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Abstract

Hunger remains a persistent and serious global issue affecting millions of people worldwide. Despite

advancements in agriculture and food distribution, chronic hunger and malnutrition continue to plague

communities and nations.

The rise in global population further amplifies the challenge of feeding people adequately. Innovative

solutions are being sought, and deep learning techniques offer promising avenues for addressing

agricultural problems, particularly weed eradication, which poses a significant threat to crop production.

Smart farming, empowered by advanced technologies like artificial intelligence (AI), presents a more

efficient, precise, and sustainable approach compared to traditional agriculture.

In this work, we present an initial effort towards a smart farming solution for weed eradication. Our

approach applies transfer learning on DenseNet121 a Deep Convolutional Neural Network (CNN)

pretrained on imagenet, trained on a dataset comprising images of eight weed species and various

flora. The goal is to detect and classify weed images accurately, serving as a crucial first step towards

developing robotic systems that can be deployed in agricultural fields.

By harnessing the power of deep learning, we aim to contribute to the development of effective and

automated weed eradication strategies. Despite not contributing much, this research holds significant

potential to alleviate the challenges posed by weeds in agriculture and advance the adoption of smart

farming practices.

Keywords: Deep Learning, Convolutional Neural Network, Weeds Images, Images Classification.
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Résumé

La faim reste un problème mondial persistant et grave qui touche des millions de personnes dans le

monde. Malgré les progrès de l’agriculture et de la distribution alimentaire, la faim et la malnutrition

chroniques continuent de tourmenter les communautés et les nations.

L’augmentation de la population mondiale amplifie encore le défi de nourrir les gens de manière

adéquate. Des solutions innovantes sont recherchées et les techniques d’apprentissage en profondeur

offrent des pistes prometteuses pour résoudre les problèmes agricoles, en particulier l’éradication des

mauvaises herbes, qui constitue une menace importante pour la production agricole.

L’agriculture intelligente, renforcée par des technologies avancées telles que l’intelligence artificielle

(IA), présente une approche plus efficace, précise et durable par rapport à l’agriculture traditionnelle.

Dans ce travail, nous présentons un premier effort vers une solution agricole intelligente pour l’éradication

des mauvaises herbes. Notre approche utilise un réseau de neurones à convolution profonde (CNN)

formé sur un ensemble de données comprenant des images de huit espèces de mauvaises herbes et de

diverses flores. L’objectif est de détecter et de classer avec précision les images de mauvaises herbes, ce

qui constitue une première étape cruciale vers le développement de systèmes robotiques pouvant être

déployés dans les champs agricoles.

En exploitant la puissance de l’apprentissage en profondeur, nous visons à contribuer au développement

de stratégies efficaces et automatisées d’éradication des mauvaises herbes. Bien qu’elle n’apporte

pas grand-chose, cette recherche recèle un potentiel important pour atténuer les défis posés par les

mauvaises herbes dans l’agriculture et faire progresser l’adoption de pratiques agricoles intelligentes.

Mots-clés: Apprentissage Profond, Réseau neuronal convolutif, Images des mauvaises herbes, Classifi-

cation des images.
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Introduction

“Whatever you do in life will be insignificant, but it’s very important that you do it ”
—Mahatma Ghandi, Lawyer, Anti-Colonial Nationalist, and Philosopher

Hunger remains a grave and persistent issue worldwide, posing significant dangers to individuals,

communities, and entire nations. Despite advances in agriculture, food production, and distribution,

millions of people continue to suffer from chronic hunger and malnutrition.

“Not only are more people in more places around the world going hungry, but the severity of the hunger

they face is worse than ever” said Cindy McCain, WFP Executive Director [1]

The rise in global population exacerbates the issue of hunger by placing increased pressure on food

resources and agricultural systems, Recently the world has surpassed over 8 billion people [2].

Smart farming, enabled by advanced technologies such as IoT, AI, offers improved precision, efficiency,

decision-making capabilities, and sustainability, making it a much better and much more effective

approach than traditional agriculture.

In this work we make an attempt towards a core component for a smart farming solution to eradicate

weeds, through deep learning.

We use apply transfer learning on a Deep Convolutional Neural Network with a dataset comprised of

images of 8 weed species and various flora, in order to detect and classify images of weed, this is the

first step towards building robotic solutions to be deployed in real fields.

The work is comprised of 7 chapters (Introduction and Conclusion included), the first chapter being

this one, chapter I introduces the genral concept of Artifical Intellegence and goes over a brief history,

chapter II goes over the state of the art in computer vision with deep learning techniques, specifically

with CNNs, and goes over some recent works on weed detection and classification, chapter III describes

the employed model, chapter IV goes over an evaluation of the model, and several related models.

chapter V goes over some future prospects to move this work forward, and all results are summarized

in chapter V.6 (the conclusion).
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I
Artificial Intelligence, Machine

Learning and Deep Learning

“The development of AI is as fundamental as the creation of the microprocessor, the personal computer, the
Internet, and the mobile phone”

—Bill Gate, Founder of Microsoft

Artificial Intelligence is an interdisciplinary field of study concerned with creating rational machines.

The term Artificial Intelligence was coined by John McCarthy in 1956.

Rationality is loosely speaking, doing the right thing. More formally, given an objective and a set of rules a

rational agent acts to achieve the best outcome (that is attain the objective), and under uncertainty the best
possible outcome.

I.1. A Brief History of Artifical Intelligence
I.1.1. Origins
The origins of AI can be found in ancient philosophical ideas about artificial beings and automata.

Thinkers such as Aristotle and Al-Jazari contemplated the concept of artificial life, sowing the seeds for

future exploration. Advancements in the 17th to 19th centuries, including Blaise Pascal’s mechanical

calculator and Ada Lovelace’s pioneering work on algorithms, set the stage for the emergence of AI as a

distinct field [3].

I.1.2. Significant Milestones
1943 Model of an artificial neuron, The first work which is now recognized as AI was done by Warren
McCulloch and Walter pitts in 1943.

1949 Donald Hebb demonstrated an updating rule for modifying the connection strength between

neurons, termed Hebbian learning.

1950 Alan Turing publishes Computing Machinery and Intelligence in which he proposed a test. The test

can check the machine’s ability to exhibit intelligent behaviour equivalent to human intelligence, now

known as The Turing Test.

1966 Researchers emphasized developing algorithms which can solve mathematical problems. Joseph
Weizenbaum created the first chatbot in 1966, named ELIZA.

2



I.1. A Brief History of Artifical Intelligence 3

1972 WABOT-1, developed by researchers at Waseda University in Japan, one of the earliest humanoid

robots. Standing at 1.65 meters tall, it possessed the ability to walk, grasp objects, and communicate

using a limited vocabulary, pioneering the integration of mechanical and cognitive capabilities in

robotics and laying the groundwork for future advancements in humanoid robot design.

1974-1980 The first AI winter, a period characterized by dwindling funding and waning interest in

artificial intelligence due to unfulfilled promises and unrealistic expectations, resulting in a decline in

research and development efforts in the field.

1980 AAAI, the first national conference of the American Association of Artificial Intelligence marked a

pivotal moment for the field, bringing together researchers, academics, and industry professionals to

exchange ideas, present breakthroughs, and establish a collaborative platform that fuelled advancements

in AI for years to come.One notable advancement was the development of expert systems (systems which

utilized knowledge-based rules and reasoning to simulate human expertise in specific domains).

1987-1993 The second AI winter, characterized by a decline in funding and interest in artificial

intelligence due to overhyped expectations, lack of practical applications, and failure to deliver on

promised breakthroughs, leading to a reduction in AI research and commercial activity until a resurgence

in the late 1990s.

1993-2011 Significant advancements, including the emergence of machine learning algorithms like

support vector machines and neural networks, the development of natural language processing

techniques, the rise of intelligent systems in various domains such as finance and healthcare, and the

birth of practical applications like recommendation systems, speech recognition, and computer vision.

1997 IBM’s Deep Blue, a supercomputer, defeated the reigning world chess champion Garry Kasparov,

showcasing the potential of AI in complex decision-making tasks and marking a significant milestone.

1998 LeNet, developed by Yann LeCun in the 1990s, was one of the pioneering convolutional neural

networks (CNNs) for image recognition tasks. It consisted of multiple layers of convolutional and pooling

operations, followed by fully connected layers, and laid the foundation for modern deep learning in

computer vision, leading to advancements in areas such as object recognition, handwriting recognition,

and other image classification tasks [4].

