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 ,Εϭبϭفي ذراع الر ϡمل لمشكل التحكΎفي هذه المذكرة حل ش ΎقشنΎخص: نϠامϭب أ ΎلقمنΎ Δنمذج ϭ ΔتيكΎالكينم
 ϡذراع, ثϠل ΔميكيΎالدينΔبتيϭأذرع الرΎب ΔصΎالخ Δكشف اأنظمϭ ϡمعتمدة في التحك ϕطر Ύبرمجن  Εذا

 ϡتحك Ύنϔأض ϡد, ثϭر المنشΎكذا تتبع المسϭ ضعϭفي الم ϡمن التحك Ύمكنن ϱالذϭ ,ΔلϭϬمج ΔميكيΎئص دينΎخص
 Δالرؤي ϰϠضعي مبني عϭمΔعيΎااصطن  . 

 

. اأنظمΔدينΎميكيΔ, تحكϡ ااخطي,كشف ذراع الرϭبΕϭ,  كϠمΕΎ المΎϔتيح:   

Résumé: dans cette thèse on a discuté une solution complète de command des 

bras manipulateur, premièrement on a fait la modilisation de la cinematique et la 

dynamique du bras, apres on a implementé des methodes efficaces pour la 

ĐoŵŵaŶde et l’ideŶtifiĐatioŶ du ďras manipulateur avec des parametres inconnus 

de la dynamique, ce qui nous a permis de commandé la position ainsi le suivi de la 

trajectoire, puis on a finalsé avec une commande de la position basé sur la vision.     

 

Mots clés: Robot manipulateur, Dynamique, la command PID, Commande 

nonlinear, identification des systems.        

 

Abstract : In this thesis we discussed a complete robot manipulator control solving 

proďleŵ, first we ŵodeled the ŵaŶipulator’s kiŶeŵatiĐs aŶd dyŶaŵiĐs, theŶ we 
implemented reliable methods for control and identification of a the robot 

manipulator with unknown dynamical parameters .which allows us to control 

position as well as trajectory tracking, and then we conducted a vision based 

position control.  

 

Keywords: Robot manipulator, Dynamics, PID controller, nonlinear control, System 

identification. 

 

 



Notations and Acronyms 

 

 

Symbols and Operators 

ξ : The relative pose of a frame with respect to a reference coordinate frame. 

{A}: the coordinate frame A. x୧:  The x axis of the ��ℎ frame. y୧: The y axis of the ��ℎ frame. z୧:   The z axis of the ��ℎframe. o୧ : The origine point of coordinate frame i. x̂, ŷ, ẑ: Unite vectors of the axes x, y, z  R ୅ ୆  : 3x3 Orthonormal Rotation Matrix of frame B with respect to frame A. T ୅ ୆ :  4x4 homogeneous transformation matrix of frame B with respect to frame A. q୧: The ��ℎ angle of rotation in the case of a revolute joint. 

Ai: The homogeneous transformation matrix that expresses the position and the 

orientation of o୧ x୧ y୧z୧  with respect to o୧−ଵx୧−ଵ y୧−ଵz୧−ଵ. tn ଴ : The position vector  of the end effector with respect to the inertial or base frame
. �̃ � :  4X1 homogeneous position vector with respect to frame i. 

θi: The angle of rotation around the x axis. 



di: The sliding distance along the z axis. 

a: The length of the common normal. 

 .The angle about common normal, from old z axis to new z axis :ߙ 

 trans ziሺd୧ሻ : The translation matrix in the z axis with distance di with respect to the ��ℎ coordinate frame.          

Rot ziሺθiሻ : The rotation matrix about the z axis with angle θi with respect to the ��ℎ 

coordinate frame.     

ω ∶ The angular velocity  
V : The linear velocity Jω: The derivative of the angular velocity or angular Jacobian matrix Jv : The derivative of the Linear Velocity or linear Jacobian matrix 

J: The robot manipulator Jacobian matrix.  

M: Robot manipulator mass matrix. 

C: Centrifugal and Coriolis forces matrix. 

G : Gravity vector of a Robot manipulator. 

F: Friction matrix of a Robot manipulator. 

K: Kinetic energy. 

U: Potential energy. I : The inertia Tensor. 

: The vector of motor torques. b୧୨୩: Christoffel Symbol. ρ : The mass density. 



p̂ : 3x3 skew matrix of 3x1 p position vector. I3 : 3x3 identity matrix. ݃: The gravitational force. fc: Coulomb friction coefficient.  fv: Viscous friction coefficient. fs: Stiction friction coefficient.  

qs: Stribeck velocity. Tf: Actuator friction term. 

J: Actuator inertia. 

r(t): The reference or the set point signal in the control loop. 

e(t) : The error signal between the set point and the feedback in the control loop.  eሶ , eሷ : The first and the second derivative of the error. 

u(t): The control input signal to the system in the control loop. 

y(t) : Output of the system in control loop. 

qi: The ��ℎ joint angle of the robot manipulator. 

q: The vector of the joints angles of the robot manipulator.  

qd: The vector of the desired joints angles of the robot manipulator. qሶ , qሷ : First and second derivative of joints angles vector of the robot manipulator. 

Kp,Kd,Ki: PID controller gains. Y: System output vector. �̂: The estimated output vector. �: The Vector of (unknown) parameters. 



�̂: The Vector of the estimated parameters. 

φ୧: The Regression variables depend on the ��ℎ  parameter. 

Φ:  The regresseur matrix. �ሺ�, �ሻ: The least squares cost function.  U୧: The PWM input to the ��ℎ  motor. ݂ሺݔ,  .Distance between the camera lens and the image plane : ߚ .Distance between the camera lens and the object :ߙ .ሻ: 2d function represents a digital imageݕ

f: The focal length. 

P: Camera matrix. 

E: Extrinsic camera matrix. 

K: Intrinsic camera matrix. 

Abbreviations and Acronyms 

DOF: Degrees of freedom. 

PID: Proportional Integral Derivative controller. 

LS: least square. 

RLS: recursive least squares. 

RGB:  Digital image of three color planes Red, Green and Blue. 

HSV:  Digital image transform to Hue, Saturation and Value space. 

CHT: The circle Hough Transform. 



PWM: Pulse-width modulation can generate an analogical voltage from digital 

output by switching between 0 and 1 with high frequency and with specific duty 

cycle. 

DC: Direct courant. 

USB: UNIVERSAL SERIAL BUS. 

IO: INPUT/OUTPUT. 

Te: Sampling time. 

Fe: Sampling frequency. 

Fb: lowpass Filter cut-off frequency. 

RMS: Root Mean Square is the square root of the arithmetic mean of the squares of 

the values. 

SVD: Singular Value Decomposition 
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Introduction 

 

 

1 

 

Introduction 

The manipulator robot has become a necessity because the industry handles 

heavy objects repetitively and in hazardous environments. All the research has led to 

arms of all sizes and weights, of all speeds and precisions, and adapted to the tasks 

entrusted. 

     The appearance of the manipulator robots is pulsated by the fact of an era where 

the manufacturing is back in chain, which requires a repetitive and painful working 

time. In recent decades, more complex tasks requiring displacements in 

environments not allowed to human beings (nuclear, mine, military, space, etc.) 

have favored the Mobile robot to settle. 

      The rapid development of the industry has invoked the improvement of robots 

manipulators. Then the robot must handle with increasing speeds and precisions. 

This requires more appropriate mechanical structures but also better new control 

techniques. 

      The researchers did not cease these last two decades to investigate the different 

axes that deal with robotics. This research is distinguished by the different angles 

with which are addressed the preoccupations with robotics that can be classified as 

follows: 

a. Modeling:   

    Most of the time the robot model (Manipulator or mobile), Is necessary to 

perform a command for example , But sometimes the model can be non-linear and 

couplet, even with variable parameters, Which requires orienting towards nonlinear 
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modeling and identification methods instead of being satisfied with the Lagrange 

and Euler formalisms for the dynamic model. 

b. Scheduling tasks: 

      These are strategies that manage a set of operations that make up a task. We are 

talking about the coordination between these operations and their realization. The 

Planning is global if you have all the information about the environment and often 

static. The planning is local if the movement cannot be foreseen in advance, which 

requires reactive reflexes. 

c. Trajectory generation: 

       The trajectory generation that must be traveled by a robot and carried out off 

line or online. 

d. The command : 

    This is the step that generates the control signal to send to the robot's 

shareholders to ensure the trajectory to be followed. Among these commands, the 

PID command, the adaptive control, linear feedback control, Robust control. 

e. The identification : 

   Conventional methods such as least squares are used if the system is assumed to 

ďe liŶear iŶ the paraŵeters, if it’s Ŷot the Đase, thus using non-linear approximation 

methods. [1] 

 

1. History and Motivation : 

The English term robot was derived from the Czech word robota that means 

executive labor, and was first introduced by the Czech playwright Karle Capek in his 

1921 play Rossum's Universal Robots. Since then the term has been applied to 

virtually anything that operates with some degree of autonomy, usually under 

computer control. An official definition of the term, dated to 1980, comes from the 

Robot Institute of America (RIA) and reflects to days status of robotics technology: 
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 ͞A roďot is a reprograŵŵaďle, ŵultifuŶĐtioŶal ŵaŶipulator desigŶed 

to move material, parts, tools, or specialized devices through variable 

prograŵŵed ŵotioŶs for the perforŵaŶĐe of a variety of tasks.͟ [2] 

In the early 1980's, robot manipulators were touted as the ultimate solution to 

automated manufacturing. Predictions were that entire factories of the future would 

require few, if any, human operators. It turned out that these predictions were a 

little exaggerated, as the savings in labor costs often did not outweigh the 

development costs of creating robot systems. Quite simply, people are good at what 

they do, and installing a robot involves complex systems integration problems. As a 

result, robotics fell out of favor in the late 1980's. 

 A resurgence of interest in robotics can be witnessed in the recent years. 

Deeper understanding of the subject and new technology have made it possible for 

robots to explore the surface on Mars, locate sunken ships, searching out land 

mines, and finding victims in collapsed buildings. In an industrial environment the 

advantages of robots are reduction of manufacturing costs, increase of productivity, 

improvement of quality standards, and the possibility of eliminating harmful tasks 

for human operator.[3] 

2.  TheEurobtec IR50p( or ROB3i) : 

The IRϱ0p ;or ROBϯiͿ is a roďot ŵaŶipulator ŵaŶufaĐtured ďy EuroďteĐ, it’s a ϱ 

DOF manipulator, each joint has a DC motor that operates in a  nominal voltage of 

ϮϰV, aŶd a potioŶŵeter to ŵeasure the joiŶt’s aŶgle. 

Originally,IR50p has an iŶtegrated ĐoŶtroller iŶ the ďase of the roďot, it’s easy 

aŶd fast to iŶstall aŶd iŵpleŵeŶt ďut it’s aŶ old teĐhŶology, doesŶ’t iŶĐlude suĐh a 

trajectory tracking algorithms, as well intelligence represented by vision, as well data 

supervision, and speed precision ratio perspective. 

Our mission consists of removing all the hardware and electronics except the 

arm (motors and Potionmeters), and implement improved nonlinear controller 
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design solution as well, estimate accurate IR50pmanipulatorparameters, then we’ll 

add an intelligence represented by vision control. 

 

Figure 1: CAD model of IR50P robot manipulator 

 

 

3.     Objectives :                                                        

Our objective is improving the control of the first 3 DOF (Degrees of freedom) of 

the robot using an Arduino board and Simulink, this makes the computing more 

responsive, stable and efficient. This allows us to supervise all feedback, signals, 

positions and joint angles in real-time.  Such a complex control problem would be 

better solved by dividing it into mini objectives as follows: 

1 . Kinematics and dynamics modeling of the 3 DOF robot manipulator. 

2. Simulate the model, design different control methods. 

3. Design a PID controller for the 3 DOF manipulator for position control. 

4. Complete our robot dynamical model by estimating reliable parameters of the 

robot. 
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5. Appling computed torque control using the estimated parameters for 

trajectory tracking. 

6. Estimate the position of an object using a camera, the arm has to reach the 

object which required: camera modeling and calibration, image processing for 

color and shape detection of an object. 

 

4.    Software: 

Four computer programs have been used to solve the thesis assignment. 

Following is a short description of this software and the using area. 

4.1 MATLAB R2014a with SIMULINK: 

MATLAB [4] is developed by MathWorks, and is a high-level language and 

numerical computing environment for performing computationally intensive tasks 

faster than traditional programming languages. It solves tight integration and 

mathematical problems with other MathWorks products, among them SIMULINK [5] 

which is an environment for multi domain simulation and Model-Based Design for 

dynamic and embedded systems. MATLAB and SIMULINK have been used to 

simulate the dynamic model for The IR50p, and to present the results graphically. 

4.2 Arduino IO (MATLAB support package for Arduino ) : 

MATLAB support package for Arduino is a MATLAB class and Simulink blocks 

for communicating with an Arduino microcontroller board. 

It also has a specific code for Arduino Hardware that enables the serial 

communication with SIMULINK. We can read data from sensors, write and generate 

signals through the Arduino board, and immediately see the results in SIMULINK 

without having to compile. [6] 

4.3 MATLAB Camera Calibration Toolbox : 

https://www.mathworks.com/matlabcentral/fileexchange/?term=tag%3A%22arduino%22
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We have used this toolbox to estimate the parameters of the camera. We can 

use these parameters to correct for lens distortion, measure the size of an object in 

real world units, as well determine the location of the camera in the scene. 

5 Hardware: 

For this part ǁe haǀe used three priŶĐipal eleĐtroŶiĐs’ tools: 

5.1 Arduino Mega2560board: 

Arduino board designs use a variety of microprocessors and controllers. The 

boards are equipped with sets of digital and analog input/output (I/O) pins that may 

be interfaced to various expansion boards (shields) and other circuits. The boards 

feature serial communications interfaces, including Universal Serial Bus (USB) on 

some models, which are also used for loading programs from personal computers. 

The microcontrollers are typically programmed using a dialect of features from the 

programming languages C and C++. In addition to using traditional compiler 

toolchains, the Arduino project provides an integrated development environment 

(IDE) based on the Processing language project. 

We have chosen the Arduino Mega 2560 board as it is based on the 

ATmega2560 microcontroller shown in figure (2), it operates at 16 MHz to control all 

of the onboard functions as well sending the data over serial communication to 

SIMULINK in order to be plotted and interpreted. 

 

https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Universal_Serial_Bus
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Processing_%28programming_language%29
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Figure 2: Arduino Mega 2560 

 

5.2 Dc Motors Driver Board: 

A power board is intended to distribute power at the desired dose to electrical 

components including sensors and actuators, in our case we have the Dc Motors 

Driver board used to control the three dc motors according to the command signals 

delivered by the Arduino mega board. 

The power board has 3 H-ďridges related to the ŵotors, aŶd it’s poǁered ďy a 

24V power source, and the Arduino mega controls this driver board in order to 

decide: 

 The power distributed to the motor, which will make it turn more or 

less quickly according to the PWM signal from the Arduino. 

 The direction of the voltage to be applied to the motor, which will make 

it turn in one direction or another, this can be done using the H-bridges.    
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Figure 3 Power Board 

 

5.3 Webcam: 

In vision application, we used an arbitrary webcam with a quality of 640X480. 

 

Figure 4 Webcam  

6. Outline  

 Chapter 1 discusses the mathematical model of the IR50p robot manipulator, 

which is concluded using the kinematics and dynamical modeling.  
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 Chapter 2 discusses different control theories of the manipulator such PID, 

independent joint control and computed torque control and simulate each of 

them, and also discusses System identification methods and the way to apply 

it on robot manipulators. 

 Chapter 3 discusses computer vision theory and image processing tools that 

are used to detect and position an object, and then discusses the camera 

model which can transfer the position of the object from the digital image 

position into the real world coordinate frame.   

 Chapter 4 discusses the obtained practical results after applying the PID 

controller as well, a comparison between the estimated manipulator model 

and the real one, results obtained after applying computed torque controller 

using the estimated parameters, and finally shows the results obtained from 

vision control application.  

 



Chapter 1: Modeling 

 

 

10 

 

                                          Chapter 1: Modeling 

1.1    Representing Position and Orientation: 

A fundamental requirement in robotics and computer vision is to represent 

the position and orientation of objects in an environment. Such objects include 

robots, cameras, work pieces, obstacles and paths.  

A point in space is a familiar concept from mathematics and can be described 

by a coordinate vector, also known as a bound vector, as shown in Figure 1.1.a the 

vector represents the displacement of the point with respect to some reference 

coordinate frame. A coordinate frame, or Cartesian coordinate system, is a set of 

orthogonal axes which intersect at a point known as the origin. 

More frequently we need to consider a set of points that comprise some 

object. We assume that the object is rigid and that its constituent points maintain a 

ĐoŶstaŶt ƌelatiǀe positioŶ ǁith ƌespeĐt to the oďjeĐt’s ĐooƌdiŶate fƌaŵe as shoǁŶ iŶ 

Figure 1.1.b Instead of describing the individual points we describe the position and 

orientation of the object by the position and orientation of its coordinate frame. A 

coordinate frame is labeled, {B} in this case, and its axis labels �୆ and y୆ adopt the 

fƌaŵe’s label as their subscript. 

The position and orientation of a coordinate frame is known as its pose and is 

shown graphically as a set of coordinate axes. The relative pose of a frame with 

respect to reference coordinate frame, is denoted by the symbol  ξ pronounced ksi. 
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Figure (1.1a): the displacement of the point P with respect to a coordinate frame 

 

 

Figure (1.1.b): the position and orientation of the object by the position and 

orientation of its coordinate frame. 
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Figure( 1.2) : two frames {A} and {B} and the relative pose AξB  which describes {B} 

with respect to {A} 

 

Figure 1.2 shows two frames {A} and {B} and the relative pose ,which describes 

{B} with respect to {A}.The point P can be described with respect to either coordinate 

frame. Formally we express this as: 

P ୅  = ξ୆  ୅  . P ୆                        (1.1) 

 

1.1.1    Representing Pose in 3-Dimensions: 

The 3-dimensional case is an extension of the 2-dimensional case and we add 

an extra coordinate axis, typically denoted by z, which is orthogonal to both the x- 

and y-axes.  

