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The paper presents a finite element model of the arch with a transverse, one-edge
crack. A part of the cracked arch is modelled by a curved beam finite element with
the crack. Parts of the,arch without the crack are modelled by noncracked curved
beam finite elements. The crac?k'pccurring in the arch is nonpropagating and open.
It is assumed that the crack changes only the stiffness of the arch, whereas the mass

is un‘c"hang‘ed. The method of the formation of the stiffness matrix of a curved beam

finite elemént with the crack is presented. The effects of the crack locati 1d 1S
length on the changes of the in-plane ‘natural frequencies and mode spupes o Y/ &
clamped-clamped arch-are studied. v 1{{
R y ‘/ ,
‘ 3 1c
oS \

1 Introduction ;

Fatigue cracking is undoubtedly the most important failure
mode in engineering ¢Williams and Ellinger, 1953; Bishop,
1955; Bohnstedt and Leopold, 1985). From the point of view
of optimum machine performance it is of great importance to
detect cracks in the initial stages of growth. Since the crack

influences the stiffness of the structure, and the stiffness in turn

influences the dynamic behavior of such a system, vibration
monitoring as a means of detecting crack initiation and growth
should be a powerful tool (Cawley and Adams, 1979; Stubbs,
1985; Rizos et al., 1990). A detailed study of the vibrational
behavior of cracked structures, therefore, is necessary.

To the best of the author’s knowledge, the dynamic behavior
of cracked arches has not been analyzed in the published litera-
ture. The review of the dynamics of cracked structures (Wauer,
1990) contains several papers in which the authors of which
analyzed the influence of cracks on buckling and natural fre-
quencies of rings (Dimarogonas, 1981; Yao and Dimarogonas,
1988; Hong et al., 1989). An essential idea, common to cited
papers is to replace the crack by a spring with reduced stiffness
and then to divide the analyzed structure into two undamaged
parts. Theaeduced stiffness can be calculated by means of meth-
ods of fracture mechanics (Okamura et al., 1972). Next, the
reduced stiffness quantity is incorporated into the equations of
motion, and in this way the static and dynamic parameters of the
cracked rings can be analyzed. The above method is restricted to
rings with a constant cross-section.

The main objective of this paper is to use the curved beam
finite element with a transverse, one-edged, nonpropagating,
open crack and to present an analysis of the effects of the crack
position, and of its location, on the changes of the in-plane
natural frequencies and mode shapes of the clamped-clamped
arch. It is assumed that the crack only changes the stiffness
of the element, whereas” the mass of the element remaining
unchanged. The elaborated model of the cracked element is
restricted to curved beams with rectangular cross-section. The
validity of the obtained model is verified by numerical calcula-
tions.

2 The Stiffness Matrix of the Curved, Cracked Beam
Finite Element

A curved cracked finite-beam element with two nodes and
three degrees of freedom at the node is presented in Fig. 1. The
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transverse crack is open, nonpropagating and l%ca{ed in the;

middle of the element. N St S
The stiffness matrix [, of a finite element can be CW

by his flexibility matrix: as (Przemieniecki, 1968) »

= TIE (1)

where: T is the transformation matrix (see section 2.1 ), CEis
the inversion of flexibility matrix of the element (see séctions
2.2 and 2.3), upper index  denotes transposition of the matrix.

In the case of analyzed cracked finite element the flexibility
matrix C is a sum of the flexibility matrix of the noncracked
element C° and the flexibility matrix due to the crack C' (Goun-
aris and Dimarogonas, 1988). The elements of matrices C°
and C' are calculated by using the well known relationships -
(Przemieniecki, 1968; Dimarogonas, 1983).

2.1 Matrix of Transformation T. The elements of the
matrix of transformation T can be calculated using the equations
of overall equilibrium for element forces F; — Fgand S| — S;—
Fig. 2. The final form of the matrix T is

1 0 0

0 1 0

15 0 0 |
3 —cos 3 sin 3 L Y Fe (2)

—sin g8 —gos f O

—r(l —cosB) -rsinf -1

2.2 The Flexibility Matrix of the Noncracked Element
C°. The terms of the flexibility matrix of the noncracked ele-
ment can be calculated by using the following relationship
(Przemieniecki, 1968)

e =RELY

C'I - e a0 ?
a8, 08,

(i=13,=13) (3)

where U° is the elastic strain energy of the noncracked curved
beam.