2002 Roomba, an autonomous robotic vacuum cleaner by iRobot. It uses sensors and algorithms to

navigate and clean floors effectively, offering a convenient and hands-free solution for household

cleaning tasks. Roomba’s success has contributed to the growing adoption of robotic technologies in the

home automation industry.

2011 IBM’s Watson, an AI-powered supercomputer system, gained international attention by winning

the quiz show Jeopardy!. Watson’s victory was attributed to its ability to process and understand natural

language, analyse vast amounts of data, and generate accurate answers quickly, showcasing the potential

of AI in surpassing human performance in knowledge-intensive tasks.
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2012 Google Now, a virtual assistant by Google, aimed to provide personalized information to users

through predictive analytics. By analysing user data such as search history, location, and calendar

events. It offered proactive notifications and recommendations for weather updates, traffic conditions,

upcoming appointments, and more, enhancing the user’s overall digital experience with relevant and

timely information, showcasing the potential of machine learning algorithms in analysing user data and

providing personalized experiences.

2018 IBM’s Project Debater an AI system developed to engage in persuasive debates with humans. Using

natural language processing, machine learning, and knowledge retrieval techniques made headlines by

engaging in a live debate with human debaters. It showcased its ability to understand and respond to

arguments on a given topic, presenting coherent and persuasive points.

2023 GPT-4, is released, a generative pre-trained transformer, can comprehend and generate human-like

text across various applications, including language translation, content creation, chatbots, and more,

revolutionizing the field of natural language processing and demonstrating the potential of large-scale

language models, and it can understand code, and accepts images as input [5].

Figure I.1: A timeline of notable AI systems, source:[6]

Figure I.2: Language and image recognition systems over the years, source:[6]

As I.1 clearly shows, the AI systems are improving at an almost exponential rate, especially in the last 2

decades. Surprisingly, in some areas even human performance is surpassed as shown in I.2
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I.1.3. Classical Artificial Intelligence Approches
Before the advent of machine learning, classical approaches to artificial intelligence (AI) focused on

rule-based systems and symbolic reasoning.

These approaches aimed to explicitly encode human knowledge and reasoning rules into computer

programs to simulate intelligent behaviour.

Common techniques included expert systems, knowledge representation and reasoning, natural

language processing, and search algorithms such as depth-first search and breadth-first search.[7]

While these classical AI approaches showed promise in solving specific problems, they often struggled

with handling complex and uncertain real-world data, leading to the emergence and dominance of

machine learning-based approaches in recent years.

I.1.4. Increase of The Need For More Computational Power
The computational requirements of machine learning have increased dramatically across three distinct

eras. The handcrafted features era, the era of classic machine learning, and the deep learning era. The

field has seen significant increases in computational demands as machine learning models transitioned

from manually engineered features to more data-driven and complex deep learning architectures.[8]

I.2. Machine Learning
machine learning is a subfield of artificial intelligence that focuses on the development of algorithms

and models that allow computers to learn and make predictions or decisions without being explicitly

programmed. The emphasis is on data to enable machines to automatically improve their performance

on a specific task or problem[7].

• Task The specific problem or task that the machine is aiming to solve or learn from. This can

range from simple classification tasks, such as identifying spam emails, to more complex tasks

like speech recognition or autonomous driving.

• Experience The data or examples that the machine uses to learn and improve its performance on

the given task. Experience can come in the form of labelled data, where each example is already

associated with the correct output, or unlabelled data, where the machine must infer patterns and

relationships by itself.

• Performance Measure A measure or metric that quantifies how well the machine is performing

on the task. This can be accuracy, error rate, precision, recall, or any other relevant measure

depending on the specific task.

I.2.1. Machine Learning Approaches
• Unsupervised Learning refers to learning from unlabelled data without explicit output labels.

Clustering algorithms, such as k-means and hierarchical clustering, aim to group similar instances

together. Dimensionality reduction techniques, like Principal Component Analysis (PCA), aim to

capture the most important features or reduce the dimensionality of the data.
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• Supervised Learning refers to the process of training a machine learning model using labelled

data, where each input instance is associated with the correct output or target value.

• Decision Tree Learning is a popular machine learning approach that builds a tree-like model of

decisions and their possible consequences. It uses a top-down recursive strategy to partition the

data based on feature values, aiming to maximize information gain or minimize impurity measures.

Decision trees are interpretable and can handle both categorical and continuous features.

• Instance-Based Learning also known as lazy learning, involves storing and generalizing from

specific training instances. Instead of constructing a general model, instance-based learning

directly compares new instances to stored instances to make predictions. Common algorithms in

this category include k-nearest neighbours (k-NN) and case-based reasoning.

• Bayesian Learning involves the application of Bayesian inference to machine learning problems.

It uses probability theory and Bayes’ theorem to update beliefs about hypotheses based on new

evidence. Bayesian learning can handle uncertain or incomplete data and provides a principled

way to combine prior knowledge and observed data.

• Artificial Neural Networks Neural networks are composed of interconnected nodes (neurons)

organized in layers. They are capable of learning complex patterns and relationships from data.

Two common types are feedforward neural networks and recurrent neural networks including

single-layer perceptrons and multi-layer perceptrons (MLPs). Training neural networks often

involves backpropagation, which adjusts the weights based on the error gradient to minimize the loss
function.

• Support Vector Machines (SVMs) are a class of supervised learning algorithms used for classi-

fication and regression tasks. SVMs find a hyperplane that separates data points of different

classes with the maximum margin. They can handle high-dimensional data and have effective

generalization capabilities.

• Reinforcement Learning involves an agent learning to interact with an environment to maximize

rewards or minimize penalties. The agent learns through trial and error, receiving feedback in the

form of rewards or punishments. Q-learning and policy gradient methods are commonly used in

reinforcement learning.

These are some of the machine learning approaches discussed in [7], refer to it for a much more

comprehensive and thorough coverage of the field and its various methodologies.

I.3. Deep Learning
Deep learning is a subfield of machine learning that focuses on designing and training artificial

neural networks with multiple layers. These deep architectures enable the learning of hierarchical

representations from raw data, allowing the models to automatically discover complex patterns and

features. Deep learning models excel at tasks such as image and speech recognition, natural language

processing, and other problems involving large-scale data and high-dimensional inputs. By leveraging

the power of deep neural networks, deep learning has achieved remarkable breakthroughs in various

domains, pushing the boundaries of AI research and applications.[9]
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I.3.1. The Rise of Deep Learning
Traditional machine learning algorithms struggled to achieve high performance because of limited and

handcrafted features. Data-driven approaches, particularly with the availability of large-scale datasets,

enabled the success of deep learning. Methods, such as convolutional neural networks, overcome

the limitations of manually engineered features by learning hierarchical representations directly from

data.[10]

The combination of GPUs (Graphics Processing Units) and modern machine learning frameworks has

played a pivotal role in making deep learning feasible and accessible to non-computer scientists.

GPUs, with their parallel processing capabilities, greatly speed up deep learning computations. By

harnessing the massive parallelism of GPUs, deep learning models can process large amounts of data

efficiently, reducing training time from weeks to hours or even minutes.

Modern machine learning frameworks, such as TensorFlow, PyTorch, and Keras, provide high-level

abstractions and intuitive APIs that abstract away the complexities of deep learning. These frameworks

enable non-computer scientists to build, train, and deploy deep learning models without extensive

programming expertise.

Cloud-based platforms and services, such as Amazon Web Services (AWS) and Google Cloud Platform

(GCP), offer accessible and scalable infrastructure for deep learning. This eliminates the need for

expensive hardware investments, allowing non-computer scientists to leverage powerful GPU resources

on-demand.

I.3.2. Key Breakthroughs In Deep Learning
• AlexNet (2012), by Alex Krizhevsky et al. [11], achieved groundbreaking results in the ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC). It demonstrated the power of deep convolutional

neural networks (CNNs) by significantly outperforming traditional computer vision methods.

• ResNet (2015), Residual Networks, by Kaiming He et al. [12], addressed the problem of training very

deep neural networks. By using skip connections that bypassed layers, they enabled the successful

training of networks with hundreds of layers, leading to improved accuracy and performance.