The  point P is represented by its x-, y- and z-coordinates (x, y, z) or as a bound 

vector 

P = x �̂  + y ŷ + z ẑ               (1.2) 

With    �̂ =  [ͳ,Ͳ,Ͳ]୲ 
Figure 1.1.a shows a coordinate frame {B} that we wish to describe with 

respect to the reference frame {A}. We can see clearly that the origin of {B} has been 

displaced by the vector t = (x, y, z) and then rotated in some complex fashion. The 

way we represent orientation is very important. Our approach is to consider an 

arbitrary point P with respect to each of the coordinate frames and to determine the 

relationship between, and we will consider the problem in two parts: rotation and 

then translation. Rotation is surprisingly complex for the 3-dimensional case and we 

devote all of the next section to it. 
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Figure (1.3 ): Two 3D coordinate frames {A} and {B}. {B} is rotated and translated 

with respect to {A} 

 

1.1.2     Representing Orientation in 3-Dimensions: 

a.   Orthonormal Rotation Matrix: 

We can represent the orientation of a coordinate frame by its unit vectors 

expressed in terms of the reference coordinate frame. Each unit vector has three 

elements and they form the columns of a  3 × 3 orthonormal matrix  � ୅ ୆  

[�୅y୅z୅]= � ୅ ୆ [�୆y୆z୆]                                       (1.3) 

The orthonormal rotation matrices for rotation of θ about the x, y and z axes 

are 

�ଡ଼= [ͳ Ͳ ͲͲ cosθ −sinθͲ sinθ cosθ
]                      (1.4) 

�୷= [cosθ Ͳ −sinθͲ ͳ Ͳsinθ Ͳ cosθ
]                      (1.5) 
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�୸= [cosθ −sinθ Ͳsinθ cosθ ͲͲ Ͳ ͳ]                       (1.6) 

 

 

b.  Three-Angle Representations: 

Euleƌ’s ƌotatioŶ theoƌeŵ ƌeƋuiƌes suĐĐessiǀe ƌotatioŶ aďout thƌee aǆes suĐh 

that no two successive rotations are about the same axis. There are two classes of 

rotation sequence: Eulerian and Cardanian, named after Euler and Cardano 

respectively. 

The Eulerian type involves repetition, but not successive, of rotations about one 

particular axis: XYX, XZX, YXY, YZY, ZXZ, or ZYZ. The Cardanian type is characterized by 

rotations about all three axes: XYZ, XZY, YZX, YXZ, ZXY, or ZYX. In common usage all these 

sequences are called Euler angles and there are a total of twelve to choose from. 

The XYZ sequence is commonly used in aeronautics and mechanical dynamics and 

Robotics. which represent the rotations about ϕ, θ  and ʗ  ,which  known as roll, pitch and 

yaw  angles. 

R = �୶ሺϕሻ�୷ሺθሻ�୸ሺʗሻ                       (1.7) 

1.1.3      Combining Translation and Orientation: 

Alternatively we can use a homogeneous transformation matrix to describe 

rotation and translation   

[  
૚࡭ ࢠ࡭ ࢟࡭ ࢞  ]  
 
 = [ ࡭ � ૙૚∗૜࢚ ࡮ ૚] [  

૚࡮ ࢠ࡮ ࢟࡮ ࢞  ]  
 
                          (1.8) 
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The Cartesian translation vector between the origins of the coordinates frames {A} 

and {B}  is ࢚, and the change in orientation is represented by a 3 × 3 orthonormal submatrix 

R. The vectors are expressed in homogenous form and we write �̃ ࡭  =  [ ࡭ � ૙૚∗૜࢚ ࡮ ૚] �̃ ࡮ ࡭ � =   ࡮ ̃�  ࡮            (1.9) 

with � ࡭  is a 4 × 4 homogeneous transformation. The matrix has a very specific  ࡮

structure and belongs to the special Euclidean group of dimension 3. [7]   

1.2    Forward Kinematics: 

In this section we develop the forward or configuration kinematic equations for 

rigid robots. The forward kinematics problem is concerned with the relationship 

between the individual joints of the robot manipulator and the position and 

orientation of the tool or end-effector. 

Stated more formally, the forward kinematics problem is to determine the 

position and orientation of the end-effector, given the values for the joint variables 

of the robot. The joint variables are the angles between the links in the case of 

revolute or rotational joints, and the link extension in the case of prismatic or sliding 

joints. The forward kinematics problem is to be contrasted with the inverse 

kinematics problem, which will be studied in the next chapter, and which is 

concerned with determining values for the joint variables that achieve a desired 

position and orientation for the end-effector of the robot. 

 

1.2.1   Kinematic Chains: 

A robot manipulator is composed of a set of links connected together by 

various joints. The joints can either be very simple, such as a revolute joint or a 

prismatic joint, or else they can be more complex. 
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Figure (1.4): Symbolic representation of robot joint 

With the assumption that each joint has a single degree-of-freedom, the action 

of each joint can be described by a single real number: the angle of rotation in the 

case of a revolute joint or the displacement in the case of a prismatic joint. The 

objective of forward kinematic analysis is to determine the cumulative effect of the 

entire set of joint variables  

A robot manipulator with n joints will have n + 1 links, since each joint 

connects two links. We number the joints from 1 to n, and we number the links from 

0 to n, starting from the base. By this convention, joint i connects link i− 1 to link i. 

We will consider the location of joint i to be fixed with respect to link i−1. When joint 

i is actuated, link i moves. Therefore, link 0 (the first link) is fixed, and does not move 

when the joints are actuated. 

With the ith joint, we associate a joint variable, denoted by qi. In the case of a 

revolute joint, q୧is the angle of rotation and in the case of a prismatic joint, q୧is the 

joint displacement: 

q୧ = {θ୧ ∶  joint i revolute d୧: joint i prismatic } 



Chapter 1: Modeling 

 

 

17 

 

To perform the kinematic analysis, we rigidly attach a coordinate frame to each 

link .In particular, we attach o୧�୧y୧z୧to link i. This means that, whatever motion the 

robot executes, the coordinates of each point on link i are constant when expressed 

in the ith coordinate frame. Furthermore, when joint i is actuated, link i and its 

attached frame, o୧�୧y୧z୧, experience a resulting motion. The frame o଴�଴y଴z଴, which 

is attached to the robot base, is referred to as the inertial frame. 

Now suppose Ai  is the homogeneous transformation matrix that expresses the 

position and orientation of o୧�୧y୧z୧  with respect to o୧−ଵ�୧−ଵy୧−ଵz୧−ଵ.  

The matrix Ai is not constant, but varies as the configuration of the robot is 

changed. However, the assumption that all points are either revolute or prismatic 

means that Ai is a function of only a single joint variable, namely qi. In other words, 

A୧ = A୧ ሺq୧ሻ                                   (1.10) 

Now the homogeneous transformation matrix that expresses the position and 

orientation of o୨�୨y୨z୨  with respect to o୧�୧y୧z୧  is called, by convention, a 

transformation matrix, and it is denoted by T୨୧ T୨୧= A୧+ଵA୧+ଶ… A୨−ଵ    if  i<j             (1.11) 

T୨୧= I    if i=j                                           (1.12) 

T୨୧= (T୨୧)−ଵif  i>j                                  (1.13) 

By the manner in which we have rigidly attached the various frames to the 

corresponding  links, it follows that the position of any point on the end-effector, 

when expressed in frame n, is a constant independent of the configuration of the 

robot. Denote the position and orientation of the end-effector with respect to the 

inertial or base frame by a three-vector t୬ ଴ (which gives the coordinates of the origin 

of the end-effector frame with respect to the base frame) and the 3 × 3 rotation 

matrix �୬଴ , and define the homogeneous transformation matrix 
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T୬଴= [�୬଴ t୬଴Ͳ ͳ ]                                 (1.14) 

Then the position and orientation of the end-effector in the inertial frame are 

given by 

T୬଴ =  Aଵ (qଵሻ … A୬ (q୬ሻ               (1.15) 

Each homogeneous transformation Ai  is of the form 

A୧= [�୧୧−ଵ t୧୧−ଵͲ ͳ ]                           (1.16) 

Hence 

T୨୧ = A୧+ଵ… A୨ = [�୨୧ t୨୧Ͳ ͳ]              (1.17) 

The matrix �୨୧expresses the orientation of o୨�୨y୨z୨relative to o୧�୧y୧z୧ and is 

given by the rotational parts of the A-matrices as 

�୨୧  =  �୧+ଵ୧ … .�୨୨−ଵ                              (1.18) 

The coordinate vectors o୨୧ are given recursively by the formula 

t୨୧ =  t୨−ଵ୧ + �୨−ଵ୧ t୨୨−ଵ                           (1.19) 

These expressions will be useful  when we study Jacobian matrices . [8] 
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Figure (1.5): Links, joints , coordinate frames and transformation vector on an 3 DOF 

elbow manipulator 

 

 

1.2.2 Denavit and Hartenberg Representation: 

A commonly used convention for selecting frames of reference in robotics 

applications is the Denavit and Hartenberg (D–H) convention which was introduced 

by Jacques Denavit and Richard S. Hartenberg. In this convention, coordinate frames 

are attached to the joints between two links such that one transformation is 

associated with the joint [Z], and the second is associated with the link [X]. The 

coordinate transformations along a serial robot consisting of n links form the 

kinematics equations of the robot, 

T୬଴=[Zଵ][Xଵ][Zଶ][Xଶ]… . [X୬−ଵ][Z୬]          (1.20) 

https://en.wikipedia.org/wiki/Frames_of_reference
https://en.wikipedia.org/wiki/Robotics
https://en.wikipedia.org/wiki/Robotics_conventions#Denavit.E2.80.93Hartenberg_link_frame_convention_.28DH.29
https://en.wikipedia.org/w/index.php?title=Jacques_Denavit&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Richard_S._Hartenberg&action=edit&redlink=1
https://en.wikipedia.org/wiki/Transformation_%28geometry%29
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            In order to determine the coordinate transformations [Z] and [X], the 

joints connecting the links are modeled as either hinged or sliding joints, each of 

which have a unique line S in space that forms the joint axis and define the relative 

movement of the two links. A typical serial robot is characterized by a sequence of 

six lines Si, i=1,...,6, one for each joint in the robot. For each sequence of lines Si and 

Si+1, there is a common normal line Ai,i+1. The system of six joint axes Si and five 

common normal lines Ai,i+1 form the kinematic skeleton of the typical six degree of 

freedom serial robot. Denavit and Hartenberg introduced the convention that Z 

coordinate axes are assigned to the joint axes Si and X coordinate axes are assigned 

to the ĐoŵŵoŶ Ŷoƌŵal’sAi,i+1. 

This convention allows the definition of the movement of links around a 

common joint axis Si by the screw displacement, 

[Z୧]= [cosθi −sinθisinθi cosθi Ͳ ͲͲ ͲͲ ͲͲ Ͳ ͳ diͲ ͳ ]                 (1.21) 

        ǁheƌe θi is the rotation around the X and di is the slide along the Z axis 

either of the parameters can be constants depending on the structure of the robot. 

Under this convention the dimensions of each link in the serial chain are defined by 

the screw displacement around the common normal Ai,i+1 from the joint Si to Si+1, 

which is given by 

[X୧]= [ͳ ͲͲ cosα୧,୧+ଵ Ͳ a୧−sinα୧,୧+ଵ ͲͲ sinα୧,୧+ଵͲ Ͳ cosα୧,୧+ଵ    ͲͲ   ͳ ]         (1.22) 

          Heƌe αi,i+1 and a i,i+1 define the physical dimensions of the link in terms of 

the angle measured around and distance measured along the X axis. [9] 

a.   Four parameters 

https://en.wikipedia.org/wiki/Screw_axis#Screw_axis_of_a_spatial_displacement
https://en.wikipedia.org/wiki/Screw_axis#Screw_axis_of_a_spatial_displacement
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The following four transformation parameters are known as D–H 

parameters[10] 

d: offset along previous z to the common normal. 

θ: angle about previous z, from old x to new x 

a: length of the common normal . 

 �: angle about common normal, from old z axis to new z axis 

 

Figure (1.6 ):DH Parameters, Joints axis and common normal representation 

b.   Denavit-Hartenberg matrix 

It is common to separate a screw displacement into the product of a pure 

translation along a line and a pure rotation about the line, so that [Z୧]= trans ୸౟ሺd୧ሻ�ot୸౟(θiሻ            (1.23) 

And  

[X୧]= trans ୶౟(a୧,୧+ଵ)�ot୶౟(α୧,୧+ଵሻ     (1.24) 
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Note that this is the product of two screw displacements, The matrices 

associated with these operations are  

 trans ୸౟ሺd୧ሻ= [ͳ ͲͲ ͳ Ͳ ͲͲ ͲͲ ͲͲ Ͳ ͳ d୧Ͳ   ͳ]        (1.25) 

�ot୸౟−భ(θ୧ሻ= [cθ୧ −sθ୧sθ୧ cθ୧ Ͳ ͲͲ ͲͲ ͲͲ Ͳ ͳ ͲͲ ͳ](1.26) 

 trans ୶౟ሺa୧ሻ=[ͳ ͲͲ ͳ Ͳ a୧Ͳ ͲͲ ͲͲ Ͳ ͳ ͲͲ ͳ](1.27) 

�ot୶౟(α୧ሻ=[ͳ ͲͲ cα୧ Ͳ Ͳ−sα୧ ͲͲ sα୧Ͳ Ͳ cα୧ ͲͲ ͳ ](1.28) 

This gives : 

T୧  ୧−ଵ = [cθ୧ −sθ୧cα୧sθ୧ cθ୧cα୧ sθ୧sα୧ a୧cθ୧−cθ୧sα୧ a୧sθ୧Ͳ         sα୧Ͳ         Ͳ cα୧ d୧Ͳ ͳ ]   = [ � tͲ Ͳ Ͳ ͳ](1.29) 

where R is the 3×3 submatrix describing rotation and t is the 3×1 submatrix 

describing translation[3] 

 

 

1.2.3     Application on the chosen robot: 

Consider now the 3 DOF Elbow manipulator represented symbolically by Figure 1.70. 

https://en.wikipedia.org/wiki/Screw_theory


Chapter 1: Modeling 

 

 

23 

 

 

Figure (1.7) : Links, joints , coordinate frames and transformation vector on an 3 

DOF elbow manipulator 

 

Table 1.1 DH parameters for 3-link Elbow manipulator. 

i θ୧−ଵ d୧−ଵ φ୧ α୧ 
1 qଵ lଵ 0 ʋ/Ϯ 

2 qଶ 0 lଶ 0 

3 qଷ 0 lଷ −ʋ/Ϯ 

We have  

Tଷ଴=[Zଵ][Xଵ][Zଶ][Xଶ][Xଷ][Zଷ] 
  And we know from  (1.23) and (1.24) that  

[Z୧]= trans ୸౟ሺd୧ሻ�ot୸౟(θiሻAnd  [X୧]= trans ୶౟(a୧,୧+ଵ)�ot୶౟(α୧,୧+ଵሻ 
And by replacing the parameters we get  
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Tଷ଴ = �ot୞ሺqଵሻtrans ୞ሺlଵሻ�otଡ଼ሺαଶሻ�ot୞ሺqଶሻtrans ଡ଼ሺlଶሻ�ot୞ሺqଷሻ trans ଡ଼ሺlଷሻ�otଡ଼ሺ ʋ/ʹሻ           
(1.30) 

And the Transformation matrix is given by: 

�૜૙  =  [�૛૜�૚ −࢙૚ −࢙૛૜�૚   �૛૜࢙૚ �૚ −࢙૛૜�૚࢙૛૜ ૙ �૛૜     �૚ሺ�૜�૛૜ + �૛�૛ሻ�૚ሺ�૜�૛૜ + �૛�૛ሻ�૚ + �૜࢙૛૜ + �૛࢙૛૙        ૙         ૙                                     ૚ ]          (1.31) 

   And we can derive  

�ଷ଴= [cଶଷcଵ −sଵ −sଶଷcଵcଶଷsଵ cଵ −sଶଷcଵsଶଷ Ͳ cଶଷ ] and   tଷ଴ = [cଵሺlଷcଶଷ + lଶcଶሻcଵሺlଷcଶଷ + lଶcଶሻlଵ + lଷsଶଷ + lଶsଶ] 
Denote that we have : �ଶଷ = cosሺ �ଶ + �ଷሻ ,      �ଵ = cos ሺ �ଵሻ , �ଶ = cos ሺ �ଶሻ �ଵ = sinሺ �ଵሻ  , �ଶଷ = sinሺ �ଶ + �ଷሻ 

 

 

1.3    Differential Kinematics: 

1.3.1    Derivation of the Jacobian: 

In vector analysis, the Jacobian matrix is a matrix associated with a vector 

function at a given point. Its name comes from the mathematician Charles Jacobi. 

The determinant of this matrix, called Jacobian, plays an important role in solving 

nonlinear problems. 

The time derivative of the kinematics equations yields the Jacobian of the 

robot, which relates the joint rates to the linear and angular velocity of the end-

effector, The robot Jacobian results in a set of linear equations that relate the joint 

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://en.wikipedia.org/wiki/Angular_velocity
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rates to the six-vector formed from the angular and linear velocity of the end-

effector. 

a. Angular Velocity: 

Consider that the angular velocity is noted as ʘ,Now when a rigid body moves 

in a pure rotation about a fixed axis, every point of the body moves in a circle. The 

centers of these circles lie on the axis of rotation. 

 As the body rotates, a perpendicular from any point of the body to the axis 

sǁeeps out aŶ aŶgle θ, aŶd this aŶgle is the saŵe foƌ eǀeƌǇ poiŶt of the ďodǇ. [ϭϭ] 

The angular velocity ʘ  with respect to a joint frame is expressed by its angular 

velocity and its axe of rotation vector and can be written as     

ʘ = Ẑqሶ     with     Ẑ is the unite vector which describes the axe of rotation of the 

joint , denote that  
ẑ = [ͲͲͳ]         (1.32) 

For a robot manipulator, we consider ʘ the angular velocity of  the end-

effector, this angular velocity is the vectorial sum of the provided angular velocity of 

each joint that they are expressed relative to a common coordinate frame, in our 

case the base coordinate frame, and all the axis of rotation must be represented in 

the base frame,  ʘcan be expressed by:  

ʘ = ∑ Z୧qiሶ୬୧=ଵ (1.33) 

We know that Z୧is the axe of rotation of the ith joint expressed in the base 

frame (frame {0} ), thus we can write it    

Z୧ = �୧଴ Ẑ(1.34) 

By replacing Z୧ in (1.33) , becomes  
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ʘ = [ �ଵ଴ Ẑ �ଶ ଴ Ẑڮ �୬଴ Ẑ] * [qଵሶqଶڭሶq୬ሶ ]     (1.35) 

And we can write  

ʘ = �ʘqሶ        (1.36) 

which gives us  

�ʘ = [ �ଵ଴ Ẑ �ଶ ଴ Ẑڮ �୬଴ Ẑ](1.37) 

and �ʘ is the derivative of the angular velocity 

b.  Linear Velocity: 

We now consider the linear velocity of a point that is rigidly attached to a 

moving frame. 