The elastic strain energy of the curved finite-beam element
presented in Fig. 1 is (Orto$ and Jakubowicz, 1966)

5 7 | e
UV'=|—+— M;da
2E] 2EA 0

r B 1 el
+ —f Nda + ~_f NM,da, (4)
2EA 0 EA 0

where M, is the bending moment, N is the axial force, E is Young’s
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1 Introduction ;

Fatigue cracking is undoubtedly the most important failure
mode in engineering ¢Williams and Ellinger, 1953; Bishop,
1955; Bohnstedt and Leopold, 1985). From the point of view
of optimum machine performance it is of great importance to
detect cracks in the initial stages of growth. Since the crack

influences the stiffness of the structure, and the stiffness in turn

influences the dynamic behavior of such a system, vibration
monitoring as a means of detecting crack initiation and growth
should be a powerful tool (Cawley and Adams, 1979; Stubbs,
1985; Rizos et al., 1990). A detailed study of the vibrational
behavior of cracked structures, therefore, is necessary.

To the best of the author’s knowledge, the dynamic behavior
of cracked arches has not been analyzed in the published litera-
ture. The review of the dynamics of cracked structures (Wauer,
1990) contains several papers in which the authors of which
analyzed the influence of cracks on buckling and natural fre-
quencies of rings (Dimarogonas, 1981; Yao and Dimarogonas,
1988; Hong et al., 1989). An essential idea, common to cited
papers is to replace the crack by a spring with reduced stiffness
and then to divide the analyzed structure into two undamaged
parts. Theaeduced stiffness can be calculated by means of meth-
ods of fracture mechanics (Okamura et al., 1972). Next, the
reduced stiffness quantity is incorporated into the equations of
motion, and in this way the static and dynamic parameters of the
cracked rings can be analyzed. The above method is restricted to
rings with a constant cross-section.

The main objective of this paper is to use the curved beam
finite element with a transverse, one-edged, nonpropagating,
open crack and to present an analysis of the effects of the crack
position, and of its location, on the changes of the in-plane
natural frequencies and mode shapes of the clamped-clamped
arch. It is assumed that the crack only changes the stiffness
of the element, whereas” the mass of the element remaining
unchanged. The elaborated model of the cracked element is
restricted to curved beams with rectangular cross-section. The
validity of the obtained model is verified by numerical calcula-
tions.

2 The Stiffness Matrix of the Curved, Cracked Beam
Finite Element

A curved cracked finite-beam element with two nodes and
three degrees of freedom at the node is presented in Fig. 1. The
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by his flexibility matrix: as (Przemieniecki, 1968) »

= TIE (1)

where: T is the transformation matrix (see section 2.1 ), CEis
the inversion of flexibility matrix of the element (see séctions
2.2 and 2.3), upper index  denotes transposition of the matrix.

In the case of analyzed cracked finite element the flexibility
matrix C is a sum of the flexibility matrix of the noncracked
element C° and the flexibility matrix due to the crack C' (Goun-
aris and Dimarogonas, 1988). The elements of matrices C°
and C' are calculated by using the well known relationships -
(Przemieniecki, 1968; Dimarogonas, 1983).

2.1 Matrix of Transformation T. The elements of the
matrix of transformation T can be calculated using the equations
of overall equilibrium for element forces F; — Fgand S| — S;—
Fig. 2. The final form of the matrix T is

1 0 0

0 1 0
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3 —cos 3 sin 3 L Y Fe (2)
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2.2 The Flexibility Matrix of the Noncracked Element
C°. The terms of the flexibility matrix of the noncracked ele-
ment can be calculated by using the following relationship
(Przemieniecki, 1968)

e =RELY

C'I - e a0 ?
a8, 08,

(i=13,=13) (3)

where U° is the elastic strain energy of the noncracked curved
beam.

The elastic strain energy of the curved finite-beam element
presented in Fig. 1 is (Orto$ and Jakubowicz, 1966)

5 7 | e
UV'=|—+— M;da
2E] 2EA 0
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+ —f Nda + ~_f NM,da, (4)
2EA 0 EA 0

where M, is the bending moment, N is the axial force, E is Young’s
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