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 ملخص

الضغط من المخاطر الخطيرة. تولد هذه التشققات بشكل عام في حالات   نابيبتعتبر الشقوق الطولية التي يمكن أن تتطور في أ

  من خلال هذه الدراسة ، تم اقتراح نموذج رقمي ثلاثي الأبعاد ، باستخدام برنامج.  انقطاع الهيكل مثل مفصل اللحام 

على طول طرف الشق شبه الإهليلجي الطولي الموجود في جدار وعاء الضغط،  . SIF ة الإجهادلحساب عامل شد  ANSYS  

Summary 

Longitudinal cracks that can develop in pressure vessels are a critical hazard. These cracks are 

generally born in the discontinuities of the structure such as the weld joint. Through this study, a 

three-dimensional numerical model, using ANSYS software, is proposed for the calculation of 

the stress intensity factor (SIF) along the longitudinal semi-elliptical crack tip located in the wall 

of a pressure vessel. 
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All mechanical parts contain cracks, even if it cannot be seen with the naked eye. These cracks can 

grow slowly or suddenly, the latter case often being synonymous with rupture; forecasting these 

phenomena is therefore an essential dimensioning issue. Rupture is a problem that man will have 

to deal with as long as he makes structures. This problem is increasingly crucial with the 

development, linked to technological progress, of complex structures. 

In the design of pressure vessel, the use of fracture mechanics theory and non-destructive testing 

are the most effective tools for design engineers. Fracture mechanics is generally used to predict 

the failure of components caused by the preexistence of small cracks. It also allows us to take our 

precautions to stop any future propagation of the crack or to determine the life of the structure in 

the event that propagation is unavoidable. 

In the case of an elastic material (brittle failure), one of the most used cracking criteria is the stress 

intensity factor (SIF). However, and because it is difficult to accurately determine the SIF for 

cracks in complex structures by analytical solutions, the use of numerical methods such as finite 

elements becomes the only appropriate tool. 

We propose through this work, to study the toughness of pressure vessels widely used in industry. 

We will be particularly interested in the investigation of the effect of the ratio of the depth of the 

crack on the vessel thickness (a/t) and the effect of the ratio of the geometry of the crack (a/c) on 

the SIF. 

The document is organized as follows: 

A general introduction; 

The first chapter gathers the elements of bibliography necessary for this study; 

The second chapter is devoted to the validation of the numerical model produced by the ASME 

standard; 

The last chapter deals with the numerical model developed as well as the discussion of the results; 

The document ends with a general conclusion. 
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1.1 Introduction 

Fracture is a problem that society has faced for as long as there have been man-made structures. 

This problem is increasingly crucial with the development, linked to technological progress, of 

complex structures. 

The problem may actually be worse today than in previous centuries, because more can go 

wrong in our complex technological society. 

However, many failure mechanisms are still poorly understood, in particular when using new 

materials or new processes. The cost of breakups catastrophic events represents, 

 according to economic studies carried out since the beginning of the 1980s, almost 4% of GNP 

in developed industrial countries. We can reduce this cost of about 30% by correctly applying 

the known concepts of the mechanics of rupture and an additional 25% by further developing 

research in the field of rupture. 

1.3 Why Structures Fail 

The cause of most structural failures generally falls into one of the following categories: 

Negligence during design, construction, or operation of the structure. Application of a new 

design or material, which produces an unexpected (and undesirable) result. In the first instance, 

existing procedures are sufficient to avoid failure, but are not followed by one or more of the 

parties involved, due to human error, ignorance, or willful misconduct. Poor workmanship, 

inappropriate or substandard materials, errors in stress analysis, and operator error are examples 

of where the appropriate technology and experience are available, but not applied. 

The second type of failure is much more difficult to prevent. When an ‘‘improved” design is 

introduced, invariably, there are factors that the designer does not anticipate. New materials can 

offer tremendous advantages, but also potential problems. Consequently, a new design or 

material should be placed into service only after extensive testing and analysis. Such an 

approach will reduce the frequency of failures, but not eliminate them entirely; there may be 

important factors that are overlooked during testing and analysis. 

One of the most famous Type 2 failures is the brittle fracture of World War II Liberty ships. 

