

Master Thesis In Electronics

Vision System and Robotics

By

Omar MORCELI

Khadidja BOUMDEL

Modeling ,Control and

Identification of a Robot

Manipulator

Vision Based Position Control Application

Supervisor : Pr.Boualem KAZED

 2016-2017

ΔريϭϬالجـم Δالجزائري ΔراطيϘالديم Δالشعبي

Algerian Democratic and Popular Republic

ϡيϠزارةالتعϭ ليΎالبحــث الــعــϭ مــيϠالعــ

Higher Education And Scientific Research Minister

ΔمعΎسعد جــ ΏϠيدة دحϠالب
SAAD DAHLEB University of Blida

ΔيϠك Ύجيϭلϭالتكن

Faculty Of Technology

ϡقس ϙنيـϭاإلكتر

Department of Electronics

 ϡه الرحمن الرحي ϡبس

ACKNOWLEDGEMENTS

This master's thesis is the result of a research work of several months. In

preamble, we would like to thank all those who have supported us and who have

contributed to the preparation of this brief

First of all the great thanks to our mighty god

A big thank you to our developer Mr. B. kazed, for his precious help and for the

time he kindly dedicated us and for guiding and supporting us over the year. You

have set an example of excellence as a researcher, mentor, instructor, and role

model.

We would especially like to thank our amazing family for the love, support, and

constant encouragement we have gotten over the years.

 ,Εϭبϭفي ذراع الر ϡمل لمشكل التحكΎفي هذه المذكرة حل ش ΎقشنΎخص: نϠامϭب أ ΎلقمنΎ Δنمذج ϭ ΔتيكΎالكينم
 ϡذراع, ثϠل ΔميكيΎالدينΔبتيϭأذرع الرΎب ΔصΎالخ Δكشف اأنظمϭ ϡمعتمدة في التحك ϕطر Ύبرمجن Εذا

 ϡتحك Ύنϔأض ϡد, ثϭر المنشΎكذا تتبع المسϭ ضعϭفي الم ϡمن التحك Ύمكنن ϱالذϭ ,ΔلϭϬمج ΔميكيΎئص دينΎخص
 Δالرؤي ϰϠضعي مبني عϭمΔعيΎااصطن .

. اأنظمΔدينΎميكيΔ, تحكϡ ااخطي,كشف ذراع الرϭبΕϭ, كϠمΕΎ المΎϔتيح:

Résumé: dans cette thèse on a discuté une solution complète de command des

bras manipulateur, premièrement on a fait la modilisation de la cinematique et la

dynamique du bras, apres on a implementé des methodes efficaces pour la

ĐoŵŵaŶde et l’ideŶtifiĐatioŶ du ďras manipulateur avec des parametres inconnus

de la dynamique, ce qui nous a permis de commandé la position ainsi le suivi de la

trajectoire, puis on a finalsé avec une commande de la position basé sur la vision.

Mots clés: Robot manipulateur, Dynamique, la command PID, Commande

nonlinear, identification des systems.

Abstract : In this thesis we discussed a complete robot manipulator control solving

proďleŵ, first we ŵodeled the ŵaŶipulator’s kiŶeŵatiĐs aŶd dyŶaŵiĐs, theŶ we
implemented reliable methods for control and identification of a the robot

manipulator with unknown dynamical parameters .which allows us to control

position as well as trajectory tracking, and then we conducted a vision based

position control.

Keywords: Robot manipulator, Dynamics, PID controller, nonlinear control, System

identification.

Notations and Acronyms

Symbols and Operators

ξ : The relative pose of a frame with respect to a reference coordinate frame.

{A}: the coordinate frame A. x୧: The x axis of the ��ℎ frame. y୧: The y axis of the ��ℎ frame. z୧: The z axis of the ��ℎframe. o୧ : The origine point of coordinate frame i. x̂, ŷ, ẑ: Unite vectors of the axes x, y, z R ୅ ୆ : 3x3 Orthonormal Rotation Matrix of frame B with respect to frame A. T ୅ ୆ : 4x4 homogeneous transformation matrix of frame B with respect to frame A. q୧: The ��ℎ angle of rotation in the case of a revolute joint.

Ai: The homogeneous transformation matrix that expresses the position and the

orientation of o୧ x୧ y୧z୧ with respect to o୧−ଵx୧−ଵ y୧−ଵz୧−ଵ. tn ଴ : The position vector of the end effector with respect to the inertial or base frame
. �̃ � : 4X1 homogeneous position vector with respect to frame i.

θi: The angle of rotation around the x axis.

di: The sliding distance along the z axis.

a: The length of the common normal.

 .The angle about common normal, from old z axis to new z axis :ߙ

 trans ziሺd୧ሻ : The translation matrix in the z axis with distance di with respect to the ��ℎ coordinate frame.

Rot ziሺθiሻ : The rotation matrix about the z axis with angle θi with respect to the ��ℎ

coordinate frame.

ω ∶ The angular velocity
V : The linear velocity Jω: The derivative of the angular velocity or angular Jacobian matrix Jv : The derivative of the Linear Velocity or linear Jacobian matrix

J: The robot manipulator Jacobian matrix.

M: Robot manipulator mass matrix.

C: Centrifugal and Coriolis forces matrix.

G : Gravity vector of a Robot manipulator.

F: Friction matrix of a Robot manipulator.

K: Kinetic energy.

U: Potential energy. I : The inertia Tensor.

: The vector of motor torques. b୧୨୩: Christoffel Symbol. ρ : The mass density.

p̂ : 3x3 skew matrix of 3x1 p position vector. I3 : 3x3 identity matrix. ݃: The gravitational force. fc: Coulomb friction coefficient. fv: Viscous friction coefficient. fs: Stiction friction coefficient.

qs: Stribeck velocity. Tf: Actuator friction term.

J: Actuator inertia.

r(t): The reference or the set point signal in the control loop.

e(t) : The error signal between the set point and the feedback in the control loop. eሶ , eሷ : The first and the second derivative of the error.

u(t): The control input signal to the system in the control loop.

y(t) : Output of the system in control loop.

qi: The ��ℎ joint angle of the robot manipulator.

q: The vector of the joints angles of the robot manipulator.

qd: The vector of the desired joints angles of the robot manipulator. qሶ , qሷ : First and second derivative of joints angles vector of the robot manipulator.

Kp,Kd,Ki: PID controller gains. Y: System output vector. �̂: The estimated output vector. �: The Vector of (unknown) parameters.

�̂: The Vector of the estimated parameters.

φ୧: The Regression variables depend on the ��ℎ parameter.

Φ: The regresseur matrix. �ሺ�, �ሻ: The least squares cost function. U୧: The PWM input to the ��ℎ motor. ݂ሺݔ, .Distance between the camera lens and the image plane : ߚ .Distance between the camera lens and the object :ߙ .ሻ: 2d function represents a digital imageݕ

f: The focal length.

P: Camera matrix.

E: Extrinsic camera matrix.

K: Intrinsic camera matrix.

Abbreviations and Acronyms

DOF: Degrees of freedom.

PID: Proportional Integral Derivative controller.

LS: least square.

RLS: recursive least squares.

RGB: Digital image of three color planes Red, Green and Blue.

HSV: Digital image transform to Hue, Saturation and Value space.

CHT: The circle Hough Transform.

PWM: Pulse-width modulation can generate an analogical voltage from digital

output by switching between 0 and 1 with high frequency and with specific duty

cycle.

DC: Direct courant.

USB: UNIVERSAL SERIAL BUS.

IO: INPUT/OUTPUT.

Te: Sampling time.

Fe: Sampling frequency.

Fb: lowpass Filter cut-off frequency.

RMS: Root Mean Square is the square root of the arithmetic mean of the squares of

the values.

SVD: Singular Value Decomposition

https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Duty_cycle
https://en.wikipedia.org/wiki/Duty_cycle
https://en.wikipedia.org/wiki/Root_mean_square

 Table of Contents

 Page

number

IŶtroduĐtioŶ…………………………………..…………………………………….1

1. History and Motivation …………………………………………………………………………….……… Ϯ

2. The Eurobtec IR50p (or ROB3i) ………………………………………………………………………. ϯ

3. Objectives ……………………………………………………………………………………………………….. 4

4. Software …………………………………………………………………………….…………………………... 5

4.1 MATLAB R2014a with SIMULINK ………………………………………………………………..ϱ

4.2 Arduino IO (MATLAB support package for Arduino)……………………………….….ϱ

4.3 MATLAB Camera Calibration Toolbox…………………………………………………………ϱ

5 . Hardware ……………………………………………………………………………………………………..5

5.1 Arduino Mega2560board ……………………………………………………………………….…ϲ

5.2 Dc Motors Driver Board……………………………………………………………………….…….ϲ

5.3 Webcam……………………………………………………………………………………………..…..…ϳ

6 . Outline …………………………………………………………………………………………………..……….8

 Chapter 1: ModeliŶg …………………………………………………………ϵ

1.1 Representing PositioŶ aŶd OƌieŶtatioŶ……………………………………….……………………ϵ

1.1.1 Representing Pose in 3-DiŵeŶsioŶs…………….…………………………………ϭϭ

1.1.2 Representing Orientation in 3-DiŵeŶsioŶs…………..……………………….ϭϮ

a. Orthonoƌŵal RotatioŶ Matƌiǆ….…………………………………………….ϭϮ

b. Three-AŶgle RepƌeseŶtatioŶ….……………………………………………..ϭϯ

1.1.3 Combining TranslatioŶ aŶd OƌieŶtatioŶ….…………………………………..ϭϯ

1.2 Forword KiŶeŵatiĐs…………………….………………………….…………………………………..ϭϯ

1.Ϯ.ϭ KiŶeŵatiĐ ChaiŶs……………………………………..…………………………………….ϭϰ

1.2.2 Denavit and HaƌteŶďeƌg RepƌeseŶtatioŶ……..….……………………………..ϭϳ

a. Four paƌaŵeteƌs………………….…….……..………………………………….ϭϴ

b. Denavit-HaƌteŶďeƌg ŵatƌiǆ……….………….………………………………ϭϵ

1.2.3 AppliĐatioŶ oŶ the ĐhoseŶ ƌoďot………….………………………………………ϮϬ

1.3 DiffereŶtial KiŶeŵatiĐs…………………………………….………………………………………….ϮϮ

1.3.1 Derivation of the JaĐoďiaŶ.…….…………………………………………………….ϮϮ

 a. AŶgulaƌ VeloĐitǇ….………………………………………………………………ϮϮ

 b. LiŶeaƌ VeloĐitǇ…….……………………………………………………………..Ϯϯ

c. Combining the Angular and Linear JaĐoďiaŶs……………………….Ϯϰ

1.3.2 Application on the chosen robot ……..………………………………………..Ϯϰ

ϭ.ϰ IŶǀeƌse kiŶeŵatiĐs ……………………………….……………………………………………………Ϯϲ

ϭ.ϰ.ϭ Iteƌatiǀe Method………………………………………………………………………….Ϯϲ

ϭ.ϰ.Ϯ The geoŵetƌiĐ AppƌoaĐh……………………………………………………………..Ϯϳ

 ϭ.ϰ.ϯ AppliĐatioŶ oŶ the ĐhoseŶ ƌoďot ……………………….………………………Ϯϳ

1.5 Dynamics …………………………………………………………………………………………………Ϯϴ

1.5.1 Lagrange-Euler formulations ………..…………………………………………Ϯϵ

1.5.1.1 IŶeƌtial foƌĐe………………………………………………………………..Ϯϵ

a. Mass ŵatƌiǆ …………………………………………………………………Ϯϵ

b. Centrifugal& Coƌiolis FoƌĐes ……………………………..…….….ϯϭ

 Đ. IŶeƌtia ŵatƌiǆ ………………………………………………………….….ϯϮ

1.5.1.2 Gravity term (Potential Energy) …………………………….….ϯϯ

1.5.1.3 FƌiĐtioŶ ŵodeliŶg……………….…………………………………….ϯϰ

1.5.2 AĐtuatoƌ DǇŶaŵiĐs ………………………………………………….…………….……ϯϲ

1.5.3 Application on the chosen ƌoďot…………………………….…………………ϯϲ

Chapter 2: Control and Systeŵ IdeŶtifiĐatioŶ….…….….……ϰϱ

2.1 Manipulator Control ……….………………………………………………………………….……….ϰϱ

Ϯ.ϭ.ϭ PID ĐoŶtƌolleƌ………………………..………………………………….…….ϰϳ

a. IŵpleŵeŶtatioŶ aŶd siŵulatioŶ……..…………………………………….ϰϵ

2.1.2 Computed Torque Control (trajectoƌǇ tƌaĐkiŶg)….………… ……………ϱϬ

a. FeedďaĐk LiŶeaƌizatioŶ……….…………………….…………………………ϱϭ

b. Implementation and simulatioŶ ……………….…………………………ϱϯ

2.2 identification and parameters estimation ………………………………………………..ϱϲ

2.2.1 Introduction ……………….…………………………..……………………………………ϱϲ

Ϯ.Ϯ.Ϯ NoŶpaƌaŵetƌiĐ Models……………….………………………………………………ϱϳ

Ϯ.Ϯ.ϯ PaƌaŵetƌiĐ Models………………………………….………………………………….ϱϴ

 a. the least squares method LS………………………………………………ϱϴ

 ď. the ƌeĐuƌsiǀe least sƋuaƌes ŵethod RLS……………………..………ϲϬ

2.2.4 Applying the LS on the chosen robot ………………………………..………ϲϮ

Chapter 3: VisioŶ ……………….…………………………………………ϲϱ

ϯ.ϭ Iŵage PƌoĐessiŶg ……………………………………………………………………………….……ϲϱ

ϯ.ϭ.ϭ The iŵage ………………………………………………………………..………………..ϲϱ

ϯ.ϭ.Ϯ RGB Đoloƌ ŵodel…………….…….…………………………….……………………….ϲϲ

ϯ.ϭ.ϯ HSV Đoloƌ ŵodel…………………………………………….…………………….……..ϲϳ

3.1.4 Thresholding…………………………………………………………………………….…ϲ8

ϯ.ϭ.ϱ Edge deteĐtioŶ…………………….…….…………………………………………….…ϲϵ

a. CaŶŶǇ Edge deteĐtoƌ…………………….……………………………………ϲϵ

ϯ.ϭ.ϲ Hough tƌaŶsfoƌŵ……………………………….…………..………………………..ϳϬ

a. Hough transform for circle detecti……………………………………..ϳϬ

ϯ.ϮVisioŶ sǇsteŵ…………………………………………………..…………………………………………………ϳϮ

3.2.1 Caŵeƌa SǇsteŵ……………………………………………………………..………….ϳϮ

3.2.2 Camera Modeling and CalibratioŶ…………………………………….…………ϳϯ

ϯ.Ϯ.Ϯ.ϭ Caŵeƌa Model……………………………………………..….…………ϳϯ

a. PiŶhole Caŵeƌa Model……………………………………………..ϳϯ

ď. DistoƌtioŶ iŶ Caŵeƌa ………………………….…………………….ϳϱ

b.1 Radial distortion………………………………………..ϳϱ

b.2 Tangential Distortion……………………………….ϳϱ

3.2.2.2 Camera Calibration Parameteƌs…….……………….……………ϳϲ

a. EǆtƌiŶsiĐ Paƌaŵeteƌs…………….……..………………………..ϳϲ

ď. IŶtƌiŶsiĐ Paƌaŵeteƌs………………….………………………..ϳϲ

Chapter 4 : IŵpleŵeŶtatioŶ aŶd praĐtiĐal results……………….77

ϰ.ϭ MaŶipulatoƌ Setup…………………………………………………………………………………………ϳϳ

ϰ.ϭ.ϭ Haƌdǁaƌe ………….………..………………………………………………………………….ϳϳ

ϰ.ϭ.Ϯ Softǁaƌe…………………………………………………………………………………...……ϳϴ

ϰ.ϭ.ϯ FilteƌiŶg ………………..…………………………………………………………….……………ϳϵ

4.2 independent Joint Control (PID PositioŶ CoŶtƌol)……………………………………………ϴϬ

ϰ.Ϯ.ϭ DesigŶ aŶd ĐoŶĐept …………………………………………………………………………..ϴϬ

ϰ.Ϯ.Ϯ TuŶiŶg aŶd ƌesults…………………………………………………………………………..ϴϮ

ϰ.ϯ Paƌaŵeteƌ EstiŵatioŶ ……………………………………………………………………………………ϴϰ

ϰ.ϯ.ϭ The EǆĐitiŶg TƌajeĐtoƌǇ………………………………………….…………………….…….ϴϱ

ϰ.ϯ.Ϯ ApplǇiŶg the LS ŵethod……………………………………………………………….…ϴϲ

ϰ.ϯ.ϯ Paƌaŵeteƌs ǀalidatioŶ……………………………………………………………….………ϴϲ

4.4 Computed toque control (Trajectory tracking) ………………………………………………ϴϴ

ϰ.ϰ.ϭ DesigŶ aŶd ĐoŶĐept ……………………………………………………………….……….ϴϴ

ϰ.ϰ.Ϯ TuŶiŶg aŶd ƌesults……………………………………………………………………………ϴϵ

ϰ.ϱ VisioŶ CoŶtƌol appliĐatioŶ…………………………………………….…………………………………ϵϭ

ϰ.ϱ.ϭ OďjeĐt deteĐtioŶ…………………………………………………………………………….….ϵϯ

4.5.2 Camera calibration and pose estiŵatioŶ……………………..………………..…ϵϰ

ϰ.ϱ.ϯ VisioŶ positioŶ ĐoŶtƌol……………………………………………………………………..ϵϱ

ϲ. CoŶĐlusioŶ ……………………………………………………………………ϵϴ

Biďliography ……………………………………………………………………….ϵϵ

Figures List

 Figure 1: CAD model of IR50P robot manipulator.

 Figure 2: Arduino Mega 2560

 Figure 3: Power Board

 Figure 4: Webcam

 Figure (1.1a): the displacement of the point P with respect to a

coordinate frame .

 Figure (1.1b): the position and orientation of the object by the position

and orientation of its coordinate frame.

 Figure (1.2): two frames {A} and {B} and the relative pose AξB which

describes {B} with respect to {A}.

 Figure (1.3):Two 3D coordinate frames {A} and {B}. {B} is rotated and

translated with respect to {A}.

 Figure (1.4):Symbolic representation of robot joint.

 Figure (1.5):Links, joints , coordinate frames and transformation vector

on an 3 DOF elbow manipulator.

 Figure (1.6):DH Parameters, Joints axis and common normal

representation.

 Figure (1.7):Links, joints , coordinate frames and transformation vector

on an 3 DOF elbow manipulator.

 Figure (1.8): angels and distances of a 3 DOF elbow manipulator.

 Figure (1.9):Friction model with coulomb ,viscous and stiction term.

 Figure (1.10):angels and distances of center of masses of a 3 DOF

elbow manipulator.

 Figure(2.1):A block diagram of a PID controller in a feedback loop.

 Figure (2.2):A block diagram of independent joint control for n joints

manipulator.

 Figure (2.3): Simulink model of 3 DOF manipulator dynamics.

https://en.wikipedia.org/wiki/Block_diagram
https://en.wikipedia.org/wiki/Block_diagram

 Figure (2.4): Simulink model of independent joint control for a 3 DOF

manipulator dynamics.

 Figure(2.5): simulation result of an independent joint control for a 3

DOF manipulator.

 Figure (2.6):A block diagram of Computed-torque control.

 Figure(2.7) : Simulink model of computed torque control for a 3 DOF

manipulator dynamics.

 Figure (2.8) :Simulink model of computed torque control for a 3 DOF

manipulator dynamics .

 Figure(2.9): An open-loop system.

 Figure (2.10): A closed-loop system.

 Figure (2.11): Step response of a first order process with delay.

 Figure (3.1): a grayscale image and its matrix of intensity level values.

 Figure (3.2): RGB image and its 3 colors plane, red, green and red

plane.

 Figure (3.3): The RGB color model mapped to a cub.

 Figure (3.4): The HSV color model cone describe the Hue, Saturation

and Value ranges.

 Figure (3.5): describe transformation from RGB to HSV then getting a

Binary image by thresholding the HSV image.

 Figure (3.6): The original image on the left and the detected edges on

the right using Canny edge detection algorithm.

 Figure (3.7): an edge image of a circle in the left and its Hough

transform space for 4 point in the right.

 Figure (3.8) : Illustration of the lens and object distances and focal

lengths.

 Figure (3.9): Illustration of the camera model from the object to the 2d

image.

 Figure (3.10): Illustration of the camera model showing the

transformation by the Extrinsic parameters and the mapping into the

image plane using the intrinsic parameters.

 Figure (3.11): radial distortion of 3 type of lens.

 Figure (3.12): illustration of Tangential Distortion of a lens.

 Figure (3.13): Diagram describe the transformation from the World

coordinates into Pixel coordinates passing by Extrinsic and intrinsic

camera parameters matrices .

 Figure (4.1a): Hardware Setup.

 Figure (4.1b) The previously discussed manipulator workbench.

 Figure(4.2): Simulink model of driving a Dc Motor and measuring

position from its sensor.

 Figure (4.3): Lowpass Filter frequency response with 300Hz cut-off

frequency.

