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Résumé: dans cette thése on a discuté une solution compléte de command des
bras manipulateur, premiérement on a fait la modilisation de la cinematique et la
dynamique du bras, apres on a implementé des methodes efficaces pour la
commande et l'identification du bras manipulateur avec des parametres inconnus
de la dynamique, ce qui nous a permis de commandé la position ainsi le suivi de la

trajectoire, puis on a finalsé avec une commande de la position basé sur la vision.

Mots clés: Robot manipulateur, Dynamique, la command PID, Commande

nonlinear, identification des systems.

Abstract : In this thesis we discussed a complete robot manipulator control solving
problem, first we modeled the manipulator’s kinematics and dynamics, then we
implemented reliable methods for control and identification of a the robot
manipulator with unknown dynamical parameters .which allows us to control
position as well as trajectory tracking, and then we conducted a vision based
position control.

Keywords: Robot manipulator, Dynamics, PID controller, nonlinear control, System

identification.




Notations and Acronyms

Symbols and Operators

¢ : The relative pose of a frame with respect to a reference coordinate frame.
{A}: the coordinate frame A.

x;: The x axis of the i"* frame.

y;: The y axis of the it frame.

zi: The z axis of the i**frame.

0; : The origine point of coordinate frame i.

%, ¥, Z: Unite vectors of the axes x,y, z

ARp : 3x3 Orthonormal Rotation Matrix of frame B with respect to frame A.
ATg: 4x4 homogeneous transformation matrix of frame B with respect to frame A.
q;: The i" angle of rotation in the case of a revolute joint.

Ai: The homogeneous transformation matrix that expresses the position and the

orientation of 0; X; yjz; with respect to 0;_1Xi_1 Yi—1Zj—1-

t9: The position vector of the end effector with respect to the inertial or base frame

tP: 4X1 homogeneous position vector with respect to frame i.

Bi: The angle of rotation around the x axis.



di: The sliding distance along the z axis.
a: The length of the common normal.

a: The angle about common normal, from old z axis to new z axis.

trans ,, (d;) : The translation matrix in the z axis with distance di with respect to the

it" coordinate frame.

Rot ,, (6i) : The rotation matrix about the z axis with angle 8i with respect to the it"

coordinate frame.

w : The angular velocity

V : The linear velocity

J: The derivative of the angular velocity or angular Jacobian matrix
Jv : The derivative of the Linear Velocity or linear Jacobian matrix
J: The robot manipulator Jacobian matrix.

M: Robot manipulator mass matrix.

C: Centrifugal and Coriolis forces matrix.

G : Gravity vector of a Robot manipulator.

F: Friction matrix of a Robot manipulator.

K: Kinetic energy.

U: Potential energy.

[ : The inertia Tensor.

T: The vector of motor torques.

bjji: Christoffel Symbol.

p : The mass density.



p : 3x3 skew matrix of 3x1 p position vector.

I3 : 3x3 identity matrix.

g: The gravitational force.

f.: Coulomb friction coefficient.

f,: Viscous friction coefficient.

fs: Stiction friction coefficient.

gs: Stribeck velocity.

Tf: Actuator friction term.

J: Actuator inertia.

r(t): The reference or the set point signal in the control loop.

e(t) : The error signal between the set point and the feedback in the control loop.
€, é: The first and the second derivative of the error.

u(t): The control input signal to the system in the control loop.

y(t) : Output of the system in control loop.

qi: The it" joint angle of the robot manipulator.

g: The vector of the joints angles of the robot manipulator.

gd: The vector of the desired joints angles of the robot manipulator.
g, g: First and second derivative of joints angles vector of the robot manipulator.
Kp,Kd,Ki: PID controller gains.

Y: System output vector.

Y: The estimated output vector.

6: The Vector of (unknown) parameters.



O: The Vector of the estimated parameters.

¢,: The Regression variables depend on the it" parameter.
®: The regresseur matrix.

V(6,t): The least squares cost function.

U;: The PWM input to the it"* motor.

f(x,y): 2d function represents a digital image.

a: Distance between the camera lens and the object.

B : Distance between the camera lens and the image plane.

f: The focal length.

P: Camera matrix.

E: Extrinsic camera matrix.

K: Intrinsic camera matrix.

Abbreviations and Acronyms

DOF: Degrees of freedom.

PID: Proportional Integral Derivative controller.

LS: least square.

RLS: recursive least squares.

RGB: Digital image of three color planes Red, Green and Blue.
HSV: Digital image transform to Hue, Saturation and Value space.

CHT: The circle Hough Transform.



PWM: Pulse-width modulation can generate an analogical voltage from digital
output by switching between 0 and 1 with high frequency and with specific duty
cycle.

DC: Direct courant.

USB: UNIVERSAL SERIAL BUS.

|0: INPUT/OUTPUT.

Te: Sampling time.
Fe: Sampling frequency.
Fb: lowpass Filter cut-off frequency.

RMS: Root Mean Square is the square root of the arithmetic mean of the squares of

the values.

SVD: Singular Value Decomposition


https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Duty_cycle
https://en.wikipedia.org/wiki/Duty_cycle
https://en.wikipedia.org/wiki/Root_mean_square
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Introduction

Introduction

The manipulator robot has become a necessity because the industry handles
heavy objects repetitively and in hazardous environments. All the research has led to
arms of all sizes and weights, of all speeds and precisions, and adapted to the tasks

entrusted.

The appearance of the manipulator robots is pulsated by the fact of an era where
the manufacturing is back in chain, which requires a repetitive and painful working
time. In recent decades, more complex tasks requiring displacements in
environments not allowed to human beings (nuclear, mine, military, space, etc.)

have favored the Mobile robot to settle.

The rapid development of the industry has invoked the improvement of robots
manipulators. Then the robot must handle with increasing speeds and precisions.
This requires more appropriate mechanical structures but also better new control

techniques.

The researchers did not cease these last two decades to investigate the different
axes that deal with robotics. This research is distinguished by the different angles
with which are addressed the preoccupations with robotics that can be classified as

follows:

a. Modeling:
Most of the time the robot model (Manipulator or mobile), Is necessary to
perform a command for example , But sometimes the model can be non-linear and

couplet, even with variable parameters, Which requires orienting towards nonlinear

1



Introduction

modeling and identification methods instead of being satisfied with the Lagrange
and Euler formalisms for the dynamic model.
b. Scheduling tasks:

These are strategies that manage a set of operations that make up a task. We are
talking about the coordination between these operations and their realization. The
Planning is global if you have all the information about the environment and often
static. The planning is local if the movement cannot be foreseen in advance, which
requires reactive reflexes.

c. Trajectory generation:

The trajectory generation that must be traveled by a robot and carried out off

line or online.

d. The command :

This is the step that generates the control signal to send to the robot's
shareholders to ensure the trajectory to be followed. Among these commands, the
PID command, the adaptive control, linear feedback control, Robust control.

e. The identification :

Conventional methods such as least squares are used if the system is assumed to

be linear in the parameters, if it’s not the case, thus using non-linear approximation

methods. [1]

1. History and Motivation :

The English term robot was derived from the Czech word robota that means
executive labor, and was first introduced by the Czech playwright Karle Capek in his
1921 play Rossum's Universal Robots. Since then the term has been applied to
virtually anything that operates with some degree of autonomy, usually under
computer control. An official definition of the term, dated to 1980, comes from the

Robot Institute of America (RIA) and reflects to days status of robotics technology:
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“A robot is a reprogrammable, multifunctional manipulator designed
to move material, parts, tools, or specialized devices through variable

programmed motions for the performance of a variety of tasks.” [2]

In the early 1980's, robot manipulators were touted as the ultimate solution to
automated manufacturing. Predictions were that entire factories of the future would
require few, if any, human operators. It turned out that these predictions were a
little exaggerated, as the savings in labor costs often did not outweigh the
development costs of creating robot systems. Quite simply, people are good at what
they do, and installing a robot involves complex systems integration problems. As a

result, robotics fell out of favor in the late 1980's.

A resurgence of interest in robotics can be witnessed in the recent years.
Deeper understanding of the subject and new technology have made it possible for
robots to explore the surface on Mars, locate sunken ships, searching out land
mines, and finding victims in collapsed buildings. In an industrial environment the
advantages of robots are reduction of manufacturing costs, increase of productivity,
improvement of quality standards, and the possibility of eliminating harmful tasks

for human operator.[3]
2. TheEurobtec IR50p( or ROB3i) :

The IR50p (or ROB3i) is a robot manipulator manufactured by Eurobtec, it'sa 5
DOF manipulator, each joint has a DC motor that operates in a nominal voltage of

24V, and a potionmeter to measure the joint’s angle.

Originally,IR50p has an integrated controller in the base of the robot, it’s easy
and fast to install and implement but it’s an old technology, doesn’t include such a
trajectory tracking algorithms, as well intelligence represented by vision, as well data

supervision, and speed precision ratio perspective.

Our mission consists of removing all the hardware and electronics except the

arm (motors and Potionmeters), and implement improved nonlinear controller

3
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design solution as well, estimate accurate IR50pmanipulatorparameters, then we’ll

add an intelligence represented by vision control.

Figure 1: CAD model of IR50P robot manipulator

3. Objectives:

Our objective is improving the control of the first 3 DOF (Degrees of freedom) of
the robot using an Arduino board and Simulink, this makes the computing more
responsive, stable and efficient. This allows us to supervise all feedback, signals,
positions and joint angles in real-time. Such a complex control problem would be
better solved by dividing it into mini objectives as follows:

1. Kinematics and dynamics modeling of the 3 DOF robot manipulator.

2. Simulate the model, design different control methods.

3. Design a PID controller for the 3 DOF manipulator for position control.

4. Complete our robot dynamical model by estimating reliable parameters of the

robot.
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5. Appling computed torque control using the estimated parameters for
trajectory tracking.

6. Estimate the position of an object using a camera, the arm has to reach the
object which required: camera modeling and calibration, image processing for

color and shape detection of an object.

4. Software:

Four computer programs have been used to solve the thesis assignment.

Following is a short description of this software and the using area.
4.1 MATLAB R2014a with SIMULINK:

MATLAB [4] is developed by MathWorks, and is a high-level language and
numerical computing environment for performing computationally intensive tasks
faster than traditional programming languages. It solves tight integration and
mathematical problems with other MathWorks products, among them SIMULINK [5]
which is an environment for multi domain simulation and Model-Based Design for
dynamic and embedded systems. MATLAB and SIMULINK have been used to

simulate the dynamic model for The IR50p, and to present the results graphically.

4.2 Arduino 10 (MATLAB support package for Arduino ) :

MATLAB support package for Arduino is a MATLAB class and Simulink blocks

for communicating with an Arduino microcontroller board.

It also has a specific code for Arduino Hardware that enables the serial
communication with SIMULINK. We can read data from sensors, write and generate
signals through the Arduino board, and immediately see the results in SIMULINK

without having to compile. [6]

4.3 MATLAB Camera Calibration Toolbox :


https://www.mathworks.com/matlabcentral/fileexchange/?term=tag%3A%22arduino%22
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We have used this toolbox to estimate the parameters of the camera. We can
use these parameters to correct for lens distortion, measure the size of an object in

real world units, as well determine the location of the camera in the scene.
5 Hardware:
For this part we have used three principal electronics’ tools:

5.1 Arduino Mega2560board:

Arduino board designs use a variety of microprocessors and controllers. The
boards are equipped with sets of digital and analog input/output (I/O) pins that may
be interfaced to various expansion boards (shields) and other circuits. The boards

feature serial communications interfaces, including Universal Serial Bus (USB) on

some models, which are also used for loading programs from personal computers.
The microcontrollers are typically programmed using a dialect of features from the
programming languages C and C++. In addition to using traditional compiler

toolchains, the Arduino project provides an integrated development environment

(IDE) based on the Processing language project.

We have chosen the Arduino Mega 2560 board as it is based on the
ATmega2560 microcontroller shown in figure (2), it operates at 16 MHz to control all
of the onboard functions as well sending the data over serial communication to

SIMULINK in order to be plotted and interpreted.


https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Universal_Serial_Bus
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Processing_%28programming_language%29
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MADE

Figure 2: Arduino Mega 2560

5.2 Dc Motors Driver Board:

A power board is intended to distribute power at the desired dose to electrical
components including sensors and actuators, in our case we have the Dc Motors
Driver board used to control the three dc motors according to the command signals

delivered by the Arduino mega board.

The power board has 3 H-bridges related to the motors, and it's powered by a
24V power source, and the Arduino mega controls this driver board in order to

decide:

e The power distributed to the motor, which will make it turn more or

less quickly according to the PWM signal from the Arduino.

e The direction of the voltage to be applied to the motor, which will make

it turn in one direction or another, this can be done using the H-bridges.



Introduction

Figure 3 Power Board

5.3 Webcam:

In vision application, we used an arbitrary webcam with a quality of 640X480.

Figure 4 Webcam

6. Outline

e Chapter 1 discusses the mathematical model of the IR50p robot manipulator,
which is concluded using the kinematics and dynamical modeling.

8
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Chapter 2 discusses different control theories of the manipulator such PID,
independent joint control and computed torque control and simulate each of
them, and also discusses System identification methods and the way to apply
it on robot manipulators.

Chapter 3 discusses computer vision theory and image processing tools that
are used to detect and position an object, and then discusses the camera
model which can transfer the position of the object from the digital image
position into the real world coordinate frame.

Chapter 4 discusses the obtained practical results after applying the PID
controller as well, a comparison between the estimated manipulator model
and the real one, results obtained after applying computed torque controller
using the estimated parameters, and finally shows the results obtained from

vision control application.



Chapter 1: Modeling

Chapter 1: Modeling

1.1 Representing Position and Orientation:

A fundamental requirement in robotics and computer vision is to represent
the position and orientation of objects in an environment. Such objects include

robots, cameras, work pieces, obstacles and paths.

