

électronique - génie électrique - microsystèmes

Conception des microsystèmes sur silicium

sous la direction de Salvador Mir

bermes

Lavoisier

Table des matières

Salvador Mir			•		 	;	•		15
Chapitre 1. Introduction aux microsystèmes sur silicium . Salvador Mir et Sergio Martínez	(4)			S# 83	 	•	٠	¥	19
1.1. Intérêt et définition		- #t			 				19
1.1.1. Intérêt des microsystèmes		: 1	*	3 4 0 33): <u>•</u> :		20
1.1.1.1. Miniaturisation									21
1.1.1.2. Multiplicité		2 ¥3	×	· ·	 	24		- 10	22
1.1.1.3. Micro-électronique									22
1.1.2. Inconvénients des microsystèmes									22
1.2. Architecture générale d'un microsystème									23
1.3. Classification des microsystèmes									25
1.4. Evolution des microsystèmes									27
1.4.1. Brève histoire des applications									27
1.4.1.1. Capteurs mécaniques									27
1.4.1.2. Capteurs thermiques									28
1.4.1.3. Capteurs magnétiques									28
1.4.1.4. Capteurs chimiques									29
1.4.1.5. Capteurs de rayonnement									29
1.4.2. Evolution technologique									30
1.4.3. Evolution de l'architecture									33
1.5. Bibliographie									35
1.3. Biologiaphie.		. 5	٥	100			٠		
Chapitre 2. Les domaines d'applications des microsystèmes Benoît CHARLOT	S .	٠	•	i i	 	ě	•	1	39
2.1. Introduction				12 01	 				39
2.2. Les applications des microsystèmes dans l'automobile.									39

=

71	3.2.3. L'oxydation
71	3.2.2. La lithographie
70	3.2.1. Introduction au procédé CMOS
70	3.2. Les procédés de fabrication de la micro-électronique.
69	3.1. Introduction
	Benoît CHARLOT
69	Chapitre 3. Les technologies de fabrication des microsystèmes
6	0.17
65	2.8. Bibliographie
65	2.7. Conclusion
2 2	2.6.3. L'alimentation à partir des sources d'énergie ambiantes
4 2	2.6.1. Les piles à combustible
63	2.6. La microgénération de puissance
62	2.5.3.2. Les écrans plats à micropointes
61	2.5.3.1. Les têtes d'imprimantes à jet d'encre
61	2.5.3. L'électronique grand public
60	2.5.2. L'optique et l'optoélectronique
60	2.5.1.4. Les bobines et transformateurs suspendus
59	2.5.1.3. Les capacités variables
58	2.5.1.2. Les microrelais
57	2.5.1.1. Les résonateurs et les filtres
57	2.5.1. Les composants électroniques
57	télécommunications
	2.5. Les applications des microsystèmes dans l'électronique et les
55	2.4.4.2. Les microTAS et Lab-on-Chip
54	2.4.4.1. Les puces à ADN
54	2.4.4. L'analyse biomédicale
53	2.4.3. Les systèmes actifs implantables
52	2.4.2.3. Les micro-aiguilles pour l'injection hypodermique
51	2.4.2.2. L'instrumentation d'endoscopie et d'imagerie
51	2.4.2.1. Les microscalpels et les micropréhenseurs
51	2.4.2. L'instrumentation de microchirurgie et de micromanipulation
50	2.4.1. Les systèmes de mesure pour le diagnostic et le monitoring
49	2.4. Les applications des microsystèmes dans le biomédical
47	2.3.2. Les applications des microsystèmes dans l'avionique
46	2.3.1.4. La micro-instrumentation
45	2.3.1.3. Les gyromètres
45	2.3.1.2. Les systèmes de positionnement par visée de la terre
4	2.3.1.1. Les micropropulseurs
43	2.3.1. Les micro et nanosatellites
42	2.5. Les applications des microsystèmes dans l'aerospatial