 Figure (4.4): joint measured signal and the filtered one.

 Figure (4.5): Simulink model of independent joints positions control

following a Cartesian space trajectory.

 Figure (4.6): Simulink model of PID controller for a single joint with

supervision of all the control loop signal values

 Figure(4.7): Simulink Subsystem model of a Dc motor command with

stopping criteria and joint sensor measurement.

 Figure(4.8): Angles responses for 3 joints using PID controllers.

 Figure(4.9): end effector position signals (X,Y,Z) following a desired

trajectory .

 Figure(4.10): three joint angles signals and their inputs PWM signals

 Figure (4.11): Validation Signals for the three joints manipulator

represented by the measured and the estimated output signals.

 Figure (4.12): Simulink model of Computed torque control for three

joints manipulator using Dynamics inversion and 3 PD controller and

supervision of all the loop signals values.

 Figure (4.13): joints Angles Responses after using a computed torque

control for tracking desired trajectories

 Figure (4.14): Vision Control for diagram a Robot Manipulator

 Figure (4.15): illustration of robot manipulator ,camera and object

coordinate frames.

 Figure (4.16): circle detection after thresholding applying circle Hough

transform.

 Figure (4.17) examples of several checkerboard photos that are used in

camera calibration.

 Figure (4.18): MATLAB camera calibrator app showing the world

coordinate frame after calibrating the camera and showing the mean

error of the estimation.

 Figure (4.19): examples of real-time position estimation using MATLAB

and calibrated camera.

 Figure 4.20 end effector position following a desired position feeding

from camera vision.

Tables List

 Table 1.1: DH parameters for 3-link Elbow manipulator.

 Table 2.1 : constant Setpoint and Parameters for PID control of the first

joint

 Table 2.2 : constant Setpoint and Parameters for PID control of the

second joint

 Table 2.3 : constant Setpoint and Parameters for PID control of the third

joint

 Table 2.4 : the PID Parameters for control of the first joint

 Table 2.5 : the PID Parameters for control of the second joint

 Table 2.6 : the PID Parameters for control of the third joint.

 Table 4.1 : the PID gains of the first joint controller.

 Table 4.2 : the PID gains of the second joint controller.

 Table 4.3 : the PID gains of the third joint controller.

 Table 4.4 :RMS error and the fit between the measured and the

estimated outputs for the three joint.

 Table 4.5 : the PID gains of the first joint controller.

 Table 4.6 : the PID gains of the second joint controller.

 Table 4.7: the PID gains of the third joint controller.

 Table 4.8 : real positions of the ball compared with the estimated

positions.

Introduction

1

Introduction

The manipulator robot has become a necessity because the industry handles

heavy objects repetitively and in hazardous environments. All the research has led to

arms of all sizes and weights, of all speeds and precisions, and adapted to the tasks

entrusted.

 The appearance of the manipulator robots is pulsated by the fact of an era where

the manufacturing is back in chain, which requires a repetitive and painful working

time. In recent decades, more complex tasks requiring displacements in

environments not allowed to human beings (nuclear, mine, military, space, etc.)

have favored the Mobile robot to settle.

 The rapid development of the industry has invoked the improvement of robots

manipulators. Then the robot must handle with increasing speeds and precisions.

This requires more appropriate mechanical structures but also better new control

techniques.

 The researchers did not cease these last two decades to investigate the different

axes that deal with robotics. This research is distinguished by the different angles

with which are addressed the preoccupations with robotics that can be classified as

follows:

a. Modeling:

 Most of the time the robot model (Manipulator or mobile), Is necessary to

perform a command for example , But sometimes the model can be non-linear and

couplet, even with variable parameters, Which requires orienting towards nonlinear

Introduction

2

modeling and identification methods instead of being satisfied with the Lagrange

and Euler formalisms for the dynamic model.

b. Scheduling tasks:

 These are strategies that manage a set of operations that make up a task. We are

talking about the coordination between these operations and their realization. The

Planning is global if you have all the information about the environment and often

static. The planning is local if the movement cannot be foreseen in advance, which

requires reactive reflexes.

c. Trajectory generation:

 The trajectory generation that must be traveled by a robot and carried out off

line or online.

d. The command :

 This is the step that generates the control signal to send to the robot's

shareholders to ensure the trajectory to be followed. Among these commands, the

PID command, the adaptive control, linear feedback control, Robust control.

e. The identification :

 Conventional methods such as least squares are used if the system is assumed to

ďe liŶear iŶ the paraŵeters, if it’s Ŷot the Đase, thus using non-linear approximation

methods. [1]

1. History and Motivation :

The English term robot was derived from the Czech word robota that means

executive labor, and was first introduced by the Czech playwright Karle Capek in his

1921 play Rossum's Universal Robots. Since then the term has been applied to

virtually anything that operates with some degree of autonomy, usually under

computer control. An official definition of the term, dated to 1980, comes from the

Robot Institute of America (RIA) and reflects to days status of robotics technology:

Introduction

3

 ͞A roďot is a reprograŵŵaďle, ŵultifuŶĐtioŶal ŵaŶipulator desigŶed

to move material, parts, tools, or specialized devices through variable

prograŵŵed ŵotioŶs for the perforŵaŶĐe of a variety of tasks.͟ [2]

In the early 1980's, robot manipulators were touted as the ultimate solution to

automated manufacturing. Predictions were that entire factories of the future would

require few, if any, human operators. It turned out that these predictions were a

little exaggerated, as the savings in labor costs often did not outweigh the

development costs of creating robot systems. Quite simply, people are good at what

they do, and installing a robot involves complex systems integration problems. As a

result, robotics fell out of favor in the late 1980's.

 A resurgence of interest in robotics can be witnessed in the recent years.

Deeper understanding of the subject and new technology have made it possible for

robots to explore the surface on Mars, locate sunken ships, searching out land

mines, and finding victims in collapsed buildings. In an industrial environment the

advantages of robots are reduction of manufacturing costs, increase of productivity,

improvement of quality standards, and the possibility of eliminating harmful tasks

for human operator.[3]

2. TheEurobtec IR50p(or ROB3i) :

The IRϱ0p ;or ROBϯiͿ is a roďot ŵaŶipulator ŵaŶufaĐtured ďy EuroďteĐ, it’s a ϱ

DOF manipulator, each joint has a DC motor that operates in a nominal voltage of

ϮϰV, aŶd a potioŶŵeter to ŵeasure the joiŶt’s aŶgle.

Originally,IR50p has an iŶtegrated ĐoŶtroller iŶ the ďase of the roďot, it’s easy

aŶd fast to iŶstall aŶd iŵpleŵeŶt ďut it’s aŶ old teĐhŶology, doesŶ’t iŶĐlude suĐh a

trajectory tracking algorithms, as well intelligence represented by vision, as well data

supervision, and speed precision ratio perspective.

Our mission consists of removing all the hardware and electronics except the

arm (motors and Potionmeters), and implement improved nonlinear controller

Introduction

4

design solution as well, estimate accurate IR50pmanipulatorparameters, then we’ll

add an intelligence represented by vision control.

Figure 1: CAD model of IR50P robot manipulator

3. Objectives :

Our objective is improving the control of the first 3 DOF (Degrees of freedom) of

the robot using an Arduino board and Simulink, this makes the computing more

responsive, stable and efficient. This allows us to supervise all feedback, signals,

positions and joint angles in real-time. Such a complex control problem would be

better solved by dividing it into mini objectives as follows:

1 . Kinematics and dynamics modeling of the 3 DOF robot manipulator.

2. Simulate the model, design different control methods.

3. Design a PID controller for the 3 DOF manipulator for position control.

4. Complete our robot dynamical model by estimating reliable parameters of the

robot.

Introduction

5

5. Appling computed torque control using the estimated parameters for

trajectory tracking.

6. Estimate the position of an object using a camera, the arm has to reach the

object which required: camera modeling and calibration, image processing for

color and shape detection of an object.

4. Software:

Four computer programs have been used to solve the thesis assignment.

Following is a short description of this software and the using area.

4.1 MATLAB R2014a with SIMULINK:

MATLAB [4] is developed by MathWorks, and is a high-level language and

numerical computing environment for performing computationally intensive tasks

faster than traditional programming languages. It solves tight integration and

mathematical problems with other MathWorks products, among them SIMULINK [5]

which is an environment for multi domain simulation and Model-Based Design for

dynamic and embedded systems. MATLAB and SIMULINK have been used to

simulate the dynamic model for The IR50p, and to present the results graphically.

4.2 Arduino IO (MATLAB support package for Arduino) :

MATLAB support package for Arduino is a MATLAB class and Simulink blocks

for communicating with an Arduino microcontroller board.

It also has a specific code for Arduino Hardware that enables the serial

communication with SIMULINK. We can read data from sensors, write and generate

signals through the Arduino board, and immediately see the results in SIMULINK

without having to compile. [6]

4.3 MATLAB Camera Calibration Toolbox :

https://www.mathworks.com/matlabcentral/fileexchange/?term=tag%3A%22arduino%22

Introduction

6

We have used this toolbox to estimate the parameters of the camera. We can

use these parameters to correct for lens distortion, measure the size of an object in

real world units, as well determine the location of the camera in the scene.

5 Hardware:

For this part ǁe haǀe used three priŶĐipal eleĐtroŶiĐs’ tools:

5.1 Arduino Mega2560board:

Arduino board designs use a variety of microprocessors and controllers. The

boards are equipped with sets of digital and analog input/output (I/O) pins that may

be interfaced to various expansion boards (shields) and other circuits. The boards

feature serial communications interfaces, including Universal Serial Bus (USB) on

some models, which are also used for loading programs from personal computers.

The microcontrollers are typically programmed using a dialect of features from the

programming languages C and C++. In addition to using traditional compiler

toolchains, the Arduino project provides an integrated development environment

(IDE) based on the Processing language project.

We have chosen the Arduino Mega 2560 board as it is based on the

ATmega2560 microcontroller shown in figure (2), it operates at 16 MHz to control all

of the onboard functions as well sending the data over serial communication to

SIMULINK in order to be plotted and interpreted.

https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Universal_Serial_Bus
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Processing_%28programming_language%29

Introduction

7

Figure 2: Arduino Mega 2560

5.2 Dc Motors Driver Board:

A power board is intended to distribute power at the desired dose to electrical

components including sensors and actuators, in our case we have the Dc Motors

Driver board used to control the three dc motors according to the command signals

delivered by the Arduino mega board.

The power board has 3 H-ďridges related to the ŵotors, aŶd it’s poǁered ďy a

24V power source, and the Arduino mega controls this driver board in order to

decide:

 The power distributed to the motor, which will make it turn more or

less quickly according to the PWM signal from the Arduino.

 The direction of the voltage to be applied to the motor, which will make

it turn in one direction or another, this can be done using the H-bridges.

Introduction

8

Figure 3 Power Board

5.3 Webcam:

In vision application, we used an arbitrary webcam with a quality of 640X480.

Figure 4 Webcam

6. Outline

 Chapter 1 discusses the mathematical model of the IR50p robot manipulator,

which is concluded using the kinematics and dynamical modeling.

Introduction

9

 Chapter 2 discusses different control theories of the manipulator such PID,

independent joint control and computed torque control and simulate each of

them, and also discusses System identification methods and the way to apply

it on robot manipulators.

 Chapter 3 discusses computer vision theory and image processing tools that

are used to detect and position an object, and then discusses the camera

model which can transfer the position of the object from the digital image

position into the real world coordinate frame.

 Chapter 4 discusses the obtained practical results after applying the PID

controller as well, a comparison between the estimated manipulator model

and the real one, results obtained after applying computed torque controller

using the estimated parameters, and finally shows the results obtained from

vision control application.

Chapter 1: Modeling

10

 Chapter 1: Modeling

1.1 Representing Position and Orientation:

A fundamental requirement in robotics and computer vision is to represent

the position and orientation of objects in an environment. Such objects include

robots, cameras, work pieces, obstacles and paths.

A point in space is a familiar concept from mathematics and can be described

by a coordinate vector, also known as a bound vector, as shown in Figure 1.1.a the

vector represents the displacement of the point with respect to some reference

coordinate frame. A coordinate frame, or Cartesian coordinate system, is a set of

orthogonal axes which intersect at a point known as the origin.

More frequently we need to consider a set of points that comprise some

object. We assume that the object is rigid and that its constituent points maintain a

ĐoŶstaŶt ƌelatiǀe positioŶ ǁith ƌespeĐt to the oďjeĐt’s ĐooƌdiŶate fƌaŵe as shoǁŶ iŶ

Figure 1.1.b Instead of describing the individual points we describe the position and

orientation of the object by the position and orientation of its coordinate frame. A

coordinate frame is labeled, {B} in this case, and its axis labels �୆ and y୆ adopt the

fƌaŵe’s label as their subscript.

The position and orientation of a coordinate frame is known as its pose and is

shown graphically as a set of coordinate axes. The relative pose of a frame with

respect to reference coordinate frame, is denoted by the symbol ξ pronounced ksi.

Chapter 1: Modeling

11

Figure (1.1a): the displacement of the point P with respect to a coordinate frame

Figure (1.1.b): the position and orientation of the object by the position and

orientation of its coordinate frame.

Chapter 1: Modeling

12

Figure(1.2) : two frames {A} and {B} and the relative pose AξB which describes {B}

with respect to {A}

Figure 1.2 shows two frames {A} and {B} and the relative pose ,which describes

{B} with respect to {A}.The point P can be described with respect to either coordinate

frame. Formally we express this as:

P ୅ = ξ୆ ୅ . P ୆ (1.1)

1.1.1 Representing Pose in 3-Dimensions:

The 3-dimensional case is an extension of the 2-dimensional case and we add

an extra coordinate axis, typically denoted by z, which is orthogonal to both the x-

and y-axes.

The point P is represented by its x-, y- and z-coordinates (x, y, z) or as a bound

vector

P = x �̂ + y ŷ + z ẑ (1.2)

With �̂ = [ͳ,Ͳ,Ͳ]୲
Figure 1.1.a shows a coordinate frame {B} that we wish to describe with

respect to the reference frame {A}. We can see clearly that the origin of {B} has been

displaced by the vector t = (x, y, z) and then rotated in some complex fashion. The

way we represent orientation is very important. Our approach is to consider an

arbitrary point P with respect to each of the coordinate frames and to determine the

relationship between, and we will consider the problem in two parts: rotation and

then translation. Rotation is surprisingly complex for the 3-dimensional case and we

devote all of the next section to it.

Chapter 1: Modeling

13

Figure (1.3): Two 3D coordinate frames {A} and {B}. {B} is rotated and translated

with respect to {A}

1.1.2 Representing Orientation in 3-Dimensions:

a. Orthonormal Rotation Matrix:

We can represent the orientation of a coordinate frame by its unit vectors

expressed in terms of the reference coordinate frame. Each unit vector has three

elements and they form the columns of a 3 × 3 orthonormal matrix � ୅ ୆

[�୅y୅z୅]= � ୅ ୆ [�୆y୆z୆] (1.3)

The orthonormal rotation matrices for rotation of θ about the x, y and z axes

are

�ଡ଼= [ͳ Ͳ ͲͲ cosθ −sinθͲ sinθ cosθ
] (1.4)

�୷= [cosθ Ͳ −sinθͲ ͳ Ͳsinθ Ͳ cosθ
] (1.5)

Chapter 1: Modeling

14

�୸= [cosθ −sinθ Ͳsinθ cosθ ͲͲ Ͳ ͳ] (1.6)

b. Three-Angle Representations:

Euleƌ’s ƌotatioŶ theoƌeŵ ƌeƋuiƌes suĐĐessiǀe ƌotatioŶ aďout thƌee aǆes suĐh

that no two successive rotations are about the same axis. There are two classes of

rotation sequence: Eulerian and Cardanian, named after Euler and Cardano

respectively.

The Eulerian type involves repetition, but not successive, of rotations about one

particular axis: XYX, XZX, YXY, YZY, ZXZ, or ZYZ. The Cardanian type is characterized by

rotations about all three axes: XYZ, XZY, YZX, YXZ, ZXY, or ZYX. In common usage all these

sequences are called Euler angles and there are a total of twelve to choose from.

The XYZ sequence is commonly used in aeronautics and mechanical dynamics and

Robotics. which represent the rotations about ϕ, θ and ʗ ,which known as roll, pitch and

yaw angles.

R = �୶ሺϕሻ�୷ሺθሻ�୸ሺʗሻ (1.7)

1.1.3 Combining Translation and Orientation:

Alternatively we can use a homogeneous transformation matrix to describe

rotation and translation

[
૚࡭ ࢠ࡭ ࢟࡭ ࢞]

 = [࡭ � ૙૚∗૜࢚ ࡮ ૚] [

૚࡮ ࢠ࡮ ࢟࡮ ࢞]

 (1.8)

Chapter 1: Modeling

15

The Cartesian translation vector between the origins of the coordinates frames {A}

and {B} is ࢚, and the change in orientation is represented by a 3 × 3 orthonormal submatrix

R. The vectors are expressed in homogenous form and we write �̃ ࡭ = [࡭ � ૙૚∗૜࢚ ࡮ ૚] �̃ ࡮ ࡭ � = ࡮ ̃� ࡮ (1.9)

with � ࡭ is a 4 × 4 homogeneous transformation. The matrix has a very specific ࡮

structure and belongs to the special Euclidean group of dimension 3. [7]

1.2 Forward Kinematics:

In this section we develop the forward or configuration kinematic equations for

rigid robots. The forward kinematics problem is concerned with the relationship

between the individual joints of the robot manipulator and the position and

orientation of the tool or end-effector.

Stated more formally, the forward kinematics problem is to determine the

position and orientation of the end-effector, given the values for the joint variables

of the robot. The joint variables are the angles between the links in the case of

revolute or rotational joints, and the link extension in the case of prismatic or sliding

joints. The forward kinematics problem is to be contrasted with the inverse

kinematics problem, which will be studied in the next chapter, and which is

concerned with determining values for the joint variables that achieve a desired

position and orientation for the end-effector of the robot.

1.2.1 Kinematic Chains:

A robot manipulator is composed of a set of links connected together by

various joints. The joints can either be very simple, such as a revolute joint or a

prismatic joint, or else they can be more complex.

Chapter 1: Modeling

16

Figure (1.4): Symbolic representation of robot joint

With the assumption that each joint has a single degree-of-freedom, the action

of each joint can be described by a single real number: the angle of rotation in the

case of a revolute joint or the displacement in the case of a prismatic joint. The

objective of forward kinematic analysis is to determine the cumulative effect of the

entire set of joint variables

A robot manipulator with n joints will have n + 1 links, since each joint

connects two links. We number the joints from 1 to n, and we number the links from

0 to n, starting from the base. By this convention, joint i connects link i− 1 to link i.

We will consider the location of joint i to be fixed with respect to link i−1. When joint

i is actuated, link i moves. Therefore, link 0 (the first link) is fixed, and does not move

when the joints are actuated.

With the ith joint, we associate a joint variable, denoted by qi. In the case of a

revolute joint, q୧is the angle of rotation and in the case of a prismatic joint, q୧is the

joint displacement:

q୧ = {θ୧ ∶ joint i revolute d୧: joint i prismatic }

Chapter 1: Modeling

17

To perform the kinematic analysis, we rigidly attach a coordinate frame to each

link .In particular, we attach o୧�୧y୧z୧to link i. This means that, whatever motion the

robot executes, the coordinates of each point on link i are constant when expressed

in the ith coordinate frame. Furthermore, when joint i is actuated, link i and its

attached frame, o୧�୧y୧z୧, experience a resulting motion. The frame o଴�଴y଴z଴, which

is attached to the robot base, is referred to as the inertial frame.

Now suppose Ai is the homogeneous transformation matrix that expresses the

position and orientation of o୧�୧y୧z୧ with respect to o୧−ଵ�୧−ଵy୧−ଵz୧−ଵ.

