vj} = 3700 (f_{cj})^{1/3}$$

Pour notre cas : $f_{cj} = f_{c28} = 30 MPa \rightarrow \begin{cases} E_{ij} = 34179,58 MPa \\ E_{vj} = 11496,76 MPa \end{cases}$

• Coefficient de poisson :

Le coefficient de poisson est le rapport entre la déformation transversale et la déformation longitudinale

- E.L.U : v = 0,0 calcul des sollicitations (béton fissuré).
- E.L.S : v = 0,2 calcul des déformations (béton non fissuré)
- Poids volumique :

On adopte la valeur $\rho = 25 \text{ kN/m}^3$

f. Les contraintes limites de calcul :

f.1. Contraintes limites à l'état limite ultime (E.L.U) :

L'état limite ultime est défini généralement par la limite de résistance mécanique au-delà de Le quelle il y a ruine de l'ouvrage.

$$f_{bu} = \frac{0.85 \ f_{c28}}{\gamma_b}$$

Avec :

γs : Coefficient de sécurité.

Tel que :

 $\gamma s = 1,5$ cas des situations durables ou transitoires.... fbu= 17 MPa

 $\gamma s = 1,15$ cas des situations accidentelles..... fbu = 22,17

Figure II 1 : Diagramme contraintes - déformations à l'ELU

> Contraintes limites à l'état limite de service (E.L.S) :

L'état limite de service est un état de chargement au-delà duquel la construction ne peut plus assurer le confort et la durabilité pour lesquels elle a été conçue ; on distingue :

L'état limite de service vis-à-vis de la compression de béton

L'état limite de service d'ouverture des fissures.

L'état limite de service de déformation.

La contrainte limite de service est donnée par : $\sigma_{bc} = 0.6 f_{c28}$ fc28 =30 MPa on trouve : $\sigma_{bc} = 18MPa$

Figure II 2 : Diagramme contraintes - déformations à l'ELS

 $\varepsilon_{bc}(\%)$

b. Aciers

L'acier présente une très bonne résistance à la traction, et une bonne résistance à la compression dans le cas d'élancements faibles. Si aucune précaution n'est prise il peut subir des effets de corrosion. C'est un matériau très ductile, qui attend des déformations très importantes avant rupture (de l'ordre de la dizaine de %).

Туре	Nuance	fe (Mpa)	Emploi
Ronds lisses	F _e E22 F _e E24	215 235	Emploi courant. Epingles de levage des pièces préfabriquées
Barres HA	F _e E40	400	Emploi courant.
Type 1 et 2	F _e E50	500	
Fils tréfilent HA	FeTE40	400	Emploi sous forme de barres
Type 3	FeTE50	500	droites ou de treillis.
Fils tréfilent lisses	TL50 Φ > 6mm	500	Treillis soudés uniquement emploi
Type 4	TL50 Φ ≤ 6mm	520	courant

Tableau II 2: Type des aciers.

II. 3. b.1.Module d'élasticité des aciers :

Les aciers sont aussi caractérisés par le module d'élasticité longitudinale. Les expériences ont montré que sa valeur est fixée quel que soit la nuance de l'acier. Es = $2,1.10^5$ MPa

II.3. b.2. Contrainte de calcul :

♦ E.L.U :

 $\sigma s = Contrainte de l'acier à l'E.L.U$

La contrainte de calcul, notées et qui est définie par la relation : $\sigma_s = \frac{f_e}{\gamma_s}$

Avec :

 $\gamma_s\,$: est le coefficient de sécurité de l'acier qui a pour valeur :

$$\gamma_{s} = \begin{cases} 1,15 & \text{situation durable ou transitoire.} \\ 1,0 & \text{situation accidentelle} \\ \hline \sigma_{s} = 204,34 \text{ MPa} & \text{situation durable ou transitoire.} \\ \hline \sigma_{s} = 235 \text{ MPa} & \sigma_{s} = 235 \text{ MPa} & \text{situation accidentelle.} \end{cases}$$

 ε_s = allongement de l'acier à l'E.L.U égale à 10‰.

- σ_s = contrainte de l'acier.
- γ_s = coefficient de sécurité de l'acier.
- ϵ_s = allongement relatif de l'acier.

*** E.L.S** :

La vérification de la contrainte dans les aciers se fait :

- Pour une fissuration peu nuisible : pas de vérification.
- Pour une fissuration préjudiciable : $\sigma s \le \overline{\sigma} = Min$ $110\sqrt{\eta \cdot f_{tj}}$ 2/3 fe;
- Pour une fissuration très préjudiciable : $\sigma s \le \sigma = Min \quad \left(\begin{array}{c} 1/2 \text{ fe }; 90 \\ \sqrt{\eta \cdot f_{tj}} & \text{AVEC }: \end{array} \right)$

 η = coefficient de fissuration tel que :

$$\eta = \begin{cases} 1,0 & \text{pour les aciers ronds lisses.} \\ 1,6 & \text{pour les aciers à haute adhérence.} \end{cases}$$

Chapitre III : Prédimensionnement des éléments structuraux

Introduction :

Le prédimensionnement des éléments structuraux est une étape cruciale dans la conception des structures. Il s'agit de déterminer les dimensions approximatives des éléments en fonction des charges qui leur seront appliquées.

Cette étape permet d'évaluer rapidement la faisabilité du projet et d'estimer le coût de construction. Cependant, il convient de souligner que le prédimensionnement ne remplace pas le dimensionnement précis qui doit être effectué ultérieurement.

Le pré dimensionnement des éléments structuraux a pour but de déterminer les dimensions de départ de ces éléments structuraux, le calcul de ce dernier est basé sur RPA99 Version 2003 et BAEL91modifié 99.

III.1. Prédimensionnement des planchers :

Le plancher est une séparation entre deux niveaux tout en assurant des fonctions de confort comme l'isolation phonique, thermique et l'étanchéité des niveaux terrasse.

Le type de dalle au niveau des planchers a été choisi en fonction de :

- De leur forme géométrique.
- De l'intensité des charges.
- Résistance : Transmettre les charges et les surcharges qui lui sont directement appliquées aux éléments porteurs.

Confort : Isolation phonique et thermique, ainsi que l'étanchéité des niveaux extrêmes. Pour notre bâtiment, un seul type de plancher va être utilisé : c'est une dalle corps creux L'épaisseur des planchers est choisie d'une manière à satisfaire des conditions d'utilisation plus que les conditions de résistance. Pour trouver cette épaisseur, on vérifiera les conditions ci-après.

a. Planchers à corps creux :

Les planchers sont des aires horizontales qui servent à limiter les étages, ils ont une épaisseur **'e'** faible par rapport à leur dimension en plan, leur fonction principale est de résister aux charges et surcharges puis les transmettre aux éléments porteurs qui sont dans ce cas les portiques et voiles. Ce sont aussi des éléments de contreventement horizontal qui doivent être capables de distribuer, sans se déformer dans leur plan, les efforts sismiques aux voiles et portiques (éléments de contreventement verticaux).

Comme le bâtiment est à usage d'habitation on a opté pour des planchers à corps creux pour des raisons de résistance et d'isolation (thermique et phonique).

Ils sont composés de :

- Poutrelles : éléments résistants du plancher supportant T.C et C.C
- Eléments en corps creux (C.C) : ayant un rôle de remplissage (éventuellement de résistance sous certaines conditions),
- Table de compression (T.C) : en béton armée généralement de treillis soudé, dont
 l'épaisseur h₀ varie comme suit : 4 cm ≤ h₀ ≤ 6 cm.

$$\frac{L}{25} < D < \frac{L}{20}$$

L : La portée de la poutrelle mesurée au nu des appuis.

On a : L = 470 cm.

Donc 18,8cm < d < 23,5 cm

On adopte une épaisseur de : $h_t = 21$ cm Tel que ht = d + e On prend : h = (16+5) cm

 $(d = 16 \text{ cm} \Rightarrow, \text{ avec } d : \text{hauteur } \text{du corps creux})$

e = 5cm , avec e: épaisseur de la dalle de compression

Figure III 1: plancher à Corps creux

Figure III 2: Coupe transversale Corps creux

a.1. Les poutrelles :

Pour plancher (Corps Creux,)

L'épaisseur du plancher est déterminée à partir de la condition de flèche :

$$ht \ge \frac{Lmax}{22.5}$$
.... CBA93 (article B. 6. 8. 4. 2. 4).

Lmax : la portée maximale entre nus d'appuis dans le sens de disposition des poutrelles.

ht: Hauteur totale du plancher.

 $ht \ge \frac{L}{22.5}$ Où L = 4,7 m ht > 20,88 cm on retient un plancher 16+5 épaisseurs de la table de compression = 5 cm et épaisseur du corps creux = 16 cm :

Figure III 3: Coupe transversale de la poutrelle

Dimensionnement des poutrelles •

On définit les poutrelles comme des poutres préfabriquées ou coulées sur place en béton armé ou précontraintes, formant l'ossature d'un plancher.

Elles transmettent les charges et surcharges qui les sollicitent sur les traverses des portiques. On les calcule comme des poutres en Té (voir Fig. III,3)

Disposition des poutrelles •

Figure III 4: Sens porteur des poutrelles X-X

• Détermination de la largeur de la table de compression :

$$\frac{b-b0}{2} \le \min(\frac{lx}{2}, \frac{ly}{10})$$

b: largeur efficace.

 b_0 : largeur de la poutrelle (généralement $b_0 = 12 cm$).

lx : distance entre nus d'appuis de poutrelles.

ly : longueur entre nus d'appuis de la travée minimale des poutrelles.

b. Dalles pleines :

L'épaisseur des dalles est déterminée à partir des conditions ci-après :

- e b.1. Résistance au feu :
 - = 7 cm : pour une heure de coupe-feu.
 - e = 11 cm : pour deux heures de coupe-feu.
 - e = 17.5 cm : pour quatre heures de coupe-feu.

On admet que : e = 20 cm.

b.2. Résistance à la flexion :

Les conditions qui doivent vérifier selon le nombre des appuis sont les suivantes :

• Pour une dalle sur un seul appui

$$e \geq \frac{L}{20}$$

• Dalle reposant sur deux appuis : L

$$\frac{L}{35} \le e \ \le \frac{L}{30}$$

• Dalle reposant sur trois ou quatre appuis : *L L L*

$$\frac{L}{50} \le e \le \frac{L}{40}$$

Pour notre projet nous avons Panneau sur 04 appuis Lx=4,7 m

On voit bien que les dimensions sont très petites donc c'est la condition de coupe-feu qui est la plus défavorable. On prend : e = 20 cm

III.2. Les poutres :

Les poutres ont des sections transversales soit rectangulaires ou carrées, satisfaisant les conditions suivantes.

- Critère de rigidité.
- Conditions du R.P.A 99 V2003

a. Les poutres principales (longitudinales)

D'après le règlement B.A.E.L 91 :

- $\frac{Lmax}{15} \le h \le \frac{Lmax}{10}$
- $0.3h \le b \le 0.7h$

Avec :

L_{Max} : Portée maximale entre nus d'appuis de deux poutres principales

h: hauteur de la poutre principale.

b: largeur de la poutre

 $L_{Max} = 470 \text{ cm}$

- 31,63 cm \leq h \leq 47 cm \implies On adopte h = 40 cm
- $12 \text{ cm} \le b \le 28 \text{ cm} \implies \text{On adopte } b = 30 \text{ cm}$

Vérification de la rigidité $\frac{h}{l} \ge \frac{1}{16} = \frac{40}{470} = 0,085 > \frac{1}{16}$ C.V

Figure III 6: section poutre principale Vérification d'après RPA 99 version 2003 art.7.5.1 :

$b = 30 cm \ge 20cv$	$b \ge 20 \text{ cm}$	
$h{=}40\;cm{\geq}30$ cv	$h \ge 30 \text{ cm}$	1
$\frac{40}{30} = 1,33 \le 4$	$\frac{h}{b} \le 4$	

b. Les poutres transversales (secondaires)

D'après le règlement B.A.E.L 91 :

•
$$\frac{Lmax}{15} \le h \le \frac{Lmax}{10}$$

• $0.3h \le b \le 0.7h$

Avec :

L_{Max}:Portée maximale entre nus d'appuis de deux poutres secondaires

h : hauteur de la poutre secondaires .

b : largeur de la poutre .

 $L_{Max} = 470 \text{ cm}$

- 31,33 cm \leq h \leq 47 cm \implies On adopte h = 40 cm
- $12 \text{ cm} \le b \le 28 \text{ cm} \implies \text{On adopte } b = 30 \text{cm}$

Figure III 7: section poutre secondaire

Vérification de la rigidité $\frac{h}{l} \ge \frac{1}{16} = \frac{40}{380} = 0,105 > \frac{1}{16}$ C.V

Vérification d'après RPA 99 version 2003 art.7.5.1 :

III.3. Les Voiles :

Le, RPA 99 V2003, (article 7.7.1), exige une épaisseur minimale de voile de 15cm. L'épaisseur du voile doit être déterminée en fonction de la hauteur libre d'étage et des conditions de rigidité aux extrémités.

 $e = max \left(\frac{he}{20}, \frac{he}{22'}, \frac{he}{25}, 15cm\right)$

Avec :

he : hauteur libre d'étage, e : épaisseur du voile.

Donc : $e \ge max$ (13,3cm, 12,9cm, 10,64cm, 15cm)

On adopte une épaisseur de voile : e≥20cm (20,25,30) cm

Pour qu'un voile puisse assurer une fonction de contreventement, sa longueur (L) doit être au moins égale à 4 fois son épaisseur : $L \ge 4e = 4x20 \ge 80$ cm.

Figure III 8: Coupe de voile en élévation

Figure III 9: Coupe de voile en plan

III.4. Les poteaux :

Le calcul de la section du béton sera fait en compression centré, les règles CBA 93 préconisent de prendre une section réduite en laissant 1cm de chaque côté en tenant compte de la ségrégation du béton.

D'après les règles BAEL91, elles préconisent de prendre la section réduite

$$Br \ge \frac{\beta * Nu}{\frac{fbc}{0.9} + 0.85 \left(\frac{fe}{\gamma s} * \frac{As}{Br}\right)}$$

Br : Section réduite d'un poteau, (cm²)

As : Section d'acier comprimée.

f_{c28} : Contrainte caractéristique du béton à 28 jours (fc28=30MPa).

 $f_{bc}: 0.85 (f_{c28}/\gamma_b) = 17$ MPa.

 γ_b Coefficient de sécurité pour le béton ($\gamma_b=1,50$).....situation durable.

 γ_s : Coefficient de sécurité pour l'acier ($\gamma s=1,15$).....situation durable.

fe : Limite d'élasticité de l'acier utilisé = 400MPa.

β: Coefficient de correction dépendant de l'élancement mécanique λ des poteaux qui prend le valeur : β = 1+0,2 (λ/35)²

On se fixe un élancement mécanique $\lambda = 35$ pour rester toujours dans le domaine de la compression centrée d'où : $\beta = 1,2$

D'après RPA99/version 2003 : A/Br = 1% (zone III)

 $Donc: B_r \ge 0.0642 N_u$

III .4.1. Evaluation des charges et des surcharges de Plancher (DTR BC 2.2) :

a. Plancher corps creux terrasse inaccessible :

 Tableau III.4.1.a 1: charges permanentes revenant au plancher terrasse inaccessible.

Désignation	e (m)	Poids volumique	Charges	
		(kN/m ³)	(kN/m ²)	
Gravillon de protection	0.05	18	0,90	
Etanchéité multicouche	0.02	6	0,12	
Isolation thermique	0.04	4	0,16	
Béton de pente	0.10	20	2,2	
Plancher à corps creux	0.21	14,53	3,05	
Enduit et plâtre	0.02	10	0,2	

• Charge permanente G = 6,63 kN/m²

• Charge d'exploitation $\mathbf{Q} = 1 \text{ kN/m}^2$

b. Plancher corps creux étage courant :

Tableau III.4.b 2: charges permanentes de la dalle de niveau étage courant

Désignation	e (m)	Poids volumique	Charges
Carrelage	0.02	20	0,4
Mortier de ciment	0.02	20	0,4
Couche de sable	0.3	18	0,54
Plancher à corps creux	0.21	/	3,05
Enduit en plâtre	0.02	10	0,2
Cloison	-	-	1

• Charge permanente $G = 5,59 \text{ kN/m}^2$

• Charge d'exploitation $\mathbf{Q} = 1,5 \text{ kN/m}^2$

c. Plancher dalle pleine terrasse inaccessible :

Désignation e (m) **Poids volumique** Charges (kN/m^3) (kN/m^2) Carrelage 0.02 20 0,4 Mortier de ciment 0.02 20 0,4 Couche de sable 0.3 18 0,54 **Plancher dalle pleine** 0.20 25 5 Enduit en plâtre 0.02 10 0,2 Cloison _ -1

 Tableau III.4.c 3: charges permanentes de la dalle de niveau terrasse inaccessible.

- Charge permanente $G = 7,54 \text{ kN/m}^2$
- Charge permanente ascenseur G = 11,25 kN
- Charge permanente $\mathbf{Q} = 1 \text{ kN/m}^2$
- d. Maçonnerie :

Tableau III.4.d 4: charges permanentes Mur Briques creuses

Matériaux	Epaisseur (m)	Poids volumiques	Poids
		(KN/m^3)	(KN/m^2)
1-Enduit intérieur au plâtre	0.02	10	0.20
2-Briques creuses	0.10	9	0.90
3-Lame d'air	-	-	0
4-Briques creuses	0.15	9	1.35
5- Enduit extérieur au ciment	0.02	18	0.36
Poids surfacique du mur			Σ G= 2.81

e. Charges exploitation :

Tableau III.4.e 5: charges exploitation

Eléments	Surcharges Q (KN/m ²)
Terrasse inaccessible	$1.00 (KN/m^2)$
Habitation	$1.50 (KN/m^2)$
Balcon	3.50 (KN/m ²)
Escaliers	2.50 (KN/m ²)
Main courante (Acrotère)	1.00 (KN/ml)

III.4.2. Acrotère :

$$S = [(0.1 \times 0.6) + (0.08 \times 0.1) + (\frac{(0.10 \times 0.02)}{2})] =$$

 $0.069 \ m^2$

Propre = $(0,069 \times 25) = 1,725 \text{ kN/ml}$

- Poids propre de revêtement $[2 \times 0.02 \times (0.6 + 0.1)] \times 15 = 0.42 \text{ kN/m}$
- **Poids totaux d'acrotère** = 2,145 kN/ml
- Charges d'exploitation Q = 1 kN/ml.

Figure III 10: Vues en 3D de l'acrotère.

III.4.3. Descente de charge

III.4.3.1 -Loi de Dégression : (DTR B.C.2.2)

Soit Q_0 la charge d'exploitation sur la toiture de la terrasse couvrant le bâtiment, Q_1 , Q_2 , Q_3 Q_n les charges d'exploitation respectives des plancher des étages (1,2,3...., n) numérotés à partir du sommet du bâtiment.

On adoptera pour le calcul des points d'appuis des charges d'exploitation suivantes :

- Sous la terrasse : Q₀
- Sous la terrasse étage à partir du sommet : Q₀ + Q₁
- <u>Sous le 24^{em} étage</u> : Q₀ + 0.9 (Q₁ + Q₂)
- Sous le 23^{em} étage : $Q_0 + 0.8 (Q_1 + Q_2 + Q_3)$
- <u>Sous le 22^{em} étage</u> : $Q_0 + 0.7 (Q_1 + Q_2 + Q_3 + Q_4)$
- <u>Sous le 21^{em} étage</u> : $Q_0 + 0.6 (Q_1 + Q_2 + Q_3 + Q_4 + Q_5)$
- <u>Sous le 20^{em} étage</u> : $Q_0 + 0,5 (Q_1 + Q_{2+}Q_3 + Q_4 + Q_{5+}Q_6)$
- Sous le 19^{em} étage : $Q_0 + 0.5 (Q_1 + Q_{2+}Q_3 + Q_4 + Q_{5+}Q_{6+}Q_7)$
- <u>Sous le 18^{em} étage</u> : $Q_0 + 0,5 (Q_1 + Q_{2+}Q_3 + Q_4 + Q_{5+}Q_{6+}Q_{7+}Q_8)$
- Sous le 17^{em} étage : $Q_0 + 0.5 (Q_1 + Q_{2+}Q_3 + Q_4 + Q_{5+}Q_{6+}Q_{7+}Q_{8+}Q_9)$
- Sous le 16^{em} étage : $Q_0 + 0.5 (Q_1 + Q_{2+}Q_3 + Q_4 + Q_{5+}Q_{6+}Q_{7+}Q_{8+}Q_{9+}Q_{10})$
- <u>Sous le 15^{em} étage</u> : $Q_0 + 0.5 (Q_1 + Q_{2+}Q_3 + Q_4 + Q_{5+}Q_{6+}Q_{7+}Q_{8+}Q_{9+}Q_{10+}Q_{11})$
- <u>Sous le 14^{em} étage</u> : Q₀ + 0,5 (Q₁ + Q₂₊ Q₃ + Q₄ + Q₅₊ Q₆₊ Q₇₊ Q₈₊ Q₉₊ Q₁₀₊ Q₁₁₊ Q₁₂)
- Sous le 13^{em} étage : $Q_0 + 0,5 (Q_1 + Q_{2+}Q_3 + Q_4 + Q_{5+}Q_6 + Q_{7+}Q_{8+}Q_{9+}Q_{10+}Q_{11+}Q_{12+}Q_{13})$
- Sous le 12^{em} étage : $Q_0 + 0,5(Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6 + Q_7 + Q_8 + Q_9 + Q_{10} + Q_{11} + Q_{12} + Q_{13} + Q_{14})$
- <u>Sous le 11^{em} étage</u> : $Q_0 + 0,5 (Q_1 + Q_{2+} Q_3 + Q_4 + Q_{5+} Q_{6+} Q_{7+} Q_{8+} Q_{9+} Q_{10+} Q_{11+} Q_{12+} Q_{13+} Q_{14+} Q_{15})$
- Sous le 10^{em} étage : $Q_0+0,5(Q_1+Q_2+Q_3+Q_4+Q_5+Q_6+Q_7+Q_8+Q_9+Q_{10}+Q_{11}+Q_{12}+Q_{13}+Q_{14}+Q_{15}+Q_{16})$

Chapitre III

- Sous le 9^{em} étage : $Q_0+0,5(Q_1+Q_2+Q_3+Q_4+Q_5+Q_6+Q_7+Q_8+Q_9+Q_{10}+Q_{11}+Q_{12}+Q_{13}+Q_{14}+Q_{15}+Q_{16}+Q_{17})$
- Sous le 8^{em} étage : $Q_0+0,5(Q_1+Q_2+Q_3+Q_4+Q_5+Q_6+Q_7+Q_8+Q_9+Q_{10}+Q_{11}+Q_{12}+Q_{13}+Q_{14}+Q_{15}+Q_{16}+Q_{17}+Q_{18})$
- Sous le 7^{em} étage $Q_0+0,5(Q_1+Q_2+Q_3+Q_4+Q_{5+}Q_{6+}Q_{7+}Q_{8+}Q_{9+}Q_{10+}Q_{11+}Q_{12+}Q_{13+}Q_{14+}Q_{15+}Q_{16+}Q_{17+}Q_{18+}Q_{19})$
- Sous le 6^{em} étage : $Q_0+0,5(Q_1+Q_2+Q_3+Q_4+Q_5+Q_6+Q_7+Q_8+Q_9+Q_{10}+Q_{11}+Q_{12}+Q_{13}+Q_{14}+Q_{15}+Q_{16}+Q_{17}+Q_{18}+Q_{19}+Q_{20})$
- Sous le 5^{em} étage : $Q_0+0,5(Q_1+Q_2+Q_3+Q_4+Q_5+Q_6+Q_7+Q_8+Q_9+Q_{10}+Q_{11}+Q_{12}+Q_{13}+Q_{14}+Q_{15}+Q_{16}+Q_{17}+Q_{18}+Q_{19}+Q_{20}+Q_{21})$
- Sous le 4^{em} étage : $Q_0+0,5(Q_1+Q_2+Q_3+Q_4+Q_5+Q_6+Q_7+Q_8+Q_9+Q_{10}+Q_{11}+Q_{12}+Q_{13}+Q_{14}+Q_{15}+Q_{16}+Q_{17}+Q_{18}+Q_{19}+Q_{20}+Q_{21}+Q_{22})$
- Sous le 3^{em} étage : $Q_0+0,5(Q_1+Q_2+Q_3+Q_4+Q_5+Q_6+Q_7+Q_8+Q_9+Q_{10}+Q_{11}+Q_{12}+Q_{13}+Q_{14}+Q_{16}+Q_{17}+Q_{18}+Q_{19}+Q_{20}+Q_{21}+Q_{22}+Q_{23})$
- Sous le 2^{em} étage : $Q_0+0,5(Q_1+Q_2+Q_3+Q_4+Q_{5+}Q_{6+}Q_{7+}Q_{8+}Q_{9+}Q_{10+}Q_{11+}Q_{12+}Q_{13+}Q_{14+}Q_{15+}Q_{16+}Q_{17+}Q_{18+}Q_{19+}Q_{20+}Q_{21+}Q_{22+}Q_{23+}Q_{24})$
- Sous le 1^{em} étage : $Q_0+0,5(Q_1+Q_2+Q_3+Q_4+Q_5+Q_6+Q_7+Q_8+Q_9+Q_{10}+Q_{11}+Q_{12}+Q_{13}+Q_{14}+Q_{15}+Q_{16}+Q_{17}+Q_{18}+Q_{19}+Q_{20}+Q_{21}+Q_{22}+Q_{23}+Q_{24}+Q_{25})$
- Pour n \geq 5 Coefficient de réduction limité à 0,5
 - Dans notre cas :
 - ➢ Un bâtiment en béton armé (R+25)
 - > Plancher RDC plus 25 étages d'habitation $Q = 1.5 \text{ KN/m}^2$
 - > Plancher terrasse (non accessible) $Q = 1 \text{ KN/m}^2$
 - \triangleright
 - Charge d'exploitation
 - Plancher terrasse \Rightarrow Q=22,275x1= **22,275kN**
 - Plancher courant et RDC \Rightarrow Q=1.5x22,0725=**33,109** kN

III.4.3.2-Poteau central :

Figure III 11: surface d'influence de poteau central.

• La surface d'influence :

 $S = (2,35 \times 1,75) + (2,35 \times 2,35) + (1,6 \times 1,75) + (1,6 \times 2,35)$

 $S = 16,195 \text{ m}^2$

 $s_{tot} = 18,7m^2$

Les résultats de la descente des charges du poteau central sont donnés :

a. Poteau de la terrasse :

• Charge permanente :

 $Srvt = 18,7 m^2$

Plancher terrasse = 16,195 (2,35×2,35) × 3,05+(2,35×2,35) ×0,2×25 =60,27 kN

Poids de revêtement = $18,7 \times 3,58 = 66,946$ kN

Poids de la poutre principal = $\rho b \times . lpp \times h \times b = 25 \times 4, 1 \times 0, 4 \times 0.3 = 12,3$ kN

• Poids de la poutre secondaire = $\rho b \times . lps \times h \times b = 25 \times 3,95 \times 0,40 \times 0.3 = 11.8$ kN.

Poids du Poteau = $\rho b \times lp \times a \times b=25[3.06x0,30^2]=6,885$ kN.

- Charge d'exploitation $Q_0=QxS=1x18,7=18,7$ kN \longrightarrow Q=18,7 kN
- b. Poteau des étages courantes :

 $Srvt = 18.7m^2$

• Charge permanente :

Plancher étage = $10,67 \times 3,05 + 3,535 \times 0,2 \times 25 = 50,219$ kN

- Poids de revêtement =13,178 × 2,54 + 4,08×2,74= 44,51 kN
- Poids de la poutre principal = $\rho b \times . lpp \times h \times b = 25 \times 4, 1 \times 0, 4 \times 0.3 = 12,3$

kN

Poids de la poutre secondaire = $\rho b \times . lps \times h \times b = 25 \times 3,95 \times 0,40 \times 0.3 = 11.85$ kN.

Poids du Poteau = $\rho b \times lp \times a \times b$ =25[3.06x0,3²] =6,885 kN.

$$G = 125,905 \text{ kN}$$

• Charge d'exploitation :

• Q₀=QxS=1.5x18,7=28,05 kN → Q=28,05 kN

РОТ	G POT	G PP	G PS	G plancher	G étage	G cum
Unité	kN	kN	kN	kN	kN	kN
25 eme	6,885	11,85	12,3	126,99	158,025	158,0245
24 eme	6,885	11,85	12,3	94,89482	125,92982	283,95432
23 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	409,88414
22 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	535,81396
21 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	661,74378
20 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	787,6736
19 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	916,08967
18 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	1044,5057
17 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	1175,7906
16 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	1307,0754
15 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	1438,3602
14 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	1572,8963
13 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	1707,4323
12 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	1841,9684
11 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	1976,5045
10 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	2114,6743
9 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	2252,8441
8 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	2391,0139
7 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	2533,2
6 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	2675,3861
5 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	2817,5722
4 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	2959,7582
3 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	3101,9443
2 ^{eme}	6,885	11,85	12,3	94,89482	125,92982	3248,5291
1 ^{er}	6,885	11,85	12,3	94,89482	125,92982	3395,1139
RDC	6,885	11,85	12,3	94,89482	125,92982	3541,6988
S/SOL	6,885	11,85	12,3	94,89482	125,92982	3688,2836

Tableau III 1: charge permanente qui convient de poteau central.

les	S	S	S	S tra	Unhitation	asa hah	Dalaan	0	0 oum
niveau	plancher	escalier	balcon	5 115	паонанон	esc nao	Dalcoll	Q	Q cum
unité	m^2	m^2	m^2	m^2	kN/m^2	kN/m^2	kN/m^2	kN	kN
TRS	18,7	0	0	0	1	1	1	18,7	18,7
25 eme	13,178	4,08	0	0				29,967	48,667
24 eme	13,178	4,08	0	0				29,967	75,6373
23 ^{eme}	13,178	4,08	0	0	1,5	2,5	3,5	29,967	99,6109
22 ^{eme}	13,178	4,08	0	0				29,967	120,5878
21 ^{eme}	13,178	4,08	0	0				29,967	138,568
20 ^{eme}	13,178	4,08	0	0				29,967	153,5515
19 eme	13,178	4,08	0	0				29,967	168,535
18 ^{eme}	13,178	4,08	0	0				29,967	183,5185
17 ^{eme}	13,178	4,08	0	0				29,967	198,502
16 ^{eme}	13,178	4,08	0	0				29,967	213,4855
15 ^{eme}	13,178	4,08	0	0				29,967	228,469
14 ^{eme}	13,178	4,08	0	0				29,967	243,4525
13 ^{eme}	13,178	4,08	0	0				29,967	258,436
12 ^{eme}	13,178	4,08	0	0				29,967	273,4195
11 ^{eme}	13,178	4,08	0	0				29,967	288,403
10 ^{eme}	13,178	4,08	0	0				29,967	303,3865
9 ^{eme}	13,178	4,08	0	0				29,967	318,37
8 ^{eme}	13,178	4,08	0	0				29,967	333,3535
7 ^{eme}	13,178	4,08	0	0				29,967	348,337
6 ^{eme}	13,178	4,08	0	0				29,967	363,3205
5 ^{eme}	13,178	4,08	0	0				29,967	378,304
4 ^{eme}	13,178	4,08	0	0				29,967	393,2875
3 ^{eme}	13,178	4,08	0	0	1			29,967	408,271
2 ^{eme}	13,178	4,08	0	0	1			29,967	423,2545
1 ^{er}	13,178	4,08	0	0	1			29,967	438,238
RDC	13,178	4,08	0	0]			29,967	453,2215

Tableau III 2: charge d'exploitation de poteau central.

Les niveau	G	Q	Ns	Nu
Unité	kN	kN	kN	kN
25 eme	158,0245	18,7	176,7245	241,38308
24 eme	283,95432	48,667	332,62132	456,33883
23 ^{eme}	409,88414	75,6373	485,52144	666,79954
22 ^{eme}	535,81396	99,6109	635,42486	872,7652
21 ^{eme}	661,74378	120,5878	782,33158	1074,2358
20 ^{eme}	787,6736	138,568	926,2416	1271,2114
19 eme	916,08967	153,5515	1069,6412	1467,0483
18 ^{eme}	1044,5057	168,535	1213,0407	1662,8852
17 ^{eme}	1175,7906	183,5185	1359,3091	1862,595
16 ^{eme}	1307,0754	198,502	1505,5774	2062,3048
15 ^{eme}	1438,3602	213,4855	1651,8457	2262,0145
14 ^{eme}	1572,8963	228,469	1801,3653	2466,1135
13 ^{eme}	1707,4323	243,4525	1950,8848	2670,2124
12 ^{eme}	1841,9684	258,436	2100,4044	2874,3114
11 ^{eme}	1976,5045	273,4195	2249,924	3078,4103
10 ^{eme}	2114,6743	288,403	2403,0773	3287,4148
9 ^{eme}	2252,8441	303,3865	2556,2306	3496,4193
8 ^{eme}	2391,0139	318,37	2709,3839	3705,4238
7 ^{eme}	2533,2	333,3535	2866,5535	3919,8503
6 ^{eme}	2675,3861	348,337	3023,7231	4134,2767
5 ^{eme}	2817,5722	363,3205	3180,8927	4348,7032
4 ^{eme}	2959,7582	378,304	3338,0622	4563,1296
3 ^{eme}	3101,9443	393,2875	3495,2318	4777,556
2 ^{eme}	3248,5291	408,271	3656,8001	4997,9208
1 ^{er}	3395,1139	423,2545	3818,3684	5218,2856
RDC	3541,6988	438,238	3979,9368	5438,6503
S/SOL	3688,2836	453,2215	4141,5051	5659,0151

 Tableau III 3: les efforts normaux de poteau central.

• FeE = 500MPa ; fc28= 30MPa ; γ_b =1,5 ; γ_s = 1,15 ; fbc=17 MPa

• Br $\ge 0,0542^*$ Nu

les niveau	a calculé	a choisit	b calculé	b choisit	a final	b final
unité	m	m	m	m	cm	cm
25 eme	0,214	0,3	0,067	0,3	30	30
24 eme	0,214	0,3	0,108	0,3	30	30
23 ^{eme}	0,214	0,3	0,149	0,3	30	30
22 ^{eme}	0,214	0,3	0,189	0,3	30	30
21 ^{eme}	0,214	0,3	0,228	0,3	30	30
20 ^{eme}	0,214	0,3	0,266	0,3	30	30
19 eme	0,214	0,3	0,304	0,35	35	35
18 ^{eme}	0,214	0,3	0,342	0,4	35	35
17 ^{eme}	0,214	0,3	0,380	0,45	40	40
16 ^{eme}	0,214	0,3	0,419	0,45	40	40
15 ^{eme}	0,214	0,3	0,458	0,5	40	40
14 ^{eme}	0,214	0,3	0,497	0,55	45	45
13 ^{eme}	0,214	0,3	0,537	0,6	45	45
12 ^{eme}	0,214	0,3	0,576	0,65	45	45
11 ^{eme}	0,214	0,3	0,616	0,65	45	45
10 ^{eme}	0,214	0,3	0,656	0,7	50	50
9 ^{eme}	0,214	0,3	0,697	0,75	50	50
8 ^{eme}	0,214	0,3	0,737	0,8	50	50
7 ^{eme}	0,214	0,3	0,778	0,85	55	55
6 ^{eme}	0,214	0,3	0,820	0,85	55	55
5 ^{eme}	0,214	0,3	0,861	0,9	55	55
4 ^{eme}	0,214	0,3	0,903	0,95	55	55
3 ^{eme}	0,214	0,3	0,944	1	55	55
2 ^{eme}	0,214	0,3	0,987	1,05	60	60
1 ^{er}	0,214	0,3	1,030	1,1	60	60
RDC	0,214	0,3	1,072	1,1	60	60
S/SOL	0,214	0,3	1,115	1,15	60	60

Tableau III 4: choix a et b de poteau central.

III.4.3.3. Poteau de rive :

Figure III 12: surface d'influence de poteau de rive

• La surface d'influence :

 $S = (1,85 \times 1,6) + (1,85 \times 2,35)$

 $S = 7,3075 m^2$

$$s_{tot} = 9,1375 \text{ m}^2$$

Les résultats de la descente des charges du poteau central sont donnés :

a. Poteau de la terrasse :

• Charge permanente :

 $Srvt = 9,14 m^2$

Plancher terrasse = $7,307 \times 3,05 = 22,286$ kN

Poids de revêtement = $9,138 \times 3,58 = 32,71$ kN

Poids de la poutre principal = $\rho b \times . lpp \times h \times b = 25 \times 1,85 \times 0,4 \times 0.3 = 5,55$ kN

Poids de la poutre secondaire = $\rho b \times .lps \times h \times b = 25 \times 3,95 \times 0,40 \times 0.3 = 11.85$ kN.

Poids du Poteau = $\rho b \times lp \times a \times b=25[3.06x0,30^2]=6,885$ kN.

Poids du l'acrotère = 9,32 kN

• Charge d'exploitation : Q₀=QxS=1x9,14 =9,14 kN ____ Q= 9,14 KN

Chapitre III

b. Poteau des étages courantes :

 $Srvt = 9.14m^2$

• Charge permanente :

Plancher étage = $7,307 \times 3,05 = 22,287$ kN

Poids de revêtement = $9,14 \times 2,54 = 23,22$ kN

Poids de la poutre principal = $\rho b \times . lpp \times h \times b = 25 \times 1,85 \times 0,4 \times 0.3 = 5,55$ kN

Poids de la poutre secondaire = $\rho b \times . lps \times h \times b = 25 \times 3,95 \times 0,40 \times 0.3 = 11.85$ kN.

Poids du Poteau = $\rho b \times lp \times a \times b=25[3.06x0,3^2]=6,885$ kN.

Poids du murs extérieur = (2,35+1,6) $(3,06-0,4) \times 2,81 = 29,247$ kN.

- Charge d'exploitation :
 - Q₀=QxS=1.5x9,14=13,71 kN → Q=13,71 kN

РОТ	G POT	G PP	G PS	G plancher	G acro	G mur	G etage	G cum
	kN	kN	kN	kN	kN	kN	kN	kN
25 eme	6,89	5,55	11,85	55,00	9,32	0,00	88,61	88,61
24 eme	6,89	5,55	11,85	45,27	0,00	29,53	99,212	187,817
23 ^{eme}	6,89	5,55	11,85	45,27	0,00	29,525	99,212	287,028
22 ^{eme}	6,89	5,55	11,85	45,27	0,00	29,5247	99,212	386,240
21 ^{eme}	6,89	5,55	11,85	45,27	0,00	29,5247	99,212	485,452
20 ^{eme}	6,89	5,55	11,85	45,27	0,00	29,5247	99,212	584,663
19 ^{eme}	9,37	5,55	11,85	45,27	0,00	29,5247	99,212	683,875
18 ^{eme}	9,37	5,55	11,85	45,27	0,00	29,5247	99,212	783,086
17 ^{eme}	12,24	5,55	11,85	45,27	0,00	29,5247	99,212	882,298
16 ^{eme}	12,24	5,55	11,85	45,27	0,00	29,5247	99,212	981,509
15 ^{eme}	12,24	5,55	11,85	45,27	0,00	29,5247	99,212	1080,721
14 ^{eme}	15,49	5,55	11,85	45,27	0,00	29,5247	99,212	1179,932
13 ^{eme}	15,49	5,55	11,85	45,27	0,00	29,5247	99,212	1279,144
12 ^{eme}	15,49	5,55	11,85	45,27	0,00	29,5247	99,212	1378,355
11 ^{eme}	15,49	5,55	11,85	45,27	0,00	29,5247	99,212	1477,567
10 ^{eme}	19,13	5,55	11,85	45,27	0,00	29,5247	99,212	1576,779
9 ^{eme}	19,13	5,55	11,85	45,27	0,00	29,5247	99,212	1675,990
8 ^{eme}	19,13	5,55	11,85	45,27	0,00	29,5247	99,212	1775,202
7 ^{eme}	23,14	5,55	11,85	45,27	0,00	29,5247	99,212	1874,413
6 ^{eme}	23,14	5,55	11,85	45,27	0,00	29,5247	99,212	1973,625
5 ^{eme}	23,14	5,55	11,85	45,27	0,00	29,5247	99,212	2072,836
4 ^{eme}	23,14	5,55	11,85	45,27	0,00	29,5247	99,212	2172,048
3 ^{eme}	23,14	5,55	11,85	45,27	0,00	29,5247	99,212	2271,259
2 ^{eme}	27,54	5,55	11,85	45,27	0,00	29,5247	99,212	2370,471
1 ^{er}	27,54	5,55	11,85	45,27	0,00	29,5247	99,212	2469,682
RDC	27,54	5,55	11,85	45,27	0,00	29,5247	99,212	2568,894
S/SOL	27,54	5,55	11,85	45,27	0,00	29,5247	99,212	2668,106

Tableau III 5: charge permanente qui convient de poteau Rive.

Les niveau	Les niveau	S plancher	Habitation	esc hab	Balcon	Q	Q cum
unité		m^2	kN/m^2	kN/m^2	kN/m^2	kN	kN
TRS	0	9,14	1,00	1,00	1,00	9,14	9,14
25 eme	1	9,05				13,57	22,71
24 eme	2	9,05				13,57	34,92
23 ^{eme}	3	9,05	1,50	2,50	3,50	13,57	45,78
22 ^{eme}	4	9,05				13,57	55,28
21 ^{eme}	5	9,05				13,57	63,42
20 ^{eme}	6	9,05				13,57	70,21
19 eme	7	9,05				13,57	76,99
18 ^{eme}	8	9,05				13,57	83,78
17 ^{eme}	9	9,05				13,57	90,56
16 ^{eme}	10	9,05				13,57	97,35
15 ^{eme}	11	9,05				13,57	104,14
14 ^{eme}	12	9,05				13,57	110,92
13 ^{eme}	13	9,05]			13,57	117,71
12 ^{eme}	14	9,05				13,57	124,49
11 ^{eme}	15	9,05				13,57	131,28
10 ^{eme}	16	9,05				13,57	138,06
9 ^{eme}	17	9,05]			13,57	144,85
8 ^{eme}	18	9,05				13,57	151,64
7 ^{eme}	19	9,05				13,57	158,42
6 ^{eme}	20	9,05				13,57	165,21
5 ^{eme}	21	9,05				13,57	171,99
4 ^{eme}	22	9,05				13,57	178,78
3 ^{eme}	23	9,05]			13,57	185,56
2 ^{eme}	24	9,05]			13,57	192,35
1 ^{er}	25	9,05]			13,57	199,13
RDC	26	9,05				13,57	205,92

Tableau III 6: charge d'exploitation de poteau Rive.
les niveau	G	0	Ne	Nu
Unitá			110 1/N	1 Vu 1/N
25 eme	88.61	0.137	07 7/3	122 32/
23	107.017	9,137 22,709	210 (04	133,324
24 °	18/,81/	22,708	210,604	28/,/34
23^{eme}	287,028	34,922	322,101	440,097
22 ^{eme}	386,240	45,779	432,233	590,413
21 ^{eme}	485,452	55,279	540,999	738,681
20 ^{eme}	584,663	63,422	648,401	884,901
19 ^{eme}	683,875	70,208	754,437	1029,075
18 ^{eme}	783,086	76,993	860,474	1173,248
17 ^{eme}	882,298	83,779	966,510	1317,421
16 ^{eme}	981,509	90,565	1072,547	1461,594
15 ^{eme}	1080,721	97,350	1178,583	1605,767
14 ^{eme}	1179,932	104,136	1284,620	1749,940
13 ^{eme}	1279,144	110,921	1390,656	1894,113
12 ^{eme}	1378,355	117,707	1496,693	2038,286
11 ^{eme}	1477,567	124,493	1602,730	2182,459
10 ^{eme}	1576,779	131,278	1708,766	2326,632
9 ^{eme}	1675,990	138,064	1814,803	2470,805
8 ^{eme}	1775,202	144,850	1920,839	2614,978
7 ^{eme}	1874,413	151,635	2026,876	2759,152
6 ^{eme}	1973,625	158,421	2132,912	2903,325
5 ^{eme}	2072,836	165,206	2238,949	3047,498
4 ^{eme}	2172,048	171,992	2344,985	3191,671
3 ^{eme}	2271,259	178,778	2451,022	3335,844
2 ^{eme}	2370,471	185,563	2557,058	3480,017
1 ^{er}	2469,682	192,349	2663,095	3624,190
RDC	2568,894	199,135	2769,132	3768,363
S/SOL	2668,106	205,920	2875,168	3912,536

Tableau III 7: l'effort normal de poteau Rive.

les niveau	a caclulé	a choisit	b calculé	b choisit	a final	b final
unité	m	m	m	m	cm	cm
25 eme	0,214	0,3	0,046	0,3	30	30
24 eme	0,214	0,3	0,076	0,3	30	30
23 ^{eme}	0,214	0,3	0,105	0,3	30	30
22 ^{eme}	0,214	0,3	0,134	0,3	30	30
21 ^{eme}	0,214	0,3	0,163	0,3	30	30
20 ^{eme}	0,214	0,3	0,191	0,3	30	30
19 ^{eme}	0,214	0,3	0,219	0,3	30	30
18 ^{eme}	0,214	0,3	0,247	0,3	30	30
17 ^{eme}	0,214	0,3	0,275	0,3	30	30
16 ^{eme}	0,214	0,3	0,303	0,35	35	35
15 ^{eme}	0,214	0,3	0,331	0,35	35	35
14 ^{eme}	0,214	0,3	0,359	0,4	35	35
13 ^{eme}	0,214	0,3	0,386	0,4	35	35
12 ^{eme}	0,214	0,3	0,414	0,45	40	40
11 ^{eme}	0,214	0,3	0,442	0,45	40	40
10 ^{eme}	0,214	0,3	0,470	0,5	40	40
9 ^{eme}	0,214	0,3	0,498	0,5	40	40
8 ^{eme}	0,214	0,3	0,526	0,55	45	45
7 ^{eme}	0,214	0,3	0,554	0,6	45	45
6 ^{eme}	0,214	0,3	0,582	0,6	45	45
5 ^{eme}	0,214	0,3	0,610	0,65	45	45
4 ^{eme}	0,214	0,3	0,638	0,65	45	45
3 ^{eme}	0,214	0,3	0,665	0,7	50	50
2 ^{eme}	0,214	0,3	0,693	0,7	50	50
1 ^{er}	0,214	0,3	0,721	0,75	50	50
RDC	0,214	0,3	0,749	0,75	50	50
S/SOL	0,214	0,3	0,777	0,8	50	50

Tableau III 8: choix a et b de poteau Rive.

III.4.3.4. Poteau d'angle :

Figure III 13: surface d'influence de poteau d'angle

• La surface d'influence :

S =1,85×1,6

 $S = 2,96 \text{ m}^2$

$$s_{tot} = 3, 5 m^2$$

Les résultats de la descente des charges du poteau central sont donnés :

- a. Poteau de la terrasse :
 - Charge permanente :

 $Srvt = 3,5 m^2$

Plancher terrasse = $2,96 \times 3,05 = 9,028$ kN

Poids de revêtement = $3,5 \times 3,58 = 12,53$ kN

Poids de la poutre principal = $\rho b \times . lpp \times h \times b = 25 \times 1,85 \times 0,4 \times 0.3 = 5,55$ kN

Poids de la poutre secondaire = $\rho b \times . lps \times h \times b = 25 \times 1,6 \times 0,40 \times 0.3 = 4.8$ kN.

Poids du Poteau = $\rho b \times lp \times a \times b=25[3.06 \times 0.30^2]=6,885$ kN.

Poids du l'acrotère = 8 kN

• Charge d'exploitation $Q_0=QxS=1x3,5=3,5$ kN $\longrightarrow Q=3,5$ kN

Chapitre III

b. Poteau des étages courantes :

 $Srvt = 3.41m^2$

• Charge permanente :

Plancher étage = $2,96 \times 3,05 = 9,028$ kN

Poids de revêtement = $3,41 \times 2,54 = 8,66$ kN

Poids de la poutre principal = $\rho b \times . lpp \times h \times b = 25 \times 1,85 \times 0,4 \times 0.3 = 5,55$ kN

Poids de la poutre secondaire = $\rho b \times . lps \times h \times b = 25 \times 1,6 \times 0,40 \times 0.3 = 4.8$ kN.

Poids du Poteau = $\rho b \times lp \times a \times b$ =25[3.06x0,3²] =6,885 kN.

Poids du murs extérieur = (1,85+1,6) $(3,06-0,4) \times 2,81 = 25,787$ kN.

$$G = 55, 71 \text{ kN}$$

- Charge d'exploitation :
 - Q₀=QxS=1.5x3,41=5,115 kN _____ Q=5,115 kN

Chapitre III

РОТ	G POT	G PP	G PS	G plancher	G acro	G mur	G etage	G cum
unité	kN	kN	kN	kN	kN	kN	kN	kN
25 ^{eme}	6,885	5,55	4,98	21,89655	8,00445	0	46,797	46,797
24 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	107,509
23 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	168,221
22 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	228,933
21 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	289,645
20 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	350,356
19 eme	6,885	5,55	4,98	18,02795	0	25,78737	60,712	411,068
18 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	471,780
17 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	532,492
16 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	593,203
15 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	653,915
14 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	714,627
13 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	775,339
12 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	836,050
11 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	896,762
10 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	957,474
9 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	1018,186
8 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	1078,898
7 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	1139,609
6 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	1200,321
5 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	1261,033
4 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	1321,745
3 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	1382,456
2 ^{eme}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	1443,168
1 ^{er}	6,885	5,55	4,98	18,02795	0	25,78737	60,712	1503,880
RDC	6,885	5,55	4,98	18,02795	0	25,78737	60,712	1564,592
S/SOL	6,885	5,55	4,98	18,02795	0	25,78737	60,712	1625,303

Tableau III 9: charge permanente qui convient de poteau d'angle.

les niveau	les niveau	S plancher	Habitation	esc hab	Balcon	Q	Q cum
Unité		m^2	kN/m^2	kN/m^2	kN/m^2	kN	kN
TRS	0	3,5	1	1	1	3,5	3,5
25 eme	1	3,41				5,115	8,615
24 eme	2	3,41				5,115	13,2185
23 ^{eme}	3	3,41	1,5	2,5	3,5	5,115	17,3105
22 ^{eme}	4	3,41				5,115	20,891
21 ^{eme}	5	3,41				5,115	23,96
20 ^{eme}	6	3,41				5,115	26,5175
19 ^{eme}	7	3,41				5,115	29,075
18 ^{eme}	8	3,41				5,115	31,6325
17 ^{eme}	9	3,41				5,115	34,19
16 ^{eme}	10	3,41				5,115	36,7475
15 ^{eme}	11	3,41				5,115	39,305
14 ^{eme}	12	3,41				5,115	41,8625
13 ^{eme}	13	3,41				5,115	44,42
12 ^{eme}	14	3,41				5,115	46,9775
11 ^{eme}	15	3,41				5,115	49,535
10 ^{eme}	16	3,41				5,115	52,0925
9 ^{eme}	17	3,41				5,115	54,65
8 ^{eme}	18	3,41				5,115	57,2075
7 ^{eme}	19	3,41				5,115	59,765
6 ^{eme}	20	3,41				5,115	62,3225
5 ^{eme}	21	3,41				5,115	64,88
4 ^{eme}	22	3,41				5,115	67,4375
3 ^{eme}	23	3,41				5,115	69,995
2 ^{eme}	24	3,41				5,115	72,5525
1 ^{er}	25	3,41				5,115	75,11
RDC	26	3,41				5,115	77,6675

Tableau III 10: charge d'exploitation de	e poteau d'a	ngle.
--	--------------	-------

les niveau	G	Q	Ns	Nu
unité	kN	kN	kN	kN
25 eme	46,797	3,5	50,297	68,427
24 eme	107,509	8,615	116,124	158,060
23 ^{eme}	168,221	13,2185	181,439	246,926
22 ^{eme}	228,933	17,3105	246,243	335,025
21 ^{eme}	289,645	20,891	310,536	422,357
20 ^{eme}	350,356	23,96	374,316	508,921
19 eme	411,068	26,5175	437,586	594,718
18 ^{eme}	471,780	29,075	500,855	680,515
17 ^{eme}	532,492	31,6325	564,124	766,312
16 ^{eme}	593,203	34,19	627,393	852,110
15 ^{eme}	653,915	36,7475	690,663	937,907
14 ^{eme}	714,627	39,305	753,932	1023,704
13 ^{eme}	775,339	41,8625	817,201	1109,501
12 ^{eme}	836,050	44,42	880,470	1195,298
11 ^{eme}	896,762	46,9775	943,740	1281,095
10 ^{eme}	957,474	49,535	1007,009	1366,892
9 ^{eme}	1018,186	52,0925	1070,278	1452,690
8 ^{eme}	1078,898	54,65	1133,548	1538,487
7 ^{eme}	1139,609	57,2075	1196,817	1624,284
6 ^{eme}	1200,321	59,765	1260,086	1710,081
5 ^{eme}	1261,033	62,3225	1323,355	1795,878
4 ^{eme}	1321,745	64,88	1386,625	1881,675
3 ^{eme}	1382,456	67,4375	1635,2843	2217,7494
2 ^{eme}	1443,168	69,995	1719,7271	2332,1308
1 ^{er}	1503,880	72,5525	1804,1699	2446,5123
RDC	1564,592	75,11	1888,6128	2560,8937
S/SOL	1625,303	77,6675	1973,0556	2675,2751

 Tableau III 11: l'effort normal de poteau d'angle le plus sollicité.

les niveau	a caclulé	a choisit	b calculé	b choisit	a final	b final
Unité	m	m	m	m	cm	cm
25 ^{eme}	0,214	0,3	0,033	0,3	30	30
24 eme	0,214	0,3	0,051	0,3	30	30
23 ^{eme}	0,214	0,3	0,068	0,3	30	30
22 ^{eme}	0,214	0,3	0,085	0,3	30	30
21 ^{eme}	0,214	0,3	0,102	0,3	30	30
20 ^{eme}	0,214	0,3	0,118	0,3	30	30
19 ^{eme}	0,214	0,3	0,135	0,3	30	30
18 ^{eme}	0,214	0,3	0,152	0,3	30	30
17 ^{eme}	0,214	0,3	0,168	0,3	30	30
16 ^{eme}	0,214	0,3	0,185	0,3	30	30
15 ^{eme}	0,214	0,3	0,201	0,3	30	30
14 ^{eme}	0,214	0,3	0,218	0,3	30	30
13 ^{eme}	0,214	0,3	0,235	0,3	30	30
12 ^{eme}	0,214	0,3	0,251	0,3	30	30
11 ^{eme}	0,214	0,3	0,268	0,3	30	30
10 ^{eme}	0,214	0,3	0,284	0,3	30	30
9 ^{eme}	0,214	0,3	0,301	0,35	35	35
8 ^{eme}	0,214	0,3	0,318	0,35	35	35
7 ^{eme}	0,214	0,3	0,334	0,35	35	35
6 ^{eme}	0,214	0,3	0,351	0,4	35	35
5 ^{eme}	0,214	0,3	0,367	0,4	35	35
4 ^{eme}	0,214	0,3	0,384	0,4	35	35
3 ^{eme}	0,214	0,3	0,401	0,45	40	40
2 ^{eme}	0,214	0,3	0,417	0,45	40	40
1 ^{er}	0,214	0,3	0,434	0,45	40	40
RDC	0,214	0,3	0,450	0,45	40	40
S/SOL	0,214	0,3	0,467	0,5	40	40

 Tableau III 12: choix a et b de poteau d'angle.