These ships, which were the first to have all-welded hulls, could be fabricated much faster and 

cheaper than earlier riveted designs, but a significant number of these vessels sustained serious 

fractures as a result of the design change. Today, virtually all steel ships are welded, but 

sufficient knowledge was gained from the Liberty ship failures to avoid similar problems in 

present structures. 
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Knowledge must be applied in order to be useful, however, Figure. 1.1 shows an example of a 

Type 1 failure, where poor workmanship in a seemingly inconsequential structural detail caused 

a more recent fracture in a welded ship. On 15 March 1979, the Kurdistan oil tanker broke 

completely in two  while sailing in the North Atlantic[2]. The combination of warm oil in the 

tanker with cold water in contact with the outer hull produced substantial thermal stresses. The 

fracture initiated from a bilge keel that was improperly welded. The weld failed to penetrate the 

structural detail, resulting in a severe stress concentration. Although the hull steel had adequate 

toughness to prevent fracture initiation, it failed to stop the propagating crack. 

1.4 Fracture mechanics 

Fracture mechanics has as its essential object the study of macroscopic cracks: it applies when 

there are discontinuities in the material, such in the material that they come to modify the state 

of stress, deformation and displacement, so that the homogenization of the medium no longer 

makes sense. The separation into two disjointed parts of a body occurs following the initiation 

phase, which saw the development of microcavities, micro fissures under the action of 

mechanical, thermal, chemical stresses The propagation of the macroscopic cracks can lead to 

the complete separation of several pieces or on the contrary the cracks can stop. The failure 

mode can be brittle, with failure often occurring without plastic deformation, in the presence of 

significant plastic deformation [3]. 
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Figure 1.1 (a) 

 

Figure 1.1 (b) 

Figure 1.1: The MSV Kurdistan oil tanker, which sustained a brittle fracture while sailing in 

the North Atlantic in 1979: (a) fractured vessel in dry dock and (b) bilge keel from which the 

fracture initiated. (Photographs provided by S.J. Garwood.). 

1.5 Failure Types 

There are more than twenty different recognizable ways a material can fail, including the most 

common forms: fracture, fatigue, wear, and corrosion.[4]. Each of these and other common 

failure modes are described briefly in the following sections. 

1.6 Brittle Fracture 

Brittle fracture occurs when mechanical loads exceed a material’s ultimate tensile strength 

causing it to fracture into two or more parts without undergoing any significant plastic 

deformation or strain failure. Material characteristics and defects such as notches, voids, 

inclusions, cracks, and residual stresses are the typical initiation points for the formation of a 

crack leading to brittle fracture (Figure. 1.2). Once the crack is initiated the material will 

undergo catastrophic failure fairly quickly under a sustained load. There is little energy 

absorbed (compared to ductile fracture) during the brittle fracture process. This failure mode 

commonly occurs in brittle materials such as ceramics and hard metals. 
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Eliminating or minimizing surface and internal material defects is an important method in 

improving a material’s resistance to brittle fracture. Many of these defects originate during 

material fabrication or processing steps. Therefore, it is important to give these early stages in 

the life cycle proper attention in order to reduce the material’s susceptibility to brittle fracture. 

Fabricating a part with a smooth surface is also important in preventing brittle fracture. For 

instance, sharp textures and notches on the surface of the material can initiate brittle fracture. 

Careful handling of the material after it’s produced will also help to prevent unnecessary 

mechanical damage such as scratches and gouges, which can ultimately lead to brittle fracture. 

Finally, an appropriate materials selection process to choose a suitable material for the intended 

application is important in ensuring that it will be capable of handling the applied mechanical 

loads. 

 

Figure 1.2: Brittle Fracture Surface of a High-Strength Chain. Fracture Began in a Small 

Crack Resulting from a Heat-Treating Problem (Photo Courtesy of Sachs, Salvaterra & 

Associates, Inc.). 

 

1.7 Ductile Failure 

Ductile materials that are subjected to a tensile or shear stress will elastically or plastically strain 

to accommodate the load and absorb the energy. Yielding occurs when the material’s yield 

strength is exceeded and can no longer return to its original shape and size. This is followed by 
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ductile fracture which occurs when the deformation processes can no longer sustain the applied 

load. Both of these failure modes are illustrated in Figure. 1.3. 