• Generative Adversarial Networks (GANs) (2014), by Ian Goodfellow et al. [13], are a class of neural

networks that can generate realistic data samples. They consist of a generator network and a

discriminator network that compete against each other. They have been successfully applied to

tasks such as image generation, image-to-image translation, and text generation.

• DeepMind’s AlphaGo (2016), a program based on deep neural networks, made significant

advancements in the field of reinforcement learning. It defeated the world champion Go player, Lee
Sedol, demonstrating the power of deep learning and reinforcement learning in complex strategy

games [14].

• The Transformer architecture (2017), by Vaswani et al. [15], revolutionized natural language

processing by replacing recurrent neural networks with self-attention mechanisms. They achieved

state-of-the-art performance in machine translation and language generation.
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• Perfusion (2023), by Tewel et al. [16], is a text-to-image personalization method. It can portray

personalized objects. It allows significant changes in their appearance, while maintaining their

identity, using a novel mechanism called Key-Locking.

Figure I.3: Rise of computational power (thanks to Moore’s law) and its effects on deep learning, source:[6]

I.3 shows that the greatest leaps happened in the last decade due to great hardware improvments.



II
The State of the Art On Image

Classification Using Deep Learning

“Every great advance in science and technology has arisen from a deep desire to improve the current state of the art”
—Mae Jemison, Engineer, Physician, and Former Astronaut

II.1. Background
Before deep learning, the most commonly used techniques for image classification were based on

handcrafted features and traditional machine learning algorithms. These techniques typically involved

extracting features from images using techniques such as edge detection, texture analysis, and color

histograms, and then using machine learning algorithms such as support vector machines (SVMs),

decision trees, and random forests to classify the images into different categories.

One popular approach was the Bag of Visual Words (BoVW) model [17], which involved clustering image

features into visual words and then using these words to represent the image. Another approach was

the Scale-Invariant Feature Transform (SIFT) [18], which detected and described local features in images

and matched them across different images for recognition.

These techniques were effective for simple classification tasks but often struggled with more complex and

varied images, requiring extensive feature engineering and domain-specific knowledge. The emergence

of deep learning has revolutionized image classification by enabling the automatic learning of features

directly from raw image data, eliminating the need for extensive feature engineering.

One approach for weed detection was based on handcrafted features, such as color, shape, texture,

and size, extracted from the images of plants. These features were used to train classifiers such as

SVM [19], decision trees [20], and neural networks to distinguish between crops and weeds. However,

this approach required a lot of domain-specific knowledge and manual feature engineering.

Another approach was based on segmentation techniques that separated the plants from the background,

followed by classification of the segmented regions using features such as color and texture. This

approach was effective when the weeds were distinct from the crops, but it was challenging when there

was overlap between the two.[21]

In comparison to the conventional computer vision approach in early image processing around two

9
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decades ago, deep learning does not need expertise in particular machine vision areas or special domain

knowledge to create handcrafted features.

II.2. Computer Vision In The Era of Deep Learning
Computer vision has undergone a significant transformation in the era of deep learning, with ad-

vancements in neural networks and deep learning algorithms revolutionizing the field. Deep learning

models have demonstrated remarkable capabilities in various computer vision tasks, such as image

classification, object detection, semantic segmentation, and image generation.

II.2.1. Convolutional Neural Networks
Convolutional Neural Networks, are a type of deep learning model designed for analysing visual

data. They excel in tasks such as image classification and object detection. CNNs employ specialized

layers like convolutional and pooling layers, which extract features and reduce spatial dimensions.

These networks leverage the spatial relationships present in images by applying convolutional filters to

capture local patterns. Through multiple layers of convolution and pooling, CNNs learn hierarchical

representations, enabling them to recognize complex patterns and make accurate predictions. Refer to

[9] by Goodfellow et al. for a more comprehensive coverage.

CNNs learn feature representations directly from the raw data through a series of learnable convolutional

filters. These filters, also known as kernels, scan the input data to detect local patterns such as edges,

corners, and textures. By stacking multiple convolutional layers, CNNs can progressively learn complex

and abstract features that capture hierarchical representations of the data, thereby eliminating the need

for manual feature engineering.

Figure II.1: How a CNN predicts the class of an input image (said differently, what does the cnn perceive), source:[22]

The General Structure of A CNN
• Input Layer receives the raw input data, usually in the form of images or other multidimensional

data. It acts as the entry point for the network and preserves the spatial structure of the input.

The input layer’s dimensions correspond to the dimensions of the input data, such as the height,

width, and depth (number of channels) of an image.

• Convolutional Layers are responsible for extracting meaningful features from the input data.

They apply convolutional filters to scan the input data and perform element-wise multiplications
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and summations to produce feature maps. These layers help capture spatial hierarchies and local

patterns, enabling the network to learn and recognize complex features in the data, as shown in

conv layers in II.1.

• Activation Functions Activation functions in a CNN introduce non-linearities to the network,

allowing it to model complex relationships between inputs and outputs. Common activation

functions in CNNs include ReLU (Rectified Linear Unit), which introduces sparsity (that is, when

the input to ReLU is negative, it outputs zero, effectively sparsifying the activation values. This can

be beneficial in reducing the computational load and improving the efficiency of the network by

eliminating unnecessary calculations) and non-linearity, and softmax, which normalizes outputs

into probabilities for multi-class classification tasks. In II.1 after each ReLU layer some unnecessary

features from the input are omitted.

• Pooling Layers are used to reduce the spatial dimensions of the feature maps while preserving

important information. They achieve this by aggregating local regions of the feature maps, such as

taking the maximum (max pooling) or average (average pooling) value within each region. They

help to downsample the feature maps, making the network more computationally efficient and

providing a form of spatial invariance, allowing the network to focus on the most salient features.

• Fully Connected Layers also known as dense layers, connect every neuron in the current layer to

every neuron in the subsequent layer. These layers help in capturing high-level abstractions and

making predictions based on the extracted features from earlier layers. Fully connected layers

are typically employed towards the end of a CNN architecture to map the learned features to the

desired output, such as class probabilities in classification tasks.

• Output Layer The output layer in CNNs is the final layer that produces the desired output based

on the learned representations from previous layers. It typically consists of one or more neurons,

depending on the task, such as a single neuron for binary classification or multiple neurons for

multi-class classification. The activation function used in the output layer depends on the task,

such as sigmoid for binary classification or softmax for multi-class classification, to produce the

final output predictions.

II.2.2. The AlexNet Architecture
One of the fundamental breakthroughs in computer vision with deep learning was the development

of Convolutional Neural Networks (CNNs). CNNs have shown outstanding performance in image

classification tasks, surpassing traditional methods by a large margin.

The seminal paper by Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton [11] introduced the AlexNet

architecture, which won the ImageNet Large Scale Visual Recognition Challenge in 2012 and paved the way

for the deep learning revolution in computer vision.

Figure II.2: The Architecture of AlexNet, source:[23]
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Figure II.3: A More Detailed view of The Architecture of AlexNet, source:[24]

II.2.3. The Inception Architecture
The GoogLeNet architecture (also known as Inception-v1), proposed by Christian Szegedy et al. in

[25], introduced the concept of inception modules and showed improved performance with reduced

computational complexity. The original Inception is 22 layers deep, with 27 pooling layers included.

There are 9 inception modules stacked linearly in total. The ends of the inception modules are connected

to the global average pooling layer. After that, came Inception-V2 [26], Inception-V3 [27] in 2016.

Figure II.4: The Improved Inception Module, source:[24]

II.2.4. The VGGNet Architecture
Following the success of AlexNet, deeper and more sophisticated CNN architectures were introduced.

For instance, the Visual Geometry Group Network (VGGNet) architecture presented in [28] by Karen
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Simonyan and Andrew Zisserman at the Visual Geometry Group at the University of Oxford, demonstrated

the benefits of increasing network depth.

Figure II.5: The Architecture of VggNet16, source:[28]

Figure II.6: A More Detailed view of The Architecture of VggNet16, source:[24]

II.2.5. The ResNet Architecture
The introduction of residual connections in the ResNet architecture, as described by Kaiming He et al.
in [12], allowed for training even deeper networks and achieved remarkable accuracy on challenging

datasets.

ResNet aimed at solving the degradation problem, when training deep networks there comes a point

where an increase in depth causes accuracy to saturate, then degrade rapidly. It uses a residual mapping,

the process of learning the residual (difference) between the desired output and the current input,

allowing the network to focus on the residual learning and ease the training process by using shortcut

connections in the network.