III.4.3.5. Vérification de la rigidité :

- Poteau 30*30 :

Tableau III 13: Vérification de la rigidité de poteau 30*30

	b (m)	h (m)	L (m)	I=bh ³ /12 (m ⁴)	K=I/L (m ⁴)
Poteau	0,3	0,3	3,06	0,000675	2,21E-04
Poutre	0,3	0,4	4,7	0,0016	3,40E-04

K_{poteau} < K_{poutre} condition non vérifiée.

- Poteau 35*35 :

Tableau III 14: Vérification de la rigidité de poteau 35*35

	b (m)	h (m)	L (m)	I=bh ³ /12 (m ⁴)	K=I/L (m ⁴)
Poteau	0,35	0,35	3,06	0,001250521	4,09E-04
Poutre	0,3	0,4	4,7	0,0016	3,40E-04

 $K_{poteau} > K_{poutre}$ condition vérifiée.

III.4.3.6. Choix final de la section des poteaux.

Tableau III 15: Choix final de la section des poteaux.

	a (cm)	b (cm)
18 ^{eme} -25 ^{eme} étage	35	35
14 ^{eme} -17 ^{eme} étage	40	40
11 ^{eme} -16 ^{eme} étage	45	45
8 ^{eme} -10 ^{eme} étage	50	50
3 ^{eme} -7 ^{eme} étage	55	55
S/sol -2 ^{eme} étage	60	60

III.4.3.6. Vérification au flambement :

Le flambement est un phénomène d'instabilité de forme qui peut survenir dans les éléments comprimés (de façon excentrée ou non) des structures, lorsque les éléments sont élancés, la vérification consiste à calculer l'élancement λ qui doit satisfaire l'inégalité suivante :

$$\lambda = \frac{Lf}{i} \le 35$$
 (BAEL 91 modifié99 page 110)

Avec

 λ : élancement du Poteau.

Lf: longueur de flambement $L_f = 0.7 L_0$

L0: distance entre les faces supérieures de deux planchers consécutifs.

i : rayon de giration $i=\sqrt{\frac{I}{B}}$

I: Moment d'inertie

Avec :
$$I = \frac{axb^3}{12}$$

Section de poteaux (cm ²)	L ₀ (m)	λ	Condition $\lambda < 35$
18 ^{eme} -25 ^{eme} étage (35x35)	3,06	21,20	Vérifié
14 ^{eme} -17 ^{eme} étage (40x40)	3,06	18,55	Vérifié
11 ^{eme} -16 ^{eme} étage (45x45)	3,06	15,78	Vérifié
8 ^{eme} -10 ^{eme} étage (50x50)	3,06	14,84	Vérifié
3 ^{eme} -7 ^{eme} étage(55x55)	3,06	13,49	Vérifié
S/sol -2 ^{eme} étage(60x60)	3,06	12,36	Vérifié

 Tableau III 16: Vérification au flambement.

Chapitre IV : Etude Des Eléments Secondaires

Introduction :

Dans ce chapitre on procède au ferraillage des éléments secondaires tel que : des dalles, des escaliers et l'acrotère.

IV.1. Escalier :

Les escaliers sont des éléments composés de marches successives qui permettent le passage entre les différents niveaux du bâtiment.

Il n'y a qu'un seul type d'escalier dans notre immeuble.

IV.1.1 Définitions des éléments d'un escalier :

On appelle « marche » la partie horizontale (M) des gradins constituant l'escalier, et « contre marche » la partie verticale (C.M) de ces gradins.

- h : Hauteur de la marche.
- g : Largeur de la marche.
- L : Longueur horizontale de la paillasse.
- H : Hauteur verticale de la paillasse.

Figure IV 1: éléments d'un escalier

Pour Une réalisation idéale et confortable on doit avoir 2h+g=64

On obtient, le nombre des marches et leur dimension par les relations suivantes :

 $n \times h = H \tag{2}$

(n-1) g=L (3)

Avec :

n : Le nombre des contre marches

(n-1) : Le nombre des marches

64n²- (64+2H+L) n +2H=0

Figure IV 2: Schéma statique d'escalier

Tan $\alpha = \frac{1,36}{2,1} = 0,648 = \alpha = 32,93^{\circ}$

Calculer longueur de voile

$$\cos 32,93 = \frac{2,1}{x} = X = 2,5 \text{ m}$$

Avec :

n : La racine de l'équation

 $64n^{2}$ - (64+2H+L) n +2H= 0

H=136 cm ; L=210 cm

 $64n^2-624n+328=0$

n1 =0,53 ; n2=8

On prend :

- Le nombre de contre marche n= 8
- Le nombre des marchesn-1=7

Alors :

Détermination de l'épaisseur de la paillasse :

$$l = 1, 2 + 2, 5 + 1, 2 = 4,9$$

 $\frac{l}{30} \le e \le \frac{l}{20} \implies 16,33 \ cm \le e \le 24,5 \ cm$
Avec :

On prend donc l'épaisseur e=20 cm

N.B : Le palier aura la même épaisseur que la paillasse. Cette épaisseur sera prise en considération une fois que toutes les vérifications soient Satisfaites.

Figure IV 3: Evaluation des charges.

IV.1.2. Evaluation des charges :

Charges permanentes Palier 1 :

N°	Composants	Epaisseur	Poids volumique	Poids surfacique
		(m)	(KN/m^3)	(KN/m^2)
1	Carrelage	0.02	20	0.40
2	Lit de sable	0.03	18	0.54
3	Mortier de pose	0.02	20	0.40
4	Poids propre du palier	0.2	25	5
5	Enduit ciment	0.02	18	0.36
		6.7		

Tableau IV 1: Poids propre du palier de repose de l'escalier

<u>Charge d'exploitation Palier 1 :</u> :

Q1=2,50KN/m

Charge permanentes Paillasse 1 :

Tableau IV 2: Poids propre du Paillasse

N°	Composants	Epaisseur	Poids volumique	Poids surfacique
		(m)	(KN/m^3)	(KN/m^2)
1	Carrelage vertical	0.02	20	0.40
2	Lit de sable	0.03	18	0.54
3	Mortier de pose vertical	0.03	20	0.60
4	Poids propre de la paillasse	$0.2 / \cos \alpha$	25	5.97
5	Poids des marches	0.17 / 2	22	1,87
6	Enduit ciment	0.02	18	0.36
7	Carrelage horizontal	0.02	20	0.40
8	Mortier de pose horizontal	0.02	20	0.40
9	Garde-corps			1
	(11		

Charge d'exploitation : Q2=2,50KN/m²

IV.1.3. Combinaison des charges

<u>E.L.U :</u> <u>E.L.S :</u>

$q_{u1}=1,35G_1+1,5Q_1$	$q_{ser1}=G_1+Q_1$
$q_{u2}=1,35G_2+1,5Q_2$	$q_{ser2}=G_2+Q_2$

Le chargement de la rampe pour une bande de 1m est donné par le tableau suivant :

		Pré o	limensi	ionne	Evaluation des charges					
Escalier	er H l		g	n	L	e	α°	α° G		Q
	(m)	(m)	(m)		(m)	(cm)		(KN	N/m²)	(KN/m^2)
	1.36	0.17	0.30	8	2.5	20	32.	6.7	11	2.5
							92			

Tableau IV 3: Tableaux de pré dimensionnement

Tableau IV 4: Charge à l'ELU et l'ELS

	Les résultats									
Escalier	q_{1u}	$\begin{array}{ c c c c c } q_{1u} & q_{2u} & q_{1s} & q_{2s} \\ \hline \end{array}$								
N° 01	12,80	18,60	9,2	13,50						

IV.1.4. Ferraillage de la volée 2

Calcul des efforts internes :

Calcul des efforts tranchant

Section [AC}0<X<1.2

T(x) = -12,80x+38,60 = 0 T(0) = 38,60 kN

T (1,2) = 23,25 kN

Section [CD} 0<X<2,5

T(x) = -18,6x-(12,8*1,2) + 38,6 = 0 T(0) = 23,25 kN

T(2,5) = -23,25 kN

Section [BD} 0<X<1.2:

T(x) = 12,80x-38,60 = 0 T(0) = -38,60 kNT(1,2) = -23,25 kN

> Calcul des Moments :

Section [AC}0<X<1.2

 $M(x) = -6,4x^2+38,60x = 0$ M(0) = 0 kN.m

M(1,2) = 37,11 kN.m

Section [CD] $0 \le X \le 2,5$

 $M(x) = -9,30x^2 + 23,5x + 37,11 = 0$ M(0) = 37,11 kN.m

M(2,5) = 37, 11kN.m

Section [BD} 0<X<1.2:

 $M(x) = -6,4x^2 + 38,60x = 0$ M (0) = 0 kN.m

M(1.2) = 37,11 kN.m

Calculer moment max

 $M(x) = M(x) = -9,30x^2 + 23,5x + 37,11 = 0$ x= 1,250

Figure IV 4: Diagrammes des efforts internes

En considèrent les appuis partiellement encastrés donc on prend :

Mt=0.85 Mmax	43,894	kN.m
Ma=0.5 Mmax	25,820	kN.m

IV.1.4. Calcul des Armatures :

- Le calcul se fait pour une section rectangulaire de dimension (b x h) Tel que : b=100cm ; h=20cm
- Le ferraillage se fait en flexion simple pour une bande de 1m de largeur (organigramme I, voir annexe)

 $f_{c_{28}} = 30MPa, f_{bc} = 17MPa, f_{t_{28}} = 2, 4MPa, \gamma_b =$ 1,5 ,d=0,9h=18, σ_s =434,783 MPa

 $\gamma_s = 1,15$; *fe*=500MPa

Tableau IV 5: Ferraillage des escaliers.

	Mu	b	h	d	Fc28	γb	Fbc	U	α	Z	σs	As
	(kN.m)	(cm)	(cm)	(cm)						(cm)		(cm ²)
M ^{max} travée	43,89	100	20	18	30	1,5	17	0,0797	0,1039	172,52	434,783	5,85
M ^{max} appui	25,82	100	20	18	30	1,5	17	0,047	0,060	175,68	434,783	3,38

	Choix	As (cm ²)
$M_{trav\acute{e}e}^{max}$	6T12	6,79
M ^{max} appui	5T10	3,93

Tableau IV 6: choix des armatures

IV.1.5. Vérification :

> Espacement :

• <u>En travée</u> : $esp \le \frac{100}{6} = 16,66cm$ On prend : esp=17cm

• <u>Sur appui</u>: $esp \le \frac{100}{5} = 20 \ cm$ On prend : $esp=20 \ cm$

Armature de répartition :

En travée:
$$\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \Rightarrow 1,7 \ cm^2/ml \le A_r \le 3,4 \ cm^2/ml$$

Le choix est de 4T10=3,14cm² avec St=25cm

<u>Sur appui</u>: $\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \Rightarrow 1(\text{cm}^{72}) /\text{ml} \le A_r \le 1.97 \text{ cm}^2 / \text{ml}$

Le choix est de 4T8=2,01 cm² avec S_t =25cm

Condition de non fragilité :

$$A_s \ge A_s^{min} = Max\left\{\frac{bh}{1000}; 0,23bd\frac{ft28}{fe}\right\}$$

Avec :

$$f_{t28}\!\!=\!\!2,\!4MPa$$
 ; fe = 500MPa ; b=100cm ; d=18cm

 $A_s^{min} = Max \{2; 1,99\} = 2 \text{cm}^2$

• En travée : $A_s = 6,79cm^2 > A_s^{min}$ Sur appui : $A_s = 3,93cm^2 > A_s^{min}$

> Effort tranchant :

On doit vérifier que : $\tau_u \leq \overline{\tau_u}$

$$\bar{\tau} = \operatorname{Min}\left(0,2; \frac{fc28}{\gamma b}; 5MPa\right) = 4 \text{ MPa} \dots (Fissuration préjudiciable)$$
$$\tau = \frac{T_u^{max}}{bd} = \frac{38,61 \times 10^3}{1000 \times 180} = 0,2145 \quad \text{Condition vérifier}$$

Vérification à ELS :

La fissuration est considérée comme peu préjudiciable, donc il n'est pas nécessaire de vérifier la contrainte des armatures tendues.

Vérification des contraintes du béton : • Position de l'axe neutre :

$$\frac{b}{2}y^2 + nA'_s(y - c') - nA_s(d - y) = 0$$

• Moment d'inertie :

$$I = \frac{b}{3}y^3 + nA'_s(y - c')^2 + nA_s(d - y)^2$$

Avec :

On doit vérifier que :

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \overline{\sigma}_{bc} = 0.6 f_{c28} = 18 MPa$$

Tous les résultats sont récapitulés dans le tableau ci-dessous :

	M _{ser} ,(kN.m)	A_s (cm ²)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$
Travée	29,605	6,79	5,12	21370,27	7,095	Vérifiée
Appui	17,414	3,93	4,05	13686,14	5,16	Vérifiée

Tableau IV 7: Vérification à l'E.L.S de l'escalier.

> Vérification de la flèche :

Il n'est pas nécessaire de calculer la flèche si les inégalités suivantes sont satisfaites :

Deux conditions ne sont pas vérifiées, donc il est nécessaire de calculer la flèche Flèche totale : $\Delta f_T = f_v - f_i \leq \overline{f}$ (Selon CBA93).

Avec :

f_i: La flèche due aux charges instantanées.

f_v: La flèche due aux charges de longues durée.

$$\begin{cases} f_i = \frac{M_{ser}L^2}{10E_i I_{fi}} \\ f_v = \frac{M_{ser}L^2}{10E_v I_{fv}} et \\ \bar{f} = \frac{L}{500} \end{cases} et \begin{cases} \overline{f} = \frac{L}{500} & si \quad L \prec 5m \\ \overline{f} = 0,5cm + \frac{L}{1000} & si \quad L \succ 5m \end{cases}$$

On a L= 4,9m < 5m
Donc :
$$\bar{f} = \frac{L}{500} = \frac{490}{500} = 0,98$$
cm

• Moment d'inertie de la section homogène I₀ :

$$I_0 = \frac{bh^3}{12} + 15A_s \left(\frac{h}{2} - d\right)^2 + 15A'_s \left(\frac{h}{2} - d'\right)^2$$

• Calcul des moments d'inerties fictifs : $I_{fi} = \frac{1,1I_0}{1 + \lambda_i \mu}; \quad I_{fv} = \frac{I_0}{1 + \lambda_v \mu}$

Avec :

$$\lambda_i = \frac{0.05 f_{t_{28}}}{\delta \left(2+3 \frac{b_0}{b}\right)}$$
....Pour la déformation instantanée.

 $\lambda_{\rm v} = \frac{0,02f_{t28}}{\delta\left(2+3\frac{b_0}{b}\right)}$Pour la déformation différée.

 $\delta = \frac{A_s}{b_0 d}$: Pourcentage des armatures.

$$\mu = 1 - \frac{1,75f_{t28}}{4\delta\sigma_s + f_{t28}}$$

• Calcul des modules de déformation :

$$E_i = 11000(f_{c28})^{\frac{1}{3}} = 34179,558MPa$$

 $E_v = \frac{E_i}{3} = 11393,186MPa$

Les résultats sont récapitulés dans ce tableau :

Tableau IV 8: Vérification de la flèche de l'escalier.

M _{ser} (kN.m)	A_s (cm ²)	δ	σs (MPa)	λi	λ_v	μ	I ₀ (cm ⁴)	I _{fi} (cm ⁴)	I _{fv} (cm ⁴)
29,605	6,79	0,0077	333,33	3,12	1,25	0,67	73185,07	26102,27	39926,47

Donc :

$$\begin{cases} f_i = 7,967mm \\ f_v = 15,626mm \\ \end{cases} \Rightarrow \Delta f_T = f_v - f_i = 15,626 - 7,967 = 7,659mm = 0,77cm \\ \bar{f} = \frac{490}{500} = 0,98cm \\ \Rightarrow \Delta f_T = 0,77cm < \bar{f} = 0,98cm....vérifiée. \end{cases}$$

IV.1.6. Ferraillage des volets 1 et 3 :

Charges permanentes volets 1 et 3 :

N°	Composants	Epaisseur	Poids volumique	Poids surfacique
		(m)	(KN/m^3)	(KN/m^2)
1	Carrelage vertical	0.02	20	0.40
2	Lit de sable	0.03	18	0.54
3	Mortier de pose vertical	0.03	20	0.60
4	Poids propre de la paillasse	$0.2 / \cos \alpha$	25	6,54
5	Poids des marches	0.17 / 2	22	1,87
6	Enduit ciment	0.02	18	0.36
7	Carrelage horizontal	0.02	20	0.40
8	Mortier de pose horizontal	0.02	20	0.40
9	Garde-corps			1
	(Ĵ		11,57

Tableau IV 9: Poids propre du Paillasse.

Calcul des réactions :

RA= 35,36 kN. RB= 37,27 kN.

Figure IV 5: Diagrammes des efforts internes

Calculer moment max

$$M(x) = M(x) = -9,98x^2 + 8,49x + 46,04 = 0$$
$$x = 0,253$$

$$M(0,439) = 47,9$$
 kN.m

En considèrent les appuis partiellement encastrés donc on prend :

Mt=0,85Mmax= 40,7 Ma=0,3Mmax= 23,95

Calcul des Armatures :

- Le calcul se fait pour une section rectangulaire de dimension (b x h) Tel que : b=100cm ; h=20cm
- Le ferraillage se fait en flexion simple pour une bande de 1m de largeur (organigramme I, voir annexe)

 $f_{c_{28}} = 30MPa, f_{bc} = 17MPa, f_{t_{28}} = 2,4MPa, \gamma_b =$ 1,5 ,d=0,9h=18, $\sigma_s =$ 434,783 *MPa*

 $\gamma_s = 1,15$; *fe*=500MPa

Tableau IV 10: Ferraillage des escaliers.

	Mu (kN.m)	b (cm)	h (cm)	d (cm)	Fc28	γb	Fbc	U	α	Z (cm)	σs	As (cm²)
M ^{max} travé	40,7	100	20	18	30	1,5	17	0,0739	0,0961	173,08	434,783	5,41
M ^{max} appu	23,95	100	20	18	30	1,5	17	0,043	0,059	176	434,783	3,13

Tableau IV 11: choix des armatures

	Choix	As (cm^2)
$M_{trav\acute{e}e}^{max}$	6T12	6,79
M ^{max} appui	5T10	3,93

IV.1.7. Vérification :

- > Espacement :
- <u>En travée</u> : $esp \le \frac{100}{6} = 16,66 \ cm$

On prend : esp=17 cm

• <u>Sur appui</u>: $esp \le \frac{100}{5} = 20 \ cm$

On prend : esp=20 cm

Armature de répartition :

<u>En travée</u>: $\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \Rightarrow 1,7 \ cm^2/ml \le A_r \le 3,4 \ cm^2/ml$

Le choix est de 4T10=3,14 cm² avec St=25 cm

Sur appui:
$$\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \Rightarrow 1 \text{ (cm}^2) / \text{ml} \le A_r \le 1.97 \text{ cm}^2 / \text{ml}$$

Le choix est de 4T8=2,01 cm² avec S_t =25 cm

Condition de non fragilité :

$$A_s \ge A_s^{min} = Max\left\{\frac{bh}{1000}; 0,23bd\frac{ft28}{fe}\right\}$$

Avec :

$$f_{t28}=2,4MPa$$
; fe = 500MPa ; b=100cm ; d=18cm

 $A_s^{min} = Max \{2; 1,99\} = 2 \text{cm}^2$

• En travée : $A_s = 6,79 \ cm^2 > A_s^{min}$

Sur appui : $A_s = 3,93 \ cm^2 > A_s^{min}$

> Effort tranchant :

On doit vérifier que : $\tau_u \leq \overline{\tau_u}$

$$\bar{\tau} = \operatorname{Min}\left(0,2; \frac{fc^{28}}{\gamma b}; 5MPa\right) = 4 \operatorname{MPa} \ldots (Fissuration préjudiciable)$$

$$\tau = \frac{T_u^{max}}{bd} = \frac{35,36 \times 10^3}{1000 \times 180} = 0,196$$
 Condition vérifier.

Vérification à ELS :

La fissuration est considérée comme peu préjudiciable, donc il n'est pas nécessaire de vérifier la contrainte des armatures tendues.

	M _{ser,} (kN.m)	A_s (cm ²)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$
Travée	27,721	6,79	5,12	21370,27	6,54	Vérifiée
Appui	13,365	3,93	4,05	13686,14	3,96	Vérifiée

 Tableau IV 12: Vérification à l'E.L.S de l'escalier.

Vérification de la flèche :

Il n'est pas nécessaire de calculer la flèche si les inégalités suivantes sont satisfaites :

Tableau IV 13: Vérification de la flèche de l'escalier.

M _{ser} (kN.m)	A _s (cm ²)	δ	σ _s (MPa)	λ_i	$\lambda_{\rm v}$	μ	I ₀ (cm ⁴)	I _{fi} (cm ⁴)	I _{fv} (cm ⁴)
27,721	6,79	0,0037	333,33	6,49	2,59	0,43	73185,07	21346,77	34751,9

Donc :

$$\begin{split} & f_i = 9,01 \text{ mm} \\ & f_v = 16,6 \text{ mm} \\ \hline f = \frac{487}{500} = 0,974 \text{ cm} \\ & \Rightarrow \Delta f_T = 0,76 \text{ cm} \prec \bar{f} = 0,974 \text{ cm}. \\ \end{split}$$

Figure IV 6: Schéma de ferraillage de volée 2.

Figure IV 7: Schéma de ferraillage des volées 1 et 3.

IV.2. ETUDE DES L'ACROTERE :

L'acrotère est un élément secondaire de sécurité entourant la terrasse qui forme une paroi contre toute chute, elle sera calculée comme une console encastrée au niveau du plancher terrasse.

IV.2.1. Evaluation des charges :

D'après sa disposition, l'acrotère est soumis à une flexion composée due aux surcharges suivantes :

- Son poids propre sous forme d'un effort normal de compression.
- Une force horizontale due à la main courante Q=1kN/ml.

Le calcul se fait pour une bande d'un mètre de largeur dont les dimensions sont les suivant

- Largeur : b = 100 cm
- Hauteur : h = 60 cm
- Épaisseur : e = 10 cm

Évaluations charges

a. Charges permanentes

Le poids propre de l'acrotère pour 1 ml est de G1= $\rho b \times S$

- ρ b : Le poids volumique du béton tel que ρ b = 25 KN/m3

- S : La surface transversale totale

L'actionne forces horizontales Q h (F p)

L'actionne forces horizontales est données par :

$$Fp = 4 \times A \times Cp \times Wp$$
 (Art 6.2.3) [2]

Avec :

A : coefficient d'accélération de zone. (Tableau 4.1) [2]

(A = 0,3, en zone III, groupe d'usage 1B)

Cp : facteur de force horizontal pour l'élément secondaire donné par le Tableaux 6-1(RPA)

[Cp =0,8] (Tableau 6-1) [2]

W p : Poids de l'acrotère =2,061 kN/ml.

F p = $4 \times 0.3 \times 0.8 \times 2,145 = 2,0592$ kN/ml.

Fp = 1,649 kN 1.5Q= 1.5 kN

Q h = Max (1,5Q; F p)

Donc Qhc = 2,0592 kN.

IV.2.2. Combinaisons de charges :

Pour une bande de 1m de largeur :

E.L.U :

 $N_u=1,35G=2,8957 \text{ kN}$ $M_u=1.5Qhc$ h= 1,853 kNm $V_u=1.5Fp=3,088 \text{ kN}$

E.L.S:

N_{ser}=G= 2,145 kN M_{ser}=Q.h=1,235 kNm V_{ser}=Fp= 2,0592 kN

Figure IV 9: Charges et surcharges agissent.

Figure IV 10: Effort interne et moment.

IV.2.3. Ferraillage de l'acrotère :

h=10cm ; b=100cm ; f_{c28}= 30 MPa ; σ_{bc} =17MPa ; c=c'=2cm ; fe=500MPa

Figure IV 11: La section de calcul.

a. Calcul de l'excentricité :

$$e_0 = \frac{M_u}{N_u} = \frac{1,853}{2,8957} = 63,99 \ cm$$

b. Coefficient de remplissage : ψ_1

$$\psi_1 = \frac{N_u}{bhf_{bc}}$$

$$\psi_1 = \frac{2,8957 \times 10^3}{1000 \times 100 \times 17} = 1,703 \times 10^{-3}$$

 $\Psi_1 \leq 0.81$ on calcul l'excentricité critique relative ξ

On a
$$\Psi_1 \le 2/3$$
 donc $\xi = \frac{1+\sqrt{9-12\psi_1}}{4(3+\sqrt{9-12\psi_1})} = \frac{1+\sqrt{9-12\times1,703\times10^{-3}}}{4(3+\sqrt{9-12\times1,703\times10^{-3}})} = 0,1666$

c. Calcul enc :

 $e_{\rm NC} = \xi \ x \ h = 0,1666 \ x \ 10 = 1,666 \ cm.$

 $Donc: e > e_{NC} \rightarrow Section partiellement comprimée.$

Le centre de pression se trouve à l'extérieur de la section.

Les armatures seront calculées à la flexion simple en équilibrant le moment fictif M_{f} .

• Calcul de moment fictif :

 $M_{f} = M_{u} + N_{u} \left(\frac{h}{2} - c'\right) = 1,853 + 2,8957 * \left(\frac{0,10}{2} - 0,02\right) = 1,94 \text{ KN.m}$

• Calcul en flexion simple :

•
$$\mu_{bu} = \frac{M_f}{f.b.d^2} = \frac{1.94 * 10^6}{17*.1000.90^2} = 0.0141 < \mu_R = 0.392$$

• <u>Armatures fictives</u> :

 $\mu = 0.0141 < \mu_R = 0.392$ _donc A'_s = 0

$$\alpha = 1,25 \big(1 - \sqrt{1 - 2\mu} \big) = 1,25 \big(1 - \sqrt{1 - 2 \times 0,0141} \big) = 0,0177$$

$$Z = d(1 - 0.4\alpha) = 80 \times (1 - 0.4 \times 0.0177) = 79.43mm$$

$$\sigma_{st} = \frac{f_e}{\gamma_s} = \frac{500}{1.15} = 434,782MPa$$

$$A_f = \frac{M_f}{Z \times \sigma_{st}} = \frac{1,94 \times 10^6}{79,43 \times 434,782} = 0,561 \ cm^2$$

• Armatures réelles (en flexion composée) :

$$\begin{cases} A'_{réel} = A'_{S \text{ fictif}} = 0\\ A'_{réel} = A'_{S \text{ fictif}} - \frac{N_U}{\sigma_S} = 56, 1 - \frac{2,8957 \times 10^3}{434,782} = 49,44 \text{ }mm^2 \end{cases}$$

Donc:
$$\begin{cases} A_{s1} = 0cm^2 \\ A_{s2} = 0,494 \ cm^2 \end{cases}$$

• Vérification de la section d'acier selon « BAEL 91 modifié 99 » [5] :

Il faut vérifier A_s avec la section minimale imposée par la règle du millième et par la règle de non fragilité :

$$A_s^{min} \ge Max \left\{ \frac{bh}{1000}; 0,23bd \frac{f_{t28}}{fe} \right\}$$

Avec :

$$f_{t28}=2,4MPa$$
; fe = 500MPa; b =100 cm; d=8 cm; h=10 cm

 $A_{s}^{min} \ge Max \{1cm; 0, 883cm\}$

Donc : on opte finalement pour $4T10 = 3,14 \text{ cm}^2$

Avec un espacement $S_t = \frac{100}{4} = 25cm$

• Armatures de répartitions :

$$A_r \ge \frac{A_s}{4} = \frac{3,14}{4} \Rightarrow A_r \ge 0,785 \ cm^2$$

On choisit 4T8=2,01 cm² avec un espacement $S_t = \frac{60-5}{3} = 18,33cm \rightarrow S_t = 15cm$

• Vérification à l'E.L. S :

La fissuration est considérée comme préjudiciable.

$$e = \frac{M_{ser}}{N_{ser}} = \frac{1,235}{2,145} = 0,576 m$$
$$C = \frac{h}{2} - e$$

C : La distance entre le centre de pression et la fibre la plus comprimée.

$$C = \frac{0.1}{2} - 0.576 = -0.526 m = -52.6 cm.$$

D'après le « BAEL 91 modifié 99 » [5], on doit donc résoudre l'équation suivante :

$$z^3 + pz + q = 0$$

y_c: Distance entre le centre de pression et l'axe neutre.

Avec:
$$\begin{cases} p = -3c^2 - \frac{90A'_S}{b}(c - d') + \frac{90A_S}{b}(d - c) = -8238,65 \ cm^2 \\ et \\ q = -2c^3 - \frac{90A'_S}{b}(c - d')^2 - \frac{90A_S}{b}(d - c)^2 = -294797,942 \ cm^3 \end{cases}$$

La solution de l'équation du troisième degré est obtenue par :

$$\Delta = q^2 + \left(\frac{4p^3}{27}\right) = -4,06 \times 10^9$$

On $\Delta < 0$ donc:

$$cos \phi = \frac{3q}{2p} \sqrt{\frac{-3}{p}} = -0,99 \Rightarrow \phi = 171,89^{\circ}$$
$$a = 2 \times \sqrt{\frac{-p}{3}} = 104,80$$
$$\begin{cases} z_1 = a \cos\left(\frac{\phi}{3} + 120\right) = -84,29cm\\ z_2 = a \cos\left(\frac{\phi}{3}\right) = 45,59cm\\ z_3 = a \cos\left(\frac{\phi}{3} + 240\right) = 38,70cm \end{cases}$$

On calcul Yser, la distance entre le centre de pression et l'axe de la fibre la plus comprimé (supérieure) :

$$y_{ser} = z + c$$

Pour z, on choisit parmi les trois solutions précédentes celui qui donne :

$$0 \le y_{ser} \le d \rightarrow 0 \le y_{ser} \le 8 \text{ cm}$$

Alors on prend :

$$Z = z_2 = 45,59$$
 cm

 y_{ser} = 45,59-42,6 = 2,99cm < 8 cm

En suite en calcul l'inertie de la section homogène réduite :

$$I = \frac{b}{3}y_{ser}^3 + 15[A_s(d - y_{ser})^2 + A'_s(y_{ser} - d')^2] = 1741,92cm^4$$

- Calcul des contraintes : σ_{bc} et σ_s :
- a. Contrainte du béton :

$$\begin{split} \sigma_{bc} &= \left(\frac{z \times N_{ser}}{I}\right) y_{ser} \leq \bar{\sigma}_{bc} = 0,6 f_{c28} = 18 MPa \\ \sigma_{bc} &= \left(\frac{45,59 \times 10 \times 2,145 \times 10^3}{1741,92 \times 10^4}\right) \times 2,99 = 0,167 MPa < 18 MPa \\ &\rightarrow Condition \ verifiée \end{split}$$

b. Contraintes de l'acier :

$$\sigma_{s} = 15 \left(\frac{z \times N_{ser}}{l}\right) \times (d - y_{ser}) \le \bar{\sigma}_{s} \to Acier \ tendu$$

$$\sigma_{s} = 15 \left(\frac{45,59 \times 10 \times 2,145 \times 10^{3}}{1741,92 \times 10^{4}}\right) \times (80 - 29,9) = 42,19MPa$$

$$\bar{\sigma}_{s} = Min \left(\frac{2}{3}fe; 110 \sqrt{\eta f_{tj}}\right) = 215,55MPa \ avec \ (\eta = 1,6 \ pour \ les \ acier \ HA)$$

 $\sigma_s = 42,19 MPa \le \bar{\sigma}_s = 215,55 MPa \rightarrow Condition verifiée$

• Vérification de l'effort tranchant :

La contrainte de cisaillement est donnée par la formule suivante :

$$\begin{aligned} \tau_u &= \frac{T_u}{bd} \leq \bar{\tau}_u = Min \{ 0, 1f_{c28}; 4MPa \} = 3MPa \\ \tau_u &= \frac{3,088 \times 10^3}{80 \times 1000} = 0,0386MPa \prec \bar{\tau}_u = 3 MPa \rightarrow Condition vérifiée \end{aligned}$$

Figure IV 12: Schéma de ferraillage de l'acrotère.

IV.3. ETUDE DES PALNCHER :

Les planchers Sont des éléments essentiels dans la conception et la construction de tout bâtiment. Pour supporter leur propre poids et les surcharges d'exploitation, les planchers doivent être suffisamment résistants pour éviter tout fléchissement excessif ou tout affaissement.

IV.3.1. Etude des poutrelles :

Figure IV 13: Schéma de poutrelle.

 $b = 2*b1 + b_0$

 $b_0 = (0,4; 0,6)$ *ht = (8,4; 12,6) cm.

Soit : **b**₀=12 cm.

$$b_1 = \frac{b - b_0}{2} \le \min(\frac{L_x}{2}, \frac{L_{MAX}}{10}) \Rightarrow b \le 2.\min(\frac{L_x}{2}, \frac{L_{MAX}}{10}) + b_0$$

Avec:

L_x: represent la distance entre poutrelle ($L_x = 65$ cm).

 L_{max} : represente la distance entre nus d'appuis des poutres secondaire ($L_{max} = 470$ cm)

$$b1 \le \min\left(\frac{65}{2}, \frac{470}{10}\right) = 32,5 \text{ cm}$$
 $\Rightarrow b \le 2 \times 32,5 + 12 = 75 \text{ cm}.$

Soit : **b**= 65cm

Dimensions de la poutrelle :

On a : $h_t=21 \text{ cm}$; avec $h_0=5 \text{ cm}$; h=16 cm.

On a : $b_0 = 12$ cm ; b=65 cm.

 $c = (b-b_0)/2 = 26,5cm.$

IV.3.1.1. Evaluation des charges et surcharges revenants aux poutrelles :

- A l'ELU : $q_u = 1,35G + 1,5Q$ et $p_u = 0,65 \times q_u$
- A l'ELS : $q_S = G + Q$ et $p_S = 0.65 \times q_S$

			ELU		ELS	
	G	Q	Qu	Pu	qs	Ps
Désignation	(KN/m ²)	(KN/m²)	(KN/m^2)	(KN/ml)	(KN/m^2)	(KN/ml)
Terrasse inaccessible	6,63	1,00	10,45	6,76	7,63	4,89
Etages d'habitation	5,59	1,50	9,80	6,37	7,09	4,55

Tableau IV 14: Charges et surcharges sur les poutrelles.

IV.3.1.1. Calcul des moments :

Étant donné que les poutrelles étudiées se présentent comme des poutres continues sur plusieurs appuis, leurs études se feront selon l'une des méthodes suivantes :

a. Méthode forfaitaire :

- Domaine d'application :
- $Q \le Max \{2G; 5kN/m^2\}.$
- Les moments d'inertie des sections transversales sont les même dans les différentes travées en continuité.
- Les portées successives sont dans un rapport compris entre 0,8 et 1,25.
- Fissuration non préjudiciable.
• Exposé de la méthode :

$$\begin{aligned} \bullet & \alpha = \frac{Q}{G+Q} \\ \bullet & M_t \ge Max\{1,05M_0; (1+0,3\alpha)M_0\} - \frac{M_w - M_e}{2} \\ \bullet & M_t \\ & \ge \begin{cases} (1+0,3\alpha)\frac{M_0}{2} \dots Travéeint \ e \ rmédiaire}{(1,02+0,3\alpha)\frac{M_0}{2}} \dots Travéederive \end{cases}$$

Avec :

- M₀: La valeur minimale du moment fléchissant dans chaque travée (moment isostatique).
- (M_w; M_e) : Les valeurs absolues des moments sur appuis de gauche et de droite respectivement dans la travée considérée.
- M_t : Le moment maximal en travée dans la travée considérée.

• Moment sur appuis :

- M=0,2M₀ \rightarrow appuis de rive.
- $M=0,6M_0 \rightarrow$ pour une poutre à deux travées.
- $M=0,5M_0 \rightarrow$ pour les appuis voisins des appuis de rives d'une poutre à plus de deux travées.
- M=0,4M₀ → pour les autres appuis intermédiaires d'une poutre à plus de deux travées.

b. Méthode de CAQUOT :

Cette méthode est appliquée lorsque l'une des conditions de la méthode forfaitaire n'est pas vérifiée.

Elle est basée sur la méthode des poutres continues.

• Exposé de la méthode :

• Moment sur appuis :

 $M_a = 0.15 M_0$ Appuis de rive.

$$M_{a} = \frac{q_{w}l'_{w}^{3} + q_{e}l'^{3}_{e}}{8.5(l'_{w} + l'_{e})} Appuis intermédiaires. Avec : M_{0} = \frac{ql^{2}}{8}$$

• Moment en travée :
$$M_t(x) = -\frac{qx^2}{2} + \left(\frac{ql}{2} + \frac{M_e - M_w}{l}\right)x + M_w$$

Avec :

- M₀: la valeur maximale du moment fléchissant dans chaque travée (moment isostatique).
- (M_w; M_e) : les valeurs absolues des moments sur appuis de gauche et de droite respectivement dans la travée considérée.
- q_w: charge répartie à gauche de l'appui considérée.
- q_e: charge répartie à droite de l'appui considéré.

On calcul, de chaque côté de l'appui, les longueurs de travées fictives «l'_w» à gauche et «l'_e» à droite, avec :

- l'=1.....pour une travée de rive.
- l'=0,81.....pour une travée intermédiaire.

Où «1» représente la portée de la travée libre.

Effort tranchant :

 $\begin{cases} T_w = \frac{ql}{2} + \frac{(M_e - M_w)}{l} \\ T_e = -\frac{ql}{2} + \frac{(M_e - M_w)}{l} \end{cases}$ Avec : - T_w: effort tranchant à gauche de l'appui

-T_e: effort tranchant à droite de l'appui

c. Méthode des éléments finis : « ETABS »

Les moments, et les efforts tranchants seront calculés à l'laide du logiciel ETABS

a. Avant le coulage de la table de compression :

Poutrelle de travée L = 5 m

On considère que la poutrelle est simplement appuyée à ses extrémités, elle supporte :

Chapitre IV :

- Son poids propre.
- Poids du corps creux.
- Charge d'exploitation due à l'ouvrier $Q=1kN/m^2$.
- Evaluation des charges :
- Charges permanentes :
- Poids propre de la poutrelle.....0,12x0,05 x 25=0,15kN/ml
- Poids du corps creux......0,65 x 0,95=0,62kN/ml

G=0,77 kN/ml

Charges d'exploitation :

Q=1 x 0,65=0,65kN/ml

- > Combinaison des charges :
 - **E.L.U** : $q_u = 1,35G+1,5Q=2,0145$ kN/ml.
 - **E.L.S** : $q_{ser} = G + Q = 1,42 \text{ kN/ml}.$
- Calcul des moments :

$$M_u = \frac{q_u l^2}{8} = \frac{2,0145 \times (5)^2}{8} = 6,295kNm$$
$$M_{ser} = \frac{q_{ser} l^2}{8} = \frac{1,42 \times (5)^2}{8} = 4,4375kNm$$

> Ferraillage :

La poutre est sollicitée à la flexion simple à l'E.L.U

 $M_u=6,295kN.m$; b=12cm; d=4,5cm; $\sigma_{bc}=17Mpa$

D'après l'organigramme de la flexion simple ; on a:

$$\mu = \frac{M_u}{bd^2\sigma_{bc}} = 2,38 \succ \mu_R = 0,392 \Rightarrow A_s' \neq 0$$

Les aciers comprimés sont nécessaires, il faut soulager la poutrelle par des étaiements verticaux chaque un mètre pour supporter les charges avant et lors du coulage sans qu'elle fléchisse.

 $L_{max} = 1,5m.$

$$M_u = \frac{2,0145 \times (1,5)^2}{8} = 0,5665kN.m$$

$$\mu = \frac{M_u}{b.d^2.F_{bc}} = 0,137 \le \mu_R = 0,392 \Rightarrow A'_s = 0$$

$$\alpha = \frac{1 - \sqrt{1 - 2u}}{0.8} = \frac{1 - \sqrt{1 - 2.(0.137)}}{0.8} = 0.184$$

$$A_s = \frac{Mu}{Z \times \sigma_s} = \frac{0,566 \times 10^6}{41,688 \times 434,783} = 0,3122 \ cm^2$$

On prend : 2 T10 \rightarrow As =1,57 cm²

b. Après le coulage de la table de compression :

Après le coulage et durcissement du béton de la dalle de compression, la poutrelle travaillera comme une poutrelle en « T »

- Evaluation des charges :
- Plancher terrasse :
- Charge permanentes :

G=6,63 x 0,65= 4,3095kN/ml

- Charges d'exploitation :

Q=1 x 0,65=0,65kN/ml

- Plancher courant :
- Charge permanente :

G=5,59 x 0,65=3,6335 kN/ml

- Charge d'exploitation :

Q=1,5 x 0,65=0,975kN/ml

- > Combinaison des charges :
- Plancher terrasse :
- E.L.U : $q_u=1,35G+1,5Q=6,76$ kN/ml
- E.L.S : q_{ser}=G+Q=4,89 kN/ml

- Plancher courant :
- $E.L.U: q_u=1,35G+1,5Q=6,37kN/ml$
- E.L.S : $q_{ser}=G+Q=4,55$ kN/ml

> Calcul des efforts internes :

On a utilisé méthode des éléments fini (ETABS) pour déterminer

les diagrammes des moments et des efforts tranchants.

 $\begin{cases} q_u = 6,93kN/ml \\ q_{ser} = 5,06kN/ml \end{cases}$

ELS

a. Diagrammes des Moments :

E.L.S

IV.3.1.2. Calcul du ferraillage :

On considère pour le ferraillage le type de poutrelle le plus défavorable c'est-à-dire qui a le moment le plus grand en travée et sur appuis, et le calcul se fait à l'ELU en flexion simple.

Les efforts maximaux sur appuis et en travée sont :

 E.L.U:
 E.L.S:

 $M_{tu}^{max} = 8,51 \text{ kNm}$ $M_{tser}^{max} = 6,63 \text{ kNm}$
 $M_{au}^{max} = 11,39 \text{ kNm}$ $M_{aser}^{max} = 8,87 \text{ kNm}$
 $T_u^{max} = 16,9838 \text{ kN}$ $M_{aser}^{max} = 8,87 \text{ kNm}$

Ferraillage en travée :

h=21 cm ; h₀= 5 cm ; b= 65cm ; b₀=12cm ; d= 0,9h=18,9 cm ; σ_{bc} =17MPa ; fe=500MPa ; f_{c28}=30MPa ; f_{t28}=2,4MPa.

Le calcul des sections en forme de « Té » s'effectue différemment selon que l'axe neutre est dans la table ou dans la nervure.

- Si $M_u < M_{tab}$: l'axe neutre est dans la table de compression.
- Si $M_u > M_{tab}$: l'axe neutre est dans la table ou dans la nervure.

$$M_{tab} = bh_0 \sigma_{bc} \left(d - \frac{h_0}{2} \right) = 90,61kNm$$

On a : $M_{tu} < M_{tab}$

Alors : l'axe neutre est dans la table de compression.

Comme le béton tendu n'intervient pas dans les calculs de résistance, on conduit le calcul comme si la section était rectangulaire de largeur constante égale à la largeur de la table « b ».

Donc, la section étudiée est assimilée à une section rectangulaire (bxh) en flexion simple.

D'après l'organigramme donnant le ferraillage d'une section soumise à la flexion, on aura :

Tableau IV 15: Récapitulation du calcul des sections d'armatures en travée.

M _{tu} (kNm)	μ	μ<μ _R	$A_s'(cm^2)$	α	Z(cm)	σs(MPa)	$A_s(cm^2)$
8,51	0,0140	Oui	0	0,0176	18,76	434,783	1,04

• Condition de non fragilité :

$$A_{s}^{\min} \ge 0,23b0 * d \frac{ft_{28}}{fe} = 0,25 \text{ cm}^{2}$$

A_s=Max {1,04 cm²; 0,25cm²} =1,04 cm²

Choix : 3T10 (A_s=2,37 cm²).

Ferraillage sur appuis :

On a: $M_{au}^{max}=11,39 \text{ kNm} < M_{tab}=90,61 \text{ kNm}$

⇒L'axe neutre est dans la table de compression, et la section étudiée est

assimilée à une section rectangulaire (b₀xh) en flexion simple.

Tableau IV 16: Récapitulation du calcul des sections d'armatures sur appuis.

M _{ua} (kNm)	μ	μ<μ _R	$A_s'(cm^2)$	Α	Z(cm)	σs(MPa)	A _s (cm ²)
11,39	0,0188	Oui	0	0,0237	18,721	434,783	1,40

Condition de non fragilité :

 $\begin{aligned} A_{s}^{\min} &\geq 0,23b0 * d \frac{ft28}{fe} = 0,25 \text{ cm}^{2} \\ A_{s} &= 1,40 \text{ cm}^{2} > A_{s}^{\min} = 0,25 \text{ cm}^{2} \\ \text{Choix} : 2T10 \text{ (A}_{s} &= 1,57 \text{ cm}^{2} \text{).} \end{aligned}$

IV.3.1.3. Vérifications :

a. Effort tranchant :

Pour l'effort tranchant, la vérification du cisaillement se fera dans le cas le plus défavorable c'est-à-dire : $T_u^{max}=16,9838$ kN.

- On doit vérifier que : $\tau_u \leq \overline{\tau}_u$

Tel que :

$$\begin{aligned} \bar{\tau}_u &= Min\left\{0, 2\frac{f_{cj}}{\gamma_b}; 5MPa\right\} = 4MPa....Fissuration peunuisible \\ \text{Tel que :} \\ \tau_u &= \frac{T_u^{max}}{b_0 \bar{d}_u} = \frac{16,9838}{12*18,9} = 0,75 \leq \bar{\tau}_u...\text{Vérifie} \end{aligned}$$

- b. Vérification de la compression du béton et des armatures longitudinales :
- ➢ Appui de rive :
- Vérification de la compression du béton :

$$\sigma_b = \frac{T_u}{0.9b_0 d} \le 0.4 \frac{f_{c28}}{\gamma_b}$$

Avec : $T_u=6,2578$ kN (appuis de rive).

$$\sigma_b = \frac{6,2578 \times 10^3}{0,9 \times 120 \times 189} = 0,306MPa < 0,4\frac{f_{c28}}{\gamma_b} = 8MPa....Vérifiée$$

- Vérification des armatures longitudinales :

$$A_{s} = 1,57cm^{2} \ge \frac{T_{u}}{\frac{fe}{\gamma_{s}}} = 0,0295 \ cm^{2}....V\acute{e}rifi\acute{e}$$

- > Appuis intermédiaires :
- Vérification de la contrainte de compression :

$$\sigma_b = \frac{Tu^{max}}{0.9 \times b0 \times d} = \frac{16.9838 \times 10^3}{0.9 \times 120 \times 189} = 0.832 < 0.4 \frac{f_{c_{28}}}{\gamma_b} = 8 \text{MPa.....Vérifiée}$$

- Vérification des armatures longitudinales :

$$A_s = 1,57cm^2 \ge \frac{T_u^{max} - \frac{M_{ua}}{0.9d}}{\sigma_s^2} = -1,15 \ cm^2$$

c. Vérification à l'E.L. S :

La fissuration étant peu préjudiciable, donc pas de vérification à faire à l'état de l'ouverture des fissures, et elle se limite à celle concernant l'état de compression du béton.

Vérification des contraintes du béton :

Soit [«] y [»] la distance du centre de gravité de la section homogène (par lequel passe l'axe neutre) à la fibre la plus comprimé.

La section étant soumise à un moment M_{ser} , la contrainte à une distance " y " de l'axe neutre :

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

D'après l'organigramme de la vérification d'une section rectangulaire à l'ELS, on doit vérifier que : $\sigma_{bc} \leq \bar{\sigma}_{bc} = 0.6 f_{c28} = 18MPa$

- Détermination de l'axe neutre :

On suppose que l'axe neutre se trouve dans la table de compression :

$$\frac{b}{2}y^{2} + n(A_{s} + A_{s})y - n(A_{s}.d + A_{s}.c) = 0$$

Avec :
$$n = \frac{E_s}{E_b} = 15$$
; b=65cm (travée); b₀=12cm (appuis); c=c'=2cm

y : la solution de l'équation du deuxième degré suivante, puis on calcule le moment d'inertie :

Si $y \prec h_0 \Longrightarrow$ l'hypothèse est vérifiée.

Si $y \succ h_0 \Rightarrow$ la distance "y" et le moment d'inertie "I" se Calculent par les formules qui suivent :

$$\begin{cases} \frac{b}{2}y^2 - (b - b_0) \cdot \frac{(y - h_0)^2}{2} + \eta A'_s \cdot (y - c') - \eta \cdot A_s \cdot (d - y) = 0\\ I = \frac{b}{3}y^3 - (b - b_0) \frac{(y - h_0)^3}{3} + \eta \cdot A'_s \cdot (y - c')^2 + \eta \cdot A_s (d - y)^2 \cdot Tableau IV 17: Vérification à l'ELS. \end{cases}$$

	M _{ser} (kNm)	$A_s(cm^2)$	Y(cm)	I(cm ⁴)	σ _{bc} (MPa)	Vérification
Travée	6,63	2,37	3,84	76674,82	3,31	Vérifiée
Appuis	8,87	1,57	2,63	56745,51	4,11	Vérifiée

d. Vérification de la flèche :

Il n'est pas nécessaire de calculer la flèche si les inégalités suivantes sont satisfaites :

$$\frac{h}{L} \ge \frac{1}{16}$$

$$\frac{As}{bd} \le \frac{4,2}{fe} \qquad \longrightarrow \qquad \begin{cases} \frac{21}{500} = 0,042 \ge 0,0625 & \text{non vérifiée} \\ \frac{2,37}{22 \times 18,9} = 0,0057 \le 0,008 & \text{vérifiée} \\ 0,042 \le 0,0402 & \text{vérifiée} \end{cases}$$

$$\frac{h}{L} \ge \frac{Mt}{10M0}$$
21,125

Avec :

h=21cm; b₀=12cm; d=18,9cm; L=5m; A_s=2,37cm²; fe=500MPa.

Alors :

Puisqu'il a une condition n'est pas vérifiée, il est nécessaire de calculer la flèche.

Flèche totale : $\Delta f_T = f_v - f_i \leq \bar{f}$

Tel que :
$$\bar{f} = \frac{L}{500} = \frac{500}{500} = 1cm \to (L \le 5m)$$

f_i: La flèche due aux charges instantanées.

f_v: La flèche due aux charges de longues durée.

- Position de l'axe neutre « y1 » :

$$y_1 = \frac{bh_0 \frac{h_0}{2} + (h - h_0)b_0 \left(\frac{h - h_0}{2} + h_0\right) + 15A_s d}{bh_0 + (h - h_0)b_0 + 15A_s}$$

- Moment d'inertie de la section totale homogène « I₀ » :

$$I_0 = \frac{b}{3}y_1^3 + \frac{b_0}{3}(h - y_1)^3 - \frac{(b - b_0)}{3}(y_1 - h_0)^3 + 15A_s(d - y_1)^2$$

- Calcul des moments d'inerties fictifs :

$$I_{fi} = \frac{1, 1I_0}{1 + \lambda_i \mu}$$
; $I_{fv} = \frac{I_0}{1 + \lambda_v \mu}$

Avec :

$$\lambda_i = \frac{0.05 f_{t28}}{\delta \left(2+3 \frac{b_0}{b}\right)}$$
.....Pour la déformation instantanée.

$$\lambda_{v} = \frac{0.02f_{t28}}{\delta(2+3\frac{b_{0}}{b})}$$
....Pour la déformation différée.

 $\delta = \frac{A_s}{b_0 d}$: Pourcentage des armatures.

$$\mu = 1 - \frac{1,75f_{t28}}{4\delta\sigma_s + f_{t28}}$$

 σ_s : Contrainte de traction dans l'armature correspondant au cas de charge étudiée.

$$\sigma_{s} = \frac{M_{ser}}{A_{s}d}$$

Les résultats sont récapitulés dans ce tableau

Tableau IV 18: Calcul de la flèche de poutrelle.

M _{ser} (KNm)	A _s (cm ²)	Y ₁ (cm)	δ	σ _s (MPa)	λ_i	$\lambda_{ m v}$	μ	I ₀ (cm ⁴)	$I_{\rm fi}({\rm cm}^4)$	I _{fv} (cm ⁴)
6,63	2,37	7,62	0,01	204,25	4,57	1,83	0,61	162143	47088,55	76616,26

- Calcul des modules de déformation :

$$E_i = 11000(f_{c28})^{\frac{1}{3}} = 34179,56MPa$$
$$E_v = \frac{E_i}{3} = 11393,186MPa$$

- Calcul de la flèche due aux déformations instantanées :

$$f_i = \frac{M_{ser}l^2}{10E_i l_{fi}} = 1,76mm \ (L = 5m)$$

- Calcul de la flèche due aux déformations différées :

$$f_{v} = \frac{M_{ser}l^{2}}{10E_{v}I_{fv}} = 3,24mm$$

$$\Delta f_{T} = f_{v} - f_{i} = 3,24 - 1,76 = 1,48mm = 0,148cm < \bar{f} = 1cm....vérifiée$$

- Calcul des armatures transversales et l'espacement :

L'acier choisi pour les armatures transversales est de type rond lisse de nuance

FeE24 (fe=235MPa)

BAEL 91 modifié 99 [5] :

$$\begin{cases} \frac{A_t}{b_0 S_t} \ge \frac{\tau_u - 0.3 f_{ij} K}{0.8 f e} & (K = 1 \text{ pas de reprisede bétonnage}) \\ S_t \le Min(0.9d; 40 cm) \\ \frac{A_t f e}{b_0 S_t} \ge Max \left(\frac{\tau_u}{2}; 0.4 M P a\right) \end{cases}$$

> RPA 99 / Version 2003 [1] :

$$\begin{cases} \frac{A_t}{S_t} \ge 0,003b_0\\ S_t \le Min\left(\frac{h}{4};12\varphi_l\right).....Zonendale\\ S_t \le \frac{h}{2}....Zonecourante \end{cases}$$

Avec :

$$\varphi_t \le Min\left(\frac{h}{35}; \varphi_l; \frac{b}{10}\right)$$

- Ø₁: Diamètre minimum des armatures longitudinales.
- Øt≤Min(0,68cm; 1cm; 1,2cm)=0,68cm.

On adopte : $Ø_t$ =6 mm

Donc :

Selon le « BAEL 91 modifié 99 » [5]:

$$\begin{cases} \frac{A_t}{S_t} \geq 0,0089cm\\ S_t \leq 19,8cm\\ \frac{A_t}{S_t} \geq 0,02cm \end{cases}$$

Selon le « RPA 99 version 2003 » [1]:

$$\begin{cases} \frac{A_t}{S_t} \ge 0,036cm \\ S_t \le 6cm....Zone \ nodale \\ \frac{A_t}{S_t} \ge 12cm...Zone \ courante \end{cases}$$

- Choix des armatures :

On adopte : $A_t=2\emptyset 6=0,57cm^2$

- Choix des espacements :

$$\frac{A_t}{S_t} \ge 0,036 \Rightarrow S_t \le 15,83cm$$

$$Donc: \begin{cases} S_t = 6cm.....Zone \text{ no dalle} \\ S_t = 15cm....Zone \text{ courante} \end{cases}$$

Figure IV 14: Ferraillage de poutrelle sur travée.