 

Figure 1.3: (a) Ductile Fracture of 2 1/2 Inch Hose Fitting (b) Close-up of the Deformed 

Region Where a Pin Joining the “Ears” Became Free from the One on the Right Causing the 

Deformation and Fracture of the One on the Left (Photos Courtesy of Sachs, Salvaterra & 

Associates, Inc.) 

 

1.8 Thermal Relaxation 

Thermal relaxation is a process related to the temperature dependent creep failure mode. Failure 

by thermal relaxation commonly occurs in fastener materials or other materials that are 

prestressed such that they could support a greater load than their non-prestressed counterpart. 

As the material undergoes creep at high temperatures their residual stresses are relieved which 

may render the material unable to support the given load. 
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1.9 Fatigue 

Fatigue is an extremely common failure mode and deserves considerable attention because it 

can inflict damage on a material at a stress level that is far less than the material’s design limit. 

Fatigue has been attributed with playing a role in approximately 90% of all material structural 

failures[5]. 

A material that fractures into two or more pieces after being subjected to a cyclic stress 

(fluctuating load) over a period of time is considered to have failed by fatigue. The maximum 

value of the cyclic stress (stress amplitude) for fatigue failure is less than the material’s ultimate 

tensile strength. It is often the case that the maximum value of the cyclic stress is so low that if 

it were applied at a constant level the material would be able to easily support the load without 

incurring any damage. Cyclic loads cause the initiation and growth of a crack, and ultimately, 

when the crack is significant enough such that the material can no longer support the load, the 

material fractures. The fatigue failure mechanism involves three stages: crack initiation, crack 

propagation, and material rupture.  

Similar to both ductile and brittle fracture, fatigue cracks are often initiated by material 

inhomogeneities, such as notches, grooves, surface discontinuities, flaws, and other material 

defects[6]. 

These inhomogeneities or initiation points act as stress raisers where the applied stress 

concentrates until it exceeds the local strength of the material and produces a crack. The best 

way to prevent fatigue failure is to keep fatigue cracks from initiating, which can be 

accomplished by removing or minimizing crack initiators, or by minimizing the stress 

Figure 1.4: Fatigue Loading Cycle. Figure 1.5: S/N Curves for Ferrous 

and Non-Ferrous Metals [1]. 
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amplitude. Once fatigue cracks have been initiated, they will seek out the easiest or weakest 

path to 

propagate through the material. Therefore, minimizing the number of internal material defects, 

such as voids and inclusions, will increase the time it takes a crack to propagate. Finally, when 

the crack has weakened the material to a point such that it can no longer support the applied 

load it will rupture, which can occur by shear or by tension [7]. 

Fatigue is not so much dependent on time as it is the number of cycles. A cycle consists of an 

applied stress being increased from a starting value (in some cases, zero or even negative) up 

to a maximum positive value (material loaded in positive direction) and then decreasing past 

the starting point down to a minimum value (in some cases this is a maximum negative loading), 

and finally back up to the starting value. This cycle is illustrated in Figure. 1.4, where there is 

positive and negative loading. However, negative loading is not required for fatigue to occur; 

rather, it can be a fluctuating positive load. Moreover, the stress cycles do not need to be 

symmetric, but can be randomly changing. In general, ferrous, or iron alloy, materials do have 

a fatigue (endurance) limit (SL), which is the stress level (amplitude) under which no failure 

will occur regardless of the number of cycles. On the other hand, by increasing the stress 

amplitude, the fatigue failure will commence after a smaller number of cycles. Non-ferrous 

alloys, such as aluminum and titanium, do not have a fatigue limit because it will eventually 

fail even from small stresses. So, airplanes and bicycles use aluminum alloys and are 

overdesigned to prevent failure due to repeated stress. This concept is demonstrated in Figure. 

1.4. 

Metals and polymers are typically susceptible to fatigue failure, while ceramics tend to be 

resistant. There are several different types of fatigue including high-cycle fatigue, low-cycle 

fatigue, thermal fatigue, surface fatigue, impact fatigue, corrosion fatigue, and fretting fatigue. 

1.10 Failure prevention 

In general, the most effective ways to prevent a material from failing is proper and accurate 

design, routine and appropriate maintenance, and frequent inspection of the material for defects 

and abnormalities. 