The matrix Ai is not constant, but varies as the configuration of the robot is

changed. However, the assumption that all points are either revolute or prismatic

means that Ai is a function of only a single joint variable, namely qi. In other words,

A୧ = A୧ ሺq୧ሻ (1.10)

Now the homogeneous transformation matrix that expresses the position and

orientation of o୨�୨y୨z୨ with respect to o୧�୧y୧z୧ is called, by convention, a

transformation matrix, and it is denoted by T୨୧ T୨୧= A୧+ଵA୧+ଶ… A୨−ଵ if i<j (1.11)

T୨୧= I if i=j (1.12)

T୨୧= (T୨୧)−ଵif i>j (1.13)

By the manner in which we have rigidly attached the various frames to the

corresponding links, it follows that the position of any point on the end-effector,

when expressed in frame n, is a constant independent of the configuration of the

robot. Denote the position and orientation of the end-effector with respect to the

inertial or base frame by a three-vector t୬ ଴ (which gives the coordinates of the origin

of the end-effector frame with respect to the base frame) and the 3 × 3 rotation

matrix �୬଴ , and define the homogeneous transformation matrix

Chapter 1: Modeling

18

T୬଴= [�୬଴ t୬଴Ͳ ͳ] (1.14)

Then the position and orientation of the end-effector in the inertial frame are

given by

T୬଴ = Aଵ (qଵሻ … A୬ (q୬ሻ (1.15)

Each homogeneous transformation Ai is of the form

A୧= [�୧୧−ଵ t୧୧−ଵͲ ͳ] (1.16)

Hence

T୨୧ = A୧+ଵ… A୨ = [�୨୧ t୨୧Ͳ ͳ] (1.17)

The matrix �୨୧expresses the orientation of o୨�୨y୨z୨relative to o୧�୧y୧z୧ and is

given by the rotational parts of the A-matrices as

�୨୧ = �୧+ଵ୧ … .�୨୨−ଵ (1.18)

The coordinate vectors o୨୧ are given recursively by the formula

t୨୧ = t୨−ଵ୧ + �୨−ଵ୧ t୨୨−ଵ (1.19)

These expressions will be useful when we study Jacobian matrices . [8]

Chapter 1: Modeling

19

Figure (1.5): Links, joints , coordinate frames and transformation vector on an 3 DOF

elbow manipulator

1.2.2 Denavit and Hartenberg Representation:

A commonly used convention for selecting frames of reference in robotics

applications is the Denavit and Hartenberg (D–H) convention which was introduced

by Jacques Denavit and Richard S. Hartenberg. In this convention, coordinate frames

are attached to the joints between two links such that one transformation is

associated with the joint [Z], and the second is associated with the link [X]. The

coordinate transformations along a serial robot consisting of n links form the

kinematics equations of the robot,

T୬଴=[Zଵ][Xଵ][Zଶ][Xଶ]… . [X୬−ଵ][Z୬] (1.20)

https://en.wikipedia.org/wiki/Frames_of_reference
https://en.wikipedia.org/wiki/Robotics
https://en.wikipedia.org/wiki/Robotics_conventions#Denavit.E2.80.93Hartenberg_link_frame_convention_.28DH.29
https://en.wikipedia.org/w/index.php?title=Jacques_Denavit&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Richard_S._Hartenberg&action=edit&redlink=1
https://en.wikipedia.org/wiki/Transformation_%28geometry%29

Chapter 1: Modeling

20

 In order to determine the coordinate transformations [Z] and [X], the

joints connecting the links are modeled as either hinged or sliding joints, each of

which have a unique line S in space that forms the joint axis and define the relative

movement of the two links. A typical serial robot is characterized by a sequence of

six lines Si, i=1,...,6, one for each joint in the robot. For each sequence of lines Si and

Si+1, there is a common normal line Ai,i+1. The system of six joint axes Si and five

common normal lines Ai,i+1 form the kinematic skeleton of the typical six degree of

freedom serial robot. Denavit and Hartenberg introduced the convention that Z

coordinate axes are assigned to the joint axes Si and X coordinate axes are assigned

to the ĐoŵŵoŶ Ŷoƌŵal’sAi,i+1.

This convention allows the definition of the movement of links around a

common joint axis Si by the screw displacement,

[Z୧]= [cosθi −sinθisinθi cosθi Ͳ ͲͲ ͲͲ ͲͲ Ͳ ͳ diͲ ͳ] (1.21)

 ǁheƌe θi is the rotation around the X and di is the slide along the Z axis

either of the parameters can be constants depending on the structure of the robot.

Under this convention the dimensions of each link in the serial chain are defined by

the screw displacement around the common normal Ai,i+1 from the joint Si to Si+1,

which is given by

[X୧]= [ͳ ͲͲ cosα୧,୧+ଵ Ͳ a୧−sinα୧,୧+ଵ ͲͲ sinα୧,୧+ଵͲ Ͳ cosα୧,୧+ଵ ͲͲ ͳ] (1.22)

 Heƌe αi,i+1 and a i,i+1 define the physical dimensions of the link in terms of

the angle measured around and distance measured along the X axis. [9]

a. Four parameters

https://en.wikipedia.org/wiki/Screw_axis#Screw_axis_of_a_spatial_displacement
https://en.wikipedia.org/wiki/Screw_axis#Screw_axis_of_a_spatial_displacement

Chapter 1: Modeling

21

The following four transformation parameters are known as D–H

parameters[10]

d: offset along previous z to the common normal.

θ: angle about previous z, from old x to new x

a: length of the common normal .

 �: angle about common normal, from old z axis to new z axis

Figure (1.6):DH Parameters, Joints axis and common normal representation

b. Denavit-Hartenberg matrix

It is common to separate a screw displacement into the product of a pure

translation along a line and a pure rotation about the line, so that [Z୧]= trans ୸౟ሺd୧ሻ�ot୸౟(θiሻ (1.23)

And

[X୧]= trans ୶౟(a୧,୧+ଵ)�ot୶౟(α୧,୧+ଵሻ (1.24)

Chapter 1: Modeling

22

Note that this is the product of two screw displacements, The matrices

associated with these operations are

 trans ୸౟ሺd୧ሻ= [ͳ ͲͲ ͳ Ͳ ͲͲ ͲͲ ͲͲ Ͳ ͳ d୧Ͳ ͳ] (1.25)

�ot୸౟−భ(θ୧ሻ= [cθ୧ −sθ୧sθ୧ cθ୧ Ͳ ͲͲ ͲͲ ͲͲ Ͳ ͳ ͲͲ ͳ](1.26)

 trans ୶౟ሺa୧ሻ=[ͳ ͲͲ ͳ Ͳ a୧Ͳ ͲͲ ͲͲ Ͳ ͳ ͲͲ ͳ](1.27)

�ot୶౟(α୧ሻ=[ͳ ͲͲ cα୧ Ͳ Ͳ−sα୧ ͲͲ sα୧Ͳ Ͳ cα୧ ͲͲ ͳ](1.28)

This gives :

T୧ ୧−ଵ = [cθ୧ −sθ୧cα୧sθ୧ cθ୧cα୧ sθ୧sα୧ a୧cθ୧−cθ୧sα୧ a୧sθ୧Ͳ sα୧Ͳ Ͳ cα୧ d୧Ͳ ͳ] = [� tͲ Ͳ Ͳ ͳ](1.29)

where R is the 3×3 submatrix describing rotation and t is the 3×1 submatrix

describing translation[3]

1.2.3 Application on the chosen robot:

Consider now the 3 DOF Elbow manipulator represented symbolically by Figure 1.70.

https://en.wikipedia.org/wiki/Screw_theory

Chapter 1: Modeling

23

Figure (1.7) : Links, joints , coordinate frames and transformation vector on an 3

DOF elbow manipulator

Table 1.1 DH parameters for 3-link Elbow manipulator.

i θ୧−ଵ d୧−ଵ φ୧ α୧
1 qଵ lଵ 0 ʋ/Ϯ

2 qଶ 0 lଶ 0

3 qଷ 0 lଷ −ʋ/Ϯ

We have

Tଷ଴=[Zଵ][Xଵ][Zଶ][Xଶ][Xଷ][Zଷ]
 And we know from (1.23) and (1.24) that

[Z୧]= trans ୸౟ሺd୧ሻ�ot୸౟(θiሻAnd [X୧]= trans ୶౟(a୧,୧+ଵ)�ot୶౟(α୧,୧+ଵሻ
And by replacing the parameters we get

Chapter 1: Modeling

24

Tଷ଴ = �ot୞ሺqଵሻtrans ୞ሺlଵሻ�otଡ଼ሺαଶሻ�ot୞ሺqଶሻtrans ଡ଼ሺlଶሻ�ot୞ሺqଷሻ trans ଡ଼ሺlଷሻ�otଡ଼ሺ ʋ/ʹሻ
(1.30)

And the Transformation matrix is given by:

�૜૙ = [�૛૜�૚ −࢙૚ −࢙૛૜�૚ �૛૜࢙૚ �૚ −࢙૛૜�૚࢙૛૜ ૙ �૛૜ �૚ሺ�૜�૛૜ + �૛�૛ሻ�૚ሺ�૜�૛૜ + �૛�૛ሻ�૚ + �૜࢙૛૜ + �૛࢙૛૙ ૙ ૙ ૚] (1.31)

 And we can derive

�ଷ଴= [cଶଷcଵ −sଵ −sଶଷcଵcଶଷsଵ cଵ −sଶଷcଵsଶଷ Ͳ cଶଷ] and tଷ଴ = [cଵሺlଷcଶଷ + lଶcଶሻcଵሺlଷcଶଷ + lଶcଶሻlଵ + lଷsଶଷ + lଶsଶ]
Denote that we have : �ଶଷ = cosሺ �ଶ + �ଷሻ , �ଵ = cos ሺ �ଵሻ , �ଶ = cos ሺ �ଶሻ �ଵ = sinሺ �ଵሻ , �ଶଷ = sinሺ �ଶ + �ଷሻ

1.3 Differential Kinematics:

1.3.1 Derivation of the Jacobian:

In vector analysis, the Jacobian matrix is a matrix associated with a vector

function at a given point. Its name comes from the mathematician Charles Jacobi.

The determinant of this matrix, called Jacobian, plays an important role in solving

nonlinear problems.

The time derivative of the kinematics equations yields the Jacobian of the

robot, which relates the joint rates to the linear and angular velocity of the end-

effector, The robot Jacobian results in a set of linear equations that relate the joint

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://en.wikipedia.org/wiki/Angular_velocity

Chapter 1: Modeling

25

rates to the six-vector formed from the angular and linear velocity of the end-

effector.

a. Angular Velocity:

Consider that the angular velocity is noted as ʘ,Now when a rigid body moves

in a pure rotation about a fixed axis, every point of the body moves in a circle. The

centers of these circles lie on the axis of rotation.

 As the body rotates, a perpendicular from any point of the body to the axis

sǁeeps out aŶ aŶgle θ, aŶd this aŶgle is the saŵe foƌ eǀeƌǇ poiŶt of the ďodǇ. [ϭϭ]

The angular velocity ʘ with respect to a joint frame is expressed by its angular

velocity and its axe of rotation vector and can be written as

ʘ = Ẑqሶ with Ẑ is the unite vector which describes the axe of rotation of the

joint , denote that
ẑ = [ͲͲͳ] (1.32)

For a robot manipulator, we consider ʘ the angular velocity of the end-

effector, this angular velocity is the vectorial sum of the provided angular velocity of

each joint that they are expressed relative to a common coordinate frame, in our

case the base coordinate frame, and all the axis of rotation must be represented in

the base frame, ʘcan be expressed by:

ʘ = ∑ Z୧qiሶ୬୧=ଵ (1.33)

We know that Z୧is the axe of rotation of the ith joint expressed in the base

frame (frame {0}), thus we can write it

Z୧ = �୧଴ Ẑ(1.34)

By replacing Z୧ in (1.33) , becomes

Chapter 1: Modeling

26

ʘ = [�ଵ଴ Ẑ �ଶ ଴ Ẑڮ �୬଴ Ẑ] * [qଵሶqଶڭሶq୬ሶ] (1.35)

And we can write

ʘ = �ʘqሶ (1.36)

which gives us

�ʘ = [�ଵ଴ Ẑ �ଶ ଴ Ẑڮ �୬଴ Ẑ](1.37)

and �ʘ is the derivative of the angular velocity

b. Linear Velocity:

We now consider the linear velocity of a point that is rigidly attached to a

moving frame.

Suppose the point t଴ is rigidly attached to the frame o1x1y1z1, and that o1x1y1z1 is

rotating relative to the frame o0x0y0z0, so we can express the linear velocity of

frame {1} with respect to {0} frame, and it can be written as[12] :

V =
ୢ ୲బୢ୲ =

ୢ ୲బୢ୯భ ୢ ୯భୢ୯భ=
ୢ ୲బୢ୯భ qଵሶ

In case of robot manipulator, t୬଴ is the end-effector position vector, the linear

velocities can be added vectorially and becomes

V = [ୢ ୲nబୢ୯భ qଵሶ + ୢ ୲nబୢ୯మ qଶሶ + +ڮ ୢ ୲nబୢ୯n q୬ሶ] (1.38)

And it becomes

V = [ୢ ୲nబୢ୯భ ୢ ୲nబୢ୯మ … ୢ ୲nబୢ୯n]* [qଵሶqଶڭሶq୬ሶ] (1.39)

And we can write it as

Chapter 1: Modeling

27

V = �୚qሶ (1.40)

hence

�୴ = [ୢ ୲nబୢ୯భ ୢ ୲nబୢ୯మ… ୢ ୲nబୢ୯n] (1.41)

And �୴ is the derivative of the Linear Velocity

C. Combining the Angular and Linear Jacobians:

The jacobian matrix expressed by combining each of jacobian, the linear and

the angular [13]

We have

ቀVʘቁ = (�୴�ʘ) qሶ (1.42)

And we can write

J= [�୴�ʘ] (1.43)

And J the jacobian matrix of the manipulator

1.3.2 application on the chosen robot :

from what we have studied previously we can get :

V = �୚qሶ ; ʘ = �ʘqሶ → ቀVʘቁ = (�୴�ʘ) q ሶ → � = (�୴�ʘ)

And we know from (1.41)that :

�୴ = [ୢ ୲యబୢ୯భ ୢ ୲యబୢ୯మ ୢ ୲యబୢ୯య] (1.44)

First we have the position vector of our robot dented by (1.32)

Chapter 1: Modeling

28

tଷ଴ = [cଵሺlଷcଶଷ + lଶcଶሻcଵሺlଷcଶଷ + lଶcଶሻlଵ + lଷsଶଷ + lଶsଶ] (1.45)

ୢ ୲యబୢ୯భ = [−sଵሺlଷcଶ.ଷ + lଶcଶሻcଵሺlଷcଶ.ଷ + lଶcଶሻͲ] (1.46)

ୢ୲యబୢ୯మ = [−−cଵሺlଷsଶ.ଷ + lଶsଶሻsଵሺlଷsଶ.ଷ + lଶsଶሻlଷcଶଷ + lଶcଶ] (1.47)

ୢ୲యబୢ୯య = [−lଷsଶ.ଷcଵ−lଷsଶ.ଷsଵlଷcଶ.ଷ] (1.48)

Thence:

�୴ = [−sଵሺlଷcଶ.ଷ + lଶcଶሻcଵሺlଷcଶ.ଷ + lଶcଶሻͲ −−cଵሺlଷsଶ.ଷ + lଶsଶሻsଵሺlଷsଶ.ଷ + lଶsଶሻlଷcଶଷ + lଶcଶ −lଷsଶ.ଷcଵ−lଷsଶ.ଷsଵlଷcଶ.ଷ] (1.49)

And we know from (1.37) that the angular jacobian is

�ʘ = [�ଵ଴ Ẑ �ଶ ଴ Ẑ �ଷ଴ Ẑ] (1.50) with Ẑ = [ͲͲͳ]
Zଵ = �ଵ଴ Ẑ = [cଵ −sଵ Ͳsଵ cଵ ͲͲ Ͳ ͳ] [ͲͲͳ] = [ͲͲͳ] (1.51)

Zଶ = �ଶ଴ Ẑ = [cଵ −sଵ Ͳsଵ cଵ ͲͲ Ͳ ͳ] [
ͳ Ͳ ͲͲ cሺʋଶሻ −sሺʋଶሻͲ cሺʋଶሻ cሺʋଶሻ] [

ͲͲͳ] [cଵ Ͳ sଵsଵ Ͳ −cଵͲ ͳ ͳ] [ͲͲͳ] = [sଵ−cଵͲ] (1.52)

Zଷ = �ଷ଴ Ẑ = [cଵ Ͳ sଵsଵ Ͳ cଵͲ ͳ Ͳ] [ͳ Ͳ ͲͲ ͳ ͲͲ Ͳ ͳ] [ͲͲͳ] = [sଵ−cଵͲ] (1.53)

thence

Chapter 1: Modeling

29

�ʘ = [Zଵ Zଶ Zଷ] =[ͲͲͳ sଵ−cଵͲ sଵ−cଵͲ] (1.54)

By combining the two jacobian we get:

J=

[

−࢙૚ሺ�૜�૛.૜ + �૛�૛ሻ�૚ሺ�૜�૛.૜ + �૛�૛ሻ૙ −−�૚ሺ�૜࢙૛.૜ + �૛࢙૛ሻ࢙૚ሺ�૜࢙૛.૜ + �૛࢙૛ሻ�૜�૛૜ + �૛�૛ −�૜࢙૛.૜�૚−�૜࢙૛.૜࢙૚�૜�૛.૜
 ૙૙૚ ࢙૚−�૚૙ ࢙૚−�૚૙]

 ሺ1.55)

1.4 Inverse kinematics:

The inverse kinematics problem is, given the position and orientation of the

tool frame, to compute the corresponding joint angles. The inverse kinematics

problem is considerably harder than the forward kinematics problem, where a

unique closed form solution always exists, and there are several methods can be

used to get the inverse kinematics .

1.4.1 Iterative Method:

In this method we consider a few change of the variable q and a few change of

the variable x and we can express them as Δ� and Δq respectively

with � is the �acobian Matri�,we can write

Δ� = � Δq (1.56)

Δ� = �d − � (1.57)

 with { � ∶ actual position�d: desired position

Chapter 1: Modeling

30

The Algoƌithŵ that’s used iŶ this ŵethod

1. Compute actual position :�

2. Compute :Δ� = �d − �

3. Using pseudo-inverse : Δq = ሺ�୘ �ሻ−ଵ �୘Δ� (1.58)

4. Calculate the new angle q୬ୣ୵ : q୬ୣ୵ = q୭୪ୢ + Δq (1.59)

1.4.2 The geometric Approach:

This method is used to solve the unknown joint angles required for the

autonomous positioning of a robotic arm. A plethora of complex mathematical

processes is reduced using basic trigonometric in the modeling of the robotic arm.

1.4.3 Application on the chosen robot :

As we have mentioned we have to found the unknown angles for each joint;

and in our case we have 3 link arm robot so we have to find (qଵ, qଶ , qଷሻ , for the this

we have used basic trigonometric equations :

For the first joint angel qଵ we have

qଵ = arctan ቀ୷୶ቁ (1.60)

And for the third joint angel qଷ:
Sin qଷ = √ͳ + cos qଷ (1.61)

And we have Δ = √�ଶ + yଶ (1.62)

and ƌ² = Δ² + zଵଶ (1.63)

and r² = lଶଶ +lଷଶ - ʹlଶlଷ Đosα ;ϭ.64Ϳ

Chapter 1: Modeling

31

Thence Cos α =(୪మమ +୪యమ−Δమ−୸భమ)ଶ୪మ୪య (1.65)

 And qଷ = ʋ− α (1.66) and cos q͵ = −�osα (1.67)

 so cos q͵ = − ሺ lʹʹ +l͵ʹ−Δ²−zͳʹ ሻʹlʹl͵ (1.68)

 thence q͵ = acos ቀ− ሺ lʹʹ +l͵ʹ−Δ²−zͳʹ ሻʹlʹl͵ ቁ (1.69)

and for the second joint angel qଶ we have

tan(B)=
ሺ୪య ୱ୧୬୯యሻ୪మ+୪యୡ୭ୱ୯య

B = tan−ଵሺ ሺ୪య ୱ୧୬୯యሻ୪మ+୪యୡ୭ୱ୯యሻ (1.70)

In the other hand we have : ϒ= B +qଶ ⇔qଶ =ϒ-B (1.71)

and tan(ϒ)=
୸భ
Δ ⇔ϒ= tan−ଵ(zଵ/Δሻ (1.72)

Hence

qଶ = tan−ଵ(zଵ/Δሻ − tan−ଵሺ ሺ୪య ୱ୧୬୯యሻ୪మ+୪యୡ୭ୱ୯యሻ (1.73)

Chapter 1: Modeling

32

Figure (1.8) :angels and distances of a 3 DOF elbow manipulator

1.5 Dynamics:

For control design purposes, it is necessary to have a mathematical model that

reveals the dynamical behavior of a system. Therefore, in this section we derive the

dynamical equations of motion for a robot manipulator. Our approach is to derive

the kinetic aŶd poteŶtial eŶeƌgǇ of the ŵaŶipulatoƌ aŶd theŶ use LagƌaŶge’s

equations of motion to describe the dynamic properties of the robot arm. This

relation may be on the form [14]

Mሺq ሻqሷ⏟ MୟୱୱMୟ୲୰୧୶ + � ሺq , qሶ ሻqሶ⏟ େୣ୬୲୰୧୤୳୥ୟ୪ ୟ୬ୢ େ୭୰୧୭୪୧ୱ୊୭୰ୡୣୱ
+ Gሺ qሻ ⏟ ୋ୰ୟ୴୧୲୷ + Fሺqሶ ሻ⏟୊୰୧ୡ୲୧୭୬ = ⏟I୬୮୳୲୘୭୰୯୳ୣ (1.74)

1.5.1 Lagrange-Euler formulations

The Lagrangian is formulated as [15]

ୢୢ୲ ቀ∂୪∂୯ሶቁ-
∂୪∂୯ = (1.75)

Chapter 1: Modeling

33

The function L, which is the difference of the kinetic and potential energy, is

called the Lagrangian of the system, and Equation (1.96)is called the Euler-Lagrange

Equation.

L= k-u (1.76)

 Thence

∂∂୲ ቀ∂୩∂୯ሶቁ-
∂୩∂୯ + ∂୳∂୯ =  (1.77)

Where T is the total kinetic energy and U is the total potential energy of a

system that consists of n rigid links.