Figure IV 15: Ferraillage de poutrelle sur appuis.

IV.3.2. Dalle machine :

Vu le nombre important d'étages dans le bâtiment, un ascenseur est indispensable pour assurer aux habitant un déplacement plus aisé entre les différents étages. Le bâtiment comprend une cage d'ascenseur dont la vitesse d'entrainement est de (v = 1 m/s), la surface de

La cabine est de $(1,70 \times 1,80) = 3,06 \text{ m}^2$

La charge totale que transmettent le système de levage et la cabine chargée est de 9 tonnes.

Calcul de la dalle pleine du local machine :

L'étude de la dalle pleine soumise à une charge localisée,

Calculer les moments engendrés par cette charge, suivant la petite portée (Lx = 1,70 m) et la grande portée (Ly = 1,80 m).

Les moments de flexion du panneau de dalle dans les deux sens sont donnés par la superposition des moments dus au poids propre et à la charge localisée.

Figure IV 17: Schémas représentatifs de diffusion de charge au niveau du feuillet moyen.

Dimensionnement :

$$\rho = \frac{1.70}{1.80} = 0.94 \rightarrow 0.4 < \rho < 1 \rightarrow \text{Panneau isolé } ep \ge \frac{Lx}{30}$$

 $ep \ge \frac{170}{30} = 5,67 \ cm \rightarrow L$ 'épaisseur minimale pour une dalle pleine étant de 12cm (selon le RPA99 version 2003), on prend une épaisseur ep = 20 cm

Figure IV 16: Ascenseur.

 $0.4 < \rho < 1 \rightarrow$ le panneau de dalle travaille dans les deux sens.

Détermination des sollicitations :

Moments dus au poids propre :

Charge permanente :

Poids propre de la dalle + revêtement en béton

 $G = (25 \times 0.20 + 22 \times 0.05) \times 1 = 6.1 \text{ kN/ml}$

Surcharge d'exploitation : Q = 1 kN/ml

qu= 1.35 × *G* + 1.5 × *Q* = 1,35 × 6,1 + 1.5 × 1 = 9,735

qu = 9,735 kN/ml

Moment suivant la petite portée : $Mx = \mu x \times q \times lx^2$

Moment suivant la grande portée :My = $\mu y \times Mx$

Avec : µxet µy: Coefficients donnés en fonction de pet du coefficient de Poisson v

 $\rho = 0.94$ et v = 0 (ELU) $\rightarrow \mu x = 0.0419$; $\mu y = 0.8661$

 $M^{1} x = \mu x \times q \times lx \ 2 = 0,0419 \times 9,735 \times (1,70)^{2} = 1,179 \text{ kN.m}$ $M^{1} y = \mu y \times Mx = 0,8661 \times 1,179 = 1,021 \text{ kN.m}$ $A \ 1'ELS :$ $qS = G + Q = 6,1 + 1 = 7,1 \rightarrow qS = 7,1 \text{ kN/ml}$ $\rho = 0,94 \text{ et } v = 0,2 \text{ (ELS)} \rightarrow \mu x = 0,0491 \text{ ; } \mu y = 0,9087$ $M^{1} x = \mu x \times q \times lx \ 2 = 0,0491 \times 7,1 \times (1,70)^{2} = 1,007 \text{ kN.m}$ $M^{1} y = \mu y \times Mx = 0,9087 \times 1,007 = 0,9154 \text{ KN.m}$

Moments dus a la charge localisée (système de levage) :

 $Mx = P \times (M1 + v \times M2)$

 $My = P \times (M1 \times v + M2)$

*M*1e t *M*2: coefficients donnée par les abaques en fonction de ρ et des rapports : $\frac{v}{lx}$ et $\frac{v}{ly}$

U et V (80×80) : côtés du rectangle sur lesquels la charge P s'applique, compte tenu de la diffusion à 45° dans la dalle. Ils sont déterminés au niveau du feuillet moyen de la dalle.

 $\mathbf{U} = \mathbf{U}\mathbf{0} + 2\times\,\boldsymbol{\xi} + \mathbf{h}\mathbf{0}$

 $V = V0 + 2 \times \xi + h0$

Avec :

h0 = 20 cm (épaisseur de la dalle pleine).

 ξ dépend de la nature du revêtement, dans notre cas la dalle est composée de béton armé, et d'une chape en béton donc $\xi = 5$ cm

 $U = V = 80 + 2 \times 5 + 20 = 110 \text{ cm}$ On a : $\frac{U}{lx} = \frac{110}{170} = 0,65$; $\frac{V}{ly} = \frac{110}{180} = 0.61$; $\rho = 0.94$ M1 = 0.085M2 = 0,067A l'ELU : v = 0 $Pu = 1,35 P = 1,35 \times 90 = 121,5 kN.$ $M^2 x = Pu \times (M1 + v \times M2) = 121.5 (0.085) = 10.33 \text{ kN.m}$ $M^2 y = Pu \times (M1 \times v + M2) = 121.5 (0,067) = 8,14 \text{ kN.m}$ A 1'ELS : v = 0,2Ps = P = 90KN. $M2 = Ps \times (M1 + v \times M2) = 90 (0.085 + 0.2 \times 0.067) = 8.85 \text{ kN.m}$ $M2 \ y = Ps \times (M1 \times v + M2) = 90 \ (0.085 \times 0.2 + 0.067) = 7.56 \ kN.m$ Superposition des moments : A l'ELU : Mx = M1 x + M2 x = 1,179 + 10,33 = 11,509 kN.m $M_{\rm Y} = M1 \text{ y} + M2 \text{ y} = 1,021 + 8,14 = 9,161 \text{ kN.m}$

Correction des moments :

Ces moments seront minorés, en leur affectant le coefficient (0,85) en travée et (0,3) aux appuis, et ce, afin de tenir compte des semi-encastrements de la dalle au niveau des voiles.

• En travée :

M t x= $0.85 \times$ Mx= $0.85 \times 11,509 = 9,783$ kN.m

M t y = $0.85 \times$ My = $0.85 \times 9.161 = 7.79$ kN.m

• Aux appuis :

M a x = $-0.3 \times$ Mx= $-0.3 \times 11,509 = -3,453$ kN.m

M a y = $-0.3 \times$ Mx= $-0.3 \times 11,509 = -3,453$ kN.m

Al'ELS :

Mx = M1 x + M2 x = 1,007 + 8,85 = 9,857 kN.m

My = M1 y + M2 y = 0.9145 + 7.56 = 8.475 kN.m.

Correction des moments :

• En travée :

M t x= $0.85 \times$ Mx= 0.85×9.857 = 8.378 kN.m

M t y = $0.85 \times$ My = $0.85 \times 8,475 = 7,203$ kN.m

• Aux appuis :

M a x = $-0.3 \times$ Mx= $-0.3 \times 9,857 = -2,957$ kN.m

M a y = $-0.3 \times Mx = -0.3 \times 9,857 = -2,957$ kN.m

Ferraillage du panneau :

Le ferraillage se fera à l'ELU pour une bande d'un mètre de largeur.

Nous considérerons la hauteur utile propre à chacune des deux directions, en appuis comme en travée (dx=dy=18cm); b=1 m

En travée :

Sens de la petite portée : (lx)

 $\mu_{u} = \frac{Mtx}{b*dx^{2}*fbu} = \frac{9,783 \times 10^{6}}{1000 \times 180^{2} \times 17} = 0,0178 < \mu_{R} =$

M _{tu} (kNm)	μ	µ<µ _R	$A_s'(cm^2)$	α	Z(cm)	σs(MPa)	$A_s(cm^2)$
9,783	0,0178	Oui	0	0,0224	17,84	434,783	1,26

Tableau IV 19: ferraillage de panneau de petite portée.

A_s^{min}≥ 0,23*b* * $d \frac{ft28}{fe}$ = 1,98 cm² A_s=Max {1,26 cm²; 1,98cm²} =1,98 cm²

Choix : 4T8 (A_s=2,01 cm²).

On opte pour une section d'armature

$$As = 4T8 = 2,01 \text{ cm}^2 \text{ avec un espacement } St = \frac{100}{4} = 4 \text{ cm}$$

Sens de la grande portée : (ly)

 $\mu_{\rm u} = \frac{M ty}{b * dx^2 * f b u} = \frac{7,79 \times 10^6}{1000 \times 180^2 \times 17} = 0,0141 < \mu_{\rm R} =$

Tableau IV 20: ferraillage de panneau de grande portée.

M _{tu} (kNm)	μ	μ<μr	$A_s'(cm^2)$	α	Z(cm)	σs(MPa)	A _s (cm ²)
7,79	0,0141	Oui	0	0,0178	17,87	434,783	1,003

 $A_s^{min} \ge 0.23b * d \frac{ft^{28}}{fe} = 1.98 \text{ cm}^2$ $A_s = Max \{1.003 \text{ cm}^2; 1.98 \text{ cm}^2\} = 1.98 \text{ cm}^2$

Choix : 4T8 (A_s=2,01 cm²).

On opte pour une section d'armature

 $As=4T8=2,01 \text{ cm}^2 \text{ avec un espacement } St=\frac{100}{4}=25 \text{ cm}$ Aux appuis :

 $\mu_{\rm u} = \frac{Max}{b*dx^2*fbu} = \frac{3,453 \times 10^6}{1000 \times 180^2 \times 17} = 0,0063 < \mu_{\rm R} =$

Tableau IV 21: ferraillage des dalles en appui.

M _{tu} (kNm)	μ	μ<μr	As'(cm ²)	α	Z(cm)	σs(MPa)	A _s (cm ²)
3,453	0,0063	Oui	0	0,0079	17,94	434,783	0,443

 $A_s^{\min} \ge 0,23b * d \frac{ft_{28}}{fe} = 1,98 \text{ cm}^2$

A_s=Max {0,443 cm²; 1,98cm²} =1,98 cm²

Choix : $4T8 (A_s=2,01 \text{ cm}^2)$.

On opte pour une section d'armature

 $Ast = 4T8 = 2,01 \text{ cm}^2 \text{ avec un espacement } \text{St} = \frac{100}{4} = 25 \text{ cm}$

> Effort tranchant :

On doit vérifier que : $\tau_u \leq \overline{\tau_u}$

$$\bar{\tau} = \operatorname{Min}\left(0, 2\frac{fc^{28}}{\gamma b}; 5MPa\right) = 4$$
 MPa (Fissuration préjudiciable)

Les efforts tranchants sont maximaux au voisinage de la charge.

• Au milieu de U : Tu
$$= \frac{Pu}{3U} = \frac{121,5}{3 \times 1,10} = 36,82$$
kN

• Au milieu de V : $Tu = \frac{Pu}{3V} = \frac{121,5}{3 \times 1,10} = 36,82$ kN

$$\tau = \frac{T_u^{max}}{bd} = \frac{36,82 \times 10^3}{1000 \times 180} = 0,2045 \text{ MPa}$$

 $\tau_u = 0,2045 \le \overline{\tau_u} = 4$ Condition vérifier

Vérification des espacements des barres :

Suivant le sens lx : St= 25cm \leq min (3h ; 33) = 33cmCondition vérifiée.

Suivant le sens ly : St= 25cm \leq min (4h ; 33) = 33cmCondition vérifiée.

Diamètre maximal des barres :

 ϕ adopté $\leq h \ 10 \rightarrow \phi$ adopté $= 8 \text{mm} \leq h \ 10 = 20 \text{mm}$ Condition vérifiée. ϕ adopté : diamètre des armatures longitudinales.

Vérification de poinçonnement :

 $Pu \le 0.045 \times Uc \times ht \times \frac{fc^{28}}{\gamma b}$

Avec U*c* : périmètre du contour de l'aire laquelle agit la charge dans le plan du feuillet moyen.

$$Uc = 2(U + V) = (110 + 110) \times 2 = 440cm = 4.40 m$$

 $0.045 \times 4400 \times 200 \times \frac{30}{1,5} = 792 \text{ kN}$

 $121.5 \le 792$ kN Condition vérifiée.

> Vérification à ELS :

La fissuration est considérée comme peu préjudiciable, donc il n'est pas nécessaire de vérifier la contrainte des armatures tendues.

Vérification des contraintes du béton :

• Position de l'axe neutre :

$$\frac{b}{2}y^2 + nA'_s(y - c') - nA_s(d - y) = 0$$

• Moment d'inertie :

$$I = \frac{b}{3}y^3 + nA'_s(y - c')^2 + nA_s(d - y)^2$$

Avec :

On doit vérifier que :

$$\sigma_{\rm bc} = \frac{M_{\rm ser}}{I} y \le \overline{\sigma}_{\rm bc} = 0,6 f_{\rm c28} = 18 MPa$$

Tous les résultats sont récapitulés dans le tableau ci-dessous :

Tableau IV 22:	Vérification	à l'E.L.S
----------------	--------------	-----------

	M _{ser} ,(kN.m)	A_s (cm ²)	Y (cm)	I (cm ⁴)	σ_{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$
Travée xx	8,378	2,01	2,94	7064,29	3,49	Vérifiée
Travée yy	7,203	2,01	2,94	7064,29	3	Vérifiée
Appui	2,957	2,01	2,94	7064,29	1,23	Vérifiée

Vérification de la flèche :

La vérification de la flèche n'est pas nécessaire si les conditions suivantes sont vérifiées :

$$\frac{h}{lx} \ge \frac{Mtx}{20Mx} = \frac{20}{470} = 0,0425 \ge \frac{8,7635}{20*10,31} = 0,0425$$
 Condition vérifiée
$$\frac{As}{b*d} \le \frac{4,2}{fe} = \frac{2,37}{100*18} = 0,001 \le \frac{4,2}{500} = 0,0084$$
 Condition vérifiée

Récapitulatif :

En travées :

Sens XX At= $3HA10 = 2,37 \text{ cm}^2$ (St = 33 cm).

Sens YY At = $3HA10 = 2,37 \text{ cm}^2$ (St = 33 cm).

Aux appuis :

Sens XX $Aa = 4HA8 = 2.01 \text{ cm}^2 \text{ (St} = 25 \text{ cm)}.$

Sens YY Aa= $4HA8 = 2.01 \text{ cm}^2 \text{ (St} = 25 \text{ cm)}$

Figure IV 18: Ferraillage dalle machine.

Chapitre V : Etude De Vent

Introduction :

Le vent est une action climatique due au mouvement de l'air résultant de la différence de pression entre les zones de l'atmosphère.

L'objet de cette partie de l'étude est l'évaluation des sollicitations d'ensembles engendrés par l'action du vent, ainsi le calcul est conduit conformément au règlement algérien RNV2013 [4] dans le calcul, le bâtiment sera assimilé à une console encastrée dans le sol et sera soumis à une pression le long de sa hauteur. Les sollicitations sont proportionnelles à la hauteur de la structure. Vu l'élancement de notre bâtiment et la nature de l'enveloppe extérieure (mur-rideau), une étude au vent est nécessaire et sera donc traitée dans ce chapitre.

V.1. Le calcul D'après le RNV2013 :

On considérer que le bâtiment est séparé des autres constructions voisines est cela pour les causes suivantes :

Manque de données sur la construction voisine (la géométrie ; la durée de sa construction...).

Marge de sécurité.

Les calculs doivent être effectués séparément pour toutes les directions du vent perpendiculaires aux parois de la construction et une étude de la toiture (plancher terrasse).

En prend 2 directions du vent :

V1 : perpendiculaire à la façade principale.

V2 : perpendiculaire à la façade postérieure.

- La direction
- L'intensité
- La région
- Site d'implantation de la structure et de son environnement

V.2. Localisation et données concernant le site

Le projet est bâtiment R+25 implanté dans un terrain plat à Wilaya de BLIDA

• La forme géométrique et des ouvertures de la structure

V.3. Données relatives au site : D'après le RNV2013

- Catégorie du terrain IV (Tableau 2.4.)
- Site plat : *ct* =1 (Tableau 2.5.)
- Zone du vent I (Blida)
- $qr\acute{e}f = 375 \text{ N/m}^2$ (Tableau 2.2.)
- Facteur de terrain : K T = 0,234
- Paramètre de rugosité Z 0 = 1 m
- Hauteur minimale *Zmin*=10 m
- Coefficient utilisé pour le calcul du coefficient ξ =0.67

Figure V1: Action du vent suivant la direction V1 et V2.

V.4. Pression dynamique de pointe :

La pression dynamique de pointe q (Ze) à la hauteur de référence Ze est donnée par

qsp (Ze) =qré $f \times ce(z)$ [N/m]

 $qr\acute{e}f = 37,5 \ daN/m^2$

Hauteur de référence ze

Pour les murs au vent des bâtiments à parois verticales, ze est déterminé comme indiqué par la figure

Pour les murs sous le vent et parallèles au vent, Ze est pris égal à la hauteur du bâtiment au - dessus du niveau du sol

Pour les toitures, ze est pris égal à la hauteur maximale des bâtiments ;

Pour tous les autres ouvrages la hauteur de référence est égale à la hauteur maximale de l'élément considéré.

Figure V 2: Hauteur de référence et profil correspondant de la pression dynamique.

V.4.1. Direction vent V1 :

Pour notre cas en a h=79,96 m ;b=25,5 m alors :

 $h=79,96 \text{ m} > 2 \times b= 51 \text{ m}$

ze = b; ze = hisp; ze = h

V.4.1.a. Coefficient d'exposition auvent.

Dans le cas où la structure est peu sensible aux excitations dynamiques, le coefficient

D'exposition est donné par la formule ci-dessous

 $ce(Z) = ct^{2}(z) \times cr^{2}(z) \times [1 + 7 I v(z)] ($ §2.4.2. RNV2013)

cr: Coefficient de rugosité (Cf. § 2.4.4. RNV2013)

ct : Coefficient de topographie (Cf. §2.4.5. RNV2013)

I v Intensité de la turbulence (Cf. §2.4.6. RNV2013)

V.4.1.b. Le coefficient de rugosité :

Traduit l'influence de la rugosité et de la hauteur sur vitesse moyenne du vent.

$$\begin{bmatrix} C_r(z) = k_t * \ln \frac{z}{z_0} & \text{pour } z_{\min} \le z \le 200 \text{m.} \\ C_r(z) = k_t * \ln \frac{z_{\min}}{z_0} & \text{pour } z \le z_{\min}. \end{bmatrix}$$

Dans notre cas on a : KT = 0,234

Tableau V	V 1:	Coefficient	de	rugosité.
-----------	------	-------------	----	-----------

Ze	Zmin	Cr
25,5	10	0,758
28,96	10	0,788
79,96	10	1,025

V.4.1.c. Coefficient d'exposition :

L'intensité de turbulence définie comme étant l'écart type de la turbulence divisé par la vitesse moyenne du vent est donnée par la formule : (2.5 chapitres 2 RNVA 2013)

D'abord on doit calculer l'intensité de turbulence Iv. Est donnée par :

Alors : Pour

On a :

Tableau V 2: Coefficient d'exposition.

Ze	Zmin	Iv
25,5	10	0,3088
28,96	10	0,2971
79,96	10	0,2282

Z (en m) : Hauteur considérer

ct =1 pour < 0,05 (*site plat*) (§2.4.5. RNV2013)

On peut maintenant calculer coefficient d'exposition Ce.

Le coefficient d'exposition au vent Ce(z) tient compte des effets de la rugosité du terrain, de la topographie du site et de la hauteur au-dessus du sol. En outre, il tient compte de la nature turbulente du vent. Ce(z) est donnée par :

<u>A.N :</u>

$$C_{e}=1^{2}*0,758^{2}*\llbracket1+7(0,3088)\rrbracket=1,816$$
$$C_{e}=1^{2}*0,788^{2}*\llbracket1+7(0,2971)\rrbracket=1,910$$
$$C_{e}=1^{2}*1,025^{2}*\llbracket1+7(0,2282)\rrbracket=2,731$$

V.4.1.e. Valeur de la pression de pointe

Est donnés par :

qdynm=qréf*Ce.

Tableau V 3: Valeur de la pression de pointe.

qref (N/m2)	Ce	q dynm (N/m2)
375	1.816	680.89
375	1.910	716.43
375	2.731	1023.97

V.4.1.f. Récapitulatif Direction de vent V1 :

Donc : $b = 25 \le h = 79,56 \ge 2b = 50$

he n'étant pas défini dans l'Eurocode, nous choisirons de décomposer en bandes de hauteurs inférieures égales à b

Tableau V 4: Récapitulatif des résultats.

Z(m)	Cr	Iv	Ct	Ce	Pdyn(N/m2)
25,5	0.758	0.3088	1	1.816	680.89
28,96	0.788	0.2971	1	1.910	716.43
79,96	1.025	0.2282	1	2.731	1023.97

V.4.2. La pression aérodynamique :

La pression aérodynamique W(Zj) agissant sur une paroi est obtenue à l'aide de formule suivante : (chapitre 2 : Bases de calcul page 58).

Une face de la paroi est intérieure à la construction, l'autre extérieure :

$$W(Zn) = P_{dyn} (Ze)^* [Cpe-Cpi].$$

V.4.2.a. Coefficient de pression extérieur Cpe :

Les Cpe s'obtiennent à partir des formules suivantes :

 $Cpe = Cpe, 1 \text{ si } S \leq 1 m^2$

Cpe = Cpe,1 + (Cpe,10 - Cpe,1) × log (S) si 1 m² < S < 10 m²

 $Cpe = Cpe, 10 \text{ si } S \ge 10 \text{ m}^2$

Ou S (en m²) désigne la surface chargée de la paroi considérée

Vent sur le pignon V1 et V3 :

1. Paroi verticale :

Ils convient de diviser les parois.

Pour cette direction du vent : b=25,50m., d=21,10., h=79,96m.

e=min(b,2h) =min (25,50;159,92).

On prend : e=25,50 m.

Cas ou e = 25,50 >d = 21,10

 $e \ge d$ La paroi est divisée en 2 zones de pression ^A', B', D et E qui sont illustrées sur la figure suivant :

Figure V 3: convient de diviser les parois.

La surface de la paroi considérée S= $25 \times 79,56 = 1986 \text{ m}^2 \ge 10\text{m}^2$. Selon la formule (§5.1. RNV2013) donc *cpe*=*cpe*.10

D'après le tableau (5.1. RNV2013) on a :

Tableau V 5: Cpe Pour les parois verticales d'un bâtiment à base rectangulaire.

A'	Β'	D	Е
<i>cpe</i> .10	<i>cpe</i> .10	<i>cpe</i> .10	<i>cpe</i> .10
-1.0	-0.8	+0.8	-0.3

2. Terrasse :

La hauteur de l'acrotère hp = 0.6 m

Les toitures plates sont celles dont la pente est inférieure ou égale à 5°. Selon (§1.1.5 chap5.RNV2013) les différentes zones de pression F, G, Het Isont

Représentées sur la figure ci - dessous : e - min [b ; 2h] = min [25,50 ;159,92] = > e = 25,50

Dans Notre cas hp / h = 0.6 / 79.96 = 0.0075

Donc on néglige l'acrotère. D'où :

Les valeurs respectives des coefficients correspondantes à ces zones sont portées sur le tableau suivant :

Tableau V 6: Les cœfficients de pression externe de la toiture.

CPe10 CPe10 CPe10 -1,8 -1,2 -0,7 +-0,2	F	G	Н	Ι
-1,8 -1,2 -0,7 +-0,2	CPe10	CPe10	CPe10	CPe10
	-1,8	-1,2	-0,7	+-0,2

Figure V 4: convient de diviser les toitures.

V.4.b. Détermination des coefficients de pression intérieure Cpi :

Le Cpi dépend de l'indice de perméabilité µp définit comme suit :

 $\mu_p = \frac{\sum des \ surfaces \ des \ ouvertures \ ou \ Cpe \leq 0}{\sum des \ surfaces \ de \ toutes \ les \ ouvertures}$

Dimension de fenêtre 1 : (1,4m;1,4m) S = 1,96 m²

Dimension de fenêtre 2 : (1,2m; 0.94m) S = 1,128 m²

Dimension de la porte : (2,03m; 1,66m) S = 3,3698 m²

On V1 (156 fenêtres 1 +52 fenètres 2+ 1porte) $S = 367,79 m^2$

 $S_T = 735,571m^2$

$$\mu p = \frac{367,79}{735,571} = 0,5$$

D'après le paragraphe (§2.2.2 chap5.RNV2013) on doit utiliser les deux valeurs du Cpi :

$$\frac{h}{d} = \frac{79,96}{21,10} = 3,790$$

Figure V 5: valeurs du Cpi.

Pour $\mu_p = 0.5$ et h/d >1 Cpi = 0.1

Les valeurs des pressions qui sont données dans le tableau suivant :

Pour Z = 25,5 m

Tablaan	V	7.	Loc	valoura	dag	progring
Tapleau	v	1.	Les	valeurs	ues	pressions.

Zone	Pp(N/m2)	Cep	Cpi1	W (zj1) (N/m2)
A'	680.89	-1	0,1	-748.979
B'	680.89	-0,8	0,1	-612.801
D	680.89	0,8	0,1	476.623
E	680.89	-0,3	0,1	-272.356

Pour Z = 28,96 m

Zone	Pp(N/m2)	Cep	Cpi1	W (zj1) (N/m2)
A'	716.43	-1	0,1	-788.073
B'	716.43	-0,8	0,1	-644.787
D	716.43	0,8	0,1	501.501
E	716.43	-0,3	0,1	-286.572

Pour Z = 79,96 m

Zone	Pp(N/m2)	Cep	Cpi1	W (zj1) (N/m2)
A'	1023.97	-1	0,1	-1126.367
B'	1023.97	-0,8	0,1	-921.573
D	1023.97	0,8	0,1	716.779
Е	1023.97	-0,3	0,1	-409.588

TOITURE :

Zone	Pp(N/m2)	Cep	Cpi1	W (zj1) (N/m2)
F	1023.97	-1,4	0,1	-1534,455
G	1023.97	-0,9	0,1	-1022,97
Н	1023.97	-0,7	0,1	-818,376
т	1023.97	0,2	0,1	102,297
1	1020.97	-0,2		-306,891

V.4.3. Direction de vent V2 :

Donc :
$$b = 21, 10 \le h = 79, 96 \ge 2b = 42, 2$$

he n'étant pas défini dans l'Eurocode, nous choisirons de décomposer en bandes de hauteurs inférieures égales à b

Pour notre cas en a h=79,96 m ;b=25,5 m alors :

 $h=79,96 \text{ m} > 2 \times b= 51 \text{ m}$

ze = b; ze = hisp; ze = h

Z(m)	Cr	Iv	Ce	qdyn(N/m2)
21,1	0.714	0.3279	1.678	629.21
37,76	0.85	0.2754	2.114	792.69
79,96	1.025	0.2282	2.731	1023.97

Tableau V 8: Récapitulatif des résultats.

• Paroi verticale :

Ils convient de diviser les parois.

Pour cette direction du vent : b=21,10 m., d=25,50m., h=79,96m.

e=min(b,2h) =min (21,10;159,92).

On prend : e=21,10m.

Cas ou e = 21,10< d = 25,50

 $d \ge e$ La paroi est divisée en 3 zones de pression A , B, C , D et E qui sont illustrées sur la figure suivant :

Figure V 6: convient de diviser les parois.

La surface de la paroi considérée S= $21,10 \times 79,96 = 1687,156 \text{ m}^2 \ge 10\text{m}^2$. Selon la formule (§5.1. RNV2013) donc *cpe= cpe*.10

D'après le tableau (5.1. RNV2013) on a :

Tableau V 9: Cpe Pour les parois verticales d'un bâtiment à base rectangulaire.

А	В	С	D	Е
<i>cpe</i> .10	<i>cpe</i> .10	<i>cpe</i> .10	<i>cpe</i> .10	cpe.10
-1.0	-0.8	-0.5	+0.8	-0.3

• Terrasse :

La hauteur de l'acrotère hp = 0.6 m

Les toitures plates sont celles dont la pente est inférieure ou égale à 5°. Selon (§1.1.5 chap5.RNV2013) les différentes zones de pression F, G, Het Isont

Représentées sur la figure ci - dessous : e - min [b; 2h] = min [21,10;159,92] = > e = 21,10

Dans Notre cas hp / h = 0.6 / 79.96 = 0.0075

Donc on néglige l'acrotère. D'où :

Les valeurs respectives des coefficients correspondantes à ces zones sont portées sur le tableau suivant :

Tableau V 10: Les cœfficients de pression externe de la toiture.

F	G	Н	Ι
CPe10	CPe10	CPe10	CPe10
-1,8	-1,2	-0,7	+-0,2

Figure V 7: convient de diviser les toitures.

• Détermination des coefficients de pression intérieure Cpi :

Le Cpi dépend de l'indice de perméabilité µp définit comme suit :

$$\mu_p = \frac{\sum des \ surfaces \ des \ ouvertures \ ou \ Cpe \le 0}{\sum des \ surfaces \ de \ toutes \ les \ ouvertures}$$

On V2 (156 fenêtres 1 +52 fenêtres2+ 1porte) $\times 2 = S = 735,58 \text{ m}^2$

 $S_T = 735,58 \text{ m}^2$

 $\mu p = \frac{735,58}{735,58} = 1$

D'après le paragraphe (§2.2.2 chap5.RNV2013) on doit utiliser les deux valeurs du Cpi :

$$\frac{h}{d} = \frac{7956}{25} = 3,182$$

Pour $\mu_p = 1$ et h/d >1 _____ Cpi =-0.05

Z=21,1m

Tableau	V	11:	Les	valeurs	des	pressions.
Indican	•		200	, alearb	avo	p100010110.

Zone	Pp(N/m2)	Сер	Cpi1	W (zj1) (N/m2)
А	629.21	-1	-0,05	-597.75
В	629.21	-0,8	-0,05	-471.91
С	629.21	-0,5	-0,05	-283.14
D	629.21	0,8	-0,05	534.83
E	629.21	-0,3	-0,05	-157.30

Z= 37,76 m

Zone	Pp(N/m2)	Cep	Cpi1	W (zj1) (N/m2)
А	792.69	-1	-0,05	-753.06
В	792.69	-0,8	-0,05	-594.52
С	792.69	-0,5	-0,05	-356.71
D	792.69	0,8	-0,05	673.79
Е	792.69	-0,3	-0,05	-198.17

Z=79,96 m

Zone	Pp(N/m2)	Cep	Cpi1	W (zj1) (N/m2)
А	1023.97	-1	-0,05	-972.77
В	1023.97	-0,8	-0,05	-767.98
С	1023.97	-0,5	-0,05	-460.79
D	1023.97	0,8	-0,05	870.37
Е	1023.97	-0,3	-0,05	-255.99

TOITURE

Zone	Pp(N/m2)	Сер	Cpi1	W (zj1) (N/m2)
F	1023.97	-1,4	-0,05	-1382,36
G	1023.97	-0,9	-0,05	-870,37
Н	1023.97	-0,7	-0,05	-665,58
Ι	1023.97	0,2	-0,05	255,99
		-0,2		-153,60

V.4.4. Calcul des forces de frottement :

Les effets de frottement du vent sur la surface peuvent être négligés lorsque l'aire totale de toutes les surfaces parallèles au vent (ou faiblement inclinées par rapport à la direction du vent) sont inférieures ou égales à 4 fois l'aire totale de toutes les surfaces extérieures perpendiculaires au vent (au vent et sous le vent). $2(d \times h) \le 4(2b \times h)$.

DirectionV1 :

 $2(21,1\times79,96) \le 4(2(25,5)\times79,96)$ 3374,312 m² $\le 16311,84$ m²

Direction V2 :

2(25,5×79,96) ≤4(2(21,1) × 79,96)

 $4077,96 \text{ m}^2 \le 13497,248 \text{ m}^2$

La Condition est vérifiée.
Conclusion

Le vent fait partie des actions qu'il faut considérer quand il s'agit des constructions élevées, mais il est moins important qu'un séisme pour une construction lourde en zone de forte sismicité. Comme il est rare d'avoir la combinaison des deux actions à la fois donc on va concentrer notre étude aux sollicitations dues aux séismes qui sont plus défavorables.

Chapitre VI : Etude Dynamique

Introduction :

Le séisme est un évènement naturel, dont on ne peut stopper sa récurrence. Ses effets sur l'environnement dépendent de sa sévérité, des conditions de sol et de la vulnérabilité des éléments exposés. Les effets engendrés sur l'environnement sont parfois désastreux, il est responsable de la destruction de villes entières, causant la mort de milliers de personnes et de pertes économiques parfois insurmontables par le pays touché.

Les séismes sont des événements naturels qui peuvent causer des dégâts considérables sur l'environnement et les structures bâties, ainsi que des pertes humaines et économiques importantes.

C'est pourquoi il est important de prendre en compte la dynamique et la sismicité lors de la conception de structures résistantes aux séismes. Les règles parasismiques, telles que les RPA99 en Algérie, sont des outils importants pour garantir que les constructions soient suffisamment résistantes aux sollicitations sismiques.

Les techniques de conception parasismique comprennent, entre autres, le renforcement des structures, l'utilisation de matériaux plus résistants et la mise en place de systèmes d'absorption des chocs pour minimiser les dommages causés par les séismes.

En outre, il est également important de sensibiliser les populations à la prévention et à la gestion des risques sismiques, en leur fournissant des informations sur les mesures de sécurité à prendre avant, pendant et après un séisme.

VI. 1. Objectif de l'étude dynamique :

L'objectif initial de l'étude dynamique d'une structure est la détermination de ses caractéristiques dynamiques propres. Ceci est obtenu en considérant son comportement en vibration libre non- amortie. Cela nous permet de calculer les efforts et les déplacements maximums lors d'un séisme.

L'étude dynamique d'une structure telle qu'elle se présente réellement, est souvent très complexe et demande un calcul très fastidieux voire impossible. C'est pour cette raison qu'on on fait souvent appel à des modélisations qui permettent de simplifier suffisamment le problème pour pouvoir l'analyser.

VI. 2. Etapes de l'analyse dynamique :

Les principales étapes d'un calcul dynamique sont :

La définition de la charge dynamique.

L'idéalisation de la structure :

La définition des DDL importants.

La définition des propriétés de la structure (masse, rigidité, amortissement, limite élastique, etc.).

La définition des propriétés des sols.

Le calcul dynamique.

L'appréciation et la compréhension du comportement dynamique et l'analyse des résultats.

La combinaison des contraintes dynamique avec les autres charges (statiques) pour obtenir les valeurs maximales.

La conception (ou vérification) de la structure.

VI. 3. Modélisation de la structure :

L'une des étapes les plus importantes lors d'une analyse dynamique de la structure est la modélisation adéquate de cette dernière.

La modélisation revient à représenter un problème physique possédant un nombre de degré de liberté (D.D.L) infini par un modèle ayant un nombre de D.D.L fini et qui reflète avec une bonne précision les paramètres du système d'origine à savoir : la masse, la rigidité et l'amortissement. (5).

En d'autres termes ; la modélisation est la recherche d'un mécanisme simplifié qui nous rapproche le plus possible du comportement réel de la structure, en tenant compte le plus correctement possible de la masse et de la raideur (rigidité) de tous les éléments de la structure.

Vue la complexité et le volume de calcul que requiert l'analyse de notre structure, la nécessite de l'utilisation de l'outil informatique s'impose. Dans le cadre de notre projet nous avons opté pour un logiciel de calcul existant. Depuis quelques années et qui est à notre portée : il s'agit du ETABS.

VI.4. Présentation du logiciel de calcul ETABS :

ETABS (Extended Three-dimensional Analysis of Building Systems) est un logiciel de calcul de structures destiné aux ingénieurs en génie civil et en architecture. Développé par CSI (Computers and Structures, Inc.), il est utilisé pour l'analyse, la conception et la modélisation de bâtiments en béton armé, en acier ou en bois.

Le logiciel ETABS offre des fonctionnalités avancées pour la modélisation des structures en trois dimensions, permettant de prendre en compte les effets de la géométrie, des matériaux, de la masse et des charges sur le comportement dynamique et statique des bâtiments. Il est également doté d'outils de conception parasismique conformes aux normes internationales, permettant de déterminer les contraintes et les déformations subies par les structures lors d'un séisme.

Parmi les principales fonctionnalités d'ETABS, on peut citer :

- La modélisation en trois dimensions de structures en béton armé, acier ou bois ;
- L'analyse statique et dynamique des structures, incluant l'analyse modale et sismique ;
- La vérification de la résistance et de la ductilité des éléments structuraux tels que les poutres, les colonnes et les murs ;
- La conception parasismique selon les normes internationales ;
- La génération automatique de charges sismiques et de charges gravitaires ;
- La création de rapports détaillés et d'animations en temps réel pour faciliter la présentation des résultats.

ETABS est un logiciel largement utilisé dans l'industrie de la construction pour la conception et l'analyse de structures, notamment pour les projets de grande envergure. Il est considéré comme l'un des outils les plus complets et les plus performants pour l'analyse et la modélisation de bâtiments en trois dimensions.

VI. 5. Modélisation de la rigidité :

La modélisation des éléments constituants le contreventement (rigidité) est effectué comme suit :

- Chaque poutre et chaque poteau de la structure a été modélisé par un élément poutre (frame) à deux nœuds, chaque nœud possède 6 degrés de liberté (trois translations et trois rotations).
- Les poutres entre deux nœuds d'un même niveau (niveau i).
- Les poteaux entre deux nœuds de différent niveaux (niveau i et niveau i+1).
- Chaque voile est modélisé par élément coque (shell) nœuds (rectangulaire).
- A tous les planchers nous avons attribués des diaphragmes ce qui correspond à des planchers infiniment rigides dans leur plan.
- Tous les nœuds de la base du bâtiment sont encastrés (6DDL bloqués).

VI.5.a. Modélisation de la masse :

La masse des planchers est supposée uniformément répartie sur toute la surface du plancher. La masse est calculée par l'équation (G+ β Q) imposée par le RPA99 / Version2003 [1]

Avec ($\beta=0,2$) pour un bâtiment à usage d'habitation.

La masse volumique attribuée aux matériaux constituant les dalles est prise égale à celle du béton à savoir 25kN/m².

La masse de l'acrotère et des murs extérieurs (maçonnerie) a été uniformément répartie aux niveaux des poutres périphériques (uniquement plancher terrasse pour l'acrotère)

VI.5.b. Etude sismiques :

L'étude sismique de la structure consiste à évaluer les efforts de l'action accidentelle (séisme) sur notre structure.

VI. 6. Choix de la méthode de calcul :

En Algérie, la conception parasismique des structures est régie par un règlement en vigueur à savoir le «RPA99 / Version 2003 » Ce dernier propose trois méthodes de calcul de la réponse sismique :

- La méthode statique équivalente.
- La méthode d'analyse modale spectrale.
- La méthode d'analyse dynamique par accélérographe.

VI.6.a. La méthode statique équivalente :

C'est une méthode qui fait appel aux règlements et codes par lesquelles les forces sismiques sont simulées par des charges statiques équivalentes. Ces dispositions donnent les forces latérales qui simulent les forces d'inertie générer par le tremblement de terre, ou en autres termes ; c'est la simplification de remplacer l'action sismique "F" par une charge latérale globale équivalente (statique) "V".

VI.6.b. La méthode dynamique modale spectrale :

Par cette méthode, il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

VI.6.c. La méthode dynamique par accélérogrammes :

Cette méthode est fondée sur l'étude des efforts dans la structure en fonction du temps, elle nécessite la donnée d'un accélérogrammes et impose en pratique l'usage de l'ordinateur. La structure est supposée soumise à un séisme qui provoque des mouvements du sol dans une direction donnée, définie par l'accélérogrammes. Elle est représentée par un model dont on calcul la matrice de raideur K, la matrice des masses M et l'amortissement ξ que l'on suppose en générale identique pour tous les modes.

Combinaisons aux états limites :

Combinaisons accidentelles du RPA :

ELU : 1.35G+1.5Q. $G+Q\pm E$. ELS : G+Q 0,8G $\pm E$.

$$V = \frac{A.D.Q}{R} W$$

V : la force sismique

A : coefficient d'accélération

D : facteur d'amplification dynamique

Q : facteur de qualité

R : coefficient de comportement

W : poids de la structure

D'après le RPA99V2003, notre structure est implantée et classée dans la zone sismique III groupes d'usage 1B, Nous avons utilisé une méthode dynamique (méthode d'analyse modale spectrale) en utilisant le logiciel de calcule de structures (ETABS).

On va lancer l'analyse sans voiles (modèle 1)

VI. 7. Modèle 1 (sans voiles) initiale :

A : (zone sismique III) +groupe 1B Donc : A=0,3.

 η : Facteur de correction d'amortissement (quand l'amortissement est différent de 7%). ?

$$\eta = \sqrt{\frac{7}{(2+\xi)}} \ge 0.7 \Rightarrow \eta = 0.8819$$

 ξ : Pourcentage d'amortissement critique (ξ =7%).

R : Coefficient de comportement de la structure. Il est fonction du système de contreventement.

R=3,5 portiques auto stable avec remplissage en maçonnerie rigide

 T_1 , T_2 . Périodes caractéristiques associées à la catégorie de site (site 3 : $T_1=0,15$ s et $T_2=0,5$ s).

Q: Facteur de qualité ($Q = 1 \pm \sum_{1}^{6} P_q$).

Critère q	Observé (oui ou non)	Pq
1- Condition minimale sur les files de contreventement	Oui	0,00
2- Redondance en plan	Oui	0,00
3- Régularité en plan	Oui	0,00
4- Régularité en élévation	Oui	0,00
5- Contrôle de la qualité des matériaux	Oui	0,00
6- Contrôle de la qualité de l'exécution	Oui	0,00
	Donc : $Q = 1 \pm$	

Tableau VI 1: Facteur de qualité (modèle 1).

 $\sum_{1}^{6} P_{q} = 1$

- Condition minimale sur les files de contreventement : dans le deux x-x et yy sens vérifiée.
- 2. Redondance en plan : dans le deux x-x et y-y sens vérifiée.
- Régularité en plan : Notre structure est régulière en plan.
- 4. Régularité en élévation : on n'a pas un décrochement en élévation, donc notre structure est régulière en élévation.
- 5. Contrôle de la qualité des matériaux : on considère que notre projet est passé au CTC et l'entreprise de construction travail avec des bon matériaux.
- Contrôle de la qualité de l'exécution : on considère que le projet est passé au CTC et la réalisation fait avec entreprise connue qui fait bon travail.

Une fois le spectre de réponse injecté dans le fichier des données, la réponse sismique est obtenue sous différentes combinaisons de charges (G, Q et E).

VI.7.1. Vérification de la période :

On doit vérifier que la valeur de période numérique ne dépasse pas la valeur de la période empirique approprié de 30% (T_N <1,3 Te).

Tel que Te : période empirique de la structure :

-La formule empirique à utiliser selon les cas est :

Te = min [C_T h_n $^{3/4}$; 0,09*hn / \sqrt{D}]

h_n : hauteur mesurée de la base de la structure jusqu'au dernier niveau ;

 C_T : coefficient en fonction du système de contreventement et du type de remplissage C_T est donné par le tableau 4.6 RPA ; pour portique auto stables avec remplissage en maçonnerie : $C_T=0.05$

D : la dimension du bâtiment mesurée à sa base dans la direction du calcul ;

- on a $T_N = 3,19$ s
- $T_e = C_T h_n^{3/4} = 0.05 \times 79,96^{3/4} = 1,336 s.$
- Pour le sens X-X : h_n =25,5 m. Lx =25,5 m. Alors : Tx =1,425 s
- Pour le sens Y-Y : $h_n = 21 \text{ m}$. Ly = 21 m. Alors : Ty = 1,57 s.

Te= min (1,336 ; 1,425 ; 1,57) = 1,336 s

$$1,3Te = 1,7368 s < T_N = 3,19 s$$
, La période n'est pas vérifiée

Conclusion :

Il faut passée au 2^{éme} modèle

• RPA99 / Version2003 [1] exige de contreventée par des voiles les structures dépassant une hauteur de 8m ou 2 niveaux en zone III.

VI. 8. Modèle 2 :

VI.8.1. Disposition des voiles de contreventement :

Selon RPA99 / Version2003 [1] l'ouvrage doit comporter des contreventements dans au moins deux directions horizontales. Ces contreventements doivent être disposés de façon à :

- Reprendre une charge verticale suffisante pour assurer leur stabilité.
- Assurer une transmission directe des forces aux fondations.
- Minimiser les effets de torsion.

Figure VI 1: Disposition des voiles de modèle 2.

Tableau	VI 2:	Dimensions	des	voiles	de n	nodèle	2.
---------	-------	------------	-----	--------	------	--------	----

Voiles	Longueur	Etage	Epaisseur
V1 en L	4+2,2=6,2 m	$RDC - 12^{eme}$	30 cm
V2	4 m	$RDC - 12^{eme}$	30 cm
V3 U	18 m	$RDC - 12^{eme}$	30 cm
Noyau	5*4= 20 m		30 cm

Voiles	Longueur	Etage	Epaisseur
V1 en L	4+2,2=6,2 m	$13^{\text{eme}} - 19^{\text{eme}}$	25 cm
V2	4 m	$13^{\text{eme}} - 19^{\text{eme}}$	25 cm
V3 U	18 m	$13^{\text{eme}} - 19^{\text{eme}}$	25 cm
Noyau	5*4= 20 m	/	30 cm

Voiles	Longueur	Etage	Epaisseur
V1 en L	4+2,2=6,2 m	$20 \text{eme} - 25^{\text{eme}}$	20 cm
V2	4 m	$20 \text{eme} - 25^{\text{eme}}$	20 cm
V3 U	18 m	$20 \text{eme} - 25^{\text{eme}}$	20 cm
Noyau	5*4= 20 m	/	30 cm

Spectre de réponse :

Figure VI 2: spectre de réponse de Modèle 2.

Pour notre cas :

L'ouvrage est du «groupe 1B» (bâtiment d'habitation collective dont la hauteur dépasse 48m).

L'implantation de ce bâtiment se fera dans la wilaya BLIDA (zone III) +groupe 1B⁻ Donc : A=0,30.

 η : Facteur de correction d'amortissement (quand l'amortissement est différent de 10%).

$$\eta = \sqrt{\frac{7}{(2+\xi)}} \ge 0.7 \Rightarrow \eta = 0.764$$

 ξ : Pourcentage d'amortissement critique (ξ =10%).

R : Coefficient de comportement de la structure. Il est fonction du système de contreventement.

R= 3,5 (Noyau).

T₁, T₂ : Périodes caractéristiques associées à la catégorie de site (site 3 : T₁=0,15 s et T₂=0,5s). Q : Facteur de qualité ($Q = 1 \pm \sum_{1}^{6} P_q$)

Critère q	Observé (oui ou non)	Pq
1- Condition minimale sur les files de contreventement	Oui	0,00
2- Redondance en plan	Non	0,05
3- Régularité en plan	Oui	0,00
4- Régularité en élévation	Oui	0,00
5- Contrôle de la qualité des matériaux	Oui	0,00
6- Contrôle de la qualité de l'exécution	Oui	0,00
Donc :	$Q_{x_v} = 1 \pm \sum_{1}^{6} P_q = 1,05.$	

Tableau VI 3: Facteur de qualité pour modèle 2.

VI.8.2. Calcul de la période par la formule empirique :

Plusieurs formules empiriques pour le calcul de la période fondamentale sont proposées par le « RPA99 / Version 2003 » [1]

Soit : $T_N = 0.09 \frac{h_N}{\sqrt{L}}$

Soit : Tf= CT (hN) 3/4

Où :

hN : La hauteur, mesurée en mètre, à partir de la base de la structure jusqu'au dernier niveau L : La dimension du bâtiment mesurée à la base dans la direction de calcul considérée. CT : Coefficient en fonction du système de contreventement et du type de remplissage.

Dans notre cas on a : des portiques auto stables en béton armé avec remplissage en maçonnerie \rightarrow CT = 0,05s.

Tf= 0,05(79,96)3/4 = 1,336 s.

On a : hN=79,96 m

Selon x-x : $L_x = 25,5 m \Rightarrow T_x = 1,425 s$

Selon y-y : $L_v = 21 \ m \Rightarrow T_v = 1,57 \ s.$

Tanalytique= 1,706s.

Tempairique= min (1,336 ; 1,425 ;1,57) = 1,336 s.

Les règlements parasismiques exigent une majoration pour la valeur de la période empirique dans le cas ou 1,3 Tempairique>Tanalytique. Pour ne pas pénaliser

l'effort de calcul. Or
$$\begin{cases} T_1 = 0.15s & (site3) \\ T_2 = 0.50s & (site3) \end{cases} \rightarrow T_2 \le T \le 3.0s \Rightarrow D = 2.5\eta$$

 $(T_2/T)^{\frac{2}{3}}$

Résultats de l'analyse dynamique :

Caractéristique dynamique propres du modèle :

Participation massique du modèle :

Numéro	Période	UX	UY	Somme	Somme	RZ	Somme
d'étape				UX %	UY %		RZ%
Unité	Sec	Unité	Unité	Unité	Unité	Unité	Unité
1	<mark>1,706</mark>	<mark>0,6378</mark>	0	63,78%	0,00%	0,0005	0,05%
2	1,701	0	<mark>0,6347</mark>	63,78%	63,47%	0,0004	0,08%
3	1,591	0,0004	0,0003	63,82%	63,50%	0,6629	66,38%
4	0,483	0,0002	0,0023	63,84%	63,72%	0,1375	80,13%
5	0,456	0,1719	0,001	81,03%	63,83%	0,0001	80,14%
6	0,455	0,001	0,168	81,13%	80,63%	0,0022	80,36%
7	0,235	0,00001575	0,0006	81,13%	80,68%	0,0653	86,89%
8	0,205	0,071	0,0001	88,23%	80,70%	0,00001	86,89%
9	0,204	0,0001	0,0693	88,24%	87,63%	0,0006	86,95%
10	0,139	0,000007507	0,0004	88,24%	87,67%	0,0385	90,80%
11	0,121	0,0382	0,00001503	92,06%	87,67%	0,00001	90,80%
<mark>12</mark>	0,118	0,00001306	0,0386	<mark>92,06%</mark>	<mark>91,53%</mark>	0,0004	90,84%

Tableau VI 4: participation massique du modèle 2.

Constatations : L'analyse dynamique de la structure a conduit à :

-Une période fondamentale : T=1,706s dont :

- Le 1^{er} mode est un mode de translation parallèlement à X-X.
- Le 2^{ème}mode est un mode de translation parallèlement à Y-Y.
- Le 3^{ème}mode est un mode de rotation.
- La participation massique dépasse le seuil des 90% à partir du 12^{emm} mode.

Tableau VI 5: Les 3 premiers modes (Model 2).

Une fois le spectre de réponse injecté dans le fichier des données, la réponse sismique est obtenue sous différentes combinaisons de charges (G, Q et E).

Résultante des forces sismiques de calcul :

- L'une des 1^{ères} vérifications préconisées par le «RPA99 / Version 2003 ». Est relative à la résultante des forces sismiques.
- En effet la résultante des forces sismiques à la base «Vt» obtenue par combinaison des valeurs modales ne doit pas être inférieur à 80% de la résultante des forces sismiques déterminé par la méthode statique équivalente «V» pour une valeur de la période fondamentale donnée par la formule empirique appropriée.
- Si $V_t < 0.8V$, il faudra augmenter tous les paramètres de la réponse.

VI.8.3. Calcul de la force sismique par la méthode statique équivalente :

D'après « RPA99 / Version 2003 » [1] la force sismique totale V, appliquée à la base de la structure, (Forces, déplacements, moments,) Par le rapport $r = \frac{0.8V}{V_t}$.

Doit être calculée successivement dans deux directions horizontales orthogonales selon la formule :

Soit :
$$V = \frac{ADQ}{R}W$$

W : Poids de la structure, il est calculé de manière automatique.

D: Facteur d'amplification dynamique moyen, il est en fonction de la catégorie du site, du facteur de correction d'amortissement η et de la période fondamentale T de la structure

Sens	А	D	Q	R	W (KN)	V (KN)	0,8V (KN)
X-X	0,3	0,994	1,05	3,5	190255,3	17020,239	13616,191
Y-Y	0,3	0,994	1,05	3,5	190255,3	17020,239	13616,191

Sens X-X : V etabs= 14565,9144 > V statique= 13616,191 Condition vérifie.

Sens Y-Y : V etabs= 14572,5457 > V statique= 13616,191 Condition vérifie.

VI.8.4. Vérification de déplacement inter étage :

Les déplacements relatifs latéraux d'un étage par rapport aux étages adjacents, ne doivent pas dépasser (1,0%) de la hauteur d'étage.

Le déplacement horizontal à chaque niveau 'K' de la structure est calculé comme suit :

 $\delta k = R * \delta e K$

δeK : déplacement dû aux forces sismiques R : coefficient de comportement

Le déplacement relatif au niveau 'K' par rapport au niveau 'K-1' est égal à : $\Delta k=\delta k-\delta k-1$

Г

	Sens X-X							
Etage	Élévation(m)	<i>δek</i> (mm)	R	<i>δk</i> (mm)	$\Delta k \ (mm)$	0,01he(mm)	r%	Observation
25	79,56	108,491		379,7185	15,967	30,6	52,18%	Vérifiée
24	76,5	103,929		363,7515	16,2085	30,6	52,97%	Vérifiée
23	73,44	99,298		347,543	16,4675	30,6	53,82%	Vérifiée
22	70,38	94,593		331,0755	16,7825	30,6	54,84%	Vérifiée
21	67,32	89,798		314,293	17,0625	30,6	55,76%	Vérifiée
20	64,26	84,923		297,2305	17,3635	30,6	56,74%	Vérifiée
19	61,2	79,962		279,867	17,5245	30,6	57,27%	Vérifiée
18	58,14	74,955		262,3425	17,71	30,6	57,88%	Vérifiée
17	55,08	69,895		244,6325	17,8115	30,6	58,21%	Vérifiée
16	52,02	64,806		226,821	17,885	30,6	58,45%	Vérifiée
15	48,96	59,696		208,936	17,8605	30,6	58,37%	Vérifiée
14	45,9	54,593	3,5	191,0755	17,7975	30,6	58,16%	Vérifiée
13	42,84	49,508		173,278	17,6155	30,6	57,57%	Vérifiée
12	39,78	44,475		155,6625	17,325	30,6	56,62%	Vérifiée
11	36,72	39,525		138,3375	16,968	30,6	55,45%	Vérifiée
10	33,66	34,677		121,3695	16,534	30,6	54,03%	Vérifiée
9	30,6	29,953		104,8355	15,9425	30,6	52,10%	Vérifiée
8	27,54	25,398		88,893	15,239	30,6	49,80%	Vérifiée
7	24,48	21,044		73,654	14,3605	30,6	46,93%	Vérifiée
6	21,42	16,941		59,2935	13,335	30,6	43,58%	Vérifiée
5	18,36	13,131		45,9585	12,103	30,6	39,55%	Vérifiée
4	15,3	9,673		33,8555	10,682	30,6	34,91%	Vérifiée
3	12,24	6,621		23,1735	9,016	30,6	29,46%	Vérifiée
2	9,18	4,045		14,1575	7,105	30,6	23,22%	Vérifiée
1	6,12	2,015		7,0525	4,8965	30,6	16,00%	Vérifiée
RDC	3,06	0,616		2,156	2,156	30,6	7,05%	Vérifiée

 Tableau VI 7: Vérification des déplacements inter étages du modèle 2 X-X.