Figure II.7: The Building block of a Residual network, source:[24]
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II.2.6. The DenseNet Architecture
Another influential architecture is DenseNet, presented by Gao Huang et al. in [29], which emphasized

the dense connectivity pattern among layers, that is, that is, the layers in the network receive feature

maps from all the preceding layers which improves feature reuse and gradient flow.

Figure II.8: Dense Connectivity, source:[24]

II.2.7. The MobileNet Architecture
MobileNet is a lightweight and efficient CNN architecture introduced by Andrew G. Howard et al. [30]

designed for mobile and embedded devices. It utilizes depth-wise separable convolutions, which reduce

computational complexity while maintaining accuracy. MobileNet achieves a good trade-off between

model size and performance, making it suitable for real-time applications on resource-constrained

devices.

MobileNetV2 improved upon the original MobileNet architecture by introducing inverted residual

blocks with linear bottleneck layers and linear shortcuts. [31]

Figure II.9: Inverted Residual Block, source:[24]

MobileNetV3 further improved upon V2 with Efficient architecture search and several other techniques

[32].

II.2.8. Semantic Segmentation
For semantic segmentation, Fully Convolutional Networks (FCNs) have become a popular choice.

Introduced by Jonathan Long et al. [33] as a method to perform pixel-wise segmentation by replacing

fully connected layers with convolutional layers.
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Figure II.10: YOLOv8 [34] (introduced in 2023) by Ultralytics .Inc is a lightweight model for segmentation used in many robotics

applications and driverless cars, performing segmentation on live cctv footage, source:Ultralytics

II.3. Weeds Detection With Deep Learning

Figure II.11: General data collection and preprocessing workflow of utmost important in Machine Learning, source:[35]

The above figure shows the pipeline from data collection to application and evaluation of a deep learning

model.
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Figure II.12: General view on the methods and techniques used for data collection and model training for weeds detection and

classification, source:[35]

The above figure lists most technique for data collection and model training in the context of weeds

detection and classification.

We picked the related works from the survey by Hasan, ASM Mahmudul, et al. [35] most of the weeds

datasets are not very big nor diverse, and are mostly site/weed/crop-specific. There is no Agreed upon

benchmark like the ImageNet dataset.

An Attempt to collect and standardise weeds datasets is being carried by Precision Weed Control Group at

the University of Sydney [36], with the aim of standardizing, structuring, and offering user-friendly

search and the convenience of storing datasets together in one place. At the time of writing, they

collected 20 datasets.
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Here, we Consider only works which used a dataset of RGB images (as opposed to multi-spectral images,

which require special insturment to capture, for the interested, I. Sa et al. (2018) [37] is an example), and

only under-canopy plants (as opposed to e.g. Trees).

Models
• Espejo-Garcia et al. (2020) [38], Used a dataset They created, and made available [39], Their they

experimented with several models all of which have a CNN as the feature extractor, then used

traditional ML methods as classifiers (e.g. SVM). They reported a micro F1 score of 99.29%.

• Umamaheswari and Jain (2020) [40], Used a dataset of Carrot images, the weed(s) were not

mentioned, their model is an Encoder-Decoder architecture based on VGG16 (also known as SegNet).
They concluded that SegNet-512 is better than SegNet-256 for this task.

• Yan et al. (2020) [41], Used a dataset comprised of images of Paddy, along with 6 types of

weeds (Alternanthera philoxeroides, Eclipta prostrata, Ludwigia adscendens, Sagittaria trifolia,

Echinochloa crus-galli, Leptochloa chinensis) the data was collected using a handheld video

camera. Their model was an AlexNet serving as the feature extractor and SVM as a classifier.

They reported an accuracy of 94.5%.

• Kounalakis et al. (2019) [42], Used a dataset of Clover and grass images, and Broad-leaved dock

weeds, all images are monochrome, because they argued that since weeds are green just like plants,

colors do not add new information. Their model was a CNN for feature extraction along with

traditional ML classifiers. They concluded that best combination is Resnet50 with L2 Regularized

Logistic Regression for classification, they reported a classification accuracy of 96.1%.

Model Technique Dataset Conclusion
Espejo-Garcia et al.
(2020)

Several, CNN as a feature

extractor, ML (e.g. SVM) as

classifiers

Their own micro-f1 score of

99.21%

Umamaheswari and
Jain (2020)

SegNet-512, SegNet-256 Their own, weed

species not men-

tioned

SegNet-512 did bet-

ter than SegNet-256

Yan et al. (2020) AlexNet as a feature extrac-

tor, SVM as a classifier

Their own, images

of Paddy plant, and

6 weed species

SegNet-512 did bet-

ter than SegNet-256

Kounalakis et al.
(2019)

Several, CNN for feature ex-

traction, ML classifiers

Clover and grass

images, and

Broad-leaved dock

weed, all images

monochrome

Best combination

was, Resnet50 with

L2 Regularized Lo-

gistic Regression,

with a classification

accuracy of 96.1%

Table II.1: Summary of similar works
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Data Sets
• Olsen et al. (2019) [43] is the one we worked on. Comprised of 17,509 RGB images of 8 weed

species and various plants from across Australia, it does however, suffer from class imbalance (a

class having significantly more data than the others).

• Du et al. (2022) [44], interesting dataset, contains 10,000 images of Flax and 14 categories of weeds,

taken from various location in the USA and China, but the version they made available needs

cleaning.

• Plant Seedlings Dataset [45], a big dataset comprised of 208,477 images, with 960 unique plants

belonging to 12 species at several growth stages, it should be noted however, that they where

taken in a laboratory setting where lighting conditions and other factors are ideal.

• Espejo-Garcia et al. (2020) [38], mentioned above.

Dataset Image Count Location Weed Species
Olsen et al. (2019) 17,509 Various locations

across Australia

8 species

Du et al. (2022) 10,000 Usa, China 14 species

Plant Seedlings
Dataset

208,477 Denmark 12 species

Espejo-Garcia et al.
(2020)

Not Mentioned Greece Early crop weed

Table II.2: Summary of notable datasets

II.3.1. Related Works
Our criteria for selecting similar works is that the work had to employ a deep learning approach (e.g. a

CNN), and it had to use the dataset we used (DeepWeeds), otherwise most attempts of comparison will

be baseless and meaningless.

Only 2 met these criteria, the paper which introduced the dataset by Olsen et al. [43], and the paper by

Hu, Kun, et al. [46].

In [43], Olsen et al. fine-tuned ResNet50, and InceptionV3 (pretrained on ImageNet) on the DeepWeeds

dataset, and reported an average accuracy of 95.1% for InceptionV3 95.7% for ResNet50.

In [46], Hu, Kun, et al. employed a Graph Convolutional Neural Network (GCN) (architecture for processing

graph-structured data, enabling effective information propagation and feature learning on graph nodes).

They reported an accuracy of 98.1%.



III
The Model

“All models are wrong, but some are useful”
—George E. P. Box, Statistician

III.1. Experimental Setup
Our main training platform was Google Colab (before we switched to Kaggle). Google Colab is a

cloud-based platform that provides a free, interactive environment for writing and running Python

code, it offers up to 12 hours of free hardware accelerator (GPU, or TPU) usage (which is essential for

training CNNs in a reasonable amount of time).

It offers access to powerful GPUs and TPUs, making it suitable for machine learning and data

analysis tasks. Colab supports collaboration, allowing multiple users to work on the same notebook

simultaneously. It integrates with other Google services, making it easy to import and export data from

Google Drive and interact with other Google tools such as google drive.

Our experience with it was suboptimal to say the least, we never got more than 6 hours before

being disconnected due to hitting the arbitrary runtime limits. It also has slow I/O when files are stored

on Google Drive.

After facing many problems with Colab, we switched to Kaggle, Kaggle is an online platform that hosts

data science competitions and provides a collaborative environment for data scientists and machine

learning practitioners. It offers datasets, computational resources, and a wide range of tools to explore,

analyze, and model data. It also serves as a hub for sharing code. It offers 30 hours/week of hardware

accelerators free of charge.

To speed up experimentation we used Saturn Cloud alongside Kaggle, Saturn Cloud offers easy access

to scalable computing resources and integrates with popular data science libraries and tools. It offers

30 hours of free GPU usage per month, we do not recommend it, beside the very little offered time, it

suffers from frequents disconnects.