A point in space is a familiar concept from mathematics and can be described
by a coordinate vector, also known as a bound vector, as shown in Figure 1.1.a the
vector represents the displacement of the point with respect to some reference
coordinate frame. A coordinate frame, or Cartesian coordinate system, is a set of

orthogonal axes which intersect at a point known as the origin.

More frequently we need to consider a set of points that comprise some
object. We assume that the object is rigid and that its constituent points maintain a
constant relative position with respect to the object’s coordinate frame as shown in
Figure 1.1.b Instead of describing the individual points we describe the position and
orientation of the object by the position and orientation of its coordinate frame. A
coordinate frame is labeled, {B} in this case, and its axis labels xg and yg adopt the

frame’s label as their subscript.

The position and orientation of a coordinate frame is known as its pose and is
shown graphically as a set of coordinate axes. The relative pose of a frame with

respect to reference coordinate frame, is denoted by the symbol £ pronounced ksi.

10
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A
H“-n,&i.s
oLt
“~ecoordinate
veetor
orLgLA _axic
= X

Figure (1.1a): the displacement of the point P with respect to a coordinate frame

VB

Figure (1.1.b): the position and orientation of the object by the position and

orientation of its coordinate frame.

{A}
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Figure( 1.2) : two frames {A} and {B} and the relative pose AEB which describes {B}

with respect to {A}

Figure 1.2 shows two frames {A} and {B} and the relative pose ,which describes
{B} with respect to {A}.The point P can be described with respect to either coordinate

frame. Formally we express this as:

Ap=~¢. . Bp (1.1)

1.1.1 Representing Pose in 3-Dimensions:

The 3-dimensional case is an extension of the 2-dimensional case and we add
an extra coordinate axis, typically denoted by z, which is orthogonal to both the x-

and y-axes.

The point P is represented by its x-, y- and z-coordinates (x, y, z) or as a bound

vector
P=xX +yy+272 (1.2)
with & = [1,0,0]"

Figure 1.1.a shows a coordinate frame {B} that we wish to describe with
respect to the reference frame {A}. We can see clearly that the origin of {B} has been
displaced by the vector t = (x, y, z) and then rotated in some complex fashion. The
way we represent orientation is very important. Our approach is to consider an
arbitrary point P with respect to each of the coordinate frames and to determine the
relationship between, and we will consider the problem in two parts: rotation and
then translation. Rotation is surprisingly complex for the 3-dimensional case and we

devote all of the next section to it.

12
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YA .
A -
{4/ 2\

_p "T—L\{B}
1 ZB
{A} -

/ -
ZA

Figure (1.3 ): Two 3D coordinate frames {A} and {B}. {B} is rotated and translated

with respect to {A}

1.1.2 Representing Orientation in 3-Dimensions:

a. Orthonormal Rotation Matrix:

We can represent the orientation of a coordinate frame by its unit vectors
expressed in terms of the reference coordinate frame. Each unit vector has three

elements and they form the columns of a 3 x 3 orthonormal matrix “Rg

XA XB
[yA]= ARg [yB] (1.3)
VAN Zg

The orthonormal rotation matrices for rotation of 8 about the x, y and z axes

are

[1 0 0
Rx=10 cos® —sind (1.4)
|0 sin® cosH.

[cos® 0 —sinO]
Ry=1 0 1 0 (1.5)
| sin@ 0 cos©O

13
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cosB® —sin6 0
R,=|sin® cos6 0 (1.6)

0 0 1

b. Three-Angle Representations:

Euler’s rotation theorem requires successive rotation about three axes such
that no two successive rotations are about the same axis. There are two classes of
rotation sequence: Eulerian and Cardanian, named after Euler and Cardano

respectively.

The Eulerian type involves repetition, but not successive, of rotations about one
particular axis: XYX, XZX, YXY, YZY, ZXZ, or ZYZ. The Cardanian type is characterized by
rotations about all three axes: XYZ, XZY, YZX, YXZ, ZXY, or ZYX. In common usage all these

sequences are called Euler angles and there are a total of twelve to choose from.

The XYZ sequence is commonly used in aeronautics and mechanical dynamics and
Robotics. which represent the rotations about ¢, 6 and { ,which known as roll, pitch and

yaw angles.
R= RX((p)Ry(e)Rz(lp) (1.7)
1.1.3 Combining Translation and Orientation:

Alternatively we can use a homogeneous transformation matrix to describe

rotation and translation

[x] Px
[4y]_ 4Rp t] By
llAzjl- 0.3 11|Bg .
1 1

14
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The Cartesian translation vector between the origins of the coordinates frames {A}
and {B} is t, and the change in orientation is represented by a 3 x 3 orthonormal submatrix

R. The vectors are expressed in homogenous form and we write

A
Aﬁ:[RB t]Bij =T, 5P (1.9)
01*3

with AT is a 4 x 4 homogeneous transformation. The matrix has a very specific

structure and belongs to the special Euclidean group of dimension 3. [7]
1.2 Forward Kinematics:

In this section we develop the forward or configuration kinematic equations for
rigid robots. The forward kinematics problem is concerned with the relationship
between the individual joints of the robot manipulator and the position and

orientation of the tool or end-effector.

Stated more formally, the forward kinematics problem is to determine the
position and orientation of the end-effector, given the values for the joint variables
of the robot. The joint variables are the angles between the links in the case of
revolute or rotational joints, and the link extension in the case of prismatic or sliding
joints. The forward kinematics problem is to be contrasted with the inverse
kinematics problem, which will be studied in the next chapter, and which is
concerned with determining values for the joint variables that achieve a desired

position and orientation for the end-effector of the robot.

1.2.1 Kinematic Chains:

A robot manipulator is composed of a set of links connected together by
various joints. The joints can either be very simple, such as a revolute joint or a

prismatic joint, or else they can be more complex.

15
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Revolute Prismatic
A
M| —Fx
— A
. Y 4{/
3D ¥ L. L
—LV/ L
&

Figure (1.4): Symbolic representation of robot joint

With the assumption that each joint has a single degree-of-freedom, the action
of each joint can be described by a single real number: the angle of rotation in the
case of a revolute joint or the displacement in the case of a prismatic joint. The
objective of forward kinematic analysis is to determine the cumulative effect of the

entire set of joint variables

A robot manipulator with n joints will have n + 1 links, since each joint
connects two links. We number the joints from 1 to n, and we number the links from
0 to n, starting from the base. By this convention, joint i connects link i- 1 to link i.
We will consider the location of joint i to be fixed with respect to link i-1. When joint
i is actuated, link i moves. Therefore, link O (the first link) is fixed, and does not move

when the joints are actuated.

With the i joint, we associate a joint variable, denoted by q;. In the case of a
revolute joint, q;is the angle of rotation and in the case of a prismatic joint, q;is the

joint displacement:

~ {ei : jointi revolute}
4= d;: joint i prismatic

16
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To perform the kinematic analysis, we rigidly attach a coordinate frame to each
link .In particular, we attach 0;x;y;z;to link i. This means that, whatever motion the
robot executes, the coordinates of each point on link i are constant when expressed
in the it" coordinate frame. Furthermore, when joint i is actuated, link i and its
attached frame, 0;x;y;z;, experience a resulting motion. The frame 0,XyY¢Zo, Which

is attached to the robot base, is referred to as the inertial frame.

Now suppose Ai is the homogeneous transformation matrix that expresses the

position and orientation of 0;x;y;z; with respect to 0;_1X;_1Vi-1Zi—1-

The matrix Ai is not constant, but varies as the configuration of the robot is
changed. However, the assumption that all points are either revolute or prismatic

means that Ai is a function of only a single joint variable, namely qi. In other words,
A= A; (gi) (1.10)

Now the homogeneous transformation matrix that expresses the position and

orientation of 0x;y;z; with respect to o;x;y;z; is called, by convention, a

transformation matrix, and it is denoted by Tji

T/= Ais1Aisz Ajog i i< (1.11)

T/=1 ifisj (1.12)
j in—1., ..

T'= (T)) "if i>j (1.13)

By the manner in which we have rigidly attached the various frames to the
corresponding links, it follows that the position of any point on the end-effector,
when expressed in frame n, is a constant independent of the configuration of the
robot. Denote the position and orientation of the end-effector with respect to the
inertial or base frame by a three-vector t (which gives the coordinates of the origin
of the end-effector frame with respect to the base frame) and the 3 x 3 rotation
matrix RY, and define the homogeneous transformation matrix

17
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0 0
TO= ﬁ)n tf (1.14)

Then the position and orientation of the end-effector in the inertial frame are

given by

TS = A1 (q1) ... Ap (qn) (1.15)

Each homogeneous transformation Ai is of the form

i—-1 i—-1
Ai=[Ri0 til] (1.16)
Hence
’l"ji:AHl...A]-:[R} tli] (1.17)
0 1

The matrix R}expresses the orientation of o;x;y;z;relative to 0;x;y;z; and is

given by the rotational parts of the A-matrices as

. . 1
R} = Riy; R (1.18)
The coordinate vectors 0} are given recursively by the formula

=t + R}_lt}‘1 (1.19)

These expressions will be useful when we study Jacobian matrices . [8]
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Joint 2 {2}Jnir‘r:3 {_3}

X3

Figure (1.5): Links, joints , coordinate frames and transformation vector on an 3 DOF

elbow manipulator

1.2.2 Denavit and Hartenberg Representation:

A commonly used convention for selecting frames of reference in robotics
applications is the Denavit and Hartenberg (D—H) convention which was introduced
by Jacques Denavit and Richard S. Hartenberg. In this convention, coordinate frames
are attached to the joints between two links such that one transformation is
associated with the joint [Z], and the second is associated with the link [X]. The
coordinate transformations along a serial robot consisting of n links form the

kinematics equations of the robot,

Tg:[Z1][X1][Z2][X2] [Xn—l][zn] (1.20)
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In order to determine the coordinate transformations [Z] and [X], the
joints connecting the links are modeled as either hinged or sliding joints, each of
which have a unique line S in space that forms the joint axis and define the relative
movement of the two links. A typical serial robot is characterized by a sequence of
six lines S;, i=1,...,6, one for each joint in the robot. For each sequence of lines S; and
Si+1, there is a common normal line Aii+1. The system of six joint axes Si and five
common normal lines Aji:1 form the kinematic skeleton of the typical six degree of
freedom serial robot. Denavit and Hartenberg introduced the convention that Z
coordinate axes are assigned to the joint axes Sij and X coordinate axes are assigned

to the common normal’sAi 1.

This convention allows the definition of the movement of links around a

common joint axis Si by the screw displacement,

cosBi —sinBi 0 O
_|sinBi cosBi O O

[Zil=1"""0 1 di (1.21)
0 o0 0 1

where 6; is the rotation around the X and d; is the slide along the Z axis
either of the parameters can be constants depending on the structure of the robot.
Under this convention the dimensions of each link in the serial chain are defined by
the screw displacement around the common normal Aji:1 from the joint S; to Si:1,

which is given by

1 0 0 dj
0 cosa;; —sina; 0
X' - 1,l+1 1,l+1 1.22
[Xi] 0 sinajjpq  C€OSOyj4q O (1.22)
0 0 0 1

Here aii+1 and aii+1 define the physical dimensions of the link in terms of

the angle measured around and distance measured along the X axis. [9]

a. Four parameters
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The following four transformation parameters are known as D-H

parameters[10]

d: offset along previous z to the common normal.

0: angle about previous z, from old x to new x

a: length of the common normal .

a: angle about common normal, from old z axis to new z axis

Figure (1.6 ):DH Parameters, Joints axis and common normal representation

b. Denavit-Hartenberg matrix

It is common to separate a screw displacement into the product of a pure

translation along a line and a pure rotation about the line, so that
[Z;]= trans , (d;)Rot,, (6i) (1.23)
And

[Xi]= trans y, (aji+1)Roty (@ji41)  (1.24)
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Note that this is the product of two screw displacements, The matrices

associated with these operations are

1 0 0 O
trans 4, (d;)= 8 (1) 10 g (1.25)
1
0 0 0 1
Cei —Sei 0 O
Roty,,(8)=[*% 0% 0 Oliag)
0 0 0 1
10 0 a
trans 4, (aj)= 8 é (i 8 (1.27)
0 0 0 1
1 0 0 0
|0 coy —soy O
Rot,.(a;)= 0 s co; 0 (1.28)
0 0 0 1

This gives :

cB; —sbBjca; sBjsa;  a;ch;

i— B; cBijca; —cBisa; a;sb; R t
1 1T-= SY; ) 2% Y - 1.2
! 0 SQ CQy di [0 0 0 1]( 9)
0 0 0 1

where R is the 3x3 submatrix describing rotation and t is the 3x1 submatrix

describing translation[3]

1.2.3 Application on the chosen robot:

Consider now the 3 DOF Elbow manipulator represented symbolically by Figure 1.70.
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Figure (1.7) : Links, joints , coordinate frames and transformation vector on an 3

DOF elbow manipulator

Table 1.1 DH parameters for 3-link Elbow manipulator.