-

	Sens Y-Y							
Etage	Élévation(n	δek (mm)	R	$\delta k (mm)$	$\Delta k \ (mm)$	0,01he(mm)	r%	Observation
25	79,56	107,144		375,004	15,547	30,6	50,81%	Vérifiée
24	76,5	102,702		359,457	15,8025	30,6	51,64%	Vérifiée
23	73,44	98,187		343,6545	16,0965	30,6	52,60%	Vérifiée
22	70,38	93,588		327,558	16,443	30,6	53,74%	Vérifiée
21	67,32	88,89		311,115	16,7615	30,6	54,78%	Vérifiée
20	64,26	84,101		294,3535	17,08	30,6	55,82%	Vérifiée
19	61,2	79,221		277,2735	17,248	30,6	56,37%	Vérifiée
18	58,14	74,293		260,0255	17,444	30,6	57,01%	Vérifiée
17	55,08	69,309		242,5815	17,577	30,6	57,44%	Vérifiée
16	52,02	64,287		225,0045	17,668	30,6	57,74%	Vérifiée
15	48,96	59,239		207,3365	17,6785	30,6	57,77%	Vérifiée
14	45,9	54,188	3,5	189,658	17,633	30,6	57,62%	Vérifiée
13	42,84	49,15		172,025	17,4825	30,6	57,13%	Vérifiée
12	39,78	44,155		154,5425	17,276	30,6	56,46%	Vérifiée
11	36,72	39,219		137,2665	16,9575	30,6	55,42%	Vérifiée
10	33,66	34,374		120,309	16,5235	30,6	54,00%	Vérifiée
9	30,6	29,653		103,7855	15,9355	30,6	52,08%	Vérifiée
8	27,54	25,1		87,85	15,218	30,6	49,73%	Vérifiée
7	24,48	20,752		72,632	14,329	30,6	46,83%	Vérifiée
6	21,42	16,658		58,303	13,2755	30,6	43,38%	Vérifiée
5	18,36	12,865		45,0275	12,0155	30,6	39,27%	Vérifiée
4	15,3	9,432		33,012	10,556	30,6	34,50%	Vérifiée
3	12,24	6,416		22,456	8,8585	30,6	28,95%	Vérifiée
2	9,18	3,885		13,5975	6,9055	30,6	22,57%	Vérifiée
1	6,12	1,912		6,692	4,6725	30,6	15,27%	Vérifiée
RDC	3,06	0,577		2,0195	2,0195	30,6	6,60%	Vérifiée

Tableau VI 8: Vérification des déplacements inter étages du modèle 2 Y-Y.

VI.8.5. Justification de l'effet p-delta :

$$\theta = \frac{P_K \Delta_K}{V_K h_K} \le 0,10$$

 P_K : Poids total de la structure et des charges d'exploitation associées au-dessus du niveau "K".

 V_K : Effort tranchant d'étage au niveau "K"

 Δ_K : Déplacement relatif du niveau "K" par rapport à "K-1".

 h_K : Hauteur de l'étage K''.

Tableau VI 9: Justification vis-à- vis de l'Effet P- Δ dans le sens 2	Х-Х.
---	------

Etage	$\Delta k (mm)$	he (mm)	V (kN)	P (kN)	θ	Lim	r
25	15,967	3060	1542,9962	6409,963	0,0217		21,68%
24	16,2085	3060	2970,0741	12671,881	0,0226		22,60%
23	16,4675	3060	4140,5739	19005,537	0,0247		24,70%
22	16,7825	3060	5077,1566	25339,194	0,0274		27,37%
21	17,0625	3060	5831,9691	31756,825	0,0304		30,36%
20	17,3635	3060	6461,037	38174,457	0,0335		33,53%
19	17,5245	3060	7018,8571	44968,165	0,0367		36,69%
18	17,71	3060	7529,4241	51761,873	0,0398		39,79%
17	17,8115	3060	7991,3109	58664,029	0,0427		42,73%
16	17,885	3060	8412,3583	65566,185	0,0456		45,55%
15	17,8605	3060	8805,1777	72589,026	0,0481		48,12%
14	17,7975	3060	9190,2267	79611,866	0,0504	0,1	50,38%
13	17,6155	3060	9587,7543	86767,627	0,0521		52,10%
12	17,325	3060	10020,052	94203,253	0,0532		53,23%
11	16,968	3060	10489,371	101784,036	0,0538		53,81%
10	16,534	3060	10976,995	109364,819	0,0538		53,83%
9	15,9425	3060	11467,654	117102,996	0,0532		53,20%
8	15,239	3060	11951,041	124841,173	0,0520		52,02%
7	14,3605	3060	12422,293	132748,979	0,0502		50,15%
6	13,335	3060	12879,667	140656,786	0,0476		47,59%
5	12,103	3060	13316,17	148746,459	0,0442		44,18%
4	10,682	3060	13716,06	156836,131	0,0399		39,92%
3	9,016	3060	14054,585	165119,907	0,0346		34,62%
2	7,105	3060	14306,832	173403,682	0,0281		28,14%
1	4,8965	3060	14457,989	181893,797	0,0201		20,13%
RDC	2,156	3060	14514,157	190383,911	0,0092		9,24%

Etage	$\Delta k \ (mm)$	he (mm)	V (kN)	P (kN)	θ	Lim	r
25	15,547	3060	1549,8365	6409,9629	0,0210		21,01%
24	15,8025	3060	2975,1183	12671,8806	0,0220		22,00%
23	16,0965	3060	4139,3192	19005,5371	0,0242		24,15%
22	16,443	3060	5069,8825	25339,1936	0,0269		26,86%
21	16,7615	3060	5822,4906	31756,8252	0,0299		29,88%
20	17,08	3060	6453,7758	38174,4569	0,0330		33,02%
19	17,248	3060	7016,9284	44968,165	0,0361		36,12%
18	17,444	3060	7533,2643	51761,8731	0,0392		39,17%
17	17,577	3060	7999,3885	58664,0292	0,0421		42,12%
16	17,668	3060	8422,841	65566,1852	0,0449		44,95%
15	17,6785	3060	8817,7484	72589,0257	0,0476		47,56%
14	17,633	3060	9206,127	79611,8661	0,0498		49,83%
13	17,4825	3060	9608,7287	86767,6272	0,0516	0,1	51,59%
12	17,276	3060	10046,717	94203,2532	0,0529		52,94%
11	16,9575	3060	10520,323	101784,036	0,0536		53,62%
10	16,5235	3060	11009,107	109364,819	0,0536		53,64%
9	15,9355	3060	11497,649	117102,996	0,0530		53,04%
8	15,218	3060	11976,56	124841,173	0,0518		51,84%
7	14,329	3060	12442,139	132748,979	0,0500		49,96%
6	13,2755	3060	12892,774	140656,786	0,0473		47,33%
5	12,0155	3060	13320,623	148746,459	0,0438		43,85%
4	10,556	3060	13708,787	156836,131	0,0395		39,47%
3	8,8585	3060	14032,64	165119,907	0,0341		34,06%
2	6,9055	3060	14269,294	173403,682	0,0274		27,42%
1	4,6725	3060	14407,763	181893,797	0,0193		19,28%
RDC	2,0195	3060	14458,011	190383,911	0,0087		8,69%

Tableau VI 10: Justification vis-à- vis de l'Effet P-∆ du modèle 2 sens Y-Y.

VI.8.6. Vérification de l'effort normal réduit :

$$\upsilon = \frac{N_d}{B_c \cdot f_{c28}} \le 0.30$$

Avec :

 N_d : l'effort normal maximal au l'effet De séisme.

Tableau VI 11: Vérification de l'effort normal réduit de modèle 2.

Etage	Combinaison	Nd (N)	a	b	BC	Fc28	υ	Lim	r (%)
Linge			(mm)	(mm)	(mm ²)	(Mpa)			- (/0)
25	G+Q-Ey	162321,3	350	350	122500		0,044	ļ	14,72%
24	G+Q-Ey	300769,7	350	350	122500		0,082		27,28%
23	G+Q-Ey	439634,3	350	350	122500		0,120		39,88%
22	G+Q-Ey	577688,2	350	350	122500		0,157		52,40%
21	G+Q-Ey	718578,5	400	400	160000		0,150		49,90%
20	G+Q-Ey	860604,8	400	400	160000		0,179		59,76%
19	G+Q-Ey	1007619,7	450	450	202500		0,166		55,29%
18	G+Q-Ey	1156721,3	450	450	202500		0,190		63,47%
17	G+Q-Ey	1312060,1	500	500	250000		0,175		58,31%
16	G+Q-Ey	1470027	500	500	250000		0,196		65,33%
15	G+Q-Ey	1635011,7	550	550	302500		0,180		60,06%
14	G+Q-Ey	1802653,9	550	550	302500	30	0,199	0,3	66,21%
13	G+Q-Ey	1977606	600	600	360000		0,183		61,04%
12	G+Q-Ey	2154945,1	600	600	360000		0,200		66,51%
11	G+Q-Ey	2339591,6	650	650	422500		0,185		61,53%
10	G+Q-Ey	2526070,3	650	650	422500		0,199		66,43%
9	G+Q-Ey	2719574,2	700	700	490000		0,185		61,67%
8	G+Q-Ey	2914059,9	700	700	490000		0,198		66,08%
7	G+Q-Ey	3115009,9	750	750	562500		0,185		61,53%
6	G+Q-Ey	3315859,7	750	750	562500		0,196		65,50%
5	G+Q-Ey	3522370,4	800	800	640000		0,183		61,15%
4	G+Q-Ey	3727441,4	800	800	640000		0,194		64,71%
3	G+Q-Ey	3937101,7	850	850	722500		0,182		60,55%
2	G+Q-Ey	4143687,3	850	850	722500		0,191		63,72%
1	G+Q-Ey	4353462,6	900	900	810000		0,179		59,72%
RDC	G+Q-Ey	4557985	900	900	810000		0,188		62,52%

VI.8.7. Justification de coefficient de comportement R :

Il faut déterminer le pourcentage de répartition des charges verticales et horizontales entre les portiques et les voiles pour choisir la valeur du coefficitent de comportement.

Sens	ST (kN)	Voile(kN)	Portique(kN)	Voile%	Portique %
Ex	14565,9	14514,5009	51,4	99,65%	0,35%
Ey	14572,55	12305,2791	2267,3	84,44%	15,56%
N	190255,302	101621,481	88633,8	53,41%	46,59%

Tableau VI 12: justification de choix de R pour Modèle 2.

VI.8.8. L'excentricité :

L'excentricité dépond la distance entre le centre de masse et le centre de rigidité Dans notre cas le centre de rigidité est presque confondu avec le centre de masse

Xg et Yg : centre de gravite

X_{R et} Y_R: centre de rigidité

Etages	Xg	Yg	Cum Mass X	Cum Mass V	X _R	Y _R	ex	ey
	m	m	kg	kg	m	m	m	m
25	12.506	10.300	566600.83	566601	12.5	10.3	-0.01	0.00
23	12.553	10.352	631475	631475	12.5	10.3	-0.05	-0.05
23	12,561	10,342	1273273	1273273	12,5	10.3	-0,06	-0,04
22	12,561	10,342	1919126,2	1919126	12,5	10,3	-0,06	-0,04
21	12,560	10,342	2568863,4	2568863	12,5	10,3	-0,06	-0,04
20	12,560	10,342	3223279,7	3223280	12,5	10,3	-0,06	-0,04
19	12,558	10,340	3896668,5	3896669	12,5	10,3	-0,06	-0,04
18	12,556	10,339	4589433,9	4589434	12,5	10,3	-0,06	-0,04
17	12,556	10,339	5287331,1	5287331	12,5	10,3	-0,06	-0,04
16	12,556	10,339	5991155,1	5991155	12,5	10,3	-0,06	-0,04
15	12,555	10,338	6700734,7	6700735	12,5	10,3	-0,06	-0,04
14	12,555	10,338	7416865,2	7416865	12,5	10,3	-0,05	-0,04
13	12,554	10,338	8139375,1	8139375	12,5	10,3	-0,05	-0,04
12	12,553	10,337	8883524,3	8883524	12,5	10,3	-0,05	-0,04
11	12,551	10,336	9648750,5	9648751	12,5	10,3	-0,05	-0,04
10	12,551	10,335	10421775	1E+07	12,5	10,3	-0,05	-0,04
9	12,550	10,335	11202427	1,1E+07	12,5	10,3	-0,05	-0,03
8	12,550	10,334	11991502	1,2E+07	12,5	10,3	-0,05	-0,03
7	12,549	10,334	12788827	1,3E+07	12,5	10,3	-0,05	-0,03
6	12,548	10,334	13595199	1,4E+07	12,5	10,3	-0,05	-0,03
5	12,548	10,333	14410446	1,4E+07	12,5	10,3	-0,05	-0,03
4	12,547	10,333	15235363	1,5E+07	12,5	10,3	-0,05	-0,03
3	12,547	10,333	16069779	1,6E+07	12,5	10,3	-0,05	-0,03
2	12,546	10,332	16914489	1,7E+07	12,5	10,3	-0,05	-0,03
1	12,546	10,332	17769322	1,8E+07	12,5	10,3	-0,05	-0,03
RDC	12,545	10,331	18635072	1,9E+07	12,5	10,3	-0,05	-0,03

Tableau VI 13: Centres de masse et centre de rigidité.

VI.8.9. Interprétation et remarque pour modèle 2 :

Toutes les vérifications sont vérifiées.

Le model est rigide.

Apres le calcul des poutres on a trouvé que le ferraillage maximal des poutres est très grand :

Asmax en Travee = $27,03 \text{ cm}^2$

Asmax en Appui = $26,34 \text{ cm}^2$

Donc on a choisi de faire un 3eme model pour diminuer le ferraillage et avoir un model ductile.

Dans le model 3 on va réduire les section des poteaux aussi on va changer le type de plancher on a travaillé avec dalle plaine d'épaisseur 15cm + 5cm de L'AIRIUM (voire **annexe A** pour fiche technique de l'AIRIUM, et B pour le ferraillage des dalle plaine).

VI.9. Model 3 (model final) :

Tableau VI 14: section des poteaux de modèle 3.

ETAGES	a (cm)	b (cm)
23 ^{eme} -25 ^{eme} ETAGE	35	35
20 ^{eme} -22 ^{eme} ETAGE	40	40
17 ^{eme} -19 ^{eme} ETAGE	45	45
15 ^{eme} -16 ^{eme} ETAGE	50	50
13 ^{eme} -14 ^{eme} ETAGE	55	55
11 ^{eme} -12 ^{eme} ETAGE	60	60
9 ^{eme} -10 ^{eme} ETAGE	65	65
7 ^{eme} -8 ^{eme} ETAGE	70	70
4 ^{eme} -6 ^{eme} ETAGE	75	75
1 ^{er} -3 ^{eme} ETAGE	80	80
S/SOL-RDC	85	85

Figure VI 3: Disposition des voiles modèle 3.

Tableau VI 15: Dimensions des voiles de modèle 3.

Voiles	Longueur	Etage	Epaisseur
Noyau 1	5*4=20 m	RDC-8 ^{eme}	30 cm
Noyau 1	5*4=20 m	9 ^{eme} -17 ^{eme}	25 cm
Noyau 1	5*4=20 m	18 ^{eme} -25 ^{eme}	20 cm
Noyau 2	4*4=12 m	$RDC - 13^{eme}$	25 cm
Noyau 2	4*4=12 m	14^{eme} - 25^{eme}	20 cm
Voile Asnsr	5,2 m	/	20 cm

Spectre de réponse :

Figure VI 4: spectre de réponse de modèle 3.

Pour notre cas :

L'ouvrage est du «groupe 1B» (bâtiment d'habitation collective dont la hauteur dépasse 48m).

L'implantation de ce bâtiment se fera dans la wilaya BLIDA (zone III) +groupe 1B Donc : A=0,30.

 η : Facteur de correction d'amortissement (quand l'amortissement est différent de 10%).

$$\eta = \sqrt{\frac{7}{(2+\xi)}} \ge 0.7 \Rightarrow \eta = 0.764$$

 ξ : Pourcentage d'amortissement critique (ξ =10%).

R : Coefficient de comportement de la structure. Il est fonction du système de contreventement.

 T_1 , T_2 . Périodes caractéristiques associées à la catégorie de site (site 3 : T_1 =0,15 s et T_2 =0,5s).

Q: Facteur de qualité ($Q = 1 \pm \sum_{1}^{6} P_q$)

Tableau VI 16: Facteur de qualité pour modèle 3.

Critère q	Observé (oui ou non)	Pq
1- Condition minimale sur les files de contreventement	Non	0,05
2- Redondance en plan	Oui	0,00
3- Régularité en plan	Oui	0,00
4- Régularité en élévation	Oui	0,00
5- Contrôle de la qualité des matériaux	Oui	0,00
6- Contrôle de la qualité de l'exécution	Oui	0,00

Donc : $Q_{x_y} = (1 \pm \sum_{1}^{6} P_q = 1,05).$

Une fois le spectre de réponse injecté dans le fichier des données, la réponse sismique est obtenue sous différentes combinaisons de charges (G, Q et E).

VI.9.1. Calcul de la période par la formule empirique :

Plusieurs formules empiriques pour le calcul de la période fondamentale sont proposées par le « RPA99 / Version 2003 » [1]

Soit :
$$T_N = 0.09 \frac{h_N}{\sqrt{L}}$$

Soit : Tf= $C_T (h_N)^{\frac{3}{4}}$

Où :

 h_N : La hauteur, mesurée en mètre, à partir de la base de la structure jusqu'au dernier niveau N

L : La dimension du bâtiment mesurée à la base dans la direction de calcul considérée.

 C_T : Coefficient en fonction du système de contreventement et du type de remplissage.

Dans notre cas on a : des portiques auto stables en béton armé avec remplissage en maçonnerie $\rightarrow C_T = 0,05s$.

 $T_f = 0.05(79.96)^{3/4} = 1.336$ s.

On a : h_N=79,96 m

Selon x-x : $L_x = 25,5 \ m \Rightarrow T_x = 1,425 \ s$

Selon y-y : $L_{\gamma} = 21 \ m \Rightarrow T_{\gamma} = 1,57 \ s.$

 $T_{analytique} = 1,882 \text{ s.}$

Tableau VI 17: Vérification de la période d'après la rechercher publier par le Dr. TALEBRafik.

SI	La période choisie pour le calcul de
	facteur D
$T_{empairique} \leq T_{analytique}$	$T = T_{empairique}$
Tempairique < Tanalytique <1,3 Tempairique	$T = T_{analytique}$
Tanalytique>1,3 Tempairique	$T = 1,3T_{empairique}$

 $T_{empairique} = min (1,336; 1,425; 1,57) = 1,336 s.$

Les règlements parasismiques exigent une majoration pour la valeur de la période empirique dans le cas ou 1,3 $T_{empairique}>T_{analytique}$. Pour ne pas pénaliser l'effort de calcul.

Donc il y'a lieu de faire une correction sur la valeur de la période

On prend : $1,3xT_{empairique} = 1,737s$

Or
$$\begin{cases} T_1 = 0.15s & \text{(site3)} \\ T_2 = 0.50s & \text{(site3)} \end{cases} \to T_2 \le T \le 3.0s \Rightarrow D = 2.5 \, \eta \, (T_2/T)^{\frac{2}{3}} \end{cases}$$

- Participation massique du modèle :

Numéro d'átano	Période	UX	UY	Somme	Somme	RZ	Somme
uetape	C	TT '//	TT '47			TT	
Unite	Sec	Unite	Unite	Unite	Unite	Unite	Unite
1	<mark>1,882</mark>	1,759E-05	<mark>0,6526</mark>	1,76%	65,26%	0,000	0,00%
2	1,837	<mark>0,6617</mark>	1,73E-05	66,17%	65,26%	0,005	0,54%
3	1,171	3,425E-06	3,24E-06	66,17%	65,26%	0,699	69,88%
4	0,543	0,1611	2,064E-06	82,28%	65,26%	0,000	69,88%
5	0,53	1,908E-06	0,1629	82,28%	81,55%	0,000	69,88%
6	0,372	8,598E-07	1,699E-05	82,28%	81,55%	0,136	83,44%
7	0,251	0,0664	0	88,92%	81,55%	0,000	83,44%
8	0,236	0	0,0676	88,92%	88,31%	0,031	83,44%
9	0,185	0	0,0001	88,92%	88,32%	0,060	89,39%
10	0,149	0,0349	0	92,41%	88,32%	0,000	89,39%
<mark>11</mark>	0,134	0	0,0366	<mark>92,41%</mark>	<mark>91,98%</mark>	0,000	89,40%
12	0,112	0	0,0001	92,41%	91,99%	0,033	92,69%

Tableau VI 18: participation massique de modèle 3.

Constatations :

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T=1,882 s dont :
- Le 1^{er} mode est un mode de translation parallèlement à Y-Y.
- Le 2^{ème}mode est un mode de translation parallèlement à X-X.
- Le 3^{ème}mode est un mode de rotation.
- La participation massique dépasse le seuil des 90% à partir du 11^{ème}mode.

Tableau VI 19: Les trois premiers modes dans modèle 3.

VI.9.2. Calcul de la force sismique par la méthode statique équivalente :

D'après «RPA99 / Version 2003 » [1] la force sismique totale V, appliquée à la base de la structure, doit être calculée successivement dans deux directions horizontales orthogonales selon la formule :

Soit :
$$V = \frac{ADQ}{R}W$$

W : Poids de la structure, il est calculé de manière automatique.

D: Facteur d'amplification dynamique moyen, il est en fonction de la catégorie du site, du facteur de correction d'amortissement η et de la période fondamentale T de la structure

Sens	А	D	Q	R	W (KN)	V (KN)	0,8V (KN)
X-X	0,3	0,829	1,05	3,5	178870,092	13345,498	10676,398
Y-Y	0,3	0,829	1,05	3,5	178870,092	13345,498	10676,398

Tableau VI 20: Résultats des forces sismiques de modèle 3.

Sens X-X : V etabs= 13046,487 > V statique= 10676,398 Condition vérifie.

Sens Y-Y : V etabs= 12882,05 > V statique= 10676,398 Condition vérifie.

VI.9.2. Vérification de déplacement inter étage :

Les déplacements relatifs latéraux d'un étage par rapport aux étages adjacents, ne doivent pas dépasser (1,0%) de la hauteur d'étage.

Le déplacement horizontal à chaque niveau 'K' de la structure est calculé comme suit :

 $\delta k = R * \delta e K$

δeK : déplacement dû aux forces sismiques R : coefficient de comportement

Le déplacement relatif au niveau 'K' par rapport au niveau 'K-1' est égal à : $\Delta k=\delta k-\delta k-1$

	Sens X-X						
Etages	Élévation(m)	δek (mm)	R	<i>δk</i> (mm)	Δk (mm)	0,01he(mm)	r%
25	79,56	120,146		420,511	16,9435	30,6	55,37%
24	76,5	115,305		403,5675	17,2585	30,6	56,40%
23	73,44	110,374		386,309	17,6225	30,6	57,59%
22	70,38	105,339		368,6865	17,8395	30,6	58,30%
21	67,32	100,242		350,847	18,2245	30,6	59,56%
20	64,26	95,035		332,6225	18,5745	30,6	60,70%
19	61,2	89,728		314,048	18,6865	30,6	61,07%
18	58,14	84,389		295,3615	18,9875	30,6	62,05%
17	55,08	78,964		276,374	18,9665	30,6	61,98%
16	52,02	73,545		257,4075	19,117	30,6	62,47%
15	48,96	68,083		238,2905	19,0085	30,6	62,12%
14	45,9	62,652	3,5	219,282	19,117	30,6	62,47%
13	42,84	57,19		200,165	18,8335	30,6	61,55%
12	39,78	51,809		181,3315	18,8265	30,6	61,52%
11	36,72	46,43		162,505	18,5045	30,6	60,47%
10	33,66	41,143		144,0005	18,326	30,6	59,89%
9	30,6	35,907		125,6745	17,787	30,6	58,13%
8	27,54	30,825		107,8875	17,29	30,6	56,50%
7	24,48	25,885		90,5975	16,506	30,6	53,94%
6	21,42	21,169		74,0915	15,687	30,6	51,26%
5	18,36	16,687		58,4045	14,6055	30,6	47,73%
4	15,3	12,514		43,799	13,153	30,6	42,98%
3	12,24	8,756		30,646	11,487	30,6	37,54%
2	9,18	5,474		19,159	9,3485	30,6	30,55%
1	6,12	2,803		9,8105	6,6955	30,6	21,88%
RDC	3,06	0,89		3,115	3,115	30,6	10,18%

 Tableau VI 21: Vérification des déplacements inter étages de modèle 3 sens X-X.

	Sens Y-Y						
Etages	Élévation(m)	δek (mm)	R	<i>δk</i> (mm)	$\Delta k \ (mm)$	0,01he(mm)	r%
25	79,56	124,686		436,401	18,508	30,6	60,48%
24	76,5	119,398		417,893	18,704	30,6	61,12%
23	73,44	114,054		399,189	18,9525	30,6	61,94%
22	70,38	108,639		380,2365	19,1625	30,6	62,62%
21	67,32	103,164		361,074	19,3585	30,6	63,26%
20	64,26	97,633		341,7155	19,544	30,6	63,87%
19	61,2	92,049		322,1715	19,6805	30,6	64,32%
18	58,14	86,426		302,491	19,866	30,6	64,92%
17	55,08	80,75		282,625	19,922	30,6	65,10%
16	52,02	75,058		262,703	19,985	30,6	65,31%
15	48,96	69,348		242,718	19,9395	30,6	65,16%
14	45,9	63,651	3,5	222,7785	19,922	30,6	65,10%
13	42,84	57,959		202,8565	19,712	30,6	64,42%
12	39,78	52,327		183,1445	19,5615	30,6	63,93%
11	36,72	46,738		163,583	19,2535	30,6	62,92%
10	33,66	41,237		144,3295	18,907	30,6	61,79%
9	30,6	35,835		125,4225	18,368	30,6	60,03%
8	27,54	30,587		107,0545	17,724	30,6	57,92%
7	24,48	25,523		89,3305	16,8945	30,6	55,21%
6	21,42	20,696		72,436	15,9005	30,6	51,96%
5	18,36	16,153		56,5355	14,6475	30,6	47,87%
4	15,3	11,968		41,888	13,069	30,6	42,71%
3	12,24	8,234		28,819	11,1895	30,6	36,57%
2	9,18	5,037		17,6295	8,8795	30,6	29,02%
1	6,12	2,5		8,75	6,09	30,6	19,90%
RDC	3,06	0,76		2,66	2,66	30,6	8,69%

Tableau VI 22: Vérification des déplacements inter étages de modèle 3 Y-Y.

VI.9.3. Justification de l'effet p-delta :

$$\theta = \frac{P_K \Delta_K}{V_K h_K} \le 0,10$$

 P_K : Poids total de la structure et des charges d'exploitation associées au-dessus du niveau "K".

 V_K : Effort tranchant d'étage au niveau "K"

 Δ_K : Déplacement relatif du niveau "K" par rapport à "K-1".

 h_K : Hauteur de l'étage K''.

•

Etage	$\Delta k \ (mm)$	he (mm)	V (kN)	P (kN)	θ	Lim	r
25	16,9435	3060	1244,9952	5559,4167	0,0247		24,73%
24	17,2585	3060	2571,3424	11817,2382	0,0259		25,92%
23	17,6225	3060	3669,3051	18075,0596	0,0284		28,37%
22	17,8395	3060	4557,4511	24394,9778	0,0312		31,21%
21	18,2245	3060	5280,4196	30714,8959	0,0346		34,64%
20	18,5745	3060	5880,8728	37034,814	0,0382		38,23%
19	18,6865	3060	6401,6381	43427,5357	0,0414		41,43%
18	18,9875	3060	6869,9405	49820,2573	0,0450		45,00%
17	18,9665	3060	7297,9735	56296,4892	0,0478		47,81%
16	19,117	3060	7696,336	62839,4815	0,0510		51,01%
15	19,0085	3060	8073,1739	69476,6909	0,0535		53,46%
14	19,117	3060	8439,3761	76113,9003	0,0563	0,1	56,34%
13	18,8335	3060	8813,4054	83067,6412	0,0580		58,01%
12	18,8265	3060	9205,966	90021,3821	0,0602		60,16%
11	18,5045	3060	9611,6039	97090,7539	0,0611		61,09%
10	18,326	3060	10025,1348	104160,126	0,0622		62,22%
9	17,787	3060	10438,3946	111355,835	0,0620		62,01%
8	17,29	3060	10848,8168	118618,305	0,0618		61,78%
7	16,506	3060	11254,0332	126017,819	0,0604		60,40%
6	15,687	3060	11650,4604	133417,333	0,0587		58,71%
5	14,6055	3060	12026,5354	140816,848	0,0559		55,89%
4	13,153	3060	12370,3683	148364,113	0,0516		51,55%
3	11,487	3060	12660,8972	155911,379	0,0462		46,23%
2	9,3485	3060	12874,0472	163458,644	0,0388		38,79%
1	6,6955	3060	13000,5367	171164,368	0,0288		28,81%
RDC	3,115	3060	13046,4708	178870,092	0,0140		13,96%

Etage	Δk (mm)	he (mm)	V (kN)	P (kN)	θ	Lim	r
25	18,508	3060	1275,1058	5559,4167	0,0264		26,37%
24	18,704	3060	2611,9268	11817,2382	0,0277		27,65%
23	18,9525	3060	3700,6223	18075,0596	0,0303		30,25%
22	19,1625	3060	4568,2987	24394,9778	0,0334		33,44%
21	19,3585	3060	5266,6035	30714,8959	0,0369		36,90%
20	19,544	3060	5843,5758	37034,814	0,0405		40,48%
19	19,6805	3060	6343,8172	43427,5357	0,0440		44,03%
18	19,866	3060	6793,1935	49820,2573	0,0476		47,61%
17	19,922	3060	7202,0549	56296,4892	0,0509		50,89%
16	19,985	3060	7579,5439	62839,4815	0,0541		54,15%
15	19,9395	3060	7935,0259	69476,6909	0,0571		57,05%
14	19,922	3060	8282,4347	76113,9003	0,0598	0,1	59,83%
13	19,712	3060	8643,4725	83067,6412	0,0619		61,91%
12	19,5615	3060	9030,1966	90021,3821	0,0637		63,73%
11	19,2535	3060	9436,5573	97090,7539	0,0647		64,74%
10	18,907	3060	9854,5909	104160,126	0,0653		65,31%
9	18,368	3060	10273,3449	111355,835	0,0651		65,06%
8	17,724	3060	10688,3408	118618,305	0,0643		64,28%
7	16,8945	3060	11096,855	126017,819	0,0627		62,70%
6	15,9005	3060	11495,7672	133417,333	0,0603		60,31%
5	14,6475	3060	11873,8426	140816,848	0,0568		56,77%
4	13,069	3060	12218,6462	148364,113	0,0519		51,86%
3	11,1895	3060	12507,9265	155911,379	0,0456		45,58%
2	8,8795	3060	12717,2731	163458,644	0,0373		37,30%
1	6,09	3060	12838,9149	171164,368	0,0265		26,53%
RDC	2,66	3060	12882,0332	178870,092	0,0121		12,07%

Tableau VI 24: Justification vis-à- vis de l'Effet P- Δ de modèle 3 dans le Sens y.

VI.9.4. Vérification de l'effort normal réduit :

$$\Upsilon = \frac{N_d}{B_c \cdot f_{c28}} \le 0.30$$

Avec :

N_d: l'effort normal maximal au l'effet De séisme.

Tableau VI 25: vérification de l'effort normal réduit pour le modèle 3.

Etago	Combinaison	NH (N)	a	b	BC	Fc28		Lim	m (0/)
Llage	Compinaison		(mm)	(mm)	(mm ²)	(Mpa)	U	1.1111	f (70)
25	G+Q-Ey	113020,6	350	350	122500		0,031		10,25%
24	G+Q-Ey	272231,3	350	350	122500		0,074		24,69%
23	G+Q-Ey	430158,1	350	350	122500		0,117		39,02%
22	G+Q-Ey	597476,9	400	400	160000		0,124		41,49%
21	G+Q-Ey	771363	400	400	160000		0,161		53,57%
20	G+Q-Ey	945514,8	400	400	160000		0,197	1	65,66%
19	G+Q-Ey	1130709,3	450	450	202500		0,186		62,04%
18	G+Q-Ey	1323437,8	450	450	202500		0,218	1	72,62%
17	G+Q-Ey	1516538,7	450	450	202500		0,250	1	83,21%
16	G+Q-Ey	1720627,6	500	500	250000		0,229	1	76,47%
15	G+Q-Ey	1930432,3	500	500	250000		0,257	ĺ	85,80%
14	G+Q-Ey	2149397,3	550	550	302500	30	0,237	0,3	78,95%
13	G+Q-Ey	2372971,3	550	550	302500		0,261	1	87,16%
12	G+Q-Ey	2603980,2	600	600	360000		0,241		80,37%
11	G+Q-Ey	2838011,2	600	600	360000		0,263	1	87,59%
10	G+Q-Ey	3078034,3	650	650	422500		0,243		80,95%
9	G+Q-Ey	3319077,5	650	650	422500		0,262		87,29%
8	G+Q-Ey	3563955,8	700	700	490000		0,242	1	80,82%
7	G+Q-Ey	3807185,2	700	700	490000		0,259	ĺ	86,33%
6	G+Q-Ey	4051898,4	750	750	562500		0,240		80,04%
5	G+Q-Ey	4292317,1	750	750	562500		0,254	1	84,79%
4	G+Q-Ey	4524920,3	750	750	562500		0,268	1	89,38%
3	G+Q-Ey	4753805	800	800	640000		0,248	1	82,53%
2	G+Q-Ey	4972410,7	800	800	640000		0,259	1	86,33%
1	G+Q-Ey	5176893,5	800	800	640000	1	0,270	1	89,88%
RDC	G+Q-Ey	5370365,3	850	850	722500	1	0,248	1	82,59%

VI.9.5. Justification de coefficient de comportement R :

Il faut déterminer le pourcentage de répartition des charges verticales et horizontales entre les portiques et les voiles pour choisir la valeur du coefficitent de comportement.

$$V_E$$
 voiles $\cong V_s$

Tableau VI 26: justification de choix de R pour le modèle 3.

Sens	ST (kN)	Voile(kN)	Portique(kN)	Voile%	Portique %
Ex	13046,5	10559,3508	2487,1	80,94%	19,06%
Ey	12882,05	11210,5493	1671,5	87,02%	12,98%
Ν	178870,092	95532,1594	83337,9	53,41%	46,59%

VI.9.6. Vérification de moment de reversement :

Cette condition d'équilibre se réfère à la stabilité d'ensemble du bâtiment ou de l'ouvrage, soumis à des effets de renversement, il faut vérifier la condition suivante :

$$\frac{M}{N} \le \frac{B}{4}$$

Figure VI 5: schéma statique de bâtiment sous moment de renversement.
	X-X				Y-Y		
Vi [KN]	H _i [m]	F _i [KN]	M _i [KN.m]	Vi [KN]	H _i [m]	F _i [KN]	M _i [KN.m]
13023,5038	1,53	86,21185	131,90413	12860,474	1,53	82,38025	126,04178
12937,292	4,59	169,8198	779,47288	12778,094	4,59	165,49435	759,61907
12767,4722	7,65	251,83945	1926,5718	12612,6	7,65	249,3135	1907,2483
12515,6327	10,71	317,18085	3397,0069	12363,286	10,71	317,0419	3395,5187
12198,4519	13,77	359,95395	4956,5659	12046,244	13,77	361,43945	4977,0212
11838,4979	16,83	386,2511	6500,606	11684,805	16,83	388,49385	6538,3515
11452,2468	19,89	400,82185	7972,3466	11296,311	19,89	403,7132	8029,8555
11051,425	22,95	407,8193	9359,4529	10892,598	22,95	411,75505	9449,7784
10643,6057	26,01	411,84095	10711,983	10480,843	26,01	416,8749	10842,916
10231,7647	29,07	413,39535	12017,403	10063,968	29,07	418,3937	12162,705
9818,36935	32,13	409,5844	13159,947	9645,5742	32,13	412,19715	13243,894
9408,78495	35,19	399,09925	14044,303	9233,3771	35,19	396,54245	13954,329
9009,6857	38,25	383,29495	14661,032	8836,8346	38,25	373,88095	14300,946
8626,39075	41,31	370,11575	15289,482	8462,9537	41,31	354,22325	14632,962
8256,275	44,37	371,52005	16484,345	8108,7304	44,37	351,44545	15593,635
7884,75495	47,43	387,6002	18383,877	7757,285	47,43	366,4856	17382,412
7497,15475	50,49	413,19775	20862,354	7390,7994	50,49	393,17525	19851,418
7083,957	53,55	448,1677	23999,38	6997,6241	53,55	429,11885	22979,314
6635,7893	56,61	494,53385	27995,561	6568,5053	56,61	474,8088	26878,926
6141,25545	59,67	560,60925	33451,554	6093,6965	59,67	538,6068	32138,668
5580,6462	62,73	661,71085	41509,122	5555,0897	62,73	637,6386	39999,069
4918,93535	65,79	805,55725	52997,611	4917,4511	65,79	782,9906	51512,952
4113,3781	68,85	993,05435	68371,792	4134,4605	68,85	978,18585	67348,096
3120,32375	71,91	1212,155	87166,066	3156,2746	71,91	1212,7582	87209,442
1908,16875	74,97	1285,6712	96386,77	1943,5164	74,97	1305,9635	97908,08
622,49755	78,03	622,49755	48573,484	637,55295	78,03	637,55295	49748,257

Tableau VI 27: Vérification de la stabilité au renversement.

M_x= 651089,99 kN.m

$$M_y = 642871,46 \text{ kN.m}$$

$$\frac{651089,99}{204450,63} = 3,18 < \frac{25}{4}$$

 $\frac{642871,46}{204450,63} = 3,14 < \frac{21}{4}$

On adopte pour un sous/sol.

Chapitre VII : Calcule Des Elément Résistant

Introduction :

Après avoir déterminé les sollicitations, on passe à la détermination des sections d'aciers nécessaires à la résistance et à la stabilité des éléments constructifs de notre ouvrage (Poteaux, Poutres, Voiles). Le calcul des sections sera mené selon les règles du calcul de béton armé (CBA93, BAEL91 modifié 99 et RPA99/ Version 2003 Les règles RPA99/ Version 2003 « Règles Parasismiques Algériennes » ont pour but de fixer les normes de conception et de calcul des constructions en zone sismique, pour des ouvrages courants. Les objectifs ainsi visés sont d'assurer une protection acceptable des vies humaines et des constructions vis à vis de l'effet des actions sismiques par une conception et un dimensionnement approprié.

VII.1. Ferraillage des poteaux :

Les poteaux sont des éléments structuraux verticaux, ils constituent des points d'appuis pour les poutres et jouent un rôle très important dans la transmission des efforts vers les fondations.

Les sections des poteaux sont soumises à la flexion composée (M, N) qui est due à l'excentricité de l'effort normal ["]N" par rapport aux axes de symétrie, et à un moment fléchissant ["]M" dans le sens longitudinal et transversal (dû à l'action horizontale). Une section soumise à la flexion composée peut être l'un des trois cas suivants :

- Section entièrement tendue SET.
- Section entièrement comprimée SEC.
- Section partiellement comprimée SPC.

Les armatures sont obtenues à l'état limite ultime (E.L.U) sous l'effet des sollicitations Les plus défavorables et dans les situations suivantes :

	γь	γs	f c28	fbu	fe (MPa)	$\sigma_s(MPa)$
			(MPa)	(MPa)		
Situation durable	1,5	1,15	30	14,16	500	435
Situation accidentelle	1,15	1	30	18,48	500	500

Tableau VII 1: Contraintes.

> Combinaison d'action :

En fonction du type de sollicitations, nous distinguons les différentes combinaisons suivantes :

- Selon CBA93 [6] :
- E.L.U. : Situation durable : 1,35 G +1,5 Q(1)
- E.L.S. : Situation durable : G +Q(2)
- Selon le RPA 99/Version 2003 [1] situation accidentelle (article 5.2) :
 - G+Q+E.....(2)
 - 0.8G+E.....(3)

Avec :

- G: Charges permanentes.
- Q: Charge d'exploitation.
- E: Action du séisme.

A partir de ces combinaisons, on distingue les cas suivants :

- N^{max,} M^{corr}
- M^{max,} N^{corr}
- N^{min,} M^{corr}

Chacune des trois combinaisons donne une section d'acier. La section finale choisit correspondra au maximum des trois valeurs (cas plus défavorable).

VII.1.2 Recommandations du RPA99/ Version 2003 [1] :

D'après le RPA99/version 2003 [1] (article 7.4.2), les armatures longitudinales doivent être à haute adhérence droites et sans crochet. Leur pourcentage en zone sismique III est limité par :

 $A_{max} = As/bh < 3\%$ en zone courante.

 $A_{max} = A_s/bh < 6\%$ en zone recouvrement.

 $A_{\min} = A_s > 0.9$ %bh (zone III).

Le diamètre minimal est de 12 mm.

La longueur minimale de recouvrement est de 50 Φ_L .

La distance maximale entre les barres dans une surface de poteau est de 20 cm.

Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales (zone critiques).

VII.1.2.a. Les résultats obtenus :

Nous avons retenu onze (11) zones pour l'étude du ferraillage des poteaux. Les sollicitations internes pour chaque élément sont données par le logiciel, à savoir ETABS :

Zones	Etages	Section
Zone I	S/SOL-RDC	85x85 cm ²
Zone II	1 ^{er} E-3 ^{eme} E	80x80 cm ²
Zone III	4 ^{eme} E-6 ^{eme} E	75x75 cm ²
Zone IV	7 ^{eme} E,8 ^{eme} E	70x70 cm ²
Zone V	9 ^{eme} E,10 ^{eme} E	65x65 cm ²
Zone VI	11 ^{eme} E,12 ^{eme} E	60x60 cm ²
Zone VII	13 ^{eme} E,14 ^{eme} E	55x55 cm ²
Zone VIII	15 ^{eme} E,16 ^{eme} E	50x50 cm ²
Zone IX	17 ^{eme} E,19 ^{eme} E	45x45 cm ²
Zone X	$20^{\text{eme}}\text{E}-22^{\text{eme}}\text{E}$	$40x40 \text{ cm}^2$
Zone XI	23 ^{eme} E-25 ^{eme} E	$35x35 \text{ cm}^2$

Tableau VII 2: Tableau des zones.

VII.1.3 Calcul des ferraillages :

Le calcul du ferraillage est obtenu par le logiciel SOCOTEC.

• Zone XI :

G+Q-Ex ; N=80,03kN ; ; M=140,2kN.m; As=9,02cm² ; As(tot)=27,06cm²

• Zone X:

G+Q-Ex ; N=373,6kN ; M=189,99kN.m ; As=7,85cm²; As(tot)=23,55cm²

• Zone IX:

G+Q-Ex ; N=625,47kN ; M=214,23kN.m ; As=5,2cm²; As(tot)=15,6cm²

• Zones VIII :

G+Q-Ex ; N=848,5kN ; M=257,28kN.m ; As=3,76cm²; As(tot)=11,28cm²

• Zones VII :

G+Q-Ex ; N=901,6kN ; M=286,8kN.m ; As=3,06cm²; As(tot)=9,79cm²

• Zones VI :

G+Q-Ex ; N=944,3kN ; M=304kN.m ; As= $2cm^2$; As(tot)= $6,4cm^2$

• Zone V:

G+Q-Ey ; N=921kN ; M=291,9kN.m ; As=0,66cm² ; As(tot)=2,11cm²

• Zone IV:

G+Q-Ey ; N=1178,6kN ; M=263,79kN.m ; As=0cm²; As(tot)=0cm²

• Zone III:

G+Q-Ey ; N=1273,97kN ; M=289,93kN.m ; As=0cm²; As(tot)=0cm²

• Zone II:

G+Q-Ey ; N=1597,29kN ; M=264,16kN.m ; As=0cm²; As(tot)=0cm²

• Zone I:

G+Q-Ey ; N= 2674,53kN ; M= 249,44kN.m ; As=0cm²; As(tot)=0cm²

VII.1.3.a. Choix des armatures :

Tableau VII 3: Choix des Armatures des Poteaux.

Zone	Sections (cm ²)	As ^{cal} (cm ²)	$\begin{array}{c} \mathbf{A_{S}}^{\min} \\ (\mathbf{cm}^{2}) \end{array}$	$\begin{array}{c c} A_{S}^{max} \\ (Z.C)(cm^{2}) \end{array}$	$\begin{array}{c} A_{S}^{max} \\ (Z.R)(cm^{2}) \end{array}$	Choix des armatures	As ^{adopté} (cm ²)
Zone I	85x85	0	65,025	216,75	433,5	20T20+2T16	66,85
Zone II	80x80	0	57,6	192	384	20T20	62,83
Zone III	75x75	0	50,625	168,75	337,5	12T20+8T16	53,78
Zone IV	70x70	0	44,1	147	294	12T20+8T16	53,78
Zone V	65x65	2,11	38,025	126,75	253,5	8T20+8T16	41,21
Zone VI	60x60	6,4	32,4	108	216	8T20+8T16	41,21
Zone VII	55x55	9,79	27,225	90,75	181,5	4T20+8T16	28,65
Zone VIII	50x50	11,28	22,5	75	150	4T20+8T16	28,65
Zone IX	45x45	15,6	18,225	60,75	121,5	4T20+8T16	28,65
Zone X	40x40	23,55	14,4	48	96	4T20+8T16	28,65
Zone XI	35x35	27,06	11,025	36,75	73,5	4T20+8T16	28,65

VII.1.4. Vérification :

a. Vérification vis-à-vis de l'Etat Limite de Service :

Les contraintes admissibles sont données par :

• Béton :

$$\sigma_{bc} = 0,6f_{c28} = 18MPa$$

- Acier :
 - Fissuration peu préjudiciable Pas de vérification.

- Fissuration préjudiciable..... $\bar{\sigma}_s = Min\left(\frac{2}{3}f_e, 110\sqrt{\eta \cdot f_{t28}}\right)$ - Fissuration très préjudiciable.....

$$\bar{\sigma}_s = Min(0,5f_e; 90\sqrt{\eta \cdot f_{t28}})$$

Avec :

 η =1,6 pour les aciers H.A.

Dans notre cas la fissuration est considérée préjudiciable, donc σ_s =215,56 MPa. Les résultats sont récapitulés dans les tableaux suivants :

a. N^{ser}_{max} ; M^{ser}_{cor}

Tableau VII 4: Vérification des Contraintes des Poteaux.

Zone	Sections	N _{ser}	M _{ser}	Sollicitation	σ _{bc} (MPa)	σ _{bc add} (MPa)	Vérification
	(cm ²)	(k N)	(kNm)				
Zone I	85x85	3638,13	-7,42	SEC	5,29	18	Ok
Zone II	80x80	3283,66	-15,17	SEC	5,11	18	Ok
Zone III	75x75	2673,96	-17,68	SEC	5,2	18	Ok
Zone IV	70x70	2169,59	-19,34	SEC	5,03	18	Ok
Zone V	65x65	1874,82	19,53	SEC	5,25	18	Ok
Zone VI	60x60	1610,1	19,19	SEC	5,39	18	Ok
Zone VII	55x55	1357,9	20,09	SEC	5,58	18	Ok
Zone VIII	50x50	1117,13	20,54	SEC	5,79	18	Ok
Zone IX	45x45	885,17	19,94	SEC	5,95	18	Ok
Zone X	40x40	658,159	17,86	SEC	5,94	18	Ok
Zone XI	35x35	318,77	14,5	SEC	5,08	18	Ok

Zone	Section s	N _{ser} (kN)	M _{ser} (kNm)	Sollicitation	σ _s (MPa)	σ _{sadd} (MPa)	σ _{bc} (MPa)	σ _{bc add} (MPa)	Verification
	(CIII)								
Zone I	85x85	3209,59	22,19	SEC	/	/	4,82	18	Ok
Zone II	80x80	2740,2	21,78	SEC	/	/	4,73	18	Ok
Zone III	75x75	2294,17	22,41	SEC	/	/	4,56	18	Ok
Zone IV	70x70	1756,71	-24,27	SEC	/	/	4,22	18	Ok
Zone V	65x65	1473,15	-30,16	SEC	/	/	4,46	18	Ok
Zone VI	60x60	1211,38	-36,23	SEC	/	/	4,68	18	Ok
Zone VII	55x55	970,23	-39,39	SEC	/	/	4,18	18	Ok
Zone VIII	50x50	746,02	-40,87	SEC	/	/	5,2	18	Ok
Zone IX	45x45	543,27	-39,67	SEC	/	/	5,47	18	Ok
Zone X	40x40	271,34	-37,35	SPC	72,5	215,56	5,54	18	Ok
Zone XI	35x35	48,69	-29,68	SPC	68,4	215,56	6,32	18	Ok

a. N^{ser}_{cor} ; M^{ser}_{max}

 Tableau VII 5: Vérification des Contraintes des Poteaux.

Remarque :

Selon BAEL 91 modifier 99 en cas de section entièrement comprimée, Il n'y a pas lieu de vérifié la contrainte de traction ' σ_s '

b. Vérification de l'effort tranchant :

Vérification de la contrainte de cisaillement :

Il faut vérifier que :
$$\tau_u = \frac{\tau_u}{bd} \le \bar{\tau}_u$$

Avec :

- T_u : L'effort tranchant.
- *b*: Largeur de la section du poteau.
- *d*: Hauteur utile de la section du poteau.
- τ_u :Contrainte de cisaillement.
- $\bar{\tau}_{\mu}$: Contrainte limite de cisaillement du béton.

La valeur de la contrainte $\overline{\tau}_{\mu}$ doit être limitée aux valeurs suivantes :

- Selon le CBA93 [6] :
- Fissuration peu préjudiciable :

$$\overline{\tau_u} = Min\left[0, 2\frac{f_{c28}}{\gamma_b}; 5 MPa\right] = \begin{cases} \overline{\tau_u} = 4 MPa \rightarrow \text{situation durable} \\ \overline{\tau_u} = 5 MPa \rightarrow \text{situation accidentelle} \end{cases}$$

• Fissuration préjudiciable ou très préjudiciable :

$$\overline{\tau_u} = Min\left[0, 15\frac{f_{c28}}{\gamma_b}; 4 MPa\right] = \left\{\frac{\overline{\tau_u}}{\overline{\tau_u}} = 3 MPa \rightarrow \text{situation durable} \right\}$$

• Selon le RPA 99/Version 2003 :

$$\bar{\tau}_u = \rho_d f_{c28}$$

- $\rho_d = 0,075...$ si l'élancement $\lambda \ge 5$
- $\rho_d = 0.040....$ si l'élancement $\lambda < 5$

Avec :

- λ : L'élancement du poteau.
- *i* : Rayon de giration.
- *I* : Moment d'inertie de la section du poteau dans la direction considérée.
- *B* : Section du poteau.
- L_f : Longueur de flambement.

Les résultats sont regroupés dans le tableau suivant

Zone	Section (cm ²)	Tu (kN)	τu (MPa)	λ	$ ho_d$	$\overline{ au}_u$ RPA (MPa)	$ar{ au}_u$ CBA93(MPa)	Vérification
Zone I	85x85	92,08	0,041	2,52	0,04	1,2	3,91	Ok
Zone II	80x80	168,56	0,08	2,86	0,04	1,2	3,91	Ok
Zone III	75x75	203,6	0,102	3,06	0,04	1,2	3,91	Ok
Zone IV	70x70	214,45	0,115	3,3	0,04	1,2	3,91	Ok
Zone V	65x65	213,7	0,124	3,57	0,04	1,2	3,91	Ok
Zone VI	60x60	205,8	0,129	3,89	0,04	1,2	3,91	Ok
Zone VII	55x55	192,58	0,132	4,28	0,04	1,2	3,91	Ok
Zone VIII	50x50	170,44	0,128	4,76	0,04	1,2	3,91	Ok
Zone IX	45x45	139,25	0,116	5,36	0,075	2,25	3,91	Ok
Zone X	40x40	101,03	0,095	6,12	0,075	2,25	3,91	Ok
Zone XI	35x35	65,62	0,07	7,14	0,075	2,25	3,91	Ok

Tableau VII 6: Vérification de la contrainte de cisaillement pour les poteaux.

VII.1.5. Ferraillage transversal des poteaux :

Les armatures transversales sont déterminées à partir des formules du BAEL91 modifié 99 [5] et celles du RPA99/ Version 2003 [1] ; elles sont données comme suit :

• Selon BAEL91 modifié 99 [5] :

$$\begin{cases} S_{t} \leq Min(0,9d;40cm) \\ \varphi_{t} \leq Min\left(\frac{h}{35};\frac{b}{10};\varphi_{t}\right) \\ \frac{A_{t}f_{e}}{bS_{t}} \geq Max\left(\frac{\tau_{u}}{2};0,4MPa\right) \end{cases}$$

Chapitre VII

Avec :

- At: Section d'armatures transversales.
- b: Largeur de la section droite.
- h: Hauteur de la section droite.
- S_t: Espacement des armatures transversales.
- Øt: Diamètre des armatures transversales.
- $Ø_1$: Diamètre des armatures longitudinales.
- Selon le RPA99/Version 2003 [1] :

$$\frac{A_t}{S_t} = \frac{\rho_a T_u}{h f_e}$$

Avec :

 A_t : Section d'armatures transversales.

 S_t : Espacement des armatures transversales.

 T_u : Effort tranchant à l'E.L.U.

fe : Contrainte limite élastique de l'acier d'armatures transversales.

h: Hauteur totale de la section brute.

 ρ_a : Coefficient correcteur qui tient compte du mode fragile de la rupture par l'effort tranchant.

- $\rho_a=2,5....si \ \lambda g \ge 5$
- $\rho_a = 3,75....si \lambda g < 5$

λg: Elancement géométrique.

L'espacement des armatures transversales est déterminé comme suit :

St ≤10cm.....Zone nodale (zone III).

$$S_i \leq Min\left(\frac{b}{2}; \frac{h}{2}; 10\phi_i\right)$$
.....Zone courante (zone III).

 $Ø_1$: Diamètre minimal des armatures longitudinales du poteau.

Chapitre VII

La quantité d'armatures transversales minimale $\frac{A_t}{S_t b}$ en (%) est donnée comme

suite :

 $\begin{cases} 0,3\% \dots si \lambda_{g} \geq 5\\ 0,8\% \dots si \lambda_{g} \leq 3\\ Interpolation entreles valeurs limites précédentes si 3 \prec \lambda_{g} \prec 5 \end{cases}$

 λ_g : L'élancement géométrique du poteau $\left(\lambda_g = \frac{L_f}{a}\right)$

a : Dimension de la section droite du poteau.

L_f: Longueur du flambement du poteau.

