الجمهورية الجزائرية الديمقراطية الشعبية RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE

وزارة التعليم العالي والبحث العلمي

Ministère de l'enseignement supérieur et de la recherche scientifique

جامعة سعد دحلب – البليدة 1 -Université Saad Dahleb Blida 1

> كلية التكنولوجيا Faculté De Technologie

قسم الهندسة المدنية Département de Génie Civil

مذكرة نهاية التخرج

MEMOIRE DE PROJET DE FIN D'ETUDE

Pour l'obtention du diplôme master en Génie Civil

Option : construction métallique et mixte

THÈME

ETUDE D'UN BATIMENT EN CHARPENTE METALLIQUE (REZ DE CHAUSSE + 6 ETAGES) A USAGE ADMINISTRATIF

Etudié et réalise par

GUERROUMI Hamza & DAHMANE Hamza

Devant le jury composé de :

Mme. AOUALI. N	U. Saad Dahleb-Blida	Président
Mr. Yahiaoui	U. Saad Dahleb-Blida	Examinateur
Mr. RAHMANI Khaled	U. Saad Dahleb-Blida	Promoteur
Mme. BADIS. W	U. Saad Dahleb-Blida	Promoteur

Blida, Juillet 2023.

Remerciements

On remercie tout premièrement Dieu pour la volonté, la santé et la patiencequ'il nous a donné durant ces années de travail. Et sans oublie nos familles

On remercie ensuite les membres du jury pour avoir accepté d'examiner cetravail.

On tient aussi à remercier tout particulièrement notre encadreur **Mr. RAHMANI.K** et aussi **Mme BADIS.W** qui nous a suivis tout au long de ce travail.

En fin, on adresse nos chaleureux remerciements à tous nos chers collègues.

Résume

L'étude de ce projet nous a permis d'un côté, d'appliquer les connaissances théoriques acquises pour résoudre tous les problèmes réels existant concernant les études et la réalisation des structures mixtes, et d'un autre côté, ça nous a donné l'occasion de se familiariser avec les différentes techniques d'assimilation des phénomènes physiques, le passage vers le logiciel à partir d'une modélisation correcte et la maitrise de la réglementation régissant les principes de calcul des structures dans le domaine de construction, ainsi, d'approfondir nos connaissances théoriques et pratiques.

Travailler sur un projet réel nous a permis d'avoir plus d'aperçu sur la construction mixte acier-béton mais aussi, cela nous a donné un avant-goût de la vie professionnelle avec toutes les exigences auxquelles doit faire facel'ingénieur qui a la lourde tâche de réaliser un travail de conception faisable tout en restant dans un contexte économique acceptable.

En espérant avoir fait de notre mieux, et que la présente étude aurarépondue au mieux aux objectifs qui lui ont été assignés au départ et qu'elle sera bénéfique pour tous les utilisateurs. Durant notre travail on a constatéune tendance vers les nouvelles études sur les imprimantes 3D géantes qui vont remplacer et révolutionner nos méthodes de construction dans le futur proche, de ce fait, on propose comme suite à notre travaille et dans le cadre d'une perspective ou d'un travail de recherche de s'intéresser aux dernières révisions des méthodes de structures acier-béton adaptées à cette nouvelle technologie d'imprimante 3D.

Enfin, nous sommes certains que nos connaissances personnelles et cellesque nous avons acquises lors du stage nous permettront à l'avenir d'affronterla vie professionnelle avec courage et sérénité.

ملخص

أتاحت لنا دراسة هذا المشروع، من جهة، تطبيق المعرفة النظرية المكتسبة لحل جميع المشاكل الحقيقية الموجودة فيما يتعلق بالدراسات وتحقيق الهياكل المختلطة، ومن جهة أخرى، أتاحت لنا الفرصة لنصبح مألوفين. مع التقنيات المختلفة لاستيعاب الظواهر الفيزيائية، والانتقال إلى البرمجيات من النمذجة الصحيحة وإتقان اللوائح التي تحكم مبادئ الحساب الهيكلي في مجال البناء، وبالتالي، لتعميق معرفتنا النظرية والعملية.

سمح لنا العمل في مشروع حقيقي بالحصول على مزيد من التبصر في الإنشاءات الفولاذية والخرسانية المختلطة، ولكنه أعطانا أيضًا طعمًا للحياة المهنية مع جميع المتطلبات التي يتعين على المهندس مواجهتها. المهمة الثقيلة المتمثلة في تنفيذ أعمال التصميم الممكنة مع البقاء ضمن نطاق السياق الاقتصادي المقبول.

على أمل أن نبذل قصارى جهدنا، وأن تكون هذه الدراسة قد حققت على أفضل وجه الأهداف المحددة لها في البداية وأن تكون مفيدة لجميع المستخدمين. خلال عملنا، رأينا اتجاهًا نحو دراسات جديدة على الطابعات ثلاثية الأبعاد العملاقة التي ستحل محل أساليب البناء لدينا وتحدث ثورة فيها في المستقبل القريب، لذلك نقترح كمتابعة لعملنا وكجزء من منظور أو عمل بحثي الاهتمام بأحدث التقنيات لأساليب تحليل الهياكل الخرسانية الفولاذية التي تم تكييفها مع تقنية الطابعة ثلاثية الأبعاد الجديدة.

أخيرًا، نحن على يقين من أن معرفتنا الشخصية وما اكتسبناه خلال فترة التدريب سيمكننا في المستقبل من مواجهة الحياة المهنية بشجاعة وصفاء.

Abstract

The study of this project allowed us on the one hand, to apply the theoretical knowledge acquired to solve all the real problems existing concerning the studies and the realization of the mixed structures, and on the other hand, it gave us the opportunity to become familiar with the different techniques for assimilating physical phenomena, the transition to software from correct modeling and mastery of the regulations governing the principles of structural calculation in the field of construction, thus, to deepen our theoretical and practical knowledge.

Working on a real project allowed us to have more insight into mixed steel-concrete construction but also gave us a taste of professional life with all the demands that an engineer has to face. the heavy task of carrying out feasible design work while remaining within an acceptable economic context.

Hoping to have done our best, and that this study will have best met the objectives assigned to it at the start and that it will be beneficial for all users. During our work we have seen a trend towards new studies on giant 3D printers that will replace and revolutionize our construction methods in the near future, therefore we propose as a follow-up to our work and as part of a perspective or a research work to take an interest in the latest revisions of the methods of analysis of steel-concrete structures adapted to this new 3D printer technology.

Finally, we are certain that our personal knowledge and that which we have acquired during the internship will enable us in the future to face professional life with courage and serenity.

Table des Matières

Remerciements	
Résume	
ملخص	
Abstract	
Liste des Figures	
Liste des Tableaux	
Liste des Symboles	
Introduction Générale	1
CHAPITRE I : Généralités et présentation de l'ouvrage	
I.1. Introduction	3
I.2. Avantages et inconvénients des constructions métalliques	4
I.2.1. Les avantages	4
I.2.2. Les inconvénients	4
I.3. Présentation de l'ouvrage	5
I.4. Données géométriques de l'ouvrage	5
I.5. Matériaux utilisés	6
I.5.1. Acier	6
I.5.2. Béton	7
I.5.2.1. Caractéristiques du béton	7
I.5.2.2. Contraintes limites	7
I.6. Assemblages	
I.6.1. Conception structurelle	
I.6.1.1. Structure horizontale	
I.6.1.2. Les connecteurs :	9
I.6.1.2. Structure verticale	
I.7. Les escaliers	
I.8. Les fondations	
I.9. Conclusion	11
CHAPITRE II : Pré-dimensionnement des éléments	
II.1. Introduction	

II.3. Evaluation des charges et surcharges	
II.3.1. Terrasse inaccessible	13
II.3.2. Etage courant	14
II.4. Prédimensionnement des planchers	14
II.5. Pré dimensionnement des solives	15
II.5.1. Plancher courant	15
II.5.1.1. Phase de construction : (avec un était)	16
II.5.1.2. Phase finale	
II.5.2. Plancher terrasse	21
II.5.2.1. Phase de construction : (avec un était)	21
II.5.2.2. Phase finale	23
II.6. Calcul des connecteurs	26
II.6.1. Résistance du connecteur isolée	26
II.6.2. Effort tranchant repris par les goujons	
II.6.3. Nombre de connecteurs par demi portée	
II.6.4. Espacement entre les goujons	
II.7. Prédimensionnement des poutres secondaires	29
II.8. Prédimensionnement des poutres principales	29
II.8.1. Phase initiale	
II.8.1.1. Calcul des réactions des solives	
II.8.1.2. Combinaisons des charges	31
II.8.1.3. Vérifications	31
II.8.1.4. Vérification du déversement	
II.8.2. Phase finale	
II.8.2.1. Les réactions des solives	
II.8.2.2. Combinaisons des charges	
Position de l'axe neutre plastique :	
II.9. Prédimensionnement des poteaux	
II.9.1. Les surfaces qui reviennent aux poteaux	
II.9.2. Vérification de flambement	35
II.10. Conclusion	

III.1. Ef	ffet de la neige		
-----------	------------------	--	--

III.1.1. Introduction	
III.1.2. Calcul des charges de neige	
III.2. Effet du vent	40
III.2.1. Nature de la Structure	40
III.2.2. Hypothèses de calcul	40
III.2.3. Pression dynamique de pointe	41
III.2.4. Calcul de la pression due au vent	42
III.2.4.1. Détermination de la pression dynamique	42

CHAPITRE IV : Etude des éléments secondaires

IV.1. Introduction	
IV.2. Acrotère	
IV.2.1. Introduction	52
IV.2.2. Calcul des charges sollicitant l'acrotère	
IV.2.3. Principe de calcul	52
IV.2.3.1. Evaluation des charges	53
IV.2.4. Calcul de la force sismique	54
IV.2.5. Calcul des efforts	54
IV.2.6. Ferraillage de la section de l'acrotère	55
IV.2.6.1.Calcul du moment fictif	55
IV.2.6.2. Condition de non fragilité	56
IV.2.6.3. Vérifications	56
IV.3. Escalier métallique	59
IV.3.1. Introduction	59
IV.3.2. Définitions	59
IV.3.3. Choix des dimensions	60
IV.3.3.1. Conception d'une marche	61
IV.3.4. Dimensionnement de la cornière de marche	61
IV.3.4.1. Dimensionnement	62
IV.3.5. Dimensionnement des limons	63
IV.3.5.1. Évaluation des charges	63

CHAPITRE V : Étude dynamique

V.1. Introduction

V.2. Caractéristique dynamiques propres	67
V.3. Modélisation de la structure	68
V.4. Choix de la méthode de calcul	69
V.4.1. La méthode statique équivalente	69
V.4.2. La méthode d'analyse modale spectrale (spectre de réponse)	70
V.4.3. La méthode d'analyse dynamique par accélérogrammes	70
V.5. Vérification de la structure	70
V.5.1. Vérification de la force sismique à la base	70
V.5.2. L'analyse modale spectrale	74
V.5.3. Résultat de l'analyse dynamique	75
V.5.3.1. Modèle initiale	75
V.5.3.2. Modèle final	77
V.6. Conclusion	84

CHAPITRE VI : Vérification des éléments

VI.1. Introduction	
VI.2.1. Method de calcul	
VI.2.1.1. Vérification de flambement des poteaux	
VI.2.1.2. Vérification vis-à-vis du flambement	
VI.2.2. Vérification vis-à-vis du déversement	
VI.3. Vérification des poutres principales	96
VI.3.1. Vérification du moment fléchissant	97
VI.3.2. Vérification au déversement	97
VI.3.3. Vérification au voilement de l'âme par cisaillement	
VI.4. Vérification des contreventements	
VI.4.1. Généralités	
VI.4.2. Dimensionnement des contreventements	
VI.4.3. Conclusion	
VI.5. Conclusion	

CHAPITRE VII : Calcul d'assemblages

VII.1. Introduction	
VII.2. Modes d'assemblages	104
VII.2.1. Fonctionnement des assemblages	104

VII.3. Assemblage poteau-poutre	106
VII.4. Assemblage Poutre - Solive	112
VII.5. Assemblages de contreventement	115
VII.6. Conclusion	120

CHAPITRE VIII : Calcul de fondation

VIII.1 Introduction	
VIII.2. Caractéristiques du sol	
VIII.3. Choix du type de fondation	122
VIII .3.1. Semelles isolées	
VIII.3.2 Semelle filante	
VIII.4. Calcul des semelles filantes	
VIII.4.1. Pré dimensionnement de la semelle filante	125
VIII.4.2. Calcul hauteur de nervure h_N	126
VIII.4.3. Chargement de la semelle filant	127
VIII.5. Ferraillage	
VIII.5.1. Vérification des contraintes	130
VIII.5.2. Ferraillage transversal	131
VIII.6. Conclusion	
Conclusion Générale	
References	
Annexes	

Liste des Figures

Figure I. 1: Courbe contrainte déformation selon la nuance d'acier	8
Figure I. 2: Composition d'un plancher courant	9
Figure I. 3: Composition d'un plancher terrasse.	9
Figure I. 4: Goujons soudée	10
Figure I. 5: Les dimensions de briques utilisés.	10
Figure I. 6: Les escaliers	11
Figure II. 1: Largeur de la dalle effective	19
Figure II. 2: Largeur de la dalle effective	24
Figure II. 3: Schéma des positions des connecteurs	26
Figure II. 4: Dimensions de la tôle et du connecteur	26
Figure II. 5: Schéma de position des connecteurs	29
Figure III. 1: Hauteur de référence Ze et profil correspondant de la pression dynam	ique.41
Figure III. 2: Légende pour la paroi verticale.	43
Figure III. 3: Représentation des coefficients Cpe sur les différentes zones(V1)	44
Figure III. 4: Légende pour la paroi verticale la toiture (V1)	45
Figure III. 5: Légende pour les toitures plates.	46
Figure III. 6: Légende pour la paroi verticale.	47
Figure III. 7: Représentation des coefficients Cpe sur les différentes zones(V2)	48
Figure III. 8: Légende pour la paroi verticale la toiture (V1)	49
Figure III. 9: Légende pour les toitures plates.	50
Figure IV. 1: Dimension de l'acrotère	52
Figure IV. 2: Sollicitations de l'acrotère.	53
Figure IV. 3: Diagrammes des efforts à L'ELU.	54
Figure IV. 4: Section de calcul de l'acrotère	55
Figure IV. 5: Ferraillage de l'acrotère	59
Figure IV. 6: Schéma représentatif d'un escalier	59
Figure IV. 7: Vue en plan de l'escalier tirer du plan d'architecture	61
Figure IV. 8: Conception d'une marche	61
Figure IV. 11: Schéma d'une marche.	62

Figure IV. 9: Charges appliqué sur le limon	63
Figure IV. 10: Charges revenant au limon.	64
Figure V. 1. Spectre de réponse	75
Figure V. I. Spectre de reponse	
Figure V. 2: vue en 3d du modèle initial.	76
Figure V. 3: Vue en 3d du modelé final.	78
Figure V. 4: Translation suivant l'axe X-X	
Figure V. 5: Translation suivant l'axe Y-Y.	
Figure V. 6: Rotation autour de l'axe z-z.	
Figure VI. 7: Facteurs de distribution pour poteaux continus	
Figure VI. 8: Schéma statique de la poutre principale.	96
Figure VI. 9: Types de systèmes de contreventement.	
Figure VI. 10: Contreventement en X.	101
Figure VII. 1: Exemples des assemblages soudés	
Figure VII. 2: Vue d'assemblage poteau – poutre	106
Figure VII. 3: Assemblage soudé poutre-platine	107
Figure VII. 4: Schéma distribution des boulons et des jarrets.	110
Figure VII. 5: Schéma d'assemblage solive-poutre.	112
Figure VII. 6: Assemblage poutre HEA500-Solive IPE160	114
Figure VII. 7: Disposition constructive de l'assemblage pied de poteau	118
Figure VII. 8: Vue « 3D » de l'assemblage pied de poteau	118
Figure VII. 9: Disposition constructive de l'assemblage continuité de poteau	119
Figure VIII. 1: Semelles isolée sous poteaux	
Figure VIII. 2: Semelles filantes.	
Figure VIII. 3: Réactions Fz à l'ELS.	
Figure VIII. 4: Coffrage et ferraillage des nervures	

Liste des Tableaux

Tableau I. 1: Valeur nominal de fy fu pour les profilés (réf) DTR.B.C.22	6
Tableau I. 2: Valeurs nominale de fy pour le ferraillage (Réf.) C.B.A.93	7
Tableau II. 1: Charge permanente d'un plancher terrasse inaccessible DTRB.C2.2	13
Tableau II. 2: Charge permanente d'un plancher courant	14
Tableau II. 3: Caractéristique du profile IPE 160	16
Tableau II. 4: Récapitulatif pour les solives de chaque niveau	26
Tableau II. 5: Récapitulatif pour les poutres secondaires de chaque niveau	29
Tableau II. 6: Caractéristiques de profilé IPE400	30
Tableau II. 7: La charge permanente sur le poteau le plus sollicité	34
Tableau II. 8: La charge d'exploitation sur le poteau central (loi de dégression)	34
Tableau II. 9: Les efforts normaux, la section et le profilé des poteaux	35
Tableau III. 1: Coefficient de rugosité	41
Tableau III. 2: Coefficient topographique	41
Tableau III. 3: Coefficient Intensité de turbulence	42
Tableau III. 4: Coefficient d'exposition	42
Tableau III. 5: Tableau Récapitulatif	42
Tableau III. 6: valeurs de Cpe pour les parois verticales - direction V1 du vent	44
Tableau III. 7: Récapitulatif(V1)	45
Tableau III. 8: Valeurs des pressions Cpe pour les différentes zones de terrasse sous V	/146
Tableau III. 9: Récapitulatif (V1)	47
Tableau III. 10: Valeurs des pressions Cpe pour les différentes zones de la paroi vert	icale
(V2)	48
Tableau III. 11: Récapitulatif(V2)	48
Tableau III. 12: Récapitulatif(V2)	49
Tableau III. 13: Récapitulatif(V2)	50
Tableau V. 1: Valeurs de la périodes caractéristiques	71
Tableau V. 2: Choix de la période de calcul [8]	72
Tableau V. 3: Facteur de qualité suivant les deux sens [7]	73
Tableau V. 4: Pourcentage de participation massique	76

Tableau V. 5: Pourcentage de participation massique	78
Tableau V. 6: Les coefficients statiques équivalente	
Tableau V. 7: Les forces sismiques suivant les deux sens	81
Tableau V. 8: Comparaison de Vdyn et 80% V	
Tableau V. 9: Déplacement résultant suivant X	83
Tableau V. 10: Déplacement résultant suivant Y	83
Tableau V. 11: L'effet P- Δ selon le sens x-x	83
Tableau V. 12: L'effet P- Δ selon le sens y-y	
Tableau VI. 1: Caractéristiques de profilé HEA600	
Tableau VI. 2: Efforts internes des poteaux sous N_max pour chaque niveau	93
Tableau VI. 3: Vérifications au flambement par flexion	94
Tableau VI. 4: Efforts internes des poteaux sous Mysdmax pour chaque niveau	94
Tableau VI. 5: Vérifications au flambement par flexion	95
Tableau VI. 6: Efforts internes des poteaux sous Mzsdmaxpour chaque niveau	95
Tableau VI. 7: Vérifications au flambement par flexion	96
Tableau VI. 8: Choix final des poteaux	96
Tableau VII. 1: Caractéristiques des boulons	104
Tableau VII. 2: Caractéristiques géométriques des profilés	106
Tableau VII. 3: Caractéristiques géométriques des profilés	112
Tableau VIII. 1: Sections des semelles filantes continues	125
Tableau VIII. 2: Répartition des efforts à l'ELS et l'ELU pour chaque fille	127
Tableau VIII. 3: Vérification de la contrainte à ELS	128
Tableau VIII. 4: Ferraillage des semelles filantes	129
Tableau VIII. 5: Ferraillage des nervures.	
Tableau VIII. 6: Vérification des contraintes	

Liste des Symboles

- A : Section brute d'une pièce
- Anet : Section nette d'une pièce
- A_w : Section de l'âme
- A_v : Aire de cisaillement
- Ct : Coefficient de topographie
- Cr : Coefficient de rugosité
- C_{p, net}: Coefficient de pression nette
- Ce: Coefficient d'exposition
- C_d : Coefficient dynamique
- K : Coefficient d'encastrement ou de rigidité Poteaux/ Poutre
- K₀ : Coefficient de flambement
- K Facteur de déformée modale
- M_{rd} : Moment résistant.
- M_{ply} : Moment plastique.
- M_{cr} : Moment critique.
- M_{b, rd}: Valeur de calcul de la résistance au déversement.
- N_{pl, rd}: Valeur de calcul de la résistance plastique de la section transversale brute.
- N_{b, rd}: Valeur de calcul d'un élément comprimé au flambement.
- N_{sd} : Effort normal sollicitant.
- N_{t, sd}: Effort normal de traction.
- $N_{c, sd}$: Effort normal de compression.
- N_{pl} : Effort normal plastique.
- N_{c, rd}: Valeur de calcul de la résistance de la section transversale à la compression.
- W : Poids total de la structure.
- Q : Charge d'exploitation.
- R : Coefficient de comportement de la structure.
- S : Surface.
- S : Charge de la neige.
- V_{sd} : Valeur de calcul de l'effort tranchant sollicitant.
- V_{pl, rd}: Valeur de calcul de la résistance plastique au cisaillement.
- V_{ref}: Vitesse de référence du vent.
- W : Pression aérodynamique.

W_{pl} : Module de résistance plastique.

Wel : Module de résistance élastique.

 $f_{\boldsymbol{u}}$: Résistance à la traction.

1 : Longueur d'une pièce.

L_f : Longueur de flambement.

r : Rayon d'une section circulaire.

t : Épaisseur de la semelle (poutre, solive, poteau).

t_w : Épaisseur de l'âme (poutre, solive, poteau).

Z : Hauteur au-dessus du sol.

z0 : Paramètre de rugosité.

z_{eq} : Hauteur équivalente.

Zmin : Hauteur minimale.

χ: Coefficient de réduction pour le mode de flambement ou déversement approprie.

 β : Coefficient de pondération fonction de la nature et de la durée de la charge

d'exploitation.

 β_w : Facteur de corrélation.

 β_M : Facteur de moment uniforme équivalent.

 β_j : Coefficient relatif à la liaison.

γ_M: Coefficient de sécurité.

λ: Élancement.

 λ_{LT} : Élancement de déversement.

α: Facteur d'imperfection.

ø: Rotation.

ø_{LT} : Rotation de déversement.

η: Contrainte limite de cisaillement en élasticité.

ε: Coefficient de réduction élastique de l'acier.

ζa: Contrainte de l'acier.

ζb: Contrainte du béton.

ξ: Pourcentage d'amortissement critique.

η: Facteur de correction d'amortissement.

 δ_{ek} : Déplacement du aux forces sismique Fi.

 Δ_k : Déplacement relatif du niveau « K » par rapport au niveau « K-1».

μ: Coefficient de forme de la charge de neige.

Introduction Générale

Le développement et l'évolution de l'urbanisation ont entraîné une demande croissante de bâtiments polyvalents et fonctionnels. Dans ce contexte, l'utilisation de la charpente métallique a gagné en popularité en raison de ses nombreuses qualités structurelles et de sa flexibilité de conception. Ce mémoire de fin d'études vise à explorer et à étudier en profondeur les aspects techniques et les avantages de l'utilisation d'une charpente métallique dans la construction d'un bâtiment à étages à usage d'habitation.

L'objectif principal de ce mémoire est de fournir une analyse complète de la charpente métallique en tant que solution de construction pour les bâtiments d'habitation. Nous allons examiner les caractéristiques de la charpente métallique, sa durabilité, sa résistance aux charges, ainsi que sa facilité de mise en œuvre et d'adaptation aux différents besoins fonctionnels d'un bâtiment.

En outre, nous étudierons les différentes étapes de conception et de construction d'un bâtiment à étages en charpente métallique. Cela comprendra l'analyse structurale, le choix des matériaux, les techniques de fabrication et de montage, en suivant les étapes suivantes :

- Chapitre 1 : Généralités et présentation de l'ouvrage.
- Chapitre 2 : Évaluation des charges appliquées à la structure.
- Chapitre 3 : Étude des éléments secondaires.
- Chapitre 4 : Conception initiale des éléments structuraux.
- Chapitre 5 : Étude dynamique de la structure.
- Chapitre 6 : Vérification des éléments de la structure.
- Chapitre 7 : Assemblages utilisés et leur vérification.
- Chapitre 8 : Étude de l'infrastructure du bâtiment.

À la fin de ce mémoire, une synthèse des points clés abordés sera proposée dans une conclusion générale.

CHAPITRE I :

Généralités et présentation de l'ouvrage

I.1. Introduction

Depuis l'industrialisation de l'acier en 1750, le domaine de la construction en charpente métallique a connu une évolution rapide. Le premier pont métallique a été construit en Angleterre seulement 30 ans plus tard, en 1779. Dans ce même pays, le premier bâtiment en charpente métallique utilisant un système poteaux-poutres a été érigé. Par la suite, l'utilisation de la charpente métallique s'est répandue dans le monde entier et a été employée dans presque tous les domaines de la construction civile, tels que les bâtiments, les ouvrages spéciaux (ponts, silos...) et les ouvrages de soutènement.

De nos jours, l'évolution de l'informatique, en termes de logiciels et de rapidité de traitement, ne cesse de croître, ce qui permet une meilleure analyse du comportement des structures soumises à différentes sollicitations.

Dans ce contexte, notre projet de fin d'études consiste à étudier un bâtiment à usage administratif en charpente métallique, d'une hauteur de six étages, situé à BOUGARA, dans la wilaya de Blida, une zone présentant une forte sismicité selon le règlement parasismique algérien (RPA99/V 2003).

Notre étude technique complète de dimensionnement et de vérification pour ce bâtiment sera menée selon les étapes suivantes :

- Présentation du projet et des caractéristiques mécaniques des matériaux utilisés dans sa réalisation.
- Étude climatique.
- Évaluation des charges et des surcharges pour procéder au pré dimensionnement des différents éléments de la structure.
- Étude des éléments secondaires.
- Étude dynamique du bâtiment, réalisée en modélisant et en analysant la structure à l'aide du logiciel étapes.
- Vérification de la résistance de la charpente métallique face aux phénomènes d'instabilité tels que le flambement et le déversement.
- Les assemblages des éléments de la structure.
- Les fondations.

I.2. Avantages et inconvénients des constructions métalliques

I.2.1. Les avantages

- La capacité portante : elle est due à la résistance élevée que donne l'acier sous les déférentes sollicitations
- La haute sécurité : La résistance et la ductilité qui caractérisent l'acier permet aux constructions métalliques d'être sécurisées face à quelques catastrophes.
- La légèreté : Elle est due à des éléments porteurs de section moins compacts et moins lourds. Sachent que la légèreté d'une structure et doublement bénéfique : premièrement sur la portance du sol d'assise et deuxièmement sur la minimisation des forces d'inertie horizontales due aux séismes.
- Souplesse de conception : les trois avantages précédents permettent aux concepteurs une meilleure possibilité de gérer l'espace disponible pour la construction. Cette possibilité due essentiellement au nombre limité de poteaux et des poutres a grandes portées.
- L'imperméabilité et l'étanchéité : Le bardage des constructions métalliques est généralement assuré perdes matériaux étanches (acier, verres ...). L'Isolation thermique et phonique est assurée par des panneaux sandwichs qui sont bourrés de matériaux thermiquement isolants.
- Exécution et montage : au chantier, le montage des éléments de la charpente métallique ne nécessite nids coffrages ni des étayages.
- Démontrabilité et transformation : parmi les avantages d'une construction en charpente métalliqueet dépourvoir la transporter d'un site et la replanté dans un autre, en démentent la structure initiale et la remonté dans l'endroit voulu avec prise en considération des effets sismique du nouveau site.

I.2.2. Les inconvénients

- Le cout : la conception des composants de l'ossature métallique doit être conduite pour une meilleure optimisation sur la base du poids et d'une standardisation du maximum du nombre de profils et d'assemblages différents. Enumérons en ce qui suit quelque conséquence du non standardisation :
 - Les études d'exécution ou de calcul des assemblages vont être beaucoup plus longues, parconséquent plus couteuses.

- Les achats d'acier ne vont pas être optimisés du fait d'un grand nombre de profils différents àcommandèrent plus petites quantités.
- Les fabrications seront plus complexes donc plus couteuses du fait de nombreux raidisseur ourenforcement à réaliser ponctuellement.
- La résistance au feu : en effet, on reproche à l'acier d'avoir un mauvais comportement et de s'écrouler rapidement sous l'action du feu car au-dessus de la température ambiante, la limite d'élasticité et module d'élasticité de l'acier diminuent, ce qui rend les structures métalliques plus fragile vis-à-vis le feu.
- La Corrodabilité : face à la corrosion atmosphérique l'aspect extérieur de l'acier se dégrade d'une manière visible et si le phénomène prend une ampleur importante le rendement mécanique de l'acierdiminue. Pour cela les aciers courants peuvent être protégés contre l'agression de la corrosion atmosphérique par des revêtements de divers types adaptés aux conditions d'emplois.

I.3. Présentation de l'ouvrage

Dans le cadre de notre projet de fin d'études, le travail consiste en la conception et le calcul d'bâtiment \mathbf{R} +6 à usage administratif avec une terrasse inaccessible, contreventé par des palées de stabilités.

L'ouvrage est supposé être implanté dans la commune de BOUGARA « willaya de Blida », classé selonle RPA99/V2003 comme une zone de forte sismicité (zone III) et par le RNV99 en zone de vent I (selon le RNV2013), zone A de neige (R N N 2013).

- Zone sismiqueIII
- Zone de ventI

I.4. Données géométriques de l'ouvrage

• Dimensions en plan :

Longueur totale	45,9 n	1
Largeur totale	25,39	m

• Dimension en élévation :

Hauteur totale	.32.5 m
Hauteur de RDC	6 m
Hauteur de 1 ^{er} étage au 6 ^{eme} étage	4.4 m

I.5. Matériaux utilisés

I.5.1. Acier

Les caractéristiques mécaniques des différentes nuances d'acier sont les suivantes :

Limite élastique fy (MPa) en fonction de l'épaisseur nominale :

	Epaisseur (mm)				
Nuance d'acter	$t \le 40 \text{ mm}$		$40 \text{ mm} < t \le 100 \text{ mm}$		
	f _y (N/mm ²)	$f_u(N/mm^2)$	f _y (N/mm ²)	$f_u(N/mm^2)$	
Fe	235	360	215	340	
360					
Fe	275	430	255	410	
430					
Fe	355	510	355	490	
510					

- La résistance à la traction : fu = 430 MPa
- La limite élastique : fy = 275 MPa.
- Le module de Young : $E = 210\ 000$ Mpa
- Le coefficient de poisson : v=0,3.
- Module de cisaillement : G = E/(2(1+v)) = 81000 MPa

• Acier pour le ferraillage :

Pour le ferraillage on utilise des armatures et des treillis soudés de type HA dont les caractéristiques :

- Module d'élasticité longitudinale : $E = 2,1.10^5 MPa$
- Contrainte limites d'élasticité : fe = 500 MPa

• Caractéristiques mécaniques :

	Nuance	F _y (MPa)
Ronds lisses	Fe220	215
	Fe240	235
Barres HA	Fe400	400
	Fe 500	500

Tableau I. 2: Valeurs nominale de fy pour le ferraillage (Réf.) C.B.A.93

I.5.2. Béton

- Le béton utilisé est dosé à 350kg/m³.
- Béton de propreté est dosé à 150 kg/m³.

I.5.2.1. Caractéristiques du béton

Le béton utilisé est défini, de point de vue mécanique par :

- La résistance à la compression à 28 jours : $f_{c 28} = 25 \text{ MPa}$
- La résistance à la traction à 28 jours est déduite de celle de
- Compression par la relation : $f_{t 28} = 0,6+0.06 f_{c 28}$
- La contrainte admissible de compression à l'état limite ultime (ELU) est donnée Par :

$$f_{\rm bu} = \frac{0.85 \, .f_{\rm cj}}{\gamma_{\rm b}}$$

Avec : $\gamma b = 1,5$ action durable

 $\gamma b = 1,15$ action accidentelle

La contrainte limites de service est donner par : $\sigma'= 0.6 f_{c 28}$

Le coefficient de poisson selon BAEL, les valeurs sont :

A l'ELU : υ = 0 **A l'ELS** : υ = 0,2

I.5.2.2. Contraintes limites

- Etat limite ultime :

La contrainte admissible à l'ELU a pour valeur : En cas de situations accidentelles $\sigma st = 400$ MPa En cas de situations normales $\sigma st = 348$ MPa

Figure I. 1: Courbe contrainte déformation selon la nuance d'acier.

- <u>Etat limite de service :</u>

On ne limite pas la contrainte de l'acier sauf en état limite d'ouverture des fissures :

Fissuration peu nuisible : pas de limitation.

Fissuration préjudiciable : $\sigma \leq \sigma st = \min (2/3f e, 110\sqrt{\eta}f tj)$.

Fissuration très préjudiciable : $\sigma_{st} \leq \sigma_{bc} = \min(1/2 \text{ fe}, \sqrt{90} \eta f t j)$.

Avec : η : Coefficient de fissuration

 $\eta = 1$ Pour l'acier rond lisse

 $\eta = 1, 6$ Pour l'acier HA

I.6. Assemblages

Les assemblages principaux des systèmes structuraux, assurant la stabilité sont :Boulons à haute résistance.

Soudage dont la caractéristique mécanique est au moins équivalente à celles des nuances d'acierutilisées.

I.6.1. Conception structurelle

I.6.1.1. Structure horizontale

La structure horizontale désigne les planchers :

• Plancher courant :

Dans notre projet les planchers courants sont mixtes à dalle collaborant dont la composition est illustréedans la figure ci-dessous :

Figure I. 2: Composition d'un plancher courant.

• <u>Plancher terrasse :</u>

Les planchers terrasses sont identiques aux plancher courants, sauf pour la partie supérieure qui est composée de couches supplémentaires :

- Etanchéité
- Gravillon
- Isolant

Figure I. 3: Composition d'un plancher terrasse.

I.6.1.2. Les connecteurs :

Les assemblages acier-béton sont constitués de connecteurs qui permettent un comportement hybride entre les poutres en acier et le béton. La conception de l'assemblage vise essentiellement à résister aux forces de cisaillement horizontales. Dans notre cas nous

utilisons des goujons de hauteur h=95mm et de diamètre d=19mm, qui sont assemblés par soudure.

Figure I. 4: Goujons soudée.

I.6.1.2. Structure verticale

La superstructure est composée principalement de murs en maçonnerie non porteurs.

- Les murs extérieurs :

Les murs sont en forme de doubles parois en brique creuse de 15 et de 10 cm, avec un vide d'air de 5cm.

- Les murs intérieurs :

Les murs sont en brique creuse de 10 cm.

Figure I. 5: Les dimensions de briques utilisés.

I.7. Les escaliers

L'escalier est un ouvrage constitue d'une suite régulière de plans horizontaux (marches et paliers)permettant dans une construction de passe à pied d'un étage a un autre. La structure comporte que des escaliers en acier.