We used Keras, Keras is a high-level neural network library written in Python that provides a API for

building and training deep learning models. It allows for easy experimentation and prototyping. Keras

supports multiple backend engines, including TensorFlow, Theano, and CNTK.

19
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We used the Tensorflow backend as the training framework (through Keras), TensorFlow is an open-

source deep learning framework developed by Google. It provides a comprehensive ecosystem for

building and deploying machine learning models. TensorFlow enables efficient computation on both

CPUs and GPUs, facilitating large-scale neural network training.

We used Jupyter as the coding environment, Jupyter is an open-source platform that enables interactive

computing and data exploration. It provides a web-based interface for creating and sharing Jupyter

Notebooks, which combine code, visualizations, and explanatory text. Jupyter supports multiple

programming languages, including Python, R, and Julia.

We used Git for version control, to manage the code the models. Git is a distributed version control

system created by Linus Torvalds in 2006, originally to manage the linux kernel codebase. It allows

multiple collaborators to work on a project simultaneously. It tracks changes to files and allows for

easy collaboration, branching, merging, and reverting. Git provides a robust history of changes and

facilitates efficient code management for software development teams. It is widely used in the industry

and has become a standard tool for version control.

III.2. Model Architecture
We experimented with several architectures (namely DenseNet-121, ResNet50V2, MobileNetV3 Large, and

MobileNetV2), but the main one was DenseNet-121.

DenseNet-121 is a convolutional neural network known for its dense connectivity pattern, where each

layer is connected to every other layer in a feed-forward manner. It comprises multiple dense blocks,

each containing several convolutional layers with batch normalization and ReLU activations. Transition

layers with pooling and dimensionality reduction are inserted between dense blocks to control the

number of parameters. Refer to subsection II.2.6 for a more thorough discussion of the DenseNet

architecture.

We used a pretrained model that was originally trained on the ImageNet dataset (which contains a 1

million images belonging divided into 1000 classes).

We added a global average pooling layer, It computes the average value for each feature map, it captures

the overall presence or absence of each feature throughout the image. This reduces the number of

parameters in the network and provides a global context, enabling the classifier to focus on essential

features rather than specific spatial locations. It also aids in making the network more robust to spatial

translations and improves computational efficiency.

We also added a dropout layer with a probability of 0.5 before the classifier1 to help reduce overfitting,

Dropout is a regularization technique used in neural networks to prevent overfitting. It randomly

deactivates a fraction of the neurons during training, forcing the network to learn robust representations

that are not overly dependent on specific neurons, improving generalization.

We replaced the last layer (the classifier) with a dense layer comprised of 9 neurons (one for each class)

with softmax as its activation function.

Softmax is a mathematical function often used as the output activation in multi-class classification (where

classes are mutually exclusive) tasks. It converts a vector of real numbers into a probability distribution,

1This is usually employed when the classifier is comprised of several layers and not just one, because in this case it might cause

a wrong prediction, but surprisingly it gave better results than not using a dropout layer
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where each element represents the likelihood of belonging to a specific class. Softmax normalizes the

input values by exponentiating them and dividing by the sum of the exponentiated values, ensuring that

the resulting probabilities add up to one. This activation function provides a useful interpretation of the

model’s outputs as class probabilities, facilitating the selection of the most probable class prediction.[47]

𝑓 (𝑠)𝑖 =
𝑒 𝑠𝑖∑𝐶
𝑗 𝑒 𝑠 𝑗

(III.1)

Mathematically, it is represented by eq IV.1, where 𝑠 𝑗 are the scores inferred by the net for each class in

𝐶. Note that the Softmax activation for a class si depends on all the scores in 𝑠.

III.3. Dataset Description
We used the DeepWeeds dataset by Olsen et al. (2019) [43]. It consists of 17509 RGB images of 8 species of

weeds and various flora, all captured in various regions across Australia.

Figure III.1: Sample images from the dataset
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Weed Species Image Count
Chinee Apple 1125

Lantana 1064

Parkinsonia 1031

Parthenium 1022

Prickly Acacia 1062

Rubber Vine 1009

Siam Weed 1074

Snake Weed 1016

Negative 9106

Total 17509

Table III.1: Number of images per weed species

Bigger datasets would have been too slow to train on, given our limited hardware resources, and smaller

ones would not have reflected the power of deep learning.

III.4. Training Procedure
Training a model essentially boils down to find the minima of a very big multivariate function (which is

the neural network). But, becausse the function is too big, It is not feasible to find the global minima, so

we try to reach some optimal local minima, through the Backpropagation algorithm.

Backpropagation is a technique used to compute the gradients of the model’s parameters with respect to

the loss function, enabling efficient optimization of neural networks. It involves a two-step process: the

forward pass computes the output of the network given the input, and the backward pass propagates

the error gradients from the output layer back to the input layer, updating the parameters using

gradient descent or other optimization algorithms. This iterative process allows the network to adjust

its parameters to minimize the error and improve its predictive capabilities.

Hyperparameters are parameters whose values are used to control the learning process. By contrast, the

values of other parameters (typically node weights) are derived via training. Hyperparameters include

the batch size, the optimizer, the learning rate.

Refer to [48] for a more thorough discussion of the mathematical underpinnings of neural networks.

III.4.1. Transfer Learning
Given the small dataset (by deep learning standards), we applied the technique of transfer learning and

finetuned the pre-trained model. Transfer learning refers to using pre-trained models as a starting point

and leveraging their learned features for a new task. In transfer learning, the entire pre-trained model

or its specific layers are utilized, and only the final layers are retrained on the new task-specific data.

We used a batch size of 32, (Batch size is the number of training examples utilized in a single forward and

backward pass during the training, the higher it is, the faster the training due to parallel computations

on the GPU, on the other hand, Smaller batch sizes may provide more accurate gradient estimates).

We used the Adam optimizer because it fared better than other (such as stochastic gradient descent (SGD)),
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(An optimizer is an algorithm used to adjust the parameters of a model during training to minimize the

loss function, optimizing the model’s performance and guiding the learning process).

We used an initial learning rate of 0.0001 (because we used a pre-trained model, a high learning rate

would cause large gradient updates which is not optimal since we want only small adjustments because

the model already learned how to recognize many features from the ImageNet dataset).

The learning rate is a hyperparameter which controls the magnitude of parameter updates in a neural

network during training, influencing the speed and stability of convergence. It scales the gradients

computed during backpropagation and determines the extent to which the network’s parameters

are adjusted in each optimization step. A higher learning rate may result in faster training but risks

overshooting the optimal solution, while a lower learning rate may lead to slower convergence or getting

stuck).

We used Sparse Categorical Cross Entropy2 as the loss function, (the loss function is also known as

the objective or cost function, it measures the discrepancy between the predicted outputs of a model

and the true values in the training data. It quantifies the error or the degree of mismatch between the

model’s predictions and the ground truth, allowing it to learn and update its parameters to minimize

this error during the training process).

Figure III.2: The categorical cross-entropy function, source:[49]

Mathematically, The outputted loss is the negative average of the sum of the true values multiplied by

the log of the predicted values.

We monitored the loss (used it as the metric during training) and every-time it decreased the model got

saved to disk (as a .hdf5 file, (It is an efficient file format commonly used to store and organize large

amounts of numerical data, including model weights and configurations in deep learning)).

We also halved the learning rate each time the loss did not decrease after 8 consecutive epochs, and

stopped training if the loss did not decrease after 16 consecutive epochs (called Early Stopping) (not

necessarily a proof that the model has converged but we were limited by time and hardware resources).

We set a maximum epoch of 70 (but not always reached it due to early stopping). An epoch is a single pass

of the entire training dataset through a learning algorithm. During one epoch, the algorithm processes

and updates the model’s parameters using all of the available training examples. The number of epochs

determines how many times the algorithm iterates through the entire dataset. Each epoch allows the

model to learn from the data and adjust its parameters to improve its performance.

2Sparse in this context means that the labels are integers, as opposed to one hot encoded arrays, but using just Categorical Cross

Entropy would work just as well because the integers would be converted to arrays internally.