Pour les armatures transversales fe=500MPa

Le tableau suivant rassemble les résultats des espacements maximums des

poteaux

Zone	Section (cm ²)	Barres	Ø _l (mm)	S _t (cm)
				Zone nodale	Zone courante
Zone I	85x85	20T20+2T16	20	10	20
Zone II	80x80	12T20+8T16	20	10	15
Zone III	75x75	12T20+8T16	20	10	15
Zone IV	70x70	8T20+8T16	20	10	15
Zone V	65x65	8T20+8T16	20	10	15
Zone VI	60x60	4T20+8T16	20	10	15
Zone VII	55x55	4T20+8T16	20	10	15
Zone VIII	50x50	4T20+8T16	20	10	15
Zone IX	45x45	4T20+8T16	20	10	15
Zone X	40x40	4T20+8T16	20	10	15
Zone XI	35x35	4T20+8T16	20	10	15

Le choix des armatures transversales est regroupé dans le tableau suivant :

Zone	Section (cm ²)	L _f (m)	λ _g (%)	ρ _a	Tu ^{max} (kN)	Zone	St (cm)	$\begin{array}{c} \mathbf{A_t^{cal}} \\ (\mathbf{cm^2}) \end{array}$	Choix	A _s ^{adp} (cm ²)
Zone I	85x85	2,142	2,68	3,75	10,32	N	10	0,09	6T8	3,02
						С	20	0,18	6T8	3,02
Zone II	80x80	2,142	2,86	3,75	17,32	N	10	0,16	5T8	2,51
						С	15	0,24	5T8	2,51
Zone III	75x75	2,142	3,06	3,75	19,88	N	10	0,2	5T8	2,51
						С	15	0,3	5T8	2,51
Zone IV	70x70	2,142	3,3	3,75	21,25	N	10	0,28	5T8	2,51
						С	15	0,34	5T8	2,51
Zone V	65x65	2,142	3,57	3,75	22,94	N	10	0,26	4T8	2,01
						С	15	0,4	4T8	2,01
Zone VI	60x60	2,142	3,89	3,75	28,64	Ν	10	0,36	4T8	2,01
						C	15	0,54	4T8	2,01
Zone VII	55x55	2,142	4,28	3,75	33,51	Ν	10	0,46	4T8	2,01
						С	15	0,66	4T8	2,01
Zone	50x50	2,142	4,76	3,75	36,06	Ν	10	0,54	3T8	1,51
VIII						С	15	0,81	3T8	1,51
Zone IX	45x45	2,142	5,36	2,5	39,74	Ν	10	0,66	3T8	1,51
						С	15	1	3T8	1,51
Zone X	40x40	2,142	6,12	2,5	38,83	Ν	10	0,73	3T8	1,51
						С	15	1,1	3T8	1,51
Zone XI	35x35	2,142	7,14	2,5	33,77	N	10	0,72	3T8	1,51
						C	15	1,09	3T8	1,51

Tableau VII 8: Choix des armatures transversales pour les poteaux.

VII.1.6. Schéma des ferraillages de poteaux

Figure VII 1: schéma de ferraillage de poteau 85*85.

Figure VII 2: schéma de ferraillage de poteau 80*80.

Figure VII 3: schéma de ferraillage de poteau 75*75.

Figure VII 4: schéma de ferraillage de poteau 70*70.

Figure VII 5: schéma de ferraillage de poteau 65*65.

Figure VII 6: schéma de ferraillage de poteau 60*60.

Figure VII 7: schéma de ferraillage de poteau 55*55

Figure VII 8: schéma de ferraillage de poteau 50*50.

Figure VII 9: schéma de ferraillage de poteau 45*45.

Figure VII 10: schéma de ferraillage de poteau 40*40.

Figure VII 11: schéma de ferraillage de poteau 35*35.

VII.2. Ferraillage des poutres :

Les poutres sont des éléments structuraux horizontaux qui permettent de transférer les charges aux poteaux, elles sont sollicitées par des moments de flexion et des efforts tranchants.

Le ferraillage des poutres est donné par l'organigramme de la flexion simple. On fait le calcul pour les deux situations suivantes :

• Situation durable : 1,35G+1,5Q

-Béton : $\gamma_b = 1.5$; f_c28 = 30MPa ; $\sigma_b = 17MPa$ -Acier : $\gamma_{qs} = 1.15$; f_e = 500MPa ; $\sigma_s = 434.78MPa$

• Situation accidentelle : G+Q+E ; 0,8G+E

-Béton :
$$\gamma_b = 1,15$$
 ; f_c28 = 30MPa ; $\sigma_b = 22,17$ MPa
-Acier : $\gamma_s = 1$; $f_e = 500MPa$; $\sigma_s = 500MPa$

VII.2.1. Recommandation du « RPA99/Version 2003 » :

- Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0,5% en toute section.

- Le pourcentage total maximum des aciers longitudinaux est de :

- 4% en zone courante.
- 6% en zone de recouvrement.

- La longueur minimale de recouvrement est de 50Ø en zone III.

- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué avec des crochets à 90°.

VII.2.2. Calcul du ferraillage :

Pour le calcul des armatures nécessaires dans les poutres, nous avons considéré les portiques suivants les deux sens :

- Sens X-X 30x40.
- Sens Y-Y 30x40.

Zones	Etages	Section
Zone I	RDC- 9 ^{eme} étage	30x40 cm ²
Zone II	10 ^{eme} étage-19 ^{eme} étage	30x40 cm ²
Zone III	20 ^{eme} étage-25 ^{eme} étage	30x40 cm ²

a. Poutres du sens X-X (30x40):

Zone	Combinaison	Position	M ^{max} (kNm)	As (cm ²)	As' (cm ²)	As ^{min} (cm ²)
Zone I	G+Q-E _X	Travée	100,32	5,71	0	6
	0,8G-E _X		-96,82	0	5,5	
	G+Q-E _X	Appui	-205,06	0	12,46	6
	0,8G-E _X		177,05	10,56	0	
Zone II	G+Q-E _X	Travée	80,35	4,53	0	6
	0,8G-Ex		-62,87	0	3,51	
	G+Q-E _X	Appui	-226,66	0	13,99	6
	0,8G-E _X		186,63	11,2	0	
Zone III	G+Q-E _X	Travée	72,43	4,06	0	6
	0,8G-E _X		-61,59	0	3,43	
	G+Q-E _X	Appui	-214,92	0	13,15	6
	0,8G-E _X	_	138,65	8,07	0	

Tableau VII 10: Ferraillage des poutres du sens X-X (30x40).

• Choix des armatures :

Fableau VII 11: Choix des armatures	pour les poutres	du sens X-X	(30 x 40).
--	------------------	-------------	------------

Zones	Section	Position	As ^{max}	As ^{max}	As ^{min}	Ascal	Choix des	As
	(cm ²)		(Z.C)(cm ²)	(Z.R)(cm ²)	(cm ²)	(cm ²)	armatures	adopté
								(cm ²)
Zone I		Travée	48	72		5,71	5T16+1T14	11,59
	30x40				6	5,5	2T20+1T16	8,29
		Appui				12,46	2T20+4T16	14,32
						10,56	5T16+1T14	11,59
Zone II		Travée	48	72		4,53	5T16+1T14	11,59
	20 40				6	3,51	2T20+1T16	8,29
	30x40	Appui				13,99	2T20+4T16	14,32
						11,2	5T16+1T14	11,59
Zone		Travée	48	72		4,06	3T16+2T14	9,11
III	20 40				6	3,43	2T20+1T16	8,29
	30x40	Appui				13,15	2T20+4T16	14,32
						8,07	3T16+2T14	9,11

b. Poutres du sens Y-Y (30x40):

Zone	Combinaison	Position	M ^{max} (kNm)	As (cm ²)	As' (cm ²)	As ^{min} (cm ²)
Zone I	G+Q+E _Y	Travée	87,01	4,92	0	6
	0,8G+E _Y		-102,68	0	5,85	
	G+Q+E _Y	Appui	-204,52	0	12,43	6
	0,8G+Ey		169,02	10,03	0	
Zone II	G+Q+E _Y	Travée	77,01	4,33	0	6
	0,8G+Ey		-92,1	0	5,22	
	G+Q+E _Y	Appui	-225,21	0	13,89	6
	0,8G+Ey		159,51	9,41	0	
Zone III	G+Q+E _Y	Travée	60,91	3,39	0	6
	0,8G+E _Y		-87,91	0	4,97	
	G+Q+E _Y	Appui	-213,93	0	13,08	6
	0,8G+E _Y	_	118,38	6,81	0	

Tableau VII 12: Ferraillage des poutres du sens Y-Y (30x40).

• Choix des armatures :

Tableau VII 13: Choix des armatures	pour les poutres d	u sens Y-Y (30	x 40)
-------------------------------------	--------------------	----------------	-------

Zones	Section	Position	As ^{max}	As ^{max}	As ^{min}	Ascal	Choix des	As
	(cm ²)		(Z.C)(cm ²)	(Z.R)(cm ²)	(cm ²)	(cm ²)	armatures	adopté
								(cm ²)
Zone I		Travée	54	81		4,92	5T16	10,05
	30x40				6,75	5,85	2T20+1T16	8,29
	201110	Appui				12,43	2T20+4T16	14,32
						10,03	5T16	10,05
Zone II		Travée	54	81		4,33	5T16	10,05
	30x40				6,75	5,22	2T20+1T16	8,29
		Appui				13,89	2T20+4T16	14,32
						9,41	5T16	10,05
Zone		Travée	54	81		3,39	3T16+2T14	9,11
III	30x40				6,75	4,97	2T20+1T16	8,29
		Appui				13,08	2T20+4T16	14,32
						6,81	3T16+2T14	9,11

VII.2.3. Les vérifications :

Condition de non fragilité :

Dans toute poutre comportant une zone tendue, qu'elle soit soumise à la flexion simple ou composée, les armatures longitudinales de traction doivent présenter une section au moins égale à 0,001 de la section droite de la poutre.

On peut se dispenser de la vérification de la condition de non-fragilité dans les sections doit satisfis la condition suivante :

$$A_s \ge A_s^{\min} = 0,23bd \frac{f_{t28}}{f_s}$$
 Avec : ft28=2,4MPa ; fe= 500MPa

Tableau VII 14: Vérification de la condition de non fragilité des poutres.

Section (cm ²)	$A_{s(\min)}^{choisi}$ (cm ²)	A_s^{\min} (cm ²)	Vérification
30x40	6,03	1,23	Vérifiée

Les sections choisies sont tous supérieure à A_s^{\min} alors la condition est vérifiée.

VII.2.3. a. Vérification vis à vis de l'E.L.S :

Les contraintes sont calculées à l'état limite de service sous (M_{ser}, N_{ser}) , puis elles sont comparées aux contraintes admissibles données par : *Béton :*

$$\sigma_{bc} = 0,6f_{c28} = 18MPa$$

Acier :

- Peut nuisible : Pas de vérification.
- Fissuration préjudiciable : $\sigma_s = \min(\frac{2}{3}fe; 110 \times \sqrt{\eta \cdot f_{ij}})$
- Fissuration très préjudiciable : $\sigma_s = \min(\frac{1}{2} fe; 90 \times \sqrt{\eta \cdot f_{ij}})$

 $O\dot{u}$: $\eta = 1,60$ pour les aciers à HA.

Dans notre cas la fissuration est considérée préjudiciable.

On doit vérifier que :
$$\begin{cases} \sigma_{bc} = \frac{M_{ser}}{I}y + \frac{N}{A} < \bar{\sigma}_{b} = 18MPa \\ \sigma_{s} = 15\frac{M_{ser}}{I}(d-y) + \frac{N}{A} \le \bar{\sigma}_{s} = 215,56.MPa \end{cases}$$

1. Poutres du sens X-X (30x40) :

Zones	Position	M _{ser} (kNm)	σ _{bc} (MPa)	$ar{\sigma}_{bc}$ (MPa)	σs (MPa)	$\overline{\sigma}_{s}$ (MPa)	Vérifié
Zone I	Travée	7,86	1,3	18	-39,6	215,56	OK
	Appui	-16,86	2,12		-37,6		
Zone II	Travée	13,09	2,17	18	-65,9	215,56	OK
	Appui	-42,8	5,37		-95,3		
Zone III	Travée	16,94	2,81	18	-85,3	215,56	OK
	Appui	-58,85	7,38		-131,1		

Tableau VII 15: Vérification des poutres du sens X-X(30x40) à l'E.L.S.

2. Poutres du sens Y-Y (30x40) :

Tableau VII 16: Vérification des poutres du sens Y-Y(30x40) à l'E.L.S.

Zones	Position	M _{ser} (kNm)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σs (MPa)	$\overline{\sigma}_{s}$ (MPa)	Vérifié
Zone I	Travée	11,12	1,84	18	-56	215,56	OK
	Appui	-18,59	2,33		-41,4		
Zone II	Travée	15,9	2,63	18	-80,1	215,56	OK
	Appui	-53,62	6,73		-119,4		
Zone III	Travée	20,43	3,38	18	-102,9	215,56	OK
	Appui	-72,47	9,09		-161,4		

VII.2.3. b. Vérification de l'effort tranchant :

> Vérification de la contrainte de cisaillement :

Il faut vérifier que :

$$\tau_u = \frac{T_u}{bd} \le \bar{\tau}_u$$

Avec :

- T_u : l'effort tranchant maximum.
- b: Largeur de la section de la poutre.
- d: Hauteur utile.

Selon CBA93[6] fissuration préjudiciable :

$$\bar{\tau}_u = Min\left(0, 10\frac{f_{c28}}{\gamma_b}; 4MPa\right) = 2,609MP$$

Etage	Section (cm ²)	T _{u max} (kN)	τ _u (MPa)	τ _{u CBA93} (MPa)	Vérification
S/SOL-TERRASE	X-X (30x40)	166,09	1,538	2,609	Ok
	Y-Y (30x40)	149,42	1,384	2,609	Ok

Tableau VII 17: Vérification de la contrainte de cisaillement des poutres.

VII.2.3.c. Calcul des armatures transversales :

L'acier choisi pour les armatures transversales est de type haute adhérence et nuance FeE50 (f_e =500MPa).

• Selon le BAEL 91 modifié 99 :

$$\begin{cases}
S_t = Min(0,9d; 40cm) \\
\frac{A_t}{bS_t} \ge \frac{\tau_u - 0.3f_{t28}K}{0.8f_e} (K = 1: Pas \ de \ reprise \ de \ bétonnage \) \\
\frac{A_tf_e}{bS_t} \ge Max\left(\frac{\tau_u}{2}; 0.4MPa\right)
\end{cases}$$

• Selon le RPA 99/ Version 2003 : $\begin{cases}
A_t = 0,003S_tb \\
S_t \le Min\left(\frac{h}{4}; 12\varphi_l\right)....Zone nodale \\
S_t \le \frac{h}{2}...Zone courante
\end{cases}$

Avec :

$$\varphi_t \le Min\left(\frac{h}{35}; \varphi_l; \frac{b}{10}\right) = 1,14cm$$

On prend : $\emptyset_t = 8mm$

Les résultats de calcul sont résumés dans le tableau suivant :

Poutres	Tu (kN)	τu(MPa)	BAEL91	RPA99		S_t^{adp} (cm)		A_t^{min} (cm ²)	Choix
			St (cm)	St(cm)Z.N	St(cm)Z.C	Z.N	Z.C	× ,	
X-X	166,09	1,538	36,45	10	20	10	20	1,8	2T10+1T8
Y-Y	149,42	1,384	36,45	10	20	10	20	1,8	2T10+1T8

 Tableau VII 18: Calcul des armatures transversales.

VII.2.3.c. Recouvrement des armatures longitudinales :

 $L_r=50\emptyset$ (zone III). L_r : Longueur de recouvrement. On a : $\emptyset=20mm....L_r=100cm$ $\emptyset=16mm...L_r=80cm$ $\emptyset=14mm...L_r=70cm$

Vérification de la flèche :

• D'après BAEL 91 modifié 99:

On doit vérifier : $\Delta f = f_V - f_i \le \overline{f}$

- $\bar{f} = 0.5 + \frac{L}{1000}$ Si L > 5,00 m
- $\bar{f} = \frac{L}{500}$ $Si \quad L < 5,00 \ m$

•
$$f_i = \frac{M_{ser}.L^2}{10.E_i.I_{fi}}$$
 ; $f_v = \frac{M_{ser}.L^2}{10.E_v.I_{fv}}$

 $\zeta I_{\rm ri} = \frac{I_0}{I_0}$

Avec

$$\int_{F_{\mathcal{V}}}^{I_{F_{\ell}}} \frac{1+\lambda_{i}.\mu}{1+\lambda_{i}.\mu} et\mu = 1 - \frac{1.75.f_{t28}}{4.\rho.\sigma_S + f_{t28}}.$$

$$- \rho = A_s V (b \ x \ d)$$

- $\lambda_i = (0,05.f_{t28})/\rho(2+3b_o/b)$
- $\lambda_v = (0,02 \text{ x ft}_{28})/\rho(2+3bo/d) = 2/5 \lambda_i$
- I_0 : Le moment d'inertie de la section totale rendue homogène avec $\eta = 15$.
- $E_v = 1/3 E_i$

Tableau VII 19: Vérification de la flèche pour les poutres.

Niveau	Section (cm ²)	Δf (mm)	$f^{ m add} ({ m mm})$	Observation
S/SOL-TERRASE	X-X(30x40)	3,735	9,4	Vérifier
	Y-Y (30x40)	3,745	9,4	Vérifier

VII.2.4. Schéma ferraillage des poutres :

Figure VII 13: Ferraillage sur appuis de la poutre 'Niveau RDC-19' direction X-X.

Figure VII 15: Ferraillage sur travée de la poutre 'Niveau RDC-19' direction X-X.

Figure VII 16: Ferraillage sur appuis de la poutre 'Niveau 20-26' dans les 2 directions.

Figure VII 12: Ferraillage sur appuis de la poutre 'Niveau RDC-19' direction Y-Y.

Figure VII 14: Ferraillage sur travée de la poutre 'Niveau RDC-19' direction Y-Y.

Figure VII 17: Ferraillage sur travée de la poutre 'Niveau 20-26' dans les 2 directions.

VII.3. Ferraillage des voiles :

Le voile ou le mur en béton armé est un élément de construction vertical surfacique

Coule dans des coffrages à leur emplacement définitif dans la construction.

Ces éléments comprennent habituellement des armatures de comportement fixées Forfaitairement et des armatures prises en compte dans les calculs.

VII.3.1. Méthode de calcul :

Les voiles seront étudiés par deux méthodes, la méthode réglementaire (méthode du code ACI-318-11 [8]) (voir annexe 10.1),

Le voile est considéré comme un élément vertical sollicité en flexion composée.

Les différentes étapes de calcul et vérifications pour cette méthode seront effectuées selon le code américain (American code institut 318-11 [8]), toute en faisant référence aux recommandations des RPA99/ Version 2003 [1],

CBA93 règles de conception et de calcul des structures en béton arme

DTRB-C 2.4.2 règles de conception et de calcul des paroi et mur en béton banche

Un voile en béton armé doit faire l'objet des vérifications suivantes :

- Justification de la stabilité de forme.
- Résistance à l'effort normale
- Résistance à l'effort tranchant.
- Résistance en flexion composée

VII.3.2. Prescriptions imposées par RPA99 / Version 2003 [1]

1. Les linteaux (RPA99 version2003 (article 7.7.3)) :

On devra disposer :

- Des aciers longitudinaux de flexion ;
- Des aciers transversaux ;
- Des aciers en partie courante (aciers de peau) ;

• Des armatures diagonales (si nécessaire).

Figure VII 18: Ferraillage du linteau.

a. Armature longitudinale :

 $(A_{l}, A'_{l}) \ge 0,0015. \text{ b. h}$ (0,15%)

b. Armature transversale :

 $A_t \geq$ 0,0015.b.s $~(0,15\%)~Pour~\tau_U \leq$ 0,025 f_{c28}

 $A_t \geq$ 0,0025.b.s $~(0,25\%)~Pour~\tau_U >$ 0,025 f_{c28}

 $Ou^{\tau_{u}} = \frac{\overline{V}}{b \times d} \operatorname{avec} \overline{V} = 1.4V_{u}$

b: Épaisseur de linteaux ou de voile

- d: Hauteur utile=0,9h
- h: Hauteur total de la section brute

s: Espacement des armatures transversales

c. Armatures en section courante (armature de peau) :

Les armatures longitudinales intermédiaires ou de peau $A_c(2 \text{ nappes})$ doivent être au total d'un minimum égal à 0.20%.

d. Armatures diagonales :

$$\label{eq:constraint} \begin{split} & \text{Elles sont a disposé obligatoirement si } \tau_U {>}0,06 \ f_{c28} \ \text{si non on ne met pas des} \\ & \text{armatures diagonales.} \qquad A_D {\geq} 0,0015 {}^*b{}^*h \end{split}$$

2. Les trumeaux (voiles pleines) : (RPA99 version2003 (articles 7.7.4) :

On devra disposer :

- Des aciers verticaux de flexion ;
- Des aciers horizontaux.

a. Aciers verticaux :

Ils reprennent les efforts de flexion. Ils sont calculés en flexion composée, et disposés en deux nappes parallèles aux faces des voiles.

Le pourcentage minimum des armatures verticales sur toute la zone tendue sou l'action des forces verticales et horizontales pour reprendre l'effort de traction en totalité est :

$$A_{min} = 0,2\% \times l_t \times e$$

l_t : Longueur de la zone tendue e: épaisseur du voile.

Les barres verticales des zones extrêmes doivent être ligaturées avec des cadres horizontaux dont l'espacement $S_t < e$.

Les barres du dernier niveau doivent être munies de crochets à la partie supérieure.

b. Aciers horizontaux :

Ils sont destinés à reprendre les efforts tranchants, et maintenir les aciers verticaux, et les empêcher de flamber, donc ils doivent être disposés en deux nappes vers l'extérieur des armatures verticales.

Les barres horizontales doivent être munies de crochets à 130° ayant une longueur de 10

VII.3.3. Règles communes : (article 7.7.4.3) :

a. Le pourcentage minimum d'armatures verticales et horizontales des trumeaux, est donné comme suit :

- Globalement dans la section du voile 0,15 %

- En zone courante 0,10 %

b. L'espacement des barres horizontales et verticales doit être inférieur à la plus petite

Des deux (2) valeurs suivantes :

- S ≤1,5 a

- S≤ 30cm

c. Les deux nappes d'armatures doivent être reliées avec au moins 4 épingles au mètre carré.

Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur. Le diamètre des barres verticales et horizontales des voiles (à l'exception des zones d'about) ne devrait pas dépasser 1/10 de l'épaisseur du voile.

d. Les longueurs de recouvrement doivent être égales à :

- 40\u00f6 pour les barres situées dans les zones où le renversement du signe des efforts
 est possible

- 20 ϕ pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charges.

VII.3.4.a. Calcul du ferraillage noyau 1 :

Pour le calcul des armatures nécessaires des voiles

Situation accidentelle : G+Q+E ; 0,8G+E

- Béton : $\gamma_b = 1,15$; $f_c 28 = 30MPa$; $\sigma_b = 22,17MPa$.
- Acier : $\gamma_s = 1$; $f_e = 500MPa$; $\sigma_s = 500MPa$.
- •

> Les zones de ferraillage des voiles :

Figure VII 21: Noyaux1 Y1 et Y2.

Figure VII 20: Noyaux1 X1 et X2.

Tableau VII 20: les langueur des voiles de noyau 1.

Noyaux	L (m)
Y1	5
Y2	5
X1	5
X2	5
Ouverture	1,8

Niveau	$N^{max} \longrightarrow M^{cor}$		M ^{max} —	\rightarrow N ^{cor}	N ^{min} —	V(KN)	
	N(KN)	M(KN.m)	M(KN.m)	N(KN)	N(KN)	M(KN.m)	
ZONE I	-22634,42	5,4774	17738,94	-9073,47	7122,84	88,62	1565,22
ZONE II	-17538,18	18,75	10798,71	-8110,01	3684,37	61,086	1480,76
ZONE III	-12785,23	18,70	7013,63	-7097,62	668,03	53,90	1375,47
ZONE IV	-9570,66	24,92	4771,81	-6024,15	-228,95	3,002	1227,86
ZONE V	-7159,35	15,86	3604,01	-4337,69	37,24	7,018	1037,99
ZONESVI	-5557,33	22,219	2834,86	-3259,66	145,86	2,84	899,99
ZONESVII	-3822,57	13,96	1851,33	-2183,35	186,45	2,90	778,73
ZONE VIII	-2003,02	8,19	1165,70	-820,12	-141,76	0,440	556,724

Tableau VII 21: Sollicitations de calcul Noyaux Y1 et Y2.

Tableau VII 22: Sollicitations de calcul Noyaux X1 et X2.

Niveau	N ^{max} —	► M ^{cor}	M ^{max} —	→ N ^{cor}	N ^{min} —	→ M ^{cor}	
	N(KN)	M(KN.m)	M(KN.m)	N(KN)	N(KN)	M(KN.m)	V(KN)
ZONE I	-15090,43	-1141,06	6501,69	-6631,36	5408,42	458,39	1876,64
ZONE II	-11062,93	-959,004	4055,98	-6255,19	2493,41	514,76	1778,12
ZONE III	-8031,54	-614,848	2894,46	-5199,84	534,242	237,87	1599,78
ZONE IV	-6087,45	-371,28	2124,22	4176,09	9,49	864,63	1333,29
ZONE V	-4579,92	-196,923	1489,38	-2689,41	175,82	80,07	1120,81
ZONESVI	-3491,99	-186,643	1241,46	-2170,12	169,36	87,93	692,698
ZONESVII	-2370,55	-137,71	-848,45	-1467,14	182,29	117,32	835,119
ZONE VIII	-1264,62	-111,36	622,55	19,87	164,59	149,042	609,91

Calcul de ferraillage :

Voile pleine :

Après avoir comparé les valeurs les plus défavorables des sollicitations, selon les différentes combinaisons d'action citée auparavant.

Les résultats sont récapitulés dans les tableaux suivant avec :

h : hauteur totale de la section brute

Calculer armature vertical Av

$$Av = \frac{Nt}{\sigma s}$$

Nt : effort de traction en (kN) ; $\sigma s : \frac{fe}{\gamma s}$ (MPa)

$$Nt = \frac{1}{2} \times |\sigma^{-} \times e \times Lt| ; Nc = \frac{1}{2} \times |\sigma^{+} \times e \times Lc|$$

e : épaisseur de voile

$$\sigma^{-} = \frac{N}{A} - \frac{M}{I} \times Y$$
$$\sigma^{+} = \frac{N}{A} + \frac{M}{I} \times Y$$

 σ^- : contraint limite de traction (MPa).

- σ^+ : contraint limite de compression (MPa).
- N : effort normal kN
- M : moment de flexion kN.m
- A : surface de section m²
- I : moment d'inertie m⁴
- Y : bras de levier m

$$\mathbf{Lt} = \frac{L}{\left|\frac{\sigma^{+}}{\sigma^{-}}\right| + 1} \qquad \qquad \mathbf{Lc} = \frac{L}{\left|\frac{\sigma^{-}}{\sigma^{+}}\right| + 1}$$

L : longueur de voile

Lt : longueur de la zone tendue

Lc : longueur de la zone comprime

Avmin = $0,2\% \times e \times L$

 $\mathbf{AHcal} = \frac{e \times ST \times \tau_u}{0.8 \, fe}$

Vérification de la contrainte cisaillement :

D'après le RPA99/version2003, on a :

$$\tau u = \frac{V}{b \times d} < \overline{\tau_u}(MPA) = 0,2* \text{ fc}28 = 6$$

Avec V = 1,4Vu

b : épaisseur du voile

d : hauteur utile =0,9h

Ferraillages des linteaux : Nous proposons le calcul détaillé de linteau au niveau de zone I

Exemples de calcul : Nous proposons le calcul détaillé pour Noyau Y

• **Exemple01 :** Y : ep = 30 cm ; L = 5 m ; c = 0,1 m

$$Lt = \frac{5}{\left|\frac{8142,172}{-20240,132}\right| + 1} = 3,565 \text{ m}$$

 $Nt = \frac{1}{2} \times |-20240,132 \times 0,3 \times 3,565| = 10823,411 \text{ kN}$

Avt $\frac{10823,411 \times 10^3}{500} \times 10^{-2} = 216,47 \text{ cm}^2$

Calcule As tendue : As = 216,47cm² ; LT = 3,565 m

Alors :

Avtot = 216,47

Avtoto/face = 108,235cm²

Section minimal exigé par le RPA99/version 2003 :

Avmin = $0,2\% \times 30 \times 500 = 30$ cm²

Vérification de la contrainte cisaillement :

D'après le RPA99/version2003, on a :

 $\tau u = \frac{1.4 \times 1565, 22 \times 10^3}{300 \times 4500} = 1,62 \text{ MPa} < \overline{\tau_u}(\text{MPA}) = 0,2*\text{fc}28 = 6 \text{ MPa}$

La condition de la contrainte de cisaillement est vérifiée.

Calcul des armatures :

 $\tau u = 1,62 \text{ MPa} \le \tau u = 0,06 \times 30 = 1,8 \text{ MPa}$

Calcul de AH :

 $\tau u = 1,62 \text{ MPa} \le \tau u = 0,025 \times 30 = 0,75 \text{ MPa}$

Section minimal exigée par le RPA :

$$\text{AHcal} = \frac{e \times ST \times \tau_u}{0.8 \ fe}$$

Calcul de AHmin : AH min $\geq 0,15\% \times b \times h = 0,15\% \times 30 \times 500 = 22,5 \text{ cm}^2$

Ferraillage finale :

Tableau	VII	23:	Noyaux	Y1	et Y2.
---------	-----	-----	--------	----	--------

Niv	veau	ZONE I	ZONE II	ZONE	ZONE	ZONE V	ZONE	ZONE	ZONE
				III	IV		VI	VII	VIII
L ((cm)	500	500	500	500	500	500	500	500
e (cm)	30	30	30	25	25	20	20	20
N((KN)	-9073,47	-8110,01	-7097,6	-6024,15	-4337,69	-3259,6	-2183,4	-820,12
M(ŀ	KN.m)	17738,94	10798,71	7013,63	4771,81	3604,01	2834,86	1851,33	1165,70
V((KN)	1565,22	1480,76	1375,47	1227,86	1037,99	899,99	778,73	556,724
$\tau_u(N)$	MPA)	1,623	1,535	1,426	1,528	1,291	1,399	1,211	0,866
$\overline{\tau_u}$	MPA)	6	6	6	6	6	6	6	6
Av ca (c	al/ face 2m ²)	108,235	85,64	71,493	57,30	44,45	32,61	21,84	8,79
Av mi	in/ face m ²)	30	30	30	25	25	20	20	20
Av a face	adop/ (cm²)	110,84	88,22	72,88	57,49	46,18	36,95	27,14	27,14
N ^{barre}	e / face	34T20	14T20	4T20	24T16	30T14	24T14	24T12	24T12
		+2T16	+22T16	+30T16	+6T14				
St	10	10	10	10	10	10	20	20	20
(cm)	20	20	20	20	20	20	20	20	20
Ah c fa	al cal/	2,448	2,303	2,140	1,910	1,615	1,40	1,211	0,866
Ah m fa	nin cal/ ace	22,5	22,5	22,5	18,75	18,75	15	15	15
Ah ad fa	lop cal/ ace	22,62	22,62	22,62	22,62	22,62	15,71	15,71	15,71
N bar	e/ face	20T12	20T12	20T12	20T12	20T12	20T10	20T10	20T10
St ((cm)	15	15	15	15	15	15	15	15

Ni	veau	ZONE I	ZONE II	ZONE	ZONE	ZONE	ZONE	ZONE	ZONE
				III	IV	V	VI	VII	VIII
L	(cm)	320	320	320	320	320	320	320	320
e	(cm)	30	30	30	25	25	20	20	20
N	(KN)	-6631,36	-6255,19	-5199,84	-4176,09	-2689,41	-2170,12	-1467,14	-1264,62
М	I(KN)	6501,69	4055,98	2894,46	2124,22	1489,38	1241,46	848,45	111,36
V	(KN)	1876,64	1778,12	1599,78	1333,29	1120,81	692,698	835,119	609,91
τ_u	MPA)	3,04	2,88	2,59	2,59	2,18	1,68	2,06	1,48
$\overline{\tau_u}$	MPA)	6	6	6	6	6	6	6	6
Av c	cal/ face cm ²)	78,99	64,00	52,22	40,04	27,05	21,94	14,94	6,96
Av m	nin/ face cm ²)	19,2	19,2	19,2	16	16	12,8	12,8	12,8
Av face	adop/ e (cm ²)	81,68	64,59	53,78	40,21	27,71	24,63	18,1	18,1
N ^{barr}	^{re} / face	26T20	18T20+ 4T16	12T20+ 8T16	20T16	18T14	16T14	16T12	16T12
St (c	Extré mité	10	10	10	10	10	20	20	20
m)	Milieu	20	20	20	20	20	20	20	20
Ah o f	cal cal/ àce	4,56	4,32	3,885	3,24	2,725	1,68	2,06	1,48
Ah n f	nin cal/ àce	14,4	14,4	14,4	12	12	9,6	9,6	9,6
Ah adop cal/		22,62	22,62	22,62	22,62	15,71	15,71	15,71	15,71
f	ace								
N ba	re/ face	20T12	20T12	20T12	20T12	20T10	20T10	20T10	20T10
St	(cm)	15	15	15	15	15	15	15	15

Tableau VII 24: Noyaux X1 et X2.
VII.3.4.b. Ferraillage des linteaux noyau 1 :

Exemple de calcul du linteau du Noyau 1 :

Conformément au RPA99/03, les linteaux seront calculés sous la combinaison G+Q+E. Les sollicitations maximales du linteau sous cette combinaison sont :

M = 702,54 KN.m; V = 673,15 KN.

• Calcul des contraintes :

 $\tau_b = \frac{1.4 \times V}{b.d} = 2,91 < \overline{\tau_b} = 0,2 \text{ f}_{c28} = 6 \text{ MPa}$

La contrainte de cisaillement est vérifiée.

On a : 0,06 $f_{c28} \le \tau_b$:

On dispose le ferraillage longitudinal (supérieur et inférieur), transversal et en zone courante (armatures de peau) suivant les minimums réglementaires (selon le RPA99/03).

• Armatures diagonales :

$$A_{\rm D} = \frac{V}{2 \times f_{\rm e} \times \sin \alpha}$$
$$Tan \ \alpha = \frac{h - 2d'}{h}$$

Avec :

- h = 0.9 m: hauteur du linteau;
- d'= 3 cm : distance d'enrobage;
- -L = 1.8 m: longueur du linteau.

$$\alpha = 25,02^{\circ}$$

D'où :

$$A_{D,calcul} = 15,62 \text{ cm}^2$$

- Section minimal (RPA99/03) :

$$A_{Dmin} = 0.15\% \times b \times h = 2.7 \text{ cm}^2$$

On prend :

- $A_D = Max (A_{D,calcul}, A_{Dmin}) = 15,62 \text{ cm}^2 = 8 \text{ HA16}$
- Armatures longitudinales

 $A_L = 0.15\% \times b \times h = 2.76 \text{ cm}^2 < 3 \text{ HA14} = 4.62 \text{ cm}^2$

• Armatures transversales

 $\begin{array}{rcl} 0,\!025 \ \mathbf{f}_{c28} \leq {}^{\tau}{}_b & \Rightarrow & \mathbf{A}_t > 0,\!25\% \times \mathbf{b} \times \mathbf{S}_t \\ & \mathbf{S}_{t < h}/4 = 24 \ \mathrm{cm} & \Rightarrow & \mathbf{S}_t = 15 \ \mathrm{cm} \\ & \mathbf{A}_t > \mathbf{0},\!75 \ \mathrm{cm}^2 < 2 \ \mathrm{HA8}{=}\mathbf{1},\!\mathbf{01}\mathrm{cm}^2 \end{array}$

• Armatures de peau

 $A_c = 0,2 \% \times b \times h = 3,6 \text{ cm}^2 < 6 \text{ HA12} = 6,79 \text{ cm}^2$

Epaisseurs	V Kn	τ_b Mpa	Ad(choix)	Al(choix)	At(choix)	Ae(choix)
20	(72.15	2.01	0720	2714	270	(T12
20	6/3,15	2,91	8120	3114	218	6112
	(02.17	0.55	07720	2771.4	250	(310
25	693,17	2,55	8120	3114	218	6112
30	1009,146	3,04	8T20	3T14	2T8	6T12

Tableau VII 25: fragile de linteaux Noyau 1 X1 et X2.

Figure VII 22: Coupe longitudinale du linteau.

VII.3.4.c. Schéma de ferraillage de noyau 1:

Figure VII 23: Coupe transversale de linteau.

Figure VII 24: schéma de ferraillage de noyau 1 de trumeau de voiles X1 et X2.

VII.3.5.a. Calcul du ferraillage noyau 2 :

Figure VII 26: détail de noyau 2.

Figure VII 27: Noyaux Y3 et Y4.

X3

Figure VII 28: Noyaux X4

Tableau VII 26: les langueur des voiles de noyau 2.

Noyaux	L (m)
Y3	4
Y4	4
X3	3,5
X4	3,5
OuvertureX3	1,1
OuvertureX4	1,4

Niveau	N ^{max} —	→ M ^{cor}	M ^{max} —	→ N ^{cor}	N ^{min} —	\rightarrow M ^{cor}	V(KN)
	N(KN)	M(KN.m)	M(KN.m)	N(KN)	N(KN)	M(KN.m)	
ZONE I	-13905,03	-32,85	6207,88	-3363,41	5317,35	170,67	1035,15
ZONE II	-10297,73	-238,32	3666,18	-2842,67	2631,95	261,33	857,79
ZONE III	-7893,37	-223,95	2199,075	-2445,53	1167,90	236,20	641,48
ZONE IV	-6325,2	-195,93	1566,04	-2106,44	549,362	208,45	529,33
ZONE V	-4256,62	-125,36	1208,20	-1558,47	150,55	133,33	363,76
ZONESVI	-3181,54	-140,05	1012,67	-1230,39	38,89	140,14	357,42
ZONESVII	-2086,52	-125,13	796,20	-1611,19	5,049	65,254	305,73
ZONE VIII	-1087,71	-88,24	506,99	-792,31	107,75	46,64	273,37

Tableau VII 27: Sollicitations de calcul Noyaux Y3 et Y4.

Tableau VII 28: Sollicitations de calcul Noyaux X3.

Niveau	N ^{max} —	→ M ^{cor}	M ^{max}	\rightarrow N ^{cor}	N ^{min} —	→ M ^{cor}	V(KN)
	N(KN)	M(KN.m)	M(KN.m)	N(KN)	N(KN)	M(KN.m)	
ZONE I	-7150,42	-83,07	1992,48	-4995,73	1776,89	81,45	742,58
ZONE II	-4822,45	35,27	1329,13	-3833,84	121,89	73,69	588,95
ZONE III	-3877,91	-589,99	695,52	-3374,11	5,92	0,6778	446,93
ZONE IV	-3208,20	-435,69	552,58	-2745,98	6,24	-0,071	403,30
ZONE V	-2455,89	-27,97	414,80	-1783,72	84,85	46,69	305,57
ZONESVI	-2038,51	-39,28	316,15	-1278,48	210,831	36,63	314,38
ZONESVII	-1518,15	-44,20	255,59	-1005,27	244,99	19,37	274,39
ZONE VIII	-853,56	-41,52	201,90	-662,86	217,78	2,62	195,50

Niveau	N ^{max} —	\rightarrow M ^{cor}	M ^{max} —	\rightarrow N ^{cor}	N ^{min} —	→ M ^{cor}	V(KN)
	N(KN)	M(KN.m)	M(KN.m)	N(KN)	N(KN)	M(KN.m)	
ZONE I	-3663,59	-184,44	676,59	-184,90	1607,04	430,55	432,83
ZONE II	-2699,43	-73,52	471,87	-711,65	847,38	293,93	386,41
ZONE III	-2053,50	-48,06	428,66	-699,75	416,81	238,37	321,99
ZONE IV	-1642,36	-39,77	414,64	-535,62	229,89	193,02	298,54
ZONE V	-1123,18	-30,79	334,77	-217,99	110,89	108,29	238,19
ZONESVI	-850,47	-40,77	316,91	-141,73	72,27	69,45	231,46
ZONESVII	-567,30	-46,61	265,53	-43,39	47,24	178,05	198,67
ZONE VIII	-308,34	-132,67	191,01	20,72	54,10	169,05	144,019

Tableau VII 29: Sollicitations de calcul Noyaux X4.

Calcul de ferraillage :

Voile pleine :

Après avoir comparé les valeurs les plus défavorables des sollicitations, selon les différentes combinaisons d'action citée auparavant.

Les résultats sont récapitulés dans les tableaux suivant avec :

Ferraillages des linteaux : Nous proposons le calcul détaillé de linteau au niveau de zone I

Exemples de calcul : Nous proposons le calcul détaillé pour Noyau Y

Exemple01 : Y : ep = 25 cm ; L = 4 m ; c= 0,1 m

 M_{max} = 6207,883 kN.m situation accidentelle (G+Q-Ey)

$$\sigma^{-} = \frac{-3363,41}{0,25\times4} - \frac{6207,883}{1,333} \times 2 = -12677,563$$

$$\sigma^+ = \frac{-3363,41}{0,25\times4} + \frac{6207,883}{1,333} \times 2 = 5950,743$$

$$Lt = \frac{4}{\left|\frac{5950,743}{-12677,563}\right| + 1} = 2,722 \text{ m}$$

$$Nt = \frac{1}{2} \times |-12677, 563 \times 0, 25 \times 2, 772| = 4313,374 \text{ kN}$$

Alors :

Avtoto/face = 43,927cm²

Section minimal exigé par le RPA99/version 2003 :

Avmin = $0,2\% \times 25 \times 400 = 20$ cm²

Vérification de la contrainte cisaillement :

D'après le RPA99/version2003, on a :

$$\tau u = \frac{1.4 \times 1035, 15 \times 10^3}{250 \times 3600} = 1,61 \text{ MPa} < \overline{\tau_u}(\text{MPA}) = 0,2*\text{fc}28 = 6 \text{ MPa}$$

La condition de la contrainte de cisaillement est vérifiée.

Calcul des armatures :

 $\tau u = 1,61 \text{ MPa} \le \tau u = 0,06 \times 30 = 1,8 \text{ MPa}$

Calcul de AH :

 $\tau u = 1,61 \text{ MPa} \le \tau u = 0,025 \times 30 = 0,75 \text{ MPa}$

Section minimal exigée par le RPA :

$$\mathbf{AHcal} = \frac{e \times ST \times \tau_u}{0.8 \ fe}$$

Calcul de AHmin :

Chapitre VII

$AH \geq 0,15\% \times b \times h = 0,15\% \times 25 \times 400 = 15~cm$

]	Niveau	ZONE I	ZONE II	ZONE III	ZONE	ZONE V	ZONE	ZONE	ZONE
					IV		VI	VII	VIII
	L (cm)	400	400	400	400	400	400	400	400
e (cm)		25	25	25	25	20	20	20	20
	N(KN)	-3363,41	-2842,67	-2445,53	-2106,44	-1558,47	-1230,4	-1611,19	-792,31
	M(KN)	6207,88	3666,18	2199,076	1566,04	1208,20	1012,67	796,20	506,99
	V(KN)	1035,15	857,79	641,48	529,33	363,76	357,42	305,73	273,37
τ	u(MPA)	1,61	1,33	0,998	0,823	0,707	0,695	0,594	0,532
τ	u(MPA)	6	6	6	6	6	6	6	6
Av	v cal/ face (cm ²)	43,927	31,64	25,01	21,13	13,674	12,441	12,21	7,84
Av min/ face		20	20	20	20	16	16	16	16
110	(cm ²)	-0	-0	-0	-	10	10	10	10
Av a	adop/ face	44,22	33,88	27,71	24,63	18,1	18,1	18,1	18,1
	(cm ²)								
Nb	^{arre} / face	22T16	22T14	18T14	16T14	16T12	16T12	16T12	16T12
St (Extrémité	15	15	15	15	15	15	15	15
cm)	Milieu	15	15	30	30	30	30	30	30
Ah c	al cal/ face	3,02	2,49	1,88	1,54	1,06	1,04	0,89	0,80
Ah	min cal/	15	15	15	15	12	12	12	12
	face								
Ah	adop cal/	22,62	15,71	15,71	15,71	15,71	15,71	15,71	15,71
	face								
Nk	oare/ face	20T12	20T10	20T10	20T10	20T10	20T10	20T10	20T10
S	St (cm)	15	15	15	15	15	15	15	15

Tableau VII 30: Noyaux Y3 et Y4.

Viveau	ZONE I	ZONE II	ZONE III	ZONE	ZONE V	ZONE	ZONE	ZONE
				IV		VI	VII	VIII
				1 V		V I	V 11	V 111
L (cm)	240	240	240	240	240	240	240	240
e (cm)	25	25	25	25	20	20	20	20
N(KN)	-4995,73	-3833,84	-903,72	-2745,98	-1783,72	-1278,4	-1005,27	-662,86
M(KN)	1992,48	1329,13	695,52	552,58	414,80	316,1544	255,59	201,90
V(KN)	742,58	588,95	446,93	403,30	305,57	314,38	274,39	195,50
u(MPA)	1,925	1,527	1,159	1,046	0,990	1,019	0,889	0,634
u(MPA)	6	6	6	6	6	6	6	6
cal/ face	49.82	33.72	19.37	17.20	12.16	9.29	7.60	5.51
(cm^2)	.,,02		1,2,0,7	1,,_0	12,10		1,00	0,01
	10	10	10	10	0.6	0.6	0.6	0.6
min/face	12	12	12	12	9,6	9,6	9,6	9,6
(cm ²)								
don/face	50.27	24.02	21.2	10 /7	12 57	12 57	12 57	12 57
поор/тясе	JU.27	34.93	Z []	10.4/	13.5/	13.57	13.57	13.57
(and 2)	50,27	54,95	21,5	10,47	13,57	13,57	13,57	13,57
(cm ²)	30,27	54,95	21,5	10,47	13,57	13,57	13,57	13,57
(cm ²)	16T20	6T20	6T16	10,47 12T14	13,57 12T12	13,57 12T12	13,57 12T12	13,57 12T12
(cm ²) ^{arre} / face	16T20	54,95 6T20 +8T16	6T16 +6T14	18,47 12T14	13,57 12T12	13,57 12T12	13,57 12T12	13,57 12T12
(cm ²) ^{wre} / face	16T20	6T20 +8T16	6T16 +6T14	18,47 12T14	13,57 12T12	13,57 12T12	13,57 12T12	13,57 12T12
(cm ²) ^{Nrre} / face Extrémité	16T20	6T20 +8T16 10	6T16 +6T14 20	18,47 12T14 20	13,57 12T12 20	13,37 12T12 20	13,57 12T12 20	13,57 12T12 20
(cm ²) ^{Irre} / face Extrémité Milieu	16T20 10 20	6T20 +8T16 10 20	21,5 6T16 +6T14 20 20	18,47 12T14 20 20 20	13,57 12T12 20 20	13,37 12T12 20 20	13,57 12T12 20 20	13,57 12T12 20 20
(cm ²) ^{arre} / face Extrémité Milieu al cal/ face	30,27 16T20 10 20 3,02	6T20 +8T16 10 20 2,41	6T16 +6 T14 20 20 1,91	18,47 12T14 20 20 1,45	13,57 12T12 20 20 1,31	13,37 12T12 20 20 0,999	13,57 12T12 20 20 1,019	13,57 12T12 20 20 0,889
(cm ²) ^{arre} / face Extrémité Milieu al cal/ face min cal/	16T20 10 20 3,02 15	6T20 +8T16 10 2,41 9	6T16 +6 T14 20 20 1,91 9	13,4 7 12T14 20 20 1,45 9	13,57 12T12 20 1,31 9	13,37 12T12 20 20 0,999 7.2	13,57 12T12 20 20 1,019 7.2	13,57 12T12 20 20 0,889 7.2
(cm ²) ^{wrre} / face Extrémité Milieu al cal/ face min cal/	30,27 16T20 10 20 3,02 15	6T20 +8 T16 10 2,41 9	6T16 +6 T14 20 20 1,91 9	18,47 12T14 20 20 1,45 9	13,57 12T12 20 1,31 9	13,37 12T12 20 20 0,999 7,2	13,57 12T12 20 20 1,019 7,2	13,57 12T12 20 20 0,889 7,2
(cm ²) ^{wrre} / face Extrémité Milieu al cal/ face min cal/ face	30,27 16T20 10 20 3,02 15	6T20 +8 T16 10 20 2,41 9	6T16 +6 T14 20 20 1,91 9	18,47 12T14 20 20 1,45 9	13,57 12T12 20 20 1,31 9	13,37 12T12 20 20 0,999 7,2	13,57 12T12 20 20 1,019 7,2	13,57 12T12 20 20 0,889 7,2
idop/ face (cm ²) ^{wrre} / face Extrémité Milieu al cal/ face min cal/ face adop cal/	30,27 16T20 10 20 3,02 15 22,62	6T20 +8T16 10 2,41 9 22,62	21,3 6T16 +6T14 20 20 1,91 9 22,62	18,47 12T14 20 20 1,45 9 22,62	13,57 12T12 20 20 1,31 9 15,71	13,37 12T12 20 20 0,999 7,2 15,71	13,37 12T12 20 20 1,019 7,2 15,71	13,37 12T12 20 20 0,889 7,2 15,71
idop/ face (cm ²) ^{wrre} / face Extrémité Milieu al cal/ face min cal/ face adop cal/ face	30,27 16T20 10 20 3,02 15 22,62	6T20 +8 T16 10 20 2,41 9 22,62	21,3 6T16 +6T14 20 20 1,91 9 22,62	18,47 12T14 20 20 1,45 9 22,62	13,57 12T12 20 20 1,31 9 15,71	13,37 12T12 20 20 0,999 7,2 15,71	13,37 12T12 20 20 1,019 7,2 15,71	13,37 12T12 20 20 0,889 7,2 15,71
(cm ²) ^{urre} / face Extrémité Milieu al cal/ face min cal/ face adop cal/ face	30,27 16T20 10 20 3,02 15 22,62	6T20 +8 T16 10 20 2,41 9 22,62	21,5 6T16 +6T14 20 20 1,91 9 22,62	18,47 12T14 20 20 1,45 9 22,62	13,57 12T12 20 20 1,31 9 15,71 20T12	13,37 12T12 20 20 0,999 7,2 15,71	13,57 12T12 20 20 1,019 7,2 15,71	13,57 12T12 20 20 0,889 7,2 15,71
Composition for the formation of the for	30,27 16T20 10 20 3,02 15 22,62 20T12	6T20 +8T16 10 2,41 9 22,62 20T12	21,5 6T16 +6T14 20 20 1,91 9 22,62 20T12	18,47 12T14 20 20 1,45 9 22,62 20T12	13,57 12T12 20 20 1,31 9 15,71 20T10	13,37 12T12 20 20 0,999 7,2 15,71 20T10	13,57 12T12 20 20 1,019 7,2 15,71 20T10	13,57 12T12 20 20 0,889 7,2 15,71 20T10
	L (cm) e (cm) N(KN) M(KN) V(KN) u(MPA) cal/ face (cm ²) min/ face (cm ²)	L (cm) 240 e (cm) 25 N(KN) -4995,73 M(KN) 1992,48 V(KN) 742,58 u(MPA) 1,925 u(MPA) 6 cal/ face 49,82 (cm²) 12 min/ face 12 (cm²) 50,27	L (cm)240240e (cm)2525N(KN)-4995,73-3833,84M(KN)1992,481329,13V(KN)742,58588,95 $u(MPA)$ 1,9251,527 $\overline{u}(MPA)$ 66cal/ face49,8233,72(cm²)1212min/ face1212(cm²)24,02	L (cm)240240240e (cm)252525N(KN)-4995,73-3833,84-903,72M(KN)1992,481329,13695,52V(KN)742,58588,95446,93 $u(MPA)$ 1,9251,5271,159 $\overline{u}(MPA)$ 666cal/ face49,8233,7219,37(cm²)121212(cm²)121212	Image: L (cm)240240240240240 e (cm)25252525N(KN)-4995,73-3833,84-903,72-2745,98M(KN)1992,481329,13695,52552,58V(KN)742,58588,95446,93403,30 u (MPA)1,9251,5271,1591,046 \overline{u} (MPA)6666cal/ face49,8233,7219,3717,20(cm²)12121212(cm²)12121212	Image: L (cm)240240240240240240 e (cm)2525252520N(KN)-4995,73-3833,84-903,72-2745,98-1783,72M(KN)1992,481329,13695,52552,58414,80V(KN)742,58588,95446,93403,30305,57 u (MPA)1,9251,5271,1591,0460,990 \overline{u} (MPA)66666cal/ face49,8233,7219,3717,2012,16(cm²)121212129,6(cm²)121212129,6	IVIVVIL (cm)240240240240240240e (cm)252525252020N(KN)-4995,73-3833,84-903,72-2745,98-1783,72-1278,4M(KN)1992,481329,13695,52552,58414,80316,1544V(KN)742,58588,95446,93403,30305,57314,38 α (MPA)1,9251,5271,1591,0460,9901,019 $\overline{\alpha}$ (MPA)666666cal/ face49,8233,7219,3717,2012,169,29min/ face121212129,69,6(cm ²)12121212,169,29	IVVIVIIL (cm)240240240240240240e (cm)252525252020N(KN)-4995,73-3833,84-903,72-2745,98-1783,72-1278,4-1005,27M(KN)1992,481329,13695,52552,58414,80316,1544255,59V(KN)742,58588,95446,93403,30305,57314,38274,39 ω (MPA)1,9251,5271,1591,0460,9901,0190,889 $\overline{\omega}$ (MPA)6666666cal/ face (cm²)49,8233,7219,3717,2012,169,297,60min/ face121212129,69,69,69,6

 Tableau VII 31: Noyaux X3.

	Niveau	ZONE I	ZONE II	ZONE III	ZONE	ZONE V	ZONE	ZONE	ZONE
	INIVCau	LONET	ZONE II	ZONE III	IV	ZONE V	VI	VII	VIII
	I (am)	110	110	110	1 v 110	110	110	V II 110	110
		110	110	110	110	110	110	110	110
	e (cm)	25	25	25	25	20	20	20	20
	N(KN)	-3663,59	-711,65	-699,75	-535,62	-217,99	-141,73	-43,39	-20,72
	M(KN)	184,44	471,87	428,66	414,64	334,77	316,91	265,53	191,01
	V(KN)	432,83	386,41	321,99	298,54	238,19	231,46	198,67	144,019
1	u(MPA)	2,448	2,186	1,821	1,689	1,684	1,637	1,405	1,018
ī	Tu(MPA)	6	6	6	6	6	6	6	6
Av	v cal/ face	19,70	13,85	12,74	11,94	9,26	8,70	7,25	5,21
•	(cm ⁻)						4.4		
AV	(cm ²)	5,5	5,5	5,5	5,5	4,4	4,4	4,4	4,4
Av	adop/ face	20,11	15,39	15,39	12,32	12,32	9,24	9,24	6,79
ъt	(CIII)	10717	10714	10714	0114	0T14	(T14	(T14	(T12
IN [*]	arre / face	10116	10114	10114	8114	8114	6114	6114	6112
St (10	10	10	10	10	10	20	20	20
cm)	20	10	10	10	20	20	20	20	20
Ah c	cal cal/ face	3,06	2,732	2,276	2,11	1,684	1,637	1,405	1,018
Ał	n min cal/	4,125	4,125	4,125	4,125	3,3	3,3	3,3	3,3
	face			-	·		-		ŕ
Ah	adop cal/	22,62	15,71	15,71	15,71	15,71	15,71	15,71	15,71
	face								
N	bare/ face	20T12	20T10	20T10	20T10	20T10	20T10	20T10	20T10
;	St (cm)	15	15	15	15	15	15	15	15

Tableau VII 32: Noyaux X4.

VII.3.5.b. Ferraillage des linteaux

Tableau VII 33: fragile de linteaux Noyau 1 X3.