We have

0i-1 di—q ®; Q
qi1 1y /2
q- 0 1, 0
ds 0 15 —1/2

T9=[Z,1X11[Z1(X-1(X5][Z5]

And we know from (1.23) and (1.24) that

[Z;]= trans ,.(d;)Rot,, (8i)And

And by replacing the parameters we get

23
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T2 = Rotz(qq)trans z(1;)Roty(a,)Rotz(q,)trans x(I,)Rotz(q3) trans x(I3)Roty( t/2)
(1.30)

And the Transformation matrix is given by:

€23€1 —S51 —523€1  €1(l3¢3 + 1;635)

C2381 € —523€1  c¢1(l3¢o3 + Lrc5)
TO — 1\t3¢23 2¢2 1.31
3 523 0 C23 I, + I3s3 + Iys, (1.31)
0 0 0 1

And we can derive

C23C1  —S1  —S23Cq ¢ (I3¢z3 +15¢3)
R%=[C2351 €1 —S23C1 and  t3=]ci(I3co5 + 15cy)
523 0 C23 11 + 13523 + 1252

Denote that we have:

cz3 =cos(qz+q3) , c¢1=cos(q1), ¢z =cos(qz)

sy =sin(qy) , Sz3 =sin(q, + q3)

1.3 Differential Kinematics:

1.3.1 Derivation of the Jacobian:

In vector analysis, the Jacobian matrix is a matrix associated with a vector
function at a given point. Its name comes from the mathematician Charles Jacobi.
The determinant of this matrix, called Jacobian, plays an important role in solving

nonlinear problems.

The time derivative of the kinematics equations yields the Jacobian of the
robot, which relates the joint rates to the linear and angular velocity of the end-

effector, The robot Jacobian results in a set of linear equations that relate the joint
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rates to the six-vector formed from the angular and linear velocity of the end-

effector.
a. Angular Velocity:

Consider that the angular velocity is noted as w,Now when a rigid body moves
in a pure rotation about a fixed axis, every point of the body moves in a circle. The

centers of these circles lie on the axis of rotation.

As the body rotates, a perpendicular from any point of the body to the axis

sweeps out an angle 6, and this angle is the same for every point of the body. [11]

The angular velocity w with respect to a joint frame is expressed by its angular

velocity and its axe of rotation vector and can be written as

w=2q with Zisthe unite vector which describes the axe of rotation of the

joint , denote that

0
<o 0
1

For a robot manipulator, we consider w the angular velocity of the end-
effector, this angular velocity is the vectorial sum of the provided angular velocity of
each joint that they are expressed relative to a common coordinate frame, in our
case the base coordinate frame, and all the axis of rotation must be represented in

the base frame, wcan be expressed by:
w=YN,%q,(1.33)

We know that Z;is the axe of rotation of the ith joint expressed in the base

frame (frame {0} ), thus we can write it
Z; = 9RZ(1.34)

By replacing Z; in (1.33) , becomes
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q
w = [JRZIRZ - JRZ] * q; (1.35)
dn
And we can write
w=J,q (1.36)
which gives us
Jo =[IRZIRZ --- IRZ](1.37)
and |, is the derivative of the angular velocity

b. Linear Velocity:

We now consider the linear velocity of a point that is rigidly attached to a

moving frame.

Suppose the point t° is rigidly attached to the frame 01x1y1z1, and that olx1y1z1 is
rotating relative to the frame 00x0y0z0, so we can express the linear velocity of

frame {1} with respect to {0} frame, and it can be written as[12] :

_dt®_dt’dq;_ dt® .

TTdt dq, dg;  dgy 1

In case of robot manipulator, tQ is the end-effector position vector, the linear

velocities can be added vectorially and becomes

dtg . dtd . dty .
V=Gt + Gy + o | (238)

And it becomes
d1

_[dtadt dtal« | q2
v_[dqldqz dqn] : (1.39)
dn

And we can write it as
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V=]yq (1.40)
hence

dtddtd dtd

1.41
dq; dq; dqn] ( )

Jy = [
And |, is the derivative of the Linear Velocity

C. Combining the Angular and Linear Jacobians:

The jacobian matrix expressed by combining each of jacobian, the linear and

the angular [13]
We have
O-()a ue
And we can write

J= ]I:] (1.43)

And J the jacobian matrix of the manipulator

1.3.2 application on the chosen robot :

from what we have studied previously we can get :

V=lyg 5 w=J,q - (Z)z(}:)q - IZGZ)

And we know from (1.41)that :

dtddtddtd

1.44
dq; dq; dQ3] ( )

o=

First we have the position vector of our robot dented by (1.32)

27



Chapter 1: Modeling

c1(I3cz3 +13¢7)
t3 = | c1(I3c3 +12¢5) (1.45)

qt0 —s1(3¢23 +15¢5)
d—3 = | c1(I3c33 +15¢3) (1.46)
q1
0
40 —¢1(I352.3 +1382)
d—3 = |= s1(I3s23 +135;,) (1.47)
qz2 ] 1
3C23 +15C;
dt0 —l38,3¢;
—= = |-I385338; (1.48)
dqs
I3¢53
Thence:
=s1(I5¢3 + 15¢2) —c1(3823 +1282)  —l3sz3¢
0 I3¢23 + 15c; I3c,3

And we know from (1.37) that the angular jacobian is

0
» = [JRZIRZIRZ]  (1.50) withZ = H

1
~ ¢, —s; 0710 [0
Z, = {RZ = [sl ¢ 0] [0 =0 (1.51)
0 0 1111 [1
¢ —s; 0 L On Or[ 0]
ZzzgR2= S1 cq 0] 0 C(E) _S(E) 0 _Cl [_Cl] (1.52)
TU TU
0 0 1l]o C(E) C(E) 1.
o O 100
Z3=°RZ=[sl 0 ”0 1 0 [—cl] (1.53)
0 1 0 0 1
thence
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0s1 s
Jo=1[Z1Z; Z3 ]=[0—C1—¢; (1.54)
10 O
By combining the two jacobian we get:
[ —s51(l3¢23 + lc3)  —c1(l3s23 + 1357) —l3s23¢1 1
| c1(lzcz3 +1c3)  — s1(l3s23 + Izs2) —1l352351 |
J:i 8 l3¢23 + lzscz l3Cz.3s i(1'55)
1 1
0 —C1 —C1
| 1 0 o |

1.4 Inverse kinematics:

The inverse kinematics problem is, given the position and orientation of the
tool frame, to compute the corresponding joint angles. The inverse kinematics
problem is considerably harder than the forward kinematics problem, where a
unique closed form solution always exists, and there are several methods can be

used to get the inverse kinematics .
1.4.1 Iterative Method:

In this method we consider a few change of the variable g and a few change of

the variable x and we can express them as Ax and Aq respectively
with ] is the Jacobian Matrix,we can write
Ax = | Aq (1.56)
Ax = xd — X (1.57)

X : actual position

with {xd: desired position
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The Algorithm that’s used in this method

1. Compute actual position :x

2. Compute :Ax = xd — X

3. Using pseudo-inverse : Ag=(J"D71)Tax  (1.58)

4. Calculate the new angle qpew :  Gdnew = 9oia + Aq (1.59)

1.4.2 The geometric Approach:

This method is used to solve the unknown joint angles required for the
autonomous positioning of a robotic arm. A plethora of complex mathematical

processes is reduced using basic trigonometric in the modeling of the robotic arm.
1.4.3 Application on the chosen robot :

As we have mentioned we have to found the unknown angles for each joint;
and in our case we have 3 link arm robot so we have to find (q4,q, ,q3) , for the this

we have used basic trigonometric equations :

For the first joint angel q; we have
gq; = arctan G) (1.60)

And for the third joint angel q;:

Sinqz =+/1+cosqs (1.61)

And we have A=./x%+y? (1.62)
and r2=NA2+72 (1.63)
and r2 =13 +1% - 21,15 cosa (1.64)
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(13 +13-22-2%)

Thence Cos q =~2>———2 (1.65)
21,15
And qz =n—a (1.66)
and cosq; = —Cosa (1.67)
_ _ (+3-a-4])
o) cosq, = ol (1.68)
2 2 22
thence q; = acos (— M) (1.69)
2,13
and for the second joint angel g, we have
__(3sings)
tan(B)_12+13cosq3
_ ¢ —1, (3sings)
B =tan (E:E;E;E) (1.70)
In the other hand we have : Y=B +q, < q, =Y-B (1.712)
and tan(T)=ZX1 ©Y=tan"1(z, /D) (1.72)

Hence

q = tan~1(z;/A) — tan~1(- 2509 y (4 73

1,+13cosqs3
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Yo

Figure (1.8) :angels and distances of a 3 DOF elbow manipulator
1.5 Dynamics:

For control design purposes, it is necessary to have a mathematical model that
reveals the dynamical behavior of a system. Therefore, in this section we derive the
dynamical equations of motion for a robot manipulator. Our approach is to derive
the kinetic and potential energy of the manipulator and then use Lagrange’s
equations of motion to describe the dynamic properties of the robot arm. This

relation may be on the form [14]

M@+ C(q,a+G(q) + F(g) = 1 (1.74)

Mass Centrifugal Gravity Friction Input

Matrix  and Coriolis Torque
Forces

1.5.1 Lagrange-Euler formulations

The Lagrangian is formulated as [15]

%(:—;)j—én (1.75)
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The function L, which is the difference of the kinetic and potential energy, is
called the Lagrangian of the system, and Equation (1.96)is called the Euler-Lagrange

Equation.
L=k-u (1.76)

Thence

d (0k\ 0k ou
&(a_q)'a_q + a =7 (1.77)

Where T is the total kinetic energy and U is the total potential energy of a

system that consists of n rigid links.

1.5.1.1 Inertial force:
And here we must talk about the mass matrix
a. Mass matrix :

the mass matrix M(q) is a symmetric matrix M that expresses the connection

between the time derivatives qof the generalized coordinate vector q of a system

The kinetics energy for a manipulator is define as

We have : K=%qt M(q) § (1.78)
dk a (1. . R
So: 5 5(5 4" M(9) 4) =M(9) 4 (1.79)
ad [0k . . . .

hence : P (£)= = (M(q) @) = M(Q)d + M(a) ¢ (1.80)
[af 2]
. N e

And we get: M(q)4 + M(q) q 2 (1.81)
19 56,
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The equation (1.81) describes the Inertial forces Represented in mass matrix

and Centrifugal &Coriolis Forces.

For the kinetic energy we can defined it as :
K=,k =24"M(@q  (1.82)

1
for lineair movement : k = Emv2

1

for rotational movement : k = Ewtlcw

In addition to this we have
ki = %(mivtcvc + w;'lw;)  (1.83)

From (1.83) and (1.82)

1.t - _1lyn t t

K=2a"M(q) g =32, (mivieve + wilgwi)  (1.84)

And we have ve=Jv,q  (1.85)

With ]y, the linear jacobian for the ith joint define as

apCi apci]

]Vi - [aql dqn (1.86)

Denoted that Pci: center of mass position vector in frame {0}
And we have also w; = Jy,q (1.87)
With ], the angular jacobian for the ith joint define as

Jo = [Z1 - Zp] (1.88)

Denoted that Zi: axe of Rotation in frame {0}

Thence SAM@ 4= 2 2L (myt )y + wiflgw) g (1.89)
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And we get the mass matrix expression
M(q) = XL (myJ" )y + w;tlgw;) (1.90)
The mass matrix can be written as this form

M11M12 e Mln

M(q) = (1.91)

MnanZ b Mnn

b. Centrifugal and Coriolis Forces :

The Coriolis force is an inertial force (also called a fictitious force) that acts on
objects that are in motion relative to a rotating reference frame. In a reference
frame with clockwise rotation, the force acts to the left of the motion of the object.

In one with anticlockwise rotation, the force acts to the right [16]

Whereas the centripetal (Centrifugal) force is seen as a force which must be
applied by an external agent to force an object to move in a curved path, the
Centrifugal and Coriolis forces are "effective forces" which are invoked to explain the

behavior of objects from a frame of reference which is rotating. [17]

Centrifugal &Coriolis terms can be extracted from (1.81) and we can write

't MllMlz ew Mln .
[¢ ta_M] . ol o |4
o - 1|q 6Q1| M11M12 Min [ [ IMniMng .. My |
Cla, 4)g=M(a)q -3 |= a0 | @92
lqt 6—MJ MnanZ Mnn M11M12 Mln
dn .t . .
q . . ' . q
|[Mp1Mpy ... My |
We define M amy (1.93)
1]k—d
a
And Mj = Mjj1q1 + Mjjpq2 + - +My,gn (1.94)
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And we can write

Cla,q)g=

%(M111M121 l\'/111'1) + % (M112M122 Mijz) + "'%(Mllanzn Mijn)

%(MllnMIZD Mijn) + % (Mllanzn Mijn) + "'%(Mllanzn Mijn

Mi11Mi21 - My d192
: (1.95)
MnlnMnnl Mll’ll’l qn—lqn
Using Christoffel Symbols :
1
b =7 (Mjj + My — M) (1.96)

We can write a general form :

Cla, 4)q = ci(a)g*+ca(a)dq (1.97)

b111b122 blnm

Centrifugal term : cl(q)g®= " (1.98)
bnllbn22 nnm

qQ’,

2b1112blZZ an(n—l)n 1
Coriolis term: ¢ 2(q)[qql = (1.99)
2bn112bn22 an(n 1)n q n— 1q n

c. Inertia matrix :

the moment of inertia is a scalar value expressing the resistance to changes to
the rotation of an object. If the axis o rotation is not given, it is possible to generalize
the scalar moment of inertia as 3X3 matrix expressing the moment of inertia about

arbitrary axes. This matrix called also inertia tensor.
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Let the mass density of an object p, and the inertia tensor in frame attached

to center of mass of the object and p the position vector defin as

X
p= [y] (1.100)
vA

We have I= [—pppdv and —pp = (p'p)l; —pp* (1.101)
Thence I= [[-(p'p)Il5 — pp'] pdv (1.102)
y? 422 —Xy XZ
We have—pp = [-(p'p)I; —pp'] = | —xy zZ2+x?> —yz (1.103)
<2 _y? x24y?
Ixx —Ixy Ixz
the inertia tensor expressed as I=|— Ixy Iyy  —Iyz (1.104)
—Ixx —lyz  lzz

and we define the Moments of Inertia
Ixx = [[[(y* + z*)pdxdydz  (1.105)
lyy = [ff (x + z%)pdxdydz (1.106)
Izz = JJf (y* + x*)pdxdydz (1.107)
and we have also the Products of Inertia
Ixy = [[f xypdxdydz  (1.108)
Ixz = [[[ xzpdxdydz  (1.109)
lyz = [[f yzpdxdydz  (1.110)
1.5.1.2 Gravity term (Potential Energy ):

Now consider the potential energy term. In the case of rigid dynamics, the only

source of potential energy is gravity. The potential energy of the i-th link can be
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computed by assuming that the mass of the entire object is concentrated at its

center of mass and is given by

u; = m;g h;

and U=Y1 u; (1.111)
u; = mi(_gotpci)} =1

0
We have the Gravity Vector : g0 = ( 0 ) (1.112)
-8
And we have the linear Jacobin Jv, =
apCi apcl
[aTl E] (1.113)
. ou a ci
We define G= a—q=—2?=1(mig0tan)

And from the previous equation we get the gravity term define as

mj 8o

G((D= - ( ]Vltlvzt ]Vnt) < ) ='( ]Vlt(mlgo) + ]Vzt(m2g0)+'"+lvnt(mng0)) (1-114)

my8o

1.5.1.3 Friction modeling:

Although joint frictions are complicated in reality, a simple model which is the
combination of viscous and Coulomb and stiction( stribeck effect) , is normally used
to describe the friction phenomenon for all joints:

F(@) = Fyq +Fesign @+ Fs (@) (1.115)

viscous Coulomb  stribeck
friction friction effect

.  viscous friction :

The viscous friction element models the friction force as a force proportional to

the sliding velocity.