1.5.1.1 Inertial force:

And here we must talk about the mass matrix

a. Mass matrix :

the mass matrix M(q) is a symmetric matrix M that expresses the connection

between the time derivatives qሶof the generalized coordinate vector q of a system

The kinetics energy for a manipulator is define as

We have : K=
ଵଶ qሶ ୲ M(q) qሶ (1.78)

So : ∂k∂qሶ = ∂∂qሶ ቀͳʹ qሶ t Mሺqሻ qሶ ቁ = Mሺqሻ qሶ (1.79)

hence : ∂∂t ቀ∂k∂qሶቁ=
∂∂୲ ሺMሺqሻ qሶ ሻ = Mሺqሻqሷ + Mሶ ሺqሻ qሶ (1.80)

 And we get: Mሺqሻqሷ +Mሶ ሺqሻ qሶ - ଵଶ [
 qሶ ୲ ∂M∂୯ሶ భڭqሶ ୲ ∂M∂୯ሶ n]

 (1.81)

https://en.wikipedia.org/wiki/Generalized_coordinates

Chapter 1: Modeling

34

The equation (1.81) describes the Inertial forces Represented in mass matrix

and Centrifugal &Coriolis Forces.

For the kinetic energy we can defined it as :

K= ∑ k୧୬୧=ଵ = ଵଶ qሶ ୲ Mሺqሻ qሶ (1.82)

{ for lineair movement ∶ k = ͳʹmv²for rotational movement ∶ k = ͳʹʘ୲Iେʘ
}

In addition to this we have

k୧ = ଵଶ (m୧v୲ୡvୡ + ʘ୧୲Iେ౟ʘ୧) (1.83)

From (1.83) and (1.82)

K=
ଵଶ qሶ ୲ Mሺqሻ qሶ =

ଵଶ∑ (m୧v୲ୡvୡ + ʘ୧୲Iେ౟ʘ୧)୬୧=ଵ (1.84)

And we have vୡ౟= �୴౟qሶ (1.85)

With �୴౟ the linear jacobian for the ith joint define as

�୴౟ = [∂୮ౙ౟∂୯ଵ ڮ ∂୮ౙ౟∂୯୬] (1.86)

Denoted that Pci : center of mass position vector in frame {0}

And we have also ʘ୧ = �ʘ౟qሶ (1.87)

With �ʘ౟ the angular jacobian for the ith joint define as

�ʘ౟ = [Zଵ ڮ Z୬] ሺͳ.88ሻ �enoted that Zi : axe of Rotation in frame {0}

Thence
ଵଶ qሶ ୲ Mሺqሻ qሶ =

ଵଶ qሶ ୲∑ (m୧�୲୴�୴ + ʘ୧୲Iେ౟ʘ୧)୬୧=ଵ qሶ (1.89)

Chapter 1: Modeling

35

And we get the mass matrix expression

Mሺqሻ = ∑ (m୧�୲୴�୴ + ʘ୧୲Iେ౟ʘ୧)୬୧=ଵ (1.90)

The mass matrix can be written as this form

Mሺqሻ = [MଵଵMଵଶ…Mଵ୬⋱M୬ଵM୬ଶ…M୬୬] (1.91)

b. Centrifugal and Coriolis Forces :

The Coriolis force is an inertial force (also called a fictitious force) that acts on

objects that are in motion relative to a rotating reference frame. In a reference

frame with clockwise rotation, the force acts to the left of the motion of the object.

In one with anticlockwise rotation, the force acts to the right [16]

Whereas the centripetal (Centrifugal) force is seen as a force which must be

applied by an external agent to force an object to move in a curved path, the

Centrifugal and Coriolis forces are "effective forces" which are invoked to explain the

behavior of objects from a frame of reference which is rotating. [17]

Centrifugal &Coriolis terms can be extracted from (1.81) and we can write

C(q, qሶ)qሶ = Mሺqሻሶ qሶ - ଵଶ [
 qሶ ୲ ∂M∂୯ሶ భڭqሶ ୲ ∂M∂୯ሶ n]

 = [Mሶ ଵଵMሶ ଵଶ…Mሶ ଵ୬⋱Mሶ ୬ଵMሶ ୬ଶ…Mሶ ୬୬] qሶ -ଵଶ [

 qሶ ୲ [Mሶ ଵଵMሶ ଵଶ…Mሶ ଵ୬⋱Mሶ ୬ଵMሶ ୬ଶ…Mሶ ୬୬] qሶڭqሶ ୲ [Mሶ ଵଵMሶ ଵଶ…Mሶ ଵ୬⋱Mሶ ୬ଵMሶ ୬ଶ…Mሶ ୬୬] qሶ]

 (1.92)

We define M୧୨୩=ౚM౟ౠౚqౡ (1.93)

And Mሶ ij = Mijͳqͳሶ + Mijʹq ሶʹ + Mijnqnሶ+ڮ (1.94)

https://en.wikipedia.org/wiki/Inertial_force
https://en.wikipedia.org/wiki/Rotating_reference_frame
http://hyperphysics.phy-astr.gsu.edu/hbase/cf.html#cf
http://hyperphysics.phy-astr.gsu.edu/hbase/corf.html#cor

Chapter 1: Modeling

36

And we can write

C(q, qሶ)qሶ =

[ଵଶ (Mሶ ଵଵଵMሶ ଵଶଵ…Mሶ ୧୨ଵ) + ଵଶ (Mሶ ଵଵଶMሶ ଵଶଶ…Mሶ ୧୨ଶ) + ڮ ଵଶ (Mሶ ଵଵ୬Mሶ ଵଶ୬…Mሶ ୧୨୬)⋱ଵଶ (Mሶ ଵଵ୬Mሶ ଵଶ୬…Mሶ ୧୨୬) + ଵଶ (Mሶ ଵଵ୬Mሶ ଵଶ୬…Mሶ ୧୨୬) + ڮ ଵଶ (Mሶ ଵଵ୬Mሶ ଵଶ୬…Mሶ ୧୨୬)]+
[[MଵଵଵMଵଶଵ…M୧୨ଵ⋱M୬ଵ୬M୬୬ଵ…Mଵ୬୬] [qଵqଶڭq୬−ଵq୬]] (1.95)

Using Christoffel Symbols :

 b୧୨୩ = ଵଶ (M୧୨୩ +M୧୩୨ −M୨୩୧) (1.96)

We can write a general form :

C(q, qሶ)qሶ = cଵ(q)qሶ ଶ+ cଶ(q)qሶ qሶ (1.97)

Centrifugal term : cͳ (q)qሶ ଶ = [[bଵଵଵbଵଶଶ…bଵ୬୫⋱b୬ଵଵb୬ଶଶ…b୬୬୫] [qሶ ²ଵڭq²ሶ ୬]] (1.98)

Coriolis term: c ʹ(q)[qሶ qሶ] = [ʹbଵଵଵʹbଵଶଶ…ʹb୬ሺ୬−ଵሻ୬⋱ʹb୬ଵଵʹb୬ଶଶ…ʹb୬ሺ୬−ଵሻ୬] [qሶ ²ଵqሶ ²ଶڭq²ሶ ୬−ଵqሶ ²୬] (1.99)

c. Inertia matrix :

the moment of inertia is a scalar value expressing the resistance to changes to

the rotation of an object. If the axis o rotation is not given, it is possible to generalize

the scalar moment of inertia as 3X3 matrix expressing the moment of inertia about

arbitrary axes. This matrix called also inertia tensor.

Chapter 1: Modeling

37

Let the mass density of an object ʌ, and the inertia tensor in frame attached

to center of mass of the object and p the position vector defin as

p = [�yz] (1.100)

We have I= ∫−p̂ p̂ʌ dv and −p̂p̂ = ሺp୲pሻIଷ − pp୲ (1.101)

Thence I = ∫[−ሺp୲pሻIଷ − pp୲] ʌdv (1.102)

We have−p̂p̂ = [−ሺp୲pሻIଷ − pp୲] = [yଶ + zଶ −�y �z−�y zଶ + �ଶ −yz�ଶ −yଶ �ଶ + yଶ] (1.103)

the inertia tensor expressed as I= [− Iଡ଼ଡ଼ −Iଡ଼ଢ଼ Iଡ଼୞Iଡ଼ଢ଼ Iଢ଼ଢ଼ −Iଢ଼୞−Iଡ଼ଡ଼ −Iଢ଼୞ I୞୞] (1.104)

and we define the Moments of Inertia

 Iଡ଼ଡ଼ =∭ሺyଶ + zଶሻʌd�dydz (1.105) Iଢ଼ଢ଼ =∭ሺ� + zଶሻʌd�dydz (1.106) I୞୞ =∭ሺyଶ + �ଶሻʌd�dydz (1.107)

and we have also the Products of Inertia

 Iଡ଼ଢ଼ =∭�yʌd�dydz (1.108) Iଡ଼୞ =∭�zʌd�dydz (1.109) Iଢ଼୞ =∭yzʌd�dydz (1.110)

1.5.1.2 Gravity term (Potential Energy):

Now consider the potential energy term. In the case of rigid dynamics, the only

source of potential energy is gravity. The potential energy of the i-th link can be

Chapter 1: Modeling

38

computed by assuming that the mass of the entire object is concentrated at its

center of mass and is given by

 u୧ = m୧g h୧u୧ = m୧ሺ−g଴୲pୡ୧ሻ} and U = ∑ u୧ ୬୧=ଵ (1.111)

We have the Gravity Vector : g଴ = (ͲͲ−g) (1.112)

And we have the linear Jacobin �୴౟ = [∂୮ౙ౟∂୯ଵ ڮ ∂୮ౙ౟∂୯୬] ሺͳ.ͳͳ͵ሻ
We define G = ∂୙∂୯=-∑ ሺm୧g଴୲ ∂୮ౙ౟∂୯ ሻ୬୧=ଵ

And from the previous equation we get the gravity term define as

Gሺqሻሶ = - (�୴భ୲�୴మ୲… �୴n୲) (mଵg଴ڭm୬g଴) =-(�୴భ୲ሺmଵg଴ሻ + �୴మ୲ሺmଶg଴ሻ+…+�୴n୲ሺm୬g଴ሻ) (1.114)

1.5.1.3 Friction modeling:

Although joint frictions are complicated in reality, a simple model which is the

combination of viscous and Coulomb and stiction(stribeck effect) , is normally used

to describe the friction phenomenon for all joints:

Fሺqሶ ሻ = F୴ qሶ⏟୴୧ୱୡ୭୳ୱ ୤୰୧ୡ୲୧୭୬+ Fୡ sign ሺqሶ ሻ⏟ େ୭୳୪୭୫ୠ ୤୰୧ୡ୲୧୭୬ + Fୱ ሺqሶ ሻ⏟ ୱ୲୰୧ୠୣୡ୩ ୣ୤୤ୣୡ୲ (1.115)

I. viscous friction :

The viscous friction element models the friction force as a force proportional to

the sliding velocity.

II. Coulomb friction :

Chapter 1: Modeling

39

The Coulomb approximation mathematically follows from the assumptions

that surfaces are in atomically close contact only over a small fraction of their overall

area, that this contact area is proportional to the normal force.

and that the frictional force is proportional to the applied normal force,

independently of the contact area.

the Coulomb approximation is an adequate representation of friction for the

analysis of many physical systems.[18]

III. stiction(stribeck effect):

The Stribeck curve is a more advanced model of friction as a function of

velocity. Although it is still valid only in steady state, it includes the model of

Coulomb and viscous friction as built-in elements.[19]

And We write Fୱ ሺqሶ ሻ=ሺfୱ – fୡ ሻ signሺqሶ ሻe−| qሶqs|మ(1.116)

With qୱ is Stribeck velocity

And we can represent all the friction component by the following figure

https://en.wikipedia.org/wiki/Contact_area

Chapter 1: Modeling

40

Figure (1.9): Friction model with coulomb ,viscous and stiction trem

For a serial robot manipulator we can write the friction term as [20]

Fሺqሶ ሻ = [f୴భ Ͳ ͲͲ ⋱ ͲͲ Ͳ f୴n] [qଵሶڭq୬ሶ] +

[fୡభ Ͳ ͲͲ ⋱ ͲͲ Ͳ fୡn] [signሺqሶ ଵሻڭsignሺqሶ ୬ሻ] + [ሺfୱభ– fୡଵ ሻ Ͳ ͲͲ ⋱ ͲͲ Ͳ ሺfୱn– fୡ୬ሻ] [
 signሺqሶ ଵሻe−|qሶ భqs|మڭsignሺqሶ ୬ሻe−|qሶ nqs|మ]

(1.117)

Denote that

Fci : express Coulomb friction of the ith joint .

Fvi : express viscous friction of the ith joint .

Fsi : express stiction term of the ith joint .

qs : expresses the Stribeck velocity .

1.5.2 Actuator Dynamics :

Chapter 1: Modeling

41

For the actuators which are dc motors, we choose a very simple model,

because of the huge nonlinearity present in the manipulator joints, the motor

dynamics could be Neglected or represented by a simple linear model as follow [20]

U = �θሷ + τ+ Tf (1.118)

With � joints torques, Tf represent the actuator friction , U represent the inputs

voltage signals and J represent the actuator inertia. by replacing Eq(1.74) we get

U = �θሷ + Mሺq ሻqሷ + � ሺq , qሶ ሻq + Gሺ qሻ + Fሺqሶ ሻሶ + Tf (1.119)

And θሷ = Gqሷ , G represent the gears ratios, denote that

U = [UଵڭU୬] , �́ = [jଵGଵڭj୬G୬], Tf = [TfଵڭTf୬]
Yield

U = �́qሷ + Mሺq ሻqሷ + � ሺq , qሶ ሻq + Gሺ qሻ + Fሺqሶ ሻሶ + Tf (1.120)

1.5.3 Application on the chosen robot :

we have the Figure 1.8 describe our 3dof elbow manipulator, all center of

masses represented with respect to the base frame .

the choice of centre of masses depends on the real mass distribution of our

robot .

Chapter 1: Modeling

42

Figure (1.10): angels and distances of center of masses of a 3 DOF elbow

manipulator

first we have the position vectors of center of masses denote as

pୡଵ=[lୡଵcଵ lୡଵsଵ Ͳ] pୡଵ = [cଵሺlୡଶcଶሻsଵሺlୡଶcଶሻlଵ + lୡଶsଶ] pୡଷ = [cଵሺlୡଷcଶଷ + lଶcଶሻsଵሺlୡଷcଶଷ + lଶcଶሻlଵ + lୡଷsଶଷ + lଶsଶ]
a. Mass matrix

and we have the mass matrix of our 3dof robot as we define in (1.90)

M = ቀMଵ�୲ଵ�ଵ + �ωభ ୲I୬భ�ωభቁ + ቀMଶ�୲ଶ�ଶ + �ωమ ୲I୬మ�ωమቁ + ቀMଷ�୲ଷ�ଷ + �ωయ ୲I୬య�ωయቁ

we derive of the linear jacobian of the first joint

�୴ଵ = [ୢ୮ౙభୢ୯భ ୢ୮ౙభୢ୯మ ୢ୮ౙభୢ୯య] = [−lୡଵsଵ Ͳ Ͳlୡଵcଵ Ͳ ͲͲ Ͳ Ͳ]
And also the angular jacobian of the first joint

�ωభ = [zଵ Ͳ Ͳ] = [Ͳ Ͳ ͲͲ Ͳ Ͳͳ Ͳ Ͳ]

Chapter 1: Modeling

43

and we have the Inertia matrix of the first joint express as

I୬భ = [Iଡ଼ଡ଼ଵ −Iଢ଼ଡ଼ଵ −I୞ଡ଼ଵ−Iଢ଼ଡ଼ଵ Iଢ଼ଢ଼ଵ −Iଢ଼୞ଵ−I୞ଡ଼ଵ −Iଢ଼୞ଵ I୞୞ଵ]
so we can write the first part of the mass matrix that depend on the first joint

ቀMଵ�୲ଵ�ଵ + �ωభ ୲I୬భ�ωభቁ =
Mଵ [−lୡଵsଵ lୡଵcଵ ͲͲ Ͳ ͲͲ Ͳ Ͳ] [−lୡଵsଵ Ͳ Ͳlୡଵcଵ Ͳ ͲͲ Ͳ Ͳ]+[Ͳ Ͳ ͳͲ Ͳ ͲͲ Ͳ Ͳ] [Iଡ଼ଡ଼ଵ −Iଢ଼ଡ଼ଵ −I୞ଡ଼ଵ−Iଢ଼ଡ଼ଵ I୷୷ଵ −Iଢ଼୞ଵ−I୞ଡ଼ଵ −Iଢ଼୞ଵ I୸୸ଵ] [Ͳ Ͳ ͲͲ Ͳ Ͳͳ Ͳ Ͳ]=

[Mଵlୡଵ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ]+[I୸୸ଵ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ]= [Mଵl²ୡଵ + I୸୸ଵ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ]
Same thing for the second joint we have linear jacobian and angular jacobian

express as

�୴ଶ = [ୢ୮ౙమୢ୯భ ୢ୮ౙమୢ୯మ ୢ୮ౙమୢ୯య] = [−sଵlୡଶcଶ −cଵlୡଶsଶ Ͳcଵlୡଶcଶ −sଵlୡଶsଶ ͲͲ lୡଶcଶ Ͳ]
�ωమ = [zଵ zଶ Ͳ] = [Ͳ Ͳ ͲͲ −ͳ Ͳͳ Ͳ Ͳ]

Also we have the Inertia matrix of the second joint :

I୬మ = [Iଡ଼ଡ଼ଶ −Iଢ଼ଡ଼ଶ −I୞ଡ଼ଶ−Iଢ଼ଡ଼ଶ Iଢ଼ଢ଼ଶ −Iଢ଼୞ଶ−I୞ଡ଼ଶ −Iଢ଼୞ଶ I୞୞ଶ]
And we get the second part of the mass matrix

ቀMଶ�୲ଶ�ଶ + �ωమ ୲I୬మ�ωమቁ =

Chapter 1: Modeling

44

Mଶ [−sଵlୡଶcଶ cଵlୡଶcଶ Ͳ−cଵlୡଶsଶ −sଵlୡଶsଶ lୡଶcଶͲ Ͳ Ͳ] [−sଵlୡଶcଶ −cଵlୡଶsଶ Ͳcଵlୡଶcଶ −sଵlୡଶsଶ ͲͲ lୡଶcଶ Ͳ]+
[Ͳ Ͳ ͳͲ −ͳ ͲͲ Ͳ Ͳ] [Iଡ଼ଡ଼ଶ −Iଢ଼ଡ଼ଶ −I୞ଡ଼ଶ−Iଢ଼ଡ଼ଶ I୷୷ଶ −Iଢ଼୞ଶ−I୞ଡ଼ଶ −Iଢ଼୞ଶ I୸୸ଶ] [Ͳ Ͳ ͲͲ −ͳ Ͳͳ Ͳ Ͳ]=

[Mଶlୡଶ²cଶଶ Ͳ ͲͲ Mଶlୡଶ² ͲͲ Ͳ Ͳ]+[I୸୸ଶ Iଢ଼୞ଶ ͲIଢ଼୞ଶ Iଢ଼ଢ଼ଶ ͲͲ Ͳ Ͳ]=[Mଶlୡଶ²cଶଶ + I୸୸ଶ Iଢ଼୞ଶ ͲIଢ଼୞ଶ Mଶlୡଶ² + Iଢ଼ଢ଼ଶ ͲͲ Ͳ Ͳ]
And also for the third joint, we have linear and angular jacobian express as

�୴ଷ = [ୢ୮ౙయୢ୯భ ୢ୮ౙయୢ୯మ ୢ୮ౙయୢ୯య] = [−sଵሺlୡଷcଶଷ + lଶcଶሻ −cଵሺlୡଷsଶଷ + lଶsଶሻ −cଵlୡଷsଶଷcଵሺlୡଷcଶଷ + lଶcଶሻ −sଵሺlୡଷsଶଷ + lଶsଶሻ −sଵlୡଷsଶଷͲ lୡଷcଶଷ + lଶcଶ lୡଷcଶଷ]
 �ωయ = [zଵ zଶzଷ] = [Ͳ Ͳ ͲͲ −ͳ −ͳͳ Ͳ Ͳ]

the Inertia matrix of the third joint :

I୬య = [I୸୸ଷ −Iଢ଼ଡ଼ଷ −I୞ଡ଼ଷ−Iଢ଼ଡ଼ଷ I୷୷ଷ −Iଢ଼୞ଷ−I୞ଡ଼ଷ −Iଢ଼୞ଷ I୷୷ଷ]
= Mଷ [−sଵሺlୡଷcଶଷ + lଶcଶሻ cଵሺlୡଷcଶଷ + lଶcଶሻ Ͳ – cଵሺlୡଷsଶଷ + lଶsଶሻ −sଵሺlୡଷsଶଷ + lଶsଶሻ lୡଷcଶଷ + lଶcଶ−cଵlୡଷsଶଷ −sଵlୡଷsଶଷ lୡଷcଶଷ]
[−sଵሺlୡଷcଶଷ + lଶcଶሻ −cଵሺlୡଷsଶଷ + lଶsଶሻ −cଵlୡଷsଶଷcଵሺlୡଷcଶଷ + lଶcଶሻ −sଵሺlୡଷsଶଷ + lଶsଶሻ −sଵlୡଷsଶଷͲ lୡଷsଶଷ + lଶsଶ lୡଷcଶଷ]+[Ͳ Ͳ ͳͲ −ͳ ͲͲ −ͳ Ͳ]
=[Iଡ଼ଡ଼ଷ −Iଢ଼ଡ଼ଷ −I୞ଡ଼ଷ−Iଢ଼ଡ଼ଷ I୷୷ଷ −Iଢ଼୞ଷ−I୞ଡ଼ଷ −Iଢ଼୞ଷ I୸୸ଷ] [Ͳ Ͳ ͲͲ −ͳ −ͳͳ Ͳ Ͳ]