Figure I. 6: Les escaliers.

I.8. Les fondations

Les fondations reprennent les charges et surcharges supportées par la superstructure et les transmettent au sol dans les bonnes conditions afin d'assurer la stabilité de l'ouvrage.Le choix du type de fondation se fait conformément au rapport du sol.

I.9. Conclusion

Dans ce chapitre, nous avons présenté l'ouvrage étudié en déterminant l'usage, la classification et les caractéristiques géométriques en plan et en élévation de construction. Nous avons ensuite défini les éléments structura d'un bâtiment en général et déterminé les caractéristiques mécaniques des matériaux constituant la structure.

CHAPITRE II :

Pré-dimensionnement des éléments

II.1. Introduction

Ce chapitre définira les différentes charges agissantes sur notre structure, qui se résument dans l'action des charges permanentes, d'exploitation et des effets climatiques. Ces derniers ont une grande influence sur la stabilité de l'ouvrage. Pour cela, il y a des normes qui fixent les valeurs des charges qui sont inscrits dans le règlement technique DTRB.C2.2 (charges et surcharges).

II.2. Le plancher collaborant

Le plancher collaborant est un plancher mixte béton-acier, il comporte une tôle mince profilé en acier conçue pour développer une collaboration structurelle efficace avec le béton du plancher qu'elle va recevoir. Les dalles mixtes sont tout indiquées pour l'application dans les bâtiments en acier, ou elles peuvent, moyennant une connexion, développer une action composite avec les poutres de plancher en acier

II.3. Evaluation des charges et surcharges

II.3.1. Terrasse inaccessible

✓ Charge permanente :

Tableau II.	1:	Charge per	manente d	'un	plancher	terrasse	inacces	sible	DTRB	.C2	.2
-------------	----	------------	-----------	-----	----------	----------	---------	-------	------	-----	----

Matér	Matériaux			
•	Protection gravier	0,85		
•	Etanchéité multicouche	0,3		
•	Béton de pente	2,20		
•	Isolation thermique	0,16		
•	Poids de la dalle	2.67		
•	Bac d'acier (HIBON 55)	0,15		
•	Faux plafond	0,10		
•	Climatique	0,4		
Total		6.83		

> Charge d'exploitation (Q_{terasse}) = 1 (KN/m²) usage administratif

II.3.2. Etage courant

Charge permanente

Tableau II. 2: Charge permanente d'un plancher courant

Matériaux	G (KN/m ²)	
 Dalle de sol 		0,5
 Mortier de pos 	e	0,40
 Dalle en béton 	armé (e=12cm)	2.67
 Faux plafond 		0,2
 Bac d'acier (H 	IBON 55)	0,15
 Cloisonnement 	t	1,00
Total		5,18

> Charge d'exploitation ($Q_{courant}$) = 1,5 (KN/m²) usage administratif

II.4. Prédimensionnement des planchers

Les planchers sont des éléments horizontaux qui limitent les niveaux d'un bâtiment.

Ils s'appuient avec ou sans continuités sur des porteurs (murs porteurs ; poteaux et poutres).

Notre structure contient des planchers mixtes.

Méthode de calcul

Pour le pré dimensionnent des planchers collaborant à dalle collaborant il est nécessaire de pré dimensionner chaque élément le constituant à la condition d'utilisations la plus défavorable.

Les éléments constituant un plancher mixte :

- Panneaux de dalles.
- Solives.
- Poutre porteuse.
- Des connecteurs.

Le calcul de plancher collaborant se fait en deux phases :

- Phase de construction
- Phase finale

CHAPITRE II

Phase de construction :

Le profilé d'acier travaille seul et reprend les charges suivantes :

- Le poids propre du profilé
- Le poids propre du béton frais
- La surcharge de construction (ouvriers)

Phase finale :

Le béton ayant durci, par conséquent le profilé et la dalle, qui constituent la section mixte, travaillent ensemble.

On doit tenir compte des charges suivantes :

- Le poids propre du profilé
- Le poids propre du béton (sec)
- La surcharge d'exploitation
- Finition

II.5. Pré dimensionnement des solives

Les solives sont des poutrelles métalliques, généralement des profilés en IPE, IPN, dont leur espacement est compris entre 1,5m et 4m selon le type de bac d'acier utilisé. Leur rôle est de transmettre les charges verticales aux poutres principales. Le pré dimensionnement des solives se fait selon le critère de résistance ou le critère de flèche.

On utilise la formule approchée et simplifiée qui est en fonction de la hauteur du profilé et la portée de la solive.

II.5.1. Plancher courant

La solive la plus sollicitée à une portée de 5m

$$\frac{L}{35} < h < \frac{L}{30}$$

Avec :

- h : la hauteur du profilé
- L : la longueur de la solive

Lors du bétonnage de la dalle, on tiendra compte de la présence d'un était placé à mi- travée. Donc : L=5 m

$$\frac{5000}{35} < h < \frac{5000}{30} \rightarrow 142mm < h < 166.66mm$$

• Pour un IPE160 :

Poids	Section	Dimensions				Caractéristiques				
G	Α	Η	b	tſ	tw	Iy	Iz	W _{pl-y}	Iy	iz
Kg/m	cm ²	mm	mm	mm	mm	cm ⁴	cm ⁴	cm ³	cm	cm
15.8	20.1	160	82	7.4	5	869	68.3	124	6.58	1.84

Tableau II. 3: Caractéristique du profile IPE 160

II.5.1.1. Phase de construction : (avec un était)

- Poids P du profile (IPE 160) $\dots g_P = 0,158 \text{ KN /ml}$
- Poids P du béton frais $G_b = 2.67 \text{ KN/m}^2$
- Poids du bac d'acier $G_{bac} = 0.15 \text{ KN/m}^2$
- Surcharge de construction $Qc = 0.75 \text{ KN/m}^2$

a. Combinaison des charges

> ELU

$$\begin{split} q_u &= 1,35 \times (gp + (G_b + g) \times 1,5) + 1,5 \times Qc \times 1,5 \\ q_u &= 1,35 \times (0,158 + (2.67 + 0,15) \times 1,5) + 1,5 \times 0,75 \times 1,5 \\ q_u &= 7.6113 \text{ KN/ml} \end{split}$$

> ELS

$$\begin{split} q_s &= gp + (Gb + g) \times 1,5 + Qc \times 1,5 \\ q_s &= 0,158 + (2.67 + 0,15) \times 1,5 + 0,75 \times 1.5 \\ q_s &= 5.512 \text{ KN/ml} \end{split}$$

b. Vérification de Moment

✓ La Flexion

Le moment fléchissant M_{sd} dans la section transversale de classe I et II doit satisfaire à la condition suivante :

$$M_{sd} \leq M_{sd} = W_{ply} \times \frac{f_y}{\gamma_{m0}}$$

Avec :

M_{max}: le moment appliqué.

 $\gamma = 1$; f_y= 275 MPa.

Le moment appliqué :

$$M_{max} = M_{sd} = \frac{qu * l^2}{8} = \frac{7.611 \times 5^2}{8} = 23.872 \text{ KN. m}$$

$$M_{pl.rd} = \frac{W_{pl} \times f_y}{\gamma_{m0}} = \frac{124 \times 10^{-6} \times 275 \times 10^3}{1} = 34.1 \text{ kN. m}$$

$$M_{Pl,rd} > M_{sd} \Rightarrow$$
 vérifiée

✓ Effort tranchant

On doit vérifier que :

$$V_{sd} < V_{pl,rd} = \frac{f_y \times A_v}{\sqrt{3} \times \gamma_{m0v}}$$

D'où:

$$A_v = A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f$$

$$A_v = 2010 - 2 \times 82 \times 7.4 + (5 + 2 \times 9) \times 7.4 = 966.1 \text{mm}^2$$

$$V_{pl,rd} = \frac{275 \times 10^3 \times 966.1 \times 10^{-6}}{1 \times \sqrt{3}} = 153.389 \text{ kN}$$
$$V_{sd} = \frac{q_u \times L}{2} = \frac{7.611 \times 5}{2} = 19.02 \text{ kN}$$

 $V_{Pl,rd} > V_{sd} \Longrightarrow vérifiée$

 $0.5 \times V_{Pl,rd} = 76.694 \text{ kN} > V_{sd}$

c. Vérification de la rigidité

$$f_{max} = \frac{5 \times qs \times l^4}{384 \times E \times Iy} \le \bar{f}$$

Avec :

 $q_{ser} = 5.512 \text{ KN/ml.}$ L = 5m $E = 2,1.10^5 \text{ N/mm}^2.$ $I_y = 869 \text{ cm}^4.$

$$f^{\max} = \frac{5 \times qs \times l^4}{384 \times E \times ly} = \frac{5 \times 5.512 \times 2500^4}{384 \times 2.1 \times 10^5 \times 869.3 \times 10^4} = 1.67 \text{mm}$$

$$\bar{f} = \frac{L}{250} = \frac{5000}{250} = 20 \text{mm}$$

$$f^{\max} \le \bar{f} \implies \text{vérifiée}$$

d. Vérification du déversement

On considère que les poutres sont maintenant latéralement par des solives donc pas de risque de déversement.

II.5.1.2. Phase finale

- Poids P du profile (IPE 160)gp= 0,158KN /ml
- Charge permanente $G_t = 5.18 \text{KN}/\text{m}^2$
- Sur charge d'exploitation $Q = 1 \text{ KN/m}^2$

L'entraxe entre les solives est de 1,5m.

a. Combinaisons de charge

> ELU

$$\begin{split} & q_u = 1,35 \times [gp+(G_t \! \times \! 1,5)] + 1,5 \! \times \! Q \! \times \! 1,5 \\ & q_u \! = 1,35 \times \! [0,\! 158 \! + \! (5.18 \! \times \! 1,5)] \! + \! 1,5 \! \times \! 1,5 \! \times \! 1,5 \\ & q_u \! = \! 14,\! 07 KN/ml \end{split}$$

> ELS

$$q_{s}=g_{p}+(G_{t}+Q)\times 1,5$$
$$q_{s}=0,158+(5.51+1,5)\times 1,5$$
$$q_{s}=10,673KN/ml$$

b. Largeur de la dalle

Figure II. 1: Largeur de la dalle effective.

• Position de l'axe neutre plastique :

▶
$$R_{b\acute{e}ton} = 0.57 \times f_{ck} \times b_{eff} \times h_c = 0.57 \times 25 \times 1250 \times 65 \times 10^{-3} = 1157,8125 \text{kN}$$

 $R_{Acier}=0,95 \times f_y \times A_0 = 0,95 \times 275 \times 2010 \times 10^{-3} = 525.1125 \text{kN}$

Axe neutre se trouve dans la dalle de béton. Donc le moment résistant plastique développé par la section mixte est :

$$Mpl.rd = RAcier \left[\frac{h_0}{2} + hc + hp - \left(\frac{R_{Acier} * h_c}{2R_{b\acute{e}ton}}\right)\right]$$

c. Vérifications de moment

✓ <u>La flexion :</u>

Le Moment fléchissant M_{sd} dans la section transversale de classe I et II doit satisfaire à la condition suivante :

Il faut que : $M_{sd} \leq M_{pl.Rd}$

Le moment appliqué :

$$M_{max} = M_{sd} = \frac{q_u \times l^2}{8} = \frac{14.07 \times 5^2}{8} = 43.5625 \text{ KN. m}$$

$$\begin{split} \text{Mpl.rd} \ &= 525.1125 [\frac{160}{2} + 65 \ + 55 - (\frac{525.1125 \times 65}{2 \times 1157,8125})] \times 10^{-3} = 97.2823 \text{KN.m} \\ \\ \text{M}_{\text{Pl,rd}} > \text{M}_{\text{sd}} \quad \implies \text{vérifiée} \end{split}$$

✓ L'effort tranchant :

On doit vérifier que : $V_{sd} < V_{pl.rd} = \frac{f_y \times A_v}{\sqrt{3} \times \gamma m0}$

 $A_v = 726 mm^2$

$$V_{pl,rd} = \frac{275 \times 10^3 \times 966.1 \times 10^{-6}}{\sqrt{3} \times 1.1} = 139.44 \text{kN}$$

$$V_{sd} = \frac{q_u \times L}{2} = \frac{14.07 \times 5}{2} = 35.05 \text{kN}$$

 $V_{Pl,rd} > V_{sd} \Longrightarrow vérifiée$

$$0.5 \times V_{Pl,rd} = 69.722 \text{ kN} > V_{sd}$$

Donc il n'est pas d'interaction entre l'effort tranchant et le moment fléchissant.

d. vérification de la rigidité :

$$f^{\max} = \frac{5 \times q_s \times l^4}{384 \times E \times Ic} \le \bar{f}$$

Avec :

$$q_{ser} = 10,67 \text{KN/ml}.$$

$$L = 5 \text{ m}.$$

$$E = 2,1.10^{5} \text{ N/mm}^{2}.$$

$$Ic = \frac{\text{Aa} \times (h_{c} + 2h_{p} + h_{a})^{2}}{4 \times (1 + \text{m. v})} + \frac{b_{eff} \times h_{c}^{-3}}{12 \times \text{m}} + \text{ Ia}$$

$$V = \frac{\text{Aa}}{\text{Ab}} = \frac{2010}{1250 \times 65} = 0,024 \qquad \text{m} = \frac{\text{Ea}}{\text{Eb}} = 15$$

$$Ic = \frac{2010 \times (65 + 2 \times 55 + 160)^{2}}{4 \times (1 + 15 \times 0,024)} + \frac{1250 \times 65^{3}}{12 \times 15} + 869 \times 10^{4} = 52,062 \times 10^{6} \text{mm}^{4}$$
La valeur de la flèche maximale est

$$f^{\text{max}} = \frac{5 \times \text{qs} \times l^4}{384 \times \text{E} \times \text{Ic}} = \frac{5 \times 10,67 \times 5000^4}{384 \times 2,1 \times 10^5 \times 52.062 \times 10^6} = 7,858 \text{mm}$$
$$\overline{f} = \frac{L}{250} = \frac{5000}{250} = 20 \text{mm}$$

 $F^{max} = f^{in} + f^{f} = 1.67 + 7.85 = 9.52 \text{mm} \le \overline{f} = 20 \text{ mm} \Longrightarrow vérifiée}$

e. Vérification du déversement

Dans cette phase il n'est pas nécessaire de vérifier le déversement

II.5.2. Plancher terrasse

La solive plus sollicitée à une portée de 5m

$$\frac{L}{35} < h < \frac{L}{30}$$

Avec :

h : la hauteur du profilé

L : la longueur de la solive

Lors du bétonnage de la dalle, on tiendra compte de la présence d'un était placé à mi- travée. Donc : L=5 m

$$\frac{5000}{35} < h < \frac{5000}{30} \rightarrow 142mm < h < 166.66mm$$

II.5.2.1. Phase de construction : (avec un était)

- Poids P du profile (IPE 160)g_P= 0,158 KN /ml
- Poids P du béton frais $G_b = 2.67 \text{ KN/m}^2$
- Poids du bac d'acier $G_{bac} = 0.15 \text{ KN/m}^2$
- Surcharge de construction $Qc = 0.75 \text{ KN/m}^2$

a. Combinaison des charges

> ELU

$$\begin{split} q_u &= 1,35 \times (gp + (G_b + g) \times 1,5) + 1,5 \times Qc \times 1,5 \\ q_u &= 1,35 \times (0,158 + (2.67 + 0,15) \times 1,5) + 1,5 \times 0,75 \times 1,5 \\ q_u &= 7.6113 \text{ KN/ml} \end{split}$$

> ELS

$$\begin{split} q_s &= gp + (Gb + g) \times 1,5 + Qc \times 1,5 \\ q_s &= 0,158 + (2.67 + 0,15) \times 1,5 + 0,75 \times 1.5 \\ q_s &= 5.512 \text{ KN/ml} \end{split}$$

b- Vérification de Moment

✓ <u>La Flexion :</u>

Le moment fléchissant M_{sd} dans la section transversale de classe I et II doit satisfaire à la condition suivante :

$$M_{sd} \le M_{sd} = W_{ply} \times \frac{f_y}{\gamma_{m0}}$$

Avec :

M_{max}: le moment appliqué.

 $\gamma = 1$; f_y= 275 MPa.

Le moment appliqué :

$$M_{max} = M_{sd} = \frac{qu * l^2}{8} = \frac{7.611 \times 5^2}{8} = 23.872 \text{ KN. m}$$
$$M_{pl.rd} = \frac{W_{pl} \times f_y}{\gamma_{m0}} = \frac{124 \times 10^{-6} \times 275 \times 10^3}{1} = 34.1 \text{ kN. m}$$

 $M_{Pl,rd} > M_{sd} \Rightarrow vérifiée$

✓ Effort tranchant :

On doit vérifier que :

$$V_{sd} < V_{pl,rd} = \frac{f_y \times A_v}{\sqrt{3} \times \gamma_{m0v}}$$

D'où:

$$A_{v} = A - 2 \times b \times t_{f} + (t_{w} + 2 \times r) \times t_{f}$$

$$A_{v} = 2010 - 2 \times 82 \times 7.4 + (5 + 2 \times 9) \times 7.4 = 966.1 \text{ mm}^{2}$$

$$V_{pl,rd} = \frac{275 \times 10^{3} \times 966.1 \times 10^{-6}}{1 \times \sqrt{3}} = 153.389 \text{ kN}$$

$$V_{sd} = \frac{q_{u} \times L}{2} = \frac{7.611 \times 5}{2} = 19.02 \text{ kN}$$

$$V_{pl,rd} > V_{sd} \Longrightarrow \text{ vérifiée}$$

$$0.5 \times V_{pl,rd} = 76.694 \text{ kN} > V_{sd}$$

c-Vérification de la rigidité

$$f_{\max} = \frac{5 \times qs \times l^4}{384 \times E \times Iy} \le \bar{f}$$

Avec :

 $q_{ser} = 5.512 \text{ KN/ml.}$ L = 5m $E = 2,1.10^5 \text{ N/mm}^2.$ $I_y = 869 \text{ cm}^4.$

$$f^{\text{max}} = \frac{5 \times q_{\text{S}} \times l^{4}}{384 \times E \times I_{\text{Y}}} = \frac{5 \times 5.512 \times 2500^{4}}{384 \times 2.1 \times 10^{5} \times 869.3 \times 10^{4}} = 1.67 \text{mm}$$

$$\bar{f} = \frac{L}{250} = \frac{5000}{250} = 20 \text{mm}$$

 $f^{max} \leq \bar{f} \Rightarrow v \acute{e}rifi\acute{e}e$

II.5.2.2. Phase finale

- Poids P du profile (IPE 160)gp= 0,158KN /ml
- Charge permanente $G_t = 6.83 \text{KN/m}^2$
- Sur charge d'exploitation $Q = 1 \text{ KN/m}^2$

L'entraxe entre les solives est de 1,5m.

a. Combinaisons de charge

> ELU

$$\begin{split} & q_u = 1,35 \times [gp+(G_t \! \times \! 1,5)] \! + \! 1,5 \! \times \! Q \! \times \! 1,5 \\ & q_u \! = 1,35 \times \! [0,\!158 \! + \! (6.83 \! \times \! 1,5)] \! + \! 1,5 \! \times \! 1 \! \times \! 1,5 \\ & q_u \! = \! 16.29 \text{KN/ml} \end{split}$$

> ELS

 $\begin{aligned} q_s &= g_p + (G_t + Q) \times 1,5 \\ q_s &= 0,158 + (6.83 + 1) \times 1,5 \\ q_s &= 13.403 \text{KN/ml} \end{aligned}$

b. Largeur de la dalle

 $b_{eff}=inf \left\{ \begin{array}{cc} 2\times L_0/8 \ L_0 & \longrightarrow : \mbox{longueur libre d'une poutre simplement appuie} \\ \\ b & \longrightarrow & : \mbox{Entraxe entre les poutres} \end{array} \right.$

• Position de l'axe neutre plastique :

$$ightarrow R_{b\acute{e}ton} = 0.57 \times f_{ck} \times b_{eff} \times h_c = 0.57 \times 25 \times 1250 \times 65 \times 10^{-3} = 1157,8125 \text{kN}$$

▶ $R_{Acier}=0$,95×f_y×A₀=0,95×275×2010×10⁻³ = 525.1125kN

Rbéton>RAcier

Axe neutre se trouve dans la dalle de béton. Donc le moment résistant plastique développé par la section mixte est :

$$Mpl.rd = RAcier \left[\frac{h_0}{2} + hc + hp - \left(\frac{R_{Acier} * h_c}{2R_{b\acute{e}ton}}\right)\right]$$

c. Vérifications de moment

✓ <u>La flexion :</u>

Le Moment fléchissant M_{sd} dans la section transversale de classe I et II doit satisfaire à la condition suivante :

Il faut que : $M_{sd} \leq M_{pl.Rd}$

Le moment appliqué :

$$M_{\text{max}} = M_{\text{sd}} = \frac{q_u \times l^2}{8} = \frac{16.29 \times 5^2}{8} = 50.906 \text{ KN. m}$$

$$Mpl.rd = 525.1125 [\frac{160}{2} + 65 + 55 - (\frac{525.1125 \times 65}{2 \times 1157,8125})] \times 10^{-3} = 97.2823 \text{KN. m}$$

$$M_{Pl.rd} > M_{\text{sd}} \implies \text{vérifiée}$$

L'effort tranchant :

On doit vérifier que : $V_{sd}\!\!<\!\!V_{pl,rd}\!\!=\!\!\frac{f_y\!\times\!A_v}{\sqrt{3}\!\times\!\gamma m0}$

 $A_v = 726 mm^2$

$$V_{pl,rd} = \frac{275 \times 10^3 \times 966.1 \times 10^{-6}}{\sqrt{3} \times 1.1} = 139.44 \text{kN}$$

 $V_{sd} = \frac{q_u \times L}{2} = \frac{16.29 \times 5}{2} = 40.725 \text{kN}$ $V_{Pl,rd} > V_{sd} \Longrightarrow vérifiée$

 $0.5 \times V_{Pl,rd} = 69.722 \text{ kN} > V_{sd}$

Donc il n'est pas d'interaction entre l'effort tranchant et le moment fléchissant.

d. Vérification de la rigidité

$$f^{\max} = \frac{5 \times q_s \times l^4}{384 \times E \times Ic} \le \bar{f}$$

Avec :

$$q_{ser} = 13,403 \text{KN/ml.}$$

$$L = 5 \text{ m.}$$

$$E = 2,1.10^{5} \text{ N/mm}^{2}.$$

$$Ic = \frac{\text{Aa} \times (h_{c} + 2h_{p} + h_{a})^{2}}{4 \times (1 + \text{m. v})} + \frac{b_{eff} \times h_{c}^{-3}}{12 \times \text{m}} + \text{ Ia}$$

$$V = \frac{\text{Aa}}{\text{Ab}} = \frac{2010}{1250 \times 65} = 0,024 \qquad \text{m} = \frac{\text{Ea}}{\text{Eb}} = 15$$

$$Ic = \frac{2010 \times (65 + 2 \times 55 + 160)^{2}}{4 \times (1 + 15 \times 0,024)} + \frac{1250 \times 65^{3}}{12 \times 15} + 869 \times 10^{4} = 52,062 \times 10^{6} \text{mm}^{4}$$

La valeur de la flèche maximale est

$$f^{\max} = \frac{5 \times qs \times l^4}{384 \times E \times Ic} = \frac{5 \times 13.403 \times 5000^4}{384 \times 2.1 \times 10^5 \times 52.062 \times 10^6} = 9.97 \text{mm}$$
$$\overline{f} = \frac{L}{250} = \frac{5000}{250} = 20 \text{mm}$$

 $F^{max} = f^{in} + f^{f} = 1.67 + 9.97 = 11.64 \text{mm} \le \overline{f} = 20 \text{ mm} \implies vérifié$

<u>Remarque</u> : la procédure de calcul de la solive ci-dessus est la même pour les autres solives, le calcul est récapitulé dans le tableau suivant :

Niveau	Profile	Longueur m	Entre axe m	qu KN/m	qs KN/m	Msd/Mplrd r(%)	Flèche adm (mm)	Flèche max (mm)
Etage courant	IPE160	5	1,5	13,621	9,923	0.437	20	9,05
Terrasse inaccessible	IPE160	5	1,5	16,29	13,403	0.523	20	11,64

Tableau II. 4: Récapitulatif pour les solives de chaque niveau

La semelle supérieureest maintenue par la dalle en béton.

<u>II.6. Calcul des connecteurs</u>

Les connecteurs sont utilisés pour assurer le comportement mixte entre la poutre en acier et la dalle en béton. Dans le cas de notre parking on opte pour des connecteurs de types Goujon Nelson, en vue de ses avantages en termes de facilité et rapidité d'exécution.

Figure II. 3: Schéma des positions des connecteurs

II.6.1. Résistance du connecteur isolée

Figure II. 4: Dimensions de la tôle et du connecteur

$$P_{rd} = min \begin{cases} K. 0.29. \alpha. d^{2}. \frac{\sqrt{f_{c28}. E_{c}}}{\gamma_{v}} \\ K. 0.8. f_{u}. \frac{\pi. d^{2}}{4. \gamma_{v}} \end{cases}$$

Avec :

- γ_v : coefficient partiel de sécurité pour les connecteurs pris égal a 1.25
- d: diamètre du goujon, d = 19 mm
- f_u : résistance ultime en traction de l'acier du goujon égale a 430 MPA
- E_c : valeur du module d'élasticité sécant du béton égale a 30500 MPA
- f_{c28} : résistance caractéristique du béton égale a 25 MPA
- *K* : facteur de réduction pour tenir compte de la présence des nervures

$$K = \begin{cases} 0.6 \times \frac{b_0}{h_p} \left(\frac{h_c}{h_p} - 1 \right) \le 1 \text{ si les nervures sont parallèle a la solive} \\ \frac{0.7}{\sqrt{N_r}} \times \frac{b_0}{h_p} \left(\frac{h_c}{h_p} - 1 \right) \le K_{t,max} \text{ si les nervures sont perpendiculaire a la solive} \end{cases}$$

Avec :

- N_r : le nombre de goujon par nervure, on le prend égal à 1
- h_c : hauteur de la dalle en béton
- h_p : hauteur du bac d'acier
- b_0 : largeur de la nervure (d'après la fiche technique du HIBAND55) 150mm
- $K_{t,max}$: limite supérieure pour le facteur K, égale 0.85 d'après le tableau 6.2 si dessous.
- α : facteur correctif.

$$\alpha = \begin{cases} 0.2 \times \left(\frac{h}{d} + 1\right) & pour \ 3 \le \frac{h}{d} \le 4\\ & 1 \ pour \ \frac{h}{d} \ge 4 \end{cases}$$

Dans notre cas, on a : $\frac{h}{d} = \frac{95}{19} = 5 > 4 \Rightarrow \alpha = 1$

Et, les nervures sont perpendiculaires aux solives, donc :

$$K = \frac{0.7}{\sqrt{N_r}} \times \frac{b_0}{h_p} \left(\frac{h_c}{h_p} - 1 \right) \twoheadrightarrow K = \frac{0.7}{\sqrt{1}} \times \frac{88.5}{55} \left(\frac{95}{55} - 1 \right) \twoheadrightarrow K = 0.819$$

 $K_{t,max}$: limite supérieure pour le facteur K, égale 0.85 d'après le tableau 6.2 si dessus. →K=0.85 Donc :

$$P_{rd} = min \begin{cases} 0.85 \times 0.29 \times 1 \times 19^2 \times \frac{\sqrt{25 \times 30500}}{1.25} = 62.16 \ KN \\ 0.85 \times 0.8 \times 430 \times \frac{\pi \times 19^2}{4 \times 1.25} = 66.32 \ KN \end{cases}$$

 $P_{rd} = 62.16 \, KN$

II.6.2. Effort tranchant repris par les goujons

$$R_L = \min\left(R_b; R_a\right)$$

Avec :

 R_b : Résistance de compression du béton ; $R_b = 1157.812$ KN

 R_a : Résistance de traction du profilé d'acier ; $R_a = 525.112 \text{ KN}$

D'où : $R_L = R_a = 525.112 \ KN$

II.6.3. Nombre de connecteurs par demi portée

$$n = \frac{525.112}{62.16} \rightarrow n = 9$$

Ce qui nous fera un total de 18 connecteurs sur toute la longueur de la solive, et donc 9 connecteurs par demi porté.

 $n = \frac{R_L}{P_{rd}}$

II.6.4. Espacement entre les goujons

Soit E l'espacement entre les goujons calculer comme suit :

$$E = \frac{L}{n-1}$$

L Est la longueur de la solive ; L = 5m

$$E = \frac{5000}{18-1} \Rightarrow E = 294.11 mm$$

$$E_{min} \ge 5d \Rightarrow E_{min} \ge 5 \times 19 = 95 mm$$

$$E_{max} = 6h_c \Rightarrow E_{max} = 6 \times 95 = 570 mm$$

Emin <294.11< Emax à vérifiée

On opte pour un espacement de 29.41cm entre les goujons.

Figure II. 5: Schéma de position des connecteurs

II.7. Prédimensionnement des poutres secondaires

Les poutres secondaires sont calculées de la même manière que les solives. Pour le calcul qui suit, on prend en considération les poutres secondaires médiane, avec un espacement entre deux poutre secondaires 7.5 m et un espacement entre poutre secondaire et deux solives de 1.5m.

Les résultats obtenus sont résumés dans le tableau suivant :

Niveau	Profilé	Longueur (m)	e (m)	qs KN/m	qu KN/ml	Msd/Mplrd R (%)	Flèche adm (mm)	Flèche max (mm)
Étage courant	IPE 160	5	1.5	9.923	13.62	0.87	32	28.39

Tableau II. 5: Récapitulatif pour les poutres secondaires de chaque niveau

II.8. Prédimensionnement des poutres principales

Exemple de calcul pour poutre principale intermédiaire du plancher courant $L_{poutre} = 7.5m$

$$\frac{L}{25} \le h \le \frac{L}{15}$$
$$\frac{7500}{25} \le h \le \frac{7500}{15}$$

 $300 \leq h \leq 500$

	Poids	Section		Dimensions				Caractéristiques					
Profilé	Р	Α	Н	В	tſ	tw	r	Iy	Iz	Wply	Wplz	İy	İz
	Kg/m	Cm ²	Mm	mm	mm	mm	mm	Cm^4	Cm^4	Cm ³	Cm ³	cm	cm
IPE400	66.3	84.46	400	180	13.5	8.6	21	23130	1318	1307	299	16.55	3.95

Tableau II. 6: Caractéristiques de profilé IPE400

II.8.1. Phase initiale

Le profilé d'acier travail seul, donc les charges de la phase de construction, en plus des réactions des solives sont :

- Poids propre du profilé $G_p = 0.663 \ KN/ml$
- Poids propre du béton frais $G_b = 3 KN/m^2$
- Poids du bac d'acier $G_{bac} = 0.15 \ KN/m^2$
- Surcharge de construction (ouvrier) $Q_{ouvrier} = 0.75 \ KN/m^2$

II.8.1.1. Calcul des réactions des solives

Schéma statique de la poutre

qu= 8,279 KN/ml

ELS:

 $q_s = 6.008 KN/ml$

$$R_{u} = \frac{q_{u} \text{solive} \times \text{Lsolive}}{2}$$

$$R_{s} = \frac{q_{s} \text{solive} \times \text{Lsolive}}{2}$$

$$R_{s} = \frac{q_{s} \text{solive} \times \text{Lsolive}}{2}$$

$$R_{u} = \frac{8.279 \times 5}{2} + \frac{8.279 \times 5}{2} = 41.395$$

$$R_{s} = \frac{6.008 \times 6.07}{2} + \frac{6.008 \times 6.07}{2}$$

$$R_{u} = R_{1} + R_{2} = 41.395 \text{ kN } R_{s} = R_{1} + R_{2} = 30.04 \text{ kN}$$

$$R_{u} = R_{3} + R_{4} = 41.395 \text{ kN } R_{s} = R_{3} + R_{4} = 30.04 \text{ Kn}$$

Remarque : R_1 et R_2 sont les réactions des solives gauches et droites par rapport à la poutre principale

II.8.1.2. Combinaisons des charges

✓ ELU: $q_u = 1,35 \times (g_p + (G_b + g) \times bs) + 1,5 \times q_c \times bs$ $q_u = 1,35 \times (0,663 + (3+0,15) \times 0,18) + 1,5 \times 0.75 \times 0,18 \implies q_u = 1.863 \text{ KN/ml}$ ✓ ELS: $q_s = g_p + (G_b + g) \times bs + q_c \times bs$ $q_s = 0,663 + (3+0,15) \times 0,18 + 0.75 \times 0,18 \implies q_s = 1,365 \text{KN/ml}$

II.8.1.3. Vérifications

✓ <u>Moment fléchissant :</u>

Le moment fléchissant M_{sd} dans la section transversale de classe I et II doit satisfaire la condition suivante : $M_{sd} \leq M_{brd} = \frac{W_{pl} \cdot f_y}{\gamma_{M_0}}$

$$M_{sd} = \frac{q_u \times l^2}{8} + \frac{3R_u \times l}{5} = \frac{1.863 \times 7.5^2}{8} + \frac{3 \times 41.395 \times 7.5}{5} = 199.376 \text{kN.m}$$
$$M_{pl.rd} = \frac{W_{pl} \times f_y}{\gamma_{m0}} = \frac{1307 \times 10^{-6} \times 275 \times 10^3}{1} = 359.425 \text{ kN.m}$$

 $M_{Pl,rd} > M_{sd} \implies$ condition vérifiée

✓ Effort tranchant :

On doit vérifier que :

$$V_{sd} < V_{pl,rd} = \frac{f_y \times A_v}{\sqrt{3} \times \gamma_{m0v}}$$

D'où:

$$A_{v} = A - 2 \times b \times t_{f} + (t_{w} + 2 \times r) \times t_{f}$$

$$A_{v} = 8446 - 2 \times 180 \times 13.5 + (8.6 + 2 \times 21) \times 13.5 = 4269.1 \text{ mm}^{2}$$

$$V_{pl,rd} = \frac{275 \times 10^{3} \times 4269.1 \times 10^{-6}}{1 \times \sqrt{3}} = 677.810 \text{ kN}$$

$$V_{sd} = \frac{q_{u} \times L}{2} + 2R_{u}$$

$$V_{sd} = \frac{1.863 \times 7.5}{2} + 2 \times 41.395 = 89.77 \text{ kN}$$

 $V_{Pl,rd} > V_{sd} \Longrightarrow 677.810 \text{ kN} > 89.77 \text{ kN} \Longrightarrow \text{vérifiée}$ $0.5 \times V_{Pl,rd} = 338.905 \text{ kN} > V_{sd}$ Il n'y a pas d'interaction entre l'effort tranchant et le moment fléchissant. Donc il n'est pas nécessaire de réduire la résistance à la flexion.