IV
Evaluation of The Model

“Evaluating and analyzing mathematical models is like polishing a diamond, each facet reveals new insights,
illuminating the brilliance of knowledge and empowering us to unravel the mysteries of the universe”

—Terence Tao, Mathematician

IV.1. Evaluation Metrics
• Accuracy, is the ratio of number of correct predictions to the total number of predictions.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
(IV.1)

• Confusion matrix, is a table that summarises the predictions of a classification model. Each entry

𝑖 , 𝑗 in a confusion matrix is the number of observations actually in group 𝑗, but predicted to be in

group 𝑖.

• Precision, is the number of true positives over the number of true positives plus the number of

false positives.[47]

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓 𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(IV.2)

• Recall, identifies how many positive labels the model identified out of all the possible positive

labels.[47]

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓 𝑎𝑙𝑠𝑒𝑛𝑒 𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(IV.3)

• Normalized confusion matrix, A normalized confusion matrix, also known as a confusion matrix

with row-wise normalization, is obtained by dividing each element in the confusion matrix by

the sum of its corresponding row, the recall of each class is the corresponding position in the

diagonal.[47]

24
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• F1-Score, is the harmonic mean of precision and recall.[47]

𝐹1 = 2

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(IV.4)

IV.2. DenseNet121

Figure IV.1: Validation accuracy, and Training accuracy for each epoch for DenseNet121

Learning plateaued after epoch 48. Starting from the that epoch with one tenth of the original learning

rate improved loss a little bit (about 0.2%). Probably, the model could have improved a bit more if

trained for more epochs with a much lower learning rate, as the loss is still a bit higher than we had

hoped, at around 0.12.

Weed Species Precision Recall F1-Score Image Count
Chinee Apple 0.97 0.91 0.94 226

Lantana 0.95 1.00 0.97 213

Parkinsonia 0.95 0.99 0.97 207

Parthenium 0.99 0.92 0.95 205

Prickly Acacia 0.94 0.99 0.96 213

Rubber Vine 0.95 0.95 0.95 202

Siam Weed 0.95 1.00 0.97 215

Snake Weed 0.94 0.95 0.94 204

Negative 0.98 0.98 0.98 1821

Accuracy 0.97 3507

Macro Average 0.96 0.96 0.96 3507

Weighted Average 0.97 0.97 0.97 3507

Table IV.1: Precision, Recall, and F1-Score for Densenet121
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The high F1-Score indicate that the model performs well in terms of both identifying true positives and

avoiding false positives and false negatives.

Figure IV.2: Normalized confusion matrix for Densenet121

We can see that the most correctly predicted class was the Lantana class, and the worst was Chinee Apple
(probably due to similarity with the negative class). We also performed 5-fold cross validation with

densenet 1, and found the results to be very similar with each fold (with the top accuracy being 96.82%,

and the worst being 95.70%), with an average accuracy of all fold being 96% indicating the model’s

ability to generalize well.

IV.3. ResNet50 V2

Figure IV.3: Validation accuracy, and Training accuracy for each epoch, for ResNet50v2

1all of the code and related things are made available at the GitHub repository https://github.com/user062/Master-Thesis

https://github.com/user062/Master-Thesis
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Learning plateaued after 42 epochs with a validation accuracy of 93%.

Weed Species Precision Recall F1-Score Image Count
Chinee Apple 0.80 0.88 0.84 226

Lantana 0.89 0.97 0.93 213

Parkinsonia 0.93 1.00 0.96 207

Parthenium 0.92 0.90 0.91 205

Prickly Acacia 0.84 0.93 0.88 213

Rubber Vine 0.94 0.92 0.93 202

Siam Weed 0.95 0.97 0.96 215

Snake Weed 0.83 0.87 0.85 204

Negative 0.97 0.93 0.95 1821

Accuracy 0.93 3507

Macro Average 0.90 0.93 0.91 3507

Weighted Average 0.93 0.93 0.93 3507

Table IV.2: Precision, Recall, and F1-Score for ResNet50v2

Figure IV.4: Normalized confusion matrix for ResNet50 V2

The least correctly predicted class was Chinee Apple class, the same as densenet (albeit desenet predicted

better, 0.91% vs 0.88%)
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IV.4. MobileNet V3 Large

Figure IV.5: Validation accuracy, and Training accuracy for each epoch for MobileNet V3

Learning plateaued after Very Large fluctuations in accuracy throughout training despite the very low

learning rate, a better approach with mobilenetv3 might have been to train only the classifier.

Weed Species Precision Recall F1-Score Image Count
Chinee Apple 0.91 0.77 0.83 226

Lantana 0.91 0.89 0.90 213

Parkinsonia 0.96 0.93 0.94 207

Parthenium 0.89 0.91 0.90 205

Prickly Acacia 0.89 0.87 0.88 213

Rubber Vine 0.97 0.90 0.93 202

Siam Weed 0.95 0.90 0.93 215

Snake Weed 0.94 0.72 0.81 204

Negative 0.91 0.97 0.94 1821

Accuracy 0.92 3507

Macro Average 0.93 0.87 0.90 3507

Weighted Average 0.92 0.92 0.92 3507

Table IV.3: Precision, Recall, and F1-Score for MobileNetV3

Despite the troubled training process, it did perform reasonably well, with an accuracy of 92%. The

hardest class to classify was Snake Weed.
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Figure IV.6: Normalized confusion matrix for MobileNet V3

IV.5. MobileNet V2

Figure IV.7: Validation accuracy, and Training accuracy for each epoch for MobileNet V2
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Weed Species Precision Recall F1-Score Image Count
Chinee Apple 0.88 0.84 0.86 226

Lantana 0.89 0.91 0.90 213

Parkinsonia 0.91 0.98 0.95 207

Parthenium 0.94 0.89 0.91 205

Prickly Acacia 0.95 0.87 0.91 213

Rubber Vine 0.97 0.90 0.94 202

Siam Weed 0.87 0.99 0.93 215

Snake Weed 0.91 0.81 0.86 204

Negative 0.95 0.96 0.96 1822

Accuracy 0.93 3507

Macro Average 0.92 0.91 0.91 3507

Weighted Average 0.93 0.93 0.93 3507

Table IV.4: Precision, Recall, and F1-Score for MobileNetV2

Figure IV.8: Normalized confusion matrix for MobileNetV2

MobileNet V2 did better than MobileNet V3 Large albeit slightly worse than ResNet50 V2. Despite

being tailored to mobile platforms and thus optimized computational efficiency over performance it did

achieve an accuracy of 93%.
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IV.6. Conclusion and comparison against state of the art results

Model Accuracy
DenseNet121 96.82%
ResNet50 V2 92.90%

MobileNet V3 Large 91.93%

MobileNet V2 93.27%

ResNet50 ([43]) 94.39%

DenseNet202 [46] 95.3%

GWN with DenseNet202 backbone ([46]) 98.1%
GWN with ResNet50 backbone ([46]) 97.4%

Table IV.5: Accuracy of different models with on deepweeds

DenseNet121 gave the best results with a top accuracy of 96.82%, followed by Mobilenet V2 with an

accuracy of 93.27% then by ResNet50 V2 and the worst performing model was Mobilenet V3 with an

accuracy of 92%.

While both GWNs with ResNet50 and DenseNet202 backbones by [46] surpassed our model by

0.7% and 1.28% respectively.

• Our main model (DenseNet121) surpassed [43], and the Heavier DenseNet202 model by [46]

• The GWN with both ResNet50 and DenseNet202 backbones by [46] surpassed our model by 0.7%

and 1.28% respectively.

• Higher accuracy with these models comes at the cost of inference speed with DenseNet202

backbone, and probably with the ResNet50 backbone too.

• No conclusive results regarding inference time (except that DenseNet202 is heavier, thus slower

than its 121 variant).



V
Future Prospects

“AI will propel us into a future where machines master complexity, learn from data, and autonomously solve
complex problems, revolutionizing industries and transforming our understanding of what is possible.”

—Andrew Moore, Computer Scientist and AI Expert

This work leaves a lot to be desired, it’s not enough to train a CNN on a dataset, without any

consideration for real applications, but alas, the work was hampered thanks to the lack of proper

tooling and other obstacles.

V.1. Multi-Agent System
One fundamental distinction between multi-agent and single-agent systems lies in their coordina-

tion capabilities and coverage efficiency. Multi-agent systems comprise multiple robots that can

work in parallel and cover larger areas simultaneously. With their ability to communicate and

coordinate tasks, these systems exhibit higher overall efficiency, reducing the time required for

weed control in big farms.