Yield

Chapter 1: Modeling

45

ቀMଷ�୲ଷ�ଷ + �ωయ ୲I୬య�ωయቁ=

Mଷ [l²ୡଷc²ଶଷ + l²ଶc²ଶ + ʹlୡଷcଶଷlଶcଶ Ͳ ͲͲ l²ୡଷ + lଶ² + ʹlୡଷlଶcଷ l²ୡଷ + lୡଷlଶcଷͲ l²ୡଷ + lୡଷlଶcଷ l²ୡଷ]+
[I୸୸ଷ Iଢ଼୞ଷ Iଢ଼୞ଷIଢ଼୞ଷ I୷୷ଷ Iଢ଼ଢ଼ଷIଢ଼୞ଷ Iଢ଼ଢ଼ଷ I୷୷ଷ]=

[Mଷሺlଶୡଷcଶଶଷ + lଶଶcଶଶ + ʹlୡଷcଶଷlଶcଶሻ + Izz͵ Iଢ଼୞ଷ Iଢ଼୞ଷIଢ଼୞ଷ Mଷሺl²ୡଷ + lଶ² + ʹlୡଷlଶc͵ሻ + I୷୷ଷ M͵ሺlଶୡଷ + lୡଷlଶcଷሻ + Iଢ଼ଢ଼ଷIଢ଼୞ଷ Mଷሺl²ୡଷ + lୡଷlଶcଷሻ + Iଢ଼ଢ଼ଷ Mଷl²ୡଷ + I୷୷ଷ]
And The general mass matrix becomes

M=[Mଵl²ୡଵ + I୸୸ଵ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ] + [Mଶlୡଶ²cଶ + I୸୸ଶ Iଢ଼୞ଶ ͲͲ Mଶl²ୡଶ + I୷୷ଶ ͲͲ Ͳ Ͳ] +
[I୸୸ଷ +Mଷሺlଶୡଷcଶଶଷ + lଶଶcଶଶ + ʹlୡଷcଶଷlଶcଶሻ −Iଢ଼୸ଷ −I୞୷ଷ−Iଢ଼ଡ଼ଷ I୷୷ଷ +Mଷሺl²ୡଷ + lଶ² + ʹlୡଷlଶሻ −Iଢ଼୞ଷ−I୞ଡ଼ଷ Mଷሺl²ୡଷ + lୡଷlଶcଷሻ − Iଢ଼୷ଷ I୷୷ଷ +Mଷl²ୡଷ]
And the other hand we have :

 M=[Mଵଵ Mଵଶ MଵଷMଶଵ Mଶଶ MଶଷMଷଵ Mଷଶ Mଷଷ] Mଶଵ = Mଶଵ Mଶଷ = Mଷଶ Mଵଷ = Mଷଵ Mଵଵ = Mଵl²ୡଵ + I୸୸ଵ+Mଶlୡଶ²cଶ + I୸୸ଶ+I୸୸ଷ +Mଷሺlଶୡଷcଶଶଷ + lଶଶcଶଶ + ʹlୡଷcଶଷlଶcଶሻ Mଶଵ = Mଵଶ = Iଢ଼୞ଶ + Iଢ଼୸ଷ Mଵଷ = Mଷଵ = I୷୸ଷ

Mଶଷ = Mଷଶ=Mଷሺl²ୡଷ + lୡଷlଶcଷሻ + Iଢ଼୷ଷ

Chapter 1: Modeling

46

Mଶଶ = Mଶl²ୡଶ + I୷୷ଶ+I୷୷ଷ +Mଷሺl²ୡଷ + lଶ² + ʹlୡଷlଶcଷሻ Mଷଷ = I୷୷ଷ +Mଷl²ୡଷ

b. Centrifugal &Coriolis Forces

We begin with the Centrifugal Force as we define in (1.119)

c ଵ(q)qሶ ଶ=[bଵଵଵ bଵଶଶ bଵଷଷbଶଵଵ bଶଶଶ bଶଷଷbଷଵଵ bଷଶଶ bଷଷଷ] [
q²ଵሶq²ଶሶq²ଷሶ]

We know from (1.93) and (1.96) that

M୧୨୩=ౚM౟ౠౚqౡ and b୧୨୩ = ଵଶ (M୧୨୩ +M୧୩୨ −M୨୩୧)
So we get Mଵଵଵ = Ͳ Mଵଶଶ = Mଶଵଶ=0 Mଵଵଶ =-ʹMଶሺlୡଶ²cଶsଶ+lଶୡଷc ଶଷs ଶଷ + lଶଶcଶsଶ + lୡଷsଶଷlଶcଶ + lୡଷlଶcଶଷsଶ) Mଶଷଷ = −Mଷlୡଷlଶsଷ Mଷଷଶ = Ͳ Mଷଵଵ = Mଵଷଵ = Ͳ Mଷଷଷ=0 Mଶଶଶ=0 Mଷଶଶ=0 Mଵଵଷ=-ʹMଶሺlଶୡଷcଶଷsଶଷ + lୡଷlଶsଶଷcଶሻ

Chapter 1: Modeling

47

Mଶଶଷ = ʹMଶlୡଷlଶsଷ Mଶଵଷ = Ͳ Mଶଷଵ = Ͳ Mଵଷଶ = Ͳ

bଵଵଵ = ଵଶ(Mଵଵଵ +Mଵଵଵ −Mଵଵଵ)=
Mభభభଶ =0

bଵଶଶ = ଵଶ(Mଵଶଶ +Mଵଶଶ −Mଶଶଵ)=Mଵଶଶ − Mమమభଶ =0

bଵଷଷ = ଵଶ(Mଵଷଷ +Mଵଷଷ −Mଷଷଵ)=Mଵଷଷ − Mయయభଶ = Ͳ

bଶଵଵ=
ଵଶ(Mଶଵଵ +Mଶଵଵ −Mଵଵଶ)=Mଶଵଵ − Mభభమଶ =Mଶሺlୡଶ²cଶsଶ+lଶୡଷc ଶଷs ଶଷ + lଶଶcଶsଶ +lୡଷsଶଷlଶcଶ + lୡଷlଶcଶଷsଶ)

bଶଶଶ = ଵଶ(Mଶଶଶ +Mଶଶଶ −Mଶଶଶ)=
Mమమమଶ =0

bଶଷଷ = ଵଶ(Mଶଷଷ +Mଶଷଷ −Mଷଷଶ)=Mଶଷଷ − Mయయమଶ = Ͳ

bଷଵଵ = ଵଶ(Mଷଵଵ +Mଷଵଵ −Mଷଵଵ)=Mଷଵଵ − Mభభయଶ =Mଶሺlଶୡଷcଶଷsଶଷ + lୡଷlଶsଶଷcଶሻ
bଷଷଷ = ଵଶ(Mଷଷଷ +Mଷଷଷ −Mଷଷଷ)=

Mయయయଶ =0

bଷଶଶ = ଵଶ(Mଷଶଶ +Mଷଶଶ −Mଶଶଷ)=Mଷଶଶ − Mమమయଶ =Mଶlୡଷlଶsଷ

And the final matrix becomes cଵ (q)qሶ ଶ=

[Ͳ Ͳ ͲMଶlୡଶ²cଶsଶ +Mଷሺlଶୡଷcଶଶଷsଶଶଷ + lଶଶcଶsଶ + lୡଷsଶଷlଶcଶሻ − Mଷlୡଷlଶcଶଷsଶ Ͳ ͲMଷሺlଶୡଷcଶଷsଶଷ + lୡଷlଶsଶଷcଶሻ Mଷlୡଷlଶsଷ Ͳ] [q²ଵ
ሶq²ଶሶq²ଷሶ]

And for the Coriolis term we have from (1.99)

Chapter 1: Modeling

48

c ଶ(q)[qሶ qሶ]=[ʹbଵଵଶ ʹbଵଵଷ ʹbଵଶଷʹbଶଵଶ ʹbଶଵଷ ʹbଶଶଷʹbଷଵଶ ʹbଷଵଷ ʹbଷଶଷ] [qଵሶqଵሶqଶሶ qଶሶqଷሶqଷሶ]
And we get

ʹbଵଵଶ = ଵଶ(Mଵଵଶ +Mଵଵଶ −Mଵଵଶ)=
Mభభమଶ =Mଵଵଶ

ʹbଵଵଷ = ଵଶ(Mଵଵଷ +Mଵଷଵ −Mଵଷଵ)=Mଵଵଷ

ʹbଶଵଶ=
ଵଶ(Mଵଵଶ +Mଶଶଵ −Mଵଶଶ)= Ͳ

ʹbଷଵଶ = ଵଶ(Mଶଵଷ +Mଶଷଵ −Mଵଷଶ)= Ͳ

ʹbଷଵଶ = ଵଶ(Mଶଵଷ +Mଶଷଵ −Mଵଷଶ)= Ͳ

ʹbଵଶଷ = ଵଶ(Mଵଶଷ +Mଵଷଶ −Mଶଷଵ)= Ͳ

ʹbଶଶଷ = ଵଶ(Mଶଶଷ +Mଶଷଶ −Mଶଷଶ)=Mଶଶଷ

ʹbଷଶଷ = ଵଶ(Mଷଶଷ +Mଷଷଶ −Mଶଷଷ)= Ͳ

ʹbଷଵଶ = ଵଶ(Mଷଵଶ +Mଷଶଵ −Mଵଶଷ)= Ͳ

ʹbଷଵଷ = ଵଶ(Mଷଵଷ +Mଷଷଵ −Mଵଷଷ)= Ͳ

And the Coriolis matrix expressed as

� ૛(q)[�ሶ �ሶ]=
[૛�૛ܔ�૛૛�૛�૛ + ૛�૜(ܔ૛�૜�૛૛૜�૛૛૜ + ૛૛�૛�૛ܔ + ૛ܔ�૜�૛૜ܔ૛�૛) − ૛�૜ܔ�૜ܔ૛�૛૜�૛ −૛�૜(ܔ૛�૜�૛૜�૛૜ + (૜�૛૜�૛�ܔ ૙૙ ૙ −૛�૜ܔ�૜ܔ૛�૜૙ ૙ ૙]
[�૚ሶ�૚ሶ�૛ሶ �૛ሶ�૜ሶ�૜ሶ]

C. Gravity term

For Gravity term we have from(1.114)

Chapter 1: Modeling

49

G(q) =- (�୴భ୲�୴మ୲�୴య୲) (mଵg଴mଶg଴mଷg଴) = - (�୴భ୲mଵg଴ + �୴మ୲mଶg଴ + �୴య୲mଷg଴)=

[lୡଵsଵ −lୡଵcଵ ͲͲ Ͳ ͲͲ Ͳ Ͳ] [ͲͲmଵg଴] +[−sଵሺlୡଶcଶሻ cଵሺlୡଶcଶሻ Ͳ−cଵሺlୡଶcଶሻ −sଵሺlୡଶcଶሻ lୡଶcଶͲ Ͳ Ͳ] [ͲͲmଶg଴]+
[−sଵሺlୡଶcଶ + lୡଷcଶଷሻ cଵሺlୡଶcଶ + lୡଷcଶଷሻ Ͳ−cଵሺlୡଶcଶ + lୡଷcଶଷሻ −sଵሺlୡଶcଶ + lୡଷcଶଷሻ lୡଶcଶ+୪ౙయୡమయ−cଵlୡଷcଶଷ −sଵlୡଷcଶଷ lୡଷcଶଷ] [ͲͲmଷg଴]=[ͲlୡଶcଶͲ mଶg଴]+[ሺ Ͳlୡଶcଶ + lୡଷcଶଷሻmଷg଴lୡଷcଶଷmଷg଴]
= [ሺlୡଶcଶmଶሺ Ͳlୡଶcଶ + lୡଷcଶଷሻmଷሻg଴lୡଷcଶଷmଷg଴]

d. Friction modeling

As we seen in (1.117) we can write the friction terms as

 Fሺqሶ ሻ = [f୴భ Ͳ ͲͲ f୴మ ͲͲ Ͳ f୴య] [
qଵሶqଶሶqଷሶ] +

[fୡభ Ͳ ͲͲ fୡమ ͲͲ Ͳ fୡయ] [
signሺqሶ ଵሻsignሺqሶ ଶሻsignሺqሶ ଷሻ] + [

ሺfୱభ– fୡଵሻ Ͳ ͲͲ ሺfୱమ– fୡଶሻ ͲͲ Ͳ ሺfୱయ– fୡଷሻ] [
 signሺqሶ ଵሻe−|୯ሶ భ୯ୱ|

మ
signሺqሶ ଶሻe−|୯ሶ మ୯ୱ|మsignሺqሶ ଷሻe−|୯ሶ య୯ୱ|మ]

e. Equation of motion for a 3 DOF elbow manipulator

And the geneƌal dǇŶaŵiĐ’s eƋuatioŶ ďeĐoŵes

[�૚ܔ૛�૚ + ૚ܢܢ� +�૛ܔ�૛૛�૛ + ૛ܢܢ� + ૜ܢܢ� +�૜ሺܔ૛�૜�૛૛૜ + ૛૛�૛૛ܔ + ૛ܔ�૜�૛૜ܔ૛�૛ሻ ૛܈܇� − ૜ܢ܇� ૜ܠ܇�−૜ܡ܈�− �૛ܔ૛�૛ + ૛ܡܡ� + ૜ܡܡ� +�૜ሺܔ૛૛²�૜ + ૛²ܔ + ૛ܔ�૜ܔ૛ሻ ૜܆܈�−૜܈܇�− �૜ሺܔ૛�૜ + ૛�૜ሻܔ૜�ܔ − ૜ܡ܇� ૜ܡܡ� +�૜ܔ�૛૜]

Chapter 1: Modeling

50

[�૚ሷ�૛ሷ�૜ሷ]+

[૙ ૙ ૙�૛ܔ�૛²�૛�૛ +�૜ሺܔ૛�૜�૛૛૜�૛૛૜ + ૛૛�૛�૛ܔ + ૛�૛ሻܔ૜�૛૜�ܔ −�૜ܔ�૜ܔ૛�૛૜�૛ ૙ ૙�૜ሺܔ૛�૜�૛૜�૛૜ + ૛�૛૜�૛ሻܔ૜�ܔ �૜ܔ�૜ܔ૛�૜ ૙] [�²૚
ሶ�²૛ሶ�²૜ሶ]+

[૛�૛ܔ�૛૛�૛�૛ + ૛�૜ሺܔ૛�૜�૛૛૜�૛૛૜ + ૛૛�૛�૛ܔ + ૛ܔ�૜�૛૜ܔ૛�૛ሻ − ૛�૜ܔ�૜ܔ૛�૛૜�૛ −૛�૜ሺܔ૛�૜�૛૜�૛૜ + ૜�૛૜�૛ሻ�ܔ ૙૙ ૙ −૛�૜ܔ�૜ܔ૛�૜૙ ૙ ૙]
[�૚ሶ�૚ሶ�૛ሶ �૛ሶ�૜ሶ�૜ሶ] + [ሺܔ�૛�૛ܕ૛ሺ ૙ܔ�૛�૛ + ૙܏૜ܕ૜�૛૜�ܔ૙܏૜ሻܕ૜�૛૜ሻ�ܔ] + ૚�܎] ૙ ૙૙ ૛�܎ ૙૙ ૙ [૜�܎ [

�૚ሶ�૛ሶ�૜ሶ] + [
૚�܎ ૙ ૙૙ ૛�܎ ૙૙ ૙ [૜�܎ [

ሺ�ሶܖ܏�� ૚ሻ��ܖ܏ሺ�ሶ ૛ሻ��ܖ܏ሺ�ሶ ૜ሻ] +
[ሺ܎�૚– ૚ሻ ૙�܎ ૙૙ ሺ܎�૛– ૛ሻ ૙૙�܎ ૙ ሺ܎�૜– [૜ሻ�܎ [

ሺ�ሶܖ܏�� ૚ሻ܍−|�ሶ ૚��|
૛

ሺ�ሶܖ܏�� ૛ሻ܍−|�ሶ ૛��|૛��ܖ܏ሺ�ሶ ૜ሻ܍−|�ሶ ૜��|૛]
 =[૚૛

૜]

If we add the actuators dynamics we can write

[UଵUଶUଷ] = [jଵGଵ Ͳ ͲͲ jଶGଶ ͲͲ Ͳ jଷGଷ] [qଵሷqଶሷqଷሷ] + [ଵଶଷ] + [TfଵTfଶTfଷ]

Chapter 2: Control and System Identification

51

Chapter 2: Control and System Identification

2.1 Manipulator Control:

The control problem for robot manipulators is the problem of determining the

time history of joint inputs required to cause the end-effector to execute a

commanded motion.

There are many control techniques and methodologies that can be applied to

the control of manipulators.

2.1.1 PID controller :

In this section we consider the simplest type of control strategy, namely,

independent joint control. In this type of control each axis of the manipulator is

controlled as a single input/single output (SISO) system.

A proportional–integral–derivative controller (PID controller) is a

feedback control loop mechanism ,commonly used in industrial control systems. A

PID controller continuously calculates an error value e (t) as the difference between

a desired setpoint r(t) and a measured process variable y(t), and applies a correction

based on proportional, integral, and derivative terms (sometimes denoted P, I,

and D respectively) which give their name to the controller type.

u (t) = �p e(t) + �ୢ ୢୣሺ୲ሻୢ୲ +��i ∫ eሺ�ሻd� (2.1)

With e(t)=r(t)-y(t)

https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Feedback_mechanism
https://en.wikipedia.org/wiki/Industrial_control_system
https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative

Chapter 2: Control and System Identification

52

where �p,�� and �ୢ, all non-negative, denote the coefficients for

the proportional, integral, and derivative terms, In this model:

P accounts for present values of the error. For example, if the error is large and

positive, the control output will also be large and positive.

 P accounts for past values of the error. For example, if the current output is

not sufficiently strong, the integral of the error will accumulate over time,

and the controller will respond by applying a stronger action

 D accounts for possible future trends of the error, based on its current rate of

change

Figure (2.1): A block diagram of a PID controller in a feedback loop.

For a serial robot manipulator we applied a PID control law for each joints

considering that the desired joints positions are constant, which is commonly known

as independent joint control.

Now as we have mentioned on the previous chapter by using the equation

(1.74) and the equation (2.1) we get : Mሺq�ሻqሷ + C�ሺq�, qሶ ሻq + Gሺ�qሻ + Fሺqሶ ሻ =�ሶ ������������(2.2)

So The control law is given by

https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Block_diagram

Chapter 2: Control and System Identification

53

 = �p�eሺ�ሻ + �d ୢୣሺ୲ሻୢ୲ + ��∫ eሺ�ሻ�d� (2.3)

with eሺ�ሻ �= �qdሺ�ሻ − qሺ�ሻ (2.4)

And
ୢୣሺ୲ሻୢ୲ =�−qሶ ሺ�ሻ�������������������������������������(2.5)

With qd(t) represent the desired angles and q(t) is the actual joints angles and

 is the torques inputs .

Denote that Kp,Kd and Ki are n*n positive diagonal matrix.

Figure (2.2) : A block diagram of independent joint control for n joints manipulator

a. Implementation and simulation

 We’ǀe iŵpleŵeŶted the dynamics equations that we got in section 1.5

With choosing the manipulator parameters as follow :

m1=3; m2=1;m3=1; %masses

L1=1; L2=1;L3=1; %links lengths

Lc1=0.5; Lc2=0.5;Lc3=0.5; %center of masses lengths

https://en.wikipedia.org/wiki/Block_diagram

Chapter 2: Control and System Identification

54

izz1=0.05; izz2=0.05;izz3=0.05;iyy2=0.05;iyy3=0.05;%moment of inertia

iyz2=0.05;iyz3=0;%products of inertia

Figure (2.3): Simulink model of 3dof manipulator dynamics

Now we design a Simulink model for an independent joint control, which

composed of 3 PID controller.

For the dc motors we consider them as a linear saturated gain.