Suppose the point t଴  is rigidly attached to the frame o1x1y1z1, and that o1x1y1z1 is 

rotating relative to the frame o0x0y0z0, so we can express the linear velocity of 

frame {1} with respect to {0} frame, and it can be written as[12] : 

V = 
ୢ ୲బୢ୲ = 

ୢ ୲బୢ୯భ ୢ ୯భୢ୯భ=  
ୢ ୲బୢ୯భ qଵሶ  

In case of robot manipulator, t୬଴  is the end-effector position vector, the linear 

velocities can be added vectorially and becomes    

V = [ୢ ୲nబୢ୯భ qଵሶ + ୢ ୲nబୢ୯మ qଶሶ + +ڮ ୢ ୲nబୢ୯n q୬ሶ ]     (1.38) 

And it becomes 

V = [ୢ ୲nబୢ୯భ ୢ ୲nబୢ୯మ   …  ୢ ୲nబୢ୯n]* [qଵሶqଶڭሶq୬ሶ ]     (1.39) 

And we can write  it as 
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V = �୚qሶ       (1.40) 

hence 

�୴ = [ୢ ୲nబୢ୯భ ୢ ୲nబୢ୯మ…  ୢ ୲nబୢ୯n]      (1.41) 

And �୴ is the derivative of the Linear Velocity 

C.   Combining the Angular and Linear Jacobians:  

The jacobian matrix expressed  by combining each of jacobian,  the linear and 

the angular  [13] 

We have  

ቀVʘቁ =  (�୴�ʘ) qሶ            (1.42) 

And we can write  

J= [�୴�ʘ]             (1.43) 

And J the jacobian matrix of the manipulator  

1.3.2      application on the chosen robot : 

from what we have studied previously we can get : 

V = �୚qሶ        ;    ʘ = �ʘqሶ  →    ቀVʘቁ =  (�୴�ʘ) q  ሶ →   � = (�୴�ʘ) 

And we know from (1.41)that : 

�୴ = [ୢ ୲యబୢ୯భ ୢ ୲యబୢ୯మ ୢ ୲యబୢ୯య] (1.44) 

First we have the position vector of our robot  dented by (1.32)                                
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tଷ଴ = [cଵሺlଷcଶଷ + lଶcଶሻcଵሺlଷcଶଷ + lଶcଶሻlଵ + lଷsଶଷ + lଶsଶ]                         (1.45) 

ୢ ୲యబୢ୯భ = [−sଵሺlଷcଶ.ଷ + lଶcଶሻcଵሺlଷcଶ.ଷ + lଶcଶሻͲ ]                     (1.46) 

ୢ୲యబୢ୯మ = [−−cଵሺlଷsଶ.ଷ + lଶsଶሻsଵሺlଷsଶ.ଷ + lଶsଶሻlଷcଶଷ + lଶcଶ ]                 (1.47) 

ୢ୲యబୢ୯య = [−lଷsଶ.ଷcଵ−lଷsଶ.ଷsଵlଷcଶ.ଷ ]                                       (1.48) 

Thence: 

�୴ = [−sଵሺlଷcଶ.ଷ + lଶcଶሻcଵሺlଷcଶ.ଷ + lଶcଶሻͲ −−cଵሺlଷsଶ.ଷ + lଶsଶሻsଵሺlଷsଶ.ଷ + lଶsଶሻlଷcଶଷ + lଶcଶ −lଷsଶ.ଷcଵ−lଷsଶ.ଷsଵlଷcଶ.ଷ ] (1.49) 

And we know from (1.37) that the angular jacobian is  

�ʘ = [ �ଵ଴ Ẑ �ଶ ଴ Ẑ �ଷ଴ Ẑ]       (1.50)    with Ẑ = [ͲͲͳ]  
Zଵ = �ଵ଴ Ẑ =  [cଵ −sଵ Ͳsଵ cଵ ͲͲ Ͳ ͳ] [ͲͲͳ]  = [ͲͲͳ]     (1.51) 

Zଶ = �ଶ଴ Ẑ = [cଵ −sଵ Ͳsଵ cଵ ͲͲ Ͳ ͳ] [
ͳ Ͳ ͲͲ cሺʋଶሻ −sሺʋଶሻͲ cሺʋଶሻ cሺʋଶሻ ] [

ͲͲͳ] [cଵ Ͳ sଵsଵ Ͳ −cଵͲ ͳ ͳ ] [ͲͲͳ] = [ sଵ−cଵͲ ]    (1.52) 

 

Zଷ = �ଷ଴ Ẑ = [cଵ Ͳ sଵsଵ Ͳ cଵͲ ͳ Ͳ ] [ͳ Ͳ ͲͲ ͳ ͲͲ Ͳ ͳ] [ͲͲͳ] =   [ sଵ−cଵͲ ]        (1.53) 

thence              
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�ʘ = [ Zଵ  Zଶ   Zଷ  ] =[ͲͲͳ sଵ−cଵͲ sଵ−cଵͲ ]       (1.54) 

By combining the two jacobian we get: 

J=

[  
    

−࢙૚ሺ�૜�૛.૜ + �૛�૛ሻ�૚ሺ�૜�૛.૜ + �૛�૛ሻ૙ −−�૚ሺ�૜࢙૛.૜ + �૛࢙૛ሻ࢙૚ሺ�૜࢙૛.૜ + �૛࢙૛ሻ�૜�૛૜ + �૛�૛           −�૜࢙૛.૜�૚−�૜࢙૛.૜࢙૚�૜�૛.૜     
                      ૙૙૚                                                ࢙૚−�૚૙                                  ࢙૚−�૚૙        ]  

   ሺ1.55) 

 

 

1.4    Inverse kinematics: 

The inverse kinematics problem is, given the position and orientation of the 

tool frame, to compute the corresponding joint angles. The inverse kinematics  

problem is considerably harder than the forward kinematics problem, where a 

unique closed form solution always exists, and there are several methods can be 

used to get the inverse kinematics . 

1.4.1   Iterative Method: 

In this method we consider a few change of the variable q and  a few change of 

the variable x and we can express them as Δ� and Δq respectively 

with  � is the �acobian Matri�,we can write  

Δ� =  � Δq                (1.56) 

Δ� = �d − �             (1.57) 

  with { � ∶ actual position�d: desired position  
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The Algoƌithŵ that’s used iŶ this ŵethod  

1. Compute actual position  :� 

2. Compute :Δ� = �d − � 

3. Using pseudo-inverse  :        Δq = ሺ�୘ �ሻ−ଵ �୘Δ�     (1.58) 

4. Calculate the new angle  q୬ୣ୵ :     q୬ୣ୵ = q୭୪ୢ +  Δq (1.59) 

 

1.4.2     The geometric Approach: 

This method is used to solve the unknown joint angles required for the 

autonomous positioning of a robotic arm. A plethora of complex mathematical 

processes is reduced using basic trigonometric in the modeling of the robotic arm. 

1.4.3     Application on the chosen robot : 

As we have mentioned we have to found the unknown angles for each joint; 

and in our case we have 3 link arm robot so we have to find (qଵ, qଶ , qଷሻ , for the this 

we have used basic trigonometric equations : 

For the  first joint angel qଵ we have 

qଵ = arctan ቀ୷୶ቁ   (1.60) 

And for the third joint angel qଷ: 
Sin qଷ = √ͳ + cos qଷ          (1.61) 

And we have                          Δ = √�ଶ + yଶ                   (1.62)       

and                                           ƌ² = Δ² + zଵଶ                       (1.63)    

and                                            r² = lଶଶ +lଷଶ - ʹlଶlଷ Đosα   ;ϭ.64Ϳ 
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Thence                                     Cos α =(୪మమ +୪యమ−Δమ−୸భమ)ଶ୪మ୪య      (1.65)   

 And                                                    qଷ = ʋ− α                 (1.66) and                                               cos q͵ = −�osα                 (1.67) 

  so                                            cos q͵ = − ሺ lʹʹ +l͵ʹ−Δ²−zͳʹ  ሻʹlʹl͵     (1.68) 

   thence                                q͵ = acos ቀ− ሺ lʹʹ +l͵ʹ−Δ²−zͳʹ  ሻʹlʹl͵ ቁ  (1.69) 

and for the second joint angel qଶ  we have  

tan(B)=
ሺ୪య ୱ୧୬୯యሻ୪మ+୪యୡ୭ୱ୯య 

B = tan−ଵሺ ሺ୪య ୱ୧୬୯యሻ୪మ+୪యୡ୭ୱ୯యሻ                           (1.70) 

In the other hand we have : ϒ= B +qଶ  ⇔qଶ =ϒ-B             (1.71)    

and                                            tan(ϒ)=
୸భ
Δ  ⇔ϒ= tan−ଵ(zଵ/Δሻ  (1.72) 

Hence 

qଶ =  tan−ଵ(zଵ/Δሻ − tan−ଵሺ ሺ୪య ୱ୧୬୯యሻ୪మ+୪యୡ୭ୱ୯యሻ  (1.73) 
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Figure (1.8) :angels and distances  of a 3 DOF elbow manipulator 

1.5    Dynamics: 

For control design purposes, it is necessary to have a mathematical model that 

reveals the dynamical behavior of a system. Therefore, in this section we derive the 

dynamical equations of motion for a robot manipulator. Our approach is to derive 

the kinetic aŶd poteŶtial eŶeƌgǇ of the ŵaŶipulatoƌ aŶd theŶ use LagƌaŶge’s 

equations of motion to describe the dynamic properties of the robot arm. This 

relation may be on the form [14] 

Mሺq ሻqሷ⏟    MୟୱୱMୟ୲୰୧୶ + � ሺq , qሶ ሻqሶ⏟      େୣ୬୲୰୧୤୳୥ୟ୪ ୟ୬ୢ େ୭୰୧୭୪୧ୱ୊୭୰ୡୣୱ
+ Gሺ qሻ ⏟  ୋ୰ୟ୴୧୲୷ + Fሺqሶ ሻ⏟୊୰୧ୡ୲୧୭୬ = ⏟I୬୮୳୲୘୭୰୯୳ୣ (1.74) 

1.5.1     Lagrange-Euler formulations   

The Lagrangian is formulated as [15] 

ୢୢ୲ ቀ∂୪∂୯ሶቁ- 
∂୪∂୯ =          (1.75) 
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The function L, which is the difference of the kinetic and potential energy, is 

called the Lagrangian of the system, and Equation (1.96)is called the Euler-Lagrange 

Equation. 

L= k-u                   (1.76) 

 Thence 

∂∂୲ ቀ∂୩∂୯ሶቁ- 
∂୩∂୯     +      ∂୳∂୯     =       (1.77) 

Where T is the total kinetic energy and U is the total potential energy of a 

system that consists of n rigid links. 

 

1.5.1.1   Inertial force: 

And here we must talk about the mass matrix  

a. Mass matrix : 

the mass matrix M(q)  is a symmetric matrix M that expresses the connection 

between the time derivatives qሶof the generalized coordinate vector q of a system 

The kinetics energy for a manipulator is define as    

We have :                                   K= 
ଵଶ qሶ ୲ M(q) qሶ                                                         (1.78) 

So :                                             ∂k∂qሶ = ∂∂qሶ ቀͳʹ qሶ t Mሺqሻ qሶ ቁ = Mሺqሻ qሶ                           (1.79) 

hence :                                        ∂∂t ቀ∂k∂qሶቁ= 
∂∂୲ ሺMሺqሻ qሶ ሻ = Mሺqሻqሷ + Mሶ ሺqሻ qሶ             (1.80) 

    And we get:                           Mሺqሻqሷ +Mሶ ሺqሻ qሶ  - ଵଶ [  
 qሶ ୲ ∂M∂୯ሶ భڭqሶ ୲ ∂M∂୯ሶ n]  

 
                                (1.81) 

https://en.wikipedia.org/wiki/Generalized_coordinates


Chapter 1: Modeling 

 

 

34 

 

The equation (1.81) describes the Inertial forces Represented in mass matrix 

and Centrifugal &Coriolis Forces. 

For the kinetic energy we can defined it as : 

K= ∑ k୧୬୧=ଵ = ଵଶ qሶ ୲ Mሺqሻ qሶ             (1.82) 

{ for lineair movement ∶ k = ͳʹmv²for rotational movement ∶ k = ͳʹʘ୲Iେʘ
} 

In addition to this we have   

k୧ = ଵଶ (m୧v୲ୡvୡ + ʘ୧୲Iେ౟ʘ୧)     (1.83) 

From (1.83) and  (1.82) 

K= 
ଵଶ qሶ ୲ Mሺqሻ qሶ    = 

ଵଶ∑ (m୧v୲ୡvୡ + ʘ୧୲Iେ౟ʘ୧)୬୧=ଵ       (1.84) 

And we have                  vୡ౟= �୴౟qሶ        (1.85)       

With  �୴౟  the linear jacobian for the ith  joint  define as                                                       

�୴౟ =  [∂୮ౙ౟∂୯ଵ ڮ ∂୮ౙ౟∂୯୬]               (1.86) 

Denoted that  Pci : center of mass position vector in frame {0} 

And we have also                             ʘ୧ = �ʘ౟qሶ             (1.87) 

With  �ʘ౟  the angular jacobian for the ith  joint  define as                                                       

�ʘ౟  =   [Zଵ ڮ Z୬]                       ሺͳ.88ሻ                 �enoted that   Zi : axe of Rotation in frame {0} 

Thence                      
ଵଶ qሶ ୲ Mሺqሻ qሶ  =      

ଵଶ qሶ ୲∑ (m୧�୲୴�୴ + ʘ୧୲Iେ౟ʘ୧)୬୧=ଵ qሶ           (1.89) 
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And we get the mass matrix expression      

Mሺqሻ = ∑ (m୧�୲୴�୴ + ʘ୧୲Iେ౟ʘ୧)୬୧=ଵ                            (1.90) 

The mass matrix can be written as this form 

Mሺqሻ = [MଵଵMଵଶ…Mଵ୬⋱M୬ଵM୬ଶ…M୬୬]  (1.91) 

 

b.  Centrifugal and Coriolis Forces : 

The Coriolis force is an inertial force (also called a fictitious force) that acts on 

objects that are in motion relative to a rotating reference frame. In a reference 

frame with clockwise rotation, the force acts to the left of the motion of the object. 

In one with anticlockwise rotation, the force acts to the right [16] 

Whereas the centripetal (Centrifugal) force is seen as a force which must be 

applied by an external agent to force an object to move in a curved path, the 

Centrifugal and Coriolis forces are "effective forces" which are invoked to explain the 

behavior of objects from a frame of reference which is rotating. [17] 

Centrifugal &Coriolis  terms can be extracted from (1.81) and we can write  

C(q, qሶ )qሶ  = Mሺqሻሶ qሶ   - ଵଶ [  
 qሶ ୲ ∂M∂୯ሶ భڭqሶ ୲ ∂M∂୯ሶ n]  

 
 = [Mሶ ଵଵMሶ ଵଶ…Mሶ ଵ୬⋱Mሶ ୬ଵMሶ ୬ଶ…Mሶ ୬୬] qሶ   -ଵଶ [  

   
  qሶ ୲ [Mሶ ଵଵMሶ ଵଶ…Mሶ ଵ୬⋱Mሶ ୬ଵMሶ ୬ଶ…Mሶ ୬୬] qሶڭqሶ ୲ [Mሶ ଵଵMሶ ଵଶ…Mሶ ଵ୬⋱Mሶ ୬ଵMሶ ୬ଶ…Mሶ ୬୬] qሶ ]  

   
  
     (1.92) 

 

We define                                   M୧୨୩=ౚM౟ౠౚqౡ                             (1.93) 

And                                                Mሶ ij = Mijͳqͳሶ + Mijʹq ሶʹ + Mijnqnሶ+ڮ            (1.94) 

https://en.wikipedia.org/wiki/Inertial_force
https://en.wikipedia.org/wiki/Rotating_reference_frame
http://hyperphysics.phy-astr.gsu.edu/hbase/cf.html#cf
http://hyperphysics.phy-astr.gsu.edu/hbase/corf.html#cor
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And we can write  

C( q, qሶ )qሶ  = 

[ଵଶ (Mሶ ଵଵଵMሶ ଵଶଵ…Mሶ ୧୨ଵ) + ଵଶ (Mሶ ଵଵଶMሶ ଵଶଶ…Mሶ ୧୨ଶ) + ڮ ଵଶ (Mሶ ଵଵ୬Mሶ ଵଶ୬…Mሶ ୧୨୬)⋱ଵଶ (Mሶ ଵଵ୬Mሶ ଵଶ୬…Mሶ ୧୨୬) + ଵଶ (Mሶ ଵଵ୬Mሶ ଵଶ୬…Mሶ ୧୨୬) + ڮ ଵଶ (Mሶ ଵଵ୬Mሶ ଵଶ୬…Mሶ ୧୨୬)]+
[[ MଵଵଵMଵଶଵ…M୧୨ଵ⋱M୬ଵ୬M୬୬ଵ…Mଵ୬୬] [ qଵqଶڭq୬−ଵq୬]]              (1.95) 

 

 

 

Using Christoffel Symbols : 

                                                 b୧୨୩ = ଵଶ (M୧୨୩ +M୧୩୨ −M୨୩୧)            (1.96) 

We can write a general form : 

C( q, qሶ )qሶ  = cଵ( q)qሶ ଶ+ cଶ( q)qሶ qሶ           (1.97) 

 

Centrifugal term :         cͳ ( q)qሶ ଶ = [[bଵଵଵbଵଶଶ…bଵ୬୫⋱b୬ଵଵb୬ଶଶ…b୬୬୫] [qሶ ²ଵڭq²ሶ ୬]]     (1.98) 

Coriolis term:      c ʹ( q)[qሶ qሶ ] = [ʹbଵଵଵʹbଵଶଶ…ʹb୬ሺ୬−ଵሻ୬⋱ʹb୬ଵଵʹb୬ଶଶ…ʹb୬ሺ୬−ଵሻ୬] [ qሶ ²ଵqሶ ²ଶڭq²ሶ ୬−ଵqሶ ²୬] (1.99) 

c.    Inertia matrix : 

the moment of inertia is a scalar value expressing the resistance to changes to 

the rotation of an object. If the axis o rotation is not given, it is possible to generalize 

the scalar moment of inertia as 3X3 matrix expressing the moment of inertia about 

arbitrary axes. This matrix called also inertia tensor. 
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Let the mass density of an object ʌ, and   the inertia tensor in frame attached 

to center of mass of the object and p the position vector defin as   

p = [�yz]   (1.100) 

  

We have                       I= ∫−p̂ p̂ʌ dv  and  −p̂p̂ =  ሺp୲pሻIଷ − pp୲     (1.101)  

        

Thence                                 I = ∫[−ሺp୲pሻIଷ − pp୲] ʌdv  (1.102) 