 $\int \frac{\text{La rigidité :}}{\text{II faut vérifier que :}}$ II faut vérifier que : $f_{\text{max}} \leq \bar{f} = \frac{L}{250} = 30 \text{mm}$ $f^{\text{max}} = f^{4} + f^{2}$ $f = \frac{5 \times q_{s} \times l^{4}}{384 \times E \times I_{y}} = \frac{5 \times 1,365 \times (7500)^{4}}{384 \times 2,1 \times 10^{5} \times 23130 \times 10^{4}} = 1,157 \text{ mm}$ $f^{2} = \frac{63 \times R_{s} \times l^{3}}{1000 \times E \times I_{y}} = \frac{63 \times 30.04 \times 10^{3} \times (7500)^{3}}{1000 \times 2,1 \times 10^{5} \times 23130 \times 10^{4}} = 16.64 \text{ mm}$

 $f^{max} = 1,157 + 16.64 = 17,594 \text{ mm} < f^{adm} = 30 \text{ mm}$

Condition de la flèche vérifiée

II.8.1.4. Vérification du déversement

On considère que les poutres sont maintenant latéralement par des solives donc pas de risque de déversement.

II.8.2. Phase finale

Le béton ayant durci la section mixte (le profilé et la dalle) travaillant ensemble les charges de la phase finale sont :

•	Poids propre du profilé IPE 400	g _p =0,663kN/m
•	Charge permanente	$G_t=5,51$ kN/m ²
•	Surcharge d'exploitation	. Qt= 1.5Kn

II.8.2.1. Les réactions des solives

ELU:	ELS :
q _u = 13.621 KN/ml	qs=9.923 KN/ml
$R_{u} = \frac{13.621 \times 5}{2} + \frac{13.621 \times 5}{2} = 49.615 \text{ kN}$	= 68.105 kN; $R_s = \frac{9.923 \times 5}{2} + \frac{9.923 \times 5}{2}$
$R_{\rm U} = R_1 + R_2 = 68.105 \text{ kN}$	$R_{S} = R_{1} + R_{2} = 49.615 \text{ kN}$
$R_{\rm U} = R_3 + R_4 = 68.105 \text{ kN}$	$R_{S} = R_{3} + R_{4} = 49.615 \text{ kN}$

II.8.2.2. Combinaisons des charges

- ✓ ELU: $q_u=1,35 [(G'bs)+g_p]+1.5'Q'bs$ $q_u=1,35 [(5.51'0,18)+0,663]+1.5'1.5'0,18 ⇒ q_u=2.589kN/ml$ ✓ ELS: $q_s= (G-G_b-g) × bs+Q×bs$ $q_s= (5.51-3-0.15) × 0,18 +1.5×0,18 ⇒ q_s=0.694kN/ml$
- ✓ Largeur de la dalle

$$b_{eff} = \begin{cases} inf2 \times L_0/8...L: longueur libre d'une poutre simplement appuie b...L: b...L: longueur libre d'une poutres b...L.$$

$$b_{eff} = \inf \begin{cases} 2 \times L_0 / 8 = 2 \times 7.5 / 8 = 1,875 m \\ b = 5 m \end{cases}$$

Position de l'axe neutre plastique :

- > Rbéton= $0.57 \times f_{ck} \times b_{eff} \times h_c = 0.57 \times 25 \times 1875 \times 65 \times 10^{-3} = 1736.718 \text{kN}$
- $R_{\text{Acier}}=0,95 \times f_{\text{v}} \times A_0 = 0,95 \times 275 \times 8446 \times 10^{-3} = 2206.517 \text{kN}$
- ➢ Rbéton≤RAcier

Axe neutre se trouve dans la section d'acier

II.9. Prédimensionnement des poteaux

II.9.1. Les surfaces qui reviennent aux poteaux

- Calcul de la surface : $S = 31.425 \text{ m}^2$
- ✓ Les charges permanentes :
 - Poids du plancher terrasse : $G_t*S=6.83\times31.425=214.632$ KN

Poids de poutre principale : $G_{pp(IPE \ 400)} = (0,663 \times 2.535) + (0,663 \times 3,75) = 4.16 \text{ KN}$

Poids des poutres non porteuses : $G_{ps(IPE \ 160)} = 0,158 \times 5 = 0,79 \text{ kN}$

Poids des solives : $G_{\text{solive(IPE 160)}} = (0,158 \times 5) \times 5 = 3.95 \text{ kN}$

Poids du plancher courant : $G_c*S= 5.18 \times 31.425 = 162.781$ KN

Niveaux	Surface (m ²)	Charge permanente Cumulé (kN)
6 ^{eme} étage	31.425	386.203
5 ^{eme} étage	31.425	557.774
4 ^{eme} étage	31.425	729.345
3 ^{eme} étage	31.425	900.916
2 ^{eme} étage	31.425	1072.487
1 ^{eme} étage	31.425	1244.058
RDC	31.425	1415.629

Tableau II. 7: La charge permanente sur le poteau le plus sollicité

✓ Les charges d'exploitation :

- ▶ Plancher terrasse : $Q_t * S = 1,0 \times 31.425 = 31.425 \text{ kN}$
- ▶ Plancher courant : $Q_c * S = 1.5 \times 31.425 = 47.137 KN$

Tableau II. 8:	La charge o	d'exploitation	n sur le poteau	central (loi	de dégression)

Niveaux	Surface(m ²)	Surcharges	Surcharges (KN)
6 ^{eme} étage	31.425	∑ 0=Q 0	31.425
5 ^{eme} étage	31.425	$\sum_1 = Q_0 + Q_1$	78.562
4 ^{eme} étage	31.425	$\sum_{2} = \sum_{1} +0.9Q_{2}$	120.986
3 ^{eme} étage	31.425	$\sum_{3} = \sum_{2} +0.8 \mathbf{Q}_{3}$	158.696
2 ^{eme} étage	31.425	$\sum_{4} = \sum_{3} +0,7Q_{4}$	191 .692
1 ^{er} étage	31.425	$\sum_{5} = \sum_{4} +0.6Q_{5}$	219.975
RDC	31.425	$\sum_{6} = \sum_{5} +0.5Q_{6}$	243.543

Remarque : La loi de digression des charges exploitations selon le DTR B.C 2.2

Les poteaux sont des éléments sollicités en compression axiale, la valeur de calcul N_{sd} de l'effort de compression dans chaque section transversale doit satisfaire à la condition suivante :

$$N_{sd} \le N_{c.Rd} = \frac{A.f_{y}}{\gamma_{Mo}} \Rightarrow A \ge \frac{N_{sd} \times \gamma_{M_{0}}}{f_{y}}$$

N : Effort de compression.

 $f_y = 275 \text{ MPa}$

 $\gamma_{Mo}=1,1$

✓ Poteau plus sollicité :

- Calcul du poteau du 6^{ème} étage :

 $N_{sd} = 1,35G + 1,5Q$

 N_{sd} = 1,35*214.632+ 1,5*1= 291.257KN

$$A \ge \frac{N_{sd} \times \gamma_{M0}}{f_y} = \frac{291.257 \times 10^3 \times 1.1}{275} = 1165.02mm^2$$

✓ Profilé choisi HEA 100

Tableau II. 9: Les efforts normaux, la section et le profilé des poteaux

Niveau	Nsd (KN)	$A (mm^2)$	Profilé
6 ^{eme} étage	291.25	1165.02	HEA 100
5 ^{eme} étage	639.217	2556.68	HEA 140
4 ^{eme} étage	934.473	3737.892	HEA 160
3 ^{eme} étage	1222.659	4890.78	HEA 200
2 ^{eme} étage	1503.776	6015.104	HEA 220
1 ^{eme} étage	1777.81	7111.2452	HEA 240
RDC	2044.793	8179.172	HEA 260

II.9.2. Vérification de flambement

✓ Poteau plus sollicité : Poteaux HEA 260 (RDC)

Il faut vérifier que :
$$N_{sd} \leq N_{bRd} = \chi \frac{\beta_A \times A \times f_y}{\gamma_{M1}}$$

Avec :

 $\beta_A = 1$ Pour les sections classe 1 et 2

 $\gamma_{M1} = 1,1$

 χ : Facteur de réduction pour le déversement.

$$f_y = 275 \text{ MPa}$$

$$l_{\rm fy} = 0,7 l_0 = 4.2 m$$

 $l_{\rm fz}=l_0=6m$

$$\Lambda_{y} = \frac{l_{fy}}{l_{y}} = \frac{4200}{118.6} = 35.41$$
$$\Lambda_{z} = \frac{l_{fz}}{l_{z}} = \frac{4200}{70} = 70$$

- $\Lambda = \max \{ \Lambda_y | \Lambda_z \} = \max (35.41; 70) = 70$
- ✓ Choix de la courbe de flambement :

$$\frac{h}{b} = \frac{270}{280} = 0.964 < 1.2$$

 $t_f = 13 \ mm < 100 mm$

 \Rightarrow Courbe de flambement b $\Rightarrow \alpha = 0,34$

$$\begin{split} & \Lambda^{-} = \left(\frac{\Lambda}{\Lambda_{1}}\right) \times \sqrt{\beta_{A}} = \frac{70}{93,91} = 0,74 > 0,2 \\ & \lambda_{1} = 93,91\varepsilon \\ & \varepsilon = \sqrt{\frac{235}{f_{y}}} = \sqrt{\frac{235}{275}} = 0,92 \\ & \phi = 0,5 \left[1 + \alpha(\overline{\Lambda} - 0,2) + \overline{\Lambda^{2}}\right] = 0,5[1 + 0,34(0,74 - 0,2) + 0,74^{2}] = 0,86 \\ & \chi = \frac{1}{\left(\phi + \sqrt{\phi^{2} - \overline{\Lambda^{2}}}\right)} = \frac{1}{0,86 + \sqrt{(0,86^{2} - 0,74^{2})}} = 0,77 \\ & N_{sd} = 2044.793KN \ge N_{brd} = 0,77 \frac{1 \times 8682 \times 275}{1,1} = 1671.28 \text{ KN} \text{ Condition non vérifiée} \end{split}$$

Donc on opte pour **HEA260**

✓ Choix final des sections des profilés :

Etage	Profilé	Nsd (Kn)	Nb,rd (Kn)	Profilé choisi
7ème	HEA 100	291.25	408.87	HEA 140
6 ^{ème}	HEA 140	639.21	604.83	HEA 140
5 ^{ème}	HEA 160	934.47	746.32	HEA 220
4 ^{ème}	HEA 200	1222.65	1036.22	HEA 220
3ème	HEA 220	1503.77	1238.54	HEA 240
2 ^{ème}	HEA 240	1777.81	1479.17	HEA 240
1 ^{er}	HEA 260	2044.79	1671.28	HEA 260

II.10. Conclusion

Dans ce chapitre nous avons pré-dimensionné les éléments structuraux de notre structure conformément aux règles de l'Eurocode 3 [5] et du CCM97 [6]; les sections ont été récapitulé précédemment, ces dernières vont nous permettre d'avoir une idée primaire pour l'étape de la modélisation.

CHAPITRE III :

Etude climatique (Neige Et Vent)

III.1. Effet de la neige

III.1.1. Introduction

L'accumulation de la neige sur la toiture de la tour produit une surcharge qu'il faut la prendre en compte pour les vérifications des éléments de cette structure. Le règlement RNV2013 s'applique à l'ensemble des constructions en Algérie situées à une altitude inférieure à 2000 mètres.

III.1.2. Calcul des charges de neige

La charge caractéristique de neige S par unité de surface en projection horizontale de toitures ou de toute autre surface soumise à l'accumulation de la neige s'obtient par la formule suivante :

$S = \mu . S_k [kN/m^2]$ (Partie 3.1.1 RNV Version2013).

Où :

- S_k (en kN/m²) est la charge de neige sur le sol, fonction de l'altitude et de la zone de neige.

 $-\mu$ est un coefficient d'ajustement des charges, fonction de la forme de la toiture, appelé coefficient de forme.

Notre structure se trouve dans la zone A commune I selon les classifications deRNV2013.

La valeur de Sk en kN/m^2 est déterminée par la loi de variation suivante en fonction de l'altitude H en m du site considéré :

$$S_k = \frac{0.07 \times H + 15}{100}$$

Avec : H=210 m

$$S_{k} = \frac{0.07 \times 210 + 15}{100} = 0.297 \text{ kN/m}$$

D'après le tableau des coefficients de forme des toitures (**Tableau 6.2**. **RNVV2013**).

μ= 0,8

On suppose que la neige est sur toute la toiture, donc on prend :

Alors $S = 0.8 \times 0.297$ $S = 0.2376 \text{ kN/m}^2$

La charge de la neige Sn = $0,27 \text{ kN/m}^2$

III.2. Effet du vent

L'effet du vent sur une construction est assez prépondérant et a une grande influence sur la stabilité de l'ouvrage. Pour cela, une étude approfondie doit être élaborée pour la détermination des différentes actions dues au vent et ceci dans toutes les directions possibles.

Le calcul sera mené conformément au Règlement Neige et Vent 2013.

Les actions du vent appliquées aux parois dépendent de :

- La direction.
- L'intensité.
- La région.
- Le site d'implantation de la structure et leur environnement.
- La forme géométrique et les ouvertures de la structure.

III.2.1. Nature de la Structure

La classification des structures selon leur nature dépend de leur sensibilité aux excitations dynamiques, on distingue :

- 1. Constructions peu sensibles, pour lesquelles le coefficient dynamique $C_d < 1.2$.
- 2. Constructions sensibles, pour lesquelles le coefficient dynamique $C_d \ge 1.2$.

III.2.2. Hypothèses de calcul

On suppose que notre structure n'est pas entourée par d'autre structure (le vent souffle dans les deux directions).

- Données relatives au site :
 - ✓ Site plat : $C_t(Z) = 1$ pour $\emptyset \le 0.05$
 - ✓ Zone I : $q_{réf} = 375 \text{ N/m}^2$ (Tab 2.3.RNV version 2013)
 - ✓ Terrain catégorie IV...Kt = 0,234 Z₀ =1m, Z_{min} = 10m, \mathcal{E} = 0,67(Tab 2.4)
- Hauteur de référence Ze (§2.3.2.RNV version 2013)
 - ✓ h = 32.5m; b = 25.39m.
 - ✓ La hauteur de référence est : b < h < 2b

III.2.3. Pression dynamique de pointe

La pression dynamique de pointe q_p (Ze) a une hauteur de référence Ze et donnée par :

 $q_p(Z_e) = q_{ref} \times C_e(Z_e)$

a- <u>Coefficient de rugosité</u>

$$Cr(Ze) = Kt \times ln\left(\frac{Z}{Z_0}\right)$$

Pour $Zmin \le Ze \le 200m$ (§2.4.4. RNV Version2013)

Tronçon	Z [m]	Cr
De 0 à 25.39	25.39	0 ,756
De 25.39 à 32.5	32.5	0,814

b- <u>Coefficient de topographie</u>

L'ouvrage situé sur un site plat, donc on a :

Tronçon	Z [m]	Ct
De 0 à 25.39	25.39	1
De 25.39 à 32.5	32.5	1

c- Intensité de turbulence

$$Iv(Ze) = \frac{1}{C_t(Ze) \times ln\left(\frac{Z}{Z_0}\right)}$$
 Pour $Zmin \le Z$

Tableau III. 3: Coefficient Intensité de turbulence

Tronçon	Z [m]	Iv
De 0 à 25.39	25.39	0,309
De 25.39 à 32.5	32.5	0,287

d- <u>Coefficient d'exposition</u>

Cas de structures peu sensibles aux excitations dynamiques

$$C_e(Z_e) = C_t^2(Z_e) \times C_r^2(Z_e) \times [1 + 7I_v(Z_e)]$$

Tableau III. 4: Coefficient d'exposition

Tronçon	Ze [m]	Ce
De 0 à 25.39	25.39	1,8
De 25.39 à 32.5	32.5	1.99

Tableau III. 5: Tableau Récapitulatif

Tronçon	Ze [m]	Cr	Ct	Iv	Ce	$q_p[N/m^2]$
De 0 à 25.39	25.39	0 ,756	1	0,309	1,8	675
De 25.39 à 32.5	32.5	0,814	1	0,287	1,99	746,25

III.2.4. Calcul de la pression due au vent

III.2.4.1. Détermination de la pression dynamique

La pression dynamique **W** (**z**_j) agissant sur une paroi est obtenue à l'aide de la formule suivante : $W(z_j) = q_p (z_e) \times [C_{pe} - C_{pi}]$ [N/m²] (§2.5.2. RNV version2013). a- Coefficients de pressions extérieures Cpe

Figure III. 2: Légende pour la paroi verticale.

On détermine le coefficient à partir des conditions suivantes : ² (§ 5.1.1.2 RNV Version 2013)

$$\begin{split} C_{pe} &= C_{pe.1} & si \; S \leq 1 \; m^2 \\ C_{pe} &= C_{pe.1} + \left(C_{pe.10} - C_{pe.1} \right) \; x \; log10 \; (S) \quad si \; 1 \; m^2 < S < 10 \; m \\ C_{pe} &= C_{pe.10} & si \; S \geq 10 \; m^2 \end{split}$$

4 Paroi vertical (V1)

Cas de vent perpendiculaire à la largeur du bâtiment

$$C_{pe} = C_{pe,10} \quad \text{pour} \quad S \ge 10,00 \text{ m}^2$$

$$\begin{cases} \bullet & b=25,39m \\ \bullet & h=32,5m \\ \bullet & d=45,9m \end{cases}$$

• $e=\min[b, 2 \times ht] \implies e=25,39m$

Zone	Surface (m ²)	Сре
A	165,035 >10 donc Cpe=Cpe .10	-1
В	660.14 >10 donc Cpe=Cpe .10	-0,8
С	666,575>10 donc Cpe=Cpe .10	-0,5
D	825,175>10 donc Cpe=Cpe .10	+0,8
E	825,175 > 10 donc Cpe=Cpe.10	-0,3

Tableau III. 6: valeurs de Cpe pour les parois verticales - direction V1 du vent

Figure III. 3: Représentation des coefficients Cpe sur les différentes zones(V1).

- b- Coefficient de pression intérieur Cpi :
- ✓ Cpi1 = 0,3
- ✓ **Cpi2** = -0,5

REMARQUE :

Nous avons pris les valeurs extrêmes du cpi pour simuler les cas les plus défavorables de la perméabilité au vent.

La pression aérodynamique :

W (zj) =qp(zj) × (C_{pe}-C_{pi})

Zone	Z(m)	qp(ze)	Сре	Срі		W (zj) [N/m ²]	
Δ	25,39	675	-1	0,3	-0,5	-877,5	-337,5
1	32,5	746,25	-1	0,3	-0,5	-970,12	-373,12
B	25,39	675	-0.8	0,3	-0,5	-742,5	-202,5
	32,5	746,25	-0.8	0,3	-0,5	-820,87	-223,87
D	25,39	675	+0,8	0,3	-0,5	337,5	877.5,25
	32,5	746,25	+0,8	0,3	-0,5	373,12	970,125
Е	25,39	675	-0,3	0,3	-0,5	0	135
	32,5	746,25	-0.3	0,3	-0,5	0	149.25

Tableau III. 7: Récapitulatif(V1)

<u>Toiture :</u>

La hauteur de l'acrotère $h_p=0.6m$ nous avant une toiture plate Selon (§5.1.3RNV Version 2013)

e =min (b, 2h) =25,39m

Figure III. 4: Légende pour la paroi verticale la toiture (V1)

D'après le tableau **5.2 RNV 2013** on a : $h_p / h = 0.018$

a- Coefficients de pressions extérieures Cpe :

Zone	S>10m ²	Cpe10
F	16,11	-1,6
G	32,23	-1,1
Н	257,86	-0.7
Ι	843,07	-0,2

Tableau III. 8: Valeurs des pressions Cpe pour les différentes zones de terrasse sous V1

d =45.9 m

Figure III. 5: Légende pour les toitures plates.

b- Coefficient de pression intérieure Cpi :

Le coefficient de la pression intérieure C_{pi} des bâtiments sans cloisons intérieurs est donné en fonction de l'indice de perméabilité μ_p .

On définit l'indice de perméabilité μ_p comme suit :

✓ Cpi = 0, 3

$$c cpi = -0, 5$$

La pression aérodynamique :

W (zj) =qp(zj) × (C_{pe}-C_{pi})

Zone	Z(m)	qp(ze)	Cpe	Cpi	Cpi	W (zj) [N/m ²]	W (zj) [N/m ²]
	25,39	675	-1,6	0,3	-0,5	-1282,5	-742,5
F	32,5	746,25	-1,6	0,3	-0,5	-1417,8	-820,875
	25,39	675	-1,1	0,3	-0,5	-945	-405
G	32,5	746,25	-1,1	0,3	-0,5	-1044,75	-447,75
	25,39	675	-0,7	0,3	-0,5	-675	-135
Н	32,5	746,25	-0,7	0,3	-0,5	-746,25	-149,25
	25,39	675	-0,2	0,3	-0,5	-337,5	202,5
Ι	32,5	746,25	-0,2	0,3	-0,5	-373,12	223,875

Tableau III. 9: Récapitulatif (V1)

Paroi verticale : (V2)

Cas de vent perpendiculaire à la largeur du bâtiment

 $C_{pe} = C_{pe,10} \qquad pour \qquad S \ge 10,00 \ m^2$

- b=45.9m
- h=32.5m
- d= 25.39m
- $e=\min[b, 2 \times ht] \implies e=45.9m$

Figure III. 6: Légende pour la paroi verticale.

Zone	S>10m ²	Cpe10
A'	298,35	-1
B '	526,825	+0,8
D	1491,75	-+0,8
Ε	1491,75	-0,3

Tableau III. 10: Valeurs des pressions Cpe pour les différentes zones de la paroi verticale

(V2)

Figure III. 7: Représentation des coefficients Cpe sur les différentes zones(V2)

c- Coefficient de pression intérieure Cpi :

Donc :

- ✓ Cpi1 = 0,3
- ✓ Cpi2 = -0,5

La pression aérodynamique :

Tableau II	I. 11: Réc	apitulatif(V2)
------------	------------	----------------

Zone	Z(m)	qp(ze)	Cpe	(pi	W (zj)	[N/m ²]
A'	32,5	746,25	-1	0,3	-0,5	-970,12	-373,12
B '	32,5	746,25	-0.8	0,3	-0,5	-820,87	-223,87
D	32,5	746,25	+0,8	0,3	-0,5	373,12	970,125
E	32,5	746,25	-0.3	0,3	-0,5	-447,75	149.25

<u>Toiture :</u>

La hauteur de l'acrotère $h_p=0.6m$ nous avant une toiture plate Selon (§5.1.3RNV Version 2013)

e =min (b, 2h) =45.9m

Figure III. 8: Légende pour la paroi verticale la toiture (V1)

D'après le tableau **5.2 RNV 2013** on a : $h_p / h = 0.018$

a- Coefficients de pressions extérieures C_{P^e} :

Zone	S>10m ²	Cpe10	
F	16,11	-1,6	
G	32,23	-1,1	
Н	257,86	-0.7	
I	843,07	-0,2	

Tableau III. 12: Récapitulatif(V2)

Figure III. 9: Légende pour les toitures plates.

b- Coefficient de pression intérieure Cpi :

Le coefficient de la pression intérieure C_{pi} des bâtiments sans cloisons intérieurs est donné en fonction de l'indice de perméabilité μ_p .

On définit l'indice de perméabilité μ_p comme suit :

✓ Cpi = 0, 3

La pression aérodynamique :

 $w(z_j) = q_p(z_e)x[C_{pe} - C_{pi}] \quad [N/m^2]$

Tableau III. 13: Récapitulatif(V2)

Zone	Z(m)	qp(ze)	Cpe	Срі	Cpi	W (zj) [N/m ²]	W (zj) [N/m ²]
F	32,5	746,25	-1,6	0,8	-0,5	-970,12	-820,875
G	32,5	746,25	-1,1	0,8	-0,5	-820,87	-447,75
Η	32,5	746,25	-0,7	0,8	-0,5	373,12	-149,25
Ι	32,5	746,25	-0,2	0,8	-0,5	-447,75	223,875

CHAPITRE IV :

Etude des éléments secondaires

IV.1. Introduction

Dans ce chapitre on procède au calcul des éléments secondaires tels que les escaliers et l'acrotère.

IV.2. Acrotère

IV.2.1. Introduction

L'acrotère est un élément non structural, il sera calculé comme une console encastrée au niveau du plancher terrasse qui est la section dangereuse, d'après sa disposition, l'acrotère est soumis à une flexioncomposée due aux charges suivantes :

- Son poids propre sous forme d'un effort normal vertical.
- Une force horizontale due à une main courante Q=1kN/ml.

IV.2.2. Calcul des charges sollicitant l'acrotère

Le calcul se fait pour une bande de 1m de largeur dont les dimensions sont comme suite :

- \circ Hauteur : H = 60cm
- \circ Largeur : b = 100cm
- \circ Epaisseur : e = 10cm

Figure IV. 1: Dimension de l'acrotère.

IV.2.3. Principe de calcul

L'acrotère est assimilé à une console verticale encastrée à sa base dans le plancher terrasse, elle est soumise à :

- Son poids propre (Wp)
- Un moment dû à la force horizontale F, avec : F = max $(Q = 1kN/ml; Fp = 4 \times A \times Cp \times Wp)$

Le calcul du ferraillage se fait en flexion composée pour une bande de 1m de largeur, la fissuration estconsidérée comme préjudiciable car l'élément est exposé aux intempéries.

IV.2.3.1. Evaluation des charges

- **Charge d'exploitation :** Q = 1kN/ml
- Charges permanentes : le poids propre de l'acrotère pour 1m de largeur est égal à :

$$G = \rho \times S$$

S : la surface transversale totale de l'acrotère.

Surface de l'acrotère : $s = \left[(0,1 \times 0,6) + (0,1 \times 0,08) + \frac{(0,1 \times 0,02)}{2} \right] = 0,069m^2$ Le poids volumique tel que : $\rho = 25 \ kN/m^3$

- Poids propre de l'acrotère : Gpp = $\rho b \times S = 25 \times 0,069 = 1,725 \text{ kN/ml}$
- Revêtement en ciment :

 $\rho = 14 \ kN/m^3$ et e = 2cm

GR.C = $\rho \times e \times P_{cme} = 14 \times 0.2 \times (0.6 + 0.1 + 0.102 + 0.08 + 0.5) = 0.39 \text{ kN/ml}$

G = Gpp + GR.C = 2,11 kN/ml.

Figure IV. 2: Sollicitations de l'acrotère.

IV.2.4. Calcul de la force sismique

L'acrotère doit être vérifié sous l'action d'un effort sismique Fp appliqué sur sa partie supérieure.

Si Fp > 1,5Q > 1, on va utiliser cette force pour déterminer les efforts qui seront utilisés pour le calculdes armatures.

L'action des forces horizontales est données par : $Fp = 4 \times A \times Cp \times Wp$ (**RPA99 version 2003**)

Avec :

Fp : Force horizontale agissant sur les éléments non structuraux.

A : Coefficient d'accélération pour la zone III, groupe \longrightarrow *A* = 0,25 *Cp* : Facteur de force horizontale donné par le \longrightarrow tableau (6-1) *Cp* = 0,8*Wp* : Poids de l'acrotère = 2,11 kN

$$Fp = 1,69kN$$

 $Qu = max (1,5Q; Fp)$ $Qu = Qh = 1,69kN$

Alors pour 1m de largeur on a :

Q = 1,69kN/ml

IV.2.5. Calcul des efforts

✤ Etat limite ultime :

Etat limite ultime :

- $N_u = 1,35 G = 2,848 kN$ $N_{ser} = G = 2,11 kN$
- $M_{u} = 1,5Q \times h = 1,521kN.m$
- $T_u = 1,5Q = 2,535kN$

 $N_{ser} = Q \times h = 1,014 \text{ kN.m}$ $N_{ser} = Q = 1,69 \text{ kN.m}$

IV.2.6. Ferraillage de la section de l'acrotère

L'acrotère est sollicité en flexion composée et le calcul se fera à l'ELU :

Données :

h = 10cm; b = 100cm; fc28 = 25MPa; $\sigma bc = 14,17MPa$; c = c' = 2cm; fe = 400MPaMu= 1,521kN.m; Nu = 2,848kN

Figure IV. 4: Section de calcul de l'acrotère.

h : Epaisseur de la section (h=10cm).

c et c': La distance entre le centre de gravité des aciers et la fibre extrême du béton «enrobage» (c=c'=2cm).

d = h - c: Hauteur utile (d=8cm).

Calcul de l'excentricité

$$e0 = \frac{Mu}{Nu} = 53.43$$

IV.2.6.1.Calcul du moment fictif

 $M_{f} = Mu + Nu \left(\frac{h}{2} - c'\right) = 1,521 + 2,848 \left(\frac{0,1}{2} - 0,2\right) = 1,094 \text{ kN.m}$ $\mu = \frac{M_{f}}{bd^{2} \sigma_{bc}} = \frac{1,094 \times 10^{6}}{1000 \times 80^{2} \times 14,17} = 0,012$

 $\mu = 0,012 < \mu_r = 0,392 \implies A_s' = 0$ (les aciers comprimés ne sont pas nécessaires)

$$\alpha = 1,25(1 - \sqrt{1 - 2\mu_u}) = 1,25(1 - \sqrt{1 - 2 \times 0,012}) = 0,021$$

$$Z = d(1 - 0.4\alpha) = 0.09(1 - 0.4 \times 0.021) = 0.089 \text{ m}$$

$$\mu < 0.186 \Rightarrow \epsilon_{s} = 10\% \text{ d'où } \sigma_{s} = \frac{F_{e}}{\gamma_{s}} = 348 \text{ MPa}$$
$$\Rightarrow A_{Sf} = \frac{M_{f}}{Z\sigma_{s}} = \frac{2.84*10^{3}}{348} = 0.39 \text{ m}^{2}$$
$$\bullet A_{s1} = A'_{s} = 0$$
$$\bullet A_{s2} = A_{sf} - \frac{N_{U}}{\sigma_{s}} = 39 - \frac{2.86}{0.348} = 0.35 \text{ Cm}^{2}$$

On obtient : $A_{s1} = 0$ et $A_{s2} = 0.35 \text{ Cm}^2$

IV.2.6.2. Condition de non fragilité

Il faut vérifier As avec la section minimale imposée par la règle millième et par la condition

de non fragilité :

Avec :

$$\begin{aligned} f_{t28} &= 2,1 \text{ MPa} \text{ ; } F_e = 400 \text{ MPa} \text{ ; } b = 100 \text{ cm} \text{ ; } d = 8 \text{ cm} \text{ ; } h = 10 \text{ cm}. \\ & A_S^{min} \geq Max \left\{ \frac{bh}{1000} \text{ ; } 0,23bd \left(\frac{f_{t28}}{f_e} \right) \right\} \\ & A_S^{min} \geq Max \left\{ 1cm^2 \text{ ; } 0.96 \text{ cm}^2 \right\} = 1,09cm^2 \end{aligned}$$

Donc la section choisie est 6T10, $A_s = 4,71 \text{ cm}^2$ avec un espacement :

$$S_t = \frac{100}{6} = 16.77 \ cm$$

✓ Armature de répartition :

 $\frac{As}{4} \leq Ar \rightarrow 0.425 \leq Ar^{-2}$

La section choisie est $A_r = 8T8 = 2.01 \text{cm}^2$ avec un espacement :

$$S_t = \frac{60-4}{3} = 18,33cm \cong 18cm$$

IV.2.6.3. Vérifications

a) Vérification a L'ELS :

La fissuration est considérée comme préjudiciable (selon l'organigramme de la flexion composée à l'ELS).

$$e_0 = \frac{Mser}{Nser} = \frac{1,014}{2,12} = 48.06m$$
; On prend e₀=57,5 cm

$$\frac{h}{2} - c = 2,5 \ cm$$

On a : $e_0=57,5 \text{ cm} > \frac{h}{2} - c = 2,5cm \Rightarrow$ section partiellement comprimée (SPC) on doit vérifier le béton et l'acier.
- <u>Position de l'axe neutre :</u>

 Y_c : distance de l'axe neutre au centre de pression.

C : distance entre le centre de pression et la fibre la plus comprimée.

 $N_{ser} \! > \! 0 \Rightarrow C < 0$

 $C = \frac{h}{2} - e_0 = \frac{10}{2} - 57,5 = -52,5cm$

on doit résoudre l'équation suivante [6] :

$$Y_C^3 + pY_C^2 + q = 0$$

Avec :

$$P = -3c^{2} - \left[\frac{90A'_{s}}{b} \times (c - c')\right] + \left[\frac{90A_{s}}{b} \times (d - c)\right]$$
$$q = -2c^{3} - \left[\frac{90A'_{s}}{b} \times (c - c')^{2}\right] - \left[\frac{90A_{s}}{b} \times (d - c)^{2}\right]$$

Avec : A_s '=0

$$\Rightarrow$$
 p = -8453,31cm²; q= 297427,50 cm³

D'où l'équation (1) devient :

$$Y_c^3 - 8453,31Yc^2 + 297427,50 = 0$$

La solution de l'équation est donnée par le BAEL91 (modifier 99) :

$$\Delta = q^2 + \frac{4p^3}{27} = -1027,32 \times 10^6 < 0$$

D'où : $\cos\varphi = \frac{3q}{2p} \sqrt{-\frac{3}{p}} = -0.96$

 $\cos\varphi = -0.99 \rightarrow \varphi = 163.74^{\circ}$

Après l'itération on trouve :

$$Y_1 = a \cos (\phi/3) = 85.51 \text{ cm}$$

 $Y_2 = a \cos (\phi/3 + 240^\circ) = 35,69 \text{ cm}$
 $Y_3 = a \cos (\phi/3 + 120^\circ) = -855 \text{ cm}$

Avec : $a = 2\sqrt{-\frac{p}{3}} = 106,17$

La solution qui convient est : $Y_c = 57,36$ cm

Car:
$$0 < Y_{ser} = Y_c + C < d$$

 $0 < Y_{ser} = 4,86cm < 9cm$
Donc: $Y_{ser} = 4,86cm$
 $Y_C = 57,36cm$

Calcul le moment d'inertie de la section homogène réduite :

$$I = \frac{b}{3}y_{ser}^{3} + n[A_{S}(d - y_{ser})^{2} + A'_{S}(y_{ser} - c')^{2}]$$
$$= \frac{100}{3}4,86 + 15[4,71(0,9 - 4,86)^{2}]$$
$$I = 4934,28,73 \text{ cm}^{4}$$

b) Vérification des contraintes :

✓ <u>Contrainte du béton :</u>

$$\sigma_{bc} = \left(\frac{N_{ser}}{I} \times y_{C}\right) y_{ser} \le \overline{\sigma_{bc}} = 0.6 f_{c28}$$

$$\sigma_{bc} = \frac{(2.12 \times 10^{3} \times 57.36 \times 10)}{4934.28 \times 10^{4}} \times 4.86 \times 10 = 1.13 \le \overline{\sigma_{bc}} = 15 \text{ MPa}$$

 \RightarrowCondition vérifiée.