In contrast, single-agent systems operate with a solitary robot, limiting their coverage and

potentially prolonging the eradication process.

It’s interesting to explore such system, especially the networking aspect, a MANET (mobile
ad hoc network) for example. Because this is the first step towards real technological robot-assisted

agriculture.

For example a if a it detects a type of weed which can’t be eradicated through herbicides

but requires other tools/measures, it could signal that to the appropriate robot(s). If a robot

becomes faulty it could signal that to others (similar to what happens in Tesla, Inc. Factories).

Updates with newer better neural networks (or any software updates) could be rolled over-the-air.

There can Also be communications between a drone and the weeding robots, the purpose

of which is it to delegate them to where weeds are concentrated hence reducing the time of

eradication. [50] explored similar ideas in more depth.

32
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Figure V.1: Bosch startup Deep Field Robotics robots deployed in a field, an example of an autonomous system with

communications between the agents, source:Bosch

V.2. Experiment with Visual Transformers
Visual transformers (ViT), introduced by Vaswani et al. [15] have emerged as a groundbreaking

approach for image classification, revolutionizing the field of computer vision. Originally focused

on the application of transformers in natural language processing tasks, It was later in 2020 that

Dosovitskiy et al. presented the groundbreaking work the Image Transformer [51].

Unlike traditional convolutional neural networks (CNNs), which rely on predefined hierar-

chical structures, visual transformers leverage the power of self-attention mechanisms to capture

long-range dependencies within images. This enables the model to attend to relevant image

regions and learn complex relationships between pixels. By employing self-attention layers, visual

transformers excel in capturing global contextual information, leading to superior performance in

tasks such as object recognition, semantic segmentation, and scene understanding.

The attention mechanism allows the model to focus on fine-grained details while consider-

ing the image as a whole, facilitating robust feature extraction and reducing the impact of spatial

transformations. Moreover, visual transformers exhibit impressive scalability, allowing for the

processing of high-resolution images without significant loss in accuracy.

These models have showcased remarkable generalization abilities, outperforming CNNs on

several benchmark datasets. With their ability to model both local and global context, visual

transformers have opened up new avenues for advancing image classification and paving the way

for further breakthroughs in computer vision research.

However, they have some drawbacks, such as requiring more computational power to train

compared to CNNs, Feature collapsing (also known as attention collapse or attention deficiency, refers

to a phenomenon observed in transformers where the self-attention mechanism fails to effectively

capture meaningful dependencies across different positions or tokens in the input sequence), and

requiring a fixed size input [52].

V.3. Generate More Data With GANs
A generative adversarial network (GAN) is a class of machine learning frameworks designed by Good-
fellow et al. in 2014 [13]. Generating data using Generative Adversarial Networks has revolutionized

the field of machine learning by enabling the creation of synthetic data that closely resembles

real-world examples.

GANs consist of two components: a generator and a discriminator, which engage in a game-like

competition. The generator learns to generate increasingly realistic samples, while the discrimina-

tor strives to distinguish between real and fake data. As the training progresses, the generator

becomes adept at producing synthetic data that exhibits the same statistical properties as the real
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data it was trained on.

This capability opens up exciting possibilities for training machine learning models. Synthetic data

generated by GANs can be used to augment existing datasets, addressing the common problem

of limited labelled data availability. It allows for the creation of diverse and large-scale datasets,

overcoming data scarcity issues and facilitating more robust and generalized model training.

Additionally, GAN-generated data can be employed to improve model performance in sce-

narios where collecting real data is time-consuming, expensive, or impractical.

By leveraging the power of GANs to generate realistic and representative data, machine learning

practitioners can enhance the quality and efficiency of their models’ training process, leading to

better overall performance and more accurate predictions.[53] and [54] discuss this approach in

more depth, Nvidia’s Perfusion [16] could theoretically generate much more precise and accurate

data, which is definitely something to explore further.

V.4. Explore The Space of Custom Hardware
The state of the art in custom hardware for deep learning training and inference is dominated by

specialized chips known as application-specific integrated circuits (ASICs) and graphics processing

units (GPUs).

ASICs designed specifically for deep learning, such as Google’s Tensor Processing Units (TPUs)

and NVIDIA’s Deep Learning Accelerators (DLAs), offer high performance and energy efficiency.

These chips are optimized for matrix multiplication, a fundamental operation in deep learning,

and often incorporate specialized circuitry for neural network computations.

GPUs, originally developed for graphics rendering, have become a popular choice for deep

learning due to their parallel processing capabilities. NVIDIA’s GPUs, in particular, are widely

used in the deep learning community and are supported by various software frameworks.

In recent years, there has been a growing interest in field-programmable gate arrays (FPGAs) for

deep learning acceleration. FPGAs provide flexibility as they can be reprogrammed to adapt

to different neural network architectures. Companies like Xilinx and Intel offer FPGA-based

solutions for deep learning. A recent example is [55], where Khoda, Elham E., et al. used an FPGA

for physics applications.

Additionally, there is ongoing research into other custom hardware architectures, including

neuromorphic chips [56] and optical computing, aiming to further enhance the efficiency and

performance of deep learning systems.

Overall, the state of the art in custom hardware for deep learning continues to evolve rapidly,

driven by the demand for faster and more energy-efficient computations [57] [58].

V.5. Run Simulations With Nvidia Isaac Sim
NVIDIA Isaac Sim is a high-fidelity simulator. It is specifically designed for training and testing

autonomous robots and systems. It provides a realistic virtual environment where to simulate

and evaluate models and applications before deploying them on physical robots.

Isaac Sim leverages advanced physics-based simulation, realistic rendering, and AI capabili-

ties to create immersive and accurate virtual environments. It supports various sensors, such as

cameras, lidar, and depth sensors, allowing developers to generate synthetic data for training

deep learning models. The simulator also includes tools for creating and editing virtual scenes,

defining robot behaviors, and conducting interactive simulations.
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(a) Amazon simulated their warehouse robots in Isaac Sim, Source:

Nvidia

(b) A robot being created in an environment in Isaac Sim, Source:

Nvidia

Developing a DL model to be deployed on a robot without running simulations may lead to

significant ineffectiveness and limitations. Simulations play a crucial role in identifying and

rectifying potential flaws in the robot’s design, programming, and operational strategies before

real-world implementation.

Without simulations, it becomes challenging to anticipate and address various environmen-

tal factors, such as different soil types, weed species, and unexpected obstacles. This absence

of comprehensive testing may result in suboptimal performance, and increased inefficiency of

the robot when deployed. Additionally, the lack of simulations hampers the ability to optimize

the robot’s navigation, decision-making, and adaptability, diminishing its overall effectiveness in

weed management.

V.6. Experiment With Graph Convolutional Networks
A graph convolutional neural network (GCN) is a type of neural network designed to operate on

graph-structured data, introduced by Thomas N. Kipf and Max Welling (2017) [59]. Unlike traditional

convolutional neural networks (CNNs) that are effective on grid-like data such as images, GCNs

are specifically tailored to handle non-Euclidean and irregular graph structures.

GCNs employ a localized filtering operation that combines information from a node’s neighbours

to update its own representation. This operation is inspired by the convolution operation in CNNs

but is adapted to graphs. It allows GCNs to capture both local and global dependencies in the

graph structure.

Hu, Kun, et al. [46] reported an accuracy of 98.1% (previously unseen), this could hint at the

potential of GCNs, which should be explored further.



Conclusion

“If we knew what we were doing, it would not be called research, would it?”
—Albert Einstein, Physicist, Developer of The Theory of Relativity

Our work demonstrates the potential of deep learning and smart farming technologies in

addressing the challenge of weed eradication in agriculture. By training a Deep Convolutional

Neural Network on a dataset of weed species, we have made a significant step towards automated

detection and classification of weeds. This lays the foundation for developing robotic solutions

that can effectively and efficiently combat weed infestations in agricultural fields.

Our work explored the effectiveness of 4 famous models through the technique of transfer learning

and fine-tuning, namely ResNet50 V2, DenseNet121, MobileNetV3Large and MobileNetV2, for weed

images detection and classification, on moderately sized dataset (comprised of 17,509 images of 8

species of weeds and various flora collected across a different regions in Australia). Our findings

show that DenseNet121 outperforms the other models, achieving an average classification accuracy

of over 96% (thereby surpassing the original paper), ResNet50 V2 came second, MobileNet V2 came

third and the worst was MobileNetV3 Large.