I. Coulomb friction :
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The Coulomb approximation mathematically follows from the assumptions
that surfaces are in atomically close contact only over a small fraction of their overall

area, that this contact area is proportional to the normal force.

and that the frictional force is proportional to the applied normal force,

independently of the contact area.

the Coulomb approximation is an adequate representation of friction for the

analysis of many physical systems.[18]

1. stiction( stribeck effect):

The Stribeck curve is a more advanced model of friction as a function of
velocity. Although it is still valid only in steady state, it includes the model of

Coulomb and viscous friction as built-in elements.[19]

_laf?
And We write Fs (q)=(fs - ;) sign(q)e |qs| (1.116)
With qgis Stribeck velocity

And we can represent all the friction component by the following figure
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q

Figure (1.9): Friction model with coulomb ,viscous and stiction trem

For a serial robot manipulator we can write the friction term as [20]

f,, 0 0 a1
0 0 f |ldn
_Ja)?
f, 0 O0)[sign@)]  [(e-fo) 0 0 |sign(ape el |
0 -~ 0 : + 0 0 : (1.117)
0 0 f. |Lsign(¢ 0 0 (f. -f _|an)?
Cn g (qn) (Sn Cn) Slgn(qn)e |qs|

Denote that

Fci : express Coulomb friction of the ith joint .
Fvi : express viscous friction of the ith joint .
Fsi : express stiction term of the ith joint .

gs : expresses the Stribeck velocity .

1.5.2 Actuator Dynamics :
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For the actuators which are dc motors, we choose a very simple model,
because of the huge nonlinearity present in the manipulator joints, the motor

dynamics could be Neglected or represented by a simple linear model as follow [20]
U=J6+T+Tf (1.118)

With T joints torques, Tf represent the actuator friction , U represent the inputs

voltage signals and J represent the actuator inertia. by replacing Eq(1.74) we get
U=J6+M(@)d+C(q,d)q+G(q) +F(@ +Tf (1.119)

And 6 = Gq , G represent the gears ratios, denote that

o [11G
J= & [[Tf=
jnGn

Tf,
U=

Uy
Un

T,
Yield
U=Jd+M(@)d+C(q,dq+G(q) +F(@ +Tf (1.120)
1.5.3 Application on the chosen robot :

we have the Figure 1.8 describe our 3dof elbow manipulator, all center of

masses represented with respect to the base frame .

the choice of centre of masses depends on the real mass distribution of our

robot .

41



Chapter 1: Modeling

]

Yz @ ¥z

» ?,2—2
s 2 o ANSE L (3)
{15}@7‘& éz {22]; X éi A X3

Z3
Link 1

- q:

-

Joint 1| z, Vo

alles
BASE NN

Figure (1.10): angels and distances of center of masses of a 3 DOF elbow

manipulator

first we have the position vectors of center of masses denote as

leicq ¢1(le2¢2) C1(Iezcz3 + 13¢32)
Pc1=|lc181 Pe1 = [S1(le2€2) [Pes = [S1(ezCzz + 12¢3)
0 l; +le2s; l; +1c3S23 + 1ps;

a. Mass matrix

and we have the mass matrix of our 3dof robot as we define in (1.90)

M= (MyJ' 1 + o, Tndo, ) + (M2J502 + o, TnyJe, ) + (MalSy)s +Ja, Tnge, )

we derive of the linear jacobian of the first joint

—l.4s; 0 O
dpal%%] = |1 a 0 0
dq; dq; dqgs Ct)cl 0 0

]vlz[

And also the angular jacobian of the first joint

0 0 O
Jo, =121 0 0] = [0 0 O]
1 0 0
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and we have the Inertia matrix of the first joint express as
Ixx1  —Iyx1 —Izxa
I, =["Iyx1 Tyvi —lyza
—lIzx1 vz lzza

so we can write the first part of the mass matrix that depend on the first joint

(M1 + o, TnyJe, ) =

—le1s1 leger O1[—lezsy 0 010 0 17f Ixxa  —Iyxa —lzxa|[0 0 O
M| O 0 0”1C1c1 0 0]+0 0 0] “Iyx1 Lyyr  —lyza [0 0 o]=
0 0 o0 0 0 0ol10 0 Of|—-Izxs —Iyz1 I |11 O O
Miles 0 0] [lIzzz O O] [M{l%4+1,,; O O
0 0 0]+[ 0 0 0J= 0 0 0]
0 0 0 0 0 O 0 0 0

Same thing for the second joint we have linear jacobian and angular jacobian
express as

—S1leaCy —Cilezs; 0
_ [dpc2 APz dPe2]  _ cql —s.1 0
v2 = = 1lc2C2 S1lc2S2
dq; dg; dgs 0 1 0
c2C2

0 0 O
]002 = [Zl Z2 0] = [0 -1 0]

1 0 0

Also we have the Inertia matrix of the second joint :

Ixxa  —lyxa —lzxa
I, = —Iyxa  Iyyz  —lyza
—Izxe —lyzz  lzze

And we get the second part of the mass matrix

(MaJ,J2 + o, Ty ), ) =
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M2 _Cllczsz _Sllczsz lCZCZ C11C2C2 _SllCZSZ 0

0 0 0 0 leaCo 0

=Sile2€;  cqleacy 0 ”_Sllczcz —C1lezs; 0]
+

0 0 11| Ixx2 —lyxe —Izx2|[0 0 0O

0 -1 0] —Iyxo  lyy2  —lyze [0 -1 0]=

0 0 ol|-lp —lyzz I |11 0 0

[M,1c,2c,? 22 lyzz 0] [Malep®c? + 1,5 Iyz 0
0 M2 @22 0 +[IY22 lyy Of= Iyzs Myl + Iyy, O
0 0 0 0 0 0

And also for the third joint, we have linear and angular jacobian express as

=S1(IezCz3 +12¢)  —c1(lezSaz +1582)  —cqlessas

dpes dpes dpe
Jyz = [dl;g dz; d‘;;] = | cq(Iezczz +12¢)  —s1(Iezsz3 +1252)  —sqlesszs
0 lezcas +1hc; le3Co3
0O O 0
Jo, =21 Z2zz]= [0 -1 -1
1 0 0

the Inertia matrix of the third joint :

[ Izz3 _IYX3 _IZX3
In3 =|—lyxs Iyy3 —lyz3
|—Izxz  —lyzz  lyys

[—s1(leaCas +12¢2)  c1(Iezcaz +12¢2) 0
= M3 [-c1(Ie3823 +1252)  —s1(IezSa3 +1282)  lescas + 1zc;
—Cq1le3S23 —S1l¢e3S23 le3Co3

—s1(leaCaz +1262)  —C1(Ieaszz +1252)  —Cilezsas
C1(lezCzz +12¢2)  —s1(leasz3 +1282) Sllc3523 +[ -1 0
0 lezszs + 1os; le3Ca3 -1 0
Ixx3 IYX3 —lzx3
=|=Iyxz  lyys IYz3“ -1 -
_IZXS IY23 zz3

Yield
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(MaJ3Js + ooy InyJo, )=

125253 + 12,¢%, + 2le3¢p3l5c, 0 0
0 o3 +leslacs es

2z Iyzz lyzs
Iyzz  Iyyz  lyys|=
IYZ3 IYY3 Iyy3

M3 (1% 3¢% 53 + 12,62, + 2le3cp3l,¢,) + 1223 lyzs lyz3
lyz3 M3(1%c3 + 1,2 + 21315¢3) + Iyys M35 + Ieslac3) + Iyys
lyz3 M; (%3 + Iezlacs) + Iyys M31% 3 + Iy

And The general mass matrix becomes

M;l%; +1,,;, 0 O M,leoc; + 1,z lyzz 0
M= 0 0 o+ 0 My, + 1y, O+
0 0 0 0 0 0
Izz + M3 (1% c3¢% 53 + 12,07, + 2l 30p31505) —lyz3 —lzy3
—lyxs Iyyz + M3 (1c3 + 1% + 2l3l,) —lyz3
—lIzxs M3 (1%c3 + leslacs) — Iyys lyys + M3l%cs

And the other hand we have :

Mi; My, My;
M=|M31 My, Mpys
M3y M3, Mss
My, = My,
M,3; = M3,
M;3 = M3,

Myg = MylP 4 Lz +Malea®cp + Logp+l ez + Ma(1203c% 53 4 12,02, + 2130p3l50;)
My; = My = Iyzy + lyys
M3 = M3, = Iyz3

My = M3p=M3(1%c3 + Ic3lpc3) + lyys
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May = Mpl2cp + Lyyatlyys + Ma(1%c5 + 152 + 2lslpc3)

Mj3 = Iyy3 + M3l?3

b. Centrifugal &Coriolis Forces
We begin with the Centrifugal Force as we define in (1.119)
2

bii1 bizz bi3z] |91

C 1( Q)q2= b11 b2z bass q22

b b b 5
311 D322 D33zd|q2,

We know from (1.93) and (1.96) that

1
Mijk—dMij and bijk = E (Mijk + Mikj - Mjki)
~d

dk

So we get
M1 =0

Mi22 = M34,=0

Mj1p =-2Mp (Iepc28,+1% 3C 235 23 + 122025, + 1e3Sa3l205 + Ieslaca3s2)

My33 = —Msleslass

M3z3, =0

M311 = M3, =0

M333=0

M32,=0

M3;,=0

M113:'2M2(lzc3cz3523 + le3lz823C5)
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M;23 = 2M;lc3l;ps3

Mz13=0
Mz31 =0
Mi3, =0
bi11 = %(Mlll + Mg — M111)=M;n=0

L M
b12z = 5(Mi2z + Mz — M2p1)=Mip; — —=0

L M
bi33 = 5(M133 + My — M33q)=My33 — —* =0

1 _ Miiz_ 2 2 2
b21175(Mz11 + Ma1q — Myq2)=Mp1q — —7=Mp(lea"Co8p+1%c3C 238 23 +1%2C5, +

lezsaslacy + 1slacassy)

1 M
byg, = E(Mzzz + M3z, — Myyy)= ;22=0

M33,

1
b233 = E(M233 + My33 — M332)=M233 - =0
1 M
bsyy = §(M311 + M3q1 — M3q4)=M3q4 — %=M2(12C3c23523 + le3lzs23€5)
1 M
b33z = E(M333 + M333 — M333)= ;33:0
bagy = ~(Magy + Magy — Myps)=Map, — —Z222M, 1 41,5
322 = 5\M322 322 223)=M322 5~ Male3laS3
And the final matrix becomes
C1 (q)qZ:
0 0 0 q21
Malea®casy + Ma(1c3c?235% 53 + 1256552 + lesSa3l2€2) — Maleslacass, 0 01q2,
M3(12c3C23523 + le3lz8,3¢;) M;leslys; 0 2

q-s

And for the Coriolis term we have from (1.99)
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2b112  2byg3 2b123] [%qz

I ————

Cz( a)lq 4l=[2bz12 2byy3  2byas C1:1(1:3
2bsy;  2bziz 2bsp3lldyqs
And we get
1 M
2b112 = 5(M112 + Mg, — M112)=%12=M112

2by13 = %(M113 + Mi31 — My31)=Mi13
2bz12=%(1\/[112 + Mzzq — My3)=0
2b3z1, = %(M213 + Mz3; — My3)=0
2b3z1, = %(M213 + Mz3; — My3)=0
2byp3 = %(M123 + Myz = Mp3q)=0
2byp3 = %(MZZS + Mz3; — M232)=Mpz3
2b3z3 = %(M323 + M3z, — M33)=0
2b3, = %(M312 + M3z1 — Mi33)=0
2b3q3 = %(M313 + M3z — My33)=0

And the Coriolis matrix expressed as

c,(a)la ql=

I 2

2M,1 5> + 2M3 (12 3¢ 235753 + 125€28;, + 2382312C2) — 2M3lealaCass;  —2M3(1%3C23823 + lesSz3ca) 0
0 0 _2M3lc3lzs3
0 0 0

[q14>2

q193

Lq243

C. Gravity term

For Gravity term we have from(1.114)
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m; 8o