✓ <u>Contrainte de l'acier :</u>

$$\sigma_{s} = n \left(\frac{N_{ser}}{I} \times y_{c}\right) (d - y_{ser}) \le \overline{\sigma_{s}} \Longrightarrow Acier \ tendu$$
$$\overline{\sigma_{s}} = \min(\frac{2}{3}f_{e}; 110\sqrt{\eta f_{tj}}) = 201,63 \ MPa \qquad \eta = 1,6 \ (Acier \ HA)$$

 $\sigma_s = 15,30 \text{ MPa} < \overline{\sigma_s} = 201,63 \text{MPa}$ Condition vérifiée.

c) Vérification de L'effort tranchant :

Il faut vérifier que : $\tau_u \leq \overline{\tau_u}$

La contrainte de cisaillement est donnée par la formule suivante :

$$\tau_u = \frac{T_u}{bd} \le \overline{\tau_u} = min\left\{0, 15\frac{f_{C28}}{\gamma_b}; 4MPa\right\}.$$

$$\tau_u = \frac{3,04 \times 10^3}{1000 \times 90} = 0,033MPa \le \overline{\tau_u} = 2,5MPa.....Condition vérifiée.$$

Figure IV. 5: Ferraillage de l'acrotère.

IV.3. Escalier métallique

IV.3.1. Introduction

Un escalier est formé d'une succession de plans horizontaux permettant de passer d'un niveau a un autre, la longueur des marches s'appelle l'emmarchement (L), la largeur s'appelle giron (g) et la hauteur c'est le contre marche (h).

Figure IV. 6: Schéma représentatif d'un escalier

IV.3.2. Définitions

Un palier : ça fonction est de permettre aux usagers de se reposer pendant la montée, c'est une aire plane située à chaque étage au départ et à l'arrivée d'une volée d'escalier.

Une volée : c'est une partie droite ou courbé de l'escalier compris entre deux paliers successifs.

Giron : c'est la largeur d'une marche mesurée entre l'aplomb de deux contre marches successifs.

Limon : c'est la partie dont laquelle s'assemble les marches et les contremarches

IV.3.3. Choix des dimensions

D'après la loi de BLONDEL et pour garantir un bon confort, ses conditions doivent satisfaire :

- h : hauteur de la marche 16.5 cm ≤ h ≤ 18.5 cm, on prend une hauteur de marche H=17cm.
- g : largeur de la marche (giron), 27 $cm \le g \le 30cm$, on prend g = 30 cm

 $60 \ cm \le g + 2h \le 64 \ cm \Rightarrow g + 2h = 30 + 2 \times 17 = 64 \ cm \dots$. Condition vérifiée.

Sachant que la hauteur du RDC est de 6 m, le nombre de marche sera de :

- $n = \frac{H}{h} = \frac{6}{0.17} \Rightarrow n = 36$ contre marches Par niveau et 12 contre marches par volée.
- m = n 1 = 12 1 = 11 contre marches Par volée.
- L'inclinaison de la paillasse : $\tan \alpha = \frac{1.35}{2.4} = 0.98$; $\alpha = 29.35^{\circ}$ La longueur de la paillasse : L= $\sqrt{1.35^2 + 2.4^2} = 2.75$ m

La figure montre les dispositions et les dimensions des différents éléments constituants l'escalier :

Figure IV. 7: Vue en plan de l'escalier tirer du plan d'architecture.

IV.3.3.1. Conception d'une marche

On modélise la marche comme une poutre simplement appuyée

Figure IV. 8: Conception d'une marche.

IV.3.4. Dimensionnement de la cornière de marche

- Les deux cornières travaillent simultanément en flexion simple, d'où chaque cornière reprend la moitié de la charge permanente et la moitié de la charge d'exploitation.

On modélise la marche comme une poutre simplement appuyé :

Figure IV. 9: Schéma d'une marche.

IV.3.4.1. Dimensionnement

• Condition de flèche a l'ELS :

 $G_{marche} = 1.29 \times \left(\frac{0.3}{2}\right) = 0.1935 \, KN/ml;$ (0.3 m étant la largeur de la marche « giron »)

$$Q_{mrche} = 4 \times \left(\frac{0.3}{2}\right) = 0.6 \ KN/ml$$

 $Q_{ser} = G_{marche} + Q_{mrche} \Rightarrow Q_{ser} = 0.1935 + 0.6 = 0.79 \, KN/ml$

Dimensionnement par condition de flèche

$$f = \frac{5q_{s}l^{4}250}{384EI} \le f = \frac{I}{250} \Rightarrow I \ge \frac{5q_{s}l^{3}250}{384E}$$
$$I \ge \frac{5 \times 250 \times 0.79 \times (1000^{3}) \times 10^{-4}}{384 \times 2.1 \times 10^{5}}$$

 $I \geq 1.22 \ cm^4$

Soit une cornière a aile égale L40x40x5

 $I_y = I_z = 5.43 \ cm^4 \ ; \ G_{L40} = 2.97 \ KG/ml$

- Vérification du moment fléchissant a l'ELU

$$q_u = (1.35G + 1.5Q) \times \left(\frac{0.3}{2}\right) + 1.35G_{L40} \qquad \Rightarrow q_u = [(1.35 \times 0.19) + (1.5 \times 0.6)] \times \\ \left(\frac{0.3}{2}\right) + (1.35 \times 0.02) \\ q_u = 0.2 \ KN/m \\ M_{sd} = \frac{0.2 \times 1^2}{8} = 0.025 \ KN.m \end{cases}$$

$$M_{plrd} = \frac{(1912)\times275}{1} = 0.525 \ KN. m$$

$$M_{sd} = 0.025 \ KN. m \le M_{plrd} = 0.525 \ KN. m$$

$$\cdot \text{ Vérification de l'effort tranchant}$$

$$V_{sd} = \frac{0.2\times1}{2} = 0.1 \ KN$$

$$V_{plrd} = \frac{A_v \cdot f_y}{\gamma_m \sqrt{3}} \Rightarrow V_{plrd} = \frac{3.79\times10^2\times275}{1\times\sqrt{3}} = 60.174 \ KN$$

$$V_{sd} = 0.1 \ KN \le V_{plrd} = 60.175 \ KN \ \dots \text{ Condition vérifiée.}$$

$$IV.3.5. \text{ Dimensionnement des limons}$$

Figure IV. 10: Charges appliqué sur le limon.

IV.3.5.1. Évaluation des charges

- Tôle (5mm) →0.45 KN/m²
- Revêtement (e=2mm) →22*0.02=0.44KN/m²
- Mortier de pose (e=2mm) → 20*0.02=0.4 KN/m²
- $G = 1.29 \ KN/m^2$
- $G_{gardecorps} = 1KN/m$
- $Q_{esc} = 4 KN/m^2$

• Dimensionnement à ELS $G_1 = 1.29 \times 0.75 + 1 = 1.96 \ KN/m$; pour la paillasse. $G_2 = 1.29 \times 0.75 = 0.967 \ KN/m$; pour le palier de repos. $Q = 4 \times 1 = 4 \ KN/m$ $Q_1 = G_1 + Q \Rightarrow Q_1 = 1.96 + 4 = 5.96 \ KN/m$ $Q_2 = G_2 + Q \Rightarrow Q_2 = 0.967 + 4 = 4.967 \ KN/m$

5,96 KN/m

Figure IV. 11: Charges revenant au limon.

Pour être en sécurité, et dans le but de simplifier nos calculs on prendra :

$$Q_{eq} = \max(Q_1; Q_2) = 5.96 \, KN/m$$

Réaction du limon sur la poutre palière :

 $R_L = 5.96 \times (3,9/2) = 11,662KN$

• Dimensionnement par la condition de flèche

$$f = \frac{5q_s l^4 250}{384EI} \le f = \frac{I}{250} \Rightarrow I \ge \frac{5q_s l^3 250}{384E}$$
$$I \ge \frac{5 \times 5.96 \times (4000^3) 250 \times 10^{-4}}{384 \times 2.1 \times 10^5}$$
$$I \ge 591,26 \text{ cm}^4$$

On opte a un profilé UPN 160.

Vérification du moment fléchissant a l'ELU $q_u = 1.35(G + G_{upn}) + 1.5Q \Rightarrow q_u = 1.35 \times (1.29 + 0.188) + 1.5 \times 4$ $q_u = 7.995 \ KN/m$ $M_{sd} = \frac{7.995 \times 3.9^2}{8} = 15.20 \ KN.m$ $M_{plrd} = \frac{(138 \times 10^3) \times 275}{1} = 37.95 \ KN.m$ $M_{sd} = 15.20 \ KN.m \leq 37.95 \ KN.m$ Condition vérifiée. Vérification de l'effort tranchant V_{sd} = $\frac{7.995 \times 3.9}{2} = 15.59 \ KN$

- $V_{plrd} = \frac{A_{v.fy}}{\gamma_m \sqrt{3}} \Rightarrow V_{plrd} = \frac{12,6 \times 10^2 \times 275}{1 \times \sqrt{3}} = 200,05 \ KN$

-
$$V_{sd} = 15.59 \ KN \le V_{plrd} = 200,05 \ KN$$
 Condition vérifiée.

CHAPITRE V :

Étude dynamique

V.1. Introduction

Un séisme se produit lorsque l'énergie potentielle accumulée dans les roches est brutalement libérée suite aux mouvements relatifs des différentes parties de l'écorce terrestre. Lorsque les contraintes dépassent un certain seuil, un déséquilibre se produit et engendre des ondes sismiques qui se propagent dans toutes les directions jusqu'à la surface du sol. Ces mouvements du sol impactent les structures en déplaçant leurs appuis, et leur impact est amplifié plus ou moins dans la structure. L'amplification dépend principalement de la période de la structure et de la nature du sol.

Les actions sismiques sur un bâtiment se manifestent par des mouvements horizontaux imposés aux fondations, et elles sont complexes sur le plan dynamique. C'est pourquoi les structures doivent être conçues et construites de manière à résister à ces secousses, tout en respectant les recommandations du règlement parasismique.

L'objectif de ce chapitre est de définir un modèle de structure qui permet de déterminer les efforts induits par les séismes et leur répartition dans le système de stabilité. Pour cela, une analyse dynamique est nécessaire, impliquant la création d'un modèle de calcul représentant la structure. Ce modèle est ensuite utilisé dans un programme de calcul dynamique pour déterminer les modes propres de vibration de la structure ainsi que les efforts générés par l'action sismique.

V.2. Caractéristique dynamiques propres

Une structure idéale, dépourvue d'amortissement, peut vibrer indéfiniment tant qu'elle est alimentée en énergie. Cependant, dans la réalité, les frottements sont inévitables et ont un effet d'amortissement sur les mouvements.

Les caractéristiques propres de la structure sont obtenues à partir d'un système non amorti et non forcé, régi par l'équation suivante :

 $[M]{\dot{x}(t)} + [K]{x(t)} = {0} (1)$

où :

[M] est la matrice de masse de la structure,

[K] est la matrice de rigidité de la structure,

 $\{\dot{x}\}$ est le vecteur des accélérations,

{x} est le vecteur des déplacements.

L'analyse d'un système à plusieurs degrés de liberté permet d'obtenir les propriétés dynamiques les plus importantes, à savoir les fréquences propres et les modes propres.

 ${x(t)} = {A} \sin (\omega t + \varphi) (2)$

Où :

{A} est le vecteur des amplitudes,

ω est la fréquence de vibration,

φ est l'angle de déphasage.

Les accélérations dans une vibration libre non amortie sont données par :

 $\{\mathbf{x}(t)\} = -\omega^{2}\{\mathbf{A}\} \sin(\omega t + \varphi) (3)$

En substituant les équations (2) et (3) dans l'équation (1), nous obtenons :

 $([K] - \omega^2 [M]) \{A\} \sin (\omega t + \varphi) = 0 (4)$

Cette équation doit être vérifiée pour tout instant (t), ce qui conduit à :

 $([K] - \omega^2 [M]) \{A\} = 0 (5)$

Ce système d'équations comporte (n) inconnues, notées "Ai". Il ne peut avoir une solution non nulle que si le déterminant de la matrice est nul, c'est-à-dire :

 $\Delta \omega = |[\mathbf{K}] - \omega^2 [\mathbf{M}]| = 0 \ (6)$

Cette expression est appelée "équation caractéristique".

En développant l'équation caractéristique, nous obtenons un polynôme de degré (n) en ω^2 . Les (n) solutions ($\omega 1^2$; $\omega 2^2$; ...; ωn^2) sont les carrés des pulsations propres des (n) modes de vibrations possibles. Le premier mode vibratoire correspond à $\omega 1$ et est appelé mode fondamental ($\omega 1 < \omega 2 < ... < \omega n$).

À chaque pulsation propre correspond une forme d'oscillation appelée mode propre {A}i ou forme modale (modal shape).

V.3. Modélisation de la structure

En raison de la complexité de l'analyse, il est indispensable de créer un modèle numérique qui représente la structure. Ce modèle est ensuite intégré à un logiciel de calcul dynamique pour déterminer les modes propres de vibration et les actions sismiques. Parmi les différentes méthodes de modélisation disponibles, la méthode des éléments finis est largement utilisée par la plupart des logiciels de calcul. Pour cette étude, nous utiliserons le logiciel ETABS. La modélisation consiste à représenter un problème physique avec un nombre infini de

La modelisation consiste à représenter un probleme physique avec un nombre minin de degrés de liberté (DDL) à l'aide d'un modèle qui possède un nombre fini de DDL et qui décrit le phénomène étudié de manière aussi précise que possible. Ce modèle doit refléter de manière précise le comportement et les paramètres du système d'origine, tels que la masse, la rigidité et l'amortissement.

- Présentation du logiciel ETABS
- ETABS (Extended Three-Dimensional Analysis of Building Systems) est un logiciel d'analyse et de conception de structures largement utilisé dans le domaine de l'ingénierie civile. Il est principalement utilisé pour l'analyse et la conception des bâtiments, qu'ils soient de petite ou de grande envergure.
- ETABS offre une plateforme complète pour la modélisation, l'analyse et le dimensionnement des structures. Il permet de créer des modèles tridimensionnels complexes qui représentent fidèlement la géométrie réelle du bâtiment. Les utilisateurs peuvent définir les matériaux, les sections, les charges et les conditions aux limites pour chaque élément structurel.
- Le logiciel offre une large gamme de fonctionnalités pour effectuer des analyses statiques et dynamiques, y compris l'analyse sismique. Il est capable de générer les modes propres de vibration, de calculer les déformations, les contraintes et les efforts dans les éléments structurels, et de fournir des résultats détaillés pour l'évaluation de la sécurité et la conception optimale.
- ETABS propose également des fonctionnalités avancées telles que l'analyse de la réponse dynamique, l'analyse non linéaire, la conception des éléments en béton armé, la vérification des codes de conception et bien d'autres. Il offre une interface conviviale qui facilite la modélisation, l'analyse et l'interprétation des résultats.
- Grâce à sa précision, sa fiabilité et sa polyvalence, ETABS est devenu un outil essentiel pour les ingénieurs en génie civil impliqués dans la conception et l'analyse des structures de bâtiments.

V.4. Choix de la méthode de calcul

Selon [7], le calcul sismique peut être réalisé à l'aide de trois méthodes différentes :

V.4.1. La méthode statique équivalente

Cette méthode est applicable lorsque la hauteur totale de la structure est inférieure à 17 mètres, ce qui correspond à 5 niveaux ou moins pour un bâtiment de groupe d'usage 2 en zone III. Dans cette méthode, le mouvement sismique est représenté par une force statique équivalente appliquée aux supports de la structure.

V.4.2. La méthode d'analyse modale spectrale (spectre de réponse)

Il s'agit de la méthode la plus couramment utilisée pour l'analyse sismique des structures. Elle repose sur l'utilisation des modes propres de vibration de la structure et sur la définition du mouvement sismique sous la forme d'un spectre de réponse. Cette méthode suppose un comportement linéaire global de la structure et prend en compte uniquement les déplacements horizontaux des nœuds. Le nombre de modes à considérer dépend de la masse associée à chaque mode, et un minimum de trois modes est généralement retenu dans chaque direction.

V.4.3. La méthode d'analyse dynamique par accélérogrammes

L'analyse sous accélérogrammes est la méthode la plus précise pour prédire les forces et les demandes en déformations pour les différents composants de la structure. Cependant, son utilisation reste limitée car la réponse dynamique est très sensible à la modélisation et au mouvement du sol, elle nécessite une bonne modélisation des relations effort-déformation sous chargement cyclique qui tiennent en compte des modifications du comportement des composants.

Plusieurs accélérogrammes sont nécessaires pour éviter de biaiser certains aspects du contenu fréquentiel du spectre de réponse reconnu comme la référence

- Critères de classification selon RPA99V2003

V.5. Vérification de la structure

L'ouvrage en question est classé dans le groupe 2, ce qui signifie qu'il s'agit d'un ouvrage courant ou de moyenne importance, plus précisément un parking de stationnement public. La zone sismique dans laquelle il se trouve est la Zone III, caractérisée par une forte sismicité. Cette zone est située à Blida.

En ce qui concerne la classification des sites, le site est classé dans la catégorie S3, ce qui indique qu'il s'agit d'un site meuble.

En ce qui concerne les systèmes de contreventement, le sens x de l'ouvrage est contreventé par des palées triangulées en X, selon la classification 9.a). De même, le sens y de l'ouvrage est également contreventé par des palées triangulées en X, selon la même classification 9.a).

V.5.1. Vérification de la force sismique à la base

La force sismique totale E appliquée à la base de l'ossature, doit être calculée dans les deux directions horizontales orthogonales x-x et y-y selon la formule :

$$V = \frac{A.D.Q}{R}.W.\dots[7]$$

• A : coefficient d'accélération de la zone (tableau 4.1 [7]), ce bâtiment est du groupe d'usage 2 en zone III ;

 $\rightarrow A = 0.25$

• **D** : coefficient d'amplification dynamique moyen .

$$D = \begin{cases} 2.5 \eta & 0 \le T \le T_2 \\ 2.5 \eta \left(\frac{T_2}{T}\right)^2 & T_2 \le T \le 3 \text{ Sec} \\ 2.5 \eta \left(\frac{T_2}{3}\right)^2 \left(\frac{3}{T}\right)^{\frac{5}{3}} & T > 3 \text{ Sec} \end{cases}$$

 $T_1 et T_2$: période caractéristique associé a la catégorie du site (tableau 4.7 [7])

Tableau V. 1: Valeurs de la périodes caractéristiques

Site	T1 (sec)	T2(sec)
S 3	0.15	0.5

Détermination de la période fondamentale de la structure

$$T = min(T_1; T_{2i})$$

Avec :-
$$T_1 = C_T \times h_N^{\frac{3}{4}}$$
;
- $T_{2i} = 0.09 \times \frac{h_N}{\sqrt{Di}}$

 h_n : hauteur totale de la structure

→ $h_n = 32.7 m$ (Sans acrotère).

 C_T : coefficient en fonction du système de contreventement et du type de remplissage, et il est donnée par (tableau 4.6 [7]). Dans notre cas, le contreventement est assuré par des palées triangulées en X (cas 4)

$$\Rightarrow C_T = 0.05$$

D : est la dimension du bâtiment selon laxe X-X ou bien Y-Y

$$T_1 = 0.05 \times (32.7)^{\frac{3}{4}} \Rightarrow T = 0.684 \ sec$$

- Sens x : $D_X = 45 \ m$

$$T_{2x} = 0.09 \times \frac{32.7}{\sqrt{45}} \Rightarrow T_x = 0.439 \, sec$$

- Sens y:
$$D_y = 23.9 m$$

 $T_{2y} = 0.09 \times \frac{32.7}{\sqrt{23.9}} \rightarrow T_y = 0.606 sec$

→
$$T = min(T_1; T_{2i}) = T_{2i}$$

→ $\begin{cases} T_{2x} = 0.439 \ sec \\ T_{2y} = 0.606 \ sec \end{cases}$

La période doit être comme suit :

Tableau V. 2: Choix de la période de calcul	[8]
--	-----

SI	La période choisie pour le calcul du facteur D
$T_{analytique} \leq T_{empirique}$	$T = T_{empirique}$
$T_{empirique} < T_{analytique} < 1.3T_{empirique}$	$T = T_{analytique}$
$T_{analytique} \ge 1.3 T_{empirique}$	$T = 1.3T_{empirique}$

D'où :

- <u>Sens x-x :</u>

 $T_{empirique} = 0.439 \ sec$

 $1.3T_{empiriaue} = 1.3 \times 0.439 = 0.571 \, sec$

- <u>Sens y-y :</u>

 $T_{empirique} = 0.606 \ sec$

 $1.3T_{empirique} = 1.3 \times 0.606 = 0.788 \, sec$

 η : facteur de correction d'amortissement avec ε (%) le pourcentage d'amortissement critique fonction du matériau constructif. (Tableau 4.3 [7]). Avec $\varepsilon = 5$ % (acier dense)

$$\eta = \sqrt{\frac{7}{2+\varepsilon}} \ge 0.7 \twoheadrightarrow \eta = 1$$

Le coefficient de comportement global de la structure, noté R, est un paramètre déterminant dans le calcul sismique. Il reflète la capacité de la structure à résister aux forces sismiques. Selon le tableau 4.3 de la référence [7], le coefficient R dépend du système de contreventement utilisé.

Dans le cas de notre structure métallique, où un système d'ossature est contreventé par des palées triangulées en X dans les deux sens, le coefficient R est établi à 4. Cette valeur indique que la structure est conçue pour présenter une bonne résistance aux charges sismiques, en raison de la rigidité et de la stabilité offertes par le système de contreventement choisi.

Le facteur de qualité Q de la structure dépend de plusieurs éléments, tels que :

La redondance et la configuration géométrique des éléments constituant la structure. Une structure avec une redondance élevée, c'est-à-dire la présence de composants supplémentaires qui peuvent prendre le relais en cas de défaillance, ainsi qu'une géométrie favorable, a généralement une meilleure performance en cas de charges sismiques.

La régularité de la structure dans son plan horizontal et vertical. Une répartition équilibrée des éléments porteurs et des masses sur l'ensemble de la structure contribue à une meilleure résistance aux forces sismiques. Une régularité en termes de forme et de répartition des éléments est prise en compte.

La qualité du contrôle de construction. Un contrôle de construction rigoureux et conforme aux normes de construction garantit la solidité et la fiabilité de la structure. Cela implique l'utilisation de matériaux de qualité, des techniques de construction appropriées et la conformité aux réglementations en vigueur.

La valeur de Q est déterminée en utilisant la formule suivante :

 $Q = 1 + \sum_{1-5} P_q$

Critàre a	Observée	Pq /	Observée	Pq /
Chiefe q	(O/N)	XX	(O / N)	уу
Conditions minimales sur les files de	Oui	0	Oui	0
contreventement	0 ui	0	Our	Ū
Redondance en plan	Oui	0	Oui	0
Régularité en plan	Non	0.05 Non		0.05
Régularité en élévation	Non	0.05	Non	0.05
Contrôle de la qualité des matériaux	Oui	0	Oui	0
Contrôle de la qualité de l'exécution	Non	0	Non	0
$Q = 1 + \sum_{1}^{5} P_q$	/	1.1	/	1.1

 Tableau V. 3: Facteur de qualité suivant les deux sens [7]

 $Q_x = 0.05 + 0.05 + 0 + 1 \Rightarrow Q_x = 1.1$ $Q_y = 0.05 + 0.05 + 0 + 1 \Rightarrow Q_y = 1.1$

• W : poids total de la structure

$$W = \sum_{i=1}^{n} W_i$$

Avec : $W_i = W_{Gi} + \beta W_{Oi}$

 W_{Gi} : charge permanent de la structure...

 W_{Qi} : charge d'exploitation ;

 β : coefficient de pondération fonction de la nature et de la durée de la charge d'exploitation Q, dans ce bâtiment en a ; $\beta = 0.2$ [7].

V.5.2. L'analyse modale spectrale

L'analyse modale spectrale est une méthode utilisée pour calculer les effets maximums d'un séisme sur une structure. Elle se distingue par l'utilisation d'un spectre de réponse pour décrire la sollicitation sismique.

Cette méthode d'analyse peut être appliquée à différents types de structures, et elle offre généralement des résultats plus précis et satisfaisants, à condition que la modélisation de la structure soit correctement réalisée.

L'action sismique est représentée par le spectre de calcul, qui est un graphique indiquant les réponses attendues de la structure en fonction de différentes périodes de vibration. Ce spectre est établi en fonction des caractéristiques sismiques de la région et des propriétés dynamiques de la structure.

Le spectre de calcul permet de déterminer les charges sismiques maximales auxquelles la structure peut être soumise dans différentes gammes de fréquences. Cette information est essentielle pour concevoir une structure résistante aux séismes et garantir la sécurité des occupants.

En utilisant l'analyse modale spectrale, les concepteurs peuvent évaluer les niveaux de sollicitation sismique dans la structure et prendre les mesures nécessaires pour renforcer les éléments les plus sollicités, assurer la stabilité globale et réduire les risques de dommages lors d'un séisme.

$$\frac{S_a}{g} = \begin{cases} 1,25A \left(1 + \frac{T}{T_1} \left(2,5\eta \frac{Q}{R} - 1 \right) \right) & 0 \le T \le T_1 \\ 2,5\eta \left(1,25A \right) \frac{Q}{R} & T_1 \le T \le T_2 \\ 2,5\eta \left(1,25A \right) \frac{Q}{R} \left(\frac{T_2}{T} \right)^{2/3} & T_2 \le T \le 3,0s \\ 2,5\eta \left(1,25A \right) \frac{Q}{R} \left(\frac{T_2}{3} \right)^{2/3} \left(\frac{3}{T} \right)^{5/3} & T \ge 3,0s \end{cases}$$

Pour ce cas, le spectre est donné par le logiciel (spectre RPA99), on introduit les donner suivant :

-Zone sismique III, BLIDA BOUGARA

-Groupe d'usage 2 (ouvrage courant ou d'importance moyenne)

-Pourcentage d'amortissement $\varepsilon = 5\%$.(acier dense)

-Facteur de qualité Q = 1.1 (dans les deux directions).

-Coefficient de comportement, R=4 (palier de stabilité en X)

Figure V. 1: Spectre de réponse.

V.5.3. Résultat de l'analyse dynamique

V.5.3.1. Modèle initiale

Pour ce model en opte un système de contreventement portiques auto stable suivant les deux sens X et Y afin d'avoir une idée sur le comportement initiale de la structure.

Figure V. 2: vue en 3d du modèle initial.

• Période et participation du model

			Masse modale	Masse modale	Masse modale	$\Sigma II 0/c$	$\sum U_y$
Cas	Mode	Période	<i>U_x</i> %	U _y %	$R_z\%$		%
Modal	1	9,175	0,8061	0	0,0117	0,8061	0
Modal	2	4,432	4,805E-06	0,8055	0,0002	0,8061	0,8055
Modal	3	4,204	0,0202	0,0002	0,7805	0,8264	0,8057
Modal	4	3,783	0,0982	0	0,0277	0,9246	0,8057
Modal	5	2,284	0,0321	0	0,0027	0,9567	0,8057
Modal	6	2,009	0	0,1317	2,745E-06	0,9567	0,9374
Modal	7	1,898	5,453E-06	7,55E-06	0,1139	0,9567	0,9374
Modal	8	1,742	0,0243	0	0,0027	0,981	0,9374
Modal	9	1,253	0	0,021	0	0,981	0,9584
Modal	10	1,217	0,0006	0	0,0196	0,9816	0,9584
Modal	11	1,121	0,0128	0	0,0001	0,9944	0,9584
Modal	12	0,953	0	0,0293	3,312E-06	0,9944	0,9877

Tableau V. 4: Pourcentage de participation massique

Constatations :

En examinant le tableau, on peut observer que le taux de participation de la masse dépasse le seuil de 90% à partir du sixième mode dans les directions xx et à partir du sixième mode dans la direction yy. Cela signifie que le nombre de modes pris en compte est suffisant pour représenter de manière adéquate le comportement de la structure [7].

Cependant, il est important de noter que la période fondamentale de la structure est très élevée. Dans ce cas, nous recommandons l'utilisation d'un système de contreventement en X avec des poutres de section 2UPN300/10 et d'augmenter les sections des poteaux pour renforcer la rigidité de la structure. L'objectif est d'améliorer la résistance de la structure aux charges sismiques et de garantir sa stabilité.

Il est également essentiel de vérifier toutes les exigences de vérification dynamique spécifiées par le RPA 99 V2003. Cela garantira que la structure est conçue pour résister aux effets sismiques conformément aux normes et réglementations en vigueur.

V.5.3.2. Modèle final

Après avoir effectué les vérifications conformément aux exigences de [7], il s'est avéré que les éléments de la structure ne satisfont pas les critères de conception. Par conséquent, il a été nécessaire d'apporter des modifications aux sections des éléments.

Une approche plus détaillée a été adoptée pour calculer les vérifications des éléments, comme décrit dans le chapitre suivant. Cette approche permet d'évaluer plus précisément les performances des éléments structurels et d'identifier les sections qui nécessitent des ajustements.

En conséquence, des changements de sections ont été effectués pour les éléments concernés. Cette étape est essentielle pour garantir que chaque élément de la structure satisfait aux critères de conception requis et est capable de résister aux charges sismiques et aux autres charges prévues.

Il est important de souligner que ces ajustements visent à améliorer la performance globale de la structure et à assurer sa sécurité et sa durabilité.

• Période et participation du modèle

Figure V. 3: Vue en 3d du modelé final.

			Masse	Masse	Masse	$\Sigma II_{*}\%$	
Cas	Mode	Période	modale U_x %	modale U_y %	modale R_z %		$\sum U_y \%$
Modal	1	0,905	0,7463	0	0,0068	0,7463	0
Modal	2	0,741	0	0,7893	0	0,7463	0,7893
Modal	3	0,467	0,0074	0	0,779	0,7538	0,7893
Modal	4	0,247	0,1783	0	0,0018	0,9321	0,7893
Modal	5	0,23	0	0,1582	0	0,9321	0,9475
Modal	6	0,143	0,0002	0	0,1584	0,9322	0,9475
Modal	7	0,139	0	0,0286	0	0,9322	0,9761
Modal	8	0,136	0,0398	0	0,0031	0,972	0,9761
Modal	9	0,099	0	0,0165	0	0,972	0,9926
Modal	10	0,097	0,0173	0	0,0063	0,9893	0,9926
Modal	11	0,083	0,0039	0	0,0216	0,9932	0,9926
Modal	12	0,074	0	0,0055	0	0,9932	0,9981

Tableau V. 5: Pourcentage de participation massique

Constatations :

- A partir de tableau, on remarque que la participation massique dépasse le 90% à partir du mode 4 selon xx et du mode 5 selon yy, ce qui dit , que le nombre de mode est suffisant pour représenter un bon comportement de la structure. [7]

On a :

- Sens x-x: $T_{empirique} = 0.439 \ sec$ $1.3T_{empirique} = 1.3 \times 0.439 = 0.571 \ sec$ $T_{analytique} = 0.683 \ sec > 1.3T_{empirique} = 0.313 \ sec$ - Sens y-y: $T_{empirique} = 0.334 \ sec$

 $1.3T_{empirique} = 1.3 \times 0.257 = 0.334 \, sec$

 $T_{analytique} = 0.905 \ sec > 1.3 T_{empirique} = 0.571 \ sec$

On a : selon l'article de Dr. TALEB T= $1.3T_{empirique}$

→ $T_2=0.5 > T$ → $D = 2.5\eta = 2.5 \times 1 = 2.5$

- Sens x-x:

 $T_{empirique} = 0.439 \ sec$

 $1.3T_{empirique} = 1.3 \times 0.439 = 0.571 \, sec$

 $T_{analytique} = 0.905 sec > 1.3 T_{empirique} = 0.571 sec$

- <u>Sens y-y :</u>

 $T_{empirique} = 0.606 \, sec$

 $1.3T_{empirique} = 1.3 \times 0.606 = 0.788 \, sec$

 $T_{analytique} = 0.905 \ sec > 1.3 T_{empirique} = 0.788 \ sec$

On a : selon l'article de Dr. TALEB T= $1.3T_{empirique}$

→ $T_2=0.5 > T$ → $D = 2.5\eta = 2.5 \times 1 = 2.5$

Donc :

Tableau V. 6: Les coefficients statiques équivalente

Sens	Α	D	Q	R	W(KN)	V(KN)
XX	0,25	2,5	1,1	4	58316,7429	8018,552
YY	0,25	2,5	1,1	4	58316,7429	8018,552

• Réponse modale de la structure

Les modes de vibration sont :

- 1^{er} mode :

Figure V. 4: Translation suivant l'axe X-X

- 2^{éme} mode

Figure V. 5: Translation suivant l'axe Y-Y.

- $3^{\text{éme}}$ mode :

Figure V. 6: Rotation autour de l'axe z-z.

• Vérification de l'effort tranchant à la base

Selon RPA2003, il est nécessaire de s'assurer que la résultante des forces sismiques à la base V_dyn, obtenue en combinant les valeurs modales, n'est pas inférieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente V_stat.

Si l'inégalité suivante est vérifiée : V_dyn < $0.8 * V_{stat}$, cela signifie que la réponse dynamique de la structure est inférieure à 80% de la réponse statique équivalente. Dans ce cas, il sera nécessaire d'augmenter tous les paramètres de la réponse (forces, déplacements, moments, etc.) dans le rapport $0.8 * V_{stat} / V_{dyn}$.

Après avoir appliqué le spectre de calcul dans les deux sens de la structure, les résultats obtenus sont les suivants :

	Fx	Fy
Ex max	8419,376	0,2054
Ey max	0,1957	9433,5543

Tableau V. 7: Les forces sismiques suivant les deux sens

$V_{y,dyn} = 9433.5543 \ KN$

$$E_x > 0.8V_x \twoheadrightarrow r_x = \frac{0.8V_x}{F_x} \twoheadrightarrow r_x = 0.76$$
$$E_y > 0.8 E_v \twoheadrightarrow r_y = \frac{0.8V_y}{F_y} \twoheadrightarrow r_y = 0.68$$

Tableau V. 8: Comparaison de Vdyn et 80% V

	$V_{t,dyn}(KN)$	V (KN)	80%V (KN)	Ratio r%	$V_{t,dyn} > 80\%V$
$V_{x,dyn}$	8419,376	8018,552	6414,842	0.76	<u>vérifié</u>
V _{y,dyn}	9433,5543	8018,552	6414,842	0.68	<u>Vérifié</u>

• Vérification du déplacement inter étage

Le déplacement à chaque niveau (K) de la structure est calculé en utilisant la formule suivante :

$$\delta K = R * \delta_e K * ri [7]$$

où :

 δ_e K représente le déplacement dû aux forces sismiques Fi, y compris l'effet de torsion.

R est le coefficient de comportement, avec R = 4.

Le déplacement relatif au niveau (K) par rapport au niveau précédent (K-1) est défini comme suit :

 $\Delta K = \delta K - \delta (K-1)$

Les déplacements relatifs latéraux entre deux étages adjacents doivent satisfaire la condition donnée par [7]:

 $\Delta K < 1\%$ h_étage

Cela signifie que le déplacement relatif entre les étages ne doit pas dépasser 1% de la hauteur de l'étage considéré (h_étage).