Proper design of a system should include a thorough materials selection process in order to 

eliminate materials that could potentially be incompatible with the operating environment and 

to select the material that is most appropriate for the operating and peak conditions of the 

system. If a material is selected based only on its ability to meet mechanical property 

requirements, for instance, it may fail due to incompatibility with the operating environment. 
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Therefore, all performance requirements, operating conditions, and potential failure modes 

must be considered when selecting an appropriate material for the system. Routine maintenance 

will lessen the possibility of a material failure due to extreme operating environments. For 

example, a material that is susceptible to corrosion in a marine environment could be sustained 

longer if the salt is periodically washed off. It is generally a good idea to develop a maintenance 

plan before the system is in service. Finally, routine inspections can sometimes help identify if 

a material is at the beginning stages of failure. If inspections are performed in a routine fashion, 

then it is more likely to prevent a component from failing while the system is in-service. 

1.11 Stress analysis of cracks 

For certain cracked configurations subjected to external forces, it is possible to derive closed-

form expressions for the stresses in the body, assuming isotropic linear elastic material 

behavior. Westergaard [8], Irwin [9], Sneddon [10], and Williams [11] were among the first to 

publish such solutions. If we define a polar coordinate axis with the origin at the crack tip 

(Figure. 1.6), it can be shown that the stress field in any linear elastic cracked body is given by 

𝜎𝑖𝑗 = (
𝑘

√𝑟
) 𝑓𝑖𝑗(𝜃) + ∑ 𝐴𝑚𝑟

𝑚

2 𝑔𝑖𝑗
(𝑚)

(𝜃)∞
𝑚=0       (1.1) 

Where, 

σij, stress tensor 

r and θ are as defined in Figure. 1.6 

k = constant 

fij, dimensionless function of θ in the leading term 

 

 

 

Figure 1.4: Definition of the coordinate axis ahead of a crack tip. The z direction is normal to 

the page. 
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For the higher-order terms, Am is the amplitude gij(m) and is a dimensionless function of θ for 

the mth term. The higher-order terms depend on geometry, but the solution for any given 

configuration contains a leading term that is proportional to 1
√𝑟

⁄ . As r → 0, the leading term 

approaches infinity, but the other terms remain finite or approach zero. Thus, stress near the 

crack tip varies with 1
√𝑟

⁄ , regardless of the configuration of the cracked body. It can also be 

shown that displacement near the crack tip varies with √𝑟. Equation (1.1) describes a stress 

singularity, since stress is asymptotic to r = 0. 

There are three types of loading that a crack can experience, as Figure. 1.7 illustrates. Mode I 

loading, where the principal load is applied normal to the crack plane, tends to open the crack. 

Mode II corresponds to in-plane shear loading and tends to slide one crack face with respect to 

the other. Mode III refers to out-of-plane shear. A cracked body can be loaded in any one of 

these 

modes, or a combination of two or three modes. 

 

 

Figure 1.5: The three modes of loading that can be applied to a crack. 

 

1.11.1 The Stress Intensity Factor (SIF) 

Each mode of loading produces the 1
√𝑟

⁄  singularity at the crack tip, but the proportionality 

constants k and fij depend on the mode. It is convenient at this point to replace k by the stress 

intensity factor K, where 𝐾 = 𝑘√2𝜋. The stress intensity factor is usually given a subscript to 
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denote the mode of loading, i.e., KI, KII, or KIII. Thus, the stress fields ahead of a crack tip in an 

isotropic linear elastic material can be written as: 

lim
𝑟→0

𝜎𝑖𝑗
(𝐼)

=
𝐾𝐼

√2𝜋𝑟
𝑓𝑖𝑗

(𝐼)
(𝜃)        (1.2) 

lim
𝑟→0

𝜎𝑖𝑗
(𝐼𝐼)

=
𝐾𝐼𝐼

√2𝜋𝑟
𝑓𝑖𝑗

(𝐼𝐼)
(𝜃)        (1.3) 

lim
𝑟→0

𝜎𝑖𝑗
(𝐼𝐼𝐼)

=
𝐾𝐼𝐼𝐼

√2𝜋𝑟
𝑓𝑖𝑗

(𝐼𝐼𝐼)
(𝜃)        (1.4) 

for Modes I, II, and III, respectively. In a mixed-mode problem (i.e., when more than one 

loading mode is present), the individual contributions to a given stress component are additive: 

𝜎𝑖𝑗
(𝑡𝑜𝑡𝑎𝑙)

= 𝜎𝑖𝑗
(𝐼)

+ 𝜎𝑖𝑗
(𝐼𝐼)

+ 𝜎𝑖𝑗
(𝐼𝐼𝐼)

       (1.5) 

Equation (1.5) stems from the principle of linear superposition. 