99	3.10. Bibliographie
98	1.9 Conclusion
97	3.8.5. Le flip chip
96	3.8.4.2. Le collage direct par fusion du silicium sur du silicium
96	3,8,4,1. Le collage anodique du silicium et du verre
96	3.8.4. Le collage de plaquettes
95	3.8.3. La micro-encapsulation
94	3.8.2. Les boîtiers spécifiques
94	3.8.1.2. La soudure ultrasonique
93	3.8.1.1. La soudure thermosonique
93	3.8.1. Le packaging conventionnel des circuits intégrés
92	1.8. La mise en boîtier des microsystèmes
91	1.7. Les technologies basées sur la croissance électrolytique
91	3.6.2. Micro-usinage à partir de substrat CMOS
90	3.6.1. Micro-usinage à partir de substrat SOI
90	16. Le micro-usinage à partir de techniques de gravure RIE
89	micro-électronique
	3.5.4. Micro-usinage en surface antérieur au procédé
89	minor decironique
C	1.3.1 Micro-usinge en surface postérieur au procédé
× 0	Minio ne incre de meter de sur
86	1 1 Dimeiro du miero usinage en surface
86	Les lechnologies de micro-usinage en surface
85	1.1.4. Le micro-usinage en volume avec arrêt électrochimique
84	3.4.3. La gravure face arrière
82	3.4.2. Le micro-usinage en volume face avant
80	3.4.1. La gravure anisotropique du silicium
80	1.4. Les technologies de micro-usinage en volume
79	3.3.3. Les métaux
79	3.3.2. Le silicium polycristallin
78	3.3.1. Le silicium monocristallin
78	1.) Les matériaux pour les microsystèmes
77	3.2.6 L'implantation ionique
77	3.2.5.2.2. La gravure XeF2
76	3.2.5.2.1. La gravure RIE profonde
76	3.2.5.2. La gravure sèche
75	3.2.5.1. La gravure humide
75	3.2.5. La gravure
74	3.2.4.3. La pulvérisation cathodique
74	3.2,4.2. L'évaporation
72	3.2.4.1. Le dépôt chimique en phase vapeur
72	3.2.4. Le dépôt

14 Conception des microsystèmes sur silicium

	6.6.3. Filtrage
	6.6.4. Contrôle du gain et du décalage
	6.6.5. Conversion analogique/numérique
	6.6.6. Mesure de fréquences
	6.6.7. Interface avec un bus de données
	6.7. Etalonnage, calibrage et autocontrôle
	6.7.1. Etalonnage
	6.7.2. Autocontrôle
	6.8. Bibliographie
I n	dex
ш	iuca , yay a rang ya ang a a ang a a na a a na a a ang a a na a a na a a a

Traité EGEM Electronique - Génie Electrique - Microsystèmes

ÉLECTRONIQUE ET MICRO-ÉLECTRONIQUE

Le traité Electronique, Génie Electrique, Microsystèmes répond au besoin de disposer d'un ensemble de connaissances, méthodes et outils nécessaires à la maîtrise de la conception, de la fabrication et de l'utilisation des composants, circuits et systèmes utilisant l'électricité, l'optique et l'électronique comme support.

Conçu et organisé dans un souci de relier étroitement les fondements physiques et les méthodes théoriques au caractère industriel des disciplines traitées, ce traité constitue un état de l'art structuré autour des quatre grands domaines suivants :

Electronique et micro-électronique

Optoélectronique

Génie électrique

Microsystèmes

Chaque ouvrage développe aussi bien les aspects fondamentaux qu'expérimentaux du domaine qu'il étudie. Une classification des différents chapitres contenus dans chacun, une bibliographie et un index détaillé orientent le lecteur vers ses points d'intérêt immédiats : celui-ci dispose ainsi d'un guide pour ses réflexions ou pour ses choix.

Les savoirs, théories et méthodes rassemblés dans chaque ouvrage ont été choisis pour leur pertinence dans l'avancée des connaissances ou pour la qualité des résultats obtenus.

Bermes Science ISBN 2-7462-0506-8

9 782746 205062

www.hermes-science.com