We have−p̂p̂ = [−ሺp୲pሻIଷ − pp୲] = [yଶ + zଶ −�y �z−�y zଶ + �ଶ −yz�ଶ −yଶ �ଶ + yଶ]       (1.103)  

the inertia tensor expressed as                  I= [− Iଡ଼ଡ଼ −Iଡ଼ଢ଼ Iଡ଼୞Iଡ଼ଢ଼ Iଢ଼ଢ଼ −Iଢ଼୞−Iଡ଼ଡ଼ −Iଢ଼୞ I୞୞ ] (1.104) 

and we define  the Moments of Inertia 

 Iଡ଼ଡ଼ =∭ሺyଶ + zଶሻʌd�dydz (1.105) Iଢ଼ଢ଼ =∭ሺ� + zଶሻʌd�dydz  (1.106) I୞୞ =∭ሺyଶ + �ଶሻʌd�dydz   (1.107) 

and we have also  the Products of Inertia 

 Iଡ଼ଢ଼ =∭�yʌd�dydz (1.108)  Iଡ଼୞ =∭�zʌd�dydz (1.109)  Iଢ଼୞ =∭yzʌd�dydz (1.110) 

1.5.1.2     Gravity term (Potential Energy ): 

Now consider the potential energy term. In the case of rigid dynamics, the only 

source of potential energy is gravity. The potential energy of the i-th link can be 
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computed by assuming that the mass of the entire object is concentrated at its 

center of mass and is given by  

 u୧ = m୧g h୧u୧ = m୧ሺ−g଴୲pୡ୧ሻ}  and  U = ∑ u୧     ୬୧=ଵ (1.111) 

We have the  Gravity Vector :              g଴ = ( ͲͲ−g)          (1.112) 

And we have  the linear Jacobin             �୴౟ =  [∂୮ౙ౟∂୯ଵ ڮ ∂୮ౙ౟∂୯୬]                  ሺͳ.ͳͳ͵ሻ 
We define                     G = ∂୙∂୯=-∑ ሺm୧g଴୲ ∂୮ౙ౟∂୯ ሻ୬୧=ଵ  

And from the previous equation we get the gravity term define as  

 

Gሺqሻሶ = - ( �୴భ୲�୴మ୲…    �୴n୲) (mଵg଴ڭm୬g଴) =-( �୴భ୲ሺmଵg଴ሻ + �୴మ୲ሺmଶg଴ሻ+…+�୴n୲ሺm୬g଴ሻ)   (1.114) 

 

1.5.1.3        Friction modeling: 

Although joint frictions are complicated in reality, a simple model which is the 

combination of viscous and Coulomb and stiction( stribeck effect) , is normally used 

to describe the friction phenomenon for all joints: 

Fሺqሶ ሻ =  F୴ qሶ⏟୴୧ୱୡ୭୳ୱ ୤୰୧ୡ୲୧୭୬+ Fୡ sign ሺqሶ ሻ⏟       େ୭୳୪୭୫ୠ ୤୰୧ୡ୲୧୭୬ +  Fୱ ሺqሶ ሻ⏟  ୱ୲୰୧ୠୣୡ୩ ୣ୤୤ୣୡ୲    (1.115) 

 

I. viscous friction : 

The viscous friction element models the friction force as a force proportional to 

the sliding velocity. 

II. Coulomb friction : 
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The Coulomb approximation mathematically follows from the assumptions 

that surfaces are in atomically close contact only over a small fraction of their overall 

area, that this contact area is proportional to the normal force. 

and that the frictional force is proportional to the applied normal force, 

independently of the contact area. 

the Coulomb approximation is an adequate representation of friction for the 

analysis of many physical systems.[18] 

III. stiction( stribeck effect):  

The Stribeck curve is a more advanced model of friction as a function of 

velocity. Although it is still valid only in steady state, it includes the model of 

Coulomb and viscous friction as built-in elements.[19] 

And We write     Fୱ ሺqሶ ሻ=ሺfୱ – fୡ ሻ signሺqሶ ሻe−| qሶqs|మ(1.116) 

With   qୱ is  Stribeck velocity   

And we can represent all the friction component by the following figure  

https://en.wikipedia.org/wiki/Contact_area


Chapter 1: Modeling 

 

 

40 

 

 

Figure (1.9): Friction model with coulomb ,viscous and stiction trem 

For a serial robot manipulator we can write the friction term as  [20] 

Fሺqሶ ሻ =  [f୴భ Ͳ ͲͲ ⋱ ͲͲ Ͳ f୴n] [qଵሶڭq୬ሶ ] + 

[fୡభ Ͳ ͲͲ ⋱ ͲͲ Ͳ fୡn] [signሺqሶ ଵሻڭsignሺqሶ ୬ሻ]    + [ሺfୱభ– fୡଵ ሻ Ͳ ͲͲ ⋱ ͲͲ Ͳ ሺfୱn– fୡ୬ሻ ] [   
 signሺqሶ ଵሻe−|qሶ భqs|మڭsignሺqሶ ୬ሻe−|qሶ nqs|మ]   

 
(1.117) 

Denote that  

Fci : express Coulomb friction of the ith joint . 

Fvi : express viscous friction of the ith joint . 

Fsi : express stiction term of the ith joint . 

qs : expresses the Stribeck velocity . 

1.5.2  Actuator Dynamics : 
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For the actuators which are dc motors, we choose a very simple model, 

because of the huge nonlinearity present in the manipulator joints, the motor 

dynamics could be Neglected or represented by a simple linear model as follow [20] 

U = �θሷ + τ+ Tf            (1.118) 

With � joints torques, Tf represent the actuator friction , U represent the inputs 

voltage signals and J represent the actuator inertia. by replacing Eq(1.74)  we get  

U = �θሷ + Mሺq ሻqሷ + � ሺq , qሶ ሻq + Gሺ qሻ + Fሺqሶ ሻሶ + Tf     (1.119) 

And   θሷ = Gqሷ   , G represent the gears ratios, denote that 

U = [UଵڭU୬] , �́ = [jଵGଵڭj୬G୬], Tf = [TfଵڭTf୬] 
Yield 

U = �́qሷ + Mሺq ሻqሷ + � ሺq , qሶ ሻq + Gሺ qሻ + Fሺqሶ ሻሶ + Tf    (1.120) 

1.5.3    Application on  the chosen robot : 

we have the Figure 1.8 describe our  3dof elbow manipulator, all center of 

masses represented with respect to the base frame .  

the choice of centre of masses depends on the real mass distribution of our 

robot . 
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Figure (1.10):  angels and distances of center of masses  of a 3 DOF elbow 

manipulator 

 

first we have the position vectors of center of masses denote as  

pୡଵ=[lୡଵcଵ   lୡଵsଵ  Ͳ  ] pୡଵ = [cଵሺlୡଶcଶሻsଵሺlୡଶcଶሻlଵ + lୡଶsଶ] pୡଷ = [cଵሺlୡଷcଶଷ + lଶcଶሻsଵሺlୡଷcଶଷ + lଶcଶሻlଵ + lୡଷsଶଷ + lଶsଶ] 
a.   Mass matrix  

and we have the mass matrix of our 3dof robot  as we define in  (1.90) 

M = ቀMଵ�୲ଵ�ଵ + �ωభ  ୲I୬భ�ωభቁ + ቀMଶ�୲ଶ�ଶ + �ωమ  ୲I୬మ�ωమቁ + ቀMଷ�୲ଷ�ଷ + �ωయ  ୲I୬య�ωయቁ 

we derive of the linear jacobian of the first joint   

�୴ଵ = [ୢ୮ౙభୢ୯భ ୢ୮ౙభୢ୯మ ୢ୮ౙభୢ୯య ]    =   [−lୡଵsଵ Ͳ Ͳlୡଵcଵ Ͳ ͲͲ Ͳ Ͳ] 
And also the angular jacobian of the first joint   

�ωభ = [zଵ Ͳ    Ͳ] =  [Ͳ Ͳ ͲͲ Ͳ Ͳͳ Ͳ Ͳ] 
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and we have the Inertia matrix of the first joint express as  

I୬భ = [ Iଡ଼ଡ଼ଵ −Iଢ଼ଡ଼ଵ −I୞ଡ଼ଵ−Iଢ଼ଡ଼ଵ Iଢ଼ଢ଼ଵ −Iଢ଼୞ଵ−I୞ଡ଼ଵ −Iଢ଼୞ଵ I୞୞ଵ ] 
so we can write the first part of the mass matrix  that depend on the first joint 

ቀMଵ�୲ଵ�ଵ + �ωభ  ୲I୬భ�ωభቁ =
Mଵ [−lୡଵsଵ lୡଵcଵ ͲͲ Ͳ ͲͲ Ͳ Ͳ] [−lୡଵsଵ Ͳ Ͳlୡଵcଵ Ͳ ͲͲ Ͳ Ͳ]+[Ͳ Ͳ ͳͲ Ͳ ͲͲ Ͳ Ͳ] [ Iଡ଼ଡ଼ଵ −Iଢ଼ଡ଼ଵ −I୞ଡ଼ଵ−Iଢ଼ଡ଼ଵ I୷୷ଵ −Iଢ଼୞ଵ−I୞ଡ଼ଵ −Iଢ଼୞ଵ I୸୸ଵ ] [Ͳ Ͳ ͲͲ Ͳ Ͳͳ Ͳ Ͳ]= 

[Mଵlୡଵ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ]+[I୸୸ଵ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ]= [Mଵl²ୡଵ + I୸୸ଵ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ] 
Same thing for the second joint  we have linear jacobian and angular jacobian 

express as 

�୴ଶ = [ୢ୮ౙమୢ୯భ ୢ୮ౙమୢ୯మ ୢ୮ౙమୢ୯య ]    =   [−sଵlୡଶcଶ −cଵlୡଶsଶ Ͳcଵlୡଶcଶ −sଵlୡଶsଶ ͲͲ lୡଶcଶ Ͳ] 
�ωమ = [zଵ zଶ    Ͳ] =  [Ͳ Ͳ ͲͲ −ͳ Ͳͳ Ͳ Ͳ] 

Also we have the Inertia matrix of the second joint : 

I୬మ = [ Iଡ଼ଡ଼ଶ −Iଢ଼ଡ଼ଶ −I୞ଡ଼ଶ−Iଢ଼ଡ଼ଶ Iଢ଼ଢ଼ଶ −Iଢ଼୞ଶ−I୞ଡ଼ଶ −Iଢ଼୞ଶ I୞୞ଶ ] 
And we get the second part of the mass matrix 

ቀMଶ�୲ଶ�ଶ + �ωమ  ୲I୬మ�ωమቁ = 
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Mଶ [−sଵlୡଶcଶ cଵlୡଶcଶ Ͳ−cଵlୡଶsଶ −sଵlୡଶsଶ lୡଶcଶͲ Ͳ Ͳ ] [−sଵlୡଶcଶ −cଵlୡଶsଶ Ͳcଵlୡଶcଶ −sଵlୡଶsଶ ͲͲ lୡଶcଶ Ͳ]+
[Ͳ Ͳ ͳͲ −ͳ ͲͲ Ͳ Ͳ] [ Iଡ଼ଡ଼ଶ −Iଢ଼ଡ଼ଶ −I୞ଡ଼ଶ−Iଢ଼ଡ଼ଶ I୷୷ଶ −Iଢ଼୞ଶ−I୞ଡ଼ଶ −Iଢ଼୞ଶ I୸୸ଶ ] [Ͳ Ͳ ͲͲ −ͳ Ͳͳ Ͳ Ͳ]= 

[Mଶlୡଶ²cଶଶ Ͳ ͲͲ Mଶlୡଶ² ͲͲ Ͳ Ͳ]+[I୸୸ଶ Iଢ଼୞ଶ ͲIଢ଼୞ଶ Iଢ଼ଢ଼ଶ ͲͲ Ͳ Ͳ]=[Mଶlୡଶ²cଶଶ + I୸୸ଶ Iଢ଼୞ଶ ͲIଢ଼୞ଶ Mଶlୡଶ² + Iଢ଼ଢ଼ଶ ͲͲ Ͳ Ͳ] 
And also for the third joint, we have linear and angular jacobian express as 

�୴ଷ = [ୢ୮ౙయୢ୯భ ୢ୮ౙయୢ୯మ ୢ୮ౙయୢ୯య ]    =   [−sଵሺlୡଷcଶଷ + lଶcଶሻ −cଵሺlୡଷsଶଷ + lଶsଶሻ −cଵlୡଷsଶଷcଵሺlୡଷcଶଷ + lଶcଶሻ −sଵሺlୡଷsଶଷ + lଶsଶሻ −sଵlୡଷsଶଷͲ lୡଷcଶଷ + lଶcଶ lୡଷcଶଷ ] 
            �ωయ = [zଵ zଶzଷ] =  [Ͳ Ͳ ͲͲ −ͳ −ͳͳ Ͳ Ͳ ] 

the Inertia matrix of the third joint : 

I୬య = [ I୸୸ଷ −Iଢ଼ଡ଼ଷ −I୞ଡ଼ଷ−Iଢ଼ଡ଼ଷ I୷୷ଷ −Iଢ଼୞ଷ−I୞ଡ଼ଷ −Iଢ଼୞ଷ I୷୷ଷ ] 
= Mଷ [−sଵሺlୡଷcଶଷ + lଶcଶሻ cଵሺlୡଷcଶଷ + lଶcଶሻ Ͳ – cଵሺlୡଷsଶଷ + lଶsଶሻ −sଵሺlୡଷsଶଷ + lଶsଶሻ lୡଷcଶଷ + lଶcଶ−cଵlୡଷsଶଷ −sଵlୡଷsଶଷ lୡଷcଶଷ ] 
[−sଵሺlୡଷcଶଷ + lଶcଶሻ −cଵሺlୡଷsଶଷ + lଶsଶሻ −cଵlୡଷsଶଷcଵሺlୡଷcଶଷ + lଶcଶሻ −sଵሺlୡଷsଶଷ + lଶsଶሻ −sଵlୡଷsଶଷͲ lୡଷsଶଷ + lଶsଶ lୡଷcଶଷ ]+[Ͳ Ͳ ͳͲ −ͳ ͲͲ −ͳ Ͳ] 
=[ Iଡ଼ଡ଼ଷ −Iଢ଼ଡ଼ଷ −I୞ଡ଼ଷ−Iଢ଼ଡ଼ଷ I୷୷ଷ −Iଢ଼୞ଷ−I୞ଡ଼ଷ −Iଢ଼୞ଷ I୸୸ଷ ] [Ͳ Ͳ ͲͲ −ͳ −ͳͳ Ͳ Ͳ ] 

 

Yield  
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ቀMଷ�୲ଷ�ଷ + �ωయ  ୲I୬య�ωయቁ= 

Mଷ [l²ୡଷc²ଶଷ + l²ଶc²ଶ + ʹlୡଷcଶଷlଶcଶ Ͳ ͲͲ l²ୡଷ + lଶ² + ʹlୡଷlଶcଷ l²ୡଷ + lୡଷlଶcଷͲ l²ୡଷ + lୡଷlଶcଷ l²ୡଷ ]+
[I୸୸ଷ Iଢ଼୞ଷ Iଢ଼୞ଷIଢ଼୞ଷ I୷୷ଷ Iଢ଼ଢ଼ଷIଢ଼୞ଷ Iଢ଼ଢ଼ଷ I୷୷ଷ]= 

[Mଷሺlଶୡଷcଶଶଷ + lଶଶcଶଶ + ʹlୡଷcଶଷlଶcଶሻ + Izz͵ Iଢ଼୞ଷ Iଢ଼୞ଷIଢ଼୞ଷ Mଷሺl²ୡଷ + lଶ² + ʹlୡଷlଶc͵ሻ + I୷୷ଷ M͵ሺlଶୡଷ + lୡଷlଶcଷሻ + Iଢ଼ଢ଼ଷIଢ଼୞ଷ Mଷሺl²ୡଷ + lୡଷlଶcଷሻ + Iଢ଼ଢ଼ଷ Mଷl²ୡଷ + I୷୷ଷ ] 
And The general mass matrix becomes  

M=[Mଵl²ୡଵ + I୸୸ଵ Ͳ ͲͲ Ͳ ͲͲ Ͳ Ͳ] + [Mଶlୡଶ²cଶ + I୸୸ଶ Iଢ଼୞ଶ ͲͲ Mଶl²ୡଶ + I୷୷ଶ ͲͲ Ͳ Ͳ] +
[I୸୸ଷ +Mଷሺlଶୡଷcଶଶଷ + lଶଶcଶଶ + ʹlୡଷcଶଷlଶcଶሻ −Iଢ଼୸ଷ −I୞୷ଷ−Iଢ଼ଡ଼ଷ I୷୷ଷ +Mଷሺl²ୡଷ + lଶ² + ʹlୡଷlଶሻ −Iଢ଼୞ଷ−I୞ଡ଼ଷ Mଷሺl²ୡଷ + lୡଷlଶcଷሻ − Iଢ଼୷ଷ I୷୷ଷ +Mଷl²ୡଷ] 
And the other hand we have : 

           M=[Mଵଵ Mଵଶ MଵଷMଶଵ Mଶଶ MଶଷMଷଵ Mଷଶ Mଷଷ] Mଶଵ = Mଶଵ Mଶଷ = Mଷଶ Mଵଷ = Mଷଵ Mଵଵ = Mଵl²ୡଵ + I୸୸ଵ+Mଶlୡଶ²cଶ + I୸୸ଶ+I୸୸ଷ +Mଷሺlଶୡଷcଶଶଷ + lଶଶcଶଶ + ʹlୡଷcଶଷlଶcଶሻ Mଶଵ = Mଵଶ = Iଢ଼୞ଶ + Iଢ଼୸ଷ Mଵଷ = Mଷଵ = I୷୸ଷ 

Mଶଷ = Mଷଶ=Mଷሺl²ୡଷ + lୡଷlଶcଷሻ + Iଢ଼୷ଷ 
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Mଶଶ = Mଶl²ୡଶ + I୷୷ଶ+I୷୷ଷ +Mଷሺl²ୡଷ + lଶ² + ʹlୡଷlଶcଷሻ Mଷଷ = I୷୷ଷ +Mଷl²ୡଷ 

 

b.     Centrifugal &Coriolis Forces 

We begin with the Centrifugal Force as we define in (1.119) 

c ଵ( q)qሶ ଶ=[bଵଵଵ bଵଶଶ bଵଷଷbଶଵଵ bଶଶଶ bଶଷଷbଷଵଵ bଷଶଶ bଷଷଷ] [
q²ଵሶq²ଶሶq²ଷሶ ] 