Epaisseurs	V kN	τ_b Mpa	α	Ad(choix)	Al(choix)	At(choix)	Ae(choix)
20	614,425	4,34	37,37	8T14	3T12	2T8	6T12
25	968,72	5,48	37,37	8T16	3T14	2T8	6T12

Chapitres VIII : Etude L'infrastructure

Introduction :

L'infrastructure est l'ensemble des éléments qui ont pour rôle de supporter les charges de la superstructure et les transmettre au sol, de façon à assurer la stabilité de l'ouvrage, limité les tassements différentiels et les déplacements sous action des forces horizontales

VIII.1. Les fondations :

On appel fondation la partie inférieure d'un ouvrage reposant sur un terrain d'assise vers laquelle sont transmises toutes les charges supportées par l'ouvrage. Donc elle constitue la partie essentielle de l'ouvrage.

Fonctions assurées par les fondations :

La fondation est un élément de structure qui a pour objet de transmettre au sol les efforts apportés par la structure.

Dans le cas le plus général, un élément déterminé de la structure peut transmettre à sa fondation :

- Un effort normal : charge verticale centrée dont il convient de connaître les valeurs extrêmes.
- Une force horizontale résultant, par exemple, de l'action du vent ou du séisme, qui peut être variable en grandeur et en direction.
- Un moment qui peut être de grandeur variable et s'exercer dans des plans différents.
- Compte tenu de ces sollicitations, la conception générale des fondations doit assurer la cohérence du projet vis-à-vis du site, du sol, de l'ouvrage et interaction sol/structure.

VIII.1.1. Calcul des fondations :

Afin de satisfaire la sécurité et l'économie, tout en respectant les caractéristiques de l'ouvrage nous devons prendre en considération la charge que comporte l'ouvrage – la portance du sol – l'ancrage et les différentes données du rapport du sol. On commence le choix de la fondation par un radier, chaque étape fera l'objet de vérification. On suppose que l'effort normal provenant de la superstructure vers les fondations est appliqué au centre de gravité (C.D.G) des fondations.

VIII.1.2. Radier général :

Un radier est une dalle pleine réalisée sous toute la surface de la construction. Cette dalle peut être massive (de forte épaisseur) ou nervurée ; dans ce cas la dalle est mince mais elle est raidie par des nervures croisées de grande hauteur.

Dans notre cas, on optera pour un radier nervuré.

L'effort normal supporté par le radier est la somme des efforts normaux de tous les poteaux.

Figure VIII 1: Radier.

VIII.1.2.1. Prédimensionnement de radier :

a. Dalle :

La dalle du radier doit répondre à la condition suivante :

$$h_d \geq \frac{L_{\max}}{20}$$

 $L_{max} = 4,15m \Rightarrow h_d \ge 20,75cm$

Avec :

Lmax = la plus grande portée entre nus d'appuis.

Choix : On retient une épaisseur de $h_d = 40$ cm pour la dalle du radier.

b. Nervure :

L'épaisseur (hr) du radier doit satisfaire les conditions suivantes :

Formule empirique :

La nervure du radier doit avoir une hauteur ht égale à :

$$h_r \ge \frac{L_{\max}}{10} = \frac{415}{10} = 41,5cm$$

Avec :

Lmax : entre axes maximal des poteaux parallèlement aux nervures.

• Condition de l'épaisseur minimale :

La hauteur du radier doit avoir au minimum 25 cm (hmin 25 cm)

• Condition forfaitaire :

$$\frac{l_{max}}{8} \le h \le \frac{l_{max}}{5} \to l_{max} = 415 \text{cm} \to 51,875 \le \text{h} \le 83$$

• Condition de la longueur élastique :

$$L_{max} \le \frac{\pi}{2} L_e$$
 Avec: $L_e = \sqrt[4]{\frac{4EI}{bK}}$

Avec :

E =20000MPa (module de young du béton)

K =40MPa (coefficient de raideur du sol pour un sol de densité moyenne)

B_s : largeur de nervures

Donc on aura :

$$h_r \ge \sqrt[3]{\frac{3K(\frac{2}{\pi}L)^4}{E}} \Rightarrow h_r \ge 0,66m$$

• Choix final :

L'épaisseur minimale normalisée qui correspond aux quatre conditions citées ci

Hauteur est hr= 100 cm ; la largeur est celle du plus gros poteau : b=85cm.

La surface de radier :

On a E.L.S

 $N_{ser} = 204450,63 \text{ kN}$ $\sigma_{max} = \frac{N}{S_{nec}} \le \sigma_{sol} \Longrightarrow S_{nec} \ge \frac{N}{\sigma_{sol}}$

N : sont tirés à partir du fichier du logiciel ETABS

$$\begin{array}{l} \text{Pour} \begin{cases} N = 204450,63 \text{ kN} \\ \sigma_{\text{sol}} = 0,25 MPa \end{cases} & \text{On trouve S} \geq 817,803 \text{m}^2 \\ S_{b\hat{a}timent} = 564,82 \ m^2 \ . \\ \text{S}_{\text{n\acute{e}cessaire}} = 817,803 \text{m}^2 > \text{S}_{\text{BATIE}} = 564,82 \text{m}^2 \end{array}$$

VIII.1.2.2. Vérification :

a. Vérification de la contrainte de cisaillement :

D'après le règlement C.B.A93, On vérifie la condition suivante :

$$\tau_u = \frac{T_u}{bd} \le \bar{\tau}_u = Min(0, 1f_{c28}; 4MPa) = 3MPa.$$

Avec :

T_u : L'effort tranchant ultime

$$T_{u} = \frac{q_{u}}{2} \times l_{\max} \rightarrow \frac{N_{u} \times b}{S_{radier}} \times l_{\max}$$

 $N_u = N_u + 1,35 \times Poids (radier) = 290160,965 kN$

L : la longueur maximale d'une bande de 1m, L=4,15m.

$$T_u = \frac{290160,965 \times 1 \times 4,15}{817,803 \times 2} = 736,22kN.$$

$$\tau_u = \frac{736,22 \times 10^3}{1000 \times 0,9 \times 400} = 2,27 = 2,27 \text{MPa} \le 3 \text{MPa}$$

Pas de risque de cisaillement.

b. Vérification de l'effet de sous pression :

Elle est jugée nécessaire pour justifier le non soulèvement du bâtiment sous l'effet de la pression hydrostatique.

On doit vérifier : $W \ge \alpha \times \gamma \times h \times S_r$

W : Poids total du bâtiment à la base du radier

La charge permanente totale transmise au pied des poteaux et des voiles est de:

W=G bâtiment + G radier =195546,923kN

 α : Coefficient de sécurité vis-à-vis du soulèvement ($\alpha = 1.5$).

 γ : Poids volumique de l'eau ($\gamma = 10$ KN/m3).

h : Profondeur (h =4,06 m).

 S_r : Surface du radier ($S_r = 817,803 \text{ m}^2$)

 $h_{s} = 1,5 \times 10 \times 4,06 \times 817,803 = 49804,203 \text{ kN} \le W = 1955469,923 \text{ kN}.$

Aucun de risque de soulèvement du bâtiment sous l'effet de la pression hydrostatique.

c. Vérification au non poinçonnement :

D'après CBA93 [6] (article A.5.2.4.2) on doit vérifier la condition suivante :

$$N_u \le Q_u = 0,045 \times \mu_c \times h \times \frac{f_{c28}}{\gamma_b}.$$

Avec :

Nu : Effort normal du poteau ou voie le plus sollicité.

Uc: Périmètre de contour cisaillé projeté sur le plan moyen du radier.

a,b: Dimensions du poteau du s/sol (85x85)cm².

Q_c : charge de calcul pour le poteau le plus sollicité.

h : hauteur de radier.

•	Voile :	• Poteau :
	N _u =28763,476kN.	N _u =5158,845kN
	$\mu_c = 2 [(L+a) + 2h]$	$\mu_c = 2 [(a+b) + 2h]$
	$\mu c = 2 [(500+30) + 2 \times 100] = 1460$ cm.	$\mu_c = 2 [(85+85) + 2 \times 100] = 740$ cm.
	N _u =28763,476kN >. <i>Qu</i> =13140 <i>KN</i> . Non vérifiée.	N _u =5158,845kN <. <i>Qu</i> =6660 <i>KN</i> . Vérifiée.

Il faut augmenter les dimensionnements de notre radier.

On prend :

- $h_d = 40 cm$
- $h_r = 180 cm$

Voile :

 $N_u=28763,476$ kN. $\mu c = 2 [(500+30) + 2 \times 180] = 1780$ cm. $N_u=28763,476$ kN < Qu=28836KN.la condition est vérifiée.

On opte pour h_r=180cm.

Caractéristiques géométriques du radier :

• Position du centre de gravité :

XG = 15,525m.

YG = 13,325m.

• Moments d'inertie :

 $I_{xx} = 55837,458m^4$.

I_{yy} =44148,318m⁴.

d. Vérification des contraintes sous le radier :

Le rapport du sol nous offre la contrainte de sol, déterminée par les différents essais in-situ et au laboratoire : $\sigma_{sol}=0,25$ MPa.

Les contraintes du sol sont données par :

1. Sollicitation du premier genre :

À l'ELS :

$$\sigma_{ser} = \frac{N_{ser}}{S_{rad}} = \frac{204450,63}{827,482} = 247,07 \ kN/m^2$$

$$\sigma_{ser} = 247,07 kN/m^2 < \sigma_{sol} = 250..kN/m^2....Vérifiée$$

2. Sollicitation du second genre :

On doit vérifier les contraintes sous le radier (σ_1 ; σ_2)

$$\sigma_1 = \frac{N}{S_{rad}} + \frac{M}{I}V \qquad \qquad \sigma_2 = \frac{N}{S_{rad}} - \frac{M}{I}V$$

- V : fibre la plus éloigner.
- σ_1 : Ne doit pas dépasser 1,5 σ_{sol} .

 σ_2 : Reste toujours positive pour éviter des tractions sous le radier.

$$\sigma\left(\frac{L}{4}\right) = \frac{3\sigma_1 + \sigma_2}{4}$$
 Reste toujours inférieur à 1,33 σ_{sol} .

M : est le moment de renversement.

```
M<sub>x</sub>= 651089,99 kN.m
```

M_y= 642871,46 kN.m

• E.L.U :

	σ1(kN/m ²)	$\sigma_2(kN/m^2)$	$\sigma_m \left(\frac{L}{4}\right)$ (kN/m ²)
Sens x-x	518,41	156,35	427,89
Sens y-y	531,42	143,35	434,4
Vérification	$\sigma_1^{max} < 1,5\sigma_{sol} = 375$	$\sigma_2^{min} > 0$	$\sigma\left(\frac{L}{4}\right) < 1,33\sigma_{sol} = 332.5$
Observation	No	Oui	No

 Tableau VIII 1: Contraintes sous le radier à l'E.L.U.

• E.L.S :

Tableau VIII 2: Contraintes sous le radier à l'E.L.S.

	$\sigma_1(kN/m^2)$	$\sigma_2(kN/m^2)$	$\sigma_m \left(\frac{L}{4}\right)$ (kN/m ²)
Sens x-x	428,1	66,05	337,56
Sens y-y	441,11	53,04	344,09
Vérification	$\sigma_1^{max} < 1,5\sigma_{sol} = 375$	$\sigma_2^{\min} > 0$	$\sigma\left(\frac{L}{4}\right) < 1,33\sigma_{sol} = 332,5$
Observation	No	Oui	No

Il faut changer les démenassions de radier.

On prend :

- $-h_d = 40 \text{ cm}$;
- $h_N = 190 \text{cm}$;
- -L_x=35,85m ;
- -L_y=31,45m;

Figure VIII 2: surface de radier.

- Position du centre de gravité : XG = 17,925m. YG = 15,725m.• Moments d'inertie : $I_{xx} = 101363,06m^4.$ $I_{yy} = 81700,146m^4.$
- E.L.U :

Tableau VIII 3: Contraintes sous le radier à l'E.L.U.

	$\sigma_1(kN/m^2)$	$\sigma_2(kN/m^2)$	$\sigma_m \left(\frac{L}{4}\right)$ (kN/m ²)
Sens x-x	362,75	132,47	305,18
Sens y-y	371,35	123,88	309,48
Vérification	$\sigma_1^{max} < 1,5\sigma_{sol} = 375$	$\sigma_2^{\min} > 0$	$\sigma\left(\frac{L}{4}\right) < 1,33\sigma_{sol} = 332.5$
Observation	Oui	Oui	Oui

• E.L.S :

	$\sigma_1(kN/m^2)$	$\sigma_2(kN/m^2)$	$\sigma_m\left(\frac{L}{4}\right)$ (kN/m ²)
Sens x-x	296,47	66,19	238,9
Sens y-y	305,07	57,6	243,2
Vérification	$\sigma_1^{max} < 1,5\sigma_{sol} = 375$	$\sigma_2^{min} > 0$	$\sigma\left(\frac{L}{4}\right) < 1,33\sigma_{sol} = 332,5$
Observation	Oui	Oui	Oui

Tableau VIII 4: Contraintes sous le radier à l'E.L.S.

> Conclusion :

Les contraintes sont vérifiées dans les deux sens, donc pas de risque de soulèvement.

c. Détermination des sollicitations les plus défavorables :

Le radier se calcule sous l'effet des sollicitations suivantes :

E.L.U :
$$\sigma_u = \sigma\left(\frac{L}{4}\right) = 309,48kN/m^2$$

E.L.S : $\sigma_{ser} = \sigma\left(\frac{L}{4}\right) = 243,2kN/m^2$

Ferraillage du radier :

Le radier se calcule comme un plancher renversé, donc le ferraillage de la dalle du radier se fait de la même manière que celui du plancher.

Ferraillage de la dalle du radier :

a. Détermination des efforts :

1) Si $0.4 < \frac{L_x}{L_y} < 1.0 \Rightarrow$ La dalle travaille dans les deux sens, et les moments au

centre de la dalle, pour une largeur unitaire, sont définis comme suit :

- $M_x = \mu_x q L_x^2$ sens de la petite portée.
- $M_y = \mu_y M_x$ sens de la grande portée.

Pour le calcul, on suppose que les panneaux soient encastrés aux niveaux des appuis, d'où on déduit les moments en travée et les moments sur appuis.

Panneau de rive :	Moment sur appuis :	Panneau intermédiaire	Moment sur appuis
Moment en travée :	$M_{ax} = M_{ay} = 0.3 M_x$	Moment en travée :	$M_{ax} = M_{ay} = 0,5$
$M_{tx} = 0,85 M_x$	(appuis de rive)	$M_{tx} = 0,75 M_x$	$\mathbf{M}_{\mathbf{x}}$
$M_{ty} = 0,85~M_y$	$M_{ax} = M_{ay} = 0,5 M_x$	$M_{ty} = 0,75 M_y$	
	(autres appuis)		

 Tableau VIII 5: détermination les moments.

2) Si $\frac{L_x}{L_y} < 0.4 \Rightarrow$ La dalle travaille dans un seul sens.

- Moment en travée : $M_t = 0.85 M_0$
- Moment sur appuis : $M_a = 0.5 M_0$

Avec
$$M_0 = \frac{ql^2}{8}$$
.

Valeur de la pression sous radier :

E.L.U: $q_u = \sigma_m^u \cdot 1m = 309,48$ kN/m

E.L.S :
$$q_{ser} = \sigma_m^{ser} \cdot 1m = 243,2 \text{kN/m}$$

Moment en travée et sur appuis à l'ELU ($\nu = 0$) : $L_x = 4,15$ m.

L_y=4,15 m.

$$\frac{4,15}{4,15} = 1 \le 1$$

On à le rapport des panneaux $0,4 \le \frac{L_x}{L_y} \le 1,0 \Rightarrow$ la dalle travaille dans les deux sens.

On applique le calcul pour le panneau le plus sollicité ayant des dimensions plus grandes que les autres panneaux.

Calcul des moments :

 μ_x et μ_y sont donnés par l'abaque de calcul des dalles rectangulaire

$$\alpha = 1 \Rightarrow \begin{cases} \mu_x = 0,0368\\ \mu_y = 1 \end{cases}$$
$$M_x = \mu_x q_u L_x^2 = 196,145 \text{ kNm}$$
$$M_y = \mu_y M_x = 196,145 \text{ kNm}$$

• Moments en travées : (panneau intermédiaire)

 $M_{tx} = 0,75M_x = 147,11kN.m$

 $M_{ty} = 0,75 M_y = 147,11 kN.m$

• Moments sur appuis :

 $M_{ax} = 0.5 M_x = 98,07 kN.m$ (appui intermédiaire)

 $M_{ay} = 0.5 M_y = 98,07 kN.m$ (appui intermediaire)

Moment en travée et sur appuis à l'ELS (v=0,2) :

$$\frac{L_x}{L_y} = 1 \Rightarrow \begin{cases} \mu_x = 0.0441\\ \mu_y = 1 \end{cases}$$

Le ferraillage se calcule avec le moment maximum en travée et sur appuis.

$$\label{eq:fc28} \begin{split} f_{c28} &= 30 \ MPa \ ; \ f_{t28} = 2,4 \ MPa \ ; \ \sigma_{bc} = 17 \ MPa \ ; \ f_e = 500 \ MPa \ ; \ \sigma_s = 435 MP \ ; \\ b &= 100 cm \quad ; \ h = 40 cm \qquad ; \ d = 0,9h = 36 cm. \end{split}$$

Tableau VIII 6: Ferraillage des panneaux du radier.

	Sens	Mu(kNm)	μ	α	Z(cm)	As ^{cal} (cm ²)	Choix	As ^{adp} (cm ²)	St(cm)
Travée	Х-Х		0.06	0.000		~ - 1			10
	у-у	147,11	0,067	0,086	34,76	9,74	10112	11,31	10
Appui	х-х	98.07	0.045	0.057	35.18	6.14	10T12	11 31	10
	у-у	90,07	0,045	0,037	55,10	0,14	10112	11,51	10

Espacement :

 $Esp \le Min (3h;33cm) \Rightarrow S_t \le Min (120cm;33cm) = 33cm$

b. Vérifications nécessaires :

- Condition de non fragilité :

$$A_s^{\min} = 0.23 \text{bd} \frac{f_{128}}{f_e} = 3.97 \text{cm}^2$$

Condition est vérifiée.

Vérification des contraintes à l'E.L.S :

	Sens	M _{ser} (kN.m)	A _s (cm ²)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ _s (MPa)	$\overline{\sigma}_{s}$ (MPa)	Vérification
Travée	Х-Х	138,54	11.31	8.55	18	385.3	215.56	Non vérifiée
	у-у		7 -	- ,	_			
Appuis	х-х	98,36	11,31	6,07		273,6		Non vérifiée
	у-у							

On trouve que l'E.L.S est non vérifié alors on va augmenter, la section d'acier

 Tableau VIII 8: Correction de la section d'acier.

	M _{ser} (kN.m)	Choix	A _s (cm ²)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ _s (MPa)	$\overline{\sigma}_{s}$ (MPa)	Vérification
Travée	138,54	10T20	31,42	5,11	18	143,9	215,56	Vérifiée
Appuis	98,36	10T20	31,42	3,62		102,1		Vérifiée

Remarque :

La séparation entre les deux nappes est assurée par des armatures de diamètre T12 généralement, appelées CHAISES, donc on prévoit : 4 chaises deT12 / m².

c. Schéma ferraillage :

Figure VIII 3: Schéma de ferraillage de la dalle du radier.

VIII.1.2.4. Ferraillage de la dalle de débord :

Le débord doit être calculé comme une console encastrée au niveau du radier.

Figure VIII 4: Schéma statique du débord.

$$M_u = (1,35) \times (0,4 \times 1 \times 25) \times \frac{5^2}{2} = 168,75 \ kN.m$$

$$M_s = (0,4 \times 1 \times 25) \times \frac{5^2}{2} = 125 \ kN.m$$

On opte pour 10T20/ml , les armatures de la dalle seront prolonger et constitueront ainsi le ferraillage du débord.

VIII.1.2.5. Ferraillage des nervures :

Afin d'éviter tout risque de soulèvement du radier (vers le haut), celui-ci est sera muni de nervures (raidisseurs) dans les deux sens. Pour le calcul des sollicitations, la nervure sera assimilée à une poutre continue sur plusieurs appuis, et les charges revenant à chaque nervure seront déterminées en fonction du mode de transmission des charges (triangulaires ou trapézoïdales) vers celle-ci.

Figure VIII 5: Modes de transmission de charges.

• Charge trapézoïdale :

$$L_m = l_x(0.5 - \frac{\rho^2}{6}) \qquad \qquad L_t = l_x(0.5 - \frac{\rho}{4})$$

• Charge triangulaire : $L_m = 0,333. l_x$ $L_t = 0,25. l_x$

Pour les moments fléchissant : $Q = q \times Lm$

Pour les efforts tranchants : $Q = q \times Lt$

Tableau	VIII 9	: Ré	partition	des	charges	dans	les ner	vures	(sens	X-X).
									`		

$L_x(m)$	$L_y(m)$	ρ	L _m (m)	$Q_u(kN/m^2)$	Q _u (kN/ml)	$\Sigma Q_u(kN/ml)$
	5	0,7	1,166		360,85	
3,5	3,8	0,92	1,166		360,85	721,7
	5	0,6	1		309,48	
3	3,8	0,79	1		309,48	618,96
	5	0,7	1,166		360,85	
3,5	3,8	0,92	1,166		360,85	721,7
	5	1	1,67	309,48	516,83	
5	3,8	0,76	2,02		625,14	1141,97
	5	0,7	1,166		360,85	
3,5	3,8	0,92	1,166		360,85	721,7
	5	0,6	1		309,48	
3	3,8	0,79	1		309,48	618,96
	5	0,7	1,166		360,85	
3,5	3,8	0,92	1,166		360,85	721,7

Figure VIII 6: Schéma statique des nervures sens X-X.

Pour la détermination des efforts nous allons utiliser le logiciel ETABS.

- $M_u^t = 2375,238 \ kN.m$ - $M_u^A = 2442,448 \ kN.m$ - $T_u = 3854,149 \ kN$

$L_x(m)$	L _y (m)	ρ	L _m (m)	$Q_u(kN/m^2)$	Qu(kN/ml)	$\Sigma Q_u(kN/ml)$
	5	0,8	1,332		412,227	
4	3,5	0,875	1,49		461	873,27
	5	0,76	1,265		391,49	
3,8	3,5	0,92	1,364		422,13	813,62
	5	1	1,67		516,83	
5	3,5	0,7	2,09		646,81	1163,64
	5	0,76	1,265	309,48	391,49	
3,8	3,5	0,92	1,364		422,13	813,62
	5	0,8	1,332		412,227	
4	3,5	0,875	1,49		461	873,27

Tableau VIII 10: Répartition des charges dans les nervures (sens Y-Y).

Figure VIII 7: Schéma statique des nervures sens Y-Y.

Pour la détermination des efforts nous allons utiliser le logiciel ETABS.

- $M_u^t = 2361,43kN.m$ $M_s^t = 1749,21kN.m$

$$- M_u^A = 2547,68 \ kN.m \qquad \qquad M_s^A = 1887,17 \ kN.m$$

$$T_u = 3927,285 \ kN$$

a. Calcul des armatures :

b = 85 cm; h = 190 cm; d = 171 cm.

- Sens (x-x) :

Tableau VIII 11: Ferraillage des nervures sens (x-x).

	Mu(kNm)	μ	α	Z(cm)	$A_s^{cal}(cm^2)$	Choix	$A_s^{adp}(cm^2)$
Travée	2375,238	0,056	0,072	166,05	32,9	8T20+4T16	33,17
Appuis	2442,448	0,058	0,074	165,91	33,86	8T20+6T16	37,19

- Sens (y-y) :

Tableau VIII 12: Ferraillage des nervures sens (y-y).

	Mu(kNm)	μ	α	Z(cm)	$A_s^{cal}(cm^2)$	Choix	As ^{adp} (cm ²)
Travée	2361,43	0,056	0,072	166	32,7	8T20+4T16	33,17
Appuis	2547,68	0,06	0,078	165,68	35,37	8T20+6T16	37,19

b. Vérifications nécessaires :

- Condition de non fragilité :

$$A_s^{\min} = 0,23 \text{bd} \frac{f_{128}}{f_e} = 16,05 \text{cm}^2 < 31.17 \text{cm}^2$$

Condition vérifiée

- Vérification des contraintes à l'E.L.S :

Tableau VIII 13: Vérification des contraintes à L'E.L.S.

	Sens	M _{ser} (kN.m)	σ _{bc} (MPa)	σ _{bc} MPa	σs (MPa)	σ _s (MPa)	Vérification
Travée	Х-Х	1759,436	5,23	18	305,4	215,56	Non vérifiée
	у-у	1749,21	5,2		303,6		Non vérifiée
Appuis	X-X	1809,221	5,16		281,1		Non vérifiée
-	у-у	1887,17	5,38		293,2		Non vérifiée

On trouve que l'E.L.S est non vérifié alors on augmenter la section d'acier.

	Sens	M _{ser} (kN.m)	Choix	σ _{bc} (MPa)	σ _{bc} MPa	σ _s (MPa)	σ _s (MPa)	Vérification
Travée	Х-Х	1759,436	14T20+2T16	4,57	18	211,9	215,56	Vérifiée
	у-у	1749,21	14T20+2T16	4,54		210,7		Vérifiée
Appuis	х-х	1809,221	16T20	4,62		209,4		Vérifiée
	у-у	1887,17	16T20	4,82		213,9		Vérifiée

 Tableau VIII 14: Correction de la section d'acier.

a. Vérification de la contrainte tangentielle du béton :

On doit vérifier que :
$$\tau_u \prec \bar{\tau}_u = Min(0, 1f_{c28}; 4MPa) = 3MPa$$

Avec :

$$\tau_{u} = \frac{T_{u}}{bd}$$

$$\tau_{u} = \frac{3927,285x10^{3}}{850x1710} = 2,7. MPa < \bar{\tau}_{u} = 3MPa....Vérifier$$

c. Armatures transversales :

• Selon BAEL 91 modifié 99 [5]:

$$\frac{A_t}{b_0 S_t} \ge \frac{\tau_u - 0.3 f_{tj} K}{0.8 f_e} \qquad k = 1 \text{ (pas de reprise de bétonage)}$$
$$S_t \le Min(0.9d; 40cm) = 40cm$$
$$\frac{A_t f_e}{b_0 S_t} \ge Max\left(\frac{\tau_u}{2}; 0.4MPa\right) = 1.35MPa$$

• Selon RPA99 / Version 2003 [1] :

$$\frac{A_t}{S_t} \ge 0,003b_0$$

$$S_t \le Min\left(\frac{h}{4}; 12\varphi_l\right) = 19,2.\,cm......$$
Zone nodale
$$S_t \le \frac{h}{2} = 95.\,cm....$$
Zone courante

Avec :

$$\varphi_t \leq Min\left(\frac{h}{35}; \varphi_l; \frac{b}{10}\right) = 1,6cm$$

On trouve :
 $S_t=15cm....Zone nodale.$
 $S_t=20cm...Zone courante.$
 $A_t \geq 5,1 cm^2$

d. Armatures de peau :

Les armatures dénommées « armatures de peau » sont réparties sur les parements des poutres de grande hauteur, elles sont obligatoires lorsque la fissuration est préjudiciable ou très préjudiciable.

 $A_P = 3 \times 2(b_0 + h) = 3 \times 2(0.85 + 1.9) = 16.5 cm^2$

On prend 12T14 (A_s= 18,47cm²).

- e. Schéma de ferraillage :
- Sur appuis:

Figure VIII 8: Schéma de ferraillage des nervures sur appuis.

• Sur travée :

Figure VIII 9: Schéma de ferraillage des nervures sur travée.

Conclusion :

On a trouvé un radier très grand donc on opte pour des fondations profondes.

VII.2. Etude du voile périphérique :

Le voile périphérique sera considéré comme un ensemble de dalle continue encastrer à la base et semi encastré des trois autres coté :

-Encastrement : au niveau de l'infrastructure

-Semi encastrement : au niveau des poteaux et poutres

Ce dernier est sollicité par un moment de flexion résultant de la pression latérale des terres

1) Calcul du voile périphérique :

de donner plus de rigidité à la partie entrée de la construction (sous - sol) et une capacité de reprendre les efforts de poussées des terres, il est nécessaire de prévoir un voile périphérique en béton armé, il est armé d'un double quadrillage d'armature.

- Epaisseur ep > 15cm, Pour notre voile, sur une option pour une épaisseur de ep = 20cm.
- Les armatures sont constituées de deux nappes.
- Le pourcentage minimum des armatures est de 0,1 % dans les deux sens (Horizontaux et verticaux).

2) Détermination des sollicitations :

Le voile sera modélisé avec le logiciel ETABS, et sera soumis à la poussée des terres au repos ainsi qu'à la poussée due à une surcharge de 2,5kN / m².

Le calcul se fait pour une bande de 1 m de largeur.

Q : surcharge d'exploitation, Q = $2,50 \text{ kN} / \text{m}^2$

- γ : Poids spécifique du sol, $\gamma = 18$ kN / m²
- φ : Angle de frottement interne du sol, $\varphi = 30^{\circ}$
- Ko : Coefficient de poussée des terres au repos

γ (kN/m ³)	$arphi$ $^{\circ}$	Ko	h (m)	p (kN/ml)
18	30	0,5	3,06	27,54

Tableau VIII 15: Calcul de la poussée des terres.

Figure VIII 10: vue en 2D du voile périphérique.

VIII.2.1. Calcul des forces de poussée sur le mur :

• Poussée due au poids des terres :

Cette charge est variable, selon la hauteur du voile $P_1 = k_0$. γ .z

<u>0<Z<1,02 m</u>

 $P_1(z=0) = 0$

P, $(z = 1,02) = 0,50 \text{ x } 18 \text{ x } 1,02 = 9,18 \text{ kN/m}^2$

<u>1,02<Z<2,04 m</u>

P, $(z = 2,04) = 0,50 \text{ x } 18 \text{ x } 2,04 = 18,36 \text{ kN/m}^2$

<u>2,04<Z<3,06 m</u>

P, $(z = 3,06) = 0,50 \times 18 \times 3,06 = 27,54 \text{ kN/m}^2$

• Poussée due à la surcharge :

 $0 < z \le 3,06m$:

P s = Q. K_o = 2,5 × 0,50 = 1,25 kN / ml

VIII.2.2. Sollicitation des murs de soutènement périphérique.

Figure VIII 11: vue en 3D du voile périphérique.

Charge à E.LU :

M11 max = 15,819 kN . m (sens horizontal)

M22 max = 20,571 kN.m (sens vertical)

Charge à E.L.S :

M₁1 max = 11,624 kN.m (sens horizontal)

M22 max = 15,034 kN . m (sens vertical)

VIII.2.3. Calcul du ferraillage du voile périphérique :

Ferraillage b=100cm, h=20cm, c= 5cm :

Ferraillage horizontal :

Le ferraillage se fera en flexion simple avec fissuration préjudiciable, pour une bande de section (100×20) cm³

Le calcul de ferraillage se fait avec logiciel SOCOTEC : $As = 2.05 \text{ cm}^2$

Section minimale d'armature :

Condition exigée par le RPA99 / version 2003 :

Le RPA99 / version 2003 préconise un pourcentage minimum de 0,1 % de la section dans les deux senset sera disposée en deux nappes.

 $A = 0,1 \% \times 100 \times 20 = 2 \text{ cm}^2$

Choix des barres :

 $A_S = 2,07 \text{cm}^2 > \text{Amin}=2\text{cm}^2$

Donc : on adopte pour un ferraillage de 6T12 = 6,79 cm² avec un espacement de 20 cm .

Ferraillage vertical :

Le calcul de ferraillage se fait avec logiciel SOCOTEC :

 $As = 2,68 \text{ cm}^2$

Choix des barres : $A_S = 2,71 \text{ cm}^2 > \text{Amin}=2\text{ cm}^2$

Donc : on adopte pour un ferraillage de 6T12 = 6,79 cm² avec un espacement de 20 cm .

Vérifications à l'ELS :

Vérification des contraintes dans le béton : (Art A.4.5.2/BAEL 91).

La fissuration étant préjudiciable (risque de corrosions et des infiltrations d'eau) $\sigma st \leq \overline{\sigma st}$

$$\overline{\sigma st} = \min\left(\frac{2}{3} fe, (110\sqrt{\eta \times ft28})\right) \eta = 1.6 \rightarrow \text{Barres HA}$$
$$\overline{\sigma st} = \min\left(\frac{2}{3} \times 500, 110\sqrt{1,6 \times 2,4}\right) \rightarrow \min(333,33; 215,55) \rightarrow \overline{\sigma st} = 215,55$$
MPa

Ms max = 11,624 kN.m (sens horizontal)

 σ st = 105,1

 σ st = 105,1 MPa < $\overline{\sigma st}$ = 215,55 MPa..... Condition vérifiée.

Il y'a lieu de vérifier si :

 $\overline{\sigma bc} = 0.6 \times fc28 = 18$ MPa

 $\sigma bc = 2,79 \text{ MP}a < \overline{\sigma bc} = 18 \text{ MP}a...$ Condition vérifiée.

 $Ms = 15,034 \text{ kN} \cdot \text{m}$ (sens vertical)

 σ st = 105,1

 σ st = 135,9 MPa < $\overline{\sigma st}$ = 215,55 MPa..... Condition vérifiée.

Il y'a lieu de vérifier si :

 $\overline{\sigma bc} = 0.6 \times fc28 = 18$ MPa

 $\sigma bc = 3,6 \text{ MP}a < \overline{\sigma bc} = 18 \text{ MP}a$Condition vérifiée.
Chapitre IX : Proposition D'isolation Sismique

Introduction :

Les ouvrages de génie civil, tels que les bâtiments, les ponts et les tours, peuvent vibrer fortement ou même s'effondrer lorsqu'ils sont soumis à de fortes excitations dues au vent ou aux séismes. Concevoir des structures pour résister aux dommages sismiques reste un défi pour les ingénieurs civils.

Malgré les efforts intenses déployés en faveur de la conception de codes et de la construction résistants au vent et aux séismes, les structures sont toujours vulnérables face aux excitations de forte intensité. Traditionnellement, les structures sont conçues pour dépendre totalement de leur propre rigidité pour résister à la force des séismes et sur leur faible taux d'amortissement.

L'inefficacité des conceptions traditionnelles résistantes aux différentes excitations a conduit à l'application de la technologie de structure intelligente innovante aux structures de génie civil.

Cette technologie a progressivement gagné en popularité à mesure que les résultats de la recherche et la mise en œuvre pratique continuent de montrer que ce concept est un moyen prometteur pour protéger les structures face aux excitations dynamiques.

Grâce à la technologie de structures intelligentes, des dispositifs et des systèmes sont incorporés à la structure pour augmenter sa capacité de résistance aux séismes.

La structure engage alors non seulement sa propre résistance mais également celle de ces dispositifs pour dissiper l'énergie dynamique afin de résister à la force sismique.

Ces dispositifs connus sous le nom de système de contrôle de vibration peuvent être classés en quatre catégories principales : contrôle passif, actif, semi-actif et hybride.

IX.1. Systèmes de contrôles :

Le contrôle des structures du génie civil représente un domaine de recherche relativement nouveau mais qui se développe rapidement. Ainsi, la tendance générale à construire des ponts légers de grande portée et des grattes ciels très élancés, demande des matériaux à hautes performances et des technologies novatrices. Ceci permet aux ingénieurs d'exprimer leurs créativités. Des efforts importants ont été consacrés à la possibilité d'employer divers dispositifs de contrôle dans la conception des constructions flexibles.

Les méthodes de contrôle qui leur sont associés ont des objectifs différents tel que :

- L'accroissement de la durée de service de l'ouvrage et, par la suite, la possibilité de sa réhabilitation.
- Le confort aux usagers en traversant l'ouvrage.
- Le raccourcissement de la durée du chantier et, par suite, la diminution les arrêts de chantier dus à un vent trop fort représentant un coût financier très important.
- Accroître la sécurité et la fiabilité des structures flexibles qui sont sensibles aux excitations dynamiques extérieures telles que les vents et les tremblements de terre.

Plutôt que de renforcer et de rigidifier la structure, les systèmes de contrôle présentent des moyens efficaces par lesquels les structures peuvent résister aux actions dynamiques, et ce, en produisant, lors de la manifestation de telles actions, des forces de réaction bien adaptées.

IX.1.1. Systèmes de contrôle passif :

Les techniques passives d'amortissement des vibrations structurales utilisent l'intégration ou l'ajout des matériaux ou des systèmes, possédant des propriétés amortissantes. Couples à la structure de telle façon que les vibrations de la structure soient amorties passivement, c'est à dire, sans aucune intervention extérieure supplémentaire et sans apport d'énergie de l'extérieure.

Principalement, il existe deux catégories de systèmes passifs la première est Isolation sismique et la deuxième est la dissipation d'énergie.

Figure IX 2: Structure de système du contrôle passif.

IX.1.1.1 : dissipation d'énergie :

Les systèmes passifs de dissipation d'énergie ont le même principe de base que les isolateurs sismiques lorsqu'ils sont incorporés dans la structure : ils peuvent absorber une portion de l'énergie d'excitation extérieure.

En plus, ils peuvent réduire substantiellement le mouvement différentiel entre les éléments de la structure, et par conséquent réduire les dégâts de cette dernière. Ces dernières années, des efforts sérieux ont amélioré le concept des systèmes de dissipation d'énergie, et plusieurs appareils ont été installés dans des structures partout dans le monde. En général, ils sont caractérisés par leur capacité de dissiper l'énergie de vibration de la structure ou de la convertir en un autre mode de vibration, ou en une autre forme d'énergie. Les amortisseurs parasismiques ou dissipateurs d'énergie sont utilisés soit en association avec les isolateurs en permettant de réduire les déplacements imposés au système d'isolation, soit en superstructure des bâtiments non isolés.

Dans cette partie, nous nous intéressons à présenter quelques dispositifs de dissipation d'énergie en forme d'organigramme :

Figure IX 3: Les amortisseurs de système du contrôle passif.

IX.1.2. Systèmes de contrôle actif :

Le contrôle actif est apparu dans les années 1930 et a été développé avec les progrès réalisés dans le domaine des microprocesseurs. Il est surtout connu pour sa capacité à amortir une large bande de fréquence contrairement au contrôle passif. Un système de contrôle actif nécessite, d'une part, un réseau de capteurs afin de connaitre l'état vibratoire, et d'autre part, un ensemble d'actionneurs pour agir sur la structure à contrôler en appliquant des forces sur celle- ci selon une loi de contrôle.

Pour assurer un bon fonctionnement, ces actionneurs utilisent une source importante d'énergie externe.

Figure IX 4: Structure de système du contrôle actif.

Un système de contrôle actif consiste, premièrement, à placer les capteurs sur la structure pour identifier, à chaque instant, la réponse ou l'excitation.

Seulement lorsque la réponse de la structure est mesurée, la configuration de contrôle est connue sous le nom de contrôle à boucle fermée : la réponse est mesurée à chaque instant et cette information est utilisée pour la correction de la force de contrôle appliquée instantanément. Mais, seulement lorsque l'excitation est mesurée, le contrôle prend le nom de boucle ouverte. Par contre, si la réponse et l'excitation sont mesurées ensemble le terme utilisé dans la littérature est le contrôle à boucle ferméeouverte. En deuxième étape, il consiste à choisir un système de contrôle convenable qui permet à l'actionneur, à chaque instant, de produire une force de contrôle, en apportant de l'énergie de l'extérieur. Le système de contrôle actif des réponses sismiques a suscité une attention considérable ces dernières années dû à ses avantages importants.

Les chercheurs ont développé plusieurs dispositifs de contrôle actifs, tels que :

- Le Système d'amortisseur de masse actif AMD.
- Le câble actif.
- Le contreventement actif.

IX.1.2.1. Système d'amortisseur de masse actif AMD :

Un AMD s'appelle également un gestionnaire de masse actif. C'est un TMD évalué avec un mécanisme de contrôle actif. Les TMD sont seulement proposés pour le contrôle de la réponse structural quand le premier mode est dominant, comme le vent a induit la vibration structurale. Le développement des AMD se concentre sur le contrôle de la réponse sismique structurale avec une large bande de fréquence.

Figure IX 5: Schéma de comparaison entre l'amortisseur de masse actif (AMD) et l'amortisseur de masse accordée (TMD).

Figure IX 7: Le schéma de système de câble actif.

IX.1.3. Systèmes de contrôle semi actif :

Malgré le défi que représente l'application du contrôle des vibrations dans le domaine du génie civil, des stratégies de contrôle semi-actif particulièrement prometteuses Ont vu le jour.

Elles offrent la fiabilité des dispositifs passifs et la capacité d'adaptation des systèmes actifs, et ce, sans exiger une source importante d'énergie.

Les systèmes semi-actifs sont conçus pour fonctionner avec des sources d'énergie internes limitées.

Le système semi-actif utilise des amortisseurs hydrauliques qui sont équipés de valves commandées électroniquement pour ajuster la force d'amortissement en temps réel. Les signaux de commande sont générés en temps réel à partir de capteurs de vibrations placés sur la structure. Les valves sont alors ajustées en conséquence pour modifier la force d'amortissement et contrôler les vibrations de la structure.

Les systèmes de contrôle semi-actifs sont souvent utilisés pour contrôler les vibrations dans les structures telles que les ponts, les bâtiments, les tours et les stades. Ces systèmes offrent une réduction significative de la réponse de la structure aux charges dynamiques, ce qui se traduit par une amélioration de la sécurité, de la durabilité et du confort des occupants de la structure.

Les systèmes semi-actifs sont également plus économes en énergie que les systèmes de contrôle actifs, car ils ne nécessitent pas une source d'énergie externe importante pour fonctionner. Ils sont également plus faciles à installer et à entretenir que les systèmes actifs, car ils ne nécessitent pas de source d'énergie externe et sont plus simples dans leur conception.

IX.1.4. Systèmes de contrôle hybride :

Il est remarquable que les systèmes de contrôle actifs soient introduits pour améliorer la capacité et l'intelligence limitées des amortisseurs passifs et semi actifs, mais le contrôle actif a toujours deux inconvénients. Le premier est son fonctionnement qui dépend d'une source d'énergie externe et il exige un système compliqué pour détecter les réponses et les excitations et pour le traitement de signal. Cette complexité limite son application et réduit la fiabilité de contrôle.

Le deuxième, pour l'application de contrôle actif aux structures de génie civil, nécessite des grands équipements pour produire la force de contrôle, c-à-d, des grands actionneurs sont exigés. La technologie industrielle actuelle capable de fabriquer ces grands actionneurs mais son coût limite sévèrement son application. Les systèmes innovateurs de contrôle hybrides sont réalisés en combinant les techniques de contrôle passif et actif. Quand ces techniques fonctionnent ensemble, la fiabilité est assurée par le contrôle passif et la capacité est fournie par le contrôle actif, le système hybride rassemble les avantages des deux techniques dans une seule technique donc ce système est meilleur que les systèmes passifs, actifs et semi actifs. Trois types de système de contrôle hybride typique ont été développés :

- Amortisseurs de masse hybride HMD.
- Système hybride avec isolateurs à la base.
- Contrôle hybride avec amortisseur-actionneur de contreventement.

IX.2. Isolation sismique :

L'isolation sismique, est une stratégie innovatrice de modèle qui fournit un remplacement pratique pour le modèle résistant de séisme des structures neuves et de la réadaptation sismique des constructions existantes, des passerelles et des établissements industriels...etc.

IX.2.1. Historique :

L'isolation à la base est une technologie qui existe depuis le début du 20ème siècle. L'idée d'isolation parasismique est intervenue après plusieurs expériences et recherches. En Turquie, les bâtiments des églises ont été construits sur une couche de sable, ils sont naturellement isolés.

- En 1906 un bâtiment est construit à Munich en Allemagne. Le bâtiment est édifié sur une plaque de base rigide. Cette plaque devait supporter l'édifice et reposait librement sur un manteau d'élément sphérique fabriqué à partir d'un matériau très dur.

- En 1909 un médecin de Calantarients déposait un brevet sur les bâtiments parasismique sur joint libre.

Dans les années 50, la technologie structurale des blocs en caoutchouc flexible a été employée Pour isoler des bâtiments induits par la vibration des chemins de fer, Le trafic de véhicule, le vent...etc.

Figure IX 8: Schéma historique de développement de l'isolation à la base.

La première application d'isolateurs en caoutchouc « Rubber Isolation System » dans le But de la protection sismique de structure a été réalisée en 1969 dans une école primaire à Skopje (ex-

Yougoslavie).

Les progrès faits dans la technologie des appuis de caoutchouc laminé en 1970, ont permis D'attirer l'attention

Figure IX 9: Bâtiment d'un tribunal en Angleterre Traité ayant des isolateurs de base.

Sur l'isolation sismique comme une réalité pratique.

IX.2.2. Application mondiale des systèmes d'isolation :

• Japon :

L'excellent comportement de nombreux bâtiments protégés par des systèmes d'isolation, pendant le séisme de Hyogo-kenNanbu en 1995 a identifié un besoin de compléter les codes parasismiques existants avec les conditions de conception développées spécifiquement pour les structures isolées. Le Japon est le premier pays mondial pour le nombre d'applications des systèmes d'isolation (avec plus de 5.000 bâtiments ou maisons isolée, en plus de plusieurs ponts et viaducs isolés). La tendance est maintenant d'isoler, même les gratte-ciels et les petites maisons privées. En outre, la plupart des applications récentes se sont soit des réhabilitations des acquis culturels ou la protection des usines industrielles qui produisent des produits vulnérables.

Figure IX 10: Première application du système d'isolation japonaise au IGH.

• Les Etats-Unis :

Aux Etats-Unis, contrairement au Japon, la croissance de l'utilisation des systèmes D'isolation sismique a été très lente au cours des dernières années.

Dans ce pays, la technique d'isolation est relativement limitée à des structures stratégiques Et publiques et la moitié de ces applications sont des réhabilitations

Figure IX 11: Réhabilitation des structures à USA par des systèmes d'isolations. **a**.L'université de Californie à Los Angeles qui a été construite en 1992, protégée par des isolateurs. Cette structure a résisté au séisme de Northridge 1994.

b. Hôtel de ville de San Francisco, construit en 1912 et qui a été endommagé par le séisme de LomaPrietaen1989, puis il a été isolé au moyen de 530 isolateurs en 2000.

• L'Italie :

Avant le séisme de l'Abruzzo en 2009 avec une magnitude 6.3 degré sur l'échelle de Richter, trente (30) applications de systèmes d'isolation étaient en cours de développement, Actuellement l'Italie contient plus de 100 bâtiments isolés qui sont déjà ouverts à l'activité.

Figure IX 12: Centre de secours et de gestion de la défense de l'Italie (Martelli) et Al, 2008.

• La France :

Les isolateurs ont été développés dans les années 70 et appliqués non seulement aux ponts, mais aussi aux bâtiments, les hôpitaux...etc.

Figure IX 13: Schéma du réacteur expérimental Jules Horowitz (Cadarache, France) avec ses appuis parasismiques visibles dans la partie inférieure.

• République Populaire de Chine :

La République Populaire de Chine est en second lieu, avec plus de 700 bâtiments et des nombreux ponts et viaducs qui sont isolés. Elle se caractérise également par une augmentation rapide de l'utilisation de système d'isolation. Comme au Japon, l'application de ce système a commencé par la modification des acquis culturels et les toits des structures des grandes envergures (stades, etc.). L'excellent comportement de quelques bâtiments de maçonnerie isolés à la base pendant le séisme de Wenchuan a fait accélérer la pénétration de ces systèmes d'isolation dans ce pays.

Figure IX 14: Conséquences du séisme de Wenchuan (Chine) en 2008.

a. Les dommages d'un bâtiment durant le séisme de Wenchuan en 2008.Ce bâtiment a été conçu pour résister à un séisme de 7 degrés sur l'échelle de Richter.

b. Absence des dommages structuraux et non-structuraux, dans un bâtiment isolé à la base durant le même séisme.

• Russie :

Le nombre de bâtiments isolés est plus de 600 structures entre réhabilitation des constructions historiques importantes et de nouveaux projets.

Figure IX 15: Des structures isolées à la base à Sotchi (Russie).

- **a.** Complexe d'hôtel à Sotchi de 27 étages, protégé par 156 isolateurs.
- **b**. Centre commercial à Sotchi de 21 étages, protégé par 200 isolateurs.

• Turquie :

Après le tremblement de terre en 1999 les ingénieurs ont commencé à être plus préoccupés Par ce problème. Le premier bâtiment équipé par des systèmes d'isolation été l'hôpital public D'Erzurum, dans l'est Turquie, il est devenu l'un des plus grands hôpitaux dans le Monde avec des systèmes d'isolation a la base.

Figure IX 16: Hôpital d'Erzurum.

- Taiwan, Arménie, Nouvelle Zélande :
 - A Taiwan, le cas des structures isolés à la base a été introduit en 2005 dans le code séismique après le séisme de Chichi en 2003. L'adoption de ce code augmente de plus en plus ces nouvelles constructions et des réhabilitations des bâtiments et des ponts.
 - En ce qui concerne l'Arménie, ce pays a le plus grand nombre des bâtiments isolés par rapport à la densité des habitants.
 - En Nouvelle Zélande, plus de 30 applications d'isolement de nouveaux et anciens bâtiments ainsi que des ponts et viaducs qui ont été protégés par les différents systèmes d'isolation.

Figure IX 17: Bâtiments protégés par les systèmes d'isolation à Wellington (Nouvelle Zélande).

- a. Bâtiment historique construit en 1921, réhabilité en 1992-1993.
- **b.** Le nouveau musée.
- c. Le musée maritime, réhabilité en 1993.

Figure IX 18: Bâtiment isolé à la base à Yerevan (Arménie).

- a. Un complexe multifonctionnel, construit en 2005.
- **b.** Un groupe des isolateurs installés à la base d'une structure.

• Algérie :

L'Algérie n'a pas marcher dans ce sens beaucoup, on site quelques projets tels que :

-Le CTC-Chlef a récemment finalisé la construction du siège de son agence à Aïn Defla, construit sur des appuis parasismiques à base d'élastomère.

-La Grande Mosquée d'Alger est un autre projet qui édifiée sur une combinaison des appuis parasismiques et des amortisseurs.

Figure IX 19: Siège de CTC à Ain Defla.

Figure IX 20: La grande mosquée d'Alger.

Chapitre IX

IX.2.3. Objectifs de l'isolation sismique à la base :

L'isolation sismique à la base consiste à découpler le mouvement de la structure de celui du sol dans le but de réduire la transmission des efforts dynamiques. Les forces sismiques exercées sur la structure isolée sont typiquement de l'ordre de 3 à 10 fois plus petites que la demande en force sur la structure classique. L'isolateur capte les déformations (inélastiques) et filtre les accélérations (hautes fréquences) de sorte que la superstructure isolée (au-dessus) se déplace essentiellement selon un mode rigide subissant de faibles accélérations et presque pas de déformations, les forces d'inertie transmises aux éléments de fondations sont limitées. Ce comportement se traduit par la limitation des dommages subis par la superstructure et les éléments de fondation et par la préservation de la fonctionnalité de la structure après le séisme.

Figure IX 21: Effets d'une secousse sismique sur un bâtiment avec et sans isolation à la base.

IX.2.4. Principe de l'isolation sismique à la base :

L'isolation à la base repose sur le fait que si la période de vibration est augmentée suffisamment pour s'éloigner de la période d'excitation prédominante du tremblement de terre, les accélérations transmises à la structure (et par conséquent les forces d'inertie) sont considérablement réduites. En revanche, l'augmentation de la période engendre des déplacements plus importants concentrés au niveau de l'isolateur. Dès lors l'incorporation d'un dispositif de dissipation d'énergie (amortisseur) à l'isolateur est requise afin de contrôler les déplacements et réaliser un compromis satisfaisant entre la réduction de la force et l'accroissement du déplacement.

Figure IX 22: Effet de l'augmentation de la période et du taux d'amortissement sur l'accélération et le déplacement.

IX.2.5. Les caractéristiques des systèmes d'isolation sismique à la base :

Les composantes ou caractéristiques essentielles d'un système d'isolation typique sont :

- ✓ Un appui capable de transmettre les charges verticales ayant une faible rigidité horizontale (dans la direction isolée).
- ✓ Un mécanisme de dissipation d'énergie (amortisseurs sismique) : Ce mécanisme peut être soit incorporé à l'appui soit installé en parallèle.
- Un système de retenue : le système d'isolation doit avoir une rigidité initiale élevée afin de minimiser les déplacements sous les charges de service tel que le freinage et le vent.

IX.3. Les appuis parasismiques :

Les appuis parasismiques ou les isolateurs parasismiques sont des dispositifs permettant une isolation partielle entre la fondation et la superstructure. Ils ne laissent passer que des efforts déterminés par leurs propres caractéristiques.

Ils doivent permettre des déplacements horizontaux importants grâce à leur faible rigidité horizontale devant celle de la structure. Par ailleurs, ils présentent une grande rigidité verticale avec une capacité de supporter les charges gravitaires de la structure pendant et hors séisme. La structure qui repose sur des appuis parasismiques s'appelle une structure isolée.

IX.3.1. Les différents types d'appuis parasismiques :

Plusieurs types d'appuis parasismiques existent. Certains ont déjà été utilisés, d'autres sont Restés au stade d'études théoriques. Selon leur mode de fonctionnement, ils peuvent être Classés en plusieurs catégories :

- Appuis à déformation ou à élastomère ;
- Appuis à glissement ;
- Appuis à déformation et glissement ;
- Appuis à roulement, etc.

IX.3.1.1 appui à déformation :

Les appuis à déformation utilisés depuis plus de 50 ans, ont toujours montré un comportement satisfaisant, ces appuis sont réalisés en élastomère fretté (couches alternées d'élastomère ; caoutchouc naturel ou élastomère synthétique (néoprène) et de plaques métalliques (frettes)) analogues aux appuis couramment utilisés pour les ponts (appareils d'appuis), que s'est généralisé l'emploi de plaques d'élastomère fretté en tant qu'appuis d'ouvrages d'art.

Le caoutchouc est un matériau qui peut être obtenu soit naturellement et c'est alors un polymère de l'isoprène, soit de façon synthétique qui lui est produit industriellement à partir de dérivés du pétrole.

Caoutchouc naturel	Le caoutchouc synthétique	
 ✓ Une bonne résistance à la traction ✓ Un excellent allongement à rupture ✓ Une tendance à la cristallisation ✓ Un bon comportement aux sollicitations dynamiques 	 ✓ Une excellente résistance au vieillissement contrairement à Caoutchouc naturel ✓ Un très faible taux de fluage sous charge ✓ Une bonne résistance au déchirement 	

Tableau IX	1: Caractéristiq	ues de caoutchouc.
------------	------------------	--------------------

Entre la structure et les fondations, on intercale des couches de l'acier pour la rigidité verticale et des couches de frette pour résister au poids de la structure en évitant une déformation verticale. Le fait d'ajouté des couches d'élastomère au dispositif permet une flexibilité horizontale ainsi un déplacement de la superstructure en bloc dans le sens contraire au déplacement du sol. De ce fait, il réduit considérablement le déplacement relatif des étages. Plus, les élastomères sont élastiques/flexibles, moins les charges sismiques ressenties par le bâtiment sont importantes. Cependant une trop grande flexibilité des appuis diminue considérablement la stabilité de l'ouvrage en temps normal Ces appuis sont donc appelés à juste titre « à déformation » car ils se déforment pour diminuer les effets des secousses sur le bâtiment.