Detailed expressions for the singular stress fields for Mode I and Mode II are given in Table 

1.1. Displacement relationships for Mode I and Mode II are listed in Table 1.2. Table 1.3 lists 

the nonzero stress and displacement components for Mode III. 

Table 1.1: Stress Fields Ahead of a Crack Tip for Mode I and Mode II in a Linear Elastic, 

Isotropic Material 

 

 

Table 1.2: Crack-Tip Displacement Fields for Mode I and Mode II (Linear Elastic, Isotropic 

Material) 
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Table 1.3: Nonzero Stress and Displacement Components in Mode III (Linear Elastic, 

Isotropic Material) 

 

Consider the Mode I singular field on the crack plane, where θ = 0. According to Table 1.1, the 

stresses in the x and y direction are equal: 

𝜎𝑥𝑥 = 𝜎𝑦𝑦 =
𝐾𝐼

√2𝜋𝑟
         (1.6) 

1.12 Conclusions  

From a research standpoint, engineers must consider all plausible material failure modes when 

developing and maturing a new material or when ‘evolving’ an old material. However, material 

failure can often be the result of inadequate material selection by the design engineer or their 

incomplete understanding of the consequences for placing specific types of materials in certain 

environments. 

Education and understanding of the nature of materials and how they fail are essential to 

preventing it from occurring. Simple fracture or breaking into two pieces is not all-inclusive in 

terms of failure, because materials also fail by being stretched, dented or worn away. If potential 

failure modes are understood, then critical systems can be designed with redundancy or with 

fail-safe features to prevent a catastrophic failure. Furthermore, if appropriate effort is given to 

understanding the environment and operating loads, keeping in mind potential failure modes, 

then a system can be designed to be better suited to resist failure. 
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Chapter II:  

  The finite element method 
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2.1 Introduction 

The finite element method (FEM) is a numerical method used to solve some of the problems 

in physics. It is a method which makes it possible to determine an approximate solution over a 

spatial domain, that is to say which makes it possible to calculate a field (of scalars, vectors, 

tensors) which corresponds to certain equations and certain imposed conditions. 

  The method consists in cutting the spatial domain into small elements, also called cells, and 

in seeking a simplified formulation of the problem on each element, i.e., in transforming the 

arbitrary system of equations into a system of linear equations. Each system of linear 

equations can be represented by a matrix. The systems of equations for all the elements are 

then put together, forming a large matrix; solving this global system gives the approximate 

solution to the problem. 

2.3 Presentation of the finite element method  

The analytical resolution of the mechanical problems can be done only in a limited number of 

cases, however the numerical methods based on the discretization of its problems, present a 

very effective alternative, often used in the field of mechanics to solve complex problems. The 

finite element method is the most widely used discretization method because it can deal with 

complex geometry problems, it covers many areas of physics. Current computer resources 

(computer power, visualization and simulation tools) make it easy to implement. The finite 

element method is the most widely used method today, its field of application continues to 

expand. The success of the method is that its formulation uses standard processes which are 

repeated during the resolution of problems of different natures. This method is one of the most 

powerful digital techniques. One of the major advantages of this method is the fact that it offers 

the possibility of developing a program that can solve, with few modifications, several types of 

problems. In particular, any complex shape of a geometric domain where a problem is well 

posed with all the boundary conditions, can be easily treated by the finite element method. 
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2.4 The outline of the method  

In this paragraph, we will try to present in a simplified way, the stages of application of the 

finite element method and the tools necessary for its implementation. 

The resolution of a physical problem by finite elements roughly follows the following steps 

(Figure. 2.1) 

 

 
  

Figure.2.1. General steps of the finite element method 

 

Step 1: Formulation of governing equations and boundary conditions. 

The majority of engineering problems are described by partial differential equations associated 

with boundary conditions defined on a domain and its contour.  

The application of the FEM requires a rewriting of these equations in integral form. The weak 

formulation is often used to include boundary conditions. 

Step 2: Division of the domain into subdomains. 

