Alexander M. Kuznetsov

Charge Transfer in Chemical Reaction Kinetics

541-75-1

M

A H I R S

1

Presses polytechniques et universitaires romandes

CONTENTS

PREFACE

INTRODUCTION

Chapter 1	TYPES OF CHARGE TRANSFER REACTIONS			
	1.1	Electron transfer in the condensed phase	1	
		1.1.1 Solid-state processes	1	
		1.1.2 Liquid-phase chemical reactions	3	
		1.1.3 Electron transfer at interfaces	7	
		1.1.4 Electron transfer in biological macromolecules	7	
	1.2	Proton transfer reactions	8	
	1.3	Transfer of ions and atomic groups	9	
Chapter 2	ELI	ECTRON TRANSFER REACTIONS. GENERAL		
and the control	THEORETICAL CONCEPTS			
	2.1	Two notes on the nature of the electron transfer process	11	
		2.1.1 The electron transition between molecular		
		fragments is a quantum mechanical phenomenon	11	
		2.1.2 Self-averaging of observables	12	
	2.2	The states of the quantum particles	13	
		2.2.1 Harmonic vibrations	14	
		2.2.2 Particle in the potential "box"	16	
		2.2.3 Harmonic oscillator	18	
	2.3	Born-Oppenheimer approximation	19	
	2.4	Tunneling	22	
		2.4.1 Tunnel passage of a free particle through		
		a static barrier	22	
		2.4.2 Resonance splitting of the energy levels		
		in a double-well potential	24	
		2.4.3 Landau-Zener transitions	24	
	2.5	Fermi golden rule and statistical averaging	28	
	2.6	Coordinate distribution function	29	

x Contents

Chapter 3	ELECTRON TRANSFER IN POLAR SOLVENT			
	3.1 Inertialess and inertial polarizations of the mediu	m 34		
	3.1.1 Different role of fast and slow polarization			
	3.1.2 The Franck-Condon principle	37		
	3.1.3 Fields and polarization in dielectrics	39		
	3.2 Classical equilibrium fluctuations in a uniform di	ielectric 43		
	3.2.1 Separation of high frequency			
	and low frequency polarizations	44		
	3.2.2 The Hamiltonian of the reacting system	48		
	3.2.3 Diabatic and adiabatic approaches	48		
	3.3 Solvent effect on the reaction rate constant	60		
	3.3.1 The solvent reorganization energy	60		
	3.3.2 The role of the quantum part			
	of the inertial polarization in non-adiabatic			
	and adiabatic reactions	63		
	3.3.3 The role of fast polarization in non-adiaba	tic		
	and adiabatic reactions	65		
	3.3.4 Effect of the fluctuation of the cavity size	67		
	3.3.5 Inverted region	68		
Chapter 4	ELECTROCHEMICAL ELECTRON TRANSFER			
	4.1 Electric current for non-adiabatic reactions	72		
	4.2 Adiabatic electrochemical reactions	76		
	4.3 Gerischer's view of electron transfer	78		
	4.4 Distribution of the electron energy gap in the sol			
	PROTON TRANSFER PROCESSES			
Chapter 5		-4'		
	5.1 Transition probability in the harmonic approxim			
	5.2 Partially adiabatic proton transfer	88		
	5.3 The kinetic hydrogen isotope effect	L-L:1:4- 00		
	and the distance dependence of the transition pro	bability 89		
Chapter 6	STOCHASTIC APPROACH TO CHEMICAL REACTIONS			
	IN SOLUTIONS			
	APPENDIX A 97			
	APPENDIX B			
	REFERENCES	103		
	AND MAIN TONG	103		