It is important to note however, that while DenseNet121 outperformed ResNet50v2, MobileNetV2

and MobileNetV3Large when trained in this particular way, to consider that different architectures

may exhibit vastly different performance characteristics when trained under varying conditions,

that is to say, the worse model might have fared better if trained differently, as the study by

Kornblith et al. [60] shows.

However, further research and development are needed to refine and optimize our model for

real-world deployment. This includes expanding the dataset to encompass a wider range of

weed species and considering environmental factors that may affect weed detection accuracy.

Additionally, the integration of our weed detection system with robotic platforms and field

deployment experiments will be essential to validate its effectiveness and practicality.

Overall, our work highlights the promising potential of deep learning and smart farming in

addressing weed-related challenges in agriculture. By leveraging advanced technologies and

interdisciplinary approaches, we can pave the way for a more sustainable and efficient agricultural

sector that can contribute to global food security and mitigate the impact of weed infestations on

crop production.
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A
The Code

Cell 01

import argparse
import os
import shutil
import pandas as pd
from time import time
from datetime import datetime
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping,

ReduceLROnPlateau, TensorBoard, CSVLogger
from tensorflow.keras.optimizers import Adam
import csv
from tensorflow.keras.models import Model, load_model
import numpy as np
from sklearn.metrics import confusion_matrix, classification_report
from tensorflow.keras import backend as K
from skimage.io import imread
from skimage.transform import resize
from tensorflow.keras.applications import DenseNet121
from keras.layers import Dense, GlobalAveragePooling2D, Dropout
from tensorflow.keras import Input
import matplotlib.pyplot as plt
import seaborn as sns

# Global paths
OUTPUT_DIRECTORY = "./outputs/"
LABEL_DIRECTORY = "./labels/"
IMG_DIRECTORY = "./images/"

# Global variables
RAW_IMG_SIZE = (256, 256)
IMG_SIZE = (224, 224)
INPUT_SHAPE = (IMG_SIZE[0], IMG_SIZE[1], 3)
MAX_EPOCH = 70
BATCH_SIZE = 32
FOLDS = 1
STOPPING_PATIENCE = 8
LR_PATIENCE = 16
INITIAL_LR = 0.0001
CLASSES = [str(i) for i in range(9)]
CLASS_NAMES = ['Chinee Apple',

'Lantana',
'Parkinsonia',
'Parthenium',
'Prickly Acacia',
'Rubber Vine',
'Siam Weed',
'Snake Weed',
'Negative']
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Cell 02

#read labels from csv files to pandas dataframe
train_label_file = "{}train_subset{}.csv".format(LABEL_DIRECTORY, 0)
val_label_file = "{}val_subset{}.csv".format(LABEL_DIRECTORY, 0)
test_label_file = "{}test_subset{}.csv".format(LABEL_DIRECTORY, 0)
train_dataframe = pd.read_csv(train_label_file, dtype=str)
val_dataframe = pd.read_csv(val_label_file, dtype=str)
test_dataframe = pd.read_csv(test_label_file, dtype=str)

# Training image augmentation
train_data_generator = ImageDataGenerator(

#preprocessing_function = preprocess_input,
rescale=1. / 255,
fill_mode="constant",
shear_range=0.2,
zoom_range=(0.5, 1),
horizontal_flip=True,
rotation_range=360,
channel_shift_range=25,
brightness_range=(0.75, 1.25))

# No validation image augmentation (except for converting pixel values to floats)
val_data_generator = ImageDataGenerator(

#preprocessing_function = preprocess_input
rescale=1. / 255

)

# No testing image augmentation (except for converting pixel values to floats)
test_data_generator = ImageDataGenerator(

#preprocessing_function = preprocess_input
rescale=1. / 255

)

# Load train images in batches from directory and apply augmentations
train_data_generator = train_data_generator.flow_from_dataframe(

train_dataframe,
IMG_DIRECTORY,
y_col='Label',
x_col='Filename',
target_size=IMG_SIZE,
batch_size=BATCH_SIZE,
has_ext=True,
classes=CLASSES,
class_mode='sparse')

# Load validation images in batches from directory and apply rescaling
val_data_generator = val_data_generator.flow_from_dataframe(

val_dataframe,
IMG_DIRECTORY,
y_col="Label",
x_col="Filename",
target_size=IMG_SIZE,
batch_size=BATCH_SIZE,
has_ext=True,
shuffle=False,
classes=CLASSES,
class_mode='sparse')

# Load test images in batches from directory and apply rescaling
test_data_generator = test_data_generator.flow_from_dataframe(

test_dataframe,
IMG_DIRECTORY,
y_col="Label",
x_col="Filename",
target_size=IMG_SIZE,
batch_size=BATCH_SIZE,
has_ext=True,
shuffle=False,
classes=CLASSES,
class_mode='sparse')
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Cell 03

base_model = MobileNetV2(weights="imagenet", include_top=False, pooling='avg',
input_shape=INPUT_SHAPE)

#Add dropout layer
x = Dropout(0.5)(base_model.output)
# Add fully connected output layer with softmax activation for multi class classification
outputs = Dense(len(CLASSES), activation='softmax', name='fc9')(x)

# Assemble the modified model
model = Model(inputs=base_model.inputs, outputs=outputs)

timestamp = datetime.fromtimestamp(time()).strftime('%Y%m%d-%H%M%S')

print('Fold {}/{} - {}'.format(0 + 1, FOLDS, timestamp))
output_directory = "{}{}/".format(OUTPUT_DIRECTORY, timestamp)

if not os.path.exists(output_directory):
os.makedirs(output_directory)

# Checkpoints for training
model_checkpoint = ModelCheckpoint(output_directory + "lastbest-0.hdf5", verbose=1,

save_best_only=True)
early_stopping = EarlyStopping(patience=16, restore_best_weights=True)
tensorboard = TensorBoard(log_dir=output_directory, histogram_freq=0, write_graph=True,

write_images=False)
reduce_lr = ReduceLROnPlateau('val_loss', factor=0.5, patience=8, min_lr=0.000003125)
model.compile(loss='sparse_categorical_crossentropy',

optimizer=Adam(learning_rate=INITIAL_LR), metrics=['sparse_categorical_accuracy'])
csv_logger = CSVLogger(output_directory + "training_metrics.csv")

Cell 04

history = model.fit(
train_data_generator,
steps_per_epoch=train_image_count // BATCH_SIZE,
epochs=MAX_EPOCH,
validation_data=val_data_generator,
validation_steps=val_image_count // BATCH_SIZE,
callbacks=[tensorboard, model_checkpoint, early_stopping,

reduce_lr, csv_logger], shuffle=False)

np.save(f'{output_directory}model_history.npy', history.history)

Cell 05

# Testing the model
#test_data_generator.reset()
results = model.evaluate(test_data_generator)
print(f'test_loss: {results[0]} - test_categorical_accuracy: {results[1]*100}')

Cell 06

# plot accuracy before fine tuning
pd.DataFrame(history.history)[['sparse_categorical_accuracy',

'val_sparse_categorical_accuracy']].plot()
plt.title("Accuracy")

plt.savefig(f"{output_directory}/accuracy.svg", format="svg")
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Cell 07

# plot loss before
pd.DataFrame(history.history)[['loss', 'val_loss']].plot()
plt.title("Loss")
plt.savefig(f"{output_directory}/loss.svg", format="svg")

Cell 08

#Run predictions
test_data_generator.reset()
predictions = np.argmax(model.predict(test_data_generator), axis=1)

Cell 09

labels = dict((v, k) for k, v in test_data_generator.class_indices.items())
actual = list(test_dataframe.Label)
predictions = [labels[i] for i in predictions]
print(classification_report(actual, predictions))

Cell 10

#plot the normalized confusion matrix

cf = confusion_matrix(actual, predictions, normalize = "true")
plt.figure(figsize=(10, 8))
sns.heatmap(cf, annot=True,

xticklabels = list(map(lambda x:CLASS_NAMES[int(x)], sorted(set(actual)))),
yticklabels = list(map(lambda x:CLASS_NAMES[int(x)], sorted(set(actual)))))

plt.xticks(rotation=45)
plt.title('Confusion Matrix')
plt.savefig(f"{output_directory}/confusion_matrix.svg", format="svg")
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