This step consists in discretizing the domain into elements and calculating the connectivities of 

each one as well as the coordinates of its nodes. It thus constitutes the phase of preparation of 

the geometrical data. 

Step 3: Approximation on an element. 
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In each element the variable such as displacement, pressure, emperature, is approximated by a 

simple linear, polynomial or other function. The degree of the interpolation polynomial is 

related to the number of nodes in the element. The nodal approximation is appropriate. 

  It is in this stage that the construction of the elementary matrices takes place.   

Step 4: Assembly and application of boundary conditions. 

All the properties of the element (mass, rigidity,) must be assembled in order to form the 

algebraic system for the nodal values of the physical variables. It is at this level that the 

connectivities calculated in step 2 are used to build the global matrices from the elementary 

matrices.  

Step 5: Solve the overall system 

The overall system can be linear or nonlinear. It can define either a problem of balance, 

critical values or propagation. The equilibrium problem concerns the static cases and the 

stationary cases. In a problem of critical values, we are interested in the frequencies and the 

eigenmodes of vibrations of the physical system studied. Propagation problems concern 

transient cases in which the variations over time of physical variables are determined. 

Stepwise integration methods are better suited for this type of problem. The most used are: 

central finite difference method, Newmark method, Wilson method  

  2.5 Classic Element Shapes  

There are several forms of classical elements corresponding to one- or three-dimensional 

domains. Each type of element is identified by a name specifying its shape and by the number 

of geometric nodes that compose it. 

 

 

Figure.2.2. Examples of two-dimensional element 
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 2.6 Domain Discretion  

The finite element method is an approximation method by sub-domains, so before any 

application it is necessary to divide the domain to be studied into elements. Each element is 

geometrically defined by a number of well-defined nodes which generally constitute its 

vertices (figure.2.2)   

 

    

 

                Figure.2.3. Discretization of the domain – triangular 

elements 

 

 

The geometric discretization must respect the following rules: 

A node of an element must not be inside a side of another of the same type (figure.II.3. a). 

No two-dimensional element must be flat, avoid angles close to 180° or 0° (figure.II.3. b). 

Two distinct elements can only have in common points located in their common borders 

(figure.II.3.c). 

The set of all elements must constitute a domain as close as possible to the given domain; 

holes between elements are excluded (figure.2.3. d) 
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 Figure.2.4. Discretization rules 

 

The result of the discretization process must contain two essential data which are the 

coordinates of the nodes and the connectivities of the elements. One must number all the 

nodes and the elements so as to have total matrices with small bandwidth, for that, the 

numbering is done according to the smallest width of the field. 

 2.7 Use of finite element software  

A general industrial-type program must be capable of solving varied large-scale problems 

(from a thousand to a few hundred thousand variables). These complex programs require a 

significant approach work before hoping to be able to deal with a real problem in a correct 

way. Let us cite a few software names by way of example: NASTRAN, ANSYS, ADINA, 

ABAQUS, CASTEM 2000, CESAR, SAMCEF, etc. The possibilities offered by such 

programs are numerous: 

❖ linear analysis or not of a continuous physical system. 

❖ static or dynamic analysis. 

❖ taking into account complex behavior laws. 

❖ consideration of various phenomena (elasticity, thermal, electromagnetic, 

plasticity, flow, etc.) that can be coupled. 

❖ optimization issues, etc.. 

2.8 Conclusions  

We have presented in this chapter the finite element method. The latter is considered among 

the most powerful and useful methods in numerical calculation, it can facilitate the resolution 

of rather complex problems. In order to exploit this technique to solve the problem of the 

cracked structure 
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Chapter II: Validation by ASME standard 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III: Validation by ASME standard 
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3.1 Introduction 

It is obvious that any numerical model produced must be validated by any other method already 

tested: experimental, analytical, etc. The validation of the proposed methodology using 

software ANSYS was performed by analytical analysis according ASME requirement. Section 

XI, Article A-3000, of the ASME Boiler and Pressure Vessel Code provides a method for 

calculating stress intensity factors (SIFs) K1 using membrane and bending stresses and it is 

valid for the calculation of SIFs due to thermal gradients and due to residual stresses. It may be 

used to calculate SIFs at the deepest point on the crack front and at a point near the free surface. 