We know from  (1.93) and (1.96) that  

M୧୨୩=ౚM౟ౠౚqౡ       and b୧୨୩ = ଵଶ (M୧୨୩ +M୧୩୨ −M୨୩୧) 
So we get Mଵଵଵ = Ͳ Mଵଶଶ = Mଶଵଶ=0  Mଵଵଶ =-ʹMଶሺlୡଶ²cଶsଶ+lଶୡଷc ଶଷs ଶଷ + lଶଶcଶsଶ + lୡଷsଶଷlଶcଶ + lୡଷlଶcଶଷsଶ) Mଶଷଷ = −Mଷlୡଷlଶsଷ Mଷଷଶ = Ͳ Mଷଵଵ = Mଵଷଵ = Ͳ Mଷଷଷ=0 Mଶଶଶ=0 Mଷଶଶ=0 Mଵଵଷ=-ʹMଶሺlଶୡଷcଶଷsଶଷ + lୡଷlଶsଶଷcଶሻ 
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Mଶଶଷ = ʹMଶlୡଷlଶsଷ Mଶଵଷ = Ͳ Mଶଷଵ = Ͳ Mଵଷଶ = Ͳ 

bଵଵଵ = ଵଶ(Mଵଵଵ +Mଵଵଵ −Mଵଵଵ)=
Mభభభଶ =0 

bଵଶଶ = ଵଶ(Mଵଶଶ +Mଵଶଶ −Mଶଶଵ)=Mଵଶଶ − Mమమభଶ =0 

bଵଷଷ = ଵଶ(Mଵଷଷ +Mଵଷଷ −Mଷଷଵ)=Mଵଷଷ − Mయయభଶ = Ͳ 

bଶଵଵ=
ଵଶ(Mଶଵଵ +Mଶଵଵ −Mଵଵଶ)=Mଶଵଵ − Mభభమଶ =Mଶሺlୡଶ²cଶsଶ+lଶୡଷc ଶଷs ଶଷ + lଶଶcଶsଶ +lୡଷsଶଷlଶcଶ + lୡଷlଶcଶଷsଶ) 

bଶଶଶ = ଵଶ(Mଶଶଶ +Mଶଶଶ −Mଶଶଶ)=
Mమమమଶ =0 

bଶଷଷ = ଵଶ(Mଶଷଷ +Mଶଷଷ −Mଷଷଶ)=Mଶଷଷ − Mయయమଶ = Ͳ 

bଷଵଵ = ଵଶ(Mଷଵଵ +Mଷଵଵ −Mଷଵଵ)=Mଷଵଵ − Mభభయଶ =Mଶሺlଶୡଷcଶଷsଶଷ + lୡଷlଶsଶଷcଶሻ 
bଷଷଷ = ଵଶ(Mଷଷଷ +Mଷଷଷ −Mଷଷଷ)=

Mయయయଶ =0 

bଷଶଶ = ଵଶ(Mଷଶଶ +Mଷଶଶ −Mଶଶଷ)=Mଷଶଶ − Mమమయଶ =Mଶlୡଷlଶsଷ 

And the final matrix becomes cଵ (q)qሶ ଶ=

[ Ͳ Ͳ ͲMଶlୡଶ²cଶsଶ +Mଷሺlଶୡଷcଶଶଷsଶଶଷ + lଶଶcଶsଶ + lୡଷsଶଷlଶcଶሻ − Mଷlୡଷlଶcଶଷsଶ Ͳ ͲMଷሺlଶୡଷcଶଷsଶଷ + lୡଷlଶsଶଷcଶሻ Mଷlୡଷlଶsଷ Ͳ] [q²ଵ
ሶq²ଶሶq²ଷሶ ] 

 

And for the Coriolis term we have from (1.99) 
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c ଶ( q)[qሶ qሶ ]=[ʹbଵଵଶ ʹbଵଵଷ ʹbଵଶଷʹbଶଵଶ ʹbଶଵଷ ʹbଶଶଷʹbଷଵଶ ʹbଷଵଷ ʹbଷଶଷ] [qଵሶqଵሶqଶሶ qଶሶqଷሶqଷሶ ] 
And we get  

ʹbଵଵଶ = ଵଶ(Mଵଵଶ +Mଵଵଶ −Mଵଵଶ)=
Mభభమଶ =Mଵଵଶ 

ʹbଵଵଷ = ଵଶ(Mଵଵଷ +Mଵଷଵ −Mଵଷଵ)=Mଵଵଷ 

ʹbଶଵଶ=
ଵଶ(Mଵଵଶ +Mଶଶଵ −Mଵଶଶ)= Ͳ 

ʹbଷଵଶ = ଵଶ(Mଶଵଷ +Mଶଷଵ −Mଵଷଶ)= Ͳ 

ʹbଷଵଶ = ଵଶ(Mଶଵଷ +Mଶଷଵ −Mଵଷଶ)= Ͳ 

ʹbଵଶଷ = ଵଶ(Mଵଶଷ +Mଵଷଶ −Mଶଷଵ)= Ͳ 

ʹbଶଶଷ = ଵଶ(Mଶଶଷ +Mଶଷଶ −Mଶଷଶ)=Mଶଶଷ 

ʹbଷଶଷ = ଵଶ(Mଷଶଷ +Mଷଷଶ −Mଶଷଷ)= Ͳ 

ʹbଷଵଶ = ଵଶ(Mଷଵଶ +Mଷଶଵ −Mଵଶଷ)= Ͳ 

ʹbଷଵଷ = ଵଶ(Mଷଵଷ +Mଷଷଵ −Mଵଷଷ)= Ͳ 

And the Coriolis matrix expressed as 

� ૛(q)[�ሶ �ሶ ]=
[૛�૛ܔ�૛૛�૛�૛ + ૛�૜(ܔ૛�૜�૛૛૜�૛૛૜ + ૛૛�૛�૛ܔ + ૛ܔ�૜�૛૜ܔ૛�૛) − ૛�૜ܔ�૜ܔ૛�૛૜�૛ −૛�૜(ܔ૛�૜�૛૜�૛૜ + (૜�૛૜�૛�ܔ ૙૙ ૙ −૛�૜ܔ�૜ܔ૛�૜૙ ૙ ૙ ] 
[�૚ሶ�૚ሶ�૛ሶ �૛ሶ�૜ሶ�૜ሶ ] 

C.   Gravity term 

For  Gravity term we have from(1.114) 
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G(q) =- ( �୴భ୲�୴మ୲�୴య୲) (mଵg଴mଶg଴mଷg଴) = - ( �୴భ୲mଵg଴ +   �୴మ୲mଶg଴ +     �୴య୲mଷg଴)= 

[lୡଵsଵ −lୡଵcଵ ͲͲ Ͳ ͲͲ Ͳ Ͳ] [ ͲͲmଵg଴] +[−sଵሺlୡଶcଶሻ cଵሺlୡଶcଶሻ Ͳ−cଵሺlୡଶcଶሻ −sଵሺlୡଶcଶሻ lୡଶcଶͲ Ͳ Ͳ ] [ ͲͲmଶg଴]+
[−sଵሺlୡଶcଶ + lୡଷcଶଷሻ cଵሺlୡଶcଶ + lୡଷcଶଷሻ Ͳ−cଵሺlୡଶcଶ + lୡଷcଶଷሻ −sଵሺlୡଶcଶ + lୡଷcଶଷሻ lୡଶcଶ+୪ౙయୡమయ−cଵlୡଷcଶଷ −sଵlୡଷcଶଷ lୡଷcଶଷ ] [ ͲͲmଷg଴]=[ ͲlୡଶcଶͲ mଶg଴]+[ሺ Ͳlୡଶcଶ + lୡଷcଶଷሻmଷg଴lୡଷcଶଷmଷg଴ ]
= [ሺlୡଶcଶmଶሺ Ͳlୡଶcଶ + lୡଷcଶଷሻmଷሻg଴lୡଷcଶଷmଷg଴ ] 
 

d.   Friction modeling 

As we seen in (1.117) we can write the friction terms as 

 

             Fሺqሶ ሻ =  [f୴భ Ͳ ͲͲ f୴మ ͲͲ Ͳ f୴య] [
qଵሶqଶሶqଷሶ ] + 

[fୡభ Ͳ ͲͲ fୡమ ͲͲ Ͳ fୡయ] [
signሺqሶ ଵሻsignሺqሶ ଶሻsignሺqሶ ଷሻ] + [

ሺfୱభ– fୡଵሻ Ͳ ͲͲ ሺfୱమ– fୡଶሻ ͲͲ Ͳ ሺfୱయ– fୡଷሻ ] [  
   signሺqሶ ଵሻe−|୯ሶ భ୯ୱ|

మ
signሺqሶ ଶሻe−|୯ሶ మ୯ୱ|మsignሺqሶ ଷሻe−|୯ሶ య୯ୱ|మ]  

    
e.      Equation of motion for a 3 DOF elbow manipulator 

And the geneƌal dǇŶaŵiĐ’s  eƋuatioŶ ďeĐoŵes 

[�૚ܔ૛�૚ + ૚ܢܢ� +�૛ܔ�૛૛�૛ + ૛ܢܢ� + ૜ܢܢ� +�૜ሺܔ૛�૜�૛૛૜ + ૛૛�૛૛ܔ + ૛ܔ�૜�૛૜ܔ૛�૛ሻ ૛܈܇� − ૜ܢ܇� ૜ܠ܇�−૜ܡ܈�− �૛ܔ૛�૛ + ૛ܡܡ� + ૜ܡܡ� +�૜ሺܔ૛૛²�૜ + ૛²ܔ + ૛ܔ�૜ܔ૛ሻ ૜܆܈�−૜܈܇�− �૜ሺܔ૛�૜ + ૛�૜ሻܔ૜�ܔ − ૜ܡ܇� ૜ܡܡ� +�૜ܔ�૛૜ ] 
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[�૚ሷ�૛ሷ�૜ሷ ]+ 

[ ૙ ૙ ૙�૛ܔ�૛²�૛�૛ +�૜ሺܔ૛�૜�૛૛૜�૛૛૜ + ૛૛�૛�૛ܔ + ૛�૛ሻܔ૜�૛૜�ܔ −�૜ܔ�૜ܔ૛�૛૜�૛ ૙ ૙�૜ሺܔ૛�૜�૛૜�૛૜ + ૛�૛૜�૛ሻܔ૜�ܔ �૜ܔ�૜ܔ૛�૜ ૙] [�²૚
ሶ�²૛ሶ�²૜ሶ ]+ 

[૛�૛ܔ�૛૛�૛�૛ + ૛�૜ሺܔ૛�૜�૛૛૜�૛૛૜ + ૛૛�૛�૛ܔ + ૛ܔ�૜�૛૜ܔ૛�૛ሻ − ૛�૜ܔ�૜ܔ૛�૛૜�૛ −૛�૜ሺܔ૛�૜�૛૜�૛૜ + ૜�૛૜�૛ሻ�ܔ ૙૙ ૙ −૛�૜ܔ�૜ܔ૛�૜૙ ૙ ૙ ]
[�૚ሶ�૚ሶ�૛ሶ �૛ሶ�૜ሶ�૜ሶ ] + [ሺܔ�૛�૛ܕ૛ሺ ૙ܔ�૛�૛ + ૙܏૜ܕ૜�૛૜�ܔ૙܏૜ሻܕ૜�૛૜ሻ�ܔ ] + ૚�܎] ૙ ૙૙ ૛�܎ ૙૙ ૙ [૜�܎ [

�૚ሶ�૛ሶ�૜ሶ ] + [
૚�܎ ૙ ૙૙ ૛�܎ ૙૙ ૙ [૜�܎ [

ሺ�ሶܖ܏�� ૚ሻ��ܖ܏ሺ�ሶ ૛ሻ��ܖ܏ሺ�ሶ ૜ሻ] +
[ሺ܎�૚– ૚ሻ ૙�܎ ૙૙ ሺ܎�૛– ૛ሻ ૙૙�܎ ૙ ሺ܎�૜– [ ૜ሻ�܎ [  

ሺ�ሶܖ܏��    ૚ሻ܍−|�ሶ ૚��|
૛

ሺ�ሶܖ܏�� ૛ሻ܍−|�ሶ ૛��|૛��ܖ܏ሺ�ሶ ૜ሻ܍−|�ሶ ૜��|૛]  
   =[૚૛

૜] 
 

If we add the actuators dynamics we can write 

[UଵUଶUଷ] = [jଵGଵ Ͳ ͲͲ jଶGଶ ͲͲ Ͳ jଷGଷ] [qଵሷqଶሷqଷሷ ] + [ଵଶଷ] + [TfଵTfଶTfଷ] 
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Chapter 2: Control and System Identification   

2.1 Manipulator Control: 

The control problem for robot manipulators is the problem of determining the 

time history of joint inputs required to cause the end-effector to execute a 

commanded motion. 

There are many control techniques and methodologies that can be applied to 

the control of manipulators. 

2.1.1 PID controller  : 

In this section we consider the simplest type of control strategy, namely, 

independent joint control. In this type of control each axis of the manipulator is 

controlled as a single input/single output (SISO) system. 

A proportional–integral–derivative controller (PID controller) is a 

feedback control loop  mechanism ,commonly used in industrial control systems. A 

PID controller continuously calculates an error value e (t) as the difference between 

a desired setpoint r(t) and a measured process variable y(t),  and applies a correction 

based on proportional, integral, and derivative terms (sometimes denoted P, I, 

and D respectively) which give their name to the controller type. 

u (t) = �p e(t) +  �ୢ ୢୣሺ୲ሻୢ୲ +��i ∫ eሺ�ሻd�    (2.1) 

With e(t)=r(t)-y(t) 

https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Feedback_mechanism
https://en.wikipedia.org/wiki/Industrial_control_system
https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
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where �p,��  and �ୢ, all non-negative, denote the coefficients for 

the proportional, integral, and derivative terms, In this model: 

P accounts for present values of the error. For example, if the error is large and 

positive, the control output will also be large and positive. 

 P accounts for past values of the error. For example, if the current output is 

not sufficiently strong, the integral of the error will accumulate over time, 

and the controller will respond by applying a stronger action 

 D accounts for possible future trends of the error, based on its current rate of 

change 

 

 

Figure (2.1): A block diagram of a PID controller in a feedback loop. 

 

For a serial robot manipulator we applied a PID control law for each joints 

considering that the desired joints positions are constant, which is commonly known 

as independent joint control.  

Now as we have mentioned on the previous chapter by using the equation 

(1.74) and the equation (2.1) we get : Mሺq�ሻqሷ + C�ሺq�, qሶ ሻq + Gሺ�qሻ + Fሺqሶ ሻ =�ሶ ������������(2.2) 

So The control law is given by 

https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Block_diagram
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 = �p�eሺ�ሻ + �d ୢୣሺ୲ሻୢ୲ + ��∫ eሺ�ሻ�d�               (2.3) 

with                               eሺ�ሻ �= �qdሺ�ሻ − qሺ�ሻ             (2.4) 

And                                     
ୢୣሺ୲ሻୢ୲ =�−qሶ ሺ�ሻ�������������������������������������(2.5) 

With qd(t) represent the desired angles and q(t) is the actual joints angles and 

  is the torques inputs . 

Denote that Kp,Kd and Ki are n*n positive diagonal matrix. 

 

Figure (2.2) : A block diagram of independent joint control for n joints manipulator 

 

a.   Implementation and simulation  

          We’ǀe iŵpleŵeŶted the dynamics equations that we got in section 1.5 

With choosing the manipulator parameters as follow : 

m1=3; m2=1;m3=1; %masses 

L1=1; L2=1;L3=1; %links lengths 

Lc1=0.5; Lc2=0.5;Lc3=0.5; %center of masses lengths 

https://en.wikipedia.org/wiki/Block_diagram
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izz1=0.05; izz2=0.05;izz3=0.05;iyy2=0.05;iyy3=0.05;%moment of inertia   

iyz2=0.05;iyz3=0;%products of inertia 

 

 

Figure (2.3): Simulink model of 3dof manipulator dynamics   

Now we design a Simulink model for  an independent joint control, which 

composed of 3 PID controller. 

For the dc motors we consider them as a linear saturated gain. 
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Figure (2.4): Simulink model of independent joint control for a 3 DOF manipulator dynamics   

 

The PID gains are chosen experimentally as follow 

Table 2.1 : constant Setpoint and Parameters for PID control of the first  joint 

Setpoint Kp Kd Ki �/2 25 10 0 

 

Table 2.2 : constant Setpoint and Parameters for PID control of the second  joint 

Setpoint Kp Kd Ki �/2 200 40 0 

 

Table 2.3 : constant Setpoint and Parameters for PID control of the third  joint 

Setpoint Kp Kd Ki −�/3 200 40 0 
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After 10 second of simulation we get the following figures with sample time of 0.01S 

 

Figure( 2.5 ):simulation result of an independent joint control for a 3 DOF 

manipulator 

 

2.1.2 Computed Torque Control (trajectory tracking): 

A basic problem in controlling robots is to make the manipulator follow a 

preplanned desired trajectory. Before the robot can do any useful work, we must  

position it in the right place at the right instances. In this section we discuss 

computed-torque control 
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The  PID  controller  is  not  an  efficient  controller  to  control  a  manipulator  

because  the torques  output  signal  that  is  generated  by  the  PID  controller  is  

not  dependant  on  the  other joints.  The  motion  of  the  other  links  may  apply  

considerable  torque  and  force  to  the  joint. This  unpredicted  torque  may  not  be 

compensated  with  the  PID  controller  therefore  the performance  of  the  

controller  drops  when  the  robot  performs  in  high  speeds,  a  much  better 

method  to  control  the  robot  is  to calculate  the  inverse  dynamics  of  the  robot  

and  consider  the computed  torques  to  generate  control  signal.   

By  this  method  the  robot  performs  well  even  in high  speeds.  The  

problem  with  this  controller  is  that  in  order  to  calculate  the  inverse dynamics 

of the robot,  its parameters must be determined and very nonlinear equations 

should be solved.  Feedback linearization method is one of the most common 

methods for controlling a robot and is widely used in the industry. 

We consider the dynamic equation of the manipulator   

Mሺq�ሻqሷ + C�ሺq�, qሶ ሻq + Gሺqሶ ሻ ��+ Fሺqሶ ሻ =�ሶ    (2.6) 

Suppose that a desired trajectory qd(t) has been selected for the arm motion 

,and as we have  defined the output or the tracking error as :  

eሺ�ሻ �= �qdሺ�ሻ �+ qሺ�ሻ (2.7) 

To demonstrate the influence of the input  (t) on the tracking error, we have 

to use the feedback Linearization. 

a. Feedback Linearization 

The idea of feedback linearization based on canceling the nonlinearities and 

Imposing a desired linear dynamics. can be simply applied to a class of nonlinear 

systems can be represented as follow [21] 

�ሺnሻ = fሺ�ሻ �+ bሺ�ሻ� (2.8) 
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Denote that   fሺ�ሻandbሺ�ሻare nonlinear function and ݑ is the control input 

For systems which can be expressed as we mentioned above in (2.8), we can 

use the control input  

� = ଵb ሺV − fሻ (2.9) 

We can cancel the nonlinearities and obtain the simple input-output relation 

�ሺnሻ = V��� (2.10) 

Thus, the control law  

V = −�଴� − �ଵ�ሶ …− �n−ଵ�ሺn−ଵሻ (2.11) 

With�ipositive gains, and from(2.10) and (2.11)we get 

�ሺnሻ + �଴� + �ଵ�ሶ …+ �n−ଵ�ሺn−ଵሻ = Ͳ��� (2.12) 

Which implies that �ሺ�ሻ—> Ͳ.For tasks involving the tracking of a desired 

output �ୢሺ�ሻ, the control law becomes  

V = �ୢሺnሻ − �଴e − �ଵeሶ …− �n−ଵeሺn−ଵሻ 
wheree = �ሺ�ሻ �− ��ୢሺ�ሻis the tracking error) leads to exponentially convergent 

tracking. Note that similar results would be obtained if the scalar � was replaced by a 

vector and the scalar b by an invertible square matrix. 