Chapter 2: Control and System Identification

55

Figure (2.4): Simulink model of independent joint control for a 3 DOF manipulator dynamics

The PID gains are chosen experimentally as follow

Table 2.1 : constant Setpoint and Parameters for PID control of the first joint

Setpoint Kp Kd Ki �/2 25 10 0

Table 2.2 : constant Setpoint and Parameters for PID control of the second joint

Setpoint Kp Kd Ki �/2 200 40 0

Table 2.3 : constant Setpoint and Parameters for PID control of the third joint

Setpoint Kp Kd Ki −�/3 200 40 0

Chapter 2: Control and System Identification

56

After 10 second of simulation we get the following figures with sample time of 0.01S

Figure(2.5):simulation result of an independent joint control for a 3 DOF

manipulator

2.1.2 Computed Torque Control (trajectory tracking):

A basic problem in controlling robots is to make the manipulator follow a

preplanned desired trajectory. Before the robot can do any useful work, we must

position it in the right place at the right instances. In this section we discuss

computed-torque control

Chapter 2: Control and System Identification

57

The PID controller is not an efficient controller to control a manipulator

because the torques output signal that is generated by the PID controller is

not dependant on the other joints. The motion of the other links may apply

considerable torque and force to the joint. This unpredicted torque may not be

compensated with the PID controller therefore the performance of the

controller drops when the robot performs in high speeds, a much better

method to control the robot is to calculate the inverse dynamics of the robot

and consider the computed torques to generate control signal.

By this method the robot performs well even in high speeds. The

problem with this controller is that in order to calculate the inverse dynamics

of the robot, its parameters must be determined and very nonlinear equations

should be solved. Feedback linearization method is one of the most common

methods for controlling a robot and is widely used in the industry.

We consider the dynamic equation of the manipulator

Mሺq�ሻqሷ + C�ሺq�, qሶ ሻq + Gሺqሶ ሻ ��+ Fሺqሶ ሻ =�ሶ  (2.6)

Suppose that a desired trajectory qd(t) has been selected for the arm motion

,and as we have defined the output or the tracking error as :

eሺ�ሻ �= �qdሺ�ሻ �+ qሺ�ሻ (2.7)

To demonstrate the influence of the input  (t) on the tracking error, we have

to use the feedback Linearization.

a. Feedback Linearization

The idea of feedback linearization based on canceling the nonlinearities and

Imposing a desired linear dynamics. can be simply applied to a class of nonlinear

systems can be represented as follow [21]

�ሺnሻ = fሺ�ሻ �+ bሺ�ሻ� (2.8)

Chapter 2: Control and System Identification

58

Denote that fሺ�ሻandbሺ�ሻare nonlinear function and ݑ is the control input

For systems which can be expressed as we mentioned above in (2.8), we can

use the control input

� = ଵb ሺV − fሻ (2.9)

We can cancel the nonlinearities and obtain the simple input-output relation

�ሺnሻ = V��� (2.10)

Thus, the control law

V = −�଴� − �ଵ�ሶ …− �n−ଵ�ሺn−ଵሻ (2.11)

With�ipositive gains, and from(2.10) and (2.11)we get

�ሺnሻ + �଴� + �ଵ�ሶ …+ �n−ଵ�ሺn−ଵሻ = Ͳ��� (2.12)

Which implies that �ሺ�ሻ—> Ͳ.For tasks involving the tracking of a desired

output �ୢሺ�ሻ, the control law becomes

V = �ୢሺnሻ − �଴e − �ଵeሶ …− �n−ଵeሺn−ଵሻ
wheree = �ሺ�ሻ �− ��ୢሺ�ሻis the tracking error) leads to exponentially convergent

tracking. Note that similar results would be obtained if the scalar � was replaced by a

vector and the scalar b by an invertible square matrix.

For Applying a feedback linearization on robot manipulator dynamics we get

from(2.6)

qሷ ሺ�ሻ = M(qሺ�ሻ)−ଵ ቀ�ሺ�ሻ − �C(qሶ ሺ�ሻ, qሺ�ሻ)qሶ ሺ�ሻ − F(qሶ ሺ�ሻ) − G(qሺ�ሻ)ቁ�(2.13)

We have�������������������������������V = qሷ (t) (2.14)

And this result

Chapter 2: Control and System Identification

59

{ b = Mሺqሻ−ଵ����ሺʹ.ͳͷሻf = Mሺqሻ−ଵ(−�Cሺqሶ , qሻqሶ − Fሺqሶ ሻ − Gሺqሻ)��ሺʹ.ͳ͸ሻ�
We choose�������������������������������������V = qdሷ − �Ͳeሶሺ�ሻ − �ͳeሺ�ሻ (2.17)

So the corresponding feedback linearization control law is given by (2.18)

 = ͳb ሺV − fሻ
K1 and K0 represent the proportional the derivative gains we can name it Kp

aŶd Kd ƌespeĐtiǀely, aŶd that’s brings us to following input control law [22]

 = �ሺࢗሻ(ࢊࢗሷ − ሶࢋࢊ� − (ࢋ࢖� + �ሺࢗሶ , ሶࢗሻࢗ + ሶࢗሺࡲ� ሻ + ሻ (2.19)ࢗሺࡳ

With �ࢋ = �ሺ࢚ሻ�− ሺ࢚ሻࢊ��

Figure (2.6): A block diagram of Computed-torque control.

For Stability analysis we place the control law we got in (2.19)in the dynamic

equation of the manipulator, and we get [23]

eሷ + �deሶ + �pe = Ͳ (2.20)

https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Derivative

Chapter 2: Control and System Identification

60

Which verified the exponentially convergence of the tracking error�ሺe => Ͳ).

b. Implementation and simulation

We’ǀe iŵpleŵeŶted the dyŶaŵiĐs eƋuatioŶs that ǁe got iŶ seĐtioŶ 1.5

With choosing the manipulator parameters as follow :

m1=3; m2=1;m3=1; %mass with kg

L1=0.2; L2=0.2;L3=0.2; %link length with meters

Lc1=0.5; Lc2=0.5;Lc3=0.5; %center of mass length with meters

izz1=0.05; izz2=0.05;izz3=0.05;iyy2=0.05;iyy3=0.05;%moment of inertia

iyz2=0.05;iyz3=0; % products of inertia

and we apply a computed torque control law on it , which is represented by

dynamic inversion block, and 3 PID blocks as we mention in (2.19).

Figure (2.7): Simulink model of computed torque control for a 3 DOF manipulator dynamics

Chapter 2: Control and System Identification

61

The PID gains are chosen experimentally as follow

Table 2.4 : the PID Parameters for control of the first joint

Kp Kd Ki ʹͲଶ 40 0

Table 2.5 : the PID Parameters for control of the second joint

Kp Kd Ki ͷͲଶ 100 0

Table 2.6 : the PID Parameters for control of the third joint

Kp Kd Ki ͷͲଶ 100 0

After 15 second of simulation we get the following figures with sample time of

0.01S

Chapter 2: Control and System Identification

62

Figure (2.8): Simulink model of computed torque control for a 3 DOF manipulator dynamics

As we seen in Figure 2.8 the joints trajectories follow the desired trajectories

and the tracking condition is verified as we demonstrate in (2.19).

2.2 identification and parameters estimation:

2.2.1 Introduction :

Chapter 2: Control and System Identification

63

This section gives a short introduction to system identification in general, and

to the identification of robot manipulators in particular.

system identification is the mathematical mechanism which allow us to build

mathematical models of dynamical systems from measured data, by modeling and

estimate the real parameters of the system and we name it parametric, or by

building a non- parametric model which have the same behavior as the real system

and then estimate its parameters.

the identification experiment can be performed in open loop or closed loop.

 Identification of a system not subject to feedback control, is known as open-

loop system which is illustrated in Figure 2.9. This system has input u, output y, and

is affected by a disturbance v. The disturbance can include measurement noise as

well as external system inputs, not included in u.

Figure (2.9): An open-loop system.

An identification experiment on a system subject to feedback control, is known

as closed-loop system which is shown in Figure 2.10 where r is the reference signal

for the system. A reason for performing a closed-loop experiment could be that the

system is unstable, and must be controlled in order to remain stable. This is typically

the case for a robot manipulator.

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Dynamical_system

Chapter 2: Control and System Identification

64

Figure(2.10): A closed-loop system.

Moreover, models can be described as continuous-time models or discrete-

time models although the measurements, u(t) and y(t), are normally represented as

sampled, discrete-time, data. It is assumed that the reader has a basic knowledge of

linear system theory for continuous-time and discrete-time systems.[24]

2.2.2 Nonparametric Models:

Examples of nonparametric models in the time-domain are impulse responses or step

responses. Such models consist of vectors of system outputs and the corresponding time

stamps. An example of a step response of a first-order system with a time-delay is shown in

Figure 2.3. The measured output is affected by measurement noise. The nonparametric step

response model can in this case be described by a parametric transfer function model

G(s) =
୏ୱT+ଵ e−୐ୱ (2.21)

Chapter 2: Control and System Identification

65

Figure(2.11): Step response of a first order process with delay.

This three-parameter model is often used to describe systems in the process

industry. The parametric model (2.1) can be identified by inspection of the step

response according to Figure 2.11 This model can then be used for tuning of a PI- or

a PID controller .[25]

2.2.3 Parametric Models:

A parametric model is a model described as, e.g., differential or difference

equations. System identification is one route for obtaining a parametric model of a

system. Another route is physical modeling, i.e., deriving a mathematical model from

the basic laws of physics.

If the parameters of a physical model are known with sufficient accuracy, we

get a white-box model, where both the model structure and the model parameters

are known.

A gray-box model is a physical model where the model structure is known but

the physical parameters are unknown or only partly known. Identification of

parameters or parameters estimation in this case is called gray-box identification,

which our case in robot manipulator identification.[26]

Chapter 2: Control and System Identification

66

a the least squares method LS:

Least-squares estimation methods have been used in many types of parameter

identification schemes [Astrom and Wittenmark 1989] [27], Least-squares method

ĐaŶ ďe applied to laƌge ǀaƌiety of pƌoďleŵs. It’s paƌtiĐulaƌly siŵple foƌ ŵatheŵatiĐal

model that can be write in the form [37]

yሺ�ሻ = φଵሺ�ሻϴଵ଴ +φଶሺ�ሻϴଶ଴ φnሺ�ሻϴn଴+ڮ+ = φTሺ�ሻϴ଴ (2.22)

We can write it as

Y = Φϴ (2.23)

Where y is the observed variable, ϴଵ଴,ϴଶ଴…ϴn଴are parameters of the model to

be determined, and φଵ, φଶ…φnare known functions that may depend on other

known variables like output variable and its derivative. and we have the vectors

φTሺ�ሻ = {φଵሺ�ሻ, φଶሺ�ሻ…φnሺ�ሻ} (2.24)

ϴ଴ = {ϴଵ଴,ϴଶ଴…ϴn଴} (2.25)

The model is indexed by the variable i, which often denotes time .it will be

assumed initially that the index set is a discrete set .

the variables φi are called the regression variables and φTvector called

regressor, pairs of observations and regressors{yሺ�ሻ, φଵሺ�ሻ, � = ͳ,ʹ, … �}are obtained

from experiment .

to determine the parameters vector ϴ଴we define a quadratic cost function,

and the parameters should be chosen to minimize this function

Vሺϴ, �ሻ = ଵଶ∑ ሺ୲i=ଵ �yሺ�ሻ − φTሺ�ሻϴሻଶ (2.26)

Since the measured variable �is linear in parameters �଴and least squares

criterion is quadratic, the problem admits an analytical solution. We define the

notations

Chapter 2: Control and System Identification

67

�ሺݐሻ = {�ሺͳሻ�ሺʹሻ…�ሺݐሻ}� (2.27) ܧሺݐሻ = {�ሺͳሻ�ሺʹሻ…�ሺݐሻ}� (2.28)

Φሺݐሻ = {��ሺͳሻڭ��ሺݐሻ} (2.29)

Pሺݐሻ = ቀΦሺݐሻTΦሺݐሻቁ−ଵ = (∑ �ሺ�ሻ��ሺ�ሻ��=ଵ)−ଵ (2.30)

Where the error eሺ�ሻare define by �ሺ�ሻ = ��ሺ�ሻ − ��ሺ�ሻ� (2.31)

�ሺ�, ሻݐ = ଵଶ∑ �ሺ�ሻଶ��=ଵ = ଵଶܧ�ܧ = ଵଶ ଶ (2.32)‖ܧ‖

Where Ecan be written as

ܧ = � − �̂ = � − Φ� (2.33)

The solution to the least-squares problem is given by the following

demonstration

ΦTΦ�̂ = ΦTY (2.34)

if the matrix ΦTΦis nonsingular, the minimum is unique and given by �̂ = ሺΦTΦሻ−ଵΦTY (2.35)

 b the recursive least squares method RLS:

The Recursive least squares (RLS) is an adaptive filter which recursively finds

the coefficients that minimize a squares cost, these coefficients define as the

parameters of the system that we are estimate, the algorithm based on real-time

parameters estimation, which is commonly used in adaptive control strategy .

https://en.wikipedia.org/wiki/Adaptive_filter

Chapter 2: Control and System Identification

68

In adaptive controller the observations are obtained sequentially in real time,

computation of the least squares estimate can be arranged in such a way that the

result obtained at time t-1 can be used to get the estimates at time t.

Let ϴ̂ሺ� − ͳሻdenote the least-squares estimate based on t-1 measurements.

Assume that Φሺݐሻhas full rank, that means that the matrix ΦTΦ is nonsingular for all

t>t0, the least-squares estimate ϴ̂ሺ�ሻthen satisfies the recursive equations, it follows

from the definition of Pሺݐሻin Eq (2.30)

Pሺݐሻ−ଵ = ΦሺݐሻTΦሺݐሻ =∑�ሺ�ሻ��ሺ�ሻ�
�=ଵ =∑�ሺ�ሻ��ሺ�ሻ�−ଵ

�=ଵ +��ሺݐሻ��ሺݐሻ
= Pሺݐ − ͳሻ−ଵ +��ሺݐሻ��ሺݐሻ (2.36)

The least squares estimate ϴ̂ሺ�ሻis given by (2.36),so we get

ϴ̂ሺ�ሻ = �(∑φሺ�ሻφTሺ�ሻ୲−ଵ
i=ଵ)−ଵ (∑φሺ�ሻyሺ�ሻ୲

i=ଵ)

= ��ሺݐሻሺ∑ �ሺ�ሻ�ሺ�ሻ��=ଵ ሻ (2.37)

Yield

ϴ̂ሺ�ሻ = Pሺ�ሻ ቀ∑ φሺ�ሻyሺ�ሻ୲−ଵi=ଵ + �φሺ�ሻyሺ�ሻቁ(2.38)

it follows from (2.37)and (2.36)that

∑ �ሺ�ሻ�ሺ�ሻ��=ଵ = Pሺݐ − ͳሻ−ଵ�̂ሺݐ − ͳሻ = Pሺݐሻ−ଵ�̂ሺݐ − ͳሻ − �ሺݐሻ��ሺݐሻ�̂ሺݐ − ͳሻ
(2.39)

The estimate at time t can now be written as

ϴ̂ሺ�ሻ = � ϴ̂ሺ� − ͳሻ − Pሺ�ሻφሺ�ሻφTሺ�ሻϴ̂ሺ� − ͳሻ − �Pሺ�ሻφሺ�ሻyሺ�ሻ
=� ϴ̂ሺ� − ͳሻ + Pሺ�ሻφሺ�ሻ ቀyሺ�ሻ −�φTሺ�ሻϴ̂ሺ� − ͳሻቁ (2.40)

Chapter 2: Control and System Identification

69

Where

�ሺݐሻ = �ሺݐሻ�ሺݐሻ (2.41)

�ሺݐሻ = �ሺݐሻ −���ሺݐሻ�̂ሺݐ − ͳሻ (2.42)

The residual eሺ�ሻcan be interpreted as the error in predicting the signal yሺ�ሻone step ahead based on estimate �̂ሺݐ − ͳሻ.
To proceed, it is necessary to derive a recursive equation for Pሺ�ሻrather than

for Pሺݐሻ−ଵas in Eq (2.36) . we apply the matrix inversion lemma and we get

Pሺ�ሻ = � ቀΦሺ�ሻTΦሺ�ሻቁ−ଵ ቀΦሺ� − ͳሻTΦሺ� − ͳሻ + φሺ�ሻφTሺ�ሻቁ−ଵ= Pሺ� − ͳሻ−ଵ + ቀφሺ�ሻφTሺ�ሻቁ−ଵ

= Pሺ� − ͳሻ − Pሺ� − ͳሻφሺ�ሻ ቀ�I + φTሺ�ሻPሺ� − ͳሻ−ଵφሺ�ሻቁ−ଵφTሺ�ሻPሺ� − ͳሻ (2.43)

This implies that

�ሺݐሻ = �ሺݐሻ�ሺݐሻ = �ሺݐ − ͳሻ�ሺݐሻ(� + ��ሺݐሻPሺݐ − ͳሻ−ଵ�ሺݐሻ)−ଵ (2.44)

And that arrive us

Pሺ�ሻ = ቀI − �ሺ�ሻφTሺ�ሻቁ Pሺ� − ͳሻ (2.45)

So the Recursive least squares estimation represented by these equation[37]

{
 �̂ሺݐሻ = �̂ሺݐ − ͳሻ + �ሺݐሻ�ሺݐሻ ቀ�ሺݐሻ − ��ሺݐሻ�̂ሺݐ − ͳሻቁ�ሺݐሻ = �ሺݐሻ�ሺݐሻ = �ሺݐ − ͳሻ�ሺݐሻ(� + ��ሺݐሻPሺݐ − ͳሻ−ଵ�ሺݐሻ)−ଵ�ሺݐሻ = (� − �ሺݐሻ��ሺݐሻ)�ሺݐ − ͳሻ (2.46)

2.2.4 Applying the LS on the chosen robot:

The first thing we have to setup the model we get in section 1.5, we derive this

equation from the dynamical model matrices, each equation describe a joint model,

Chapter 2: Control and System Identification

70

which is given by an input voltage Ui , the velocities and accelerations of the joints

and several parameters which represent the masses, inertias, lengths, friction

coefficients,motors parameters .

U = J́qሷ + �ሺ��ሻ�ሷ + ��ሺ��, �ሶ ሻ� + ሺ�ሻܩ + ሺ�ሶܨ ሻሶ + Tf (2.47)

Denote that we neglect the term of stribeck effect, because its nonlinearity in

the parameters .