We propose in this part of the work to compare the values of the SIFs calculated from the 

ANSYS code with those of the analytical method ASME. All calculated values are for the 

deepest point case. As long as the difference between the two sets of values from the two 

methodologies is minimal, we can judge that our numerical model is correct.  

3.2 Problematic 

Irwin introduced in 1948 the concept of the stress intensity factor K very useful in fracture 

mechanics. [12, 13]. The K describes the singular stress field in the vicinity of the crack. Thus, 

this factor governs the failure of structures when a critical stress intensity threshold is reached. 

Around the tip of the crack there is a region where plastic deformation occurs; a finite 

deformation that leads to damage. Consequently, the stresses do not follow just the singular 

stress term inside this region and generally are leveled off due to damage of the material. 

This approach requires that constraint in the test specimen approximate that of the structure to 

provide an “effective” toughness for use in a structural integrity assessment. The appropriate 

constraint is achieved by matching thickness and crack depth between specimen and structure. 

Experimental studies [13, 14] demonstrate the validity of this approach. These studies show 

that the use of geometry dependent fracture toughness values allows more accurate prediction 

of the fracture performance of structures then it is possible to conventional fracture mechanics. 

Linear elastic fracture mechanics provides the relationships between the applied stress, the 

fracture toughness of the material and the critical crack size. 

Appendix D ASME VIII Div 3 provides engineering methods for calculating the stress intensity 

factor KI for various postulated crack geometries in thick-walled vessels. 

 

In this work, we will be interested, more particularly, in the investigation of the effect of the 

ratio of the depth of the crack on the thickness of the vessel (a/t) and the effect of the ratio of 

the geometry of the crack (a/c) on the SIF (Figure. 1). The analysis of the SIF is done under the 
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assumption that the propagation is done radially (according to the thickness of the enclosure), 

and uses, also the assumption of the infinite plate with a uniaxial stress field, then that in reality 

it is a triaxial field. 

 

 

Figure 2.1: Surface crack in a finite plate 

3.3 Eccentric angle and Parametric equations of an ellipse 

Let P be any point on the ellipse. Draw PN perpendicular to the major axis and produce it to 

meet the auxiliary circle at Q. Then angle ACQ is called the ‘eccentric angle’ of the point P. 

Let us denote the angle as θ. If P starts from A and moves along the ellipse in the anti-clock 

wise direction and comes once again at A, then θ will vary from 0 to 2π. Let the coordinates 

of P be (x, y). 

 

hen x = a cos θ 

[∵ from Δ CNQ, cos θ = x/a where CQ is the radius of the auxiliary circle] 

Since P lies on the ellipse        
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 

we have   
𝑎2𝑐𝑜𝑠2𝜃

𝑎2
+

𝑦2

𝑏2
= 1 

𝑦2=𝑏2 (1 – cos2 θ) 

     =𝑏2 sin2 θ 

Y=b sin θ 
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The coordinates of P  are (a cos θ, b sin θ). 

The point (a cos θ, b sin θ) is, for the sake of brevity, called the point θ and is denoted by P(θ). 

If we put x = a cos θ, y = b sin θ in the equation of the ellipse, the equation is satisfied for all 

values of θ. Hence the pair of equations x = a cos θ, y = b sin θ together yield the single 

equation 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 

The two equations x = a cos θ, y = b sin θ are known as the parametric equations of the ellipse 

and 'θ' is called the parameter. 

3.4 Verification methods of numerical approach 

There are several methods for developing SIF solutions for cracked structure problems [15, 16]. 

Basic solutions for simple geometries can be derived using classical elasticity methods that 

employ complex stress functions [15, 17]. There are also several experimental methods that 

have been used to obtain (or verify) the SIF for cracked structural elements, i.e., the compliance 

method and the photo-elastic method. While a general knowledge of each SIF solution method 

might be useful for undertaking specific problems, detailed knowledge is required before any 

method can be applied to solve a given problem. 

This method may be used to calculate stress intensity  factors for cracks of type A (Figure. 2). 