For Applying a feedback linearization on robot manipulator dynamics we get 

from(2.6) 

qሷ ሺ�ሻ = M(qሺ�ሻ)−ଵ ቀ�ሺ�ሻ − �C(qሶ ሺ�ሻ, qሺ�ሻ)qሶ ሺ�ሻ − F(qሶ ሺ�ሻ) − G(qሺ�ሻ)ቁ�(2.13) 

We have�������������������������������V = qሷ (t)    (2.14) 

And this result  
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{ b = Mሺqሻ−ଵ����ሺʹ.ͳͷሻf = Mሺqሻ−ଵ(−�Cሺqሶ , qሻqሶ − Fሺqሶ ሻ − Gሺqሻ)��ሺʹ.ͳ͸ሻ� 
We choose�������������������������������������V = qdሷ − �Ͳeሶሺ�ሻ − �ͳeሺ�ሻ     (2.17) 

So the corresponding feedback linearization control law is given by  (2.18) 

 = ͳb ሺV − fሻ 
K1 and K0 represent the proportional the derivative gains we can name it Kp 

aŶd Kd ƌespeĐtiǀely, aŶd that’s brings us to following input control law [22] 

 = �ሺࢗሻ(ࢊࢗሷ − ሶࢋࢊ� − (ࢋ࢖� + �ሺࢗሶ , ሶࢗሻࢗ + ሶࢗሺࡲ� ሻ +  ሻ       (2.19)ࢗሺࡳ

With       �ࢋ = �ሺ࢚ሻ�−  ሺ࢚ሻࢊ��

 

Figure (2.6):  A block diagram of Computed-torque control. 

 

For Stability analysis we place the control law we got in (2.19)in the dynamic 

equation of the manipulator, and we get  [23] 

eሷ + �deሶ + �pe = Ͳ (2.20) 

https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Derivative
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Which verified the exponentially convergence of the tracking  error�ሺe => Ͳ ). 

b.    Implementation and simulation  

We’ǀe iŵpleŵeŶted the dyŶaŵiĐs eƋuatioŶs that ǁe got iŶ seĐtioŶ 1.5 

With choosing the manipulator parameters as follow : 

m1=3; m2=1;m3=1; %mass with kg 

L1=0.2; L2=0.2;L3=0.2; %link length with meters  

Lc1=0.5; Lc2=0.5;Lc3=0.5; %center of mass length with meters 

izz1=0.05; izz2=0.05;izz3=0.05;iyy2=0.05;iyy3=0.05;%moment of inertia   

iyz2=0.05;iyz3=0; % products of inertia  

and we apply a computed torque control law on it , which is represented by 

dynamic inversion block, and 3 PID blocks as we mention in (2.19). 

 

Figure (2.7): Simulink model of computed torque control for a 3 DOF manipulator dynamics 
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The PID gains are chosen experimentally as follow 

Table 2.4 : the PID Parameters for control of the first  joint 

Kp Kd Ki ʹͲଶ 40 0 

 

Table 2.5 : the PID Parameters for control of the second  joint 

Kp Kd Ki ͷͲଶ 100 0 

 

 

 

 

 

Table 2.6 : the PID Parameters for control  of the third  joint 

Kp Kd Ki ͷͲଶ 100 0 

 

After 15 second of simulation we get the following figures with sample time of 

0.01S 
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Figure (2.8): Simulink model of computed torque control for a 3 DOF manipulator dynamics   

As we seen in Figure 2.8 the joints trajectories  follow  the desired trajectories 

and the tracking condition is verified  as we demonstrate in (2.19). 

 

 

 

2.2 identification and parameters estimation: 

2.2.1 Introduction : 
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This section gives a short introduction to system identification in general, and 

to the identification of robot manipulators in particular. 

system identification is the mathematical mechanism which allow us to  build 

mathematical models of dynamical systems from measured data, by modeling and 

estimate the real parameters of the system and we name it parametric, or by 

building a non- parametric model which have the same behavior as the real system 

and then estimate its parameters. 

the identification experiment can be performed in open loop or closed loop.  

 Identification of a system not subject to feedback control, is known as open-

loop system which is illustrated in Figure 2.9. This system has input u, output y, and 

is affected by a disturbance v. The disturbance can include measurement noise as 

well as external system inputs, not included in u.  

 

Figure (2.9): An open-loop system. 

An identification experiment on a system subject to feedback control, is known 

as closed-loop system which is shown in Figure 2.10 where r is the reference signal 

for the system.  A reason for performing a closed-loop experiment could be that the 

system is unstable, and must be controlled in order to remain stable. This is typically 

the case for a robot manipulator. 

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Dynamical_system
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Figure( 2.10): A closed-loop system. 

Moreover, models can be described as continuous-time models or discrete-

time models although the measurements, u(t) and y(t), are normally represented as 

sampled, discrete-time, data. It is assumed that the reader has a basic knowledge of 

linear system theory for continuous-time and discrete-time systems.[24] 

 

2.2.2 Nonparametric Models: 

Examples of nonparametric models in the time-domain are impulse responses or step 

responses. Such models consist of vectors of system outputs and the corresponding time 

stamps. An example of a step response of a first-order system with a time-delay is shown in 

Figure 2.3. The measured output is affected by measurement noise. The nonparametric step 

response model can in this case be described by a parametric transfer function model 

G(s) = 
୏ୱT+ଵ e−୐ୱ (2.21) 
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Figure( 2.11): Step response of a first order process with delay. 

This three-parameter model is often used to describe systems in the process  

industry. The parametric model (2.1) can be identified by inspection of the step 

response according to Figure 2.11 This model can then be used for tuning of a PI- or 

a PID controller .[25] 

2.2.3  Parametric Models: 

A parametric model is a model described as, e.g., differential or difference 

equations. System identification is one route for obtaining a parametric model of a 

system. Another route is physical modeling, i.e., deriving a mathematical model from 

the basic laws of physics. 

If the parameters of a physical model are known with sufficient accuracy, we 

get a white-box model, where both the model structure and the model parameters 

are known. 

A gray-box model is a physical model where the model structure is known but 

the physical parameters are unknown or only partly known. Identification of 

parameters or parameters estimation  in this case is called gray-box identification, 

which our case in robot manipulator identification.[26] 
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a    the least squares method LS: 

Least-squares estimation methods have been used in many types of parameter 

identification schemes [Astrom and Wittenmark 1989] [27], Least-squares method 

ĐaŶ ďe applied to laƌge ǀaƌiety of pƌoďleŵs. It’s paƌtiĐulaƌly siŵple foƌ ŵatheŵatiĐal 

model that can be write in the form   [37] 

yሺ�ሻ = φଵሺ�ሻϴଵ଴ +φଶሺ�ሻϴଶ଴ φnሺ�ሻϴn଴+ڮ+ = φTሺ�ሻϴ଴     (2.22) 

We can write it as  

Y = Φϴ           (2.23) 

Where y is the observed variable,  ϴଵ଴,ϴଶ଴…ϴn଴are parameters of the model to 

be determined, and φଵ, φଶ…φnare known functions that may depend on other 

known variables like output variable and its derivative. and we have the vectors  

φTሺ�ሻ = {φଵሺ�ሻ, φଶሺ�ሻ…φnሺ�ሻ}   (2.24) 

ϴ଴ = {ϴଵ଴,ϴଶ଴…ϴn଴}                        (2.25) 

The model is indexed by the variable i, which often denotes time .it will be 

assumed initially that the index set is a discrete set . 

the variables φi are called the regression variables and φTvector called 

regressor, pairs of observations and regressors{yሺ�ሻ, φଵሺ�ሻ, � = ͳ,ʹ, … �}are obtained 

from experiment .  

to determine the parameters vector ϴ଴we define a quadratic cost function, 

and the parameters should be chosen to minimize this function  

Vሺϴ, �ሻ = ଵଶ∑ ሺ୲i=ଵ �yሺ�ሻ − φTሺ�ሻϴሻଶ    (2.26) 

Since the measured variable �is linear in  parameters �଴and least squares 

criterion is quadratic, the problem admits an analytical solution. We define the 

notations  
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�ሺݐሻ = {�ሺͳሻ�ሺʹሻ…�ሺݐሻ}�   (2.27) ܧሺݐሻ = {�ሺͳሻ�ሺʹሻ…�ሺݐሻ}�   (2.28) 

Φሺݐሻ = {��ሺͳሻڭ��ሺݐሻ}                        (2.29) 

Pሺݐሻ = ቀΦሺݐሻTΦሺݐሻቁ−ଵ = (∑ �ሺ�ሻ��ሺ�ሻ��=ଵ )−ଵ  (2.30) 

Where the error  eሺ�ሻare define by  �ሺ�ሻ = ��ሺ�ሻ − ��ሺ�ሻ�                                   (2.31) 

�ሺ�, ሻݐ = ଵଶ∑ �ሺ�ሻଶ��=ଵ = ଵଶܧ�ܧ = ଵଶ  ଶ   (2.32)‖ܧ‖

Where Ecan be written as  

ܧ = � − �̂ = � − Φ�     (2.33) 

The solution to the least-squares problem is given by the following 

demonstration 

ΦTΦ�̂ = ΦTY                  (2.34) 

if the matrix ΦTΦis nonsingular, the minimum is unique and given by �̂ = ሺΦTΦሻ−ଵΦTY (2.35) 

  b   the recursive least squares method RLS: 

The Recursive least squares (RLS) is an adaptive filter which recursively finds 

the coefficients that minimize a squares cost, these coefficients define as the 

parameters of the system that we are estimate, the algorithm based on real-time  

parameters estimation, which is commonly used in adaptive control strategy . 

https://en.wikipedia.org/wiki/Adaptive_filter
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In adaptive controller the observations are obtained sequentially in real time, 

computation of the least squares estimate can be arranged in such a way that the 

result obtained at time t-1 can be used to get the estimates at time t.  

Let ϴ̂ሺ� − ͳሻdenote the least-squares  estimate based on t-1 measurements. 

Assume that Φሺݐሻhas full rank, that means that the matrix ΦTΦ is nonsingular for all 

t>t0, the least-squares  estimate ϴ̂ሺ�ሻthen satisfies the recursive equations, it follows 

from the definition of  Pሺݐሻin Eq (2.30) 

Pሺݐሻ−ଵ = ΦሺݐሻTΦሺݐሻ =∑�ሺ�ሻ��ሺ�ሻ�
�=ଵ =∑�ሺ�ሻ��ሺ�ሻ�−ଵ

�=ଵ +��ሺݐሻ��ሺݐሻ 
= Pሺݐ − ͳሻ−ଵ +��ሺݐሻ��ሺݐሻ (2.36) 

The least squares estimate ϴ̂ሺ�ሻis given by (2.36),so we get   

ϴ̂ሺ�ሻ = �(∑φሺ�ሻφTሺ�ሻ୲−ଵ
i=ଵ )−ଵ (∑φሺ�ሻyሺ�ሻ୲

i=ଵ ) 

= ��ሺݐሻሺ∑ �ሺ�ሻ�ሺ�ሻ��=ଵ ሻ (2.37) 

Yield  

ϴ̂ሺ�ሻ = Pሺ�ሻ ቀ∑ φሺ�ሻyሺ�ሻ୲−ଵi=ଵ + �φሺ�ሻyሺ�ሻቁ(2.38) 

it follows from (2.37)and (2.36)that 

∑ �ሺ�ሻ�ሺ�ሻ��=ଵ = Pሺݐ − ͳሻ−ଵ�̂ሺݐ − ͳሻ = Pሺݐሻ−ଵ�̂ሺݐ − ͳሻ − �ሺݐሻ��ሺݐሻ�̂ሺݐ − ͳሻ  
(2.39) 

The estimate at time t can now be written as  

ϴ̂ሺ�ሻ = � ϴ̂ሺ� − ͳሻ − Pሺ�ሻφሺ�ሻφTሺ�ሻϴ̂ሺ� − ͳሻ − �Pሺ�ሻφሺ�ሻyሺ�ሻ 
=� ϴ̂ሺ� − ͳሻ + Pሺ�ሻφሺ�ሻ ቀyሺ�ሻ −�φTሺ�ሻϴ̂ሺ� − ͳሻቁ     (2.40) 
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Where  

�ሺݐሻ = �ሺݐሻ�ሺݐሻ    (2.41) 

�ሺݐሻ = �ሺݐሻ −���ሺݐሻ�̂ሺݐ − ͳሻ (2.42) 

The residual  eሺ�ሻcan be interpreted as the error in predicting the signal yሺ�ሻone step ahead based on estimate �̂ሺݐ − ͳሻ. 
To proceed, it is necessary to derive a recursive equation for Pሺ�ሻrather than 

for Pሺݐሻ−ଵas in Eq (2.36) . we apply the matrix inversion lemma and we get 

Pሺ�ሻ = � ቀΦሺ�ሻTΦሺ�ሻቁ−ଵ ቀΦሺ� − ͳሻTΦሺ� − ͳሻ + φሺ�ሻφTሺ�ሻቁ−ଵ= Pሺ� − ͳሻ−ଵ + ቀφሺ�ሻφTሺ�ሻቁ−ଵ 

= Pሺ� − ͳሻ − Pሺ� − ͳሻφሺ�ሻ ቀ�I + φTሺ�ሻPሺ� − ͳሻ−ଵφሺ�ሻቁ−ଵφTሺ�ሻPሺ� − ͳሻ   (2.43) 

This implies that 

�ሺݐሻ = �ሺݐሻ�ሺݐሻ = �ሺݐ − ͳሻ�ሺݐሻ(� + ��ሺݐሻPሺݐ − ͳሻ−ଵ�ሺݐሻ)−ଵ   (2.44) 

And that arrive us  

Pሺ�ሻ = ቀI − �ሺ�ሻφTሺ�ሻቁ Pሺ� − ͳሻ     (2.45) 

So the Recursive least squares estimation represented by these equation[37] 

{ 
 �̂ሺݐሻ = �̂ሺݐ − ͳሻ + �ሺݐሻ�ሺݐሻ ቀ�ሺݐሻ − ��ሺݐሻ�̂ሺݐ − ͳሻቁ�ሺݐሻ = �ሺݐሻ�ሺݐሻ = �ሺݐ − ͳሻ�ሺݐሻ(� + ��ሺݐሻPሺݐ − ͳሻ−ଵ�ሺݐሻ)−ଵ�ሺݐሻ = (� − �ሺݐሻ��ሺݐሻ)�ሺݐ − ͳሻ  (2.46) 

2.2.4   Applying the LS on the chosen robot: 

The first thing we have to setup the model we get in section 1.5, we derive this 

equation from the dynamical model matrices, each equation describe a joint model, 
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which is given by an input voltage Ui , the velocities and accelerations of the joints 

and several parameters which represent the masses, inertias, lengths, friction 

coefficients,motors parameters . 

U = J́qሷ + �ሺ��ሻ�ሷ + ��ሺ��, �ሶ ሻ� + ሺ�ሻܩ + ሺ�ሶܨ ሻሶ + Tf     (2.47) 

Denote that we neglect the term of stribeck effect, because its nonlinearity in 

the parameters . 

૚܃ = ૚�૚ܒ) ૚૛�ܔ૚ܕ+ + ૚ܢܢ� ૛ܢܢ�+૛૛�૛૛�ܔ૛ܕ+ ૜૛�૛૜૛�ܔ૜ܕ+ ૛૛�૛૛�ܔ૜ܕ+ + ૛ܕ૜ܔ�૜૛ܔ૛ �૛૜�૛ + ૜)�ሷܢܢ� ૚ + ሺ�ܢܡ૛ + ૜ሻ�ሷܢܡ� ૛+ ૜�ሷܢܡ� ૜ − ૛(ܕ૛ܔ�૛૛�૛�૛ ૜૛�૛૜�૛૜�ܔ૜ܕ+ ૛૛�૛�૛ܔ૜ܕ+ ૜�ܔ૜ܕ+ ૛�૛૜�૛ܔ ૜�ܔ૜ܕ+ ૛�૛૜�૛)�ሶܔ ૚�ሶ ૛− ૛(ܕ૜ܔ�૜૛�૛૜�૛૜ �૜�ܔ૜ܕ+ �૛૜�૛)�ሶ ૚�ሶ ૜ + ૚�૚ሶ�܎ + ሺ�ሶܖ܏ܑ�૚�܎ ૚ሻ +  ૚܎܂

૛܃ = ሺ�ܢܡ૛ + ૜ሻ�ሷܢܡ� ૚ + ૛�૛ܒ) ૛૛�ܔ૛ܕ+ + ૛ܡܡ� ૜૛�ܔ૜ܕ+ ૛૛ܔ૜ܕ+ + ૛ܕ૜ܔ�૜� �૛ܔ �૛ + ૜)�ሷܡܡ� ૛ ૜૛�ܔ૜ܕ+ +૛�૜ܔ૜�ܔ૜ܕ+ ૜ሻ�ሷܡܡ� ૜ + ૛૛�૛�૛�ܔ૛ܕ) ૜૛�૛૜�૛૜�ܔ૜ܕ+ ૛૛�૛�૛ܔ૜ܕ+ �૜�ܔ૜ܕ+ �૛ܔ �૛૜�૛૜ ૜�ܔ૜ܕ+ ૛ܔ �૛૜�૛)�ሶ ૚− ሺ૛ܕ૜ܔ�૜� �૛ܔ �૜ሻ�ሶ ૚�ሶ ૜ + ሺܔ�૛�૛ܕ૛ + ሺܔ�૜�૛૜ + ܏૜ሻܕ૛�૛ሻ�ܔ + ૛ሶࢗ૛�ࢌ + ሶࢗሺ�ࢍ�࢙�૛ࢉࢌ ૛ሻ +  ૛܎܂