G(q) =-( ]vlt]vzt]v3t) (ngo) =- ]vltm1go + ]vztngo + ]v3tm3go)=
mszgo

0 0 0 0
| 0 0 01Imy8o

[—s1(Ic2C2)  €1(le2€2) 0

—C1(Ie2¢2)  —s1(c2C2) ez
0 0 0

[lc1s1 —leic; O 0

0
0 ]+
m;8o
[—s1(lc2C2 +1c323)  c1(le2Cz +1c3C23) 0 [ 0 ] [ 0 ‘[ 0 ]
=|1 +

—C1(l2€z +1e3c23)  —S1(le2Cz +1c3C23)  Le2Catige,s 0 c2CoMy g0 [+ (e2C2 + lezCa3)msgg
—Cqle3Ca3 —511c3Co3 le3Ca3 mzgo 0 lezcazmsgy

0
= | (lezczmy(le2C2 + 1e3 c23)m3)g0]
lezCo3msgg

d. Friction modeling

As we seen in (1.117) we can write the friction terms as

[ ]
f, 0 O)[sign@)] [(s-fen O o |simcanete |
0 fe, O]]sign(q)]|+ 0 (fs, - fe2)
0 0 fc,[[sign(gs) 0 0 (fs,~ fe3)

|92
sign(qz)e 19

2

_|as
sign(qsz)e 19s |

e. Equation of motion for a 3 DOF elbow manipulator

And the general dynamic’s equation becomes

2
M, 12 + 1y + leczCZ + Lz + Lz + Ma(IP 36223 + 12562, + 21 36531,¢5)

Iyzz — lyzs —Izys
2
—lyxs M, 1%, + Iyyp + Ly + My (2725 + 1,2 + 21315) —lyz3
—Izx3 M; (%3 + Leslac3) — lyys Iyys + Mslc?;
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d
9z [*
q3

0
M;l o8, + Ma(123¢%535% 53 + 122658, + 1352315¢2) — M3l slacyss; ]
M3 (1% 3€23523 + 1e3l2823¢€2) M3lc31253

ZMZIEEZSZ + 2M3 (12 3¢%538% 3 + 122025, + 21352315€2) — 2M3l 3,623, —2M3(1%3€23S23 + 1e3Sz3C2) 0
0 0 _2M31C312:
0 0 0
q192 0 f, 0 0 q'1 fe, 0 0][sign(qy)
q1G3 | + |(ezcomy(e2€2 + 1ezC23)m3)go [ + 0 fvz 0 QZ 0 f,, O0][sign(qy)|+
q293 lezcz23m38y 0 0 f]|[sign(qs)
2
(fs,~fery 0 s1gn(q1)e o 2 T4
q  —
0 (fSZ_ fCZ) Slgn(qz)e qs _[EZ“
0 0 ~fe3) 2 H3

lSIgn(q3)e wl |

If we add the actuators dynamics we can write

Uy j1Gq 0 0 1rd1 T Tf;
[Uz =[ 0 j2Gy Gz | + |T2| + |Tf;
Uz 0 0 j3Gsl Ld3 13 Tf3
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Chapter 2: Control and System Identification

2.1 Manipulator Control:

The control problem for robot manipulators is the problem of determining the
time history of joint inputs required to cause the end-effector to execute a

commanded motion.

There are many control techniques and methodologies that can be applied to

the control of manipulators.
2.1.1 PID controller :

In this section we consider the simplest type of control strategy, namely,
independent joint control. In this type of control each axis of the manipulator is

controlled as a single input/single output (SISO) system.

A proportional—integral-derivative controller (PID controller) is a
feedback control loop mechanism ,commonly used in industrial control systems. A
PID controller continuously calculates an error value e (t) as the difference between
a desired setpoint r(t) and a measured process variable y(t), and applies a correction
based on proportional, integral, and derivative terms (sometimes denoted P, |/,

and D respectively) which give their name to the controller type.

de(t)
dt

u (t) =kp e(t) + kq + ki [e(Ddt (2.1)

With e(t)=r(t)-y(t)
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where ky,,k; and kg, all non-negative, denote the coefficients for

the proportional, integral, and derivative terms, In this model:

P accounts for present values of the error. For example, if the error is large and

positive, the control output will also be large and positive.

e P accounts for past values of the error. For example, if the current output is
not sufficiently strong, the integral of the error will accumulate over time,

and the controller will respond by applying a stronger action

e D accounts for possible future trends of the error, based on its current rate of

change
P Ke(t)
"
T(t)+ e(t) I f(,j&(’f)d‘r : u(t) H’%rl]:'éés Y(t)>
- +
D k.2l

Figure (2.1): A block diagram of a PID controller in a feedback loop.

For a serial robot manipulator we applied a PID control law for each joints
considering that the desired joints positions are constant, which is commonly known

as independent joint control.

Now as we have mentioned on the previous chapter by using the equation

(1.74) and the equation (2.1) we get :

M(q)§+C(q,4)q+G(q) +F(@) =1 (2.2)

So The control law is given by
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de(t)

t=Kpe(t) + Kd—=+ Ki [ e(t) dt (2.3)
with e(t) = qd(t) —q(t) (2.4)
And % = —q() (2.5)

With qd(t) represent the desired angles and q(t) is the actual joints angles and

T is the torques inputs .

Denote that Kp,Kd and Ki are n*n positive diagonal matrix.

--e£»| PID |—{Jointn

Figure (2.2) : A block diagram of independent joint control for n joints manipulator

a. Implementation and simulation
We’ve implemented the dynamics equations that we got in section 1.5

With choosing the manipulator parameters as follow :
m1=3; m2=1;m3=1; %masses
L1=1; L2=1;L3=1; %links lengths

Lc1=0.5; Lc2=0.5;Lc3=0.5; %center of masses lengths

53


https://en.wikipedia.org/wiki/Block_diagram

Chapter 2: Control and System Identification

izz1=0.05; izz2=0.05;izz3=0.05;iyy2=0.05;iyy3=0.05;%moment of inertia

iyz2=0.05;iyz3=0;%products of inertia

threeLinkPDControl Robot Dynamics
@ |[PalthreeLinkPDControl b [ Robot Dynamics
®~' S
E3 £
»E )
— ddgz
w5
ddg2
taul taui
23 e adgt - 1; » :_ D
= — l—l l—l q1
e 12 Int=gr ator Integrator2
L kU
az 4 o2 > 1; - 'S‘_ -7 )
tau3 »az fon a2
i Integrator Integrator3
< S .y
g3 = L= FE)
Integrators Integrators
2 Link Robot Dynamics L
> 5
qd2
> &
qda

Figure (2.3): Simulink model of 3dof manipulator dynamics

Now we design a Simulink model for an independent joint control, which

composed of 3 PID controller.

For the dc motors we consider them as a linear saturated gain.
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Figure (2.4): Simulink model of independent joint control for a 3 DOF manipulator dynamics

The PID gains are chosen experimentally as follow

Table 2.1 : constant Setpoint and Parameters for PID control of the first joint

Setpoint

Kp

Kd

Ki

/2

25

10

Table 2.2 : constant Setpoint and Parameters for PID control of the second joint

Setpoint

Kp

Kd

Ki

/2

200

40

Table 2.3 : constant Setpoint and Parameters for PID control of the third joint

Setpoint

Kp

Kd

Ki

—1t/3

200

40
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After 10 second of simulation we get the following figures with sample time of 0.01S

Joint 1
2
181 .
161 "
141 4
E-W % T
©
= o 7
(]
08
[
< o6 1
B / M Desire trajectory |
ozf | M Joint trajectory |
ol L
Joint 2
2
181
164 i =
14+ = |
-(S 12 T
@ it 1
2
< 08 |
06/ i |
04 1 L 1
I M Desire trajectory
02 M Joint trajectory |
5 L
Joint 3
0
0.2
=)
Joar 1
2 |
o061 |
20
< |
0.8 1
-1 "
———
a2f M Desire trajectory-|
M Joint trajectory
14 - -

0 1 2 3 4 5 [ 7 8 9 10

Time [s]

Figure( 2.5 ):simulation result of an independent joint control for a 3 DOF

manipulator

2.1.2 Computed Torque Control (trajectory tracking):

A basic problem in controlling robots is to make the manipulator follow a
preplanned desired trajectory. Before the robot can do any useful work, we must
position it in the right place at the right instances. In this section we discuss

computed-torque control
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The PID controller is not an efficient controller to control a manipulator
because the torques output signal that is generated by the PID controller is
not dependant on the other joints. The motion of the other links may apply
considerable torque and force to the joint. This unpredicted torque may not be
compensated with the PID controller therefore the performance of the
controller drops when the robot performs in high speeds, a much better
method to control the robot is to calculate the inverse dynamics of the robot

and consider the computed torques to generate control signal.

By this method the robot performs well even in high speeds. The
problem with this controller is that in order to calculate the inverse dynamics
of the robot, its parameters must be determined and very nonlinear equations
should be solved. Feedback linearization method is one of the most common

methods for controlling a robot and is widely used in the industry.

We consider the dynamic equation of the manipulator

M(q)§+C(q,)q+G(@ +F@ =1 (2.6)

Suppose that a desired trajectory qd(t) has been selected for the arm motion

,and as we have defined the output or the tracking error as :

e = qd(® +q® (2.7)

To demonstrate the influence of the input 7 (t) on the tracking error, we have

to use the feedback Linearization.
a. Feedback Linearization

The idea of feedback linearization based on canceling the nonlinearities and
Imposing a desired linear dynamics. can be simply applied to a class of nonlinear

systems can be represented as follow [21]

x™ =fx) +bX)u (2.8)
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Denote that f(x)andb(x)are nonlinear function and u is the control input

For systems which can be expressed as we mentioned above in (2.8), we can

use the control input
u= %(V— f) (2.9
We can cancel the nonlinearities and obtain the simple input-output relation
x™ =v (2.10)
Thus, the control law
V=—Kox—K%..— K,_;x(®~1 (2.11)
WithK;positive gains, and from(2.10) and (2.11)we get
xM + Kox 4+ KX ...+ Ky x®D =0 (2.12)

Which implies that x(t)— > 0.For tasks involving the tracking of a desired

output x4(t), the control law becomes
V=x4M™ —Kpe—Kjé..—K,_;e@D

wheree = x(t) — x4(t)is the tracking error) leads to exponentially convergent
tracking. Note that similar results would be obtained if the scalar x was replaced by a

vector and the scalar b by an invertible square matrix.

For Applying a feedback linearization on robot manipulator dynamics we get

from(2.6)
d® =M(a®) " (x©® - c(a®, a®)a® - Fa®) - 6(a®)) (2.13)
We have V=q(t) (2.14)

And this result
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{ b=M(@™ (215)
f=M(@)™"(- Cqdgq - F(@ —G@) (2.16)

We choose V = qd — K0e(t) — Kle(t) (2.17)

So the corresponding feedback linearization control law is given by (2.18)

1
T=E(V—f)

K1 and KO represent the proportional the derivative gains we can name it Kp

and Kd respectively, and that’s brings us to following input control law [22]
©=M(q)(qd - Kdé — Kpe) + C(q, )¢ + F(§) +G(q)  (2.19)

With e=x(t) — xq4(t)

F(q) |-
a) =
i —&——(rOBOT [ L __ 2
Cla.a)
G
q.q4

Figure (2.6): A block diagram of Computed-torque control.

For Stability analysis we place the control law we got in (2.19)in the dynamic

equation of the manipulator, and we get [23]

€+ Kdée +Kpe=20 (2.20)
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Which verified the exponentially convergence of the tracking error (e => 0).
b. Implementation and simulation

We've implemented the dynamics equations that we got in section 1.5

With choosing the manipulator parameters as follow :

m1=3; m2=1;m3=1; %mass with kg

L1=0.2; L2=0.2;L3=0.2; %link length with meters

Lc1=0.5; Lc2=0.5;Lc3=0.5; %center of mass length with meters

izz1=0.05; izz2=0.05;izz3=0.05;iyy2=0.05;iyy3=0.05;%moment of inertia

iyz2=0.05;iyz3=0; % products of inertia

and we apply a computed torque control law on it , which is represented by

dynamic inversion block, and 3 PID blocks as we mention in (2.19).

@ threelinkComputedTorqueContral b

o) —
Deristes Dematie

]

qd2 erd
k=
Dynamics Inversicn
-
m

Koint= posibars

Figure (2.7): Simulink model of computed torque control for a 3 DOF manipulator dynamics
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The PID gains are chosen experimentally as follow

Table 2.4 : the PID Parameters for control of the first joint

Kp

Kd

Ki

207

40

Table 2.5 : the PID Parameters for control of the second joint

Kp

Kd

Ki

502

100

Table 2.6 : the PID Parameters for control of the third joint

Kp

Kd

Ki

502

100

After 15 second of simulation we get the following figures with sample time of

0.01S
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Figure (2.8): Simulink model of computed torque control for a 3 DOF manipulator dynamics

As we seen in Figure 2.8 the joints trajectories follow the desired trajectories

and the tracking condition is verified as we demonstrate in (2.19).

2.2 identification and parameters estimation:

2.2.1 Introduction :
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This section gives a short introduction to system identification in general, and

to the identification of robot manipulators in particular.

system identification is the mathematical mechanism which allow us to build
mathematical models of dynamical systems from measured data, by modeling and
estimate the real parameters of the system and we name it parametric, or by
building a non- parametric model which have the same behavior as the real system

and then estimate its parameters.
the identification experiment can be performed in open loop or closed loop.

Identification of a system not subject to feedback control, is known as open-
loop system which is illustrated in Figure 2.9. This system has input u, output y, and
is affected by a disturbance v. The disturbance can include measurement noise as

well as external system inputs, not included in u.

—| System [—O—Y

Figure (2.9): An open-loop system.