૚܃ = ૚�૚ܒ) ૚૛�ܔ૚ܕ+ + ૚ܢܢ� ૛ܢܢ�+૛૛�૛૛�ܔ૛ܕ+ ૜૛�૛૜૛�ܔ૜ܕ+ ૛૛�૛૛�ܔ૜ܕ+ + ૛ܕ૜ܔ�૜૛ܔ૛ �૛૜�૛ + ૜)�ሷܢܢ� ૚ + ሺ�ܢܡ૛ + ૜ሻ�ሷܢܡ� ૛+ ૜�ሷܢܡ� ૜ − ૛(ܕ૛ܔ�૛૛�૛�૛ ૜૛�૛૜�૛૜�ܔ૜ܕ+ ૛૛�૛�૛ܔ૜ܕ+ ૜�ܔ૜ܕ+ ૛�૛૜�૛ܔ ૜�ܔ૜ܕ+ ૛�૛૜�૛)�ሶܔ ૚�ሶ ૛− ૛(ܕ૜ܔ�૜૛�૛૜�૛૜ �૜�ܔ૜ܕ+ �૛૜�૛)�ሶ ૚�ሶ ૜ + ૚�૚ሶ�܎ + ሺ�ሶܖ܏ܑ�૚�܎ ૚ሻ + ૚܎܂

૛܃ = ሺ�ܢܡ૛ + ૜ሻ�ሷܢܡ� ૚ + ૛�૛ܒ) ૛૛�ܔ૛ܕ+ + ૛ܡܡ� ૜૛�ܔ૜ܕ+ ૛૛ܔ૜ܕ+ + ૛ܕ૜ܔ�૜� �૛ܔ �૛ + ૜)�ሷܡܡ� ૛ ૜૛�ܔ૜ܕ+ +૛�૜ܔ૜�ܔ૜ܕ+ ૜ሻ�ሷܡܡ� ૜ + ૛૛�૛�૛�ܔ૛ܕ) ૜૛�૛૜�૛૜�ܔ૜ܕ+ ૛૛�૛�૛ܔ૜ܕ+ �૜�ܔ૜ܕ+ �૛ܔ �૛૜�૛૜ ૜�ܔ૜ܕ+ ૛ܔ �૛૜�૛)�ሶ ૚− ሺ૛ܕ૜ܔ�૜� �૛ܔ �૜ሻ�ሶ ૚�ሶ ૜ + ሺܔ�૛�૛ܕ૛ + ሺܔ�૜�૛૜ + ܏૜ሻܕ૛�૛ሻ�ܔ + ૛ሶࢗ૛�ࢌ + ሶࢗሺ�ࢍ�࢙�૛ࢉࢌ ૛ሻ + ૛܎܂

૜܃ = ሺ�ܢܡ૜ሻ�ሷ ૚ + ૜૛�ܔ૜ܕ) �૜�ܔ૜ܕ+ �૛ܔ �૜ + ૜)�ሷܡܡ� ૛ + ૜�૜ܒ) ૜૛�ܔ૜ܕ+ + ૜)�ሷܡܡ� ૜ + ૜૛�૛૜�૛૜�ܔ૜ܕ) �૜�ܔ૜ܕ+ �૛ܔ �૛�૛૜)�ሶ ૚+ ሺܕ૜ܔ�૜� �૛ܔ �૛ሻ�ሶ ૛ + �૜�ܔ �૛૜ܕ૜܏ + ૛ሶࢗ�૜�ࢌ + ሶࢗሺ�ࢍ�࢙�૜ࢉࢌ ૜ሻ + ૜܎܂

ሺ૛. ૝ૡሻ
Second thing we have to arrange them such a way they are linear in the

parameters as we seen in Eq (2.3), to allow us to apply the least squares parameters

estimation, so we write as follow � = ��

So we have the output vector� ,which represent the PWM inputs to the

motors

� = [UଵUଶUଷ] ሺ૛. ૝ૢሻ

And we extract the parameters we want to estimate, �represent tha

parameters vector

Chapter 2: Control and System Identification

71

θ =

[

૚�૚ܒ ૚૛�ܔ૚ܕ+ + ૚ܢܢ� + ૛ܢܢ� + ૛૛�ܔ૛ܕ૜ܢܢ� ૛૛�ܔ૛ܕ૛૛ܔ૜ܕ+ ૛ܡܡ�૜ܢܡ�૛ܢܡ��૛�ܔ૜૛�ܔ૜ܕ૜૛�ܔ૜ܕ�૜�ܔ૜ܕ�૛ܔ૜ܕ+ + ܡܡ�૛�૛ܒ ૜܎�૚܎�૚ࢌ�૛ࢉࢌ૛�ࢌ�૜�ࢌ ૜�૜ܒ૜܎܂૛܎܂૚܎܂�૜ࢉ]

 (2.50)

then the regresseur matrix �given by

Φ= [�ଵ �ଶ �ଷ�ସ �ହ �଺�଻ �଼ �ଽ�ଵ଴ �ଵଵ �ଵଶ�ଵଷ �ଵସ�ଵହ �ଵ଺�ଵ଻ �ଵ଼�ଵଽ �ଶ଴]
(2.51)

With the regresseurs

�ଵ�= [qଵሷͲͲ] , �ଶ= [cଶଶqሷ ଵ + ʹsଶcଶqሶ ଵqሶ ଶqሷ ଶ + sଶcଶqሶ ଵͲ] , �ଷ= [Ͳcଶ�Ͳ] , �ସ= [Ͳcଶଷ�cଶଷ�] , �ହ= [cଶଷ
ଶ qሶ ଵ − ʹsଶଷcଶଷqሶ ଵqሶ ଶ − ʹsଶଷcଶଷqሶ ଵqሶ ଷsଶଷcଶଷqሶ ଵ + qሷ ଶ + qሷ ଷqሷ ଷ + qሷ ଶ + sଶଷcଶଷqሶ ଵ]

�଺= [ʹcଶଷcଶqሷ ଵ − ʹcଶଷcଶqሷ ଵqሷ ଶ − ʹcଶଷsଶqሷ ଵqሷ ଶ − ʹsଶଷcଶqሷ ଵqሷ ଶʹcଶqሷ ଶ + cଷqሷ ଷ + ሺsଶଷcଶ + cଶଷsଶሻqሶ ଵ − ʹsଷqሶ ଵqሶ ଷcଷqሷ ଶ + sଶଷcଶqሶ ଵ + sଷqሷ ଶ] , �଻= [qሷ ଶqሷ ଵͲ]� , �଼= [qሷ ଶ + qሷ ଷqሷ ଵqሷ ଵ] , �ଽ= [Ͳqሷ ଶͲ],
�ଵ଴= [Ͳqሷ ଷ + qሷ ଶqሷ ଷ + qሷ ଶ]�ଵଵ= [qଵሶͲͲ] , �ଵଶ= [s��nሺqሶ ଵሻͲͲ] , �ଵଷ= [ͲqଶሶͲ] , �ଵସ= [Ͳs��nሺqሶ ଶሻͲ] , �ଵହ= [ͲͲqଷሶ] , �ଵ଺= [ͲͲs��nሺqሶ ଷሻ]

Chapter 2: Control and System Identification

72

�ଵ଻= [ͳͲͲ] , �ଵ଼= [ͲͳͲ] , �ଵଽ= [ͲͲͳ] , �ଶ଴= [ͲͲqሷ ଷ]
Now we apply the LS estimation to get the estimated parameters vector θ̂ as

we define in (2.35) �̂ = ሺ���ሻ−૚���

Chapter 3: Vision

73

Chapter 3: Vision

This chapter will describe theories necessary for understanding the rest of the

thesis. The chapter is divided in image processing and vision system theory.

3.1 Image Processing

Image processing is a set of computational techniques for analyzing,

enhancing, compressing, and reconstructing images. The main components are

importing, in which an image is captured through scanning or digital photography,

analysis and manipulation of the image, accomplished using various specialized

software applications, and output. Image processing has extensive applications in

many areas, including astronomy, medicine, industrial robotics, and remote sensing

by satellites). Image processing for robot vision will improve products quality, save

time and reduce labor cost.

In this section we will present some image processing tools that we used in our

work.

3.1.1 The image

An image is defined as a two-dimensional function �ሺݔ, ሻ.where x and y areݕ

spatial (plane) coordinates. The intensity or gray level of the image at the point of

coordinates (x, y) is the amplitude of � at that point .

This image known as grayscale image or intensity level image, The typical range

of intensity values for each pixel is , 0 to 255, is based on taking a binary number 8

bits that can hold a value from 0 to 255.

Chapter 3: Vision

74

Figure 3.1 a grayscale image and its matrix of intensity level values

3.1.2 RGB color model

The RGB Image has 3 planes of intensity levels, red, green and blue plane, so

each pixel in the image has 3 values, and these values describe the color of the pixel.

Figure (3.2): RGB image and its 3 colors plane, red, green and red plane

RGB colors is usually represented as axes of a 3D cube as shown in Fig. 3.3 The

cubic represents all possible colors. A specific color is represented by three values to

be summed: (R, G, B). Black is (0,0,0) or 0+0+0, or no measurements on any of the

Chapter 3: Vision

75

three color planes. White is (255, 255, 255). The pure colors of red, green, and blue

are represented by (255,0,0), (0,255,0), and (0,0,255) respectively. This is the same

as in colorgraphics.

Figure (3.3): The RGB color model mapped to a cube

3.1.3 HSV color model

HSV is a three-dimensional space in that it has three variables, but it is

definitely not a cube representation, more of a cone as seen in Fig. 3.3. The hue, or

color, is measured in degrees from 0 to 360. Saturation and intensity are real

numbers between 0 and 1. These are generally scaled to 8-bit numbers. Accordingly,

red is both 0 and 255, orange is 17, green is at 85, blue is 170, with magenta at 200.

 HSV space is very used in robotics and object detection, if we have a object

with a specific color , in HSV space we can detect the color even if the light is not

uniform, by selecting a rang in the hue plane ,which is very hard to do it in RGB

space.

Chapter 3: Vision

76

Figure (3.4): The HSV color model cone describe the Hue, Saturation and Value

ranges

3.1.4 Thresholding:

The simplest thresholding methods replace each pixel in an image with a black

pixel if the image intensity is less than some fixed constant T, or a white pixel if the

image intensity is greater than that constant and the result image called binary

image

b(x, y) = {ͳ if �ሺݔ, ሻ ݕ ≥ �Ͳ if �ሺݔ, ሻݕ < � } (3.1)

This application very useful to extract an object by thresholding using a hue

rang for example.

a.RGB image

b.HSV image

c. Binary image

Chapter 3: Vision

77

Figure(3.5) : describe transformation from RGB to HSV then getting a Binary

image by thresholding the HSV image

3.1.5 Edge detection

Edge detection includes a variety of mathematical methods that aim at

identifying points in a digital image at which the image brightness changes sharply

or, more formally, has discontinuities. The points at which image brightness changes

sharply are typically organized into a set of curved line segments termed edges. The

same problem of finding discontinuities in one-dimensional signals is known as step

detection and the problem of finding signal discontinuities over time is known as

change detection.

Edge detection is a fundamental tool in image processing, machine vision and

computer vision, particularly in the areas of feature detection and feature extraction

[30]

a. Canny Edge detector

John Canny considered the mathematical problem of deriving an optimal

smoothing filter given the criteria of detection, localization and minimizing multiple

responses to a single edge.[31] He showed that the optimal filter given these

assumptions is a sum of four exponential terms. He also showed that this filter can

be well approximated by first-order derivatives of Gaussians.

Here is an example of a 5×5 Gaussian filter, used to create the adjacent image,

ǁith staŶdard deǀiatioŶ of σ=1.4. (The * denotes a convolution operation.)

(3.2)

https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Luminous_intensity
https://en.wikipedia.org/wiki/Step_detection
https://en.wikipedia.org/wiki/Step_detection
https://en.wikipedia.org/wiki/Change_detection
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Feature_detection_%28computer_vision%29
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/John_Canny

Chapter 3: Vision

78

It is important to understand that the selection of the size of the Gaussian

kernel will affect the performance of the detector. The larger the size is, the lower

the deteĐtor’s seŶsitiǀitǇ to Ŷoise. Additionally, the localization error to detect the

edge will slightly increase with the increase of the Gaussian filter kernel size. A 5×5 is

a good size for most cases, but this will also vary depending on specific situations.

Figure (3.6):The original image on the left and the detected edges on the right using Canny

edge detection algorithm

3.1.6 Hough transform:

The Hough transform is a feature extraction technique used in image analysis,

computer vision, and digital image processing.[29]

The purpose of the technique is to find imperfect instances of objects within a

certain class of shapes by a voting procedure. This voting procedure is carried out in

a parameter space, from which object candidates are obtained as local maxima in a

so-called accumulator space that is explicitly constructed by the algorithm for

computing the Hough transform.

The classical Hough transform was concerned with the identification of lines in

the image, but later the Hough transform has been extended to identifying positions

of arbitrary shapes, most commonly circles or ellipses. The Hough transform as it is

universally used today was invented by Richard Duda and Peter Hart in 1972, who

called it a "generalized Hough transform"[32]

a. Hough transform for circle detections

https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Image_analysis
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Digital_image_processing
https://en.wikipedia.org/wiki/Parameter_space
https://en.wikipedia.org/wiki/Line_%28mathematics%29
https://en.wikipedia.org/wiki/Richard_Duda
https://en.wikipedia.org/wiki/Peter_E._Hart
https://en.wikipedia.org/wiki/Hough_transform#cite_note-2

Chapter 3: Vision

79

The circle Hough Transform (CHT) is a feature extraction technique for

detecting circles. It is a specialization of Hough Transform. The purpose of the

technique is to find circles in imperfect image inputs. The circle candidates are

produĐed ďǇ ͞ǀotiŶg͟ iŶ the Hough paraŵeter spaĐe aŶd theŶ seleĐt the loĐal

maxima in the accumulator matrix.

In a two-dimensional space, a circle can be described by: ሺܠ − ሻ૛܉ + ሺܡ − ሻ૛܊ = �૛ (3.3)

Where (a,b) is the center of the circle, and r is the radius. If a 2D point (x,y) is

fixed, then the parameters can be found according to (3.3). The parameter space

would be three dimensional, (a, b, r). And all the parameters that satisfy (x, y) would

lie on the surface of an inverted right-angled cone whose apex is at (x, y, 0). In the 3D

space, the circle parameters can be identified by the intersection of many conic

surfaces that are defined by points on the 2D circle. This process can be divided into

two stages. The first stage is fixing radius then find the optimal center of circles in a

2D parameter space. The second stage is to find the optimal radius in a one

dimensional parameter space.

So For each point (x, y) on the original circle, it can define a circle centered at

(x, y) with radius r ,The intersection point of all such circles in the parameter space

would be corresponding to the center point of the original circle as we see in fig 3.7

https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Hough_Transform

Chapter 3: Vision

80

Figure (3.7): an edge image of a circle in the left and its Hough transform space for 4 point in

the right

Consider 4 points on a circle in the original image (left). The circle Hough

transforms is shown in the right. Note that the radius is assumed to be known. For

each (x,y) of the four points (white points) in the original image, it can define a circle

in the Hough parameter space centered at (x, y) with radius r. An accumulator matrix

is used for tracking the intersection point.

In the parameter space, the voting number of points through which the circle

passing would be increased by one. Then the local maxima point (the red point in the

center in the right figure) can be found. The position (a, b) of the maxima would be

the center of the original circle. [33]

3.2 Vision system

3.2.1 Camera System

The lens inside the camera refracts all rays of light from a certain object point to

one single point in the image plane. If the lens is thin implying the distortion can

be neglected, the lens law is valid.

૚ࢻ+
૚ࢼ = ૚� (3.4)

Where α is the distance between the lens and the object, β is the distance

between the lens and the image plane and f is the focal length. Figure 2.1 illustrates

the lens law. [33]

Chapter 3: Vision

81

Figure (3.8): Illustration of the lens and object distances and focal lengths

By the lens law it is obvious that an object at the distance α from the lens will

be reproduced with complete sharpness on the image plane. If the distance between

the object and the lens differs from α, the reproduction on the image plane will be

more or less blurred.

3.2.2 Camera Modeling and Calibration:

The Camera Calibrator It allows us to estimate camera intrinsic, extrinsic, and

lens distortion parameters. You can use these camera parameters for various

computer vision applications. These applications include removing the effects of lens

distortion from an image, measuring planar objects, or reconstructing 3-D scenes

from multiple cameras.

In robotics application, camera calibration used to estimate the camera

parameters to be able to get a position or a distance of an object, and in stereo

vision we can do the mapping and pose estimation by two calibrated camera.

3.2.2.1 Camera Model:

The Coŵputer VisioŶ “Ǉsteŵ Toolďoǆ™ ĐaliďratioŶ algorithŵ uses the Đaŵera

model proposed by Jean-Yves Bouguet [34] . The pinhole camera model does not

account for lens distortion because an ideal pinhole camera does not have a lens. To

Chapter 3: Vision

82

accurately represent a real camera, the full camera model used by the algorithm

includes the radial and tangential lens distortion.

a. Pinhole Camera Model

A pinhole camera is a simple camera without a lens and with a single small aperture.

Light rays pass through the aperture and project an inverted image on the opposite

side of the camera. Think of the virtual image plane as being in front of the camera

and containing the upright image of the scene.

Figure (3.9):Illustration of the camera model from the object to the 2d image

The pinhole camera parameters are represented in a 4-by-3 matrix called the camera

matrix. This matrix maps the 3-D world scene into the image plane. The calibration

algorithm calculates the camera matrix using the extrinsic and intrinsic parameters.

The extrinsic parameters represent the location of the camera in the 3-D scene. The

intrinsic parameters represent the optical center and focal length of the camera.

(3.5)

(3.6)

Chapter 3: Vision

83

The world points are transformed to camera coordinates using the extrinsic

parameters. The camera coordinates are mapped into the image plane using the

intrinsic parameters. [35]

Figure (3.10): Illustration of the camera model showing the transformation by the

Extrinsic parameters and the mapping into the image plane using the intrinsic

parameters

b. Distortion in Camera

The camera matrix does not account for lens distortion because an ideal pinhole

camera does not have a lens. To accurately represent a real camera, the camera

model includes the radial and tangential lens distortion. [36]

b.1 Radial distortion

Radial distortion occurs when light rays bend more near the edges of a lens than

they do at its optical center. The smaller the lens, the greater the distortion and the

radial distortion coefficients model this type of distortion.

Figure (3.11): radial distortion of 3 type of lens

b.2 Tangential Distortion

Chapter 3: Vision

84

Tangential distortion occurs when the lens and the image plane are not

parallel. The tangential distortion coefficients model this type of distortion

Figure (3.12): illustration of Tangential Distortion of a lens

3.2.2.2 Camera Calibration Parameters

The calibration algorithm calculates the camera matrix using the extrinsic and

intrinsic parameters. The extrinsic parameters represent a rigid transformation from

3-D world coordinate system to the 3-D camera's coordinate system. The intrinsic

parameters represent a projective transformation from the 3-D camera's coordinates

into the 2-D image coordinates.

Figure(3.13): Diagram describe the transformation from the World coordinates into Pixel

coordinates passing by Extrinsic and intrinsic camera parameters matrices

a. Extrinsic Parameters

The extrinsic parameters consist of a rotation, R, and a translation, t. The origin

of the camera's coordinate system is at its optical center and its x- and y-axis define

the image plane. Define the camera Extrinsic matrix E by

Chapter 3: Vision

85

E = [R tͲ ͳ] (3.7)

b Intrinsic Parameters

The intrinsic parameters include the focal length, the optical center, also known as

the principal point, and the skew coefficient. The camera intrinsic matrix, K, is

defined as:

K = [f୶ Ͳ Ͳs f୷ Ͳc୶ c୷ ͳ] (3.8)

The next figure describe the pixel skew

Chapter 4: Implementation and practical results

86

Chapter 4: Implementation and practical results

4.1 Manipulator Setup

4.1.1 Hardware:

In our work, we use an Arduino mega microcontroller and a motor driver to

control our manipulator, but the computations are done in the computer instead of

the microcontroller (Arduino), who just does the work of the Analog/Digital conversion

for the analogical sensors and the PWM generation which represents the voltage

signals for the DC Motors.

Figure (4.1a): Hardware Setup

Chapter 4: Implementation and practical results

87

Figure (4.1b) The previously discussed manipulator workbench

4.1.2 Software:

The control implementation is designed in MATLAB Simulink as diagram blocks,

where we design the control law, generation trajectories and filtering the noisy data

ŵeasuƌed fƌoŵ eaĐh ŵaŶipulatoƌ͛s seŶsoƌ ǀia the AƌduiŶo aŶalog iŶputs, aŶd fiŶallǇ

the resulting control law will be transferred to the microcontroller (Arduino) which

generates a PWM signals. The DC motor Driver Card contains three L6203 H-Bridges,

which eventually amplifies the signals from 5V (Arduino command signals) to the

driving signals 12V .

As we mentioned in the introduction, we used the Arduino IO (MATLAB AND

SIMULINK SUPPORT PACKAGE FOR ARDUINO). We upload the Arduino IO code into the

Arduino board, this code does the Serial communication by reading and writing from

and to Simulink blocks with a specific communication protocol.

The reason of using the MATLAB AND SIMULINK SUPPORT PACKAGE FOR

ARDUINO, is to minimize the time of computation, because in our case all the

computation run in computer speed instead of the Arduino microcontroller speed

which is very slow compared to the computer, so the role of the Arduino is just to

Chapter 4: Implementation and practical results

88

receive the command signals and send the measurements of the potionmeter. Other

reason, is the filters and the complicated iterative functions that are already

implemented in Simulink and we can use them, and also all the measured and the

filteƌed data aƌe saǀed autoŵatiĐallǇ iŶ MATLAB ǁoƌkspaĐe, aŶd theƌe͛s also aŶ

important reason, is the supervision which we can visualize real-time values of the

closed-loop, and we can tune the PID in real-time which makes it a very helpful tool,

and makes our work very clear, efficient and time saving.

The figure 4.2, represents a Simulink model example of driving a dc motor using

analogWrite function to Generate PWM signal to drive the DC motor, also we used a

digitalWrite function to enable and disable the motor.

For the sensor measuring we used analogRead function to read the voltage from the

potienmeters, and then we can get the angle value using an experimental calibration

which relates the measured voltage with angle value in radian.

Figure (4.2): Simulink model of driving a Dc Motor and measuring position from its sensor

4.1.3 Filtering:

When we measured the joints angles with the potienmeters, the data we got

was very noisy, so we had to use a Lowpass Filter.

Chapter 4: Implementation and practical results

89

Denote that the sampling time Te=0.01S, so we have sampling frequency Fe=100Hz.

Appling Shannon theorem we have:

Fb ≥ ʹFe

With Fb is the lowpass Filter cut-off frequency. In our case we choose Fb = ͵ͲͲHz

Figure (4.3): Lowpass Filter Response with 300Hz cut-off frequency

Figure (4.4): joint measured signal and the filtered one

Chapter 4: Implementation and practical results

90

4.2 independent Joint Control (PID Position Control)

4.2.1 Design and concept

As we mentioned in section 2.1.1 we apply a PID controller for each joint

independently, and we add each of forward and inverse kinematics functions, to

translate from Cartesian space to the joints space and vice versa. To achieve the

desired positions we generate a trajectory in Cartesian space, this trajectory composed

of three trajectories Xtraj, Ytraj and Ztraj, then they will transform by the inverse

kinematics function to joints space trajectories.

So the PID controllers try to achieve these desired trajectories. And to compare

the real position of the manipulator with the desired one, we used the forward

kinematics function.

Figure (4.5): Simulink model of independent joints positions control following a

Cartesian space trajectory

The figure below represent a single joint subsystem, which has an input that is

the Set Point (desired angle in Radians), the closed-loop with discrete time PID

Chapter 4: Implementation and practical results

91

controller, the PID output is limited (from -255 to 255), so we use a map function to

map the output value into the work range of the analogeWrite function (from 0

to 255), then the measured data will be filtered and map from Voltage value into

radian, all the values in the closed-loop are displayed and also plotted on a scopes,

finally the output of the subsystem represent the first joint angle named q1.

Figure (4.6): Simulink model of PID controller for a single joint with supervision of all

the control loop signal values

We used a Stopping criteria that disables the motor if the error is reaching zero (<0, 01

Radians).