૜܃ = ሺ�ܢܡ૜ሻ�ሷ ૚ + ૜૛�ܔ૜ܕ) �૜�ܔ૜ܕ+ �૛ܔ �૜ + ૜)�ሷܡܡ� ૛ + ૜�૜ܒ) ૜૛�ܔ૜ܕ+ + ૜)�ሷܡܡ� ૜ + ૜૛�૛૜�૛૜�ܔ૜ܕ) �૜�ܔ૜ܕ+ �૛ܔ �૛�૛૜)�ሶ ૚+ ሺܕ૜ܔ�૜� �૛ܔ �૛ሻ�ሶ ૛ + �૜�ܔ �૛૜ܕ૜܏ + ૛ሶࢗ�૜�ࢌ + ሶࢗሺ�ࢍ�࢙�૜ࢉࢌ ૜ሻ +  ૜܎܂

ሺ૛. ૝ૡሻ 
Second thing we have to arrange them such a way they are linear in the 

parameters as we seen in Eq (2.3), to allow us to apply the least squares parameters 

estimation, so we write as follow � = �� 

So we have the output vector� ,which represent the PWM inputs to the 

motors 

� = [UଵUଶUଷ]     ሺ૛. ૝ૢሻ 
 

And we extract the parameters we want to estimate, �represent tha 

parameters vector 
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θ =

[  
   
   
   
   
   
૚�૚ܒ   ૚૛�ܔ૚ܕ+ + ૚ܢܢ� + ૛ܢܢ� + ૛૛�ܔ૛ܕ૜ܢܢ� ૛૛�ܔ૛ܕ૛૛ܔ૜ܕ+ ૛ܡܡ�૜ܢܡ�૛ܢܡ��૛�ܔ૜૛�ܔ૜ܕ૜૛�ܔ૜ܕ�૜�ܔ૜ܕ�૛ܔ૜ܕ+ + ܡܡ�૛�૛ܒ ૜܎�૚܎�૚ࢌ�૛ࢉࢌ૛�ࢌ�૜�ࢌ ૜�૜ܒ૜܎܂૛܎܂૚܎܂�૜ࢉ ]  

   
   
   
   
   
  

 (2.50) 

then the regresseur matrix �given by  

Φ= [�ଵ �ଶ �ଷ�ସ �ହ �଺�଻ �଼ �ଽ�ଵ଴ �ଵଵ �ଵଶ�ଵଷ �ଵସ�ଵହ �ଵ଺�ଵ଻ �ଵ଼�ଵଽ �ଶ଴] 
(2.51) 

With the regresseurs 

�ଵ�= [qଵሷͲͲ ] , �ଶ= [cଶଶqሷ ଵ + ʹsଶcଶqሶ ଵqሶ ଶqሷ ଶ + sଶcଶqሶ ଵͲ ] , �ଷ= [ Ͳcଶ�Ͳ ] , �ସ= [ Ͳcଶଷ�cଶଷ�] , �ହ= [cଶଷ
ଶ qሶ ଵ − ʹsଶଷcଶଷqሶ ଵqሶ ଶ − ʹsଶଷcଶଷqሶ ଵqሶ ଷsଶଷcଶଷqሶ ଵ + qሷ ଶ + qሷ ଷqሷ ଷ + qሷ ଶ + sଶଷcଶଷqሶ ଵ ] 

�଺= [ʹcଶଷcଶqሷ ଵ − ʹcଶଷcଶqሷ ଵqሷ ଶ − ʹcଶଷsଶqሷ ଵqሷ ଶ − ʹsଶଷcଶqሷ ଵqሷ ଶʹcଶqሷ ଶ + cଷqሷ ଷ + ሺsଶଷcଶ + cଶଷsଶሻqሶ ଵ − ʹsଷqሶ ଵqሶ ଷcଷqሷ ଶ + sଶଷcଶqሶ ଵ + sଷqሷ ଶ ] , �଻= [qሷ ଶqሷ ଵͲ ]� , �଼= [qሷ ଶ + qሷ ଷqሷ ଵqሷ ଵ ] , �ଽ= [ Ͳqሷ ଶͲ ], 
�ଵ଴= [ Ͳqሷ ଷ + qሷ ଶqሷ ଷ + qሷ ଶ]�ଵଵ= [qଵሶͲͲ ] , �ଵଶ= [s��nሺqሶ ଵሻͲͲ ] , �ଵଷ= [ ͲqଶሶͲ ] , �ଵସ= [ Ͳs��nሺqሶ ଶሻͲ ] , �ଵହ= [ ͲͲqଷሶ ] , �ଵ଺= [ ͲͲs��nሺqሶ ଷሻ] 
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�ଵ଻= [ͳͲͲ] , �ଵ଼= [ͲͳͲ] , �ଵଽ= [ͲͲͳ] , �ଶ଴= [ ͲͲqሷ ଷ] 
Now we apply the LS estimation to get the estimated parameters vector θ̂ as 

we define in (2.35) �̂ = ሺ���ሻ−૚��� 
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Chapter 3:  Vision  

This chapter will describe theories necessary for understanding the rest of the 

thesis. The chapter is divided in image processing and  vision system theory. 

3.1 Image Processing  

Image processing is a set of computational techniques for analyzing, 

enhancing, compressing, and reconstructing images. The  main components are 

importing, in which an image is captured through scanning  or  digital  photography,  

analysis  and  manipulation  of  the  image, accomplished  using  various  specialized  

software  applications,  and  output.  Image processing has extensive applications in 

many areas, including astronomy, medicine, industrial robotics, and remote sensing 

by satellites).  Image processing for robot vision will improve products quality, save 

time and reduce labor cost. 

In this section we will present some image processing tools that we used in our 

work. 

3.1.1 The image  

An image is defined as a two-dimensional function �ሺݔ,  ሻ.where x and y areݕ

spatial (plane) coordinates. The intensity or gray level of the image at the point of 

coordinates (x, y) is the amplitude of  � at that point . 

This image known as grayscale image or intensity level image, The typical range 

of intensity values for each pixel is , 0 to 255, is based on taking a binary number 8 

bits that can hold a value from 0 to 255.  
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Figure 3.1 a grayscale image and its matrix of intensity level values 

3.1.2    RGB color model 

The RGB Image has 3 planes of intensity levels, red, green and blue plane, so 

each pixel in the image has 3 values, and these values describe the color of the pixel.  

 

Figure (3.2): RGB image and its 3 colors plane, red, green and red plane 

RGB colors is usually represented as axes of a 3D cube as shown in Fig. 3.3 The 

cubic represents all possible colors. A specific color is represented by three values to 

be summed: (R, G, B). Black is (0,0,0) or 0+0+0, or no measurements on any of the 
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three color planes. White is (255, 255, 255). The pure colors of red, green, and blue 

are represented by (255,0,0), (0,255,0), and (0,0,255) respectively. This is the same 

as in colorgraphics. 

 

 

Figure (3.3):  The RGB color model mapped to a cube 

3.1.3 HSV color model 

HSV is a three-dimensional space in that it has three variables, but it is 

definitely not a cube representation, more of a cone as seen in Fig. 3.3. The hue, or 

color, is measured in degrees from 0 to 360. Saturation and intensity are real 

numbers between 0 and 1. These are generally scaled to 8-bit numbers. Accordingly, 

red is both 0 and 255, orange is 17, green is at 85, blue is 170, with magenta at 200. 

 HSV space is very used in robotics and object detection, if we have a object 

with a specific  color , in HSV space we can detect the color even if the light is not 

uniform, by selecting a rang in the hue plane ,which is very hard to do it in RGB 

space. 
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Figure (3.4):  The HSV color model cone describe the Hue, Saturation and Value 

ranges 

3.1.4    Thresholding: 

The simplest thresholding methods replace each pixel in an image with a black 

pixel if the image intensity is less than some fixed constant T, or a white pixel if the 

image intensity is greater than that constant and the result image called binary 

image  

b(x, y) = {ͳ if �ሺݔ, ሻ ݕ  ≥ �Ͳ if �ሺݔ, ሻݕ  < � }  (3.1) 

This application very useful to extract an object by thresholding using a hue 

rang for example. 

 

a.RGB image 

 

b.HSV image 

 

c. Binary image 
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Figure( 3.5) : describe transformation from RGB to HSV then getting a Binary 

image by thresholding the HSV image 

 

3.1.5 Edge detection 

Edge detection includes a variety of mathematical methods that aim at 

identifying points in a digital image at which the image brightness changes sharply 

or, more formally, has discontinuities. The points at which image brightness changes 

sharply are typically organized into a set of curved line segments termed edges. The 

same problem of finding discontinuities in one-dimensional signals is known as step 

detection and the problem of finding signal discontinuities over time is known as 

change detection.  

Edge detection is a fundamental tool in image processing, machine vision and 

computer vision, particularly in the areas of feature detection and feature extraction 

[30] 

a.   Canny Edge detector 

John Canny considered the mathematical problem of deriving an optimal 

smoothing filter given the criteria of detection, localization and minimizing multiple 

responses to a single edge.[31] He showed that the optimal filter given these 

assumptions is a sum of four exponential terms. He also showed that this filter can 

be well approximated by first-order derivatives of Gaussians. 

Here is an example of a 5×5 Gaussian filter, used to create the adjacent image, 

ǁith staŶdard deǀiatioŶ of σ=1.4. (The * denotes a convolution operation.) 

 

(3.2) 

 

https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Luminous_intensity
https://en.wikipedia.org/wiki/Step_detection
https://en.wikipedia.org/wiki/Step_detection
https://en.wikipedia.org/wiki/Change_detection
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Feature_detection_%28computer_vision%29
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/John_Canny
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It is important to understand that the selection of the size of the Gaussian 

kernel will affect the performance of the detector. The larger the size is, the lower 

the deteĐtor’s seŶsitiǀitǇ to Ŷoise. Additionally, the localization error to detect the 

edge will slightly increase with the increase of the Gaussian filter kernel size. A 5×5 is 

a good size for most cases, but this will also vary depending on specific situations. 

 

Figure (3.6 ):The original image on the left and the detected edges on the right using Canny 

edge detection algorithm 

3.1.6    Hough transform: 

The Hough transform is a feature extraction technique used in image analysis, 

computer vision, and digital image processing.[29]  

The purpose of the technique is to find imperfect instances of objects within a 

certain class of shapes by a voting procedure. This voting procedure is carried out in 

a parameter space, from which object candidates are obtained as local maxima in a 

so-called accumulator space that is explicitly constructed by the algorithm for 

computing the Hough transform. 

The classical Hough transform was concerned with the identification of lines in 

the image, but later the Hough transform has been extended to identifying positions 

of arbitrary shapes, most commonly circles or ellipses. The Hough transform as it is 

universally used today was invented by Richard Duda and Peter Hart in 1972, who 

called it a "generalized Hough transform"[32] 

a.  Hough transform for circle detections  

https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Image_analysis
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Digital_image_processing
https://en.wikipedia.org/wiki/Parameter_space
https://en.wikipedia.org/wiki/Line_%28mathematics%29
https://en.wikipedia.org/wiki/Richard_Duda
https://en.wikipedia.org/wiki/Peter_E._Hart
https://en.wikipedia.org/wiki/Hough_transform#cite_note-2
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The circle Hough Transform (CHT) is a feature extraction technique for 

detecting circles. It is a specialization of Hough Transform. The purpose of the 

technique is to find circles in imperfect image inputs. The circle candidates are 

produĐed ďǇ ͞ǀotiŶg͟ iŶ the Hough paraŵeter spaĐe aŶd theŶ seleĐt the loĐal 

maxima in the accumulator matrix. 

In a two-dimensional space, a circle can be described by: ሺܠ − ሻ૛܉ + ሺܡ − ሻ૛܊ = �૛ (3.3) 

Where (a,b) is the center of the circle, and r is the radius. If a 2D point (x,y) is 

fixed, then the parameters can be found according to (3.3). The parameter space 

would be three dimensional, (a, b, r). And all the parameters that satisfy (x, y) would 

lie on the surface of an inverted right-angled cone whose apex is at (x, y, 0). In the 3D 

space, the circle parameters can be identified by the intersection of many conic 

surfaces that are defined by points on the 2D circle. This process can be divided into 

two stages. The first stage is fixing radius then find the optimal center of circles in a 

2D parameter space. The second stage is to find the optimal radius in a one 

dimensional parameter space. 

So For each point (x, y) on the original circle, it can define a circle centered at 

(x, y) with radius r ,The intersection point of all such circles in the parameter space 

would be corresponding to the center point of the original circle as we see in fig 3.7 

 

https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Hough_Transform
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Figure (3.7):  an edge image of a circle in the left and its Hough transform space for 4 point in 

the right 

Consider 4 points on a circle in the original image (left). The circle Hough 

transforms is shown in the right. Note that the radius is assumed to be known. For 

each (x,y) of the four points (white points) in the original image, it can define a circle 

in the Hough parameter space centered at (x, y) with radius r. An accumulator matrix 

is used for tracking the intersection point.  

In the parameter space, the voting number of points through which the circle 

passing would be increased by one. Then the local maxima point (the red point in the 

center in the right figure) can be found. The position (a, b) of the maxima would be 

the center of the original circle. [33] 

 

3.2 Vision system 

3.2.1 Camera System 

The lens inside the camera refracts all rays of light from a certain object point to 

one single point in the image plane. If the lens is thin implying the distortion can 

be neglected, the lens law is valid. 

૚ࢻ+ 
૚ࢼ = ૚�       (3.4) 

Where α is the distance between the lens and the object, β is the distance 

between  the lens and the image plane and f is the focal length. Figure 2.1 illustrates 

the lens law. [33] 
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Figure (3.8): Illustration of the lens and object distances and focal lengths 

By the lens law it is obvious that an object at the distance α from the lens will 

be reproduced with complete sharpness on the image plane. If the distance between 

the object and the lens differs from α, the reproduction on the image plane will be 

more or less blurred.  

 

3.2.2 Camera Modeling and Calibration: 

The Camera Calibrator It allows us to estimate camera intrinsic, extrinsic, and 

lens distortion parameters. You can use these camera parameters for various 

computer vision applications. These applications include removing the effects of lens 

distortion from an image, measuring planar objects, or reconstructing 3-D scenes 

from multiple cameras. 

In robotics application, camera calibration used to estimate the camera 

parameters to be able to get a position or a distance of an object, and in stereo 

vision we can do the mapping and pose estimation by two calibrated camera. 

3.2.2.1   Camera Model: 

The Coŵputer VisioŶ “Ǉsteŵ Toolďoǆ™ ĐaliďratioŶ algorithŵ uses the Đaŵera 

model proposed by Jean-Yves Bouguet [34] . The pinhole camera model does not 

account for lens distortion because an ideal pinhole camera does not have a lens. To 
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accurately represent a real camera, the full camera model used by the algorithm 

includes the radial and tangential lens distortion. 

a. Pinhole Camera Model 

A pinhole camera is a simple camera without a lens and with a single small aperture. 

Light rays pass through the aperture and project an inverted image on the opposite 

side of the camera. Think of the virtual image plane as being in front of the camera 

and containing the upright image of the scene.  

 

Figure (3.9 ):Illustration of the camera model from the object to the 2d image  

The pinhole camera parameters are represented in a 4-by-3 matrix called the camera 

matrix. This matrix maps the 3-D world scene into the image plane. The calibration 

algorithm calculates the camera matrix using the extrinsic and intrinsic parameters. 

The extrinsic parameters represent the location of the camera in the 3-D scene. The 

intrinsic parameters represent the optical center and focal length of the camera. 

 

(3.5) 

 

(3.6) 
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The world points are transformed to camera coordinates using the extrinsic 

parameters. The camera coordinates are mapped into the image plane using the 

intrinsic parameters. [35] 

 

Figure (3.10):  Illustration of the camera model showing the transformation by the 

Extrinsic parameters and the mapping into the image plane using the intrinsic 

parameters 

b.     Distortion in Camera  

The camera matrix does not account for lens distortion because an ideal pinhole 

camera does not have a lens. To accurately represent a real camera, the camera 

model includes the radial and tangential lens distortion. [36] 

b.1   Radial distortion 

Radial distortion occurs when light rays bend more near the edges of a lens than 

they do at its optical center. The smaller the lens, the greater the distortion and the 

radial distortion coefficients model this type of distortion. 

 

Figure (3.11):  radial distortion of 3 type of lens 

b.2    Tangential Distortion 
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Tangential distortion occurs when the lens and the image plane are not 

parallel. The tangential distortion coefficients model this type of distortion 

 

Figure (3.12): illustration of  Tangential Distortion of a lens   

3.2.2.2 Camera Calibration Parameters 

The calibration algorithm calculates the camera matrix using the extrinsic and 

intrinsic parameters. The extrinsic parameters represent a rigid transformation from 

3-D world coordinate system to the 3-D camera's coordinate system. The intrinsic 

parameters represent a projective transformation from the 3-D camera's coordinates 

into the 2-D image coordinates. 

 

Figure( 3.13): Diagram describe the transformation from the World coordinates into Pixel 

coordinates passing by Extrinsic and intrinsic camera parameters matrices     

a.     Extrinsic Parameters 

The extrinsic parameters consist of a rotation, R, and a translation, t. The origin 

of the camera's coordinate system is at its optical center and its x- and y-axis define 

the image plane. Define the camera  Extrinsic matrix E by 



Chapter 3:  Vision 

 

 

85 

 

E = [R tͲ ͳ] (3.7) 

b      Intrinsic Parameters 

The intrinsic parameters include the focal length, the optical center, also known as 

the principal point, and the skew coefficient. The camera intrinsic matrix, K, is 

defined as:  

K = [f୶ Ͳ Ͳs f୷ Ͳc୶ c୷ ͳ] (3.8) 

The next figure describe the pixel skew   
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Chapter 4:   Implementation and practical results 

4.1 Manipulator Setup 

4.1.1   Hardware:  

In our work, we use an Arduino mega microcontroller and a motor driver to 

control our manipulator, but the computations are done in the computer instead of 

the microcontroller (Arduino), who just does the work of the Analog/Digital conversion 

for the analogical sensors and the PWM generation which represents the voltage 

signals for the DC Motors. 

 

Figure (4.1a):  Hardware Setup   
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Figure (4.1b) The previously discussed manipulator workbench    

4.1.2    Software: 

The control implementation is designed in MATLAB Simulink as diagram blocks, 

where we design the control law, generation trajectories and filtering the noisy data 

ŵeasuƌed fƌoŵ eaĐh ŵaŶipulatoƌ͛s seŶsoƌ ǀia the AƌduiŶo aŶalog iŶputs, aŶd fiŶallǇ 

the resulting control law will be transferred to the microcontroller (Arduino) which 

generates a PWM signals. The DC motor Driver Card contains three L6203 H-Bridges, 

which eventually amplifies the signals from 5V (Arduino command signals) to the 

driving signals 12V . 

As we mentioned in the introduction, we used the Arduino IO (MATLAB AND 

SIMULINK SUPPORT PACKAGE FOR ARDUINO). We upload the Arduino IO code into the 

Arduino board, this code does the Serial communication by reading and writing from 

and to Simulink blocks with a specific communication protocol. 