• Sens x-x

Étages	Combinaison	Δ <i>K</i> (mm)	H poteau (mm)	0.01h (mm)	r (%)	Observation
6	E_X^{max}	37,84	4500	45	0,840889	Vérifié
5	E_X^{max}	33,888	4500	45	0,753067	Vérifié
4	E_X^{max}	35,016	4500	45	0,778133	Vérifié
3	E_X^{max}	33,788	4400	44	0,767909	Vérifié
2	E_X^{max}	31,224	4400	44	0,709636	Vérifié
1	E_X^{max}	25,868	4400	44	0,587909	Vérifié
RDC	E_X^{max}	22,632	6000	60	0,3772	Vérifié

Tableau V. 9: Déplacement résultant suivant X

- <u>Sens y-y</u>

Tableau V. 10: Déplacement résultant suivant Y

Étages	Combinaison	$\Delta K(\mathbf{mm})$	H poteau (mm)	0.01h (mm)	r (%)	Observation
6	E_y^{max}	21,68	4500	45	0,481778	Vérifié
5	E_y^{max}	21,868	4500	45	0,485956	Vérifié
4	$E_{\mathcal{Y}}^{max}$	23,748	4500	45	0,527733	Vérifié
3	$E_{\mathcal{Y}}^{max}$	23,748	4400	44	0,539727	Vérifié
2	E_y^{max}	22,992	4400	44	0,522545	Vérifié
1	$E_{\mathcal{Y}}^{max}$	20,932	4400	44	0,475727	Vérifié
RDC	E_y^{max}	22,048	6000	60	0,367467	Vérifié

• Effet du deuxième ordre

Tableau V. 11: L'effet P- Δ selon le sens x-x

Niveau	Pk(KN)	$\Delta K(mm)$	Vx (KN)	h(mm)	Θ(mm)	Observation
6	5058,354	37,84	1806,926	4500	0,02354	Vérifié
5	9795,718	33,888	3929,635	4500	0,018772	Vérifié
4	8463,8	35,016	5297,94	4500	0,012431	Vérifié
3	8471,397	33,788	6345,861	4400	0,010251	Vérifié
2	8481,291	31,224	7219,133	4400	0,008337	Vérifié
1	8480,519	25,868	7914,155	4400	0,0063	Vérifié
RDC	9122,639	22,632	8419,376	6000	0,004087	Vérifié

Niveau	Pk (KN)	$\Delta K(mm)$	Vy (KN)	h(mm)	Θ(mm)	Observation	
6	50583,54	21,68	1805,168	4500	0,099	Vérifié	
5	97957,18	21,868	4186,419	4500	0,099	Vérifié	
4	84638	23,748	5820,808	4500	0,076736	Vérifié	
3	84713,97	23,748	7093,935	4400	0,064453	Vérifié	
2	84812,91	22,992	8112,573	4400	0,05463	Vérifié	
1	84805,19	20,932	8892,334	4400	0,04537	Vérifié	
RDC	91226,39	22,048	9433,554	6000	0,035536	Vérifié	

Tableau V. 12: L'effet $P-\Delta$ selon le sens y-y

Étant donné que tous les coefficients Θ sont inférieurs à 0.1, il est possible de négliger l'effet p Δ dans les deux directions.

V.6. Conclusion

Dans ce chapitre, nous avons effectué une modélisation de notre structure en utilisant le logiciel CSI ETABS afin d'évaluer son comportement dynamique. Nous en avons conclu que l'action du vent n'a pas été prépondérante par rapport à l'action sismique lors de la conception de notre structure. Cela s'explique par la faible hauteur de notre structure et par le fait qu'elle se trouve dans une zone de forte sismicité (Zone III)

Nous avons également examiné l'influence du choix de la période fondamentale sur les résultats du calcul sismique en comparant différentes formules de la réglementation parasismique (RPA). Cette analyse nous a permis de mieux comprendre comment la période fondamentale peut affecter les charges sismiques et les comportements structuraux.

L'utilisation du logiciel ETABS nous a fourni des données précieuses pour évaluer le comportement dynamique de notre structure et prendre des décisions éclairées en matière de conception parasismique. Ces informations nous ont permis d'adapter notre structure aux exigences sismiques spécifiques de notre zone géographique.

CHAPITRE VI :

Vérification des éléments

VI.1. Introduction

Pour garantir la stabilité d'une structure et assurer la sécurité, il est nécessaire de prendre en compte toutes les combinaisons d'actions possibles définies par les réglementations. Cela implique de vérifier la stabilité à la fois au niveau global de la structure et au niveau individuel de chaque élément.

Les actions appliquées sur les éléments de la structure entraînent des sollicitations qui génèrent des contraintes et des déformations. Afin de maintenir le niveau de sécurité requis, il est important de vérifier que les contraintes et les déformations restent en dessous des limites admissibles. Les grandes déformations peuvent affecter les zones comprimées des pièces, ce qui peut entraîner trois types de comportements instables caractéristiques :

Le flambement : Il se produit lorsque des barres sont soumises à une compression pure (flambement simple) ou à la fois à une compression et à une flexion (flambement composé). Le flambement est un phénomène très dangereux.

Le déversement : Il se produit lorsque les semelles comprimées des pièces fléchies ne peuvent pas supporter les charges appliquées et se déforment latéralement.

Le voilement : Il se produit lorsque les âmes des pièces fléchies ne peuvent pas résister aux forces appliquées et se déforment en forme de voile.

Dans ce chapitre, nous allons effectuer les vérifications nécessaires concernant ces phénomènes d'instabilité conformément aux réglementations en vigueur, notamment les références [5] et [6].

En règle générale, les éléments verticaux porteurs subissent principalement des forces de compression. Initialement, la conception des poteaux avait été réalisée en tenant compte de la compression simple et du flambement. Cependant, suite à une étude dynamique ultérieure, il a été observé que les poteaux subissent également des sollicitations de flexion combinée à la compression. Par conséquent, dans ce chapitre, les poteaux seront dimensionnés en prenant en compte la flexion composée.

VI.2.1. Method de calcul

VI.2.1.1. Vérification de flambement des poteaux

Les poteaux subissent une flexion combinée où chaque poteau est exposé à une force normale N_sd ainsi qu'à deux moments de flexion M_ysd et M_zsd. La vérification est effectuée pour toutes les combinaisons spécifiées dans les règlements CCM97, en prenant en compte les sollicitations les plus critiques selon les deux directions.

VI.2.1.2. Vérification vis-à-vis du flambement

• Les différentes sollicitations doivent être combinées en prenant en compte les cas les plus défavorables, qui sont les suivants :

- **Cas 1** : N_{sd}^{max} ; M_{ysd} et M_{zsd} correspondent.
- **Cas 2** : M_{ysd}^{max} ; N_{sd} et M_{zsd} correspondent.
- **Cas 3** : M_{zsd}^{max} ; N_{sd} et M_{ysd} correspondent.

- Les étapes de vérification au flambement

Les éléments sollicités simultanément en flexion et en compression axiale, pour une section transversale de classes 1 ou 2, doivent vérifie à la condition suivante :

$$\frac{N_{sd}}{\chi_{min} \cdot A \cdot \frac{f_y}{\gamma_{m1}}} + \frac{K_y \cdot M_{y,sd}}{W_{pl,y} \cdot \frac{f_y}{\gamma_{m1}}} + \frac{K_z \cdot M_{z,sd}}{W_{pl,z} \cdot \frac{f_y}{\gamma_{m1}}} \le 1$$

Avec :

-
$$K_y = 1 - \frac{\mu_y \times N_{sd}}{\chi_y \times A \times f_y}$$
; $K_y \le 1,5$

$$- \mu_y = \overline{\lambda_y} \times \left(2\beta_{M,y} - 4\right) + \left(\frac{W_{pl,y} - W_{el,y}}{W_{el,y}}\right) \quad ; \ \mu_y \le 0.90$$

$$-K_z = 1 - \frac{\mu_z \times N_{sd}}{\chi_z \times A \times f_y} \quad ; K_z \le 1,5$$

-
$$\mu_z = \overline{\lambda_z} \times (2\beta_{M.z} - 4) + \left(\frac{W_{pl.z} - W_{el.z}}{W_{el.z}}\right)$$
; $\mu_z \le 0.90$

-
$$\chi_{min} = \min(\chi_y; \chi_z)$$

- $\beta_{M,y}$ Et $\beta_{M,z}$ sont des facteurs de moment uniforme équivalent pour le flambement par flexion.
- Selon le rapport précédent, le pourcentage de participation de chaque élément à la résistance globale de l'ensemble est indiqué. Dans le cas d'une ossature métallique, si le système de contreventement est efficace et parvient à réduire les déplacements horizontaux d'au moins 80%, l'ossature peut être considérée comme contreventée. Dans cette situation, le calcul de la longueur de flambement peut être effectué en utilisant la méthode des nœuds fixes, comme mentionné dans la référence [6]. Cette approche permet de prendre en compte la rigidité du système de contreventement et d'évaluer plus précisément la résistance aux efforts de flambement de l'ossature métallique.

• Cas 1: N_{sd}^{max} ; M_{ysd} et M_{zsd} correspondent

- Exemple de calcul

Nos calculs vont être mené sur le Pouteau du RDC C54 d'un profilé HEA600 et d'une hauteur de 6m.

Tableau VI. 1: Caractéristiques de profilé HEA600

Profil	A	Iy	Iz	W _{pl,y}	W _{el,y}	W _{pl,z}	W _{el,z}	i _y	i _z
	(<i>cm</i> ²)	(<i>cm</i> ⁴)	(<i>cm</i> ⁴)	(<i>cm</i> ³)	(<i>cm</i> ³)	(cm ³)	(<i>cm</i> ³)	(cm)	(cm)
HEA600	226.5	141200	11270	5350	5350	1156	751.4	24.97	7.0522

Suivant l'axe y-y :

$$\bar{\lambda}_{y} = \frac{\lambda_{y}}{93.91\varepsilon} \twoheadrightarrow \frac{L_{fy}/i_{y}}{93.9\times\varepsilon} \quad ; \left(f_{y} = 275 \text{ MPA}, \varepsilon = \sqrt{\frac{235}{f_{y}}} = 0.92\right)$$

Pour un mode d'instabilité a nœuds fixe on a :

$$- \frac{L_f}{L_0} = 0.5 + 0.14(\eta_1 + \eta_2) - 0.055(\eta_1 \cdot n_2)^2$$

Avec :

$$- \eta_1 = \frac{K_C + K_{C1}}{K_C + K_{C1} + K_{P11} + K_{P12}}$$

-
$$\eta_2 = \frac{K_C + K_{C2}}{K_C + K_{C2} + K_{P21} + K_{P22}} \Rightarrow \eta_2 = 0$$
 Car le poteau est encastré à la base.

- K_{C1} Et K_{C2} la rigidité des poteaux adjacents
- K_{Pii} La rigidité des poutres associées au nœud considéré

Figure VI. 1: Facteurs de distribution pour poteaux continus.

Suivant l'axe y-y :

Donc :

$$K_{C} = \frac{l_{Y}}{h} = \frac{141200 \times 10^{4}}{6 \times 10^{3}} = 235333.33 \ mm^{3}$$

$$K_{C} 1 = \frac{111900 \times 10^{4}}{4.4 \times 10^{3}} = 254318,18 \ mm^{3}$$

$$K_{P11} = \frac{l_{Y}(HE500A)}{l_{UHE500A}} = \frac{111900 \times 10^{4}}{7500} = 149200 \ mm^{3}$$

$$\left\{ \begin{array}{l} \eta_{1} = 0.76 \\ \eta_{2} = 0 \end{array} \rightarrow l_{fy} = 3.68 \ m \\ \bar{\lambda}_{y} = \frac{3680/249.7}{93.91 \times 0.92} \rightarrow \bar{\lambda}_{y} = 0.1603 < 0.2 \ \text{il n'y a pas de risque de flambement} \\ \text{On a h/b} = 590/300 = 1.9667 > 1.2 \ \text{et f} = 25 \ \text{mm} < 40 \ \text{mm donc } \alpha_{y} = 0.21 \\ \phi_{y} = 0.5(1 + \alpha_{y}(\bar{\lambda}_{y} - 0.2) + \bar{\lambda}_{y}^{2}) \\ \phi_{y} = 0.5(1 + 0.21 \ X \ (0.16 - 0.2) + 0.16^{2}) = 0.5 \\ \chi_{y} = \frac{1}{0.5 + \sqrt{0.5^{2} - 0.15^{2}}} = 0.98 \\ \frac{\text{Suivant l'axe z-z:}}{\bar{\lambda}_{z}} = \frac{\lambda_{x}}{93.91 \times 0.2^{2}} \rightarrow \frac{l_{fz}/l_{z}}{6 \times 10^{3}} = 18783.33 \ mm^{3} \\ \text{Kc1} = 254318,18 \ mm^{3} \\ \text{Kc1} = 254318,18 \ mm^{3} \\ K_{P11} = \frac{l_{y}(HEA450)}{l_{(HEA450)}} = \frac{9465 \times 10^{4}}{5 \times 10^{3}} = 18930 \ mm^{3} \\ \left\{ \begin{array}{l} \eta_{1} = 0.9357 \\ \eta_{2} = 0 \end{array} \rightarrow l_{fz} = 3.78 \ mm \\ \bar{\lambda}_{z} = \frac{3.78 \times \frac{10^{3}}{7.08} \times 10^{3}}{93.91 \times 0.92} \rightarrow \bar{\lambda}_{z} = 0.62 > 0.2 \ \text{il a le risque de flambement.} \end{array} \right\}$$

 $\phi_z = 0.5 \left(1 + \alpha_z (\bar{\lambda}_z - 0.2) + \bar{\lambda}_z^2\right)$

 $\phi_z = 0.5(1 + 0.34(0.62 - 0.2) + 0.62^2) = 0.76$

$$\chi_z = \frac{1}{0.76 + \sqrt{0.76^2 - 0.62^2}} = 0,83$$

D'après le logiciel ETABS, la combinaison la plus défavorable est :G + Q + EY

- <u>Suivant l'axe y-y :</u>
- D'après le tableau 55.4 page 97 CCM97

$$\beta_{M\varphi y} = 1.8 - 0.7.\varphi$$

D'après l'article 5.5.4 pages 93 de CCM97

$$- \qquad \varphi = \frac{M_{\min}}{M_{\max}}$$

- $\phi_Z = \frac{3.98}{9.70} = 0,41...$ B_{Mz}= 1.51

$$- \mu_{y} = \overline{\lambda_{y}} \times \left(2\beta_{M.y} - 4\right) + \left(\frac{W_{pl.y} - W_{el.y}}{W_{el.y}}\right)$$

$$- \mu_y = 0.16 \times (2x1.77 - 4) + \left(\frac{5350 - 4787}{4787}\right)$$

-
$$\mu_y = 0.044 < 0,90$$
 vérifiée

$$-K_y = 1 - \frac{\mu_y \times N_{sd}}{\chi_y \times A \times f_y}$$

$$-K_y = 1 - \frac{0.044 \times (4036.24) \times 10^3}{0.98 \times 22650 \times 275} = 0.97 < 1.5$$

$$- \mu_{z} = \overline{\lambda_{z}} \times (2\beta_{M,z} - 4) + \left(\frac{W_{pl,z} - W_{el,z}}{W_{el,z}}\right)$$
$$- \mu_{z} = 0.62 \times (2x1.51 - 4) + \left(\frac{1156 - 751.4}{751.4}\right)$$

-
$$\mu_z = 0.068 < 0.90$$
 vérifiée

-
$$k_z = 1 - \frac{0.068 \times 4036.24 \times 10^3}{0.83 \times 22650 \times 275} = 0.94 < 1,5$$
 Vérifiée

$$- \frac{N_{sd}}{\chi_{min}.A.\frac{f_y}{\gamma_{m1}}} + \frac{K_y.M_{y,sd}}{W_{pl,y}.\frac{f_y}{\gamma_{m1}}} + \frac{K_z.M_{z,sd}}{W_{pl,z}.\frac{f_y}{\gamma_{m1}}} \le 1$$

$$- \frac{(4036.24) \times 10^3}{0.83 \times 22650 \times \frac{275}{1,1}} + \frac{0.97 \times (131.88) \times 10^6}{5350000 \times \frac{275}{1,1}} + \frac{0.94 \times (3.98) \times 10^6}{1156000 \times \frac{275}{1,1}} = 0.96 < 1$$

- condition vérifée

- <u>Suivant l'axe z-z:</u>

On aura :

Selon l'article 5.5.4 équations 5.51 page 94 de CCM 97 :

$$\frac{N_{sd}}{\chi_{min}A_{\gamma_{m1}}} + \frac{K_{y}M_{y,sd}}{W_{pl,y}\frac{f_{y}}{\gamma_{m1}}} + \frac{K_{z}M_{z,sd}}{W_{pl,z}\frac{f_{y}}{\gamma_{m1}}} = 0.96 < 1 \dots \text{Condition vérifiée.}$$

Remarque : la procédure de calcul du poteau ci-dessus est la même pour les autres poteaux.

VI.2.2. Vérification vis-à-vis du déversement

Pour vérifier le déversement des éléments en utilisant l'équation suivante :

Selon l'article 5.5.4 équations 5.52 page 94 de CCM 97 :

$$\frac{N_{sd}}{\chi_z \cdot \frac{A \times f_Y}{\gamma_{M1}}} + \frac{k_{LT} \times M_{ysd}}{\chi_{LT} \times W_{ply} \times \frac{f_y}{\gamma_{M1}}} + \frac{k_z \times M_{zsd}}{W_{plz} \times \frac{f_y}{\gamma_{M1}}} \le 1$$

Où :

-
$$K_{LT} = 1 - \frac{\mu_{LT} \times N_{sd}}{\chi_z \times A \times f_y} \le 1$$

- $\mu_{LT} = 0.15 \times \overline{\lambda_z} \times \beta_{MLT} - 0.15 \le 0.90$

- β_{MLT} : est un facteur de moment uniforme équivalent pour le déversement.

Exemple de calcul

On doit d'abord vérifier que : $\overline{\lambda_{LT}} < 0.4$

Selon art 3.3.3.2 CHAPITRE 5.5.2 pages 141 – 142 de EUROCOD 3

 $\beta_w = 1 \text{ pour section classe } 1 \text{ ou } 2$

Avec :

Calcule l'élancement $\overline{\lambda_{LT}}$ selon lannexe F art F2 a l'Eurocode 3

$$\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{\lambda_1} \times \sqrt{\beta_w}$$

$$\lambda_1 = 93.9 \ \text{E} = 93.9 \ \text{x} \ 0.92 = 86.388$$
Sachant que :
$$\lambda_{LT} = \frac{\frac{L}{i_z}}{\sqrt{C_1} \left[1 + \frac{1}{20} \left[\frac{L}{i_z} \right]^2 \right]^{0.25}}$$
;

C1 : facture déponde des conditions des charge et l'encastrement donner dans le tableaux annexe F

$$\lambda_{LT} = \frac{\frac{6000}{70.5}}{\sqrt{1.132} \left[1 + \frac{1}{20} \left[\frac{6000}{70.5} \right]^2 \right]^{0.25}}$$
$$\lambda_{LT} = \frac{41.35}{1.14} = 36.28$$

 $\overline{\lambda_{LT}} = 0.39 < 0.4$ \rightarrow pas de risk de diversement

Le calcul des poteaux est récapitulé dans le tableau suivant :

Tableau VI. 2: Efforts internes des poteaux sous N_max pour chaque niveau

Niveau	Combinaison	$N_{sd}^{maxe}(KN)$	$M_{sdz}(KN.m)$	$M_{sdy}(KN.m)$
7	ELU	-503.82	-0.06	-101.94
6	ELU	-982.67	-0.04	50.56
5	ELU	-1405.95	-0.05	-5456
4	G+Q+EY	-1833.22	-0.05	-56.55
3	G+Q+EY	-2387.15	-24.97	15.30
2	G+Q+Ex	-3180.56	-17.60	25.40
1	G+Q+Ey	-4036.24	-3.89	31.87

• Pour les poteaux :

Ci-dessous, vous trouverez un tableau regroupant les résultats calculés manuellement et les vérifications effectuées conformément aux règlements CCM97.

Déversement					Flambement				
Étaga Profilá		Les coeffi	es coefficients		es coeffici	ents	Valeur	$\begin{array}{c} \text{Condition} \\ \leq 1 \end{array}$	
Luge	TORR	λLTy	λ/LT_z	$\begin{array}{c} \text{Condition} \\ \leq 0.4 \end{array}$	Xmin	Ky	Kz	finale	
7eme	HEA400	34 .9	0.34		0.95	1.1	1.14	0.38	
6eme	HEA400	34.9	0.34		0.94	1.15	1	0.40	
5eme	HEA500	35.3	0.35		0.97	1.15	0.96	0.40	Vérifie
4eme	HEA500	35.3	0.35		0.95	1.28	0.98	0.82	
3eme	HEA500	35.3	0.35		0,96	1,19	0,96	0,42	
2eme	HEA500	35.3	0.35	Vérifiée	0,95	1.14	1.09	0.63	
1 ^{er}	HEA600	36.28	0.39		0,98	0 .97	0.94	0,96	

Tableau VI. 3: Vérifications au flambeme	nt par flexion
--	----------------

• Cas 2 : M_{ysd}^{max} ; N_{sd} et M_{zsd} correspondent

Les valeurs des efforts internes sont extraites du logiciel ETABS et sont récapitulées dans le tableau ci-dessous :

Niveau	Combinaison	$N_{sd}(KN)$	$M_{sdz}(KN.m)$	$M_{sdymax}(KN.m)$
7	G+Q+EY	-205 .65	-0.31	-250.92
6	G+Q+EX	107.42	9.31	248.5
5	G+Q+EY	521.21	0.18	189.21
4	G+Q+EY	681.16	0.156	189.98
3	G+Q+EY	-836.74	0.128	186.42
2	G+Q+EY	-992.35	0.106	166.09
1	G+Q+EY	-1214.56	-25.17	3.13

Tableau VI. 4: Efforts internes des poteaux sous M_{ysd}^{max} pour chaque niveau

Ci-dessous, vous trouverez un tableau regroupant les résultats calculés manuellement et les vérifications effectuées conformément aux règlements CCM97.

<déversement< th=""><th colspan="4">Flambement</th></déversement<>					Flambement				
Étaga Profi lá		Les coefficients			Le	s coeffic	ients	Valeur	$\begin{array}{c} \text{Condition} \\ \leq 1 \end{array}$
Diuge	Tome	λLTy	λ/LT_z	$\begin{array}{c} \text{Condition} \\ \leq 0.4 \end{array}$	Xmin	Ky	Kz	finale	
7eme	HE400	35.37	0.35		0.96	1.29	0.95	0.44	
6eme	HE400	35.37	0.35		0.94	1.18	0.98	0.87	
5eme	HEA500	35.56	0.35		0.94	1.25	0.97	0.47	Vérifie
4eme	HEA500	35.56	0.35		0.96	1.30	0.99	0.40	
3eme	HEA500	35.34	0.36		0,95	1,25	1.00	0,33	
2eme	HEA500	35.34	0.36	Vérifiée	0.96	1.44	0.98	0.52	
1er	HEA600	36.28	0.36		0,97	1,10	0.99	0,34	

Tableau VI. 5: Vérifications au flambement par flexion

• Cas 3 : M_{zsd}^{max} ; N_{sd} et M_{ysd} correspondent

Tableau VI. 6: Efforts internes des poteaux sous M_{zsd}^{max} pour chaque niveau

Niveau	Combinaison	$N_{sd}(KN)$	M _{sdZ} max(KN.m)	$M_{sdY}(KN.m)$
7	G+Q+EY	19.40	78.15	78
6	0.8G+EX	-353.19	77.84	55.90
5	G+Q+EX	622.8	74.74	49.07
4	G+Q+EX	-894.54	72.85	55.87
3	G+Q+EX	-488.04	65.14	58.8
2	G+Q+EX	- 583.94	53.23	59.70
1	G+Q+Ex	-1214.56	-25.17	3.13

<déversement< th=""><th colspan="5">Flambement</th></déversement<>					Flambement				
Étago Profi ló		Les coefficients			L	es coeffici	ents	Valeur	$\begin{array}{c} \text{Condition} \\ \leq 1 \end{array}$
Lluge	TOIR	λLT _y	λ/LT_z	$\begin{array}{l} \text{Condition} \\ \leq 0.4 \end{array}$	Xmin	K _y	Kz	finale	
7eme	HEA400	34.56	0.34		0.94	1.03	0.98	0.39	
6eme	HEA500	35.03	0.35		0.96	1.04	0.96	0.35	
5eme	HEA500	35.22	0.35		0.96	1.04	0.99	0.33	Vérifie
4eme	HEA500	35.55	0.35		0.96	1.05	1.01	0.39	
3eme	HEA500	36.22	0.36		0,97	1,02	1.0	0,30	
2eme	HEA500	36.42	0.36	Vérifiée	0.97	1.03	0.99	0.29	
1er	HEA600	36.33	0.36		0,99	1,114	0.99	0,39	

Tableau VI. 7: Vérifications au flambement par flexion

Tableau VI. 8: Choix final des poteaux

Étages	Profilés
7	HEA400
6	HEA400
5	HEA500
4	HEA500
3	HEA500
2	HEA500
1	HEA600

VI.3. Vérification des poutres principales

Figure VI. 2: Schéma statique de la poutre principale.

Les calculs seront fait sur une poutre principale du RDC de profilé HEA (àà0 et de longueur L=7,5m.

D'après le logiciel ETABS, la combinaison de charge la plus défavorable est

1.35G + 1.5Q

Les Sollicitations :

 $M_{sd} = 379; 67KN.m$

 $V_{sd} = 310,55KN$

VI.3.1. Vérification du moment fléchissant

 $M_{sd} \leq M_{plrd}$

 $M_{plrd} = \frac{w_{ply} f_y}{\gamma_{m0}} \Rightarrow M_{plrd} = \frac{3949 \times 10^3 \times 275}{1} \times 10^{-6}$

$$M_{plrd} = 1085.975 \ KN.m$$

 $M_{sd} = 379;67KN.m < M_{plrd} = 1085.975 KN.m$ Condition vérifiée.

VI.3.2. Vérification au déversement

$$M_{sd} \le M_{bRd} = \frac{\mathcal{X}_{LT} \times \beta_w \times w_{ply} \times f_y}{\gamma_{m1}}$$

Le déversement est pris en considération que si $\bar{\lambda}_{LT} \ge 0.4$

$$\bar{\lambda}_{LT} = \frac{\lambda_{LT}}{\lambda_1} \cdot \sqrt{\beta_W}$$

Section transversale de classe 1,2 $\Rightarrow \beta_W = 1$

$$\lambda_1 = 93.91\varepsilon$$
; avec $\varepsilon = 0.92 \Rightarrow \lambda_1 = 86.39$

Puisque les poutres sont encastrées des deux extrémités, les facteurs de longueur effective *K et k_w* sont pris égale à 0.5, et donc la formule λ_{LT} est de la forme :

$$\lambda_{LT} = \frac{\frac{K \times L}{i_z}}{\sqrt{C_1} \left[1 + \frac{1}{20} \left[\frac{K \times L}{\frac{i_z}{h_f}} \right]^2 \right]^{0.25}}$$

D'après le tableau B.1.1 du CCM97, on prend pour K=0.5 un coefficient $C_1 = 3.093$

$$\bar{\lambda}_{LT} = \frac{0.52}{1.75} \Rightarrow \bar{\lambda}_{LT} = 0.291 < 0.4 \text{ il n'y a pas de risque de déversement.}$$

$$\phi_{LT} = 0.5 \left(1 + \alpha (\bar{\lambda}_{LT} - 0.2) + \bar{\lambda}_{LT}^2 \right) \Rightarrow \phi_{LT} = 0.509$$

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \overline{\lambda_{LT}^2}^2}} = 1,079$$

On aura :

$$M_{brd} = \chi_{LT} \cdot \beta_{w} \cdot \frac{W_{ply} \cdot f_{y}}{\gamma_{m1}} \ge M_{sd}$$
$$M_{brd} = 1,079 \times 1 \frac{3949 \times 10^{3} \times 275}{1.1} \Rightarrow M_{brd} = 1065,242 \ KN. \ m$$
$$M_{brd} = 1065,242 \ KN. \ m > M_{sd} \ \dots \dots \ Condition \ vérifiée.$$

VI.3.3. Vérification au voilement de l'âme par cisaillement

La résistance au voilement par cisaillement doit être vérifiée pour les âmes non raidies ayant un rapport $\frac{d}{t_w} > 69\varepsilon$, et pour les ames raidie lorsque ce rapport est supérieur a $30\varepsilon\sqrt{K_{\tau}}$. [6] Avec :

- d : la distance entre nus inférieur des semelles ;

$$- \varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$$

On a :

$$\frac{d}{t_w} = \frac{444}{12} = 37 < 69 \times 0.92 = 63.4$$
, alors on est dans le cas d'âme non raidie.

a vérification peut être faite en appliquant la méthode post critique simple mentionner dans **[6]**.

$$V_{bard} = \frac{d.t_w.\tau_{ba}}{\gamma_m 1}$$

 τ_{ba} : est la résistance post critique au cisaillement.

On a: $\overline{\lambda}_w = \frac{\frac{d}{t_w}}{37.4\varepsilon\sqrt{K_\tau}} \rightarrow \frac{\frac{390}{12}}{37.4\times0.92\times\sqrt{5.34}}$

$$\bar{\lambda}_w = 0.408 < 0.8$$
, alors $\tau_{ba} = \frac{f_{yw}}{\sqrt{3}} = \frac{275}{\sqrt{3}} \Rightarrow \tau_{ba} = 158.77 MPA$

Avec : K_{τ} : est le coefficient de voilement par cisaillement

 $K_{\tau} = 5.34$ Pour les âmes avec raidisseurs transversaux aux droits des appuis mais sans aucun raidisseur transversal intermédiaire.

On aura alors :

$$V_{ba,rd} = \frac{390 \times 10 \times 5.34}{1.1} \rightarrow V_{ba,rd} = 189,32 \ KN$$

 $V_{sd} < V_{hard}$ Pas de voilement par cisaillement des âmes.

Remarque : la procédure de calcul de la poutre secondaire ci-dessus est la même pour les autres poutres.

VI.4. Vérification des contreventements

VI.4.1. Généralités

Les contreventements ont la fonction générale de stabilisation de l'ossature, on peut distinguer sous ce terme général trois fonctions principales liées entre elles :

- Transmettre les efforts horizontaux ;
- Limiter les déformations ;
- Contribuer à augmenter la stabilité de la structure et de ses éléments.

Plusieurs types de système de contreventement, permettant de donner la rigidité nécessaire au cisaillement, on site :

- Triangulation (contreventement en treillis : en croix de st André, en K, en V, en N...)→ forces transmises par des efforts normaux dans les barres. Il faut tenir compte des risques de flambement des barres travaillant à la compression ou par remplissage.
- Rigidification des nœuds → forces transmises surtout par flexion des traverses et des poteaux.

Figure VI. 3: Types de systèmes de contreventement.

VI.4.2. Dimensionnement des contreventements

Pour équilibrer une force pouvant agir dans n'importe quelle direction d'un plan, les trois conditions suivantes doivent être respectées :

Il faut disposer d'au moins trois lignes d'action de forces,

Les lignes d'action de forces ne doivent pas être concourantes en un point,

Les lignes d'action de forces ne doivent pas être toutes parallèles entre elles.

L'existence d'un système de contreventement dans une structure ne garantit pas que la structure de l'ossature et forcément contreventé mais elle doit être classifiée comme contreventé.

Lorsque la classification de l'ossature comme contreventée est justifiée, il est possible d'analyser l'ossature et le système de contreventement séparément de la façon suivante :

L'ossature sans système de contreventement peut être traitée comme totalement appuyée latéralement et comme devant supporter l'action des charges verticales uniquement.

Pour notre cas :

- Sens x : 2UPN 300.
- Sens Y : 2UPN 300.

• <u>Contreventement en forme X</u>

Figure VI. 4: Contreventement en X.

Les efforts sollicitant les plus défavorables calculés par le logiciel sous la combinaison

(G+Q+1,25EY): Nsd =1793,99KN

1- Vérifications à la traction simple

Il faut vérifier que :

$$N_{sd} \le N_{pl,Rd}$$
$$N_{pl,rd} = \frac{A \times f_y}{\gamma_{M1}} = \frac{2 \times 5880 \times 275}{1,1} \times 10^{-3} = 2940 \text{ KN}.$$

 $N_{sd} = 1793,99 \text{KN} < N_{pl,Rd} = 2940 \text{ KN}$Condition vérifiée.

2- Vérifications à la compression simple

Il faut vérifier que :

$$N_{sd} \leq N_R = \chi \frac{\beta_A \times A \times f_y}{\gamma_{M1}}$$

Avec :

 $\beta_A = 1$ Pour les sections de classe 1 et 2.

$$\begin{split} \gamma_{M1} = 1,1 \\ f_y &= 275 \text{ MPa.} \\ l_f &= 2,25 \text{ m.} \\ \lambda_y &= \frac{L_{fy}}{i_y} = \frac{225}{11,7} = 19,23. \\ \lambda_z &= \frac{L_{fz}}{i_z} = \frac{225}{2,90} = 77,59. \\ \text{On a } \lambda_y &< \lambda_z \Rightarrow \text{ le flambement se produit autour de l'axe (Y-Y)} \\ \overline{\lambda_y} &= \frac{\lambda_y}{86,81} = 0,22. \\ \Phi_y &= 0,5 \times [1 + \alpha_y(\overline{\lambda_y} - 0,2) + \overline{\lambda_y}^2] \\ \Phi_y &= 0,53. \\ \chi_y &= 0,98. \\ N_{sd} &= 1793,99KN \quad < \frac{0.98 \times 1 \times 2 \times 5880 \times 275}{1,1} \times 10^{-3} = 2704,8 \text{ KN}.....Condition} \\ \text{Várifián} \end{split}$$

Vérifiée.

VI.4.3. Conclusion

Le but de ce chapitre étais de vérifier la stabilité des sections obtenues après étape de modélisation, et ces dernière ont largement satisfait les critères de la réglementation appropriée (CCM97, EUROCODE03).

VI.5. Conclusion

L'objectif de cette section était de procéder à la vérification de la stabilité des sections obtenues lors de la phase de modélisation, et celles-ci ont largement répondu aux critères des réglementations applicables (CCM97, EUROCODE03).

CHAPITRE VII :

Calcul d'assemblages

VII.1. Introduction

Les assemblages ont pour fonction d'assurer la liaison ou la continuité des composants élémentaires entre eux, en assurant la transmission et la répartition des diverses sollicitations entre les pièces sans générer de sollicitations parasites notamment de torsion.

VII.2. Modes d'assemblages

VII.2.1. Fonctionnement des assemblages

Dans ce cas la transmission des efforts s'opère par adhérence des surfaces des pièces en contact.

Les moyens les plus courants dans l'assemblage des structures métalliques sont le boulonnage et la soudure.

Les types d'assemblages sont :

a. <u>Le boulonnage :</u>

Le boulonnage est le moyen d'assemblage le plus utilisé en construction métallique du fait de sa facilité de mise en œuvre et des possibilités de réglage qu'il ménage sur site, On distingue deux types « Boulons ordinaires » et « Boulons à haute résistance ».