Chapter 4: Implementation and practical results

92

Figure(4.7): Simulink Subsystem model of a Dc motor command with a

stopping criteria and joint sensor measurement

4.2.2 Tuning and results

By several experiments we get the PID gains Kp,Kd and Ki .

Table 4.1 : the PID gains of the first joint controller

Set point (rad) Kp Kd Ki

π/Ϯ ʹͺͻ 40 50

Table 4.2: the PID gains of the second joint controller

Set point (rad) Kp Kd Ki

π/Ϯ ʹʹͷ 30 10

Table 4.3 : the PID gains of the third joint controller

Set point (rad) Kp Kd Ki

-π/ϯ ʹ͹Ͳ 30 50

After 30 seconds of data recording we get the following figures with sample time

of 0.01S.

Chapter 4: Implementation and practical results

93

Figure(4.8): Angles responses for 3 joints using PID controllers

As we see, the responses are acceptable, for the first joint there is no steady stat

error but there are oscillations caused by the high gain Kp, we try to reduce it but that

lead us to a big steady stat error specially in small Set Points, and this due to the

friction in the joint.

For the second joint and third joint we have good responses only a small steady

stat error, and the oscillations due to noise in the joints sensors.

Same experiment but the figures below shows the responses of the end effector

position in the Cartesian space.

Chapter 4: Implementation and practical results

94

Figure (4.9): end effector position signals (X,Y,Z) following a desired trajectory

4.3 Parameter Estimation

as we mentioned in section 2.1.2, for a robot manipulator to track a specific

trajectory we, have to apply a computed torque control, to do that we need to know

the inverse dynamics model, which means, knowing or estimating the manipulator

parameters, in our case the robot is too ancient and not so commonly used, and the

datasheet is not available, therefore, the parameters values are unknowns, so the

solution is to estimate these parameters with the simplest system identification tool,

known by least-squares method.

Denote that the Least-Squares model of the manipulator is an inverse dynamical

model, which means the inputs are the joints angles and their derivatives, and the

outputs aƌe the PWM sigŶals, aŶd that͛s ǁhat ǁe Ŷeed iŶ Đoŵputed toƌƋue ĐoŶtƌol

method.

In section 2.2.3.a ǁe͛ǀe seeŶ the deŵoŶstƌatioŶ of LS ŵethod, aŶd iŶ 2.2.3

ǁe͛ǀe ǁƌitteŶ the ŵaŶipulatoƌ͛s iŶǀeƌse dǇŶaŵiĐs as follow:

� = Φ�̂ (4.1)

Chapter 4: Implementation and practical results

95

Where Y is the output vector, Φ the regresseur matrix and ϴ̂ the estimated

parameters vector.

In our work, to apply LS method we implemented the regresseur matrix � Eq (2.51) in

MATLAB, then we generate a spesific signals comunoly used in system identification, and

we use them to excite the robot dynamics, but this signals are exciting the robot in closed-

loop using PID contollers, because the robot is unstable in open-loop as we mentioned in

2.2.1.

4.3.1 The Exciting Trajectory

We used very efficient signals to excite the robot joints, these signals are of type

Fourier series, which can be parameterized as a sum of finite Fourier series as follow

qiሺݐሻ = ଴�ݍ + ∑ a sin ሺwf��=଴ ሻݐ� − ሻ (4.2)ݐ�ሺwfݏ݋ܾܿ

Where wf is fundamental frequency of the excitation trajectory.

We recorded about 110 seconds of data, in the left side of the figure 4.8 below

represent the three excitation signals (PWM signals) which are going to transfer to

voltage by the motors driver board, and this represents the output vector �, in the

right side of the figure 4.8 we have the three joints angles values represented in (rad).

With sampling time Te=0.01 s, for each signal we have 11000 sample so that

� = [UଵUଶUଷ] (4.3) with Uଵ, Uଶ and Uଷare 11000X1 vector, and Y is 33000X1 vector.

Chapter 4: Implementation and practical results

96

Figure(4.10): three joint angles signals and their inputs PWM signals

4.3.2 Applying the LS method

After we get the joint angles, we compute the regresseur matrix � using the

joints angles values and its derivatives, and we arrange them just as we did in Eq

(2.51), then we apply the LS method to estimate the 20 parameters Eq (2.50) As follow

�̂ = (ΦTΦ)−ଵΦTY (4.4)

With Φis 33000X20 matrix andϴ̂is 20X1 vector

4.3.3 Parameters validation

Chapter 4: Implementation and practical results

97

To validate our parametric model using the parameters that we estimated, we

have to excite the system with other trajectories, then use the given outputs which are

the joints angles signals and its derivatives to make the estimated model represented

by the regresseur matrix Φ and the estimated parameters ϴ̂ , and we compute the

outputs vector Y which represents the Estimated PWM signals , we computed as

follow :

� = Φ�̂ (4.5)

Figure (4.11): Validation Signals for the three joints manipulator represented by the

measured and the estimated output signals

We compute the RMS error between the real and the estimated output signals for the

three joints and we got:

Table 4.4: RMS error and the fit between the measured and the estimated outputs for

the three joint

 Joint 1 Joint 2 Joint 3

RMS error 47 37 32

fit 63% 70% 74%

So the model we estimate fits the real one about 70%, which are acceptable results.

Chapter 4: Implementation and practical results

98

The errors we got are due to the nonlinearity in the parameters that we cannot

estimate with LS method as stribeck effect and some mechanical problems like

hysteresis and the dead zones in the Dc motors.

And also the big problem is data filtering and recording, as we seen in section

ϰ.ϭ.ϯ theƌe is a lot of Ŷoise iŶ the seŶsoƌs, afteƌ filteƌiŶg ǁe͛ǀe seeŶ the lag ďetǁeeŶ

the real and the filtered signals ,and also the first and the second derivatives are even

further from the real ones.

Also theƌe͛s pƌoďleŵ of uŶites iŶ the paƌaŵeteƌs ǁe got , iŶ ouƌ ǁoƌk ǁe take

the output data as voltage but in PWM , and we consider the relation between the

PWM value and the real voltage in the motors are linear, which is not guaranteed ,and

if it was liŶeaƌ ǁe doŶ͛t kŶoǁ this sĐaliŶg faĐtoƌ ǁhiĐh Đould ŵake ouƌ paƌaŵeteƌs iŶ

wrong unites.

4.4 Computed toque control (Trajectory tracking)

As we mentioned in section 2.1.2,to track a specific trajectory with manipulator we need to

apply a nonlinear control law using feedback linearization and known in robotics as Computed

torque control.

4.4.1 Design and concept

As ǁe͛ǀe seeŶ iŶ EƋ Ϯ.ϭ9, the ĐoŶtƌol laǁ is

 = �ሺݍሻ(ݍ ሷ݀ − �݀ ሶ݁ − (݁݌� + �ሺݍሶ , ሶݍሻݍ + ሶݍሺܨ ሻ + ሻݍሺܩ

With ݁ = �ሺݐሻ − ��ሺݐሻ

By adding the motors dynamics Eq (2.47) the control law become

U = ሺJ́ + �ሺݍሻሻ(ݍ ሷ݀ − �݀ ሶ݁ − (݁݌� + � ሺݍ , ሶݍ ሻݍ + ሶݍሺܨ ሻ + ሻሶݍሺܩ + Tf (4.6)

Chapter 4: Implementation and practical results

99

And we have from section 2.2.3, the inverse dynamic model we got from LS

estimation method � = Φ�̂

Where Y = [UଵUଶUଷ] so thatUଵ, UଶandUଷ are the motors inputs PWM signals, and

we have the regresseur matrix Φ representing all the dynamics equations known as

regressors function, and ϴ̂ contain the estimated parameters

So we can write

� = U = J́qሷ + �ሺݍሻݍሷ + �ሺݍ , ሶݍ ሻݍ + ሻݍሺܩ + ሶݍሺܨ ሻሶ + Tf = Φሺݍ, ሶݍ , ሷݍ ሻ�̂ (4.5)

And if we use the new control law (4.4) , and by replacing q ሷ by (qdሷ − Kdeሶ −Kpe) which represents the PD Controller plus the feedforward, we get this control law

U = Φ ቀݍ, ሶݍ , ݍ) ሷ݀ − �݀ ሶ݁ − ቁ(݁݌� �̂ (4.6)

And there is the implementation of the computed torque control law using the

inverse dynamics model that we get in the identification part

Chapter 4: Implementation and practical results

100

Figure (4.12): Simulink model of Computed torque control for three joints manipulator using

Dynamics inversion and 3 PD controller and supervision of all the loop signals values

4.4.2 tuning and results

By several experiments we get the PD gains Kp and Kd .

Table 4.5 : the PID gains of the first joint controller

Set point (rad) Kp Kd Ki

π/Ϯ ʹͷ 10 0

Table 4.6 : the PID gains of the second joint controller

Set point (rad) Kp Kd Ki

π/Ϯ ͻ 6 0

Table 4.7: the PID gains of the third joint controller

Set point (rad) Kp Kd Ki

-π/ϯ Ͷͻ 14 0

After 15 seconds of data recording we get the following figures with sample time

of 0.01S

Chapter 4: Implementation and practical results

101

Figure (4.13): joints Angles Responses after using a computed torque control for tracking

desired trajectories

As we have seen, the manipulator is tracking the desired trajectories, but there is

some error due to the errors in the estimated model and the dynamics that are not

included when modeling, and there is some lag because of the filter lag as we

mentioned previously.

And also if we have a fast desired trajectory the manipulator cannot track,

because the motors velocities are too limited.

4.5 Vision Control application:

If we want to grasp an object like pick and place application, we have to know

the exact position of the object. But if the objects are coming randomly from a

conveyor for example, the only solution is using a vision system to a Estimate the

Chapter 4: Implementation and practical results

102

objects poses. Then we use the inverse kinematics to get the desired angles, and finally

apply a control law to achieve them.

Figure (4.14): Vision Control for diagram a Robot Manipulator

In our work we try to estimate a pose of a red ball, we used image processing

tools that are implemented in MATLAB to detect the red ball. But this detection allows

us to kŶoǁ the ďall positioŶ iŶ the iŵage ǁhiĐh ŵeaŶs iŶ piǆels, this ƌesult doesŶ͛t help

in our application, because in our robot we can achieve a position using the real world

coordinates.

In order to get the camera (webcam) model, we have to calibrate it, and then

using the intrinsic and extrinsic camera parameters, we can transform the object

position from image which is by pixels, to the real position by meters with respect to

the world coordinate frame, then into the robot base coordinate frame.

Figure (4.16): illustration of robot manipulator, camera and object coordinate frames

Chapter 4: Implementation and practical results

103

The previous figure shows us the different coordinate frames positions, where

{0} is the robot bas coordinate frame which is the frame that we used in inverse

kinematics, and we have the camera coordinate frame {c}, and finally the object

coordinate frame {ob}, so using a detection algorithm we get the position of the object

with respect to {c} and then we transform it to the robot frame {0}. Denote that the

position of the camera with respect to the robot coordinate frame is fixed and known.

4.5.1 Object detection

In this part we worked on object detection and position estimation in the image,

first thing we get the real-tiŵe iŵage fƌoŵ the ǁeďĐaŵ, it͛s a ‘GB iŵage, iŶ oƌdeƌ to

detect the ball from its color we have to convert the image into HSV space, by selecting

a Hue range and a Saturation range, these two ranges selected such a way that is cover

the color of the ball in different intensity and light distribution on the ball.

So we have a red ball, by many experiences we select as follow: ૜�� > ݁ݑܪ > ૜૝� �. �� > ݊݋�ݐܽݎݑݐܽ� > Ͳ.ʹ

Then we threshold the hue and the saturation images planes using these two

ranges.

After we got the binary image we applied the Hough Transform for circle

detection using MATLAB function imfindcircles, by choosing a range for radius values

[35, 65] and after some experiences. We got the following result

Chapter 4: Implementation and practical results

104

Figure (4.16): circle detection after thresholding and applying circle Hough transform

And we get the radius value r=18 pixel, and the position with pixels (290,181)

4.5.2 Camera calibration and pose estimation

Now after we got the ball position in the image (by pixels), we want to transform

this position into the real world coordinate frame then to the manipulator coordinate

frame, and use this position to get the required joints angles using the inverse

kinematics.

In order to estimate any mathematical model we have to collect data

represented by inputs and outputs as we did in identification, in camera calibration

which is an estimation of the camera parameters we have to take several positions in

the real world which represent the inputs, and estimate these positions in the digital

image which represent the outputs.

Commonly in camera calibration they used a checkerboard that we know its

squares sizes, so we can get the real world position of each square, and camera

calibration algorithm could estimate the positions of each square in the image. Using

this data, the MATLAB calibration toolbox uses some mathematical tools such SVD to

estimate the camera model.

Chapter 4: Implementation and practical results

105

In our work we took several photos of the workplace where the checkerboard

placed in a specific position with respect to the manipulator.

Figure (4.17): examples of several checkerboards photos that are used in camera calibration

Figure (4.18) MATLAB camera calibrator app showing the world coordinate frame after

calibrating the camera and showing the mean error of the estimation

As we have seen the mean error of estimation is about 0.15 pixel which is a good

result.

Chapter 4: Implementation and practical results

106

4.5.3 Vision position control

After getting the camera parameters represented by extrinsic and intrinsic, we are able

to estimate any position in the checkerboard plane with respect to the world frame.

To do that we implemented this equation using (3.5),(3.6),(3.7) and (3.8)

P = [Rt] K

With � represent the camera parameters

[X Y Z] = [xyͳ] ቀ[Rt] Kቁ−ଵ

With (x,y) is the position in the image and (X,Y,Z) is the position of the ball with respect to the

world frame.

To compare the estimated position with the real one, we placed the ball in known positions

and then apply the position estimation algorithm. We got the following results

Chapter 4: Implementation and practical results

107

Figure (4.19): examples of real-time position estimation using MATLAB and calibrated camera

Table 4.8 : real positions of the ball compared with the estimated positions

Real position(mm) Estimated position(mm)

(400,-100) (406,-101)

(300,300) (300,302)

(500,0) (492,-6)

(400,200) (402,199)

As we have seen from the table we have a good estimation of the ball position in

the real world frame.

In order to grasp the object by the manipulator hand all we have to do is to send

the position vector to the kinematics control SIMULINK model we demonstrated in

Figure (4.5).

Chapter 4: Implementation and practical results

108

The figure below shows the end effector position after feeding the Set point

from the vision pose estimation output.

Figure(4.20): end effector position following a desired position feeding from camera vision

Chapter 4: Implementation and practical results

109

Conclusion

In this thesis we implemented an efficient method for control of a manipulator

with unknown dynamical parameters .The PID used for position control as

independent controller for each joint. Although, these PID controllers do not

guarantee a tracking of a desired trajectory. To solve this problem we applied a

ŶoŶliŶeaƌ ĐoŶtƌolleƌ ǁhiĐh is kŶoǁŶ iŶ ƌoďotiĐs ďǇ ͚Coŵputed toƌƋue ĐoŶtƌol͛, aŶd iŶ
order to do this we have estimated the parameters of the manipulator. And this

controller tracks the desired trajectory.

After that we have controlled the robot, we took a step further by making it more

intelligent by adding vision, and now we are able to grasp an object in any arbitrary

positioŶ , ďǇ deteĐtiŶg the oďjeĐt͛s positioŶ iŶ the digital iŵage ,theŶ transform it to

the world coordinate frame using a calibrated camera .

Bibliography

Chapter 4: Implementation and practical results

110

 [1] CONTROL STRATEGIES FOR ROBOTS IN CONTACT ,Jaeheung Park, March

2006 .

 [2] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and

control. Wiley New Jersey, 2006.

 [3] L. Sciavicco and B. Siciliano. Modeling and control of robot manipulators.

Springer Verlag, 2000.

 [4]Mathworks. MATLAB - The Language of Technical Computing, Last accessed

June 13, 2011.

http://www.mathworks.com/products/matlab/.

 [5] Mathworks. Simulink - Simulation and Model-Based Design, Last accessed

June 13, 2011.

http://www.mathworks.com/products/simulink/.

 [6]MATLAB Support Package for Arduino

https://www.mathworks.com/help/supportpkg/arduinoio/

 [7] Peter Corke, Robotics, Vision and Control, Fundamental Algorithms in

MATLAB; pages 15-29, June 2011.

 [8] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Dynamics and

Control ,Second Edition, pages 61-64; January 28, 2004.

 [9] Paul, Richard (1981). Robot manipulators: mathematics, programming, and

control: the computer control of robot manipulators.

 [10]Spong, Mark W.; Vidyasagar, M. (1989). Robot Dynamics and Control. New

York: John Wiley &Sons .

 [11]Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Dynamics and

Control ,Second Edition, pages 108-109; January 28, 2004.

 [12] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Dynamics and

Control ,Second Edition, pages 108-109; January 28, 2004.

 [13] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Dynamics and

Control ,Second Edition, pages 110-111; January 28, 2004.

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/simulink/
https://www.mathworks.com/help/supportpkg/arduinoio/
https://books.google.com/books?id=UzZ3LAYqvRkC&printsec=frontcover
https://books.google.com/books?id=UzZ3LAYqvRkC&printsec=frontcover

Chapter 4: Implementation and practical results

111

 [14] Robot Manipulator Control Theory and Practice, Second Edition ,FRANK

L.LEWIS

 [15] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar, Robot Dynamics and

Control ,Second Edition, pages 193-195; January 28, 2004.

 [16]Frautschi, Steven C.; Olenick, Richard P.; Apostol, Tom M.; Goodstein, David

L. (2007). The Mechanical Universe: Mechanics and Heat, Advanced Edition

(illustrated ed.). Cambridge University Press. p. 208

 [17]hyperphysics ,http://hyperphysics.phy-astr.gsu.edu/hbase/corf.html.

 [18] Ternes, Markus; Lutz, Christopher P.; Hirjibehedin, Cyrus F.; Giessibl, Franz

J.; Heinrich, Andreas J. (2008-02-22). "The Force Needed to Move an Atom on a

Surface". Science. 319

 [19]http://www.mogi.bme.hu/TAMOP/robot_applications/ch07.html

 [20] Robot Manipulator Control theory and Practice

 [21] SlotineLi ,APPLIEDNONLINEAR CONTROL

 [22] SlotineLi ,APPLIEDNONLINEAR CONTROL

 [23] Oussama Khatib Stanford University robotics course: Introduction of

Robotics.

 [24]StigMoberg, Modeling and Control of Flexible Manipulators, Linköping

studies in science and technology. Dissertations. No. 1349 ;pages 43-44.

 [25] StigMoberg, Modeling and Control of Flexible Manipulators, Linköping

studies in science and technology. Dissertations. No. 1349 ;pages 44-46.

 [26] StigMoberg, Modeling and Control of Flexible Manipulators, Linköping

studies in science and technology. Dissertations. No. 1349 ;page 52.

 [27] FRANK L.LEWIS, PH.D. Moncrief-O͛DoŶŶell EŶdoǁed Chaiƌ aŶd AssoĐiate

Director of Research Automation & Robotics Research Institute University of

Texas, Arlington ,Robot Manipulator Control Theory And Practice, page 365.

https://books.google.com/books?id=ZTnxQGJ1fHMC
https://en.wikipedia.org/wiki/Science_%28magazine%29
http://www.mogi.bme.hu/TAMOP/robot_applications/ch07.html

Chapter 4: Implementation and practical results

112

 [28]Ngoc Dung Vuong, Marcelo H. AngJr,Dynamic Model Identification for

Industrial Robot, pp 57-58

 [29] Shapiro, Linda and Stockman, George. "Computer Vision", Prentice-Hall,

Inc. 2001

 [30] Umbaugh, Scott E (2010). Digital image processing and analysis : human

and computer vision applications with CVIPtools (2nd ed.). Boca Raton, FL: CRC

Press.

 [31] J. Canny (1986) "A computational approach to edge detection", IEEE Trans.

Pattern Analysis and Machine Intelligence, vol 8, pages 679–714.

 [32] Duda, R. O. and P. E. Hart, "Use of the Hough Transformation to Detect

Lines and Curves in Pictures," Comm. ACM, Vol. 15, pp. 11–15 (January, 1972)

 [33] Mr.Naaman Abderrahmane, Vision courses.

 [34] Bouguet, J. Y. "Camera Calibration Toolbox for Matlab." Computational

Vision at the California Institute of Technology. Camera Calibration Toolbox for

MATLAB.

 [35] Zhang, Z. "A Flexible New Technique for Camera Calibration." IEEE

Transactions on Pattern Analysis and Machine Intelligence. Vol. 22, No. 11,

2000, pp. 1330–1334.

 [36] Heikkila, J., and O. Silven. "A Four-step Camera Calibration Procedure with

Implicit Image Correction." IEEE International Conference on Computer Vision

and Pattern Recognition.1997.

 [37] Karl Johan Astrom,Bjorn Wittenmark.Adaptive Control (2nd Edition)

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Karl+Johan+Astrom&search-alias=books&field-author=Karl+Johan+Astrom&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Bjorn+Wittenmark&search-alias=books&field-author=Bjorn+Wittenmark&sort=relevancerank