Caoutchouc Frette

Plaque d'extrémité

Figure IX 23: Appuis à déformation.

Il existe plusieurs types d'appareils d'appuis en élastomères qui sont utilisés en réalité, tels que :

- Appui en élastomère à fort taux d'amortissement HDRB ;
- Appui en élastomère à faible taux d'amortissement LDRB ;
- Appui en élastomère avec noyau de plomb LRB

• Appui en élastomère à fort taux d'amortissement (HDRB) :

Les appuis HDRB ont été principalement développés aux USA, au Japon et en Italie. Ils sont composés de couches alternées de matériau élastomère qui est obtenu après une étape de vulcanisation du latex et de plaques d'acier. Ils fournissent un haut coefficient d'amortissement (supérieur à 10%) ainsi qu'une grande capacité de déplacement et un module de cisaillement réduit. Ces caractéristiques sont obtenues par l'ajout d'additifs de type résine ou huile au matériau élastomère.

Les plaques de renforcement en acier sont complètement incorporées et scellées dans le matériau élastomère et ainsi protégées contre la corrosion. Le caoutchouc est fixé par vulcanisation aux plaques de connexion supérieure et inférieure.

Les appuis peuvent également être fournis avec des plaques d'ancrage, permettant ainsi un remplacement plus facile de l'appareil si des travaux de maintenance sont nécessaires.

Figure IX 24: Appui en élastomère à amortissement élevé.

• Appui en élastomère à faible taux d'amortissement LDRB :

Les appuis en élastomère à amortissement faible sont employés avec les dispositifs d'amortissement supplémentaires, tels que les amortisseurs visqueux, les barres en acier, dispositifs de friction, et ainsi de suite. L'élastomère utilisé dans ces appuis peut être l'élastomère normal ou le néoprène. L'amortissement critique pour ce type d'appui varie seulement de 2% à

3%.

Figure IX 25: Appuis en élastomère à amortissement faible.

• Appui en élastomère avec noyau de plomb LRB :

Les appuis LRB sont des systèmes à base d'élastomère combinés avec un système d'hystérésis. Il est doté en son centre d'un noyau de plomb généralement cylindrique ainsi les valeurs d'amortissement associées à de tels systèmes sont plus élevées que celles des appuis HDRB (jusqu'à 30%). Ce noyau de plomb travaillera en flexion car il n'est pas flexible comme les élastomères. Le noyau de plomb a pour objectif d'avoir une rigidité initiale lorsqu'il n'y a pas de séisme pour éviter que la structure ne bouge pas sous l'effet du vent ou des vibrations causés par le passage des gens ou bien des voitures par exemple et il joue aussi le rôle d'amortisseur grâce au phénomène d'hystérésis car il travaille en flexion sur le plan horizontal. Cependant, le noyau de plomb à un petit défaut, il transmet les accélérations de haute fréquence, donc réduit l'efficacité de l'isolation.

Les LRB sont l'isolants les plus utilisés pour isoler des bâtiments à une moyenne hauteur.

Figure IX 26: Appuis en élastomère avec noyau de plomb.

IX.3.1.2 appuis à glissement :

Le système d'appuis à glissement est constitué d'une part de plaques solidaires de la superstructure et d'autre part de plaques fixées aux fondations. Leur interface constitue le plan de glissement et le matériau des deux séries de plaques n'est pas nécessairement le même.

Ces systèmes permettent le découplage des mouvements horizontaux et verticaux de la superstructure de ceux des éléments de fondations qui sont dus à la différence importante des fréquences d'oscillation dans les deux directions. La réponse à l'excitation sismique d'une structure reposant sur des plaques de glissement ne dépend que de sa masse et du coefficient de frottement entre les plaques. Parmi ces appuis, on peut citer :

- Appuis à friction ou les roulements coulissant plats ;
- Appuis à pendule glissant **FPS** ;
- Appuis à friction :

Cet appui est constitué d'une interface en acier inoxydable superposer sur le téflon.

Le comportement est purement plastique car si le coefficient de friction est faible (environ 10%), il assure une grande flexibilité et donc une réduction sensible des sollicitations sismiques subies par les structures. L'acier inoxydable est généralement poli et le téflon peut être renforcé de fibres de verre ou de carbone. Aucune force de rappel n'est assurée.

Figure IX 27: Appuis à friction.

• Appuis à pendule glissant (FPS) :

Ce type d'appuis (FPS) comporte une interface de glissement sous forme de cuvette (portion d'une sphère) qui confère à la structure un mouvement global similaire à un pendule.

Figure IX 29: Appuis à pendule glissant.

Figure IX 28: Les différentes déformations de l'appui à glissement.

IX.3.1.3 appuis à déformation et à glissement :

Ce système d'appuis résulte de l'association de plaques de glissement et des appuis à déformation. Cette association supprime l'inconvénient pour ces derniers en cas de sols mous. Dans un premier temps, le système se déforme latéralement grâce à la distorsion de l'élastomère. Lorsque la force nécessaire à l'accroissement de la distorsion devient supérieure à la force de frottement entre les plaques, ce qui ne se produit que lors des séismes de très forte intensité, le glissement commence. Pendant un séisme violent ce système de protection sismique est très efficace, il peut produire plusieurs glissements. Ce système entraîne une réduction à la fois des accélérations et des déplacements en superstructure et conduit ainsi à une diminution importante des efforts tranchants à la base. Parmi ces appuis :

• Appui utilisé par l'EDF (Electricité de France) :

Cet appui est une combinaison d'une interface de téflon-acier inoxydable montée en série sur un appui élastomère L'inconvénient de ce système d'appui est qu'il n'assure pas de force de recentrage pour les efforts élevés. Pour les efforts de vent, l'élastomère assure une bonne stabilité de l'appui. Il limite les efforts dans la structure, c'est pourquoi il a été adopté par Electricité de France pour l'isolation des centrales nucléaires.

Figure IX 30: Appui utilisé par l'EDF.

• Appui proposé par N.Mostaghel :

Cet appui il est composé de disques en acier inoxydable superposés, pouvant glisser les uns sur les autres. Les disques sont recouverts de Téflon afin de diminuer le coefficient de frottement et reliés par un noyau central ou plusieurs noyaux en caoutchouc. Les noyaux sont librement insérés dans l'appui. Leur seul rôle est de distribuer les glissements sur la hauteur de l'isolateur et ils ne portent donc aucune charge verticale.

Une enveloppe en caoutchouc protège les disques contre la poussière et les agents atmosphériques.

Le frottement entre les disques empêche les glissements sous l'effet du vent ou des séismes de faible intensité. Lorsque les secousses du sol engendrent des charges horizontales supérieures au coefficient de frottement, des glissements se produisent, provoquant la déformation de l'appui.

Figure IX 31: Appui proposé par N. Mostaghel.

IX.3.1.3 appuis à roulement :

Ce système se compose de deux plaques en acier (plates ou incurvées) superposées et séparées des rouleaux. Selon la qualité du matériau du rouleau ou du roulement à billes, la résistance du système peut être suffisante pour contrarier aux charges de

Figure IX 32: Appui à roulement.

services.

- a) : Appui à billes.
- b) : Appui à rouleaux.

Le principe de fonctionnement est presque identique à celui du système de pendule de glissement. Dans ce système, au lieu d'un glisseur articulé, une bille est employée et mise entre deux surfaces concaves opposantes et le radius de courbure des surfaces concaves, est remplacé dans ce système par le radius de la bille adéquat pour atténuer l'effet séismique.

Figure IX 33: Le principe de fonctionnement d'appuis à bille.

Bien que plusieurs systèmes d'appuis à roulement aient été proposés, il n'existe que très peu de réalisations de ce type en raison des inconvénients qu'ils comportent, dont les principaux sont le grippage après une période prolongée sans sollicitation et leur faible amortissement.

IX.3.2. Choix entre les types d'appuis parasismiques :

L'isolation à la base exige un choix de type d'appui parasismique selon les normes, leurs propriétés, et le coût. Par ailleurs il faut prendre en compte leur efficacité et leurs réparations à long terme. Étant donné que le caoutchouc est un matériau qui se dilate et se rétrécie, donc il est nécessaire d'accomplir des vérifications périodiques dans le but d'assurer sa flexibilité au cours du temps. Par contre, les appuis à roulement et à glissement n'exigent aucun entretien. En outre, l'état du sol est une autre raison qui influe sur le choix des appuis comme les appuis à déformation qui se détériorent dans les sols mous donc ils perdent leur productivité à long terme. Ainsi les appuis à glissement s'accordent mieux à cause des faibles coefficients de frottement des plaques donc la réponse de la superstructure est indépendante du contenu fréquentiel du mouvement sismique.

Les appuis à roulement sont très peu utilisés en raison de leurs inconvénients, dont les principaux sont le grippage éventuel du système en l'absence durable de mouvement, et leur faible capacité d'amortissement.

IX.4. Les Amortisseurs des vibrations dans les structures isolées :

Comme souligné plus haut la flexibilité latérale des appuis parasismiques peut introduire quelque inconfort pour les occupants sous diverses actions de vibrations (choc, vent...etc.). Pour cette raison, les appuis parasismiques doivent être équipés d'appareils spéciaux appelés stabilisateurs (amortisseurs) qui empêchent les vibrations des bâtiments isolées. Les amortisseurs parasismiques permettent de dissiper une quantité d'énergie élevée et de réduire par conséquent les amplitudes d'oscillation ainsi que les charges sismiques. Ils peuvent être utilisés en association avec des appuis parasismiques ou en superstructure des bâtiments non isolés.

Les amortisseurs parasismiques sont le plus souvent hystérétiques, visqueux ou à frottement, d'autres types d'amortisseurs existent, par exemple un amortisseur magnétique pouvant réduire les déplacements à la base des immeubles de 20 à 30%.

IX.4.1 Amortisseurs hystérétiques :

Les amortisseurs hystérétiques sont des pièces réalisées en matériaux très ductiles : acier doux, plomb, alliages malléables, etc. La dissipation d'énergie est obtenue à travers les déformations plastiques auxquelles ils sont soumis lors des déplacements relatifs de la superstructure et des fondations. (Hystérétique est la dissipation d'énergie par plastification alternée d'éléments très ductiles).

Les amortisseurs n'ont aucune fonction porteuse et peuvent par conséquent être dimensionnés pour avoir une déformabilité maximale. Ils peuvent supporter plusieurs centaines de cycles de déformation post élastique avant de se rompre. Il convient toutefois de trouver un compromis pour leur diamètre : son accroissement réduit les déplacements de la structure, mais les forces transmises augmentent.

De nombreux types d'amortisseurs hystérétiques existent. Les plus simples consistent en des barreaux verticaux, placés entre la fondation et la superstructure. Des systèmes plus élaborés ont été également mis au point :

• Barreaux d'acier doux :

Les barreaux sont fixés à leur base et guidés en partie haute ; ils travaillent en flexion.

Figure IX 34: Amortisseur en barreau d'acier doux.

• Barreaux de plomb :

Placés au cœur d'appuis à déformation, ces barreaux sont sollicités au cisaillement pur. (Le plomb pénètre dans les couches de caoutchouc ce qui conduit à cisailler les barreaux).

Figure IX 35: Amortisseur en barreau de plomb.

• Barres courbes en acier doux :

Ces barres, fixées à leurs deux extrémités, sont utilisées par paires réparties sous le bâtiment dans deux directions perpendiculaires.

Figure IX 36: Amortisseurs en barres courbes en acier doux.

• Poutres en aciers doux sollicitées en torsion :

Ce système a été proposé par Skinner pour la protection sismique des centrales nucléaires. Pendant les oscillations de la construction, la poutre est mise en torsion par un système de valves et de bielles solidaires de la superstructure. Le mouvement des bielles étant unidirectionnel, il est nécessaire d'orienter les poutres dans deux directions perpendiculaires.

Figure IX 37: Principe d'un amortisseur en barre de torsion.

IX.4.2 Amortisseurs visqueux :

Chapitre IX

Les amortisseurs visqueux sont également très efficaces. Ils peuvent être montés plus facilement en superstructure. Celle-ci doit autoriser les déformations indispensables à leur fonctionnement.

Figure IX 38: Montage d'amortisseurs visqueux en superstructures.

De nombreux types d'amortisseurs visqueux existent : amortisseurs à fluide visqueux et amortisseurs à extrusion de plomb.

Figure IX 39: Les différents types d'amortisseurs visqueux.

IX.4.2 Amortisseurs à frottement :

Les amortisseurs de ce type dissipent l'énergie par frottement sec. Dans le système de la (**IX.40**) des garnitures de freins sont fixées aux croissement des diagonales de contreventement d'une ossature métallique, boulonnées ensemble à travers un trou oblong. Les déformations de l'ossature provoquent des glissements des garnitures avant qu'une plastification des diagonales ou le flambage des poteaux ne puissent se produire.

Figure IX 40: Amortisseurs à frottement.

Le glissement allonge la période propre de la structure, ce qui est en général favorable.

La (IX.41) montre un amortisseur à frottement proportionnel au déplacement ; ce dispositif, utilisable pour les bâtiments sur appuis parasismiques, est composé de deux groupes de plaques fixées respectivement au bâtiment et à un mur de soutènement extérieur. Lors des oscillations, les plaques glissent les unes sur les autres et sont resserrées par une paire de câbles montés en série avec un amortisseur visqueux. Le serrage augmente d'une manière progressive, proportionnellement au déplacement des plaques. Afin de faciliter le recentrage, un système à ressort et amortisseur visqueux supplémentaire

être utilisé.

Figure IX 41: Amortisseurs à frottement proportionnelle au déplacement.

IX.4.3 Amortisseurs magnétiques :

Les amortisseurs magnétiques utilisés dans les bâtiments pour réduire les vibrations et minimiser les dommages causés par les secousses sismiques. Ils sont souvent utilisés dans les structures de grande hauteur, les ponts, les stades et les structures à usage industriel qui sont soumises à des charges dynamiques importantes.

Les amortisseurs magnétiques fonctionnent en détectant les vibrations de la structure et en utilisant des électroaimants pour créer un champ magnétique qui exerce une force sur un matériau conducteur qui se déplace à l'intérieur de l'amortisseur. Cette force magnétique s'oppose aux vibrations et réduit ainsi l'amplitude et la fréquence des mouvements de la structure.

Les avantages des amortisseurs magnétiques dans les bâtiments incluent une amélioration de la sécurité des occupants et une réduction des dommages causés par les secousses sismiques. Cependant, leur coût élevé peut être un inconvénient pour certaines applications. Ils peuvent être utilisés en combinaison avec d'autres systèmes d'isolation sismique, tels que les isolateurs à billes, pour fournir une protection sismique supplémentaire.

Figure IX 42: amortisseur de vibration magnétique.

IX.5. Dispositions constructives des isolateurs sismiques :

Avant l'installation d'un système isolé, il faut vérifier que ce système vieillira bien, et ne devra pas être remplacé avant la fin de la durée de vie prévue du bâtiment (Vieillissement accéléré due à la température, à l'hygrométrie et aux agents chimiques). Il faut aussi que ce système puisse résister à des séismes même plus importants que ceux prévu lors de la conception.

L'emploi des appuis parasismiques convient d'observer quelques règles particulières de conception et de mise en œuvre ;

Les appuis parasismiques ou les isolateurs sont placés entre les fondations et la superstructure ou entre le sous-sol et le RDC, telle que ces deux plans horizontaux doivent être rigides pour empêcher la variation de la distance entre appuis. Un espace accessible suffisant doit être prévu au niveau des appuis pour permettre leur inspection, maintenance et le remplacement éventuel.

Figure IX 43: Emplacement des appuis parasismiques.

Les isolateurs sont insérés entre une semelle et un chapiteau en béton armé. Les semelles comportent également des plots en béton armé couronnés d'une plaque en bois dur, qui peuvent recevoir le poids de la construction en cas de rupture accidentelle des isolateurs. Leur position est déterminée par le déplacement maximal autorisé de ces derniers. Les appuis sont solidement fixés aux deux systèmes de planchers au moyen de boulons en acier ancrés dans le béton. Ce mode particulier de fixation permet le remplacement ultérieur des appuis si nécessaire.

Figure IX 44: Montage des isolateurs.

Un dispositif anti-cheminement doit toujours être prévu, par exemple sous forme de décaissement ménagé dans la fondation. Les bords évasés de décaissement doivent guider l'appui pour qu'il retrouve sa position initiale.

Figure IX 45: Dispositif anti cheminement.

Un espace libre de dimensions suffisantes doit être disposé autour de la superstructure, afin de permettre son libre déplacement dans toutes directions horizontales sans risque de choc. Les valeurs de déplacement calculées doivent être majorées de 20% pour le dimensionnement des joints.

Figure IX 46: Les conditions de voisinage.

IX.6. Les avantages et les inconvénients de l'isolation

parasismique :

IX.6.1 les avantages :

• Accélération moindre en raison de l'augmentation de la période et déplacements réduits par l'amortissement ;

- Déplacements résiduels minimisés grâce à la force de recentrage ;
- Structure plus légère que pour une construction traditionnelle ;

• Les activités peuvent se poursuivre pendant et immédiatement après un tremblement de terre ;

• Renforcement minimal requis dans les projets de restauration ;

IX.6.2 les inconvénients :

- Les bâtiments construisent sur des appuis parasismique (escaliers, tuyauterie,) ou reliant la structure avec ses abords immédiats (réseaux, marches extérieures,) doivent être élaborés de façon à admettre sans préjudices les déplacements relatifs de la superstructure et des fondations. Ces proportions sont impérieuses dans le cas des réseaux de gaz, de défense contre l'incendie et des réseaux récipient des fluides polluants ;
- La largeur des joints de séparation entre deux bâtiments doit être considérable car les déplacements des blocs pouvant atteindre des valeurs décimétriques ;

IX.7. Méthodes d'analyse et dimensionnement des isolateurs :

Le principe d'isolation à la base a été utilisé dans de nombreux pays.

La réalisation des appareils d'appuis parasismiques a connu une activité sur le plan commercial.

IX.7.1. Description des codes parasismiques

Les règlements parasismiques se diffèrent d'un pays à un autre selon l'aléa sismique,

Les méthodes de calcul, le système d'isolation et la superstructure.

En Algérie, la dernière version du règlement parasismique Algérien est le RPA 99 version 2003, qui expose les principes généraux de conception et de calcul pour l'étude des ouvrages vis-à-vis des séismes.

Ainsi, le code ne fournit aucune note sur le calcul des bâtiments à bases isolées. C'est la raison pour laquelle qu'on doit faire recours à d'autres règlements mondiaux pour régir les calculs sur les structures isolées, on a choisi le code américain UBC-97, le plus utilisé.

Le code UBC97 (the Uniform Building Code) prescrit que le système d'isolation doit être stable pour le déplacement requis, et avoir des propriétés qui ne se dégradent pas sous le chargement cyclique répété. Le concept du code est de contrôler les dommages causés à la structure et de son contenu en prenant comme avantage le fait que l'isolation sismique permet une réponse élastique dans la structure.

• Les niveaux d'intensité du mouvement sismique :

L'UBC-97 adopte une approche à deux niveaux du mouvement sismique, qui sont :
IX.7.1.1 Le tremblement de terre de conception DBE :

Le tremblement de terre de conception DBE (Design Basis Earthquake) terme utilisé principalement pour les bâtiments et pour concevoir le système d'isolation. Ce niveau du séisme a une probabilité de 10% pour être excédé en 50 ans ; la période de retour dans les codes de construction est généralement de 475 ans mais dans les nouveaux codes de construction aux états unis et au canada la période de retour de référence est de 2500 ans.

IX.7.1.2. Les tremblements de terre maximum MCE :

Les tremblements de terre maximums MCE (Maximum Credible Earthquake) correspond au niveau maximum de séisme qui peut être envisagé sur un site où se trouve la structure. Le MCE a une probabilité de 10% pour être dépassé en 100 ans avec une période de retour de 10 000 ans pour les zones de faible à modérée sismicités. Ce niveau est employé pour vérifier la stabilité du système d'isolation.

Le séisme de référence est généralement défini par les paramètres macrosismiques suivant ; intensité épicentrale, profondeur focale, distance épicentrale et sismicité induite par le site.

IX.7.2. Méthodes de calcul et d'analyse des structures isolées :

Toutes les méthodes d'analyse d'une structure à base fixe permettent le calcul des forces sismiques d'une structure isolée mais avec une procédure plus complexe qui représente le comportement non linéaire du système d'isolation. Pour cela, on a adopté les recommandations du code Américain UBC 97. Les structures isolées à la base peuvent être analysées suivant trois approches différentes :

- La méthode statique équivalente.
- La méthode d'analyse modale spectrale.
- La méthode d'analyse dynamique par accélérogrammes.

IX.7.2.1. La méthode statique équivalente :

Cette méthode est applicable pour les structures satisfaisant aux conditions préconisées par le code UBC97 :

- La structure est située au moins 10 kilomètres de tous les failles actives.
- La structure est située sur des profils de sol de type : S_A (Très rocheux), S_B (Rocheux), S_C (Sol très dense et roche molle) ou S_D (Profil de sol raide).

Chapitre IX

- La structure au-dessus de l'interface d'isolation est égale à ou moins de quatre étages ou de 20 m de hauteur.
- La période effective maximale du système d'isolation T_M est égale à où moins 3 secondes.
- La période effective de conception du système de l'isolation T_D est plus grande trois fois que la période de la structure à base fixe.
- La structure au-dessus du système d'isolation est de configuration régulière.

Le système d'isolation est défini par tous les attributs suivants :

- La rigidité effective du système d'isolation au déplacement de conception est plus grande qu'un tiers de la rigidité effective à 20% du déplacement de conception.
- Le système d'isolation est capable de produire une force de reconstitution.
- Le système d'isolation a des propriétés de force-déplacement qui sont indépendant du taux de chargement.
- Le système d'isolation a des propriétés de force-déplacement qui sont indépendant de charge verticale bilatérale.
 Caractéristique de déformation du système d'isolation :
- Les déplacements et les forces latéraux minimums de conception de tremblement de terre sur les structures du système d'isolation seront basés sur les caractéristiques de déformation du système.
- Les caractéristiques de déformation du système d'isolation incluront explicitement les effets du système de vent-contrainte si un tel système est employé pour répondre aux exigences de conception de ce document.
- Les caractéristiques de déformation du système d'isolation seront basées sur les essais correctement justifiés selon le code UBC 97.

a/ Les périodes effectives de la structure

• <u>La période effective de conception du système le d'isolation</u> T_D

 T_D : La période effective de la structure d'isolation en seconde correspondant au tremblement de terre de conception DBE calculé selon la formule suivante :

$$T_{\rm D} = 2\pi \sqrt{\frac{W}{KDmin \times g}}$$

Chapitre IX

La période effective maximale du système d'isolation T_M

 T_M : La période effective de la structure d'isolation en seconde correspondant au tremblement de terre maximum MCE calculé selon la formule suivante :

$$T_{\rm M} = 2\pi \sqrt{\frac{W}{KMmin \times g}}$$

Avec :

g : Accélération de la pesanteur.

W : Poids de la structure.

 K_{Dmin} et K_{Mmin} : Les valeurs minimales des rigidités effectives $K_{D,eff}$ et $K_{M,eff}$ du système d'isolation en kips/inch (KN/mm) correspondant au déplacement de conception D_D et D_M respectivement dans la direction horizontale. Elles sont déterminées à partir des boucles d'hystérésis (force-déplacement) obtenues à partir des essais de chargements cycliques sur les isolateurs de prototype.

Les valeurs minimales des rigidités effectives sont données par les équations suivantes :

$$K_{D,eff} = \frac{F_D^+ - F_D^-}{D_D^+ - D_D^-}$$
$$K_{M,eff} = \frac{F_M^+ - F_M^-}{D_M^+ - D_M^-}$$

 F_{D}^{+} , F_{D}^{-} , F_{M}^{+} , F_{M}^{-} , D_{D}^{+} , D_{-D}^{-} , D_{+M}^{+} et D_{-M}^{-} : sont respectivement les forces et les déplacements maximums ou minimums correspondant aux niveaux de réponse de DBE où

MCE sur les systèmes d'isolation de prototypes employés dans les essais sous chargements cycliques.

Les rigidités $K_{D,min}$, $K_{D,max}$ sont respectivement les valeurs minimales et maximales de $K_{D,eff}$ correspondant au déplacement minimum de conception D_D et $K_{M,min}$, $K_{M,max}$ sont respectivement les valeurs minimales et maximales de $K_{M,eff}$ correspondant au déplacement maximum D_M .

Figure IX 47: Boucles d'hystérésis sous chargement cyclique.

b/ Les déplacements latéraux minimums

• <u>Déplacement de conception :</u>

Le système d'isolation sera conçu et construit pour résister aux déplacements latéraux minimums de tremblement de terre qui agit en direction de chacune des axes horizontaux principaux de la structure selon la formule suivante :

$$D_D = \frac{(\frac{g}{4\pi^2}) \times C_{VD} \times T_D}{B_D}$$

Avec :

 C_{VD} et C_{VM} : Coefficients sismiques.

 B_D et B_M : Coefficients d'amortissement.

C_{VD} est en fonction du facteur de zone sismique et du type de profil du sol.

Il est donné selon l'UBC 97 (chapitre 16, sous chapitre 5, Tableau 16-R) comme suit :

Type de profil		Fac	teurs de zone si	smique	
de sol	Z=0,075	Z=0,15	Z=0,2	Z=0,3	Z=0,4
S _A	0,06	0,12	0,16	0,24	0,32 ^N v
S _B	0,08	015	0,2	0,3	0,4 N _V
S _C	0,13	0,25	0,32	0,45	_{0,56} N _V
S _D	0,18	0,32	0,4	0,54	_{0,64} N _V
S _E	0,26	0,5	0,64	0,84	_{0,96} N _V

Tableau IX 2: Coefficient sismique.

Z : Coefficient de zone sismique, ses valeurs sont données selon UBC 97

(Chapitre 16, sous chapitre 5, Tableau 16-I) comme suit :

Tableau IX 3: Facteur de la zone sismique	Ζ.
---	----

Zone	Ι	IIA	IIB	III	IV
Z	0,075	0,15	0,2	0,3	0,4

 N_V : Coefficient de proximité de la faille active. Il est en fonction de type de la faille sismique.

Ces valeurs sont données selon l'UBC97 (chapitre 16, sous chapitre 5, tableau 16-T)

Comme suit :

Type de faille		Proximité de	la faille active	
sisiiique	$\leq 2 \ Km$	5 Km	10 Km	$\geq 15 \ Km$
Α	2	1,6	1,2	1
В	1,6	1,2	1	1
С	1	1	1	1

Tableau IX 4: Facteur de proximité de la faille active NV.

A, B, C : sont les types de la faille sismique. Ils sont en fonction de Magnitude de

Moment maximum M et Taux de glissement sismique moyen annuel SR.

Type de failles sismiques	Μ	SR
A : Failles capables de produire de grandes magnitudes	$M \ge 7,0$	$SR \ge 7,0$
Et ont un taux élevé d'activité sismique		
	$M \ge 7,0$	SR < 5
B : Tout autre type de faille hors A et C	M < 7,0	SR > 2
	$M \ge 6,5$	SR < 2
C : Failles capables de produire des magnitudes	M < 6,5	$SR \le 2$
Modérées avec un taux relativement faible de l'activité		
Sismique		

Tableau IX 5: Type de failles sismiques.

 B_D et B_M : Les Coefficients d'amortissement sont donnés en termes d'amortissement effectif β correspondant respectivement au tremblement de terre

de conception et maximum DBE et MCE.

Il est donné selon l'UBC97 (chapitre 16, sous chapitre 4, Tableau A-16-C) comme suit

Tableau IX 6: Les coefficients d'amortissement BD et BM.

β	≤2%	5%	10%	20%	30%	40%	50%
\mathbf{B}_{D} , \mathbf{B}_{M}	0,8	1,0	1,2	1,5	1,7	1,9	2

Déplacement total :

Le déplacement total de la conception D_{TD} et le déplacement total maximum D_{TM} des éléments, dû à la torsion réelle et accidentelle.

Cette dernière est calculée en fonction de la distribution spatiale de la rigidité latérale du système d'isolation et l'emplacement le plus désavantageux de l'excentricité de masse. <u>Remarque :</u>

 D_{TD} et D_{TM} ne seront pas pris en tant que moins que cela prescrit par les formules :

$$D_{TD} = D_D \left[1 + y \frac{12e}{b^2 + d^2} \right] \ge 1.1 D_D$$

 $D_{TM} = D_M \left[1 + y \frac{12e}{b^2 + d^2} \right] \ge 1,1 D_M$

Figure IX 48: Déplacements du système. Figure IX 48 : I

Figure IX 48 : Dimensions en plan.

c/ Les forces sismiques :

Les systèmes d'isolations et tous les éléments structuraux au-dessus du système d'isolation seront conçus et construits pour résister à une force sismique latérale

V_b, en utilisant toutes les dispositions appropriées pour une structure non isolée

 $V_b = K_{Dmax} \times D_D$

La force sismique minimale prise pour le calcul des éléments au-dessus du système d'isolation est égale à :

$$V_{\rm S} = \frac{K_{Dmax} \times D_D}{Rl}$$

Où :

:

 R_l : Facteur basé sur le type de système de la force latérale résistant utilisé pour la structure au-dessus du système d'isolation. Selon UBC 97 : 1,6< R_l <2,0

• La force sismique V_S ne devrait pas être prise inférieure à :

• La force de conception correspondante à la charge du vent.

• La force latérale exigée pour activer entièrement le système d'isolation multipliée par 1.5.

Distribution verticale de la force sismique

Toute la force sera répartie sur la structure au-dessus de l'interface d'isolation selon la formule :

$$\mathbf{F}_{\mathbf{x}} = \frac{V_{\mathcal{S}} \times W_{\mathcal{X}} \times h_{\mathcal{X}}}{\sum_{i=0}^{n} W_{i} \times h_{i}}$$

Où :

 W_X et W_i : Poids des niveaux x et i respectivement.

 h_x et h_i : Hauteurs des niveaux x et i respectivement au-dessus du niveau d'isolation.

À chaque niveau indiqué comme x, la force F_X appliquée au-dessus du secteur du bâtiment selon la distribution de masse au niveau. Les efforts dans chaque élément seront calculés comme effet de la force F_X , appliqué aux niveaux appropriés au-dessus de la base.

d/ Les déplacements inter-étages

Le déplacement inter-étages de la structure au-dessus du système d'isolation ne dépassera pas le rapport :

$$\frac{0,01}{R_I}$$

IX.7.2.2. La méthode d'analyse modale spectrale :

Cette méthode, à l'opposé de la méthode statique équivalente, elle permet d'analyser de nombreuses structures isolées. Elle est exigée dans le cas où la régularité de la structure est au-dessus du plan d'isolation. Également, la superstructure doit être de plus de quatre étages ou 20m de hauteur.

La période effective de la structure isolée (t_d) est trois fois plus grande que la période fondamentale de la structure à base fixe ($t_d > 3 t_f$).

a/ Les déplacements

Le déplacement total de conception du système d'isolation ne doit pas être pris inférieur à 90% de D_{TD} calculé à la méthode statique équivalente.

$$D_{TD} = D_D \left[1 + y \frac{12 \times e}{b^2 + d^2} \right] \ge 0.9 D_D$$

Le déplacement maximal du système d'isolation ne doit pas être pris inférieur à 80% de D_{TM} calculé à la méthode statique équivalente.

$$D_{TM} = D_M \left[1 + y \frac{12 \times e}{b^2 + d^2} \right] \ge 0.8 D_M$$

Les deux déplacements selon le code UBC97 seront évalués en utilisant les valeurs du D_{TD} et D_{TM} pour déterminer l'accordance, exception en remplaçant D_D par D'_D et D_M par D'_M selon les formules suivantes :

$$D'_{\rm D} = \frac{D_D}{\sqrt{1 + (\frac{T}{T_D})^E}}$$
$$D'_{\rm M} = \frac{D_M}{\sqrt{1 + (\frac{T}{T_M})^2}}$$

Où :

T est la période de la structure à base fixe calculée auparavant.

Remarque :

Cette réduction tient compte de la flexibilité de la superstructure parce que les formules statiques supposent que la superstructure est rigide, par contre n'importe quelle flexibilité et déplacement de la superstructure tendraient à diminuer le déplacement dans le système d'isolation.

b/ Les forces sismiques

 La force sismique du système d'isolation ne doit pas être prise inférieure à 90% de V_b. • La force sismique calculée pour une structure de configuration régulière, peut être prise inférieure à 80% de V_s mais pas inférieure à 60% de V_s .

c/ Les déplacements inter-étages

Le déplacement inter étage correspond à la fore latérale de conception, y compris le déplacement dû à la déformation verticale du système d'isolation ne dépassera pas la limite du rapport :

$$\frac{0,015}{R_{I}}$$

IX.7.2.3. La méthode d'analyse par accélérogrammes :

Le principe d'analyse dynamique par accélérogrammes, est d'étudier l'effet des forces sur la structure en fonction du temps. Elle est convenable en particulier pour les systèmes d'isolation qui ne répondent pas aux conditions des méthodes cité auparavant.

Pour une étude sismique, cette méthode est la plus précise, pour le calcul non linéaire

Des structures isolées.

Elle exige l'utilisation d'un ou des accélérogrammes ainsi la disponibilité d'un programme numérique pour l'analyse.

Les codes exigent l'application de la méthode d'analyse dynamique par accélérogrammes dans les cas suivants :

- La structure située sur un site de classe *E* (sols meuble ; mouvement de longue période) ou *F* (sols sujets aux problèmes de liquéfaction).
- La structure isolée par des systèmes ayant un amortissement effectif supérieur à 30% (Par ce que les niveaux élevés de l'amortissement conduisent à la participation des modes supérieurs dans la réponse).
- La structure isolée par des systèmes qui ne peuvent pas produire une force de rappel significative.

Les codes exigent d'autres conditions sur la manière dont les mouvements des sols utilisés comme réponses temporelles doivent être appliqués dans la conception et l'analyse des structures isolées, ces conditions sont :

- Au moins trois paires des composantes horizontales du mouvement du sol enregistrées devraient être choisies et employées.
- Les réponses temporelles devraient montrer les durées de mouvements forts conformément aux magnitudes et aux caractéristiques de source des mouvements du sol.
- Les réponses temporelles développées pour les sites situés à moins de 15 kilomètres des failles actives majeures devraient incorporer les phénomènes de failles proches.
- Si les enregistrements appropriés ne sont pas disponibles, des enregistrements simulés appropriés peuvent être employés pour composer tout le nombre des enregistrements requis.
- Pour chaque composante des paires du mouvement du sol horizontal, un spectre de 5% d'amortissement doit être construit et le spectre résultant doit
- Être combiné selon la combinaison SRSS (la racine carrée de la somme des carrés) des deux spectres.
- Par suite, les réponses temporelles doivent être normalisées (multipliées par un facteur) telle que la valeur moyenne du spectre de SRSS ne tombe pas au-dessous de 1,3 du spectre de conception correspondant à 5% d'amortissement (DBE ou MCE) et par un excédent de plus de 10% sur un intervalle de période de 0,5 T_D à 1,25T M où T_D et T_M sont les périodes d'isolation effectives correspondantes respectivement au déplacement de conception et au déplacement maximum.
- Si trois réponses temporelles sont employées, la conception doit être basée sur les valeurs maximales de réponse. Si sept réponses temporelles sont employées, la conception peut être basée sur les valeurs moyennes de réponse.

a/ Les déplacements :

Déplacement total :

Le déplacement total de la conception D_{TD} :

$$D_{TD} = D_D \left[1 + y \frac{12 \times e}{b^2 + d^2} \right] \ge 0.9 D_D$$

Le déplacement total maximum D_{TM} :

$$D_{TM} = D_M \left[1 + y \frac{12 \times e}{b^2 + d^2} \right] \ge 0.8 D_M$$

b/ Les forces sismiques

• La force sismique pour le système d'isolation ne doit pas être prise inférieure à

90% de V_b .

• La force sismique ne doit pas être prise inférieure à 80% de Vs et pas inférieure à 60% de Vs si la superstructure, est régulière en plan et en élévation.

c/ Les déplacements inter étages

Le déplacement inter-étages de la structure au-dessus du système de l'isolation calculé par cette méthode ne dépassera pas la limite du rapport :

$$\frac{0,02}{R_I}$$

		Méthode	dynamique
Paramètre de conception	Méthode statique	Modale Spectrale	Temporelle
Déplacement de conception	$\mathbf{D}_{\mathrm{D}} = \frac{(\frac{g}{4\pi^2})\mathcal{C}_{VD}T_D}{B_D}$		
Déplacement maximum	$\mathbf{D}_{\mathrm{M}} = \frac{(\frac{g}{4\pi^2})\mathcal{C}_{VM}T_M}{B_M}$		
Déplacement total de la conception	$D_{TD} = D_D \left[1 + y \frac{12 e}{b^2 + d^2} \right] \ge 1,1 D_D$	$D_{TD} \ge 0.9 D_D$	$D_{TD} \ge 0.9 D_D$
Déplacement total maximum	$D_{TM} = D_M \left[1 + y \frac{12 e}{b^2 + d^2} \right] \ge 1,1 D_M$	$D_{TM} \ge 0.8 D_M$	$D_{TM} \ge 0.8 D_M$
Force sismique pour le système d'isolation	$V_b = K_{Dmax} D_D$	$\geq 0.8 V_b$	$\geq 0.9 V_b$
Force sismique pour une structure régulière	$V_{S} = \frac{KDmaxDD}{RI}$	≥0,8V _b	≥0,6V _b
Force sismique pour une structure irrégulière	$V_{S} = \frac{KDmaxDD}{RI}$	$\geq 1,0V_b$	\geq 1,0V _b
Déplacement inter-étages selon UBC-97	$\leq \frac{0,01}{RI}$	$\leq \frac{0,015}{RI}$	$\leq \frac{0,02}{RI}$
Déplacement inter-étages selon IBC-2000	$\leq 0,015h_{\chi}$	$\leq 0,015h_x$	$\leq 0,02h_x$

Tableau IX 7: Valeurs de l'analyse dynamique données en fonction des valeurs de l'analyse statique.

IX.8. CHOIX D'APPUI :

D'après les recherches qu'on a faites on adopte par l'appui en élastomère a fort amorti dément en barreau de plomb (LRB) pour plusieurs réseaux tels que :

- La disponibilité des données.
- La simplicité d'utilisation.

Figure IX 49: Appui LRB.

Figure IX 50: Principe et fonctionnement de LRB.

Figure IX 51: Les caractéristiques mécaniques de l'isolateur LRB.

IX.9. Méthodologie de dimensionnement des appuis parasismiques :

La sécurité des bâtiments isolés à la base par des appuis parasismiques est uniquement une question de calculs et de dimensionnement, par l'ingénieur civil, de la structure porteuse et de l'appareil d'appui. Le dimensionnement de ces isolateurs s'effectue par des formules données par les codes UBC 97.

Dimensionnement de l'appui en élastomère à fort amortissement LRB :

Déterminer le type et la longueur de faille sismique, le type de profil de sol et les coefficients

 $N_{V\!\!,}\,M_M,\!C_{VD}$ et C_{VM}

- Le calcul des valeurs minimales des rigidités effectives $K_{D,\text{min}}\,\text{et}\,K_{M,\text{min}\,\text{:}}$

$$K_{D.min} = \frac{4\pi^2 N}{T^2 Dg}$$
$$K_{M.min} = \frac{4\pi^2 N}{T^2 Mg}$$

Avec N est la charge verticale reprise par l'appui.

• Le calcul de déplacement :

Le déplacement de conception D_D :

$$\mathbf{D}_{\mathrm{D}} = \frac{(\frac{g}{4\pi^2})C_{VD}T_D}{B_D}$$

- Le déplacement maximal D_M :

$$D_{\rm M} = \frac{(\frac{g}{4\pi^2})C_{VM}T_M}{B_M}$$

- Le déplacement total de conception $D_{T\!.D}\,$ et maximum $D_{T\!.M}\,$:

$$D_{TD} = D_D \left[1 + y \frac{12 e}{b^2 + d^2} \right]$$
$$D_{TM} = D_M \left[1 + y \frac{12 e}{b^2 + d^2} \right]$$

Avec :

e : est l'excentricité réelle entre le centre de la masse de la structure au-dessus du système d'isolation et le centre de la rigidité de ce dernier, plus 5 % d'excentricité accidentelle

y : est la distance perpendiculaire entre l'élément d'appui d'angle considéré et le centre de la rigidité du système d'isolation selon la direction de calcul considérée.

b et d : sont les dimensions de la structure.

• L'épaisseur des couches de caoutchouc t_r :

$$t_r = \frac{D_D}{Ymax}$$

Avec

Y_{max}: est la contrainte de cisaillement maximale.

Le calcul de section de l'appui A :

$$K_{\rm H} = \frac{GA}{t_r}$$

Avec

G : Module de cisaillement de l'élastomère.

$$\mathbf{A} = \frac{K_H t_r}{G}$$

- Calcul de l'énergie dissipée par cycle EDC : EDC = $2\pi \times K_{eff} \times D_D^2 \times \beta$
- La résistance caractéristique Q : $Q = \frac{EDC}{4D}$
- Calcul de la rigidité post-élastique K_2 : $Keff = K2 + \frac{Q}{D}$ • $K_2 = Keff - \frac{Q}{D}$
- Calcul de la rigidité élastique K_1 : On a le rapport entre $\frac{K_1}{K_2}$ varie entre 9 et 16. K1 = 10K2

Calcul de la force limite élastique Fy :

$$Fy = K1 Dy$$

Avec

Dy : Déplacement à la plastification donné par la formule suivante :

$$D_{y} = \frac{Q}{K1 - K2}$$

• Calcul de la pulsation propre ω_H et la période T_H :

$$\omega_H = \sqrt{\frac{\kappa_H g}{W}}$$
 et $T_H = \frac{2\pi}{4S}$

• Détermination du facteur de forme S :

$$6S^2 = \frac{f^2 V}{f^2 H}$$

- Calcul de l'épaisseur de caoutchouc qui sépare deux frettes d'acier t_c : $t_c = \frac{a}{4 s}$
- Calcul du nombre des frettes d'acier n_a:

$$n_a = \frac{t_r}{t_c} - 1$$

- Calcul de la hauteur totale de l'appui LRB : $h_t \!=\! (2t_e) + (t_a \, n_a) + t_r$

Avec

- t_e : L'épaisseur des plaques d'extrémité : 25 mm.
- t_a : L'épaisseur des frettes d'acier : 2 mm.

Les étapes de dimensionnement de l'appui LRB son résumes dans l'organigramme suivant :

Figure IX 52: Organigramme de dimensionnement de l'appui LRB.

IX.9.1. Dimension de notre appui :

$$T_D = 2.5_S$$
; $T_M = 3_S$; $\gamma_{max} = 100\% = \frac{1kN}{m^3}$; zone sismique III $\rightarrow Z = 0.3$

 $\beta_{eff}=30\%=0,3\rightarrow\beta_{D}=\beta_{M}=1,7$; type de sol = S_{D}

Proximité de la faille= $10 \text{ kN} \longrightarrow \text{type de faille} : A = 1,2$

Coefficient sismique $C_{VD} = 0,54$; $C_{VM} = 0,77$

Qualité de caoutchouc : 60 \longrightarrow E=4450 kN/m² ; K=0,57 ; G=1060 kN/m² ; £_b=4

- Contrainte normale admissible = 7840 kN/m^2 .
- La limite élastique du noyau : $f_{py}=8500 \text{ kN/m}^2$.
- La limite élastique d'une plaque d'acier $f_y = 274400 \text{ kN/m}^2$
- La limite élastique de l'acier $F_s = 164640 \text{ kN/m}^2$

Le calcul des valeurs minimales des rigidités effectives K_{D,min} et K_{M,min}

N = 3532,29 kN. (G+Q)

$$K_{D} = \frac{4\pi^{2} \times N}{T^{2}_{D} \times g} = \frac{4\pi^{2} \times 3532,29}{2,5^{2} \times 9,81} = 2274,40 \text{ kN/m}$$

$$K_{M} = \frac{4\pi^{2} \times N}{T^{2}_{M} \times g} = \frac{4\pi^{2} \times 3532,29}{3^{2} \times 9,81} = 1579,45 \text{ kN/m}$$

Le calcul de déplacement :

• Le déplacement de conception D_D :

$$D_{\rm D} = \frac{(\frac{g}{4\pi^2})C_{VD}T_D}{B_D} = \frac{(\frac{9,81}{4\pi^2}) \times 0.54 \times 2.5}{1.7} = 0.1937 \text{ m}.$$

• Le déplacement maximal D_M :

$$D_{\rm M} = \frac{(\frac{g}{4\pi^2})C_{VM}T_M}{B_M} = \frac{(\frac{9,81}{4\pi^2})0,77\times3}{1,7} = 0,338 \text{ m}.$$

• Le déplacement total de conception $D_{T,D}$ et maximum $D_{T,M}$:

$$D_{\text{TD}} = D_{\text{D}} \left[1 + y \frac{12 \, e}{b^2 + d^2} \right] = 0,1973 \times \left[1 + 10,5 \times \frac{12 \times 1,3}{21^2 + 26^2} \right] = 0,226 \text{ m}$$
$$D_{\text{TM}} = D_{\text{M}} \left[1 + y \frac{12 \, e}{b^2 + d^2} \right] = 0,338 \times \left[1 + 10,5 \times \frac{12 \times 1,3}{21^2 + 26^2} \right] = 0,3876$$

Avec

e : est l'excentricité réelle entre le centre de la masse de la structure audessus du système d'isolation et le centre de la rigidité de ce dernier, plus 5 % d'excentricité accidentelle $e = 0,05 \ge 26 = 1,3$ m

y : est La distance perpendiculaire entre l'élément d'appui d'angle considéré le centre de la rigidité du système d'isolation selon la direction de calcul considérée. b et d : sont les dimensions de la structure.

• La force d'élasticité a court terme Q_D :

$$Q_{D} = \frac{W_{D}}{4D_{D}} = \frac{\pi}{2} \times Keff \times \beta eff \times D_{D} = 211,463 \text{ kN}$$
$$W_{D} = 2\pi \times K_{eff} \times D^{2}_{D} \times \beta_{eff} = 166,887 \text{ kN.m}$$

• Rigidité pré élastique K₂ et Rigidité poste élastique K₁

$$K_2 = Keff - \frac{Q_D}{D_D} = 1202,615 \text{ kN/m}$$

K1 = 10K2 = 12026,15 kN/m

• Déplantement de rendement : D_Y :

$$D_{\rm Y} = \frac{Q_D}{K1 - K2} = 0,0195 \text{ m}$$

Recalcul de la force Q_D en $Q_R : Q_R = \frac{W_D}{4(D_D - D_Y)} = 234,65$ kN

• La surface de noyau en plomb Ap :

$$Ap = \frac{Q_R}{fpy} = 0,0276 \text{ m}^2$$

Le diamètre de noyau en plomb dp :

$$dp = \sqrt{\frac{4Ap}{\pi}} = 0,187 \text{ m on prend } dp = 0,19 \text{ m donc } Ap = 0,0284 \text{ m}^2$$

• L'épaisseur des couches de caoutchouc t_r :

$$t_r = \frac{D_D}{Ymax} = 0,1973 \text{ m on prend } t_r = 0,2 \text{ m}$$

Avec :

Y_{max}: est la contrainte de cisaillement maximale.

• Facteur de forme S

On choisit le facteur de forme qui va vérifier la condition suivante :

 $\frac{E(1+2kS^2)}{c} \ge 400 \text{ pour } S \ge 10, \text{ on prend } S = 10$

• Module de compression du caoutchouc et de l'acier Ec :

 $Ec = E(1 + 2kS^2) = 511750 \text{ kN/m}^2$

• La surface transversale effective A₀:

$$A_0 \ge \frac{N}{\sigma} = \frac{3532,29}{7840} = 0,45m^2 \rightarrow d_0 = 0,757m$$

on prend $d = 0,76m$ donc $A_0 = 0,454$ m²

• La surface transversale effective A₁:

$$A_1 \geq \frac{18.S.N}{E_C.\varepsilon_b} = 0,311m^2$$

• La rigidité élastique de l'appui K_r :

$$K_r = K_2 \left(1 + 12 \frac{A_P}{A_0} \right) = 2103,873 \ kN/m$$

• La surface transversale minimale A_{sf} :

$$A_{sf} = \frac{k_r \cdot t_r}{G} = 0,397 \ m^2 \rightarrow d_{sf} = 0,711 m$$

on prend $d_{sf} = 0,72m$ donc $A_{sf} = 0,407 m^2$

• La rigidité verticale effective K_{Veff}:

$$K_{Veff} = \frac{E_C.A_{sf}}{t_r} = 1041411,25 \ kN/m$$

• La limite élastique F_{y:}

$$F_{v} = Q_{D} + K_{2} \times D_{Y} = 234,914 \ kN$$

• Le facteur d'amortissement de la réduction β :

$$\beta = 2\cos^{-1}\left(\frac{D_D}{d}\right) = 2,626 \ rad$$

• La surface transversale effective A₂ :

$$A_2 = \frac{d^2}{4}(\beta - \sin\beta) = 0,02 \ m^2$$

 La section de l'appui : Max (A₀, A₁, A₂) = 0,454 m² avec d = 0,76m • L'épaisseur d'une seule couche de caoutchouc t et nombre des couches :

$$t = \frac{d}{4.s} = \frac{0.76}{4 \times 10} = 0,019m = 19mm$$
, On prend t=20mm
 $n = \frac{t_r}{t} = \frac{0.2}{0.02} = 10$

• L'épaisseur de la plaque d'acier t_s :

$$t_s = \frac{2 \times N \times 2t}{A.F_s} = 0,0189m > 0,002m$$
; On prend t_s=0,025m

• La hauteur totale de l'appui :

$$h = t_r + 2t_s + 11 \times 2 = 272mm$$

• Vérification de la résistance de cisaillement sous la charge verticale N :

$$\gamma_c = \frac{6.S.N}{E_c.A} \le \frac{\varepsilon_b}{3} = \frac{6 \times 10 \times 3532,29}{511750 \times 0,454} = 0,912 < \frac{4}{3}$$
 condition verifier.

• Vérification de la stabilité au flambement :

$$\frac{N}{A} \leq \frac{G.S.d}{2,5t_r} = \frac{3532,29}{0,454} = 7780,37 kN/m^2 < 16112 kN/m^2$$
 . Vérifiée

• Condition de non roulement:

$$D_D \le \frac{N.d}{N + k_{eff}.h} \to 0,1937m < 0,647m$$
 condition verifier.

• Vérification de diamètre de barreau :

$$1,25 \le \frac{h_p}{d_p} \le 5 \rightarrow 1,25 < 1,43 < 5$$
 Condition vérifier.

Figure IX 53: les dimensions initiales de l'isolateur.

IX.9.2. Modélisation de bâtiment isolée :

La méthode d'analyse utilisée dans ce cas c'est l'analyse dynamique temporelle (par accélérogrammes). C'est la méthode la plus précise pour l'analyse de comportement non linéaire du système d'isolation et étude les réponses de la structure en fonction du temps.

Figure IX 54: Accélérogrammes de BLIDA de la composante E-W Séisme de Boumerdes.

IX.9.2.1. Les étapes de modélisation de l'appui sismique LRB :

Dans notre projet on va modéliser avec logiciel ETABS v 20.20 qui est logiciel international et facile à utiliser pour modélisation des bâtiments.

- Pour la 1^{ere} étape on doit défie le type et les caractéristiques mécaniques de notre appui (define→section properties→link/supportproperties).
- On ajoute une propriété :

Cli	ick to:	
\langle	Add New Property	>
	Add Copy of Property	
	Modify/Show Property	
	Delete Property	
	ОК	
	Cancel	

Figure IX 55: ajoute propriété de Link dans l'ETABS.

On définit le type de notre appui :

General			
Link Property Name	entrer un nom	P-Delta Parameters	Modify/Show
Link Type	Linear \lor	Acceptance Criteria	Modify/Show
Link Property Notes	Modify/Show Notes		None specified
ieneral			
Link Property Name	entrer un nom	P-Delta Parameters	Modify/Show
Link Type	Rubber Isolator 🗸 🗸	Acceptance Criteria	Modify/Show
Link Property Notes	Modify/Show Notes		None specified
otal Mass and Weight			
Mass	0 kg	Rotational Inertia 1	0 ton-m ²
Weight	0 kN	Rotational Inertia 2	0 ton-m ²
		Rotational Inertia 3	0 ton-m ²

Figure IX 56: définition de l'appui sismique a déformation LRB dans l'ETABS.

> On définit les propriétés de l'appui LRB :

		- Directional Pi	roperties	1							
		Direction	Fixed	NonLin	ear	Pro	opertie	s			
		🛛 U1				Modify/S	Show f	or U1			
		🗹 U2				Modify/S	Show f	or U2			
		🗹 U3			/ 🛛	Modify/S	Show f	or U3			
		\bigcirc		U				Fix All			
			Dire	ection	Fixed	NonLine	ear	Properties			
				U1				Modify/Show for	U1	>	2
				U2		\square		Modify/Show for	U2		
				2 U3		\square		Modify/Show for	U3		
Direction	Fixed	NonLinear	Pro	operties							
✓ U1			Modify/S	Show for	U1						
✓ U2			Modify/S	Show for	U2	h.					
✓ U3			Modify/S	Show for	U3	レ					

Figure IX 57:définition les propriétés de l'appui sismique LRB dans l'ETABS (étape 1,2 et 3).

- ➢ Le sens vertical (U1) est linéaire.
- ▶ Le sens horizontal (U2 et U3) est non linéaire.

Property Name	LRB	-
Direction	U1	-
Туре	Rubber Isolator	-
NonLinear	No	_
inear Properties		
Effective Stiffness	1041411,25 kN/m	
Effective Damping	0,3 kN-s/m	

Figure IX 58: définition les propriétés de l'appui LRB dans l'ETABS (détails de l'étape 2).

Avec :

- Effective stiffness U1 : K effective vertical.
- Effective damping : β_{eff} .

		identification	LDD	
Property Name	LRE	Property Name	LKB	
Direction	02	Direction	U3 Rubber Isolator	
Туре	Rubber leolator	Туре		
NonLinear	Yes	NonLincar	Yes	
near Properties		Linear Froperties		
Effective Stiffness	2274.40 kN/m	Effective Stiffness	2274,4 kN/m	
Effective Damping	0.3 kN-s/m	Effective Damping	0,3 kN-s/m	
hear Deformation Location		Shear Deformation Location		
Distance from End-J	0.0195 m	Distance from End-J	0,0195	
onlinear Froperties		Nonlinear Properties		
Stiffness	12026,15 kN/m	Stiffness	12026,15 kN/m	
Yield Strength	234,914 kN	Yield Strength	234,914 kN	
	0,1	Post Yield Stiffness Ratio	0,1	

Figure IX 59: définition les propriétés de l'appui LRB dans l'ETABS(détails de l'étape 3).

Avec :

- Effective Stifness (U2; U3): K rigidité effective horizontal K_{d.}
- Effective Damping : β_{eff} .
- Distance from End-J : Déplantement de rendement : Dy
- Stiffness : rigidité horizontal K₁
- Yield Strength : La limite élastique de l'appui F_y
- Post Yield Stiffness Ration : le rapport de K1/K2.
- On définit les propriétés du ressort :

(define \rightarrow spring properties \rightarrow point spring properties).