- Fonctionnement des boulons :
- Boulons cisaillés.
- Boulons tendus.
- Boulons cisaillés et tendus.

Tableau `	VII.	1:	Caractéristiques	des	boulons
-----------	------	----	------------------	-----	---------

Classe	4,6	4,8	5,6	5,8	6,8	8,8	10,9
f _{yb} N/mm²)	240	320	300	400	480	640	900
f _{ub} (N/mm)	400	400	500	500	600	800	1000

 f_{yb} = Limite d'élasticité.

 f_{ub} = Résistance ultime à la traction.

b. Le soudage :

En charpente soudée les assemblages sont plus rigides, cela a pour effet un encastrement partiel des éléments constructifs. Les soudages à la flamme oxyacéthylénique et le soudage

CHAPITRE VII

à l'arc électrique sont des moyens de chauffages qui permettent d'élever à la température de fusion brilles des pièces de métal à assembler.

- L'assemblage se compose de plusieurs éléments :
- Les abouts des pièces à assembler.
- Les accessoires de fixation (cornières, platines,).
- Les organes de fixation (boulons, rivet, soudure).

Dans ce chapitre, (05) types d'assemblage seront traités qui sont :

- Assemblage poutre solive ;
- Assemblage poteau poutre ;
- Assemblage Pied de poteau ;
- Assemblage poteau poteau (HEA) ;
- Assemblage contreventement X et V ;

Figure VII. 1: Exemples des assemblages soudés.

VII.3. Assemblage poteau-poutre

Figure VII. 2: Vue d'assemblage poteau – poutre.

On doit fixer la poutre à l'aide des boulons qui lient la plaque en platine et le poteau, la poutre doit être soudée sur la plaque. On a une poutre HEA600 et un poteau HEA500 leur caractéristique se résume dont le tableau suivant :

Profilé	h(mm)	b (mm)	$t_f(mm)$	$t_w(mm)$	$A(mm^2)$
HEA 500	490	300	23	12	197 ,5
HEA 600	590	300	25	13	226,5

Tableau VII. 2: Caractéristiques géométriques des profilés

• Efforts sollicitant

- Moment fléchissant : M_{sd} =379.63 KN.m
- Effort tranchant : $V_{sd} = 310,12KN$

G+Q+1,5EX

• Calcul de la soudure poutre HEA 500

On a utilisé la nuance d'acier S275 on aura:

$$\begin{cases} \beta_w = 0.85\\ \gamma_{Mw} = 1.3\\ f_{us} = 430 \end{cases}$$

Donc l'épaisseur du cordon sur la semelle :

$$a_f \ge t_f \times \frac{f_y}{\gamma_{m0}} \times \frac{\beta_W \times \gamma_{MW}}{f_{us} \times \sqrt{2}}$$
$$a_f \ge 23 \times \frac{275}{1.1} \times \frac{0.85 \times 1.3}{430 \times \sqrt{2}} = 10,44 \text{ mm}$$

Et l'épaisseur du cordon sur l'ame :

$$a_{w} \ge t_{w} \times \frac{f_{y}}{\gamma_{mo}} \times \frac{\beta_{w} \times \gamma_{Mw}}{f_{us} \times \sqrt{2}}$$
$$a_{w} \ge 12 \times \frac{275}{1.1} \times \frac{0.85 \times 1.3}{430 \times \sqrt{2}} = 5.45 \text{ mm}$$

Donc pour avoir un cordon de soudure uniforme sur tout le profilée on prend a=10

Figure VII. 3: Assemblage soudé poutre-platine [12]

On a:

L₁=bs = 300 mm
L₂=
$$\frac{b_s - t_w}{2}$$
 = 144,5 mm
A_s= $\sum l_i a_i$ = (2l₁+4l₂+2l₃)a = 18820mm²
 I_{ys} = 2I₁ × a × d₁² + 4I₂ × a × d₂²

Avec :

$$\begin{bmatrix} d_1 = \frac{H_{profilé}}{2} + \frac{a}{2} = \frac{490}{2} + \frac{10}{2} \implies d_1 = 240 \text{mm.} \\ d_2 = \frac{H_{profilé}}{2} - t_f - \frac{a}{2} = \frac{490}{2} - 23 - \frac{10}{2} = 217 \text{mm.} \end{bmatrix}$$

 $I_{ys} = 2 \times 300 \times 10 \times 240^2 + 4 \times 144,5 \times 10 \times 217^2$

 $I_{ys} = 617774420 \ mm^4$.

• Vérification de la soudure

 $V_{sd} = 310,12KN$

 $M_{sd} = 379.63 \text{ KN.m}$

- Effet de N_{sd} et V_{sd}

$$\sqrt{2\left(\frac{N_{sd}}{\sum li \times ai}\right)^2 + 3\left(\frac{V_{sd}}{2 l_3 \times a}\right)^2} \le \frac{f_{us}}{\beta_w \times \gamma_{m2}}$$

$$\sqrt{3\left(\frac{310,12\times10^3}{2\times352\times10}\right)^2} \le \frac{430}{0.85\times1.3}$$

76,29 Mpa < 389.14 Mpa Condition vérifiée.

- Effet de N_{sd} et M_{sd}

$$\sqrt{2} \left[\frac{N_{sd}}{\sum li \times ai} + \left(\frac{M_{sd}}{l_{\frac{s}{yy}}} \times \frac{h}{2} \right) \right] \leq \frac{f_{us}}{\beta_w \times \gamma_{m2}}$$

$$\sqrt{2} \left[\left(\frac{379.63}{409,012980 \times 10^6} \times \frac{390 \times 10^6}{2} \right) \right] \leq \frac{430}{0.85 \times 1.3}$$

181,0022Mpa < 389, 14 Mpa.condition vérifiée

• Vérification des boulons HR

- Choix de diamètre du boulon

Epaisseur de la platine : ép = 20 mm

 $t \le 10 \text{ mm}$ d = (12; 14) mm

 $10 \le t \le 25 \text{ mm}$ d = (16; 20; 24) mm

 $t \ge 25 \ mm \qquad \qquad d = (24 \ ; \ 27 \ ; \ 30) \ mm$

On à l'épaisseur de la platine t = 20 mm alors on prend \emptyset = 20 mm.

- Détermination du nombre de boulons nécessaires

Selon la condition de la résistance au cisaillement des boulons

$$F_{v,sd} \leq F_{v,rd}$$

$$F_{v,sd} = \frac{V_{sd}}{n}$$

 $F_{v,rd} = 0, \ 5f_{ub}. \ A_s \!/ \ \gamma_{Mb}$

$$n \ge \frac{V_{sd} \times \gamma_{Mb}}{0, 5 \times A_s \times f_{ub}}$$
$$n \ge \frac{310,12 \times 1,25}{0,5 \times 245 \times 1000} \times 10^3 = 7,16$$

On prend n= 9 (boulons) **HR**.

On a l'épaisseur de la platine égale à 20 mm alors on prend deux files de 9 boulons HR de diamètre $\emptyset = 20 \text{ mm}$ (M20), classe 10.9

- Disposition constructive

$d_0 = \emptyset + 2 = 20 + 2$	= 22 mm			
$1.2d_0 \le e_1 \le max$	r(12t,150mm))	26,4mm <u>≤</u>	$\leq e_1 \leq 210$ mm
$2.2d_0 \le p_1 \le min$	(14t,200mm)	\Rightarrow	48,4mm ≤ j	$p_1 \leq 200 \text{mm}$
$1.5d_0 \le e_2 \le max$	(12t,150mm))	33 mm $\leq e_{2}$	$_2 \leq 210$ mm
$3d_0 \le p_2 \le \min(2)$	14t,200mm)		$66mm \le p_2$	≤ 200mm
$e_1 = 100mm$	p ₁ =110mm.	$e_2 =$	110mm	p ₂ =150mm.

On a ajouté aussi un jarret (renfort) inférieur HEA500

Figure VII. 4: Schéma distribution des boulons et des jarrets.

Détermination des efforts dans les boulons

On a l'espacement des éléments d'attache :

 $e_1 = 100 \text{mm}$ $p_1 = 110 \text{mm}$ $e_2 = 110 \text{mm}$ $p_2 = 150 \text{mm}$

- ▶ d₁= 845mm
- ▶ d₂= 735mm
- \rightarrow **d**₃= 625mm
- ▶ d₄= 516 mm
- ➤ d₅= 405mm
- \blacktriangleright **D**₆=295mm
- ► **D**₇=185mm
- **▶ D**₈=75mm
- $\sum d_i^2 = 2038031$ mm.

Afin éviter le décollement des pièces, il faut que l'effort de traction appliqué par boulonne soit inférieur à l'effort de précontrainte, soit :

$$F_{tsd} = F_{m1} \le F_{p.Cd} \cdot F_{mi} = \frac{M_{sd} \times d_i}{n_f \times \sum d_i^2} \times 10^3$$

 n_f : Nombre des files, $n_f = 2$.

$$F_{m1} = 78,70 \text{ KN}$$

- $F_{p.Cd} = 0.7 \times f_{ub} \times A_S$

$$A_{s} \geq \frac{F m 1}{0.7 f u b} \quad \Rightarrow \quad A_{s} \geq \frac{78,70}{0.7 \times 1000}$$

 $A_s \ge 160,61 \text{ mm}^2$

Le choix du boulon : $\mathbf{HR}\phi 20(10.9)$ alors on prend As = 245mm².

Donc : $F_{p.Cd} = 0.7 \times f_{ub} \times A_S = 0.7 \times 1 \times 245 = 171.5 kN$

Il faut vérifier que :

 $Fm_1 \le n F_p$

 $F_p = 0.7 \times f_{ub} \times A_s$

- F_p : L'effort de précontrainte autorisé dans les boulons
- f_{ub} : La contrainte de rupture du boulon, vaut 1000 MPa pour les boulons HR 10.9.
- A_s : L'aire de la section du boulon

 $Fm_178,70 \text{ kN} \le nFp = 2 \times 171.5 = 343 \text{ KN} \dots \dots \text{ condition v} \acute{erifi}\acute{e}$

La résistance de l'assemblage

 $F_{v,sd} \leq F_{v,rd}$.

-L'effort tranchant par boulon

 $V_{sd} = 310, 12$ KN.

$$F_{v.sd} = \frac{V_{sd}}{nb} = \frac{310,12}{9} = 34,45 \text{ KN}.$$

-La résistance au glissement Fv, rd

$$F_{v.rd} = \frac{k_s \times n \times \mu \times (F_p - 0.8Fmi)}{\gamma_{ms}}$$

Avec :

- K_s Pour des trous avec tolérances nominales normales.
- μ Surfaces nettoyées par brassage métallique ou à la flamme avec enlèvement de la rouille.
- n Nombre d'interfaces de frottement.
- γ_{ms} Pour les résistances au glissement à L'ELU.
- Fp la résistance du boulon.
- $F_{p.Cd} = 0.7 \times f_{ub} \times A_S = 0.7 \times 1 \times 245 = 171.5 kN$

$$-F_{mi} = \frac{M_{sd} \times d_i}{n_f \times \sum d_i^2} \times 10^3$$

 $F_{v.rd} = \frac{1 \times 2 \times 0.3(171.5 - 0.8 \times 78.70)}{1.25} = 52,09KN$

 $F_{v,sd}$ =34,45 KN \leq $F_{v,rd}$.=52,09*KN* ... condition vérifiée

VII.4. Assemblage Poutre - Solive

L'assemblage poutre-solive est un assemblage articulé à doubles cornières boulonnées (les âmes sont reliées, les ailes sont libres), qui permet de relier la solive à la poutre avec un jeu entre les deux éléments. Pour assurer la continuité de la solive, on réalise une grugeage pour permettre le passage de l'aile de la poutre.

Figure VII. 5: Schéma d'assemblage solive-poutre.

L'assemblage est réalisé à l'aide de deux cornières qui relie l'extrémité de la solive en **IPE200** avec l'âme de la poutre en **HEA360**, avec une file verticale de deux boulons. Caractéristiques géométriques des profilés et données mécaniques sont recapituler dont le tableau suivant :

Profilé	h(mm)	b (mm)	$t_f(mm)$	$t_w(mm)$	$A(mm^2)$
HEA 500	490	300	23	12	197 ,5
IPE160	160	82	7,4	5	20,09

Tableau VII. 3: Caractéristiques géométriques des profilés

• Efforts sollicitant

- Effort tranchant : $V_{sd} = 19,02 \text{ KN}$

G+Q+1,5EX

• Vérification des boulons HR

- Choix de diamètre du boulon

Cornière 120×10mm

Epaisseur de la platine : ép = 10 mm

t < 10 mm	d = (12 ; 14) mm.
$10 \le t \le 25 \text{ mm}$	d = (16 ; 20 ; 24) mm.
$t \ge 25 \text{ mm}$	d = (24 ; 27 ; 30) mm.

On à l'épaisseur de la platine t = 10mm alors on prend \emptyset = 16mm, classe 8.8HR.

Le choix des boulons

On choisit 4 boulons de diamètre (\emptyset 16) de classe 8.8.

Donc $d_0 = d+2mm=18mm$.

Distance entre axe des boulons

$1.2d_0 \le e_1 \le m$	ax(12t,150mm)	21,6 ≤	$e_1 \leq 150$ mm
$2.2d_0 \le p_1 \le m$	$in(14t, 200mm) \Rightarrow$	39,6 mn	$n \le p_1 \le 140 mm$
$1.5d_0 \le e_2 \le m$	ax(12t,150mm)	27mm	$e_2 \le 150$ mm
$3d_0 \le p_2 \le min$	e(14t,200mm)	54mm	$\leq p_2 \leq 140$ mm
$e_1 = 35 mm$	$p_1 = 60mm$ $e_2 = 60mm$	55mm	$p_2=0 mm$

Figure VII. 6: Assemblage poutre HEA500-Solive IPE160

Vérification de la résistance des boulons au cisaillement par plan de cisaillement

 $V_{sd} \leq F_{v,rd}$

$$F_{v,rd} \le \frac{0.6f_{ub} \times A}{\gamma_{Mb}}$$

- Section résistante en traction : A =157mm².
- Résistance des boulons à la traction : $\gamma_{Mb} = 1,25$.

$$F_{v,rd} \le \frac{0.6 \times 800 \times 157}{1.25} \times 10^{-3} = 60.28$$
KN.

On a 2 boulons en double cisaillement donc :

 $F_{v,rd} = n \ x \ F_{v,rd} = 2 \ x \ 60,28 = 120,56 \ KN.$

 V_{sd} = 19,02 KN < $F_{v,rd}$ = 120,56 KNcondition vérifiée

- Vérification de la pression diamétrale

$$F_{v,sd} \leq F_{b.rd}$$

Avec:

-
$$F_{b,rd} = \frac{2.5\alpha \times f_u \times d \times t}{\gamma_{Mb}}$$
 (tab. 6.5.3. [5])
- $F_{v.sd} = \frac{V_{sd}}{2}$

- F_{b.rd} : résistance de calcul à la pression diamétrale par boulon.

- F_{v.sd}: Effort de cisaillement de calcul par boulon.
- f_u: La résistance à la traction des cornières.

$$\alpha = \min\left\{\frac{e_1}{3 \times d_0}, \frac{p_1}{3 \times d_0} - \frac{1}{4}, \frac{f_{ub}}{f_u}, 1\right\}$$

Donc :

$$\alpha = \min(0,64; 0,86; 2.19; 1) = 0,64.$$

$$F_{b,rd} = \frac{2,5 \times 0,64 \times 365 \times 16 \times 10}{1,25} = 60,37 \text{ KN}.$$

$$F_{v.sd} = \frac{V_{sd}}{2} = 9,51 \text{ KN}$$

 $F_{v.sd} = 9,51 KN < F_{brd} = 60,37 KN$condition vérifiée.

VII.5. Assemblages de contreventement

Les caractéristiques des profilés sont regroupées dans le tableau suivant :

Fableau	VII.1:	Caractéristique	e des	profilés	assemblés.
---------	--------	-----------------	-------	----------	------------

Profilé	h (mm)	b (mm)	$t_{f}(mm)$	t _w (mm)	$A(cm^2)$
HEA600	590	300	25	13	262,5
2*UPN300	300	100	16	10	58,8

Données de calcul :

L'assemblage ci-dessous est sollicité par : Un effort de traction ; V_{Sd} =1731,8311kN

Ks = 1; trous nominaux, $\gamma ms = 1.25$

L'assemblage est assuré par des boulons HR de diamètre 20 mm (M20) de classe 10.9

Nombre des boulons nécessaire :

Pour calculer le nombre des boulons on a :

$$F_{V,Rd} \ge F_{v,Sd}$$

$$F_{vsd} = \frac{V}{n_b} et \quad F_{vrd} = \frac{As \times 0.6 \times F_{ub}}{\gamma_{Ms}}$$

 n_b : nombre de boulon

On a deux plans de cisaillement, n =2

$$F_{Vrd} = 2 \times \frac{245 \times 0.6 \times 1000}{1.25} = 235.2kN$$
$$F_{v,Sd} = \frac{V_{Sd}}{n} \rightarrow n = \frac{1731.83}{235.2} = 7.36$$

On opte pour 8 boulons de M20 de classe 10.9 et de section $A_s = 245mm^2$

Disposition constructive :

La disposition des boulons dans une pièce est réglementée par l'Eurocode 3 est calculer comme suite :

La	La méthode de calcul	Le calcule	Choix
disposition			[mm]
<i>e</i> ₁	$1.2d_0 \le e_1 \le \max(12t, 150mm)$	$26.4 \le e_1 \le 150$	60
<i>P</i> ₁	$2.2d_0 \le P_1 \le \max(14t, 200mm)$	$48.4 \le P_1 \le 200$	80
<i>e</i> ₂	$1.5d_0 \le e_2 \le \max(12t, 150mm)$	$33 \le e_2 \le 180$	40
<i>P</i> ₂	$3d_0 \le P_2 \le \max\left(14t, 200mm\right)$	$66 \le P_1 \le 200$	100

Avec :

- _ d_0 : diamètre de trou , $d_0 = d + 2 = 22mm$
- t : épaisseur de la cornière , t = 7mm

Vérification de la pression diamétrale :

La vérification à la pression diamétrale tient compte des dimensions géométriques des pièces assemblées aux voisinages du boulon : $F_{b,Rd} \ge V_{Sd}$

$$F_{b,Rd} = \frac{2.5 \times \alpha \times f_u \times d \times t}{\gamma_{mb}}$$

Avec : $\alpha = mini(\frac{e_1}{3d_0}; \frac{P_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1) mini(\frac{60}{66}) = 0.91$

d = diamètre du boulon , d = 20mm

- _ d_0 : diamètre de trou , $d_0 = 22mm$
- _ t: épaisseur de la piece , t = 14mm
- _ e_1 : pince longitudinale , $e_1 = 60$ mm
- _ P_1 : entraxe des boulon , $P_1 = 80$ mm
- _ f_{ub} : résistance à la traction des boulons , $f_{ub} = 1000$ MPa
- _ f_u: résistance à la tracction de la pièce s275 , f_u = 430MPa

on trouve $\alpha = 0.91$

Donc :

$$F_{b,Rd} = \frac{2.5 \times 0.91 \times 430 \times 20 \times 14}{1.25} = 219,56kN$$

Augmenter le nombre de boulon

$$F_{v,Sd} = \frac{V_{Sd}}{n} = \frac{1731,83}{8} = 216,375kN$$

$$F_{b,Rd} = 219,56kN > V_{Sd} = 216,375kN \dots \dots \dots \dots \dots \dots \text{Condition vérifiée}$$

Présentation ROBOT

Le logiciel Autodesk ROBOT propose aux ingénieurs structures des fonctionnalités de simulation et d'analyse structurelle évoluées pour des structures vastes et complexes de la construction. Ce logiciel est un logiciel interactif basé sur la méthode des éléments finis. Il est utilisé dans les calculs scientifiques et les problèmes d'ingénierie parce qu'il permet de résoudre des problèmes numériques complexes en moins de temps requis par rapport les calculs manuelles courants, et ce grâce à une multitude de fonctions intégrées et à plusieurs options de calcul testés et regroupés selon usage dans ce logiciel.

Vérification de l'assemblage des éléments de contreventement central :

L'assemblage se fait avec l'élément le plus sollicité avec une section de **2UPN 300**. L'assemblage des éléments de contreventements a été fait par le logiciel **ROBOT**

Vérification de l'assemblage pied de poteau :

L'assemblage du pied de poteau a été fait par le logiciel ROBOT.

Caractéristique de l'assemblage :

- Platine 950 x 800 x 70 mm.
- ➢ M42 de classe 8,8.
- ➢ Raidisseur 650 x 300 x 15 mm.
- ➢ Soudure 20 mm.

Les efforts :

 $M_{j,Ed,y}\!=\!\!154KN^*M$

 $M_{j,Ed,z} = 4KN*M$

V_{j,Ed,y} =38KN

 $V_{j,Ed,Z=\ 34,5KN}$

Figure VII. 7: Disposition constructive de l'assemblage pied de poteau

Figure VII. 8: Vue « 3D » de l'assemblage pied de poteau.

e1

Autodesk Robot Structural Analysis Professional 2019 Calcul du Pied de Poteau encastré Eurocode 3: NF EN 1993-1-8:2005/NA:2007/AC:2009

Vérification de l'assemblage de co

ntinuité de poteau : L'assemblage continuité de poteau a été fait par le logiciel ROBOT

Caractéristiques de l'assemblage :

• Platine 1000x420x25 mm.

•	18 boulons M20 de	classe 10.9
=	52	[mm]

p ₂ =	90	[mm]
p1 =	105	[mm]

Figure VII. 9: Disposition constructive de l'assemblage continuité de poteau.

VII.6. Conclusion

Après conception et vérification des assemblages nous passons à un autre assemblage qui est la liaison de la structure avec le sol, que nous allons étudier dans le chapitre suivant.

CHAPITRE VIII :

Calcul de fondation

VIII.1 Introduction

Les fondations d'une structure sont les éléments de l'infrastructure situés au-dessous du niveau de la base (contact avec le sol), auquel elles transmettent les charges de la superstructure.

Le choix du type de fondation dépend de :

- ► Type d'ouvrage à construire.
- ► La nature et l'homogénéité du sol.
- ► Facilité d'exécution et l'aspect économique.

VIII.2. Caractéristiques du sol

Pour projeter correctement une fondation, Il est nécessaire d'avoir une bonne connaissance de l'état des lieux au voisinage de la construction à édifier. D'après le rapport géotechnique on a : $\overline{\sigma_{sol}} = 2 \ bar$

Pour ne pas perdre laitance du béton (ciment + eau), les fondations doivent être posées sur une plateforme dure pour cela, une couche de béton (béton de propreté) est posée sur le sol qui est dosée à $150 \ kg/m^3$ et de 10cm d'épaisseur.

VIII.3. Choix du type de fondation

Le choix des fondations se fait dans l'ordre suivant :

- Semelles isolées
- Semelles filantes
- Radier général.

VIII .3.1. Semelles isolées

On doit vérifier la condition suivante dans le cas du poteau le plus sollicité afin d'assurer la validité de la semelle isolée

Figure VIII. 1: Semelles isolée sous poteaux.

$$\sigma_{ser} = \frac{Nser}{Ssemelle} \le \sigma_S$$

L'effort normal total revenant à la fondation du poteau le plus sollicité est égale à :

N_{ELS}= 2309,25 KN

Sous la combinaison de charge ELS, on adoptera une semelle homothétique, c'est-à-dire que :

$$\frac{A}{B} = \frac{a}{b} \qquad \Rightarrow A = \sqrt{S}$$

Pour vérifier l'interférence entre deux semelles il faut vérifier que : $L_{min} > 1.5B$

A = B

Tel que : *Lmin* est l'entre axe minimum entre deux poteaux

Dans notre cas : *Lmin* = $5 m < 1,5 \times 3,39 = 5.08 m \dots$

Remarque

On remarque d'après les calculs résumés dans le tableau précèdent, que les semelles isolées ne peuvent pas être réaliser, car cela causera un chevauchement. D'autant plus que notre ouvrage représente une charge importante, alors on va opter pour des semelles filantes.

VIII.3.2 Semelle filante

L'effort normal supporté par la semelle filante est la somme des efforts de tous les poteaux qui se trouve dans la même ligne.

Figure VIII. 2: Semelles filantes.

Figure VIII. 3: Réactions Fz à l'ELS.

On doit vérifier que : $\sigma_{sol} \ge \frac{N}{S}$

Tel que :

 $N = \sum N_i$ De chaque file de poteau

 $S = B \times L$

- B : largeur de la semelle
- L : longueur de la file considérée
- La largeur de la semelle :

$$B \ge \frac{N}{L.\,\sigma_{sol}}$$

Avant tout, il faut calculer les coefficients de répartition des charges pour trouver la charge revenant à chaque file de semelle filante.

File	Nser(kN)	L(m)	B (m)	Bchoisit(m)	S (m ²)
1	4904,36	19	1,29	1,9	36,1
2	6152,76	20	1,54	1,9	38
3	6987,39	20	1,74	1,9	38
4	7207,15	19	1,89	1,9	36,1
5	7127,50	19	1,87	1,9	36,1
6	7126,58	19	1,87	1,9	36,1
7	7205,10	19	1,89	1,9	36,1
8	6988,05	20	1,74	1,9	38
9	6150,35	20	1,53	1,9	38
10	4093,65	19	1,07	1,9	36,1
		$\sum S$			368,6

Tableau VIII. 1: Sections des semelles filantes continues.

On a :

$S_{Semelle}(m^2)$	S _{batiment} (m ²)	%
329,9	900	40,95%

 $\frac{S(semelles filantes)}{S(surface totale)} \le 50\%$

<u>Remarque :</u>

D'après les résultats, il n'y a pas de chevauchement des semelles,

Donc : La surface totale de la semelle ne dépasse pas 50% de la surface d'emprise du bâtiment ; pour cela on a opté pour des semelles filantes comme type de fondation pour notre ouvrage.

VIII.4. Calcul des semelles filantes

La semelle filante est une fondation superficielle utilisée principalement pour supporter un mur, un voile porteur ou des poteaux. Elle limite les tassements différentiels et réduit le risque d'instabilité de l'ouvrage.

on va opter pour des semelles filantes continues.

VIII.4.1. Pré dimensionnement de la semelle filante sous poteaux

• Largeur de la nervure b_n

$$b_n \ge \frac{L_{max}}{10}$$

$$\Rightarrow b_n \ge \frac{750}{10}$$

On adopte $b_n = 80cm$

Condition de la flèche :

La hauteur des nervures se calcule par la formule de la flèche suivante :

$$\frac{Lmax}{15} \le h1 \le \frac{Lmax}{10}$$

On a $L_{max} = 7,5 \text{ m}$

 \Rightarrow 50cm < h_{N1} < 75 cm On prend : h1 = 70 (cm).

VIII.4.2. Calcul hauteur de nervure h_N

Les semelles filantes ou continues sous poteaux sont soumises à des contraintes linéaires réparties, pour cela elles doivent être suffisamment rigides pour ne pas se comportercomme une poutre sur un sol élastique, on doit alors vérifier la condition suivante vis à vis de la longueur élastique :

$$L_{max} \le \frac{\pi}{2} L_e$$

Avec : $L_e = \sqrt[4]{\frac{4EI}{KB}}$

- L_{max} : longueur max entre axe des poteaux.

- E: Module d'élasticité du béton (prendre en moyenne E=20000MPa).
- I : moment d'inertie de la semelle ; $I = \frac{bhn^3}{12}$.
- K: Coefficient de raideur du sol (5MPa/m \leq K \leq 120MPa/m).

On pourra par exemple adopter pour K les valeurs suivantes :

- → K=5 $[MPa/m] \rightarrow$ pour un très mauvais sol.
- ➤ K=40 [MPa/m] → pour un sol de densité moyenne. (La valeur prise dans notre cas)
- → K=120 [MPa/m] → pour un très bon sol.

Donc :

$$h_n \ge \sqrt[3]{\frac{48KBL^4}{E\pi^4 b}} \twoheadrightarrow h_n \ge 1003.05 \ mm$$

On adopte $h_n = 1.1m$

• La hauteur « h_s »

La hauteur de la semelle est : $h_t > d + 5cm$

Et Pour satisfaire la condition de l'inclinaison de 45° de la bielle moyenne, la hauteur utile vaut :

$$h_s > \frac{B-b}{4} + 5 \Rightarrow h_s > \frac{190 - 110}{4} + 5 = 25 \ cm$$

$h_t = 40 \ cm$.

VIII.4.3. Chargement de la semelle filant sens X-X

File	Nser(kN)	L(m)	<i>Nser</i> (<i>kN</i> /m)	Nelu (kN)	L(m)	Nelu(kN/m)
1	4904,36	19	258,12	6711,75	19	353,25
2	6152,76	20	307,638	8425,6	20	421,28
3	6987,39	20	349,37	9572,33	20	478,6165
4	7207,15	19	379,21	9871,52	19	519,5537
5	7127,50	19	375,13	9762,06	19	513,7926
6	7126,58	19	375,08	9760,58	19	513,7147
7	7205,10	19	379,23	9869,76	19	519,4611
8	6988,05	20	349,40	9574,02	20	478,701
9	6150,35	20	307,51	8424,22	20	421,211
10	4093,65	19	215,45	6711,18	19	353,22

Tableau VIII. 2: Répartition des efforts à l'ELS et l'ELU pour chaque fille

- Remarque

Le poids propre de la semelle et des nervures est pris en compte.

Vérification de la semelle filante

• Vérification de la stabilité au renversement

Le dernier facteur soumis à la comparaison est le coefficient de sécurité vis-à-vis du renversement, la vérification au renversement de la structure s'avère nécessaire pour justifier la stabilité d'un ouvrage sollicité par des efforts d'origine sismique. Donc il faut vérifier que

$$\frac{Ms}{Mr} > 1.5$$

Avec :

- Ms : Moment stabilisant,
- Mr Moment renversant.

```
- Sens xx
```

 $\frac{Ms}{Mr} = \frac{1393351.65}{137494.5} = 10.13 > 1.5 \rightarrow condition \ verifiée$ - Sens yy $\frac{Ms}{Mr} = \frac{832295.39}{154223.99} = 5.40 > 1.5 \rightarrow condition \ verifiée$

Remarque : La condition est vérifiée dans les deux sens, donc le bâtiment est stable vis-àvis au renversement.

• Vérification des contraintes à ELS

On doit vérifier que $\sigma_{ser} = \frac{Nser}{Ssemelle} \le \sigma_S$

Files	N (kN)	S (m ²)	σ (kN/m ²)	σ _{sol}	Résultat
1	4904,36	36.1	135,85485	200	Vérifiée
2	6152,76	38	161,91474	200	Vérifiée
3	6987,39	38	183,87868	200	Vérifiée
4	7207,15	36.1	199,64404	200	Vérifiée
5	7127,50	36.1	197,43767	200	Vérifiée
6	7126,58	36.1	197,41219	200	Vérifiée
7	7205,10	36.1	199,58726	200	Vérifiée
8	6988,05	38	183,89605	200	Vérifiée
9	6150,35	38	161,85132	200	Vérifiée
10	4093,65	36.1	113,39751	200	Vérifiée

Tableau VIII. 3: Vérification de la contrainte à ELS

VIII.5. Ferraillage

• Ferraillage des semelles filantes (méthode des bielles pour **1***ml*,

On applique la méthode des bielles :

 $f_{c28}\!\!=\!\!25MPa$; $f_{t28}\!\!=\!\!2,\!1MPa$; $\sigma_{bc}\!\!=\!\!15MPa$; $f_{e}\!\!=\!\!430MPa$; $\sigma_{s}\!\!=\!\!435MPa$;

d=0,9h. Armatures principales

A=Pu $\frac{B-b}{8d\sigma st}$

A= 519.55 x $\frac{1.9-1.1}{8*0.36*435000}$ = 3.412 $cm^2 \rightarrow 4T12$

 $A_{smin} = 0.23 b d f_{t28} / f_e = 4,44 \ cm^2 \rightarrow 6T10 \ [16]$

On doit ferrailler avec As donc on adopte un ferraillage 6T10 pour toutes les semelles.
Semelles	NELU	PELU	<i>As</i> (<i>cm</i> ²)	Choix	AS(cm ²)	Choix
	(kN)	(kN/ml)				(cm ²)
1	6711,75	353,25	2,526332	4T12	4,44	6 <i>T</i> 10
2	8425,6	421,28	2,960996	4T12	4 ;44	6 <i>T</i> 10
3	9572,33	478,6165	3,052049	4T12	4,44	6 <i>T</i> 10
4	9871,52	519,5537	3.41276	4T12	4,44	6 <i>T</i> 10
5	9762,06	513,7926	3,28765	4T12	4,44	6T10
6	9760,58	513,7147	3,288317	4T12	4,44	66T10
7	9869,76	519,4611	3,4298737	4T12	4,44	6710
8	9574,02	478,701	3,052268	4T12	4,44	6T10
9	8424,22	421,211	2,681603	4T12	4,44	6T10
10	6711 ,18	353,22	2,25876	4T12	4 ;44	6T10

Tableau VIII. 4: Ferraillage des semelles filantes

a) <u>Ferraillage des nervures :</u>

✤ <u>Calcul des efforts :</u>

Pour le calcul des efforts, on utilise la méthode forfaitaire.