An identification experiment on a system subject to feedback control, is known
as closed-loop system which is shown in Figure 2.10 where r is the reference signal
for the system. A reason for performing a closed-loop experiment could be that the
system is unstable, and must be controlled in order to remain stable. This is typically

the case for a robot manipulator.
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A\ %
r . bl L
— O—| Controller [—| System [—QO-—)

Figure( 2.10): A closed-loop system.

Moreover, models can be described as continuous-time models or discrete-
time models although the measurements, u(t) and y(t), are normally represented as
sampled, discrete-time, data. It is assumed that the reader has a basic knowledge of

linear system theory for continuous-time and discrete-time systems.[24]

2.2.2 Nonparametric Models:

Examples of nonparametric models in the time-domain are impulse responses or step
responses. Such models consist of vectors of system outputs and the corresponding time
stamps. An example of a step response of a first-order system with a time-delay is shown in
Figure 2.3. The measured output is affected by measurement noise. The nonparametric step

response model can in this case be described by a parametric transfer function model

K _
G(s)=— e Ls (2.21)
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25
—y
K= 2 —u
2..
15 ge3K
1t
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Liakdadl i
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Time[s]

Figure( 2.11): Step response of a first order process with delay.

This three-parameter model is often used to describe systems in the process
industry. The parametric model (2.1) can be identified by inspection of the step
response according to Figure 2.11 This model can then be used for tuning of a Pl- or

a PID controller .[25]

2.2.3 Parametric Models:

A parametric model is a model described as, e.g., differential or difference
equations. System identification is one route for obtaining a parametric model of a
system. Another route is physical modeling, i.e., deriving a mathematical model from

the basic laws of physics.

If the parameters of a physical model are known with sufficient accuracy, we
get a white-box model, where both the model structure and the model parameters

are known.

A gray-box model is a physical model where the model structure is known but
the physical parameters are unknown or only partly known. Identification of
parameters or parameters estimation in this case is called gray-box identification,

which our case in robot manipulator identification.[26]
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a the least squares method LS:

Least-squares estimation methods have been used in many types of parameter
identification schemes [Astrom and Wittenmark 1989] [27], Least-squares method
can be applied to large variety of problems. It’s particularly simple for mathematical

model that can be write in the form [37]

y(©) = @1 (D0 + 9, (D03 + -+ + @, (DO] = @T([HO°  (2.22)
We can write it as
Y = ®0 (2.23)

Where y is the observed variable, 67,09 ...0%are parameters of the model to
be determined, and @4, @, ... @ are known functions that may depend on other

known variables like output variable and its derivative. and we have the vectors

") = {@1(D), 2 (D) .. o ()} (2.24)
0° = {03,0) .67} (2.25)

The model is indexed by the variable i, which often denotes time .it will be

assumed initially that the index set is a discrete set .

the variables ; are called the regression variables and ¢Tvector called
regressor, pairs of observations and regressors{y(i), @,(i),i = 1,2, ... t}are obtained

from experiment .

to determine the parameters vector ©°we define a quadratic cost function,

and the parameters should be chosen to minimize this function
V©O,9 =3, (y([) — 9T()0)? (2.26)

Since the measured variable yis linear in parameters 6%and least squares
criterion is quadratic, the problem admits an analytical solution. We define the

notations
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Y = {y(Dy@) .y} (2.27)
E(t) = {e(De(2) ..e())T (2.28)

T (1)
o) =1 (2.29)
o (1)

P@) = (0T0(0) = (Sr0®e" ()" (230)
Where the error e(i)are define by
e(®) =y -9 (DO (2.31)
V(0,6) =38l e()? = ETE =IIEN* (2.32)
Where Ecan be written as
E=Y-Y=Y-060 (233

The solution to the least-squares problem is given by the following

demonstration
OTPpo = pTy (2.34)
if the matrix ®Tdis nonsingular, the minimum is unique and given by
6 =(@Td) 1dTY  (2.35)
b the recursive least squares method RLS:

The Recursive least squares (RLS) is an adaptive filter which recursively finds
the coefficients that minimize a squares cost, these coefficients define as the
parameters of the system that we are estimate, the algorithm based on real-time

parameters estimation, which is commonly used in adaptive control strategy .
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In adaptive controller the observations are obtained sequentially in real time,
computation of the least squares estimate can be arranged in such a way that the

result obtained at time t-1 can be used to get the estimates at time t.

Let ©(t — 1)denote the least-squares estimate based on t-1 measurements.
Assume that ®(t)has full rank, that means that the matrix ®T® is nonsingular for all
t>t0, the least-squares estimate B(t)then satisfies the recursive equations, it follows

from the definition of P(t)in Eq (2.30)

t t—-1
PO = 2@TR0) = ) 0D’ = Y pDe" M) + 9" (©)
i=1 =1
=Pt -1+ 9" (1) (2.36)

The least squares estimate O(t)is given by (2.36),50 we get

t-1 -1t
6 = (Z cp(i)cpT(i)) (Z cp(i)y(i)>
i=1 i=1

= POCio 0e@Dy@)  (2.37)
Yield
8(t) = P(t) (ZiZt @(Dy() + @(My(1))(2.38)
it follows from (2.37)and (2.36)that

L1y =Pt —-1)"10t—-1)=P(O) 0t - 1) — )" ()O(t — 1)
(2.39)

The estimate at time t can now be written as
(1) = 6(t-1) —PMe®e (Bt~ 1) — PM@®)y(t)

= 6(t—1) + PO@® (y(® — ¢" O~ 1)) (240
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Where
K({t) =P(t)e(t) (2.41)
e(t) = y(t) — "6t — 1) (2.42)

The residual e(t)can be interpreted as the error in predicting the signal

y(t)one step ahead based on estimate &(t — 1).

To proceed, it is necessary to derive a recursive equation for P(t)rather than

for P(t)~tasin Eq (2.36) . we apply the matrix inversion lemma and we get

-1

-1
PO = (@®TE®) (- DTt~ 1) +0O¢" ()
-1
=P D"+ (ee™®)
= P(t— 1) - P(t— Dp(® (1 + TP~ D 10®)  ¢TOP(E—-1) (243)
This implies that
K(t) = POp(e) = P(t — Do®)(I + 9" (OP(E - Do) (2.44)
And that arrive us
P(t) = (1-K©®@T®)P(t—1) (2.45)

So the Recursive least squares estimation represented by these equation[37]

B6(t) =6t — 1) + P (®) (¥(&) — " (Ot — 1))

K() = P(O¢(t) = P(t — D) + 9" (OP(t — D) p))  (2:46)
P(t) = (I - K(®)e" )Pt~ 1)

2.2.4 Applying the LS on the chosen robot:

The first thing we have to setup the model we get in section 1.5, we derive this

equation from the dynamical model matrices, each equation describe a joint model,

69



Chapter 2: Control and System Identification

which is given by an input voltage U; , the velocities and accelerations of the joints
and several parameters which represent the masses, inertias, lengths, friction

coefficients,motors parameters .

U=Jd+M(@)i+C(q.d)q+G@+F()+Tf  (2.47)

Denote that we neglect the term of stribeck effect, because its nonlinearity in

the parameters .

Uy = (j1Gy + mylcf + I,y + mylcd ¢S +1,,5 + malcdcd; + malci el + 2mslcll, e3¢y + 1223)dy + (Iyz, + lyzs)d,
+ IyZ3('j3 - Z(mle%SZCZ + m3lC32'323C23 + m:;l%sZCZ + m3lC3 12523C2 + m3lC3 lZCZSSZ)qqu

— 2(m3lcss3¢03 + maleysy3cy)d1ds + fy, gy + £, sign(qy) + Tfy

U, = (Iyzy + lyz3)d; + (j2G2 + mylcZ + Iyy, + m3lc? + m3l3 + 2m;leslyc, + lyys)dz + msle + msleslycs
+ IYY3)q3 + (mle%CZSZ + mglC§C23823 + mgl%SZCZ -+ m3lC312C23SZ3 -+ m3lC3 12 ngsz)ql

— (2mglc3l;83)q443 + (czcamy + (Iezcps + Iey€)mz)g + £, G2 + fo Sign(qy) + Tf,

Us = (Iyz3)dy + (msle3 + mlczlycs + Iyys )i + (j3Gs + msle + Iyys)ds + (mzlcscz3s23 + msleslyco823) 4,
+ (m3lczlys5)q; + le3c3msg + foz G2 + fe3 sign(qs) + Tf;

(2.48)

Second thing we have to arrange them such a way they are linear in the
parameters as we seen in Eq (2.3), to allow us to apply the least squares parameters

estimation, so we write as follow Y = ®0
So we have the output vectorY ,which represent the PWM inputs to the

motors

Y =|U,| (2.49

And we extract the parameters we want to estimate, Grepresent tha

parameters vector
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_ilGl + mllc% + Izz1 + Izz2 + Izz3_
m,lc? + m;l3
m,lc? + mgl,

mzlc,
mslc3
m;lc?l,
lyz,
lyz3
0= lyy, +j2G2 (2.50)
Iyy 3
fu,
fe,
for
ch

fv3
f c3

Tfq
Tfy
Tf3

ji3G3

then the regresseur matrix ®given by

O

=[P1 @2 P3Ps Y5 PeP7 Pg PoP10 P11 P12P13 P14P15 P16P17 P18P19  P20]

(2.51)

With the regresseurs

d1

c2; + 25,0214 0 0 5301 — 2523C230102 — 2523C230143
P1={0,®P2=| qy +5,¢,q; | P3=|Cc28] Pa=[C238|, ¥5= $23C2301 +dz + 43
0 0 0 C238 ds + G2 +523C230;
2€33C01 — 2€23€201G2 — 2€2352G142 — 252324142 d, 4z + Qs 0
Po= 2c50;, + ¢33 + (S23C2 + €2352)d1 — 2539143 y@7=|q1| » Ps= i [ Po= 4z |
C3(2 +523C2q1 +S3(> 0 d1 0
0 di sign(q,) 0 0 0 0
P10= ﬂS + 92 ®11=| 0 |, P12= 0 yP13= |2 |, P1a= [sign(q2) |, P15= 0 »Pre=| 0 _
4z + 4z 0 0 0 0 3 sign(qs)
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1 0 0 0
@17= 0], @18=|1], P19=|0|, P20= 0
0 0 1 qds

Now we apply the LS estimation to get the estimated parameters vector  as

we define in (2.35)

0= (o"To) 1Ty
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Chapter 3: Vision

This chapter will describe theories necessary for understanding the rest of the

thesis. The chapter is divided in image processing and vision system theory.
3.1 Image Processing

Image processing is a set of computational techniques for analyzing,
enhancing, compressing, and reconstructing images. The main components are
importing, in which an image is captured through scanning or digital photography,
analysis and manipulation of the image, accomplished using various specialized
software applications, and output. Image processing has extensive applications in
many areas, including astronomy, medicine, industrial robotics, and remote sensing
by satellites). Image processing for robot vision will improve products quality, save

time and reduce labor cost.

In this section we will present some image processing tools that we used in our

work.
3.1.1 The image

An image is defined as a two-dimensional function f(x, y).where x and y are
spatial (plane) coordinates. The intensity or gray level of the image at the point of

coordinates (x, y) is the amplitude of f at that point .

This image known as grayscale image or intensity level image, The typical range
of intensity values for each pixel is, 0 to 255, is based on taking a binary number 8

bits that can hold a value from 0 to 255.
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Figure 3.1 a grayscale image and its matrix of intensity level values

3.1.2 RGB color model

The RGB Image has 3 planes of intensity levels, red, green and blue plane, so

each pixel in the image has 3 values, and these values describe the color of the pixel.

Figure (3.2): RGB image and its 3 colors plane, red, green and red plane

RGB colors is usually represented as axes of a 3D cube as shown in Fig. 3.3 The
cubic represents all possible colors. A specific color is represented by three values to

be summed: (R, G, B). Black is (0,0,0) or 0+0+0, or no measurements on any of the
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three color planes. White is (255, 255, 255). The pure colors of red, green, and blue
are represented by (255,0,0), (0,255,0), and (0,0,255) respectively. This is the same

as in colorgraphics.

White

(255, 255, 255)

255

Figure (3.3): The RGB color model mapped to a cube

3.1.3 HSV color model

HSV is a three-dimensional space in that it has three variables, but it is
definitely not a cube representation, more of a cone as seen in Fig. 3.3. The hue, or
color, is measured in degrees from 0 to 360. Saturation and intensity are real
numbers between 0 and 1. These are generally scaled to 8-bit numbers. Accordingly,

red is both 0 and 255, orange is 17, green is at 85, blue is 170, with magenta at 200.

HSV space is very used in robotics and object detection, if we have a object
with a specific color, in HSV space we can detect the color even if the light is not
uniform, by selecting a rang in the hue plane ,which is very hard to do it in RGB

space.
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Saturation

Figure (3.4): The HSV color model cone describe the Hue, Saturation and Value

ranges

3.1.4 Thresholding:

The simplest thresholding methods replace each pixel in an image with a black
pixel if the image intensity is less than some fixed constant T, or a white pixel if the
image intensity is greater than that constant and the result image called binary
image

1if f(x,y) zr}

blx ) ={0 if fx,y) <T (3.1)

This application very useful to extract an object by thresholding using a hue

rang for example.

a.RGB image b.HSV image c. Binary image
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Figure( 3.5) : describe transformation from RGB to HSV then getting a Binary

image by thresholding the HSV image

3.1.5 Edge detection

Edge detection includes a variety of mathematical methods that aim at

identifying points in a digital image at which the image brightness changes sharply

or, more formally, has discontinuities. The points at which image brightness changes
sharply are typically organized into a set of curved line segments termed edges. The
same problem of finding discontinuities in one-dimensional signals is known as step
detection and the problem of finding signal discontinuities over time is known as

change detection.