The reason of using the MATLAB AND SIMULINK SUPPORT PACKAGE FOR 

ARDUINO, is to minimize the time of computation, because in our case all the 

computation run in computer speed instead of the Arduino microcontroller speed 

which is very slow compared to the computer, so the role of the Arduino is just to 
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receive the command signals and send the measurements of the potionmeter. Other 

reason, is the filters and the complicated iterative functions that are already 

implemented in Simulink and we can use them, and also all the measured and the 

filteƌed data aƌe saǀed autoŵatiĐallǇ iŶ MATLAB ǁoƌkspaĐe, aŶd theƌe͛s also aŶ 

important reason, is the supervision which we can visualize real-time values of the 

closed-loop, and we can tune the PID in real-time which makes it a very helpful tool, 

and makes our work very clear, efficient and time saving.   

The figure 4.2, represents a Simulink model example of driving a dc motor using 

analogWrite function to Generate PWM signal to drive the DC motor, also we used a 

digitalWrite function to enable and disable the motor.      

For the sensor measuring we used analogRead function to read the voltage from the 

potienmeters, and then we can get the angle value using an experimental calibration 

which relates the measured voltage with angle value in radian. 

 

Figure (4.2): Simulink model of driving a Dc Motor and measuring position from its sensor 

 

4.1.3 Filtering:  

When we measured the joints angles with the potienmeters, the data we got 

was very noisy, so we had to use a Lowpass Filter. 
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Denote that the sampling time Te=0.01S, so we have sampling frequency Fe=100Hz. 

Appling Shannon theorem we have: 

Fb ≥ ʹFe 

With Fb is the lowpass Filter cut-off frequency. In our case we choose Fb = ͵ͲͲHz 

 

Figure (4.3):  Lowpass Filter Response with 300Hz cut-off frequency 

 

 

Figure (4.4): joint measured signal and the filtered one 
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4.2 independent Joint Control (PID Position Control) 

4.2.1 Design and concept  

As we mentioned in section 2.1.1 we apply a PID controller for each joint 

independently, and we add each of forward and inverse kinematics functions, to 

translate from Cartesian space to the joints space and vice versa. To achieve the 

desired positions we generate a trajectory in Cartesian space, this trajectory composed 

of three trajectories Xtraj, Ytraj and Ztraj, then they will transform by the inverse 

kinematics function to joints space trajectories.  

So the PID controllers try to achieve these desired trajectories. And to compare 

the real position of the manipulator with the desired one, we used the forward 

kinematics function.  

 

Figure (4.5):  Simulink model of independent joints positions control following a 

Cartesian space trajectory 

The figure below represent a single joint subsystem, which has an input that is 

the Set Point (desired angle in Radians), the closed-loop with discrete time PID 
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controller, the PID output is limited (from -255 to 255), so we use a map function to 

map the output value into the work range of the analogeWrite function (from 0 

to 255), then the measured data will be filtered and map from Voltage value into 

radian, all the values in the closed-loop are displayed and also plotted on a scopes, 

finally  the output of the  subsystem represent the first joint angle  named q1. 

 

Figure (4.6): Simulink model of PID controller for a single joint with supervision of all 

the control loop signal values 

 

We used a Stopping criteria that disables the motor if the error is reaching zero (<0, 01 

Radians).  
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Figure( 4.7): Simulink Subsystem model of a Dc motor command with a 

stopping criteria and joint sensor measurement 

 

4.2.2 Tuning and results 

By several experiments we get the PID gains Kp,Kd and Ki . 

Table 4.1 : the PID gains of the first  joint controller 

Set point (rad) Kp Kd Ki 

π/Ϯ ʹͺͻ 40 50 

 

Table 4.2: the PID gains of the second joint controller 

Set point (rad) Kp Kd Ki 

π/Ϯ ʹʹͷ 30 10 

 

Table 4.3 : the PID gains of the third  joint controller 

Set point (rad) Kp Kd Ki 

-π/ϯ ʹ͹Ͳ 30 50 

 

After 30 seconds of data recording we get the following figures with sample time 

of 0.01S. 
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Figure( 4.8): Angles responses for 3 joints using PID controllers 

As we see, the responses are acceptable, for the first joint there is no steady stat 

error but there are oscillations caused by the high gain Kp, we try to reduce it but that 

lead us to a big steady stat error specially in small Set Points, and this due to the 

friction in the joint. 

For the second joint and third joint we have good responses only a small steady 

stat error, and the oscillations due to noise in the joints sensors.   

Same experiment but the figures below shows the responses of the end effector 

position in the Cartesian space. 
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Figure (4.9): end effector position signals (X,Y,Z) following a desired trajectory   

4.3 Parameter Estimation  

as we mentioned in section 2.1.2, for a robot manipulator to track a specific 

trajectory we, have to apply a computed torque control, to do that we need to know 

the inverse dynamics model, which means, knowing or estimating the manipulator 

parameters, in our case the robot is too ancient and not so commonly used, and the 

datasheet is not available, therefore, the parameters values are unknowns, so the 

solution is to estimate these parameters with the simplest system identification tool, 

known by least-squares method. 

Denote that the Least-Squares model of the manipulator is an inverse dynamical 

model, which means the inputs are the joints angles and their derivatives, and the 

outputs aƌe the PWM sigŶals, aŶd that͛s ǁhat ǁe Ŷeed iŶ Đoŵputed toƌƋue ĐoŶtƌol 

method.  

In section 2.2.3.a ǁe͛ǀe seeŶ the deŵoŶstƌatioŶ of LS ŵethod, aŶd iŶ 2.2.3 

ǁe͛ǀe ǁƌitteŶ the ŵaŶipulatoƌ͛s iŶǀeƌse dǇŶaŵiĐs as follow:  

� = Φ�̂    (4.1) 
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Where Y is the output vector, Φ the regresseur matrix and ϴ̂ the estimated 

parameters vector.  

In our work, to apply LS method we implemented the regresseur matrix � Eq (2.51) in 

MATLAB, then we generate a spesific signals comunoly used in system identification,  and 

we use them to excite the robot dynamics, but this signals are exciting the robot in closed-

loop using PID contollers, because the robot is unstable in open-loop as we mentioned in 

2.2.1. 

4.3.1 The Exciting Trajectory 

We used very efficient signals to excite the robot joints, these signals are of type 

Fourier series, which can be parameterized as a sum of finite Fourier series as follow  

qiሺݐሻ = ଴�ݍ + ∑ a sin ሺwf��=଴ ሻݐ� −  ሻ    (4.2)ݐ�ሺwfݏ݋ܾܿ

Where wf is fundamental frequency of the excitation trajectory. 

We recorded about 110 seconds of data, in the left side of the figure 4.8  below 

represent the three excitation signals (PWM signals) which are going to transfer to 

voltage by the motors driver board, and this represents the output vector �, in the 

right side of the figure 4.8 we have the three joints angles values represented in (rad).  

With sampling time Te=0.01 s, for each signal we have 11000 sample so that  

� = [UଵUଶUଷ] (4.3) with  Uଵ, Uଶ and Uଷare 11000X1 vector, and Y  is 33000X1 vector. 
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Figure( 4.10): three joint angles signals and their inputs PWM signals     

4.3.2 Applying the LS method   

After we get the joint angles, we compute the regresseur matrix � using the 

joints angles values and its derivatives, and we arrange them just as we did in Eq 

(2.51), then we apply the LS method to estimate the 20 parameters Eq (2.50) As follow  

�̂ = (ΦTΦ)−ଵΦTY      (4.4) 

With Φis 33000X20 matrix andϴ̂is 20X1 vector 

4.3.3    Parameters validation 
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To validate our parametric model using the parameters that we estimated, we 

have to excite the system with other trajectories, then use the given outputs which are 

the joints angles signals and its derivatives to make the estimated model represented 

by the regresseur matrix Φ and the estimated parameters  ϴ̂ , and we compute the 

outputs vector Y  which represents the Estimated PWM  signals , we computed as 

follow : 

� = Φ�̂ (4.5) 

 

Figure (4.11): Validation Signals for the three joints manipulator represented by the 

measured and the estimated output signals 

We compute the RMS error between the real and the estimated output signals for the 

three joints and we got: 

Table 4.4: RMS error and the fit between the measured and the estimated outputs for 

the three joint  

 Joint 1 Joint 2 Joint 3 

RMS error 47 37 32 

fit 63% 70% 74% 

So the model we estimate fits the real one about 70%, which are acceptable results. 
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The errors we got are due to the nonlinearity in the parameters that we cannot 

estimate with LS method as stribeck effect and some mechanical problems like 

hysteresis and the dead zones in the Dc motors. 

And also the big problem is data filtering and recording, as we seen in section 

ϰ.ϭ.ϯ theƌe is a lot of Ŷoise iŶ the seŶsoƌs, afteƌ filteƌiŶg ǁe͛ǀe seeŶ the lag ďetǁeeŶ 

the real and the filtered signals ,and also the first and the second derivatives are even 

further from the real ones. 

Also theƌe͛s pƌoďleŵ of uŶites iŶ the paƌaŵeteƌs ǁe got , iŶ ouƌ ǁoƌk ǁe take 

the output data as voltage but in PWM , and we consider the relation between the 

PWM value and the real voltage in the motors are linear, which is not guaranteed  ,and 

if it was liŶeaƌ ǁe doŶ͛t kŶoǁ this sĐaliŶg faĐtoƌ ǁhiĐh Đould ŵake ouƌ paƌaŵeteƌs iŶ 

wrong unites.      

4.4    Computed toque control (Trajectory tracking)  

As we mentioned in section 2.1.2,to track a specific trajectory with manipulator we need to 

apply a nonlinear control law using feedback linearization and known in robotics as Computed 

torque control. 

4.4.1 Design and concept  

As ǁe͛ǀe seeŶ iŶ EƋ Ϯ.ϭ9, the ĐoŶtƌol laǁ is  

 = �ሺݍሻ(ݍ ሷ݀ − �݀ ሶ݁ − (݁݌� + �ሺݍሶ , ሶݍሻݍ + ሶݍሺܨ  ሻ +  ሻݍሺܩ

With ݁ = �ሺݐሻ − ��ሺݐሻ 

By adding the motors dynamics Eq (2.47)   the control law become  

U = ሺJ́ + �ሺݍሻሻ(ݍ ሷ݀ − �݀ ሶ݁ − (݁݌� + � ሺݍ , ሶݍ ሻݍ + ሶݍሺܨ ሻ + ሻሶݍሺܩ + Tf (4.6) 
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And we have from section 2.2.3, the inverse dynamic model we got from LS 

estimation method � = Φ�̂ 

Where  Y = [UଵUଶUଷ] so thatUଵ, UଶandUଷ are the motors inputs PWM signals, and 

we have the regresseur matrix Φ representing all the dynamics equations known as 

regressors function, and ϴ̂ contain the estimated parameters   

So we can write  

� = U = J́qሷ + �ሺݍሻݍሷ + �ሺݍ , ሶݍ ሻݍ + ሻݍሺܩ + ሶݍሺܨ ሻሶ + Tf = Φሺݍ, ሶݍ , ሷݍ ሻ�̂ (4.5) 

And if we use the new control law (4.4) , and by replacing q ሷ  by (qdሷ − Kdeሶ −Kpe) which represents the PD Controller plus the feedforward, we get this control law 

U = Φ ቀݍ, ሶݍ , ݍ) ሷ݀ − �݀ ሶ݁ − ቁ(݁݌� �̂  (4.6) 

And there is the implementation of the computed torque control law using the 

inverse dynamics model that we get in the identification part 

 



Chapter 4:   Implementation and practical results 

 

 

100 

 

Figure (4.12): Simulink model of Computed torque control for three joints manipulator using 

Dynamics inversion and 3 PD controller and supervision of all the loop signals values  

4.4.2 tuning and results 

By several experiments we get the PD gains Kp and Kd . 

Table 4.5 : the PID gains of the first  joint controller 

Set point (rad) Kp Kd Ki 

π/Ϯ ʹͷ 10 0 

 

Table 4.6 : the PID gains of the second  joint controller 

Set point (rad) Kp Kd Ki 

π/Ϯ ͻ 6 0 

 

Table 4.7: the PID gains of the third joint controller 

Set point (rad) Kp Kd Ki 

-π/ϯ Ͷͻ 14 0 

 

After 15 seconds of data recording we get the following figures with sample time 

of 0.01S 
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Figure (4.13): joints Angles Responses after using a computed torque control for tracking 

desired trajectories 

As we have seen, the manipulator is tracking the desired trajectories, but there is 

some error due to the errors in the estimated model and the dynamics that are not 

included when modeling, and there is some lag because of the filter lag as we 

mentioned previously.  

And also if we have a fast desired trajectory the manipulator cannot track, 

because the motors velocities are too limited. 

4.5   Vision Control application:  

If we want to grasp an object like pick and place application, we have to know 

the exact position of the object. But if the objects are coming randomly from a 

conveyor for example, the only solution is using a vision system to a Estimate the 
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objects poses. Then we use the inverse kinematics to get the desired angles, and finally 

apply a control law to achieve them. 

 

Figure (4.14):  Vision Control for diagram a Robot Manipulator 

In our work we try to estimate a pose of a red ball, we used image processing 

tools that are implemented in MATLAB to detect the red ball. But this detection allows 

us to kŶoǁ the ďall positioŶ iŶ the iŵage ǁhiĐh ŵeaŶs iŶ piǆels, this ƌesult doesŶ͛t help 

in our application, because in our robot we can achieve a position using the real world 

coordinates. 

In order to get the camera (webcam) model, we have to calibrate it, and then 

using the intrinsic and extrinsic camera parameters, we can transform the object 

position from image which is by pixels, to the real position by meters with respect to 

the world coordinate frame, then into the robot base coordinate frame. 

 

 

 

 

 

 

 

Figure (4.16): illustration of robot manipulator, camera and object coordinate frames 
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The previous figure shows us the different coordinate frames positions, where 

{0} is the robot bas coordinate frame which is the frame that we used in inverse 

kinematics, and we have the camera coordinate frame {c}, and finally the object 

coordinate frame {ob}, so using a detection algorithm we get the position of the object 

with respect to {c} and then we transform it to the robot frame {0}. Denote that the 

position of the camera with respect to the robot coordinate frame is fixed and known.     

4.5.1 Object detection 

In this part we worked on object detection and position estimation in the image, 

first thing we get the real-tiŵe iŵage fƌoŵ the ǁeďĐaŵ, it͛s a ‘GB iŵage, iŶ oƌdeƌ to 

detect the ball from its color we have to convert the image into HSV space, by selecting 

a Hue range and a Saturation range, these two ranges selected such a way that is cover 

the color of the ball in different intensity and light distribution on the ball. 

So we have a red ball, by many experiences we select as follow: ૜�� > ݁ݑܪ > ૜૝� �. �� > ݊݋�ݐܽݎݑݐܽ� > Ͳ.ʹ 

Then we threshold the hue and the saturation images planes using these two 

ranges. 

After we got the binary image we applied the Hough Transform for circle 

detection using MATLAB function imfindcircles, by choosing a range for radius values 

[35, 65] and after some experiences. We got the following result  
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Figure (4.16): circle detection after thresholding and applying circle Hough transform  

And we get the radius value r=18 pixel, and the position with pixels (290,181) 

 

4.5.2 Camera calibration and pose estimation 

Now after we got the ball position in the image (by pixels), we want to transform 

this position into the real world coordinate frame then to the manipulator coordinate 

frame, and use this position to get the required joints angles using the inverse 

kinematics. 

In order to estimate any mathematical model we have to collect data 

represented by inputs and outputs as we did in identification, in camera calibration 

which is an estimation of the camera parameters we have to take several positions in 

the real world which represent the inputs, and estimate these positions in the digital 

image which represent the outputs. 

Commonly in camera calibration they used a checkerboard that we know its 

squares sizes, so we can get the real world position of each square, and camera 

calibration algorithm could estimate the positions of each square in the image. Using 

this data, the MATLAB calibration toolbox uses some mathematical tools such SVD to 

estimate the camera model. 
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In our work we took several photos of the workplace where the checkerboard 

placed in a specific position with respect to the manipulator. 

 

Figure (4.17): examples of several checkerboards photos that are used in camera calibration  

 

Figure (4.18) MATLAB camera calibrator app showing the world coordinate frame after 

calibrating the camera and showing the mean error of the estimation  

As we have seen the mean error of estimation is about 0.15 pixel which is a good 

result.  
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4.5.3 Vision position control 

After getting the camera parameters represented by extrinsic and intrinsic, we are able 

to estimate any position in the checkerboard plane with respect to the world frame. 

To do that we implemented this equation using (3.5),(3.6),(3.7) and (3.8) 

P = [Rt ] K 

With � represent the camera parameters  

[X Y Z] = [xyͳ] ቀ[Rt ] Kቁ−ଵ
 

 

With (x,y) is the position in the image and (X,Y,Z) is the position of the ball with respect to the 

world frame.  

 

To compare the estimated position with the real one, we placed the ball in known positions 

and then apply the position estimation algorithm. We got the following results 
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Figure (4.19): examples of real-time position estimation using MATLAB and calibrated camera  

 

Table 4.8 : real positions of the ball compared with the estimated positions 

Real position(mm) Estimated position(mm) 

(400,-100) (406,-101) 

(300,300) (300,302) 

(500,0) (492,-6) 

(400,200) (402,199) 

As we have seen from the table we have a good estimation of the ball position in 

the real world frame. 

In order to grasp the object by the manipulator hand all we have to do is to send 

the position vector to the kinematics control SIMULINK model we demonstrated in 

Figure (4.5). 
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The figure below shows the end effector position after feeding the Set point 

from the vision pose estimation output. 

 

Figure( 4.20): end effector position following a desired position feeding from camera vision 
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Conclusion 

 

In  this  thesis we implemented an  efficient  method  for  control  of  a  manipulator  

with unknown dynamical parameters .The PID used for position control as 

independent controller for each joint. Although, these PID controllers do not 

guarantee a tracking of a desired trajectory. To solve this problem we applied a 

ŶoŶliŶeaƌ ĐoŶtƌolleƌ ǁhiĐh is kŶoǁŶ iŶ ƌoďotiĐs ďǇ ͚Coŵputed toƌƋue ĐoŶtƌol͛, aŶd iŶ 
order to do this we have estimated the parameters of the manipulator. And this 

controller tracks the desired trajectory.  

After that we have controlled the robot, we took a step further by making it more 

intelligent by adding vision, and now we are able to grasp an object in any arbitrary 

positioŶ , ďǇ deteĐtiŶg the oďjeĐt͛s positioŶ iŶ the digital iŵage ,theŶ transform it to 

the world coordinate frame using a calibrated camera . 
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