On a :
$$M_0 = \frac{PL^2}{8}$$

$$\begin{cases}
En travée : M_t = 0.85M_0 \\
Sur Appuis : M_a = 0.50 M_0
\end{cases}$$

✤ <u>Calcul des armatures :</u>

b = 80cm; h = 110 cm; d = 99 cm

Sens non porteur (y-y) :

 $L = 7,5 m; q_u = 353,25 KN/ml; M_0 = 2483,79 kN, m$

Pour les efforts on utilise le logiciel ETABS, les résultats du ferraillage établi avec le logiciel sootec sont récapitulés dans le tableau suivant :

$$A_s = \frac{M_a}{z \cdot \sigma_s}$$
, Z = d (1 – 0.4× α) = 118,35 cm
 $\mu_u = 0,114 < \mu_R = 0,391$

 $a = 1,25 \big(1 - \sqrt{1 - 2 \mu} \big) = 0,15$

 $Z = d (1 - 0.4 \times \alpha) = 103,49 \text{ cm}$

Tableau VIII. 5: Ferraillage des nervures.

	semelle	<i>Mu</i> (<i>kN</i> . <i>m</i>)	<i>As</i> (<i>cm</i> ²)	Choix	Aadp(cm ²)
1	Appuis	7970,203	22,98	12T20	37,70
1	Travée	13549,35	39,21	12T25	58,91
	Appuis	10532	30,37	12T20	37,70
2	Travée	17904,4	52,33	12T25	58,91
	Appuis	11722,43	33,8	12T20	37,70
3	Travée	19928,13	57,11	12T25	58,91
	Appuis	11722,43	33,8	12T20	37,70
4	Travée	19928,13	57 ,11	12T25	58,91
~	Appuis	11592,45	39,42	12T20	37,70
5	Travée	19707,16	57,1	12T25	58,91
6	Appuis	11590,69	33,64	12T20	37,70
6	Travée	19704,17	57,78	12T25	58,91
_	Appuis	11720,34	33,42	12T20	37,70
/	Travée	19924,58	57,23	12T25	58,91
0	Appuis	11967,53	33,43	12T20	37,70
8	Travée	20344,79	58,11	12T25	58,91
0	Appuis	10530,28	32,24	12T20	37,70
9	Travée	17901,47	55,76	12T25	58,91
	Appuis	10633,44	32,15	12T20	37,70
10	Travée	16344,67	53,55	12T25	58,91

VIII.5.1. Vérification des contraintes

La fissuration est considérée préjudiciableIl faut vérifier que :

$$\int_{\sigma_{bc}}^{\sigma_{bc}} \overline{\sigma_{bc}}$$
$$\sigma_{s} < \overline{\sigma}$$
$$\sigma_{bc} = 0.6 \times f_{ck} = 0.6 \times 25 = 15$$

	M _{ser} KN.m	A _s (cm ²)	б [MPa]	σ _{bc} [MPa]	ਿø [MPa]	σs [MPa]	Condition
Travée	772.22	47.09	15	15	435	129.3	Verifier
Appius	556.15	30.42	15	15	435	109.3	verifier

Tableau VIII. 6: Vérification des contraintes

• Vérification de la contrainte tangentielle du béton :

On doit vérifier que :

 $\bar{u} = \min(0.1f_{c28}, 4MPa) \rightarrow \bar{u} = 2.5MPa$

Armatures transversales

$$\frac{A_t}{b_0 S_t} > r_u = \frac{0.3f_{tj}k}{0.8f_e}$$

Avec :

k =1 (pas de reprise de bétonnage)

$$S_t \leq \min(0.9d, 40cm)$$

$$A_t \qquad r_u$$

$$b_0 S_t \geq \max(2; 0.4MPa) = 0.4MPa$$

VIII.5.2. Ferraillage transversal

ſ

• Selon le BAEL 91 modifié 99[5] :

$$\begin{cases} S_{t}^{Max} = Min(0,9 \times d; 40 \, cm) \\ \frac{A_{t}}{b_{0} \times S_{t}} \ge \frac{\tau_{u} - 0.3 \times f_{t28} \times K}{0.9 \times f_{e}/\gamma_{s}} & (K = 1: Pas \ de \ reprise \ de \ bétonnage) \\ \frac{A_{t} \times f_{e}}{b \times S_{t}} \ge Max\left(\frac{\tau_{u}}{2}; 0.4 \, Mpa\right) \end{cases}$$

• Selon le RPA 99 /Version 2003 (7.5.2.2) [1] :

 $\begin{cases} A_{t} = 0,003 \times S_{t} \times b \\ S_{t} \leq Min\left(\frac{h}{4}; 12 \times \phi_{t}\right) = 15 \, cm \dots Zone \ nodale \\ S_{t} \leq \frac{h}{2} \dots Zone \ courante \end{cases}$

Tableau VIII.7 : Ferraillage des armatures transversales

		S _t (cm) BAEL	S_t^{adpt}	(cm)	A_t (cm^2)	Choix
$T_u(kN)$	$r_u(MPa)$		z.N	z.C		4T12
1814.79	2.3	40	15	30	4.2	$A_t(cm^2) = 4.52$

Armatures de peau :

Les armatures dénommées « armatures de peau » sont réparties sur les parements des poutres de grande hauteur, leur section est au moins 3 cm²/ml par mètre de longueur de paroi mesuré perpendiculairement à leur direction

$$A_p = 3,6cm^2$$

Donc on prend : $4T12 \rightarrow A=4,52cm$

Figure VIII. 4: Coffrage et ferraillage des nervures.

VIII.6. Conclusion

Une étude approfondie des fondations et de la charpente métallique est essentielle pour garantir la sécurité, la durabilité et la performance des bâtiments.

Conclusion Générale

Notre projet de fin d'étude visait à concevoir et à vérifier un bâtiment à ossature métallique destiné à usage d'habitation. En tant qu'étudiants en ingénierie civile et futurs ingénieurs, nous avons dû prendre en compte les aspects économiques et de résistance. Grâce aux connaissances acquises tout au long de notre formation en master 2

En raison de contraintes de temps, nous n'avons pas pu réaliser la vérification de l'ensemble des éléments de la structure. Cependant ceux qui ont été réalisés ont été soumis à une vérification conforme aux critères règlementaires.

En conclusion, cette étude d'un bâtiment à étages en charpente métallique a permis d'explorer les aspects essentiels liés à sa conception et à sa réalisation. Les différents points clés abordés comprenaient l'analyse des charges, la sélection des matériaux, la modélisation structurelle, l'évaluation de la stabilité et la sécurité. Grâce à cette recherche, nous avons acquis une compréhension approfondie des avantages et des défis associés à l'utilisation de la charpente métallique dans les constructions à plusieurs étages.

REFERENCES

[1] Charges permanente et charge d'exploitation DTR D.C.2.2 charges et surcharges

[2] Document technique réglementaire Algérienne D.T.R-C2-47 ; REGLEMENT NEIGE ET VENT « RNV99 » version 2003.

[4] Eurocode 4, calcul des structures mixte.

[5] Eurocode 3, calcul des structures en acier, partie 1-1, règles générales et règles pour les bâtiments.

[6] Règles de conception et de calcul des structures en acier « CCM97 » ; (Document technique réglementaire D.T.R-B.C.2.44)

[7] Règles parasismique Algérienne RPA99 version 2003 ; (Document technique réglementaire D.T.R B.C.2.48).

[8] Rafik TALEB, calcul sismique des structures selon RPA99 version 2003, SEMINAIREJPOGC : journée portes ouvertes sur le génie civil, juin 2008

[10] Jean Morel, Calcul des structures métallique selon l'Eurocode 3,

[15] CSTB Calcul des ouvrages en béton armé

[16] Le BAEL99, D.T.U, Béton armé aux états limites91, modifié 99.

[17] Université Saad Dahleb de Blida, guide de rédaction d'un projet de fin d'études.

[18] Fiche technique HI-BOND 55.800

[19] Fiche technique GROUPES ACIERS GROSJEAN (Tôle ondulée 18.76.988)

[20] DAHMANI-Lahlou-dans-le-livre-Calcul-des-elements-de-construction-metalliques-Selon-leuro-code-3-360p

15.30 Valeurs de calcul

11,23

12.83

0,88

1,00

1.20

Épaisseur t	Ép. Acier	Aire d'Acier	Position fil		Mt d'inertie i	Module d	le résistance
0.75	0.71	11.18	2.75	2.75	57.54	20.92	20.92
0,88	0,84	13,23	2,75	2,75	68,08	24,76	24,76
1,00	0,96	15,12	2,75	2,75	77,80	28,29	28,29
1.20	1.16	18.27	2.75	2.75	94.01	34.19	34,19

Portées admissibles au coulage en mètres

0.88

1,00

8.18

9,30

11,16

Distances maximales franchissable par tôle HI-BOND, telles que mesurées selon la figure de la colonne de gauche, admissibles sans étaiement, pour chaque épaisseur de plancher, en fonction de l'épaisseur nominale t de la tôle et du nombre de travées couvertes par la tôle, pour une déformation du coffrage de 240/1^{ème} de la portée. Les colonnes de droite indiquent la distance maximale de part et d'autre d'une file détais éventuelle.

ŦŦ	Épaisseur Plancher h		t = 0, Sans Éta	75 mm	Étais		t = 0, Sans Éta	88 mm	Étais		t = 1, Sans Éta	00 mm	. Étais		t = 1, Sans Éta	20 mm) Étais
	cm	-			.				T T				TT				T T
Portée = Clair + 5 cm	10	2,70	3,60	3,33	3,35	2,85	3,80	3,52	3,63	2,96	3,95	3,66	3,97	3,14	4,18	3,88	4,23
	11	2,60	3,48	3,22	3,15	2,74	3,66	3,39	3,48	2,85	3,81	3,53	3,71	3,02	4,03	3,73	4,06
Béton	12	2,51	3,36	3,11	2,95	2,65	3,54	3,28	3,35	2,76	3,69	3,41	3,57	2,93	3,91	3,62	3,91
	13	2,43	3,26	3,02	2,78	2,57	3,44	3,19	3,18	2,68	3,59	3,32	3,44	2,85	3,81	3,52	3,77
T T	14	2,37	3,17	2,94	2,64	2,50	3,34	3,09	3,01	2,61	3,49	3,23	3,33	2,76	3,70	3,42	3,64
0 00	15	2,31	3,10	2,87	2,51	2,44	3,26	3,02	2,86	2,54	3,41	3,15	3,17	2,69	3,61	3,34	3,53
Portée = Clair + 5 cm	16	2,25	3,02	2,80	2,39	2,38	3,19	2,95	2,72	2,48	2,33	3,08	3,02	2,63	3,53	3,26	3,43
	17	2,20	2,95	2,73	2,29	2,33	3,12	2,88	2,60	2,43	3,26	3,01	2,89	2,57	3,45	3,19	2,33
Bois	18	2,15	2,89	2,67	2,19	2,28	3,05	2,82	2,49	2,37	3,19	2,95	2,77	2,52	3,38	3,13	3,21
	19	2,12	2,84	2,63	2,11	2,23	3,00	2,77	2,40	2,34	3,13	2,90	2,66	2,48	3,33	3,08	3,08
T T	20	2,08	2,79	2,58	2,03	2,19	2,94	2,82	2,31	2,29	3,07	2,84	2,56	2,44	3,27	3,02	2,96
S 833	22	2,00	2,69	2,49	1,93	2,11	2,84	2,62	2,15	2,21	2,96	2,74	2,38	2,35	3,15	2,91	2,75
Portée = Entraxe	24	1,94	2,60	2,41	1,85	2,05	2,76	2,55	2,01	2,14	2,88	2,66	2,23	2,27	3,05	2,82	2,58

Ces valeurs maximales conviennent lorsque les arrêts de coulage éventuels sont au droit des supports, aux extrémités des tôles et si toutes les précautions utiles sont prises au moment du coulage pour éviter une surépaisseur de béton même localisée, même temporaire, sur la tôle. En cas contraires, choisir des portées moindres. Fixer les tôles par deux fixations au moins par bac à chaque extrémité.

Sarl SES (Steel Export Service) Route de Blida - Chemin Berbessa - BP233 Koléa - Tipaza - Algérie TéL: 024 59 34 17/ 20/ 21 Mob. : 05 54 50 30 63/ 64 /65 = 05 60 01 79 19/ 23 = 05 61 93 80 34 Email : commercial@ses-algerie.com = Site Web : www.ses-algerie.com

<u>Général</u>

Assemblage N°: 8 Nom de l'assemblage : Pied de poteau encastré

<u>Géométrie</u>

Poteau

Profilé:			HEB 600
$L_c =$	5,00	[m]	Longueur du poteau
α =	0,0	[Deg]	Angle d'inclinaison
h _c =	600	[mm]	Hauteur de la section du poteau
b _{fc} =	300	[mm]	Largeur de la section du poteau
t _{wc} =	16	[mm]	Epaisseur de l'âme de la section du poteau
$t_{fc} =$	30	[mm]	Epaisseur de l'aile de la section du poteau
$r_{\rm c} =$	27	[mm]	Rayon de congé de la section du poteau
$A_c =$	269,96	[cm ²]	Aire de la section du poteau
I _{yc} =	171041,00	[cm4]	Moment d'inertie de la section du poteau
Matéria	ACIER	E28	
f _{yc} =	275,00 [N	/Pa] R	ésistance
f _{uc} =	405,00 [N	/Pa] R	ésistance ultime du matériau

Platine de prescellement

I _{pd} =	950	[mm]	Longueur
b _{pd} =	800	[mm]	Largeur
t _{pd} =	70	[mm]	Epaisseur

Matériau:	ACIER		
f _{ypd} =	215,00	[MPa]	Résistance
f _{upd} =	365,00	[MPa]	Résistance ultime du matériau

Ancrage

Le plan de cis	aillement p	asse par la partie NON FILETÉE du boulon			
Classe = 8	8.8	Classe de tiges d'ancrage			
$f_{yb} = 550$,	00 [MPa	Limite de plasticité du matériau du boulon			
$f_{ub} = 800,$	00 [MPa	Résistance du matériau du boulon à la traction			
d =	42 [mm]	Diamètre du boulon			
$A_s = 11,$	20 [cm ²]	[cm ²] Aire de la section efficace du boulon			
$A_v = 13$,	85 [cm ²]	Aire de la section du boulon			
n н =	6	Nombre de colonnes des boulons			
n _V =	4	Nombre de rangéss des boulons			
Ecartement e	Hi = 150;	150;150 [mm]			
Entraxe e _{Vi} =	150;	200 [mm]			
Dimensions of	des tiges o	l'ancrage			
L ₁ =	60 [mm]			
$L_2 = 10$	000 [mm]			
$L_3 = 1$.20 [mm]			
Plaque d'anc	rage				
l _p = 1	.00 [mr	l] Longueur			
b _p = 1	.00 [mm	l] Largeur			
tp =	10 [mm	l] Epaisseur			
Matériau: P	ACIER				
$f_y = 235$,	00 [MPa	a] Résistance			
Platine					
I _{wd} =	50 [mm] Longueur			
b _{wd} =	60 [mm] Largeur			
t _{wd} =	10 [mm] Epaisseur			
<u>R</u>	aidisseu	<u>ir</u>			
ls =	950 [mm	1 Longueur			
w _s = 8	300 [mm] Largeur			
$h_s = 4$	100 [mm] Hauteur			
t _s =	20 [mm] Epaisseur			
d ₁ =	20 [mm] Grugeage			
d ₂ =	20 [mm] Grugeage			
	-				
<u>C</u>	oefficier	nts de matériau			
νMO = 1,	00	Coefficient de sécurité partiel			
γ _{M2} = 1,	25	Coefficient de sécurité partiel			
$v_{\rm C} = 1$	50	Coefficient de sécurité partiel			
10 - ,					
<u>S</u>	<u>emelle i</u>	<u>solée</u>			
L = 12	200 [mm] Longueur de la semelle			
B = 12	200 [mm	Largeur de la semelle			
H = 13	300 [mm	Hauteur de la semelle			
Béton	[
Classe BETC	N30				
$f_{ck} = 30$	00 IMP	a) Résistance caractéristique à la compression			
Mortier do co					
		aisseur du mortier de calago			
$f_{aka} = 12 00$	[MP2] Pé	sistance caractéristique à la compression			
-ck,g - ±2,00					

t _g =	30	[mm]	Epaisseur du mortier de calage
$C_{f,d} =$	0,30		Coef. de frottement entre la plaque d'assise et le béton

Soudures

a _p =	20	[mm]	Plaque principale du pied de poteau
a _s =	20	[mm]	Raidisseurs

Efforts

Cas:		Ca	lculs manuels
$N_{j,Ed} =$	2200,00	[kN]	Effort axial
$V_{j,Ed,y} =$	38,00	[kN]	Effort tranchant
$V_{j,Ed,z} =$	34,50	[kN]	Effort tranchant
$M_{j,Ed,y} =$	154,00	[kN*m]	Moment fléchissant
$M_{j,Ed,z} =$	4,00	[kN*m]	Moment fléchissant
	- /	• • •	

<u>Résultats</u>

Zone tendue

RUPTU	RE DU BO		D'ANCRAGE		
A _b =	11,20 [cr	m²] Aire	e de section efficace du boulon	[Tableau 3.4]	
f _{ub} = 8	_{ab} = 800,00 [MPa] Résistance du matériau du boulon à la traction [Tableau 3.4]				
Beta =	0,85	Co	efficient de réduction de la résistance du boulon	[3.6.1.(3)]	
$F_{t,Rd,s1} =$	beta*0.9*f	_{ub} *A _b /γ _{M2}	2		
Ft,Rd,s1 =	548,35	[kN]	Résistance du boulon à la rupture	[Tableau 3.4]	
Ft,Rd,s =	F _{t,Rd,s1}				
F _{t,Rd,s} =	548,35	[kN]	Résistance du boulon à la rupture		
RESIST	ANCE DU	BOULC	ON D'ANCRAGE A LA TRACTION		
$F_{t,Rd} = F$	t,Rd,s				
F _{t,Rd} =	548,35	[kN]	Résistance du boulon d'ancrage à traction		
FLEXIO	N DE LA P	PLAQUE	E DE BASE		
Momen	t fléchissa	nt M _{j,Ed,}	у		
I _{eff,1} =	303	[mm]	Longueur efficace pour un boulon pour le mode 1	[6.2.6.5]	
I _{eff,2} =	303	[mm]	Longueur efficace pour un boulon pour le mode 2	[6.2.6.5]	
m =	52	[mm]	Pince boulon-bord de renforcement	[6.2.6.5]	
M _{pl,1,Rd} =	79, 87	[kN*m]	Résistance plastique de la dalle pour le mode 1	[6.2.4]	
M _{pl,2,Rd} =	79, 87	[kN*m]	Résistance plastique de la dalle pour le mode 2	[6.2.4]	
F _{T,1,Rd} =	6099,83	[kN]	Résistance de la dalle pour le mode 1	[6.2.4]	
F _{T,2,Rd} =	2574,08	[kN]	Résistance de la dalle pour le mode 2	[6.2.4]	
FT,3,Rd =	2193,41	[kN]	Résistance de la dalle pour le mode 3	[6.2.4]	
F _{t,pl,Rd,y} =	= min(F _{T,1,R}	d , F _{T,2,R}	td , F _{T,3,Rd})		
F _{t,pl,Rd,y} =	=2193,41	[kN]	Résistance de la dalle pour le mode à la traction	[6.2.4]	
Momen	t fléchissa	nt Mj,Ed,	z		
l _{eff,1} =	220	[mm]	Longueur efficace pour un boulon pour le mode 1	[6.2.6.5]	
I _{eff,2} =	220	[mm]	Longueur efficace pour un boulon pour le mode 2	[6.2.6.5]	
m =	45	[mm]	Pince boulon-bord de renforcement	[6.2.6.5]	
M _{pl,1,Rd} =	57, 84	[kN*m]	Résistance plastique de la dalle pour le mode 1	[6.2.4]	
M _{pl,2,Rd} =	57, 84	[kN*m]	Résistance plastique de la dalle pour le mode 2	[6.2.4]	
$F_{T,1,Rd} =$	5185,18	[kN]	Résistance de la dalle pour le mode 1	[6.2.4]	
$F_{T,2,Rd} =$	2980,10	[kN]	Résistance de la dalle pour le mode 2	[6.2.4]	
F _{T,3,Rd} =	3290,11	[kN]	Résistance de la dalle pour le mode 3	[6.2.4]	
F _{t,pl,Rd,z} =	= min(F _{T,1,R}	_d , F _{Т,2,R}	d , F _{T,3,Rd})		
F _{t,pl,Rd,z} =	=2980,10	[kN]	Résistance de la dalle pour le mode à la traction	[6.2.4]	
RESIST	ANCES DE	E SEME	LLE DANS LA ZONE TENDUE		
N _{j,Rd} =	8153,61	[kN]	Résistance de la semelle à la traction axiale	[6.2.8.3]	
F _{T,Rd,y} =	F _{t,pl,Rd,y}				

$F_{T,Rd,y} = 2193, 41$	[kN]	Résistance de la semelle dans la zone tendue	[6.2.8.3]
$F_{T,Rd,z} = F_{t,pl,Rd,z}$			
$F_{T,Rd,z} = 2980, 10$	[kN]	Résistance de la semelle dans la zone tendue	[6.2.8.3]

Contrôle de la résistance de l'assemblage

N _{j,Ed} / N _{j,F}	_{Rd} ≤ 1,0 (6	6.24)	0,2	7 < 1	,00	vérifié	(0,27)
e _y =	70	[mm]	Excentricité de l'eff	ort axia	al		[6.2.8.3]
Z _{c,y} =	300	[mm]	Bras de levier FC,Rd	,у			[6.2.8.1.(2)]
z _{t,y} =	375	[mm]	Bras de levier F _{T,Rd}	,y			[6.2.8.1.(3)]
$M_{j,Rd,y} =$	258,77	[kN*m]	Résistance de l'ass	emblag	ge à la flexion		[6.2.8.3]
M _{j,Ed,y} / N	l _{j,Rd,y} ≤ 1,0	0 (6.23)	0,6	0 < 1	,00	vérifié	(0,60)
e _z =	2	[mm]	Excentricité de l'eff	ort axia	al		[6.2.8.3]
Z _{c,z} =	191	[mm]	Bras de levier FC,Rd	,z			[6.2.8.1.(2)]
$z_{t,z} =$	275	[mm]	Bras de levier F _{T,Rd}	,z			[6.2.8.1.(3)]
$M_{j,Rd,z} =$	10,77	[kN*m]	Résistance de l'ass	emblag	ge à la flexion		[6.2.8.3]
$M_{j,Ed,z}$ / N	l _{j,Rd,z} ≤ 1,0	0 (6.23)	0,3	7 < 1	,00	vérifié	(0,37)
M _{j,Ed,y} / N	I _{j,Rd,y} + Mj	_{,Ed,z} / M _{j,Ro}	l,z ≤ 1,0 0,9	7 < 1	,00	vérifié	(0,97)

<u>Cisaillement</u>

PRESSION DU BOULON D'ANCRAGE SUR LA PLAQUE D'ASSISE Cisaillement par l'effort Viedy

oloamontont par i onort vj,∈a,y				
$\alpha_{d,y}$ = 0 , 89 Coef. d'emplacement de	s boulons en direction du ci	saillement	[Tableau 3.4]	
$\alpha_{b,y} = 0$, 89 Coef. pour les calculs de la résistance F _{1,vb,Rd} [Ta				
$k_{1,y} = 2$, 50 Coef. d'emplacement de	s boulons perpendiculairem	ent à la direction du cisaillemen	t [Tableau 3.4]	
$F_{1,vb,Rd,y} = k_{1,y}^* \alpha_{b,y}^* f_{up}^* d^* t_p / \gamma_{M2}$				
$F_{1,vb,Rd,y} = 1902, 31$ [kN] Résistant	ce du boulon d'ancrage à la	pression sur la plaque d'assise	[6.2.2.(7)]	
Cisaillement par l'effort V _{j,Ed,z}				
$\alpha_{\text{d,z}}$ = 0 , 76 Coef. d'emplacement de	s boulons en direction du ci	saillement	[Tableau 3.4]	
$\alpha_{b,z} = 0$, 76 Coef. pour les calculs de	la résistance F _{1,vb,Rd}		[Tableau 3.4]	
$k_{1,z} = 2,50$ Coef. d'emplacement de	s boulons perpendiculairem	ent à la direction du cisaillemen	t [Tableau 3.4]	
$F_{1,vb,Rd,z} = k_{1,z}^* \alpha_{b,z}^* f_{up}^* d^* t_p / \gamma_{M2}$				
$F_{1,vb,Rd,z} = 1625,91$ [kN] Résistant	ce du boulon d'ancrage à la	pression sur la plaque d'assise	[6.2.2.(7)]	
CISAILLEMENT DU BOULON D'AN	CRAGE			
$ \alpha_{b} = 0,28 $ Coef. pour	les calculs de la résistance	₽ F _{2,vb,Rd}	[6.2.2.(7)]	
$A_{vb} = 13,85$ [cm ²] Aire de la	section du boulon		[6.2.2.(7)]	
$f_{ub} = 800,00$ [MPa] Résistance	e du matériau du boulon à l	a traction	[6.2.2.(7)]	
$\gamma_{M2} = 1,25$ Coefficien	t de sécurité partiel		[6.2.2.(7)]	
$F_{2,vb,Rd} = \alpha_b * f_{ub} * A_{vb} / \gamma_{M2}$				
$F_{2,vb,Rd} = 243,84$ [kN] Résistance of	du boulon au cisaillement - s	sans bras de levier	[6.2.2.(7)]	
GLISSEMENT DE LA SEMELLE				
$C_{f,d} = 0, 30$ Coef. de frottem	ent entre la plaque d'assise	et le béton	[6.2.2.(6)]	
$N_{c,Ed} = 0, 00$ [kN] Effort de compre	ession		[6.2.2.(6)]	
$F_{f,Rd} = C_{f,d} * N_{c,Ed}$				
$F_{f,Rd} = 0,00$ [kN] Résistan	nce au glissement		[6.2.2.(6)]	
CONTROLE DU CISAILLEMENT				
$V_{j,Rd,y} = n_b * min(F_{1,vb,Rd,y}, F_{2,vb,Rd}) + F_{f,l}$	Rd			
V _{j,Rd,y} = 3901,41 [kN] Résista	nce de l'assemblage au cis	aillement		
$V_{j,Ed,y} / V_{j,Rd,y} \leq 1,0$	0,01 < 1,00	vérifié	(0,01)	
$V_{j,Rd,z} = n_b * min(F_{1,vb,Rd,z}, F_{2,vb,Rd}) + F_{f,l}$	Rd			
$V_{j,Rd,z} = 3901, 41$ [kN] Résista	nce de l'assemblage au cis	aillement		
$V_{j,Ed,z} / V_{j,Rd,z} \le 1,0$	0,01 < 1,00	vérifié	(0,01)	
$V_{i,Ed,y} / V_{i,Rd,y} + V_{i,Ed,z} / V_{i,Rd,z} \le 1,0$	0,02 < 1,00	vérifié	(0,02)	

Contrôle des raidisseurs

Plaque trapézoïdale parallèle à l'âme du poteau

•			•	
M1 =	50 , 71	[kN*m]	Moment fléchissant du raidisseur	
Q1 =	676 , 19	[kN]	Effort tranchant du raidisseur	
z _s =	87	[mm]	Position de l'axe neutre (à partir de la base de la plaque)	
ls =	46172,22	[cm4]	Moment d'inertie du raidisseur	
σ_d =	1,89	[MPa]	Contrainte normale au contact du raidisseur et de la dalle	EN 1993-1-1:[6.2.1.(5)]
σg =	42,04	[MPa]	Contrainte normale dans les fibres supérieures	EN 1993-1-1:[6.2.1.(5)]
τ =	84,52	[MPa]	Contrainte tengentielle dans le raidisseur	EN 1993-1-1:[6.2.1.(5)]
σz =	146,41	[MPa]	Contrainte équivalente au contact du raidisseur et de la dalle	EN 1993-1-1:[6.2.1.(5)]
max ((σ _g , τ / (0.58)), σz) / ($f_{yp}/\gamma_{M0} \le 1.0 (6.1) 0,68 < 1,00$ vérifié	(0,68)
Raidi	sseur perp	endicul	aire à l'âme (sur le prolongement des ailes du poteau)	
M1 =	68,05	[kN*m]	Moment fléchissant du raidisseur	
Q1 =	648,05	[kN]	Effort tranchant du raidisseur	
z _s =	81	[mm]	Position de l'axe neutre (à partir de la base de la plaque)	
l _s =	47636,13	[cm4]	Moment d'inertie du raidisseur	
$\sigma_d =$	1,51	[MPa]	Contrainte normale au contact du raidisseur et de la dalle	EN 1993-1-1:[6.2.1.(5)]
σg =	55 , 63	[MPa]	Contrainte normale dans les fibres supérieures	EN 1993-1-1:[6.2.1.(5)]
τ =	81,01	[MPa]	Contrainte tengentielle dans le raidisseur	EN 1993-1-1:[6.2.1.(5)]
σz =	140,32	[MPa]	Contrainte équivalente au contact du raidisseur et de la dalle	EN 1993-1-1:[6.2.1.(5)]
max ((σ _g , τ / (0.58)), σ _z) / ($f_{yp}/\gamma_{M0}) \le 1.0 (6.1) 0,65 < 1,00$ vérifié	(0,65)

Soudures entre le poteau et la plaque d'assise

σ⊥ =	12,91	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
τ_{\perp} =	12,91	[MPa]	Contrainte tengentielle perpendicula	ire	[4.5.3.(7)]
τ _y =	0,60	[MPa]	Contrainte tengentielle parallèle à V	j,Ed,y	[4.5.3.(7)]
$\tau_{zII} =$	0,35	[MPa]	Contrainte tengentielle parallèle à V	j,Ed,z	[4.5.3.(7)]
βw =	0,85		Coefficient dépendant de la résistan	ice	[4.5.3.(7)]
σ_{\perp} / (0.9*fu	_∎ /γ _{M2})) ≤ 1.0	0 (4.1)	0,05 < 1,00	vérifié	(0,05)
$\sqrt{(\sigma_{\perp}^2 + 3.0)}$	$(\tau_{yII}^2 + \tau_{\perp}^2)$	²)) / (f _u /(βν	√ [*] γ _{M2}))) ≤ 1.0 (4.1) 0,08 < 1,00	vérifié	(0,08)
$\sqrt{(\sigma_{\perp}^2 + 3.0)}$	$(\tau_{zII}^2 + \tau_{\perp}^2)$	²)) / (f _u /(βν	$(\gamma_{M2}))) \le 1.0 (4.1) 0,07 < 1,00$	vérifié	(0,07)

Soudures verticales des raidisseurs

Plaque	Plaque trapézoïdale parallèle à l'âme du poteau					
σ⊥ =	0,00	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]	
$\tau_{\perp} =$	0,00	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]	
τ _{II} =	42,26	[MPa]	Contrainte tengentielle parallèle		[4.5.3.(7)]	
σ _z =	0,00	[MPa]	Contrainte totale équivalente		[4.5.3.(7)]	
βw =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]	
max (σ⊥	, τιι * √3, σz]) / (fu/(βw [*]	*γ _{M2})) ≤ 1.0 (4.1)0,21 < 1,00	vérifié	(0,21)	
Raidiss	eur perpen	diculaire	e à l'âme (sur le prolongement des ailes	du poteau)		
σ ⊥ =	45,11	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]	
τ_{\perp} =	45,11	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]	
τιι =	40,50	[MPa]	Contrainte tengentielle parallèle		[4.5.3.(7)]	
σ _z =	114,28	[MPa]	Contrainte totale équivalente		[4.5.3.(7)]	
βw =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]	
max (σ⊥	, τ _{II} * √3, σ _z)) / (f _u /(βw	*γ _{M2})) ≤ 1.0 (4.1)0,33 < 1,00	vérifié	(0,33)	

Soudures horizontales des raidisseurs

Plaque trapézoïdale parallèle à l'âme du poteau

σ ⊥ =	68,31	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
$\tau_{\perp} =$	68,31	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]
τ _{II} =	54,13	[MPa]	Contrainte tengentielle parallèle		[4.5.3.(7)]
σ _z =	165,69	[MPa]	Contrainte totale équivalente		[4.5.3.(7)]
βw =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
max (σ	∟, τ _{II} * √3, σ _z	<u>z</u>) / (f _u /(βν	/* γM2)) ≤ 1.0 (4.1) 0,48 < 1,00	vérifié	(0,48)
Raidiss	Raidisseur perpendiculaire à l'âme (sur le prolongement des ailes du poteau)				
σ_{\perp} =	49,81	[MPa]	Contrainte normale dans la soudure		[4.5.3.(7)]
τ_{\perp} =	49,81	[MPa]	Contrainte tengentielle perpendiculaire		[4.5.3.(7)]
τ _{II} =	51,89	[MPa]	Contrainte tengentielle parallèle		[4.5.3.(7)]
σz =	134,17	[MPa]	Contrainte totale équivalente		[4.5.3.(7)]
βw =	0,85		Coefficient dépendant de la résistance		[4.5.3.(7)]
max (σ	L, τ _{II} * √3, σ _z	<u>z</u>) / (f _u /(βw	/*γM2)) ≤ 1.0 (4.1)0,39 < 1,00	vérifié	(0,39)

Rigidité de l'assemblage

Moment fléchissant M _{j,Ed,y}	
b _{eff} = 307 [mm] Largeur efficace de la semelle de tronçon T	[6.2.5.(3)]
leff = 577 [mm] Longueur efficace de la semelle de tronçon en T	[6.2.5.(3)]
$k_{13,y} = E_c^* \sqrt{(b_{eff}^* I_{eff})/(1.275^* E)}$	
k _{13,y} = 53 [mm] Coef. de rigidité du béton comprimé	[Tableau 6.11]
leff = 303 [mm] Longueur efficace pour un boulon pour le mode 2	[6.2.6.5]
m = 52 [mm] Pince boulon-bord de renforcement	[6.2.6.5]
$k_{15,y} = 0.425^* l_{eff} t_p^3 / (m^3)$	
k _{15,y} = 308 [mm] Coef. de rigidité de la plaque d'assise en traction	[Tableau 6.11]
L _b = 467 [mm] Longueur efficace du boulon d'ancrage	[Tableau 6.11]
$k_{16,y} = 1.6^*A_b/L_b$	
k _{16,y} = 4 [mm] Coef. de rigidité du boulon d'ancrage en traction	[Tableau 6.11]
$\lambda_{0,y} = 0,23$ Elancement du poteau	[5.2.2.5.(2)]
S _{j,ini,y} = 223846,77 [kN*m] Rigidité en rotation initiale	[Tableau 6.12]
$S_{j,rig,y} = 2155116, 60 $ [kN*m] Rigidité de l'assemblage rigide	[5.2.2.5]
Sj,ini,y < Sj,rig,y SEMI-RIGIDE	[5.2.2.5.(2)]
Moment fléchissant M _{j,Ed,z}	
$k_{13,z} = E_c^* \sqrt{(A_{c,z})/(1.275^*E)}$	
$k_{13,z}$ = 74 [mm] Coef. de rigidité du béton comprimé	[Tableau 6.11]
l _{eff} = 220 [mm] Longueur efficace pour un boulon pour le mode 2	[6.2.6.5]
m = 45 [mm] Pince boulon-bord de renforcement	[6.2.6.5]
$k_{15,z} = 0.425 * l_{eff} * t_p^3 / (m^3)$	
$k_{15,z}$ = 360 [mm] Coef. de rigidité de la plaque d'assise en traction	[Tableau 6.11]
L _b = 467 [mm] Longueur efficace du boulon d'ancrage	[Tableau 6.11]
$k_{16,z} = 1.6^*A_b/L_b$	
$k_{16,z}$ = 4 [mm] Coef. de rigidité du boulon d'ancrage en traction	[Tableau 6.11]
$\lambda_{0,z} = 0, 81$ Elancement du poteau	[5.2.2.5.(2)]
$S_{j,ini,z} = 120596, 68$ [kN*m] Rigidité en rotation initiale	[6.3.1.(4)]
$S_{j,rig,z} = 170480, 52 [kN*m]$ Rigidité de l'assemblage rigide	[5.2.2.5]
Sj,ini,z < Sj,irig,z SEMI-RIGIDE	[5.2.2.5.(2)]

Composant le plus faible:

BOULON D'ANCRAGE A LA RUPTURE

Assemblage satisfaisant vis à vis de la Norme Ratio 0,97

Autodesk Robot Structural Analysis Professional 2021 Calcul du raccordement de l'épissure de poteau à poteau