Edge detection is a fundamental tool in image processing, machine vision and

computer vision, particularly in the areas of feature detection and feature extraction

(30]
a. Canny Edge detector

John Canny considered the mathematical problem of deriving an optimal
smoothing filter given the criteria of detection, localization and minimizing multiple
responses to a single edge.[31] He showed that the optimal filter given these
assumptions is a sum of four exponential terms. He also showed that this filter can

be well approximated by first-order derivatives of Gaussians.

Here is an example of a 5x5 Gaussian filter, used to create the adjacent image,

with standard deviation of 0=1.4. (The * denotes a convolution operation.)

2 4 5 4 2
|49 12 9 4
:ﬁ51215125*A
4 9 12 9 4 (3.2)
2 4 5 4 2
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It is important to understand that the selection of the size of the Gaussian
kernel will affect the performance of the detector. The larger the size is, the lower
the detector’s sensitivity to noise. Additionally, the localization error to detect the
edge will slightly increase with the increase of the Gaussian filter kernel size. A 5x5 is

a good size for most cases, but this will also vary depending on specific situations.

Figure (3.6 ):The original image on the left and the detected edges on the right using Canny

edge detection algorithm
3.1.6 Hough transform:

The Hough transform is a feature extraction technique used in image analysis,

computer vision, and digital image processing.[29]

The purpose of the technique is to find imperfect instances of objects within a
certain class of shapes by a voting procedure. This voting procedure is carried out in

a parameter space, from which object candidates are obtained as local maxima in a

so-called accumulator space that is explicitly constructed by the algorithm for

computing the Hough transform.

The classical Hough transform was concerned with the identification of lines in
the image, but later the Hough transform has been extended to identifying positions
of arbitrary shapes, most commonly circles or ellipses. The Hough transform as it is
universally used today was invented by Richard Duda and Peter Hart in 1972, who

called it a "generalized Hough transform"[32]
a. Hough transform for circle detections
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The circle Hough Transform (CHT) is a feature extraction technique for

detecting circles. It is a specialization of Hough Transform. The purpose of the

technique is to find circles in imperfect image inputs. The circle candidates are
produced by “voting” in the Hough parameter space and then select the local

maxima in the accumulator matrix.
In a two-dimensional space, a circle can be described by:
x—a)+(y—-b)2=r? (3.3)

Where (a,b) is the center of the circle, and r is the radius. If a 2D point (x,y) is
fixed, then the parameters can be found according to (3.3). The parameter space
would be three dimensional, (a, b, r). And all the parameters that satisfy (x, y) would
lie on the surface of an inverted right-angled cone whose apex is at (x, y, 0). In the 3D
space, the circle parameters can be identified by the intersection of many conic
surfaces that are defined by points on the 2D circle. This process can be divided into
two stages. The first stage is fixing radius then find the optimal center of circles in a
2D parameter space. The second stage is to find the optimal radius in a one

dimensional parameter space.

So For each point (x, y) on the original circle, it can define a circle centered at
(x, y) with radius r ,The intersection point of all such circles in the parameter space

would be corresponding to the center point of the original circle as we see in fig 3.7
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Figure (3.7): an edge image of a circle in the left and its Hough transform space for 4 point in

the right

Consider 4 points on a circle in the original image (left). The circle Hough
transforms is shown in the right. Note that the radius is assumed to be known. For
each (x,y) of the four points (white points) in the original image, it can define a circle
in the Hough parameter space centered at (x, y) with radius r. An accumulator matrix

is used for tracking the intersection point.

In the parameter space, the voting number of points through which the circle
passing would be increased by one. Then the local maxima point (the red point in the
center in the right figure) can be found. The position (a, b) of the maxima would be

the center of the original circle. [33]

3.2 Vision system

3.2.1 Camera System
The lens inside the camera refracts all rays of light from a certain object point to
one single point in the image plane. If the lens is thin implying the distortion can

be neglected, the lens law is valid.

_1
== (34)

QIR

+

IR

Where a is the distance between the lens and the object, 8 is the distance
between the lens and the image plane and fis the focal length. Figure 2.1 illustrates

the lens law. [33]
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Lens
Object
-\\
n
Image
Plane
L f . |
—a o > > B,

Figure (3.8): Illustration of the lens and object distances and focal lengths

By the lens law it is obvious that an object at the distance a from the lens will
be reproduced with complete sharpness on the image plane. If the distance between
the object and the lens differs from a, the reproduction on the image plane will be

more or less blurred.

3.2.2 Camera Modeling and Calibration:

The Camera Calibrator It allows us to estimate camera intrinsic, extrinsic, and
lens distortion parameters. You can use these camera parameters for various
computer vision applications. These applications include removing the effects of lens
distortion from an image, measuring planar objects, or reconstructing 3-D scenes

from multiple cameras.

In robotics application, camera calibration used to estimate the camera
parameters to be able to get a position or a distance of an object, and in stereo

vision we can do the mapping and pose estimation by two calibrated camera.
3.2.2.1 Camera Model:

The Computer Vision System Toolbox™ calibration algorithm uses the camera
model proposed by Jean-Yves Bouguet [34] . The pinhole camera model does not

account for lens distortion because an ideal pinhole camera does not have a lens. To
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accurately represent a real camera, the full camera model used by the algorithm

includes the radial and tangential lens distortion.

a. Pinhole Camera Model

A pinhole camera is a simple camera without a lens and with a single small aperture.
Light rays pass through the aperture and project an inverted image on the opposite
side of the camera. Think of the virtual image plane as being in front of the camera

and containing the upright image of the scene.

2-Dimage | Image plane| |Focal point| | Virtual image plane| | 3-0 object

i ?

4&“‘;“
%

Figure (3.9 ):lllustration of the camera model from the object to the 2d image

The pinhole camera parameters are represented in a 4-by-3 matrix called the camera
matrix. This matrix maps the 3-D world scene into the image plane. The calibration
algorithm calculates the camera matrix using the extrinsic and intrinsic parameters.
The extrinsic parameters represent the location of the camera in the 3-D scene. The

intrinsic parameters represent the optical center and focal length of the camera.

wixy1]1=[XYZ1]P (3.5)
/ - |
Scale factor image points World points
R
p=[ 1 Ik
Camera r'f:l'rfh '] N:'rl.'n'rl:,i: rmat rix (3'6)
r'?:;iufI'L.E':lL;I:II:}J’I::urlbn':iif::rl
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The world points are transformed to camera coordinates using the extrinsic
parameters. The camera coordinates are mapped into the image plane using the

intrinsic parameters. [35]

Image - Pixel Camera ‘World
~® point
= o

Intrinsics K Extrinsics [tR]

Figure (3.10): lllustration of the camera model showing the transformation by the
Extrinsic parameters and the mapping into the image plane using the intrinsic

parameters

b. Distortion in Camera

The camera matrix does not account for lens distortion because an ideal pinhole
camera does not have a lens. To accurately represent a real camera, the camera

model includes the radial and tangential lens distortion. [36]
b.1 Radial distortion

Radial distortion occurs when light rays bend more near the edges of a lens than
they do at its optical center. The smaller the lens, the greater the distortion and the

radial distortion coefficients model this type of distortion.

Negative radial distortion Mo distortion Positive radial distortion
"pincushion” "barrel”

Figure (3.11): radial distortion of 3 type of lens

b.2 Tangential Distortion
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Tangential distortion occurs when the lens and the image plane are not

parallel. The tangential distortion coefficients model this type of distortion

Zero Tangential Distortion Tangential Distortion
Lens and sensor are parallel Lens and sensor are not parallel
Camera lens Camera lens
Vertical plane Vertical plane
(Camera
SEensor Camera
Sensor

Figure (3.12): illustration of Tangential Distortion of a lens

3.2.2.2 Camera Calibration Parameters

The calibration algorithm calculates the camera matrix using the extrinsic and
intrinsic parameters. The extrinsic parameters represent a rigid transformation from
3-D world coordinate system to the 3-D camera's coordinate system. The intrinsic
parameters represent a projective transformation from the 3-D camera's coordinates

into the 2-D image coordinates.

World e
coordinates ML

Xyz  REER  [XcYcZc

1
Extrinsic Intrinsic

parameters parameters

Figure( 3.13): Diagram describe the transformation from the World coordinates into Pixel

coordinates passing by Extrinsic and intrinsic camera parameters matrices
a. Extrinsic Parameters

The extrinsic parameters consist of a rotation, R, and a translation, t. The origin
of the camera's coordinate system is at its optical center and its x- and y-axis define

the image plane. Define the camera Extrinsic matrix E by
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Ez[lg ﬂ (3.7)

b Intrinsic Parameters

The intrinsic parameters include the focal length, the optical center, also known as

the principal point, and the skew coefficient. The camera intrinsic matrix, K, is

defined as:
fk, 0 0
K=[|s f; 0 (3.8)
cx ¢ 1

The next figure describe the pixel skew
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Chapter 4: Implementation and practical results

4.1 Manipulator Setup

4.1.1 Hardware:

In our work, we use an Arduino mega microcontroller and a motor driver to
control our manipulator, but the computations are done in the computer instead of
the microcontroller (Arduino), who just does the work of the Analog/Digital conversion
for the analogical sensors and the PWM generation which represents the voltage

signals for the DC Motors.

Computer

USB/Serial
Comunication

Voltage Signals
for Dc Motors

Arduino Mega

DC Motors
Driver Card

Sensors
Signals

Figure (4.1a): Hardware Setup
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Figure (4.1b) The previously discussed manipulator workbench

4.1.2 Software:

The control implementation is designed in MATLAB Simulink as diagram blocks,
where we design the control law, generation trajectories and filtering the noisy data
measured from each manipulator’s sensor via the Arduino analog inputs, and finally
the resulting control law will be transferred to the microcontroller (Arduino) which
generates a PWM signals. The DC motor Driver Card contains three L6203 H-Bridges,
which eventually amplifies the signals from 5V (Arduino command signals) to the

driving signals 12V .

As we mentioned in the introduction, we used the Arduino 10 (MATLAB AND
SIMULINK SUPPORT PACKAGE FOR ARDUINO). We upload the Arduino IO code into the
Arduino board, this code does the Serial communication by reading and writing from

and to Simulink blocks with a specific communication protocol.

The reason of using the MATLAB AND SIMULINK SUPPORT PACKAGE FOR
ARDUINO, is to minimize the time of computation, because in our case all the
computation run in computer speed instead of the Arduino microcontroller speed

which is very slow compared to the computer, so the role of the Arduino is just to
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receive the command signals and send the measurements of the potionmeter. Other
reason, is the filters and the complicated iterative functions that are already
implemented in Simulink and we can use them, and also all the measured and the
filtered data are saved automatically in MATLAB workspace, and there’s also an
important reason, is the supervision which we can visualize real-time values of the
closed-loop, and we can tune the PID in real-time which makes it a very helpful tool,

and makes our work very clear, efficient and time saving.

The figure 4.2, represents a Simulink model example of driving a dc motor using
analogWrite function to Generate PWM signal to drive the DC motor, also we used a

digitalWrite function to enable and disable the motor.

For the sensor measuring we used analogRead function to read the voltage from the
potienmeters, and then we can get the angle value using an experimental calibration

which relates the measured voltage with angle value in radian.

[*a| exmple -

ArduinoT
250 piAnalog VWrite
Pin 5

enbi motor priw /}\rd\uino1
Analog Read , b ]

i '
Pin /
K—'/ Pot Value

pot1

Arduino1
1 » Digital Write
Pin 28

enb

Enable

Figure (4.2): Simulink model of driving a Dc Motor and measuring position from its sensor

4.1.3 Filtering:

When we measured the joints angles with the potienmeters, the data we got

was very noisy, so we had to use a Lowpass Filter.
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Denote that the sampling time Te=0.01S, so we have sampling frequency Fe=100Hz.
Appling Shannon theorem we have:
Fb > 2Fe

With Fb is the lowpass Filter cut-off frequency. In our case we choose Fb = 300Hz

Magnitude Response (dB)

Magnitude (dB)

0 100 200 300 400 500 600 700 800 900
Frequency (Hz)

Figure (4.3): Lowpass Filter Response with 300Hz cut-off frequency

Potionmeter measured Signal

—— Filtred Signal
——— Measured Signal

“Time(s)

Figure (4.4): joint measured signal and the filtered one
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4.2 independent Joint Control (PID Position Control)

4.2.1 Design and concept

As we mentioned in section 2.1.1 we apply a PID controller for each joint
independently, and we add each of forward and inverse kinematics functions, to
translate from Cartesian space to the joints space and vice versa. To achieve the
desired positions we generate a trajectory in Cartesian space, this trajectory composed
of three trajectories Xtraj, Ytraj and Ztraj, then they will transform by the inverse

kinematics function to joints space trajectories.

So the PID controllers try to achieve these desired trajectories. And to compare
the real position of the manipulator with the desired one, we used the forward

kinematics function.

Setup
Arduingd
come
J\\ Arduing |0 Setup
K
~qajn\
K
Gain2
o SetPoint1 Q1
Jaointt
SE = ol tetst X j ]
% Hy $ =2 B S=tpoi az etz v l,-
Yraj -z for g thatsa o z 1
D b b Joint2 Forward Kinematics Display
Ztraj
» a2
Joint3

Figure (4.5): Simulink model of independent joints positions control following a

Cartesian space trajectory

The figure below represent a single joint subsystem, which has an input that is

the Set Point (desired angle in Radians), the closed-loop with discrete time PID
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controller, the PID output is limited (from -255 to 255), so we use a map function to
map the output value into the work range of the analogeWrite function (from 0

to 255), then the measured data will be filtered and map from Voltage value into
radian, all the values in the closed-loop are displayed and also plotted on a scopes,

finally the output of the subsystem represent the first joint angle named q1.