> On ajoute une propriété :

General Data		
Property Name	entrer un nom	
Display Color	Change	
Property Notes	Modify/Show Notes	
Spring Stiffness Options		
O User Specified/Link Properties	O Based on Soil Profile and Footing Dimensions	
Simple Spring Stiffness in Global Directions		
Translation X	0 kN/m	
Translation Y	0 kN/m	
Translation Z	200 kN/m	Single Joint Links at Point 2
Rotation about X-Axis	0 kN-m/rad	Link Property Axial Direction Axis 2 Angle
Rotation about Y-Axis	0 kN-m/rad	LRB v +Z 0 Add
Rotation about Z-Axis	0 kN-m/rad	Delete
Single Joint Links at Point	1	
Link Property Axia	I Direction Axis 2 Angle Add Delete	
		OK Cancel

Figure IX 60: Définir le ressort dans l'ETABS.

On dissigne les appuis :

(On sélectionne tous les nœuds de la base \rightarrow Assign \rightarrow joint \rightarrow restraints).

Joint Assignment - Restraints
Restraints in Global Directions
Translation X Rotation about X
Translation Y Rotation about Y
Translation Z Rotation about Z
Fast Restraints
2 OK Close Apply

Figure IX 61 : étape 1 pour désigner l'appui sismique dans l'ETABS.

(On sélectionne tous les n	œuds de la base	\rightarrow Assign –	→ joint →	springs)

Joint Assignment - Springs
Springs 1 LRB None
2 Modify/Show Definitions
OK Close Apply

Figure IX 62: étape 2 pour désigner l'appui sismique dans l'ETABS.

Figure IX 63: Vue en plan de bâtiment isolée (vue en base). Il y a d'autre méthode pour dessiner les appuis sismiques par : Draw Links.

Figure IX 64: vue en 3D de bâtiment isolée.

IX.9.2.2. Résultats :

Les résultats obtenus sont représentés sous forme des tableaux et de graphes mentionnés ci-dessous :

• Périodes et facteurs de contribution modale :

Figure IX 65: mode 1 translation suivant Y-Y.

Figure IX 66: mode 2 translation suivant X-X.

Figure IX 67: mode 3 rotation.

Tableau IX	X 8:	participation	massique pour	r model	initiale	de la	a structure	isolée
------------	-------------	---------------	---------------	---------	----------	-------	-------------	--------

Cas	Mode	Période	UX %	UY %	SumUX%	SumUY%	RZ %
Modale	1	<mark>4,081</mark>	0,00%	<mark>89,13%</mark>	0,00%	89,13%	0,06%
Modale	2	3,997	<mark>89,71%</mark>	0,00%	89,71%	89,13%	0,00%
Modale	3	3,768	0,00%	0,05%	89,71%	89,18%	90,69%
Modale	4	1,438	0,00%	8,73%	89,71%	97,91%	0,01%
Modale	5	1,421	8,39%	0,00%	98,10%	97,92%	0,00%
Modale	6	1,339	0,00%	0,01%	98,10%	97,93%	7,32%
Modale	7	0,781	0,00%	1,38%	98,10%	99,30%	0,01%
Modale	<mark>8</mark>	0,773	1,27%	0,00%	<mark>99,37%</mark>	<mark>99,30%</mark>	0,00%
Modale	9	0,749	0,00%	0,01%	99,37%	99,31%	1,25%
Modale	10	0,523	0,00%	0,37%	99,37%	99,68%	0,01%
Modale	11	0,52	0,34%	0,00%	99,70%	99,68%	0,00%
Modale	12	0,506	0,00%	0,01%	99,70%	99,69%	0,34%

On remarque que la structure isolée donne le meilleur comportement comme la montre les (Figure IX.65, Figure IX.66 et Figure IX.67) et elle est régie par le premier mode comme le montre le tableau ci-dessus.

• Accélération :

Figure IX 68: Accélération de modèle initiale d'une structure isolée suivant X-X Niveau terrasse.

Figure IX 69: Accélération de modèle initiale d'une structure isolée suivant Y-Y

Niveau terrasse.

• Les déplacements :

Figure IX 70: déplacement de bâtiment isolée (modèle initial).

• Efforts tranchants :

IX.9.2.3. Les vérifications sismiques :

- Déplacement inter étage :
 - Selon **UBC-97** :

Etage	élévation	<i>δek</i> (mm)	$\Delta k (\mathrm{mm})$	0.02/R1	r%	Vérification
25	79,56	285,566	3,673	15,238	24,10%	Vérifiée
24	76,5	281,893	5,142	15,238	33,74%	Vérifiée
23	73,44	276,751	6,533	15,238	42,87%	Vérifiée
22	70,38	270,218	7,856	15,238	51,56%	Vérifiée
21	67,32	262,362	9,1	15,238	59,72%	Vérifiée
20	64,26	253,262	10,211	15,238	67,01%	Vérifiée
19	61,2	243,051	8,56	15,238	56,17%	Vérifiée
18	58,14	234,491	9,205	15,238	60,41%	Vérifiée
17	55,08	225,286	8,249	15,238	54,13%	Vérifiée
16	52,02	217,037	8,298	15,238	54,46%	Vérifiée
15	48,96	208,739	8,337	15,238	54,71%	Vérifiée
14	45,9	200,402	7,687	15,238	50,45%	Vérifiée
13	42,84	192,715	7,912	15,238	51,92%	Vérifiée
12	39,78	184,803	8,152	15,238	53,50%	Vérifiée
11	36,72	176,651	8,401	15,238	55,13%	Vérifiée
10	33,66	168,25	8,019	15,238	52,62%	Vérifiée
9	30,6	160,231	8,287	15,238	54,38%	Vérifiée
8	27,54	151,944	8,551	15,238	56,12%	Vérifiée
7	24,48	143,393	8,395	15,238	55,09%	Vérifiée
6	21,42	134,998	8,674	15,238	56,92%	Vérifiée
5	18,36	126,324	8,973	15,238	58,89%	Vérifiée
4	15,3	117,351	9,287	15,238	60,95%	Vérifiée
3	12,24	108,064	9,724	15,238	63,81%	Vérifiée
2	9,18	98,34	10	15,238	65,63%	Vérifiée
1	6,12	88,34	11,403	15,238	74,83%	Vérifiée
RDC	3,06	76,937	14,436	15,238	94,74%	Vérifiée
Base	0	62,501				

Tableau IX 9: vérification de déplacement inter étage de sens X-X selon UBC-97
(Modèle initial).
Etage	élévation	δek (mm)	$\Delta k \ (mm)$	0,02/R1	r%	Vérification
25	79,56	319,584	4,428	15,238	29,06%	Vérifiée
24	76,5	315,156	5,601	15,238	36,76%	Vérifiée
23	73,44	309,555	7,013	15,238	46,02%	Vérifiée
22	70,38	302,542	8,37	15,238	54,93%	Vérifiée
21	67,32	294,172	9,617	15,238	63,11%	Vérifiée
20	64,26	284,555	10,413	15,238	68,34%	Vérifiée
19	61,2	274,142	9,411	15,238	61,76%	Vérifiée
18	58,14	264,731	9,743	15,238	63,94%	Vérifiée
17	55,08	254,988	9,412	15,238	61,77%	Vérifiée
16	52,02	245,576	9,866	15,238	64,75%	Vérifiée
15	48,96	235,71	10,323	15,238	67,74%	Vérifiée
14	45,9	225,387	10,054	15,238	65,98%	Vérifiée
13	42,84	215,333	10,408	15,238	68,30%	Vérifiée
12	39,78	204,925	10,815	15,238	70,97%	Vérifiée
11	36,72	194,11	11,032	15,238	72,40%	Vérifiée
10	33,66	183,078	9,959	15,238	65,36%	Vérifiée
9	30,6	173,119	10,043	15,238	65,91%	Vérifiée
8	27,54	163,076	10,172	15,238	66,75%	Vérifiée
7	24,48	152,904	9,957	15,238	65,34%	Vérifiée
6	21,42	142,947	10,138	15,238	66,53%	Vérifiée
5	18,36	132,809	10,376	15,238	68,09%	Vérifiée
4	15,3	122,433	10,624	15,238	69,72%	Vérifiée
3	12,24	111,809	10,975	15,238	72,02%	Vérifiée
2	9,18	100,834	11,238	15,238	73,75%	Vérifiée
1	6,12	89,596	12,298	15,238	80,71%	Vérifiée
RDC	3,06	77,298	9,277	15,238	60,88%	Vérifiée
Base	0	68,021	68,021			

Tableau IX 10: vérification de déplacement inter étage de sens Y-Y selon UBC-97.

• Selon **IBC-2000** :

 Tableau IX 11: vérification de déplacement inter étage de sens X-X selon IBC-2000.

Etage	Elévation(m)	<i>δek</i> (mm)	R	δk (mm)	Δk (mm)	0,02he(mm)	r%
25	79,56	285,566		999,481	12,8555	61,2	21,01%
24	76,5	281,893		986,6255	17,997	61,2	29,41%
23	73,44	276,751		968,6285	22,8655	61,2	37,36%
22	70,38	270,218		945,763	27,496	61,2	44,93%
21	67,32	262,362		918,267	31,85	61,2	52,04%
20	64,26	253,262		886,417	35,7385	61,2	58,40%
19	61,2	243,051		850,6785	29,96	61,2	48,95%
18	58,14	234,491		820,7185	32,2175	61,2	52,64%
17	55,08	225,286		788,501	28,8715	61,2	47,18%
16	52,02	217,037		759,6295	29,043	61,2	47,46%
15	48,96	208,739		730,5865	29,1795	61,2	47,68%
14	45,9	200,402	35	701,407	26,9045	61,2	43,96%
13	42,84	192,715	5,5	674,5025	27,692	61,2	45,25%
12	39,78	184,803		646,8105	28,532	61,2	46,62%
11	36,72	176,651		618,2785	29,4035	61,2	48,04%
10	33,66	168,25		588,875	28,0665	61,2	45,86%
9	30,6	160,231		560,8085	29,0045	61,2	47,39%
8	27,54	151,944		531,804	29,9285	61,2	48,90%
7	24,48	143,393		501,8755	29,3825	61,2	48,01%
6	21,42	134,998		472,493	30,359	61,2	49,61%
5	18,36	126,324		442,134	31,4055	61,2	51,32%
4	15,3	117,351		410,7285	32,5045	61,2	53,11%
3	12,24	108,064		378,224	34,034	61,2	55,61%
2	9,18	98,34		344,19	35	61,2	57,19%
1	6,12	88,34		309,19	39,9105	61,2	65,21%
RDC	3,06	76,937		269,2795	50,526	61,2	82,56%

Etage	Elévation(m)	δek (mm)	R	δk (mm)	$\Delta k \ (\mathrm{mm})$	0,02he(mm)	r%
25	79,56	319,584		1118,544	15,498	61,2	25,32%
24	76,5	315,156		1103,046	19,6035	61,2	32,03%
23	73,44	309,555		1083,4425	24,5455	61,2	40,11%
22	70,38	302,542		1058,897	29,295	61,2	47,87%
21	67,32	294,172		1029,602	33,6595	61,2	55,00%
20	64,26	284,555		995,9425	36,4455	61,2	59,55%
19	61,2	274,142		959,497	32,9385	61,2	53,82%
18	58,14	264,731		926,5585	34,1005	61,2	55,72%
17	55,08	254,988		892,458	32,942	61,2	53,83%
16	52,02	245,576		859,516	34,531	61,2	56,42%
15	48,96	235,71		824,985	36,1305	61,2	59,04%
14	45,9	225,387	3,5	788,8545	35,189	61,2	57,50%
13	42,84	215,333		753,6655	36,428	61,2	59,52%
12	39,78	204,925		717,2375	37,8525	61,2	61,85%
11	36,72	194,11		679,385	38,612	61,2	63,09%
10	33,66	183,078		640,773	34,8565	61,2	56,96%
9	30,6	173,119		605,9165	35,1505	61,2	57,44%
8	27,54	163,076		570,766	35,602	61,2	58,17%
7	24,48	152,904		535,164	34,8495	61,2	56,94%
6	21,42	142,947		500,3145	35,483	61,2	57,98%
5	18,36	132,809		464,8315	36,316	61,2	59,34%
4	15,3	122,433		428,5155	37,184	61,2	60,76%
3	12,24	111,809		391,3315	38,4125	61,2	62,77%
2	9,18	100,834		352,919	39,333	61,2	64,27%
1	6,12	89,596		313,586	43,043	61,2	70,33%
RDC	3,06	77,298		270,543	32,4695	61,2	53,05%

 Tableau IX 12: vérification de déplacement inter étage de sens Y-Y selon IBC-2000.

Calcul la force sismique :

$$V_{S} = \frac{K_{Dmax} \cdot D_{D}}{R_{1}} \text{, Avec} : K_{Dmax} = \frac{4\pi^{2} \cdot N_{bat}}{T_{D}^{2} \cdot g} = \frac{4\pi^{2} \times 158042,83}{2,5^{2} \times 9,81} = 101761,97 \text{ kN/m}$$

$$R_{1} = \frac{3}{8}R \text{ et } 1 \le R_{1} \le 2$$

R : coefficient de comportement de la structure : R=3,5.

$$R_1 = \frac{3}{8} \times 3,5 = 1,3125$$
$$V_S = \frac{101761,97 \times 0,1937}{1,3125} = 15018,129 \ kN.$$

• Vérification de la force sismique V_s :

$$0.6V_{\rm S} = 9010.877 \, \rm kN$$

 V_X = 7860,783 kN < 0,6V_S condition n'est pas vérifiée V_Y = 7466,292 kN < 0,6V_S condition n'est pas vérifiée.

IX.9.2.4. Interprétation et remarques :

- La structure isolée est régie principalement par le premier mode avec un facteur de contribution modale dépassant les 89%, la participation de tous les modes supérieurs est nulle.
- Huit modes de vibration avec un facteur de contribution modale cumulé qui atteint les 99% sont satisfaisant pour faire l'analyse de la structure isolée.
- La force sismique a la base n'est pas vérifié il faut passée au 2^{eme} model.

IX.9.3. MODEL 2 :

ETAGES	a (cm)	b (cm)
23 ^{eme} -25 ^{eme} E	35	35
19 ^{eme} - 22 ^{eme} E	40	40
16 ^{-ème} - 18 ^{eme} E	45	45
13 ^{eme} - 15 ^{eme} E	50	50
$10^{\text{eme}} - 12^{\text{eme}}\text{E}$	55	55
7 ^{eme} - 9 ^{eme} E	60	60
$4^{\text{eme}} - 6^{\text{eme}} \text{E}$	65	65
$1^{er} - 3^{eme}E$	70	70

Tableau IX 13: Les sections de poteaux après l'augmentation.

On prend T_D=3s ; $\gamma_{max} = 100\% = 1kN/m^3$

• Le calcul des valeurs minimales la rigidité effectives K_{D,min} :

$$K_D = \frac{4\pi^2 \times N}{T^2_D \times g} = 1618,36 \text{ kN/m}$$
, avec N= 3619,32kN

• Le déplacement de conception D_D :

$$D_{\rm D} = \frac{(\frac{g}{4\pi^2})C_{VD}T_D}{B_D} = 0,237 {\rm m}$$

• La force d'élasticité à court terme Q_D :

$$Q_{\rm D} = \frac{W_D}{4D_D} = \frac{\pi}{2} \times Keff \times \beta eff \times D_D = 180,744 \text{ kN}$$

• Rigidité pré élastique K2 et Rigidité poste élastique K1

$$K_2 = Keff - \frac{Q_D}{D_D} = 855,727 \text{ kN/m}$$

 $K1 = 10K2 = 8557,27 \text{ kN/m}$

• Déplantement de rendement : D_Y :

$$D_{\rm Y} = \frac{Q_D}{K1 - K2} = 0,02347 \text{ m}$$

Chapitre IX

Recalcul de la force Q_D en $Q_R : Q_R = \frac{W_D}{4(D_D - D_Y)} = 200,61$ kN

• La surface de noyau en plomb Ap :

$$Ap = \frac{Q_R}{fpy} = 0,0238 \text{ m}^2$$

Le diamètre de noyau en plomb dp :

$$dp = \sqrt{\frac{4Ap}{\pi}} = 0,174 \text{ m}$$

• L'épaisseur des couches de caoutchouc t_r :

$$t_r = \frac{D_D}{Ymax} = 0,237 \text{ m}$$

• La surface transversale effective A₀:

$$A_0 \ge \frac{N}{\sigma} = 0,462m^2 \rightarrow d_0 = 0,767m$$

• La rigidité élastique de l'appui K_r :

$$K_r = K_2 \left(1 + 12 \frac{A_P}{A_0} \right) = 1384,722 \ kN/m$$

• La surface transversale minimale A_{sf} :

$$A_{sf} = \frac{k_r \cdot t_r}{G} = 0,31 \, m^2 \rightarrow d_{sf} = 0,628 m$$

• La rigidité verticale effective K_{Veff}:

$$K_{Veff} = \frac{E_C.A_{sf}}{t_r} = 669377,637 \ kN/m$$

- La limite élastique $F_{y:}$ $F_y = Q_D + K_2 \times D_Y = 200,828kN$
- L'épaisseur d'une seule couche de caoutchouc t et nombre des couches :

$$t = \frac{d}{4.s} = 0,019m = 19,17mm ,$$

$$n = \frac{t_r}{t} = \frac{0,237}{0,01917} = 12,36 \ 0n \ prend \ n = 12 \ avec \ t = 19,175mm$$

• L'épaisseur de la plaque d'acier t_s :

Chapitre IX

$$t_s = \frac{2 \times N \times 2t}{A.F_s} = 0,003m > 0,002m$$
; On prend t_s=0,025m

• La hauteur totale de l'appui :

 $h = t_r + 2t_s + 11 \times 2 = 311mm$

• Vérification de la résistance de cisaillement sous la charge verticale N :

$$\gamma_c = \frac{6.S.N}{E_c.A} \le \frac{\varepsilon_b}{3} = 0.918 < \frac{4}{3}$$
 condition verifier.

• Vérification de la stabilité au flambement :

$$\frac{N}{A} \le \frac{G.S.d}{2,5t_r} = 7834,026kN/m^2 < 13721,857kN/m^2$$
. Vérifiée

• Condition de non roulement:

$$D_D \le \frac{N.d}{N + k_{eff}.h} \to 0,237m < 0,673m$$
 condition verifier.

• Vérification de diamètre de barreau :

$$1,25 \le \frac{h_p}{d_p} \le 5 \rightarrow 1,25 < 1,5 < 5$$
 Condition vérifier.

Figure IX 72: les dimensions finales de l'isolateur.

Rigidité	Amortissement	Rigidité	Déplantement	Rigidité	La	Rapport
vertical	(kN.s/m)	horizontal	de rendement	horizonta	limite	K1/K2
eff(kN/m)		eff(kN/m)	(m)	1	élastique	
				K1(kN/m	(kN/m)	
)		
669377,63	0,3	3619,32	0,02347	8557,27	200,828	0,1

Tableau IX 14: propriétés de l'appui LRB (model final).

IX.9.3.1. Résultats :

Les résultats obtenus sont représentés sous forme des tableaux et des graphes ci-

dessous :

Tableau IX 15: participation massique pour model finale de la structure isolée.

Cas	Mode	Période	UX	UY	SumUX	SumUY	RZ	SumRZ
Modale	1	<mark>4,23</mark>	0,00%	<mark>91,63%</mark>	0,00%	91,63%	0,06%	0,06%
Modale	2	4,14	92,34%	0,00%	<mark>92,34%</mark>	91,63%	0,00%	0,06%
Modale	3	3,891	0,00%	0,06%	92,34%	91,69%	93,19%	93,25%
Modale	4	1,442	0,00%	6,98%	92,34%	98,66%	0,00%	93,25%
Modale	5	1,413	6,49%	0,00%	98,84%	98,66%	0,00%	93,25%
Modale	6	1,326	0,00%	0,01%	98,84%	98,67%	5,58%	98,83%
Modale	7	0,772	0,00%	0,91%	98,84%	99,58%	0,00%	98,84%
Modale	<mark>8</mark>	0,756	0,80%	0,00%	<mark>99,64%</mark>	<mark>99,58%</mark>	0,00%	98,84%
Modale	9	0,732	0,00%	0,00%	99,64%	99,59%	0,79%	99,62%
Modale	10	0,517	0,00%	0,24%	99,64%	99,82%	0,00%	99,63%
Modale	11	0,509	0,20%	0,00%	99,84%	99,82%	0,00%	99,63%
Modale	12	0,495	0,00%	0,00%	99,84%	99,83%	0,21%	99,83%

IX.9.3.1.1. Interprétation et remarques :

- On remarque un rallongement de la période fondamentale de la structure à une valeur plus grande par rapport à celle obtenue pour le 1^{er} model. Cette période est rallongée de 1,037 fois. En effet, ce décalage de la période vers celle de l'isolateur est la raison primaire de l'efficacité du système d'isolation
- La structure isolée est régie principalement par le premier mode avec un facteur de contribution modale dépassant les 91%, la participation de tous les modes supérieurs est nulle.
- Huit modes de vibration avec un facteur de contribution modale cumulé qui atteint les 99% sont satisfaisant pour faire l'analyse de la structure isolée.

• Accélération :

Figure IX 73: Accélération de modèle finale d'une structure isolée suivant X-X Niveau terrasse.

Figure IX 74: Accélération de modèle finale d'une structure isolée suivant Y-Y Niveau terrasse.

• Les déplacements :

Figure IX 75: déplacement de bâtiment isolée (modèle finale).

Figure IX 76: effort tranchant de bâtiment isolée (modèle finale).

IX.9.3.2. Les vérifications sismiques :

- Déplacement inter étage :
 - Selon **UBC-97** :

Etage	elevation (m)	δek (mm)	$\Delta k \ (\mathrm{mm})$	0,02/R1	r%
25	79,56	342,891	3,232	15,238	21,21%
24	76,5	339,659	4,202	15,238	27,58%
23	73,44	335,457	5,192	15,238	34,07%
22	70,38	330,265	6,159	15,238	40,42%
21	67,32	324,106	6,138	15,238	40,28%
20	64,26	317,968	6,863	15,238	45,04%
19	61,2	311,105	7,59	15,238	49,81%
18	58,14	303,515	8,295	15,238	54,44%
17	55,08	295,22	8,061	15,238	52,90%
16	52,02	287,159	8,618	15,238	56,56%
15	48,96	278,541	9,181	15,238	60,25%
14	45,9	269,36	9,028	15,238	59,25%
13	42,84	260,332	9,482	15,238	62,23%
12	39,78	250,85	9,938	15,238	65,22%
11	36,72	240,912	9,852	15,238	64,65%
10	33,66	231,06	10,214	15,238	67,03%
9	30,6	220,846	10,571	15,238	69,37%
8	27,54	210,275	10,516	15,238	69,01%
7	24,48	199,759	10,79	15,238	70,81%
6	21,42	188,969	11,061	15,238	72,59%
5	18,36	177,908	11,039	15,238	72,44%
4	15,3	166,869	11,307	15,238	74,20%
3	12,24	155,562	11,703	15,238	76,80%
2	9,18	143,859	12,12	15,238	79,54%
1	6,12	131,739	13,31	15,238	87,35%
RDC	3,06	118,429	15,234	15,238	99,97%

Tableau IX 16: vérification de déplacement inter étage de sens X-X selon UBC-97
(Modèle finale).

Etage	elevation (m)	δek (mm)	$\Delta k \ (\mathrm{mm})$	0,02/R1	r%
25	79,56	384,205	3,95	15,238	25,92%
24	76,5	380,255	4,866	15,238	31,93%
23	73,44	375,389	5,939	15,238	38,97%
22	70,38	369,45	6,876	15,238	45,12%
21	67,32	362,574	7,212	15,238	47,33%
20	64,26	355,362	7,966	15,238	52,28%
19	61,2	347,396	8,789	15,238	57,68%
18	58,14	338,607	9,482	15,238	62,23%
17	55,08	329,125	9,519	15,238	62,47%
16	52,02	319,606	10,084	15,238	66,18%
15	48,96	309,522	10,649	15,238	69,88%
14	45,9	298,873	10,661	15,238	69,96%
13	42,84	288,212	11,124	15,238	73,00%
12	39,78	277,088	11,587	15,238	76,04%
11	36,72	265,501	11,599	15,238	76,12%
10	33,66	253,902	11,968	15,238	78,54%
9	30,6	241,934	12,328	15,238	80,90%
8	27,54	229,606	12,333	15,238	80,94%
7	24,48	217,273	12,611	15,238	82,76%
6	21,42	204,662	12,888	15,238	84,58%
5	18,36	191,774	12,906	15,238	84,70%
4	15,3	178,868	13,184	15,238	86,52%
3	12,24	165,684	13,576	15,238	89,09%
2	9,18	152,108	14,005	15,238	91,91%
1	6,12	138,103	15,029	15,238	98,63%
RDC	3,06	123,074	12,196	15,238	80,04%

Tableau IX 17: vérification de déplacement inter étage de sens Y-Y selon UBC-97(Modèle finale).

• Calcul la force sismique :

$$V_{S} = \frac{K_{Dmax} \cdot D_{D}}{R_{1}} \text{, Avec} : K_{Dmax} = \frac{4\pi^{2} \cdot N_{bat}}{T_{D}^{2} \cdot g} = \frac{4\pi^{2} \times 161514,566}{3^{2} \times 9,81} = 72220,404 \text{ kN/m}$$

$$R_{1} = \frac{3}{8}R \quad et \quad 1 \le R_{1} \le 2$$

$$R : \text{coefficient de comportement de la structure} : R=3,5.$$

$$R_1 = \frac{3}{8} \times 3,5 = 1,3125$$
$$V_S = \frac{72220,404 \times 0,237}{1,3125} = 13040,942 \ kN.$$

• Vérification de la force sismique V_s :

$$0,6V_S = 7824,565 \text{ kN}$$

 $V_X = 8149,7725 \text{ kN} > 0,6V_S$ la condition est vérifiée.
 $V_Y = 8982,0929 \text{ kN} > 0,6V_S$ la condition est vérifiée.

IX.9.3.3. Calcul du joint entre la structure et le sol Δ_M (Selon UBC 97 section 1630.3.2) :

$$\Delta_M = 0,7 \times R \times \delta_s$$

Avec :

- R : le coefficient de comportement.
- δ_s : le déplacement de la structure suivant X et suivant Y.

A.N:

- Suivant X : $\Delta_M = 0.7 \times 3.5 \times 34.29 = 84.01 \ cm$ - Suivant X : $\Delta_M = 0.7 \times 3.5 \times 38.42 = 94.13 \ cm$

Dans le cas où on a deux structures adjacentes, on calcule le joint en utilisant la formule suivante : (selon UBC 97 section 1633.2.11)

$$\Delta_M = \sqrt{(\Delta_{M1}^2 + \Delta_{M2}^2)}$$

Avec :

 $\Delta_{M1}et \ \Delta_{M2}$: déplacements des deux structures adjacentes.

IX.9.4. Modélisation de bâtiment encastrée :

Figure IX 77: Accélération de bâtiment encastrée avec voiles.

Figure IX 78: Accélération de bâtiment encastrée sans voiles.

IX.9.5. Etude comparative :

L'étude comparative des réponses dynamiques (les réponses en déplacement de dernier niveau, déplacement inter étages, accélérations et efforts tranchants) entre une structure isolée et la même structure encastrée (avec et sans voiles) nous permet de déterminer le degré d'efficacité du système d'isolation et d'évaluer la performance des structures isolée en effet de la hauteur.

IX.9.5.1. Périodes et facteurs de contribution modale :

Les résultats des périodes obtenues pour les types de structures sont donnés dans les tableaux (Tableau IX.9.5.1.a et Tableau IX.9.5.1.b) suivant :

 Tableau IX 18: Participation massique d'une structure isolée et structure encastrée avec voiles.

Structure iso	lée par l'app	ui LRB			Structure end	castrée ave	ec voiles	
Les modes	Période(s)	∑Ux	∑Uy	∑Rz	Période(s)	∑Ux	∑Uy	∑Rz
1	<mark>4,23</mark>	0,00%	<mark>91,63%</mark>	0,06%	<mark>1,882</mark>	0,00%	<mark>65,26%</mark>	0,00%
2	4,14	<mark>92,34%</mark>	91,63%	0,06%	1,837	<mark>66,17%</mark>	65,26%	0,00%
3	3,891	92,34%	91,69%	93,25%	1,171	66,17%	65,26%	69,88%
4	1,442	92,34%	98,66%	93,25%	0,543	82,28%	65,26%	69,88%
5	1,413	98,84%	98,66%	93,25%	0,53	82,28%	81,55%	69,88%
6	1,326	98,84%	98,67%	98,83%	0,372	82,28%	81,55%	83,44%
7	0,772	98,84%	99,58%	98,84%	0,251	88,92%	81,55%	83,44%
8	0,756	99,64%	99,58%	98,84%	0,236	88,92%	88,31%	83,44%
9	0,732	99,64%	99,59%	99,62%	0,185	88,92%	88,32%	89,39%
10	0,517	99,64%	99,82%	99,63%	0,149	92,41%	88,32%	89,39%
11	0,509	99,84%	99,82%	99,63%	0,134	92,41%	91,98%	89,40%
12	0,495	99,84%	99,83%	99,83%	0,112	<mark>92,41%</mark>	<mark>91,99%</mark>	<mark>92,69%</mark>

Structure iso	lée par l'app	ui LRB			Structure end	castrée san	is voiles	
Les modes	Période(s)	∑Ux	∑Uy	∑Rz	Période(s)	∑Ux	∑Uy	∑Rz
1	<mark>4,23</mark>	0,00%	<mark>91,63%</mark>	0,06%	<mark>3,184</mark>	0,01%	<mark>73,06%</mark>	0,60%
2	4,14	<mark>92,34%</mark>	91,63%	0,06%	2,997	<mark>73,10%</mark>	73,07%	0,71%
3	3,891	92,34%	91,69%	93,25%	2,948	73,21%	73,67%	73,94%
4	1,442	92,34%	98,66%	93,25%	1,167	73,22%	85,49%	74,47%
5	1,413	98,84%	98,66%	93,25%	1,122	75,12%	85,94%	83,98%
6	1,326	98,84%	98,67%	98,83%	1,119	85,83%	86,07%	85,61%
7	0,772	98,84%	99,58%	98,84%	0,677	85,83%	89,82%	86,38%
8	0,756	99,64%	99,58%	98,84%	0,661	85,85%	90,56%	90,21%
9	0,732	99,64%	99,59%	99,62%	0,651	<mark>90,49%</mark>	<mark>90,57%</mark>	<mark>90,22%</mark>
10	0,517	99,64%	99,82%	99,63%	0,47	90,49%	92,32%	90,66%
11	0,509	99,84%	99,82%	99,63%	0,46	90,50%	92,75%	92,43%
12	0,495	99,84%	99,83%	99,83%	0,452	92,69%	92,75%	92,44%

Tableau IX 19: Participation massique d'une structure isolée et structure encastré	e
sans voiles.	

- Périodes :

La période obtenue dans le système encastré avec voile est moins importante de celle obtenue dans le système encastré sans voile en raison de la rigidité augmenter par l'introduction des voiles.

La période obtenue dans le système isolé est plus importante de celles obtenue dans le système encastré (avec et sans voile), l'un des objectifs des isolateurs à la base qui ont le rôle d'allonger la période ce qui permet d'assouplir le bâtiment en évitant la résonance.

- Participation massique :

On constate que le facteur de contribution modale dans la structure isolée dépasse 91% en premier mode, ce qui permet de déduire que la réponse dynamique de cette structure est régie par le premier mode. Par contre les structures encastrées ne régies pas par le premier mode.

IX.9.5.2. Les déplacements :

• Déplacement de dernier étage :

Figure **IX.79** a et **IX.80** montrent une comparaison des déplacements par rapport au sol, du dernier niveau des trois structures encastrée (sans voiles, avec voiles) et isolée dans les deux directions X et Y.

Figure IX 80: les déplacements du dernier niveau des trois structures encastrée (sans voiles, avec voiles) et isolée suivant Y.

Les figures (Figure **IX.81** et Figure **IX.82**) montrent une comparaison des déplacements du dernier niveau des structures encastrée (avec et sans voile) et isolée. On remarque que le déplacement de la structure encastrée avec voiles est inférieur à celui de la structure encastrée sans voiles car ces derniers rigidifient la structure ce qui diminue les déplacements. Par contre le déplacement de la structure isolée est très important de celui de la structure encastrée (avec et sans voiles) ceci est dû au grand déplacement de la base de la structure isolée.

• Déplacement inter étage :

Figure IX 81: déplacement inter étage des trois structures encastrée (sans voiles, avec voiles) et isolée suivant X.

Figure IX 82: déplacement inter étage des trois structures encastrée (sans voiles, avec voiles) et isolée suivant Y.

. D'après les figures IX.81 et IX.82 on remarque que le déplacement inter étage de la structure isolée dans les premiers étages est important de celui de la structure encastrée (avec et sans voiles) à cause de la hauteur importante de bâtiment.

IX.9.5.3. Les accélérations :

• Accélération maximale :

Figure IX 83: Comparaison accélération maximale des trois structures dans le sens X.

Figure IX 84: Comparaison accélération maximale des trois structures dans le sens Y.

On remarque que l'accélération de la structure encastrée avec voiles est plus importante de celle de la structure encastrée sans voiles, ceci est causé par la rigidité des voiles. Contrairement aux accélérations obtenues dans le système isolé qui sont très réduites en raison de découplage entre le mouvement du sol et celui de la superstructure.

• Accélération des niveaux :

Figure IX 85: Comparaison des accélérations de différents niveaux pour les trois structures dans la direction X.

Figure IX 86: Comparaison des accélérations de différents niveaux pour les trois structures dans la direction Y.

Les accélérations dans le système isolé sont presque les mêmes dans tous les niveaux, ce qui veut dire que les amplifications sont réduites. Par contre les accélérations relatives dans la structure encastrée (avec et sans voiles) sont assez grandes.

IX.9.5.4. L'effort tranchant a la base :

Figure IX 87: Comparaison de l'effort tranchant a la base entre les trois structures dans la direction X.

Figure IX 88: Comparaison de l'effort tranchant a la base entre les trois structures dans la direction Y.

Dans le cas des structures classiques l'effort tranchant est assez important ceci dû à l'augmentation des accélérations. Par contre dans le système isolé, l'effort tranchant est réduit de fait que les accélérations sont réduites par les isolateurs qui jouent le rôle de filtres.

Conclusion :

Dans cette partie du travail, on a analysé la contribution d'appuis parasismique LRB à la réponse des structures. D'après les résultats obtenus, on peut conclure les remarques suivantes :

- Les périodes du système isolé sont prolongées par rapport aux celles du système à base fixe.
- Les déplacements de la structure isolée sont plus considérables qu'aux déplacements de la structure à base fixe.
- Les accélérations de la structure isolée sont moins importantes que celles de la structure à base fixe.
- L'isolation sismique à la base permet de réduire les efforts tranchants.
- L'appui en élastomère avec noyau de plomb (LRB) ne fonctionne pas bien dans les structures de grande hauteur car le déplacement inter étage est important dans bâtiment isolée.

CONCLUSION GENERALE

Enfin de cette étude on est arrivé aux conclusions suivantes :

- L'utilisation des dalles en corps creux dans les bâtiments élancé influe sur le ferraillage.
- Afin d'avoir un ferraillage acceptable il a fallu passer aux dalles plaines.
- Pour arriver à avoir une structure stable vis-à-vis des déplacements et des comportements il faut concevoir une structure rigide et symétrique.
- L'utilisation des isolateurs a permis de supprimer les voiles de contre voutements ça a donné des résultats acceptables.
- La période fondamentale d'une structure isolée est supérieure a celui d'une structure classique.
- Les déplacements avec isolateurs sont supérieurs aux déplacements préconisés par l'RPA pour une structure classique.
- L'effort tranchant a la base pour une structure isolée est très inferieur par rapport à celui d'une structure classique (encastrée).

Enfin, nous espérons que ce modeste travail sera comme une base des données et une référence pour d'autres projets.

Bibliographie

- Règles Parasismiques Algériennes RPA 99/Version 2003.
- Règlement neige et vent algériens 2013. DTR C 2-47.
- Règles de conception et de calcul des structures en béton armé C.B.A.
 93 « D.T.R. –B.C. 2-41 ».
- Charges permanentes et charges d'exploitation « D.T.R -B.C. 2.2 ».
- Dr.Rafik Taleb, « Règles Parasismiques Algériennes RPA 99 Version 2003 pour les Structures de Bâtiments en Béton Armé : Interprétations et Propositions » JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 139–154, 2017.
- Anissa Allani. Conception et optimisation d'amortisseurs à masse accordée pour les structures du génie civil, Thèse de Doctorat. Matériaux et structures en mécanique [physics.class-ph]. Université Paris-Est ; Università degli studi di Roma "Tor Vergata" (1972-.), 2015. Français.
- Djedoui Nassim. Modélisation et analyse du contrôle hybride (actif-passif) des vibrations des bâtiments sous sollicitations sismiques en champ proche. Thèse de Doctorat, Modélisation des matériaux et structures. Université Mohamed Khider – Biskra, 2018.
- **Boukreta abdelkadir**. Evaluation de la réponse dynamique des bâtiments de hauteur moyenne munis de système d'isolation sismique. Mémoire de Magister, Construction-génie civil. Université Saad Dahlab de Blida, 2012.
- Djellouli. L Modélisation de système d'isolation parasismique pour le control de la réponse dynamique des structures. Biskra. Mémoire de Magister en génie civil, Université Mohamed Khider, 2012.
- Benayad.K Comportement dynamique des ouvrages sur isolateurs de base. Tlemcen : Mémoire de Magister en génie civil, Université Abou Bakr Belkaid, 2013.
- Catalin Stefan Teodorescu. Commande de systèmes d'isolation antisismique mixte. Thèse de Doctorat. Université Paris Sud - Paris XI, 2013.

- L. Guizani, ing., M.Sc.A. l'isolation sismique des ponts au Canada, Les Industries Z-Tech Inc.
- **O.Ben Mekki**. Amortissement semi-actif des structures flexibles, Thèse de Doctorat, Ecole Nationale des Ponts et Chaussées, Mai 2006.
- Sabiha HAMOUCHE. MODELISATION ET ETUDE DE L'ISOLATION SISMIQUE DES CONSTRUCTIONS, Mémoire de Magister, MATERIAUX ET STRUCTURE, Université Abderrahmane Mira de Bejaia, 2009.
- QUANG, T. N., Etude du comportement du néoprène et d'appareils d'appui parasismique en néoprène frette, Thèse de Doctorat, Strasbourg, 2013.
- **BENHMED.N, LARSI.S.** EFFET DES ISOLATEURS DE BASE SUR LA REPONSE DYNAMIQUE D'UN BATIMENT, Mémoire Magister, Ingénierie des structures, Université de Tlemcen, 2016.
- Swapnil Ambasta, Dushyant sahu, G.P. Khare. ANALYSIS OF THE BASE ISOLATED BUILDING (LEAD PLUG BEARING) IN ETABS, International Research Journal of Engineering and Technology (IRJET) 404-410, 2018.
- Dr. H.M.Somasekharaiah, Er. Dharmesh. N, Mohammed Ghouse.
 A Comparative Study on RC Frame Structure Considering Lead Rubber Bearing and Triple Friction Pendulum Bearing, International Journal of Innovative Research in Science, Engineering and Technology 14907-14918, 2016.
- S. Mallikarjun, A. Shruthi. A Study on Dynamic Response of High-Rise Buildings using Lead Rubber Bearing Isolator, CVR Journal of Science and Technology 14-20, decembre 2022.

ANXXE

LAFARGE لافارچ

ايريوم تيرموفلور Thermofloor M600 ™ Thermofloor M600

Affaibissement accustique au bruit de choca > au béton

Résistance au feu classe AT

Compatible avec différents type de matérieux de

Epaisseur > 4 cm

Indians

Mousse Minérale Isolante Destinée à la réalisation des Chapes

Usages

- Chape légère
- Isolation thermique en inter-étages
- + Ravoirage

Supports & Recommandations

<u>Léger</u>

Avec une densité sèche de 600 Kg/m3 AIRIUM[™] Thermotioor M600 réduit le poids des chapes de plus de 75%.

Résistant

AIR/UM¹¹⁴ Thermofloor M500 est doté d'une résistance qui dépasse les 2,5 MPa et qui permet de recevoir tout type de revêtement compatibles avec cette performance mécanique

Rendement

La mise en place d'AIRIUM¹¹⁴ Thermotion M600 est rapide, simple, flexible et durable avec une meilleur isolation et légèreté de vos planchers.

Sûr

Résistant au feu, AJRILIM[™] Thermofloor M600 offre une sécurité optimale en cas d'incendie puisqu'il est ininflammable et incombustible (Euroclassé A1).

Sain & Durable

AIR/UM¹¹⁴ Thermofloor M600 est doté d'une durée de vie comparable au béton. Il est imputrescible et ne dégage aucun COV (Composants Organiques Volatiles), c'est une mousse minérale saine et ne présente aucun risque.

Pourquoi choisir AIRIUM™ Thermofloor M600 ?

La technologie AIRIUM[™] Thermofloor M600, offre la possibilité d'alléger les planchers inter-étages de tout type de bâtiments, et contribue aussi a une meilleure performance thermique et phonique.

La technologie AIRIU MTM Thermotion M600, permets de réaliser plus de 300 m2 par jour par pompe

Unité de Production : Z.I section N°03 ilot 143, Meftah - Blida Siège Social : 15^{km} et 16^{km} étage , Tour Geneva, Les Pins Martitimes, Mohammadia, Alger.

Ouest : 0770 783 368

Aspect	Pouche Grise
Conductivité thermopee	0,20 ± 0,01 Wim #
Densits fractie oble	750 + 50 kg/m ²
Résidance à la compression	2,5 + 0,5 MPa
Rendement de la machine	De 4 à 5 m ³ h
Terrips de séchage	Entre 4 à 5 years

2/2

LAFARGE لافارچ

ايريوم تيرموروف Thermoroof ™UIUM

Mousse Minérale Isolante Destinée à l'isolation des toits terrasse

Usages

- Forme de Pente légère
- Isolation thermique des terrasses
- Ravoirage

Supports & Recommandations

Isolant

Avec un lambda pouvant atteindre la valeur de 0.08 W.m-1.K-1, AIRIUMTM est doté d'un coefficient d'isolation thermique bas. Il permet de construire et d'isoler en même temps.

Sûr Sûr

Résistant au feu, AIRIUM[™] offre une sécurité optimale en cas d'incendie puisqu'il est ininflammable et incombustible (Euroclasse A1).

Sain

La mousse AIRIUMTM ne dégage aucun COV (Composants Organiques Volatiles) et ne présente donc aucun risque, c'est une isolation minérale saine.

Durable

AIRIUMTM est doté d'une durée de vie comparable au béton. Il est imputrescible et compatible avec tout système d'étanchéité.

Rendement

La mise en place d'AIRIUMTM est rapide, simple, flexible et durable avec une meilleur isolation de vos toits terrasse

Pourquoi choisir AIRIUM ?

La technologie AIRIUMTM, offre la possibilité d'isoler les toit terrasse des différents types de bâtiments.

Les performances d' AIRIUM[™] (mousse minérale) permettent de regrouper en une seule couche le matériau isolant et la forme de pente en béton, assurant une isolation thermique optimale.

Masse volumique sèche 400 ± 50 kg/m3

Conductivité Thermique de 0,09 W/m.K ± 0,01

Caractéristiques

Résistance au feu classe A1

Ep : 10 cm minimum jusqu'à 20 cm recommandé par couche

Résistance à la compression à 28 j > à 1 000 kPa

Certification :

Avis Technique CNERIB N°7_2021 - 1

AIRIUM[™] Thermoroof

Emballage & Stockage

- Sac de 25 kg sur palette de 64 sacs (Palette = 1,6 tonne)
- Stockage jusqu'à O6 mois à l'intérieur de l'emballage original, à l'abri de l'ensoleillement, des intempéries et de l'humidité

Etapes de Mise en Œuvre

Préparation du Support

- · S'assurer de la pose du par vapeur et/ou de film polyane
- S'assurer de la propreté du support
- Pose des repères en fonction des paramètres de forme de pente.

Préparation de la Machine

- S'assurer d'une alimentation électrique en 380v
- S'assurer d'une alimentation en eau continue
- Paramétrage de la machine en fonction de la hauteur du bâtiment et de densité fraiche cible

Coulage et finition

- Prévoir des joints de 100 m²
- Pompage d'AIRIUM[™] en contrôlant la densité fraiche cible avec une fréquence régulière
- Nivellement et uniformisation de la surface d'AIRIUM™ avec une barre de répartition

Éviter de couler en cas de pluies ou grandes chaleurs. S'assurer du séchage de la plateforme avant la pose du complexe d'étanchéité.

Ciments et Mortiers d'Algérie CMA Spa Unité de Production : Z.1 section N°03 ilot 143, Meftah - Blida Siège Social : 15^{kme} et 16^{kme} étage , Tour Geneva, Les Pins Martitimes, Mohammadia, Alger.

> Chef de Produit : 0770 943 356 Centre: 0770 140 373 / 0770 118 143 Grand Alger : 0770 143 767 / 0770 297 986 Est : 0782 216 684 / 0770 143 362 Ouest : 0770 783 368

Données Techniques

Aspect	Poudre Blanche			
Conductivité thermique	0,09 ± 0,01 W/m.K			
Densité fraiche cible	500 ± 50 kg/m ³			
Résistance à la compression	1 MPa			
Rendement de la machine	De 5 à 6 milt			
Temps de séchage	Entre 7 à 10 jours			

2/2

Plancher en dalle pleine :

, dalle pleine reposant sur ses quatre appuis, est constituée d'un seul type de dalle pleine d'une épaisseur de 15 cm, soumise à son poids propre et la surcharge d'exploitation.

Combinaisons de charges :

Plancher dalle pleine (étage courant)

Désignation	e (m)	Poids volumique	Charges	
		(kN/m ³)	(kN/m ²)	
Carrelage	0.02	20	0,4	
Mortier de ciment	0.02	20	0,4	
Couche de sable	0.02	18	0,36	
Plancher dalle pleine	0.15	25	3,75	
Enduit en plâtre	0.024	10	0,24	
Airume	0.05	6	0,3	
Cloison	_	-	1	

Tableau : charges permanentes de la dalle de niveau étage courant.

• Charge permanente $G = 6,45 \text{ kN/m}^2$

• Charge d'exploitation $Q = 1.5 \text{ kN/m}^2$

A l'ELU :

 $qu= 1.35G+ 1.5Q = 1.35(6,45)+1.5(1,5)=10,96 \text{ kN/m}^2$

Al'ELS :

 $qs = G + Q = 6,45 + 1,5 = 7,95 \text{ kN/m}^2$

Calcul à l'ELU :

Calcul des efforts :

Soient lx et ly les distances mesurées entre nus d'appuis et 'q' la charge uniformément répartie par unité de longueur.

On suppose que les panneaux sont simplement appuyés sur leurs débords.

Donc le panneau de dalle travaille dans les deux sens.

 $Mx = \mu x \times q \times lx^2$

 $My = \mu y \times Mx$

Avec :

 μx et μy : Coefficients donnés en fonction de ρ et du coefficient de Poisson v

(v= 0 à l'ELU ; v= 0,2 à l'ELS).

Le calcul se fera pour une bande d'un mètre de largeur.

Dans ce tableau représenter les panneaux

paneaux	1	2	3	4	5	6
LX	3,5	3	3,5	3	3,5	3
LY	4	4	3,8	3,8	5	5
ρ	0,87	0,75	0,921	0,79	0,7	0,6
μx	0,0486	0,0621	0,0437	0,0537	0,0684	0,0822
μу	0,7244	0,515	0,8251	0,5786	0,432	0,2948
MX	6,525	6,126	5,867	5,297	<mark>9,183</mark>	8,108
MY	4,727	3,155	<mark>4,841</mark>	3,065	3,967	2,390

Tableaux des panneaux

Correction des moments :

• En travée :

M t x= $0.85 \times$ Mx= $0.85 \times 9.183 = 7.08$ kN.m

M t y = $0,85 \times$ My= $0,85 \times 4,841$ = 4,115 kN.m

• Aux appuis :

M a x = $-0.3 \times$ Mx= $-0.3 \times 9.183 = -2.755$ kN.m

M a y = $-0.3 \times$ Mx= $-0.3 \times 9.183 = -2.755$ kN.m

Effort tranchant :

lx; lx = 3,5; ly = 5

 $Tux = \frac{qu \times lx \times ly}{2ly + lx} = \frac{10,93 \times 3,5 \times 5}{2 \times 5 + 3,5} = 14,168 \text{ kN}$

1y 1x = 3,5; 1y = 5

$$Tuy = \frac{qu \times lx \times ly}{2lx + lx} = \frac{10,93 \times 3,5 \times 5}{2 \times 3,5 + 5} = 15,94 \text{ kN}$$

Tuy = 15,94kN

Ferraillage :

b=100cm; h = 15 cm;c= 2cm ; d= 13 cm; fbu =17 MPa

En travée :

Sens de la petite portée : (lx)

$$\mu_{\text{bu}} = \frac{M_{\text{tx}}}{\text{fbu.b.d}^2} = \frac{7,08 \times 10^6}{17 \times 1000 \times 130^2} = 0,0246 < \mu_{\text{R}} = 0.392$$

Donc A's = 0
$$\alpha = 1,25(1 - \sqrt{1 - 2\mu}) = 1,25(1 - \sqrt{1 - 2 \times 0,0246}) = 0,0312$$
$$Z = d(1 - 0,4\alpha) = 13 \times (1 - 0,4 \times 0,0312) = 12,838cm$$

$$\sigma_{st} = \frac{f_e}{\gamma_s} = \frac{500}{1.15} = 434,782MPa$$

$$A_s = \frac{M_f}{Z \times \sigma_{st}} = \frac{7,08 \times 10^6}{128,38 \times 434,782} = 1,27 \ cm^2$$

Tableau : ferraillage de la dalle sens x-x en travée.

M _{tu} (kNm)	μ	µ<µ _R	$A_s'(cm^2)$	α	Z(cm)	σs(MPa)	A _s (cm ²)
7,36	0,0246	Oui	0	0,0312	12,838	434,783	1,27

 $A_s^{\min} \ge 0,23b * d \frac{ft^{28}}{fe}$

$$A_s^{min} \ge 0,23 * 1000 * 130 \frac{2,4}{500} = 1,43 \text{ cm}^2$$

 $A_s = Max \{1,27 \text{ cm}^2; 1,43 \text{ cm}^2\} = 1,43 \text{ cm}^2$

On opte pour une section d'armature Ast = 4HA8=2.01cm² avec un espacement

$$St = \frac{100}{4} = 25 \text{ cm}$$

Sens de la grande portée : (ly)

$$\mu_{bu} = \frac{M_{tx}}{fbu.b.d^2} = \frac{4,115 \times 10^6}{17 \times 1000 \times 130^2} = 0,0134 < \mu_R = 0.392$$

Donc A's = 0
 $\alpha = 1,25(1 - \sqrt{1 - 2\mu}) = 1,25(1 - \sqrt{1 - 2 \times 0,0134}) = 0,0180$
 $Z = d(1 - 0,4\alpha) = 13 \times (1 - 0,4 \times 0,0180) = 12,906cm$
 $\sigma_{st} = \frac{f_e}{\gamma_s} = \frac{500}{1.15} = 434,782MPa$
 $A_s = \frac{M_f}{Z \times \sigma_{st}} = \frac{4,115 \times 10^6}{129,06 \times 434,782} = 1,26 \ cm^2$

Tableau : ferraillage de la dalle sens y-y en travée.

M _{tu} (kNm)	μ	μ<μr	As'(cm ²)	α	Z(cm)	σs(MPa)	$A_s(cm^2)$
7,041	0,0134	Oui	0	0,0180	12,906	434,783	0,73

 $A_s^{\min} \ge 0,23b * d \frac{ft^{28}}{fe}$

$$A_s^{min}$$
≥ 0,23 * 1000 * 130 $\frac{2,4}{500}$ = 1,43 cm²
 A_s =Max {0,73 cm²; 1,43cm²} =1,43 cm²
On opte pour une section d'armature Ast = 4HA8=2.01cm² avec un espacement

$$St = \frac{100}{4} = 25 \text{ cm}$$

Aux appuis :

$$\mu_{bu} = \frac{M_{a}}{fbu.b.d^{2}} = \frac{2,755 \times 10^{6}}{17 \times 1000 \times 130^{2}} = 0,0096 < \mu_{R} = 0.392$$

$$Donc A'_{s} = 0$$

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu}) = 1,25(1 - \sqrt{1 - 2 \times 0,0096}) = 0,0120$$

$$Z = d(1 - 0,4\alpha) = 13 \times (1 - 0,4 \times 0,0120) = 12,937cm$$

$$\sigma_{st} = \frac{f_{e}}{\gamma_{s}} = \frac{500}{1.15} = 434,782MPa$$

$$A_s = \frac{M_f}{Z \times \sigma_{st}} = \frac{2,60 \times 10^6}{129,41 \times 434,782} = 0,529 \ cm^2$$

Tableau : ferraillage de la dalle sur appui.

M _{tu} (kNm)	μ	μ<μ _R	$A_s'(cm^2)$	α	Z(cm)	σs(MPa)	A _s (cm ²)
3,093	0,009	Oui	0	0,0114	12,941	434,783	0,46

 $\mathbf{A_s}^{\min} \ge \mathbf{0,23b} * d \, \frac{ft28}{fe}$

 A_s^{min} ≥ 0,23 * 1000 * 130 $\frac{2,4}{500}$ = 1,43 cm² A_s =Max {0,46 cm²; 1,43 cm²} =1,43 cm²

On opte pour une section d'armature Ast = 4HA8=2.01cm² avec un espacement St= $\frac{100}{4}$ = 25 cm

• Vérification au cisaillement :

$$\tau_{u} = 0,07 \times \frac{fc^{28}}{\gamma_{b}} = 1,4 \text{ MPa}$$

$$\tau = \frac{T_{u}^{max}}{bd} = \frac{14,168 \times 10^{3}}{1000 \times 130} = 0,109$$

$$\tau = \frac{T_{u}^{max}}{bd} = \frac{15,94 \times 10^{3}}{1000 \times 130} = 0,123 \text{ MPa}$$

$$\tau_{u} = 0,109 \text{ MPa} \le \overline{\tau_{u}} = 1,4 \text{ MPa}; \tau_{u} = 0,123 \text{ MPa} \le \overline{\tau_{u}} = 1,4 \text{ MPa}$$

• Vérification des espacements des barres :

Suivant le sens lx : St= 25cm \leq min (3h ; 33) = 33cmCondition vérifiée.

Suivant le sens ly : St= 25cm \leq min (4h ; 33) = 33cmCondition vérifiée.

• Diamètre maximal des barres :

 ϕ adopté $\leq h 8 \text{ mm} \rightarrow \phi$ adopté $= 8 \text{mm} \leq h 10 = 15 \text{mm}$ Condition vérifiée.

Récapitulatif :

• En travées : Sens XX At= 4HA8 = 2.01 cm² (St = 25 cm).

Sens YY At = $4HA8 = 2.01 \text{ cm}^2$ (St = 25 cm).

• Aux appuis : $4HA8 = 2.01 \text{ cm}^2 \text{ (St} = 25 \text{ cm)}.$