ЭK Ratio 0,98

NF EN 1993-1-8:2005/NA:2007/AC:2009

GENERAL

1 Assemblage N°: Nom de l'assemblage : Epissure du poteau

POTEAU INFERIEUR

Profilé:	HEA 600		
h _{c1} =	590	[mm]	Hauteur de la section de la poutre
b _{fc1} =	300	[mm]	Largeur de la section de la poutre
t _{wc1} =	13	[mm]	Epaisseur de l'âme de la section de la poutre
t _{fc1} =	25	[mm]	Epaisseur de l'aile de la section de la poutre
r _{c1} =	27	[mm]	Rayon de congé de la section de la poutre
A _{c1} =	226,46	[cm ²]	Aire de la section de la poutre
I _{yc1} =	141208,00	[cm4]	Moment d'inertie de la poutre
Matériau:	ACIER E2	8	
f _{yc1} =	275 , 0	0 [MPa] Résistance
f _{uc1} =	405,0	0 [MPa]

POTEAU SUPERIEUR

HEA 500 Profilé: 490 Hauteur de la section de la poutre $h_{c2} =$ [mm] 300 Largeur de la section de la poutre [mm] $b_{fc2} =$ 12 Epaisseur de l'âme de la section de la poutre twc2 = [mm] 23 $t_{fc2} =$ [mm] Epaisseur de l'aile de la section de la poutre 27 [mm] Rayon de congé de la section de la poutre $r_{c2} =$ 197,54 [cm²] Aire de la section de la poutre $A_{c2} =$

ÉCLISSE D'AME

Type: d	'un	côté		
I _{pw} =		1000	[mm]	Longueur de la platine
h _{pw} =		420	[mm]	Hauteur de la platine
$t_{pw} =$		25	[mm]	Épaisseur de la platine
Matériau		ACIER E	28	
f _{ypw} =		275,	00 [MF	Pa] Résistance de calcul
f _{upw} =		405,	00 [MF	Pa] Résistance à la traction

PAROI INFERIEURE

BOULONS RACCORDANT UNE ECLISSE D'AME A L'AME DU POTEAU

Le plan de cisaillement passe par la partie NON FILETÉE du boulon OUT:Catégorie d'assemblage A

	0		0
Classe =	HR 10.9		Classe du boulon
d =	20	[mm]	Diamètre du boulon
$d_0 =$	22	[mm]	Diamètre du trou de boulon
A _s =	2,45	[cm ²]	Aire de la section efficace du boulon
A _v =	3,14	[cm ²]	Aire de la section du boulon
f _{yb} =	900,00	[MPa]	Limite de plasticité du boulon
$f_{ub} =$	1000,00	[MPa]	Résistance du boulon à la traction
n _h =	5		Nombre de colonnes des boulons
n _v =	4		Nombre de rangéss des boulons
e1 =	52	[mm]	Niveau du premier boulon
p2 =	90	[mm]	Ecartement
p1 =	105	[mm]	Entraxe

PAROI SUPERIEURE

BOULONS RACCORDANT UNE ECLISSE D'AME A L'AME DU POTEAU

Le plan de cisaillement passe par la partie NON FILETÉE du boulon OUT:Catégorie d'assemblage A

Classe =	HR 10.9		Classe du boulon
d =	20	[mm]	Diamètre du boulon
$d_0 =$	22	[mm]	Diamètre du trou de boulon
$A_s =$	2,45	[cm ²]	Aire de la section efficace du boulon
A _v =	3,14	[cm ²]	Aire de la section du boulon
f _{yb} =	900,00	[MPa]	Limite de plasticité du boulon
$f_{ub} =$	1000,00	[MPa]	Résistance du boulon à la traction
n _h =	5		Nombre de colonnes des boulons
n _v =	4		Nombre de rangéss des boulons
e1 =	52	[mm]	Niveau du premier boulon
p2 =	90	[mm]	Ecartement
p1 =	105	[mm]	Entraxe

COEFFICIENTS DE MATERIAU

γмо =	1,00	Coefficient de sécurité partiel	[2.2]
γм2 =	1,25	Coefficient de sécurité partiel	[2.2]

EFFORTS

Cas: Calculs manuels

ETAT LIMITE: ULTIME

N _{Ed1} =	70,00	[kN]	Effort axial
$V_{y,Ed1} =$	30,00	[kN]	Effort tranchant
$V_{z,Ed1} =$	100,00	[kN]	Effort tranchant
$M_{y,Ed1} =$	50,00	[kN*m]	Moment fléchissant
$M_{Vz,Ed1} =$	4,00	[kN*m]	Moment fléchissant
$N_{Ed2} =$	2195,00	[kN]	Effort axial
$V_{y,Ed2} =$	30,00	[kN]	Effort tranchant
$V_{z,Ed2} =$	50,00	[kN]	Effort tranchant
$M_{y,Ed2} =$	0,00	[kN*m]	Moment fléchissant
$M_{Vz,Ed2} =$	0,00	[kN*m]	Moment fléchissant

RESULTATS

PAROI INFERIEURE

Effort axia	l					
Platine	A _i [cm2]	EFFORTS	S EQUIVALENTS Ni [kN]	EFFORTS EQU Ni(M _{y,Ed})	JIVALENTS [kN]	Force résultante N _{Ed,i} [kN]
	A _{pw} = 105,00	70,00		-		N _{Ed,pw} = 70,00
Ni=(NEd*Ai))/(A _{wp})					
$N_{Ed,i} = N_i + N_i$	Ni(M _{y,Ed})					
Effort tran	chant Z					
Platine	Α	i [cm2]			V _{zEd,i} [k	N]
	A _{z,pw} = 105,00			V _{z,Ed,pw} = 100,00		
Effort tran	chant Y					
Platine	A _{y,i} [cm2]		$V_{y,Ed,i}$	[kN]		
Ay,	_{pw} = 105,00	,	V _{y,Ed,pw} = 30,00			
$V_{y,i}=(V_{y,Ed})^*$	A _{y,i})/(A _{pw})					
Moment fl	échissant Y					
Platine	I _{y,i} [cm4]		EFFORTS EC M _{y,i} [k	QUIVALENTS N*m]	For M _y	ce résultante _{/,Ed,i} [kN*m]
	I _{y,pw} = 18060,00		50,00		M _{y,Ed,pw} = 50),00
M _{y,i} =(M _{y,Ed} *I _{y,i})/(I _{pw}) Moment fléchissant Z						
Platine	Iz	,i [cm4]			M _{z,i} [kN*	m]
	I _{z,pw} = 433,74			M _{z,Ed,pw} = 4,00		
Mi=(M _{z,Ed} *I	z,i)/(Iz,pw)					

BOULONS RACCORDANT UNE ECLISSE D'AME A L'AME DU POTEAU

RESISTANCE DES BOULONS

 $F_{v,Rd} = 150, 8$ [kN Résistance du boulon au cisaillement dans la partie non filetée d'un = 0] boulon

 $\begin{array}{l} F_{v,Rd} = \\ 0.6^* f_{ub}^* A_v^* m / \gamma_{M2} \end{array}$

Pression du boulon sur l'âme du poteau

Direction x		
$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	$k_{1x} = min[2.8^{*}(e_{1}/d_{0})-1.7, 1.4^{*}(p_{1}/d_{0})-1.7, 2.5]$
k _{1x} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bx} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	α _{bx} =min[e ₂ /(3*d ₀), p ₂ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0	1,00 > 0,00 vérifié	
$F_{b,Rd1x} = 210, 6$	[kN] Résistance d'un boulon en pression d	iamétrale F _{b,Rd1x} =k _{1x} *α _{bx} *f _u *d*∑t _i /γ _{M2}
Direction z		
$k_{1z} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	k1z=min[2.8*(e2/d0)-1.7, 1.4*(p2/d0)-1.7, 2.5]
k _{1z} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bz} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	α_{bz} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bz} > 0.0	1,00 > 0,00 vérifié	
$F_{b,Rd1z} = 210, 6$	[kN] Résistance d'un boulon en pression d	iamétrale $F_{b,Rd1z}=k_{1z}\alpha_{bz}f_{u}d^{t}t_{i}/\gamma_{M2}$
Pression du b	oulon sur la plaquette	
Direction x		
k _{1x} = 2,5	0 Coefficient pour le calcul de F _{b,Rd}	k _{1x} =min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1x} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bx} = 1,00$	Coefficient pour le calcul de Fb,Rd	α _{bx} =min[e ₂ /(3*d ₀), p ₂ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bx} > 0.0	1,00 > 0,00	vérifié
$F_{b,Rd2x} = 405, 0$	00 [kN] Résistance d'un boulon en pression diam	
Direction z		
$k_{1z} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	k1z=min[2.8*(e2/d0)-1.7, 1.4*(p2/d0)-1.7, 2.5]
k _{1z} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{\rm bz} = 0,80$	Coefficient pour le calcul de Fb,Rd	α_{bz} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bz} > 0.0	0,80 > 0,00 vérifié	
$F_{b,Rd2z} = 322$, 1	6 [kN] Résistance d'un boulon en pression d	liamétrale F _{b,Rd2z} =k _{1z} *α _{bz} *f _u *d*∑t _i /γ _{M2}

ETAT LIMITE: ULTIME

cisaillement des boulons

e ₀ =	250	[mm]	Excentrement de l'effort tranchant par rapport au centre de gravité d'un groupe de boulons	$e_0 = e_0$ $e_{2b}+0.5^*(s_1+(c-1)^*p_2)$
My =	71,5 0	[kN* m]	Moment fléchissant réel	M _y =M _{y,Ed,pw} +V _{z,Ed,pw} *e ₀
F _{x,N} =	3,50	[kN]	Force résultante dans le boulon due à l'influence de la force longitudinale sur la direction x	$F_{x,N} = N_{Ed,pw} /n_b$
F _{z,Vz}	5,00	[kN]	Force résultante dans le boulon due à l'influence de l'effort tranchant V sur la direction z	$F_{z,Vz}= V_{z,Ed,pw} /n_b$
F _{x,My}	18,7 8	[kN]	Force résultante dans le boulon due à l'influence du moment My sur la direction x	$F_{x,My} = M_y ^* z_i / \sum (x_i^2 + z_i^2)$
F _{z,My} =	21,4 6	[kN]	Force résultante dans le boulon due à l'influence du moment My sur la direction z	$F_{z,My} = M_y ^* x_i / \sum (x_i^2 + z_i^2)$
F _{x,Ed}	22,2 8	[kN]	Effort de calcul total dans le boulon sur la direction x	$F_{x,Ed} = F_{x,N} + F_{x,My}$
F _{z,Ed}	26,4 6	[kN]	Effort de calcul total dans le boulon sur la direction z	$F_{z,Ed} = F_{z,Vz} + F_{z,My}$
F _{Ed}	34,5 9	[kN]	Effort tranchant résultant dans le boulon	$F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$
F _{Rd,x}	210, 60	[kN]	Résistance résultante de calcul du boulon sur la direction x	F _{Rdx} =min(F _{bRd1,x} , F _{bRd2,x})
F _{Rd,z}	210, 60	[kN]	Résistance résultante de calcul du boulon sur la direction z	F _{Rdz} =min(F _{bRd1,z} , F _{bRd2,z})
F _{x,Ed}	≤ F _{Rd,}	x	22,28 < 210,60 vé ié	rif (0,11)
F _{z,Ed}	≤ F _{Rd,}	z	26,46 < 210,60 vé	rif (0,13)
F _{Ed} ≤	F _{v,Rd}		34,59 < 150,80 vé ié	rif (0,23)

VERIFICATION DE LA SECTION POUR LE CISAILLEMENT DE BLOC - [3.10]

Ροτεαυ

Nr	Modèle	Anv [cm2]	Ant [cm2]	V ₀ [kN]	V _{eff,Rd} [kN]	V ₀ /V _{eff,Rd}	Etat
1		42,31	43,03	100,00 (*1)	1368,93 (*)	0,07	vérifié
2		43,03	128,64	70,00 (*2)	4851,15 (**)	0,01	vérifié
3		43,03	141,64	70,00 (*2)	5272,35 (**)	0,01	vérifié
4		86,06	32,37	70,00 (*2)	2415,17 (**)	0,03	vérifié

(*1) $V_0 = V_{zEd1}$

(*2) $V_0 = N_{wEd}$

(*) $V_{effRd} = 0.5^* f_u^* A_{nt} / \gamma_{M2} + (1/\sqrt{3})^* f_y^* A_{nv} / \gamma_{M0}$

(**) $V_{effRd} = f_u^* A_{nt} / \gamma_{M2} + (1/\sqrt{3})^* f_y^* A_{nv} / \gamma_{M0}$

ÉCLISSE D'AME

Nr	Modèle	Anv [cm2]	Ant [cm2]	V₀ [kN]	V _{eff,Rd} [kN]	V ₀ /V _{eff,Rd}	Etat
1		72,62	82,75	100,00 (*1)	2493,63 (*)	0,04	vérifié
2	The second secon	82,75	72,62	70,00 (*2)	3666,88 (**)	0,02	vérifié
3	1	82,75	72,62	70,00 (*2)	3666,88 (**)	0,02	vérifié
4	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	165,50	62,25	70,00 (*2)	4644,57 (**)	0,02	vérifié

 $(*1) V_0 = V_{zEd1}$

(*2) $V_0 = N_{wEd}$

(*) $V_{effRd} = 0.5^{+}f_{u}^{+}A_{nt}/\gamma_{M2} + (1/\sqrt{3})^{+}f_{y}^{+}A_{nv}/\gamma_{M0}$

(**) $V_{effRd} = f_u^* A_{nt} / \gamma_{M2} + (1/\sqrt{3})^* f_y^* A_{nv} / \gamma_{M0}$

VERIFICATION DES SECTIONS AFFAIBLIES PAR LES TROUS - [5.4]

Ροτεαυ

$A_t = 124,58$	[cm ²] Aire de	la zone tendue de la sectionu l	brutte	
$A_{t,net} = 94,00$	[cm ²] Aire net	te de la zone de la section en t	traction	
$0.9^*(A_{t,net}/A_t) \ge (f_y^*\gamma)$	_{M2})/(fu*γ _{M0})	0,68 < 0,85		
W = 4786,71	[cm ³] Facteur éla	astique de la section		
Wnet = 4786,71	[cm ³] Facteur éla	astique de la section		
$M_{c,Rdnet} = 1316, 35$	[kN*m] Résistance	e de calcul de la section à la fle	exion	$M_{c,Rdnet} = W_{net}*f_{yp}/\gamma_{M0}$
$ M_0 \le M_{c,Rdnet}$		50,00 < 1316,35	vérifié	(0,04)
A = 226,46[0	m ²] Aire de la zone t	endue de la sectionu brutte		A=h _{pi} *t _{pi}
Anet = 215,02 [0	m ²] Aire de la sectior	n nette		A _{net} =A-n _v *d ₀ *t _{pi}
$N_{pl,Rd} = 6227, 65$ [N] Résistance de ca	alcul plastique de la section bru	ute	N _{pl,Rd} =A*f _y /γ _{M0}
$N_{u,Rd} = 6269, 98$ [N] Résistance ultim	e de la section nette à un effor	t normal	N _{u,Rd} =0.9*A _{net} *f _u /γ _{M2}
$F_{Ed} = 70,00$	<n]< td=""><td></td><td></td><td>A=h_{pi}*t_{pi}</td></n]<>			A=h _{pi} *t _{pi}
$F_{Ed} = 70,00 [$ $ F_{Ed} \le N_{u,Rd}$	<n]< td=""><td> 70,00 < 6269,98</td><td>vérifié</td><td>A=h_{pi}*t_{pi} (0,01)</td></n]<>	70,00 < 6269,98	vérifié	A=h _{pi} *t _{pi} (0,01)
$F_{Ed} = 70,00 [$ $ F_{Ed} \le N_{u,Rd}$ $ F_{Ed} \le N_{pl,Rd}$	<n]< td=""><td> 70,00 < 6269,98 70,00 < 6227,65</td><td>vérifié vérifié</td><td>A=h_{pi}*t_{pi} (0,01) (0,01)</td></n]<>	70,00 < 6269,98 70,00 < 6227,65	vérifié vérifié	A=h _{pi} *t _{pi} (0,01) (0,01)
$F_{Ed} = 70,00 [$ $ F_{Ed} \le N_{u,Rd}$ $ F_{Ed} \le N_{pl,Rd}$ $A_v = 76,70 $	<n] cm²] Aire de la sec</n] 	70,00 < 6269,98 70,00 < 6227,65 ction efficace en cisaillement	vérifié vérifié	A=h _{pi} *t _{pi} (0,01) (0,01) A _v = h _p *t _p
$F_{Ed} = 70,00 [F_{Ed} \le N_{u,Rd} F_{Ed} \le N_{pl,Rd} A_v = 76,70 A_{v,net} = 65,26 $	KN] cm ²] Aire de la sec cm ²] Aire de la sec	70,00 < 6269,98 70,00 < 6227,65 ction efficace en cisaillement ction efficace nette en cisaillem	vérifié vérifié	$\begin{array}{l} A = h_{pi}^{*} t_{pi} \\ (0, 01) \\ (0, 01) \\ A_{v} = h_{p}^{*} t_{p} \\ A_{vnet} = A_{v} - n_{v}^{*} d_{0}^{*} t_{p} \end{array}$
$F_{Ed} = 70,00 [F_{Ed} \le N_{u,Rd} F_{Ed} \le N_{pl,Rd} A_v = 76,70 A_{v,net} = 65,26 V_{pl,Rd} = 1217,78 $	KN] cm ²] Aire de la sec cm ²] Aire de la sec kN] Résistance pla	70,00 < 6269,98 70,00 < 6227,65 ction efficace en cisaillement ction efficace nette en cisaillem stique de calcul pour le cisaille	vérifié vérifié nent ement	A=h _{pi} *t _{pi} (0,01) (0,01) A _v = h _p *t _p A _{vnet} =A _v -n _v *do*t _p V _{pl,Rd} =(A _v *f _{yp})/(√3*γ _{M0})
$\begin{aligned} F_{Ed} &= 70,00 \ [\\ F_{Ed} \leq N_{u,Rd} \\ F_{Ed} \leq N_{pl,Rd} \\ A_v &= 76,70 \ \\ A_{v,net} &= 65,26 \ \\ V_{pl,Rd} &= 1217,78 \\ V_0 \leq V_{pl,Rd} \end{aligned}$	KN] Cm ²] Aire de la sec Cm ²] Aire de la sec KN] Résistance pla	70,00 < 6269,98 70,00 < 6227,65 ction efficace en cisaillement ction efficace nette en cisaillem stique de calcul pour le cisaille 100,00 < 1217,78	vérifié vérifié nent ement vérifié	$\begin{array}{c} A = h_{pi}{}^{*}t_{pi} \\ (0, 01) \\ (0, 01) \\ A_{v} = h_{p}{}^{*}t_{p} \\ A_{vnet} = A_{v}{}^{-}n_{v}{}^{*}d_{0}{}^{*}t_{p} \\ V_{pl,Rd} = (A_{v}{}^{*}f_{yp})/(\sqrt{3}{}^{*}\gamma_{M0}) \\ (0, 08) \end{array}$

ÉCLISSE D'AME

$A_t = 56, 10$ [cm ²]	Aire de la zone tendue de la sectionu à	orutte	
$A_{t,net} = 45, 10$ [cm ²]	Aire nette de la zone de la section en t	raction	
$0.9^{*}(A_{t,net}/A_{t}) \ge (f_{y}^{*}\gamma_{M2})/(f_{u}^{*}\gamma_{M0})$	0,72 < 0,85		
W = 735,00 [cm ³] Fa	cteur élastique de la section		
$W_{net} = 696, 60 \text{ [cm^3]} \text{ Fac}$	cteur élastique de la section		
$M_{c,Rdnet} = 191,57 \ [kN*m]$ Ré	sistance de calcul de la section à la flex	tion	$M_{c,Rdnet} = W_{net} * f_{yp} / \gamma_{M0}$
$ M_0 \le M_{c,Rdnet}$	71,50 < 191,57	vérifié	(0,37)
A = 105, 00 [cm2] Aire de	la zone tendue de la sectionu brutte		A=h _{pi} *t _{pi}
$A_{net} = 83,00 \text{ [cm2] Aire de}$	la section nette		Anet=A-nv*d0*tpi
$N_{pl,Rd} = 2887, 50$ [kN] Résista	nce de calcul plastique de la section bru	ute	N _{pl,Rd} =A*f _y /γ _{M0}
$N_{u,Rd} = 2420, 28$ [kN] Résista	nce ultime de la section nette à un effor	t normal	N _{u,Rd} =0.9*A _{net} *f _u /γ _{M2}
$F_{Ed} = 70,00 [kN]$			$F_{Ed} = N_{Ed,pw}$
$ F_{Ed} \leq N_{u,Rd}$	70,00 < 2420,28	vérifié	(0,03)
$ F_{Ed} \leq N_{pl,Rd}$	70,00 < 2887,50	vérifié	(0,02)
$A_v = 105,00$ [cm ²] Aire	de la section efficace en cisaillement		$A_v = h_p^* t_p$
$A_{v,net} = 83,00$ [cm ²] Aire	de la section efficace nette en cisaillem	ient	Avnet=Av-nv*d0*tp
$V_{pl,Rd} = 1667, 10$ [kN] Résist	tance plastique de calcul pour le cisaille	ment	$V_{pl,Rd} = (A_v * f_{yp})/(\sqrt{3} * \gamma_{M0})$
$ V_0 \le V_{pl,Rd}$	100,00 < 1667,10	vérifié	(0,06)

PAROI SUPERIEURE

Effort axial

Platine	A _i [cm2]	EFFORT	S EQUIVALENTS Ni [kN]	EFFORTS EQU Ni(M _{y,Ed})	IVALENTS [kN]	Force résultante N _{Ed,i} [kN]	
	A _{pw} = 105,00	2195,00		-		N _{Ed,pw} = 2195,00	
N _i =(N _{Ed} *A _i)	/(A _{wp})						
$N_{Ed,i} = N_i + N_i$	Ni(M _{y,Ed})						
Ellort tran			V	[LN]			
	Ai[ciliz]		¥ ZEd,i				
Az,	ow= 105,00		V _{z,Ed,pw} = 50,00				
Effort tranchant Y							
Platine	A	_{/,i} [cm2]			V _{y,Ed,i} [k	N]	
	A _{y,pw} = 105,00			V _{y,Ed,pw} = 30,00			
Vy,i=(Vy,Ed*	Ay,i)/(Apw)						
Moment fl	échissant Y						
Platine	l _{y,i} [cm4]		EFFORTS EQ M _{y,i} [k	UIVALENTS N*m]	For M	ce résultante _{/,Ed,i} [kN*m]	
	I _{y,pw} = 18060,00		0,00		M _{y,Ed,pw} = 0,	00	
M _{y,i} =(M _{y,Ed}	*I _{y,i})/(I _{pw})						
Moment fl	échissant Z						
Platine	I _{z,i} [cm4]		M _{z,i} [k	N*m]			
I _{z,p}	_w = 433,74		M _{z,Ed,pw} = 0,00				
M _i =(M _{z,Ed} *I	z,i)/(lz,pw)				d		

BOULONS RACCORDANT UNE ECLISSE D'AME A L'AME DU POTEAU

RESISTANCE DES BOULONS

F_{v,Rd} 150, 8 [kN Résistance du boulon au cisaillement dans la partie non filetée d'un = 0] boulon

Pression du boulon sur l'âme du poteau

 $F_{v,Rd} = 0.6^{f_{ub}*A_v*m/\gamma_{M2}}$

Direction x		
$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	$k_{1x} = min[2.8^{*}(e_1/d_0)-1.7, 1.4^{*}(p_1/d_0)-1.7, 2.5]$
k _{1x} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bx} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	$\alpha_{bx}=min[e_2/(3^*d_0), p_2/(3^*d_0)-0.25, f_{ub}/f_u, 1]$
α _{bx} > 0.0	1,00 > 0,00	vérifié
$F_{b,Rd1x} = 194, 40$ [kN]	Résistance d'un boulon en pression diame	étrale F _{b,Rd1x} =k _{1x} *α _{bx} *f _u *d*∑t _i /γ _{M2}
Direction z		
k _{1z} = 2,50	Coefficient pour le calcul de F _{b,Rd}	k _{1z} =min[2.8*(e ₂ /d ₀)-1.7, 1.4*(p ₂ /d ₀)-1.7, 2.5]
k _{1z} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bz} = 0, 57$	Coefficient pour le calcul de F _{b,Rd}	α_{bz} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bz} > 0.0	0,57 > 0,00	vérifié
$F_{b,Rd1z} = 110, 45 [kN]$	Résistance d'un boulon en pression diame	étrale F _{b,Rd1z} =k _{1z} *α _{bz} *f _u *d*∑t _i /γ _{M2}
Pression du boulon	sur la plaquette	
Direction x		
$k_{1x} = 2,50$	Coefficient pour le calcul de F _{b,Rd}	k _{1x} =min[2.8*(e ₁ /d ₀)-1.7, 1.4*(p ₁ /d ₀)-1.7, 2.5]
k _{1x} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bx} = 1,00$	Coefficient pour le calcul de F _{b,Rd}	$\alpha_{bx}=min[e_2/(3^*d_0), p_2/(3^*d_0)-0.25, f_{ub}/f_u, 1]$
α _{bx} > 0.0	1,00 > 0,00 vérifié	
$F_{b,Rd2x} = 405,00$ [k]	N] Résistance d'un boulon en pression di	iamétrale F _{b,Rd2x} =k _{1x} *α _{bx} *f _u *d*∑t _i /γ _{M2}
Direction z		
k _{1z} = 2,50	Coefficient pour le calcul de Fb,Rd	k _{1z} =min[2.8*(e ₂ /d ₀)-1.7, 1.4*(p ₂ /d ₀)-1.7, 2.5]
k _{1z} > 0.0	2,50 > 0,00 vérifié	
$\alpha_{bz} = 0, 80$	Coefficient pour le calcul de F _{b,Rd}	α _{bz} =min[e ₁ /(3*d ₀), p ₁ /(3*d ₀)-0.25, f _{ub} /f _u , 1]
α _{bz} > 0.0	0,80 > 0,00	vérifié
$F_{b,Rd2z} = 322, 16$ [kN]	Résistance d'un boulon en pression diame	

ETAT LIMITE: ULTIME

cisaillement des boulons

e ₀ =	250	[mm]	Excentrement de l'effort tran- groupe de boulons	chant par rapport au cent	tre de gravité d'un	$e_0 = e_{2b}+0.5^*(s_1+(c-1)^*p_2)$
My =	- 97,2 5	[kN* m]	Moment fléchissant réel			$M_y = V_{z, Ed, pw} * e_0$
F _{x,N}	109, 75	[kN]	Force résultante dans le bou longitudinale sur la direction	Ilon due à l'influence de la x	a force	$F_{x,N} = N_{Ed,pw} / n_b$
F _{z,Vz}	2,50	[kN]	Force résultante dans le bou Vz sur la direction z	Ilon due à l'influence de l'	effort tranchant	$F_{z,Vz} = V_{z,Ed,pw} /n_b$
F _{x,My}	25,5 4	[kN]	Force résultante dans le boulon due à l'influence du moment My sur la $F_{x,My}= M_y $ direction x			
F _{z,My} =	29,1 9	[kN]	Force résultante dans le bou direction z	Ilon due à l'influence du n	noment My sur la	$F_{z,My} = M_y ^* x_i / \sum_{i^2} (x_i^2 + z_i^2)$
F _{x,Ed}	135, 29	[kN]	Effort de calcul total dans le boulon sur la direction x $F_{x,Ed} = F_{x,N}+F_{x,My}$			
F _{z,Ed}	31,6 9	[kN]	Effort de calcul total dans le boulon sur la direction z $F_{z,Ed} = F_{z,Ed}$			
F _{Ed}	138, 96	[kN]	Effort tranchant résultant dans le boulon $F_{Ed} = \sqrt{(F_{x,Ed}^2 + F_{z,Ed}^2)}$			
F _{Rd,x} =	194, 40	[kN]	Résistance résultante de cal	cul du boulon sur la direc	tion x	F _{Rdx} =min(F _{bRd1,x} , F _{bRd2,x})
F _{Rd,z}	110, 45	[kN]	Résistance résultante de cal	cul du boulon sur la direc	tion z	$F_{Rdz}=min(F_{bRd1,z}, F_{bRd2,z})$
F _{x,Ed}	≤ F _{Rd,x}		1	.35,29 < 194,40	vérifié	(0,70)
$ F_{z,Ed} $	≤ F _{Rd,z}		3	81,69 < 110,45	vérifié	(0,29)
F _{Ed} ≤	$F_{v,Rd}$		13	38,96 < 150,80	vérifié	(0,92)

VERIFICATION DE LA SECTION POUR LE CISAILLEMENT DE BLOC - [3.10]

Ροτεαυ

Nr	Modèle	Anv [cm2]	Ant [cm2]	V₀ [kN]	V _{eff,Rd} [kN]	V0//Veff,Rd	Etat
1		33,06	39,72	50,00 (*1)	1168,36 (*)	0,04	vérifié
2		39,72	113,88	2195,00 (*2)	4320,21 (**)	0,51	vérifié
3		39,72	125,88	2195,00 (*2)	4709,01 (**)	0,47	vérifié
4		79,44	29,88	2195,00 (*2)	2229,39 (**)	0,98	vérifié

(*1) $V_0 = V_{zEd2}$

(*2) $V_0 = N_{wEd}$

(*) $V_{effRd} = 0.5^{*}f_{u}^{*}A_{nt}/\gamma_{M2} + (1/\sqrt{3})^{*}f_{y}^{*}A_{nv}/\gamma_{M0}$

(**) $V_{effRd} = f_u^*A_{nt}/\gamma_{M2} + (1/\sqrt{3})^*f_y^*A_{nv}/\gamma_{M0}$

ÉCLISSE D'AME

Nr	Modèle	A _{nv} [cm2]	Ant [cm2]	V ₀ [kN]	V _{eff,Rd} [kN]	V ₀ /V _{eff,Rd}	Etat
1		72,62	82,75	50,00 (*1)	2493,63 (*)	0,02	vérifié
2		82,75	72,62	2195,00 (*2)	3666,88 (**)	0,60	vérifié
3		82,75	72,62	2195,00 (*2)	3666,88 (**)	0,60	vérifié
4		165,50	62,25	2195,00 (*2)	4644,57 (**)	0,47	vérifié

(*1) $V_0 = V_{zEd2}$

(*2) $V_0 = N_{wEd}$

(*) $V_{effRd} = 0.5^{+}f_{u}A_{nt}/\gamma_{M2} + (1/\sqrt{3})^{+}f_{y}A_{nv}/\gamma_{M0}$

(**) $V_{effRd} = f_u^* A_{nt} / \gamma_{M2} + (1/\sqrt{3})^* f_y^* A_{nv} / \gamma_{M0}$

VERIFICATION DES SECTIONS AFFAIBLIES PAR LES TROUS - [5.4]

Ροτεαυ

A = 197,54	[cm ²]	Aire de la zone tendue de la sectionu brutte	A=h _{pi} *t _{pi}
Anet = 186,98	[cm ²]	Aire de la section nette	A _{net} =A-n _v *d ₀ *t _{pi}
$N_{pl,Rd} = 5432,35$	[kN]	Résistance de calcul plastique de la section brute	N _{pl,Rd} =A*f _y /γ _{M0}
$N_{u,Rd} = 5452, 34$	[kN]	Résistance ultime de la section nette à un effort non	mal N _{u,Rd} =0.9*A _{net} *f _u /γ _{M2}
$F_{Ed} = 2195,00$	[kN]		A=h _{pi} *t _{pi}
$ F_{Ed} \le N_{u,Rd}$		2195,00 < 5452,34 vérifié	(0,40)
$ F_{Ed} \leq N_{pl,Rd}$		2195,00 < 5432,35 vérifié	(0,40)
A _v = 58,80	[cm ²]	Aire de la section efficace en cisaillement	$A_v = h_p * t_p$
$A_{v,net} = 48, 24$	[cm ²]	Aire de la section efficace nette en cisaillement	A _{vnet} =A _v -n _v *d ₀ *t _p
$V_{pl,Rd} = 933, 58$ [k	N] Rési	istance plastique de calcul pour le cisaillement	V _{pl,Rd} =(A _v *f _{yp})/(√3*γ _{M0})
$ V_0 \le V_{pl,Rd}$		50,00 < 933,58 vérifié	(0,05)

ÉCLISSE D'AME

$A_t =$	105,00	[cm ²]	Aire de la zone tendue de la sectionu brutte	
A _{t,net} =	83,00	[cm ²]	Aire nette de la zone de la section en traction	
0.9*(A _{t,n}	$_{et}/A_t) \ge (f_y^*$, γ _{M2})/(fu	умо) 0,71 < 0,85	
W =	735,00	[cm ³]	Facteur élastique de la section	
W _{net} =	590,20	[cm ³]	Facteur élastique de la section	
M _{c,Rdnet} :	= 162,31	[kN*m]	Résistance de calcul de la section à la flexion	$M_{c,Rdnet} = W_{net} * f_{yp} / \gamma_{M0}$
$ M_0 \leq M$	c,Rdnet		-97,25 < 162,31 vérifié	(0,60)
A =	105,00	[cm ²]	Aire de la zone tendue de la sectionu brutte	A=h _{pi} *t _{pi}
A _{net} =	83,00	[cm ²]	Aire de la section nette	A _{net} =A-n _v *d ₀ *t _{pi}

$\begin{array}{ll} A = & 105,00 \\ N_{pl,Rd} = 2887,50 \\ N_{u,Rd} = & 2420,28 \\ F_{Ed} = & 2195,00 \end{array}$	[cm ²] [kN] [kN] [kN]	Aire de la zone tendue de la sectionu brutte Résistance de calcul plastique de la section brute Résistance ultime de la section nette à un effort n	$\label{eq:constraint} \begin{array}{c} A = h_{pi}{}^{*}t_{pi} \\ N_{pl,Rd} = A^{*}f_{y}/\gamma_{M0} \\ \\ \text{ormal} \qquad N_{u,Rd} = 0.9^{*}A_{net}{}^{*}f_{u}/\gamma_{M2} \\ F_{Ed} = N_{Ed,pw} \end{array}$
$ F_{Ed} \le N_{u,Rd}$ $ F_{Ed} \le N_{pl,Rd}$		2195,00 < 2420,28 véri 2195,00 < 2887,50 véri	fié (0,91) fié (0,76)
$A_v = 105,00$ $A_{v,net} = 83,00$	[cm ²] [cm ²]	Aire de la section efficace en cisaillement Aire de la section efficace nette en cisaillement	$\label{eq:Av} \begin{aligned} A_v &= h_p ^* t_p \\ A_{vnet} &= A_v \text{-} n_v ^* d_0 ^* t_p \end{aligned}$
$V_{pl,Rd} = 1667, 10[$	kN]Rés	sistance plastique de calcul pour le cisaillement	V _{pl,Rd} =(A _v *f _{yp})/(√3*γ _{M0})
$ V_0 \leq V_{pl,Rd}$		50,00 < 1667,10 vérif	ié (0,03)

REMARQUES

Pince boulon-extrémité de l'aile droite du poteau supérieur trop faible 15 [mm] < 26 [mm]

Assemblage satisfaisant vis à vis de la Norme Ratio 0,98