= g10eg
radToDeg? o thetaDeg

u*180ipi

motori PMW

Disgrete PID Controlier1 map ’—D error]

Joint1

Canstant

Derivativel dogl

Figure (4.6): Simulink model of PID controller for a single joint with supervision of all

the control loop signal values

We used a Stopping criteria that disables the motor if the error is reaching zero (<0, 01

Radians).
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Figure( 4.7): Simulink Subsystem model of a Dc motor command with a

stopping criteria and joint sensor measurement

4.2.2 Tuning and results

By several experiments we get the PID gains Kp,Kd and Ki .

Table 4.1 : the PID gains of the first joint controller

Set point (rad) Kp Kd Ki

n/2 289 40 50

Table 4.2: the PID gains of the second joint controller

Set point (rad) Kp Kd Ki
/2 225 30 10

Table 4.3 : the PID gains of the third joint controller

Set point (rad) Kp Kd Ki
-t/3 270 30 50

After 30 seconds of data recording we get the following figures with sample time

of 0.01S.
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First Joint
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' B : S n Joint Trajectary
: s Desited Trajectary
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168 T s s S A Desirad Trajectary
1+ : :
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0 i ]
| | | | | |

Time 5]
Third Jaint

Joint Trajectory
Desired Trajectary

Angle (rad)

Figure( 4.8): Angles responses for 3 joints using PID controllers

As we see, the responses are acceptable, for the first joint there is no steady stat
error but there are oscillations caused by the high gain Kp, we try to reduce it but that
lead us to a big steady stat error specially in small Set Points, and this due to the

friction in the joint.

For the second joint and third joint we have good responses only a small steady

stat error, and the oscillations due to noise in the joints sensors.

Same experiment but the figures below shows the responses of the end effector

position in the Cartesian space.
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Figure (4.9): end effector position signals (X,Y,Z) following a desired trajectory

4.3 Parameter Estimation

as we mentioned in section 2.1.2, for a robot manipulator to track a specific
trajectory we, have to apply a computed torque control, to do that we need to know
the inverse dynamics model, which means, knowing or estimating the manipulator
parameters, in our case the robot is too ancient and not so commonly used, and the
datasheet is not available, therefore, the parameters values are unknowns, so the
solution is to estimate these parameters with the simplest system identification tool,

known by least-squares method.

Denote that the Least-Squares model of the manipulator is an inverse dynamical
model, which means the inputs are the joints angles and their derivatives, and the
outputs are the PWM signals, and that’s what we need in computed torque control

method.

In section 2.2.3.a we’ve seen the demonstration of LS method, and in 2.2.3

we’ve written the manipulator’s inverse dynamics as follow:

Y =00 (4.1)
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Where Y is the output vector, ® the regresseur matrix and © the estimated

parameters vector.

In our work, to apply LS method we implemented the regresseur matrix ® Eq (2.51) in
MATLAB, then we generate a spesific signals comunoly used in system identification, and
we use them to excite the robot dynamics, but this signals are exciting the robot in closed-
loop using PID contollers, because the robot is unstable in open-loop as we mentioned in

2.2.1.
4.3.1 The Exciting Trajectory

We used very efficient signals to excite the robot joints, these signals are of type

Fourier series, which can be parameterized as a sum of finite Fourier series as follow
qi(t) = qip + Z:zoa sin(wg kt) — bcos(wekt) (4.2)
Where wy is fundamental frequency of the excitation trajectory.

We recorded about 110 seconds of data, in the left side of the figure 4.8 below
represent the three excitation signals (PWM signals) which are going to transfer to
voltage by the motors driver board, and this represents the output vector Y, in the

right side of the figure 4.8 we have the three joints angles values represented in (rad).

With sampling time Te=0.01 s, for each signal we have 11000 sample so that

Uy
Uzl (4.3) with Uy, U, and Uzare 11000X1 vector, and Y is 33000X1 vector.
U3

Y =
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Figure( 4.10): three joint angles signals and their inputs PWM signals
4.3.2 Applying the LS method

After we get the joint angles, we compute the regresseur matrix @ using the
joints angles values and its derivatives, and we arrange them just as we did in Eq

(2.51), then we apply the LS method to estimate the 20 parameters Eq (2.50) As follow
6 = (oT0) 'dTY (4.4)
With ®is 33000X20 matrix andOis 20X1 vector

4.3.3 Parameters validation
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To validate our parametric model using the parameters that we estimated, we
have to excite the system with other trajectories, then use the given outputs which are

the joints angles signals and its derivatives to make the estimated model represented
by the regresseur matrix @ and the estimated parameters 6 , and we compute the
outputs vector Y which represents the Estimated PWM signals , we computed as

follow :

Y = &0 (4.5)

First Jaint Validation

The Measured Output
Estimated output
E

(P

1
Time (mS) %10
Second Joint Walidation

The Measured Output P

Estimated output

(P

\ 3
I i I I i I
1

Tirme () 10t
Third Joint Validation

The Measured Output
Estimated output
T 7

(PN

Time (mS) x10
Figure (4.11): Validation Signals for the three joints manipulator represented by the
measured and the estimated output signals

We compute the RMS error between the real and the estimated output signals for the

three joints and we got:

Table 4.4: RMS error and the fit between the measured and the estimated outputs for

the three joint

Joint 1 Joint 2 Joint 3
RMS error 47 37 32
fit 63% 70% 74%

So the model we estimate fits the real one about 70%, which are acceptable results.
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The errors we got are due to the nonlinearity in the parameters that we cannot
estimate with LS method as stribeck effect and some mechanical problems like

hysteresis and the dead zones in the Dc motors.

And also the big problem is data filtering and recording, as we seen in section
4.1.3 there is a lot of noise in the sensors, after filtering we’ve seen the lag between
the real and the filtered signals ,and also the first and the second derivatives are even

further from the real ones.

Also there’s problem of unites in the parameters we got , in our work we take
the output data as voltage but in PWM , and we consider the relation between the
PWM value and the real voltage in the motors are linear, which is not guaranteed ,and
if it was linear we don’t know this scaling factor which could make our parameters in

wrong unites.
4.4 Computed toque control (Trajectory tracking)

As we mentioned in section 2.1.2,to track a specific trajectory with manipulator we need to
apply a nonlinear control law using feedback linearization and known in robotics as Computed

torque control.
4.4.1 Design and concept
As we’ve seenin Eq 2.19, the control law is

= M(q)(qd — Kdé — Kpe) + C(4,9)q + F(§) + G(q)
With e = x(t) — x4(t)
By adding the motors dynamics Eq (2.47) the control law become

U=(+M()(qd — Kdé — Kpe) + C (q,4)q + F(G) + G(q) + Tf (4.6)
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And we have from section 2.2.3, the inverse dynamic model we got from LS

estimation method

Y =86
Ug
Where Y = UZ] so thatU;, U,andU; are the motors inputs PWM signals, and
Us

we have the regresseur matrix ® representing all the dynamics equations known as

regressors function, and © contain the estimated parameters
So we can write
Y =U =g+ M(@3i+Cq,9q+G6(q)+FG) +Tf = ©(q,4,§)0 (4.5)

And if we use the new control law (4.4) , and by replacing g by (qd — Kdé —

er) which represents the PD Controller plus the feedforward, we get this control law
U=¢e (q, q,(qd — Kdé — er)) o (4.6)

And there is the implementation of the computed torque control law using the

inverse dynamics model that we get in the identification part
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Figure (4.12): Simulink model of Computed torque control for three joints manipulator using

Dynamics inversion and 3 PD controller and supervision of all the loop signals values
4.4.2 tuning and results

By several experiments we get the PD gains Kp and Kd .

Table 4.5 : the PID gains of the first joint controller

Set point (rad) Kp Kd Ki

n/2 25 10 0

Table 4.6 : the PID gains of the second joint controller

Set point (rad) Kp Kd Ki

/2 9 6 0

Table 4.7: the PID gains of the third joint controller

Set point (rad) Kp Kd Ki

-n/3 49 14 0

After 15 seconds of data recording we get the following figures with sample time

of 0.01S
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Figure (4.13): joints Angles Responses after using a computed torque control for tracking

desired trajectories

As we have seen, the manipulator is tracking the desired trajectories, but there is

some error due to the errors in the estimated model and the dynamics that are not

included when modeling, and there is some lag because of the filter lag as we

mentioned previously.

And also if we have a fast desired trajectory the manipulator cannot track,

because the motors velocities are too limited.

4.5 Vision Control application:

If we want to grasp an object like pick and place application, we have to know

the exact position of the object. But if the objects are coming randomly from a

conveyor for example, the only solution is using a vision system to a Estimate the
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objects poses. Then we use the inverse kinematics to get the desired angles, and finally

apply a control law to achieve them.

Pose estimation Inverse 4 Joints Robot
Camera |—— ‘ : - =O— — ;
of the object Kinematcis s Controllers Manipulator
Digital image Object pose (x,y) Desired joints angles Control Signals Joint angles
(dg1,dg2,dqg3)

Figure (4.14): Vision Control for diagram a Robot Manipulator

In our work we try to estimate a pose of a red ball, we used image processing
tools that are implemented in MATLAB to detect the red ball. But this detection allows
us to know the ball position in the image which means in pixels, this result doesn’t help

in our application, because in our robot we can achieve a position using the real world

coordinates.

In order to get the camera (webcam) model, we have to calibrate it, and then
using the intrinsic and extrinsic camera parameters, we can transform the object
position from image which is by pixels, to the real position by meters with respect to

the world coordinate frame, then into the robot base coordinate frame.

Camera

Figure (4.16): illustration of robot manipulator, camera and object coordinate frames
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The previous figure shows us the different coordinate frames positions, where
{0} is the robot bas coordinate frame which is the frame that we used in inverse
kinematics, and we have the camera coordinate frame {c}, and finally the object
coordinate frame {ob}, so using a detection algorithm we get the position of the object
with respect to {c} and then we transform it to the robot frame {0}. Denote that the

position of the camera with respect to the robot coordinate frame is fixed and known.
4.5.1 Object detection

In this part we worked on object detection and position estimation in the image,
first thing we get the real-time image from the webcam, it’s a RGB image, in order to
detect the ball from its color we have to convert the image into HSV space, by selecting
a Hue range and a Saturation range, these two ranges selected such a way that is cover

the color of the ball in different intensity and light distribution on the ball.
So we have a red ball, by many experiences we select as follow:
360 > Hue > 340
0.80 > Saturation > 0.2

Then we threshold the hue and the saturation images planes using these two

ranges.

After we got the binary image we applied the Hough Transform for circle
detection using MATLAB function imfindcircles, by choosing a range for radius values

[35, 65] and after some experiences. We got the following result
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Figure (4.16): circle detection after thresholding and applying circle Hough transform

And we get the radius value r=18 pixel, and the position with pixels (290,181)

4.5.2 Camera calibration and pose estimation

Now after we got the ball position in the image (by pixels), we want to transform
this position into the real world coordinate frame then to the manipulator coordinate
frame, and use this position to get the required joints angles using the inverse

kinematics.

In order to estimate any mathematical model we have to collect data
represented by inputs and outputs as we did in identification, in camera calibration
which is an estimation of the camera parameters we have to take several positions in
the real world which represent the inputs, and estimate these positions in the digital

image which represent the outputs.

Commonly in camera calibration they used a checkerboard that we know its
squares sizes, so we can get the real world position of each square, and camera
calibration algorithm could estimate the positions of each square in the image. Using
this data, the MATLAB calibration toolbox uses some mathematical tools such SVD to

estimate the camera model.
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In our work we took several photos of the workplace where the checkerboard

placed in a specific position with respect to the manipulator.
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Figure (4.18) MATLAB camera calibrator app showing the world coordinate frame after

calibrating the camera and showing the mean error of the estimation

As we have seen the mean error of estimation is about 0.15 pixel which is a good

result.
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4.5.3 Vision position control

After getting the camera parameters represented by extrinsic and intrinsic, we are able

to estimate any position in the checkerboard plane with respect to the world frame.

To do that we implemented this equation using (3.5),(3.6),(3.7) and (3.8)
_[R
P= [t] K

With P represent the camera parameters

X Y 7]= E’] ([Ié] K)—l

With (x,y) is the position in the image and (X,Y,Z) is the position of the ball with respect to the

world frame.

To compare the estimated position with the real one, we placed the ball in known positions

and then apply the position estimation algorithm. We got the following results
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Figure (4.19): examples of real-time position estimation using MATLAB and calibrated camera

Table 4.8 : real positions of the ball compared with the estimated positions

Real position(mm) Estimated position(mm)
(400,-100) (406,-101)
(300,300) (300,302)

(500,0) (492,-6)
(400,200) (402,199)

As we have seen from the table we have a good estimation of the ball position in

the real world frame.

In order to grasp the object by the manipulator hand all we have to do is to send
the position vector to the kinematics control SIMULINK model we demonstrated in

Figure (4.5).
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The figure below shows the end effector position after feeding the Set point

from the vision pose estimation output.
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Figure( 4.20): end effector position following a desired position feeding from camera vision
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Conclusion

In this thesis we implemented an efficient method for control of a manipulator
with unknown dynamical parameters .The PID used for position control as
independent controller for each joint. Although, these PID controllers do not
guarantee a tracking of a desired trajectory. To solve this problem we applied a
nonlinear controller which is known in robotics by ‘Computed torque control’, and in
order to do this we have estimated the parameters of the manipulator. And this
controller tracks the desired trajectory.

After that we have controlled the robot, we took a step further by making it more
intelligent by adding vision, and now we are able to grasp an object in any arbitrary
position , by detecting the object’s position in the digital image ,then transform it to
the world coordinate frame using a calibrated camera .
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