The same method is also  valid for the calculation of stress intensity factors due to thermal 

gradients and due to residual stresses [18]. It may be used to calculate  stress intensity factors at 

the deepest point on the crack  front and at a point near the free surface.  For a surface flaw, the 

stresses normal to the plane of the flaw at the flaw location are represented by a polynomial fit 

over the flaw depth by the following Relationship: 

𝜎 = 𝐴0 + 𝐴1(𝑥
𝑎⁄ ) + 𝐴2(𝑥

𝑎⁄ )2 + 𝐴3(𝑥
𝑎⁄ )3        (2.1) 

Where: 

𝐴0, 𝐴1, 𝐴2, 𝐴3 are constants; 

a, crack depth; 

x, distance through the wall measured from the flawed surface. 

Coefficients 𝐴0 through 𝐴3 shall provide an accurate representation of stress over the flaw plane 

for all (Figure. 2.3) 

Values of flaw depths, 0 ≤  𝑥/𝑎 ≤ 1, covered by the analysis. Stresses from all sources shall 

be considered. 

Stress intensity factors for surface flaws shall be calculated using the cubic polynomial stress 

relation given by Eq. (2.2): 

𝐾1 = [(𝐴0 + 𝐴𝑝)𝐺0 + 𝐴1𝐺1 + 𝐴2𝐺2 + 𝐴3𝐺3]√𝜋 𝑎 𝑄⁄     (2.2) 
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Where: 

𝐴0, 𝐴1, 𝐴2, 𝐴3 , coefficients from Eq. (2.1) that represent the stress distribution over the flaw 

depth, 0 ≤  𝑥/𝑎 ≤ 1. 

When calculating 𝐾𝐼 as a function of flaw depth, a new set of coefficients 𝐴0 through A3 shall 

be determined for each new value of flaw depth. 

𝐴𝑝, internal vessel pressure p, if the pressure acts on the crack surfaces (𝐴𝑝 = 0 for other flaws. 

𝐺0, 𝐺1, 𝐺2, 𝐺3, free surface correction factors from Tables 2.1, The values of the coefficients for 

the case of the free surface are given in appendix A. 

𝑄, flaw shape parameter using Eq. (2.3) 

𝑄 = 1 + 4.593(𝑎 2𝑐⁄ )1.65 − 𝑞𝑦       (2.3) 

Where: 

𝑙 = 2𝑐, major axis of the flaw; 

𝑎 𝑙⁄ , flaw aspect ratio 0 ≤ a/ø ≤ 0.5; 

𝑞𝑦, plastic zone correction factor and in our case its neglected 
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Figure 2.2: Cracks types [18] 
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Figure 2.3: Hoop and radial stress distribution in a pressure vessel 
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Table 2.1: Coefficients G0 through G3 for surface crack at deepest point [18] 

Coefficients a/t Flaw Aspect Ratio 

a/2c 

0.0 0.1 0.2 0.3 0.4 0.5 

Uniform 
G0 

0.00 1.1208 1.0969 1.0856 1.0727 1.0564 1.0366 
0.05 1.1461 1.1000 1.0879 1.0740 1.0575 1.0373 
0.10 1.1945 1.1152 1.0947 1.0779 1.0609 1.0396 
0.15 1.2670 1.1402 1.1058 1.0842 1.0664 1.0432 
0.20 1.3654 1.1744 1.1210 1.0928 1.0739 1.0482 
0.25 1.4929 1.2170 1.1399 1.1035 1.0832 1.0543 
0.30 1.6539 1.2670 1.1621 1.1160 1.0960 1.0614 
0.40 2.1068 1.3840 1.2135 1.1448 1.1190 1.0772 
0.50 2.8254 1.5128 1.2693 1.1757 1.1457 1.0931 
0.60 4.0420 1.6372 1.3216 1.2039 1.1699 1.1058 
0.70 6.3743 1.7373 1.3610 1.2237 1.1868 1.1112 
0.80 11.9910 1.7899 1.3761 1.2285 1.1902 1.1045 

Linear 
G1 

0.00 0.7622 0.6635 0.6826 0.7019 0.7214 0.7411 
0.05 0.7624 0.6651 0.6833 0.7022 0.7216 0.7413 
0.10 0.7732 0.6700 0.6855 0.7031 0.7221 0.7418 
0.15 0.7945 0.6780 0.6890 0.7046 0.7230 0.7426 
0.20 0.8267 0.6891 0.6939 0.7067 0.7243 0.7420 
0.25 0.8706 0.7029 0.7000 0.7094 0.7260 0.7451 
0.30 0.9276 0.7193 0.7073 0.7126 0.7282 0.7468 
0.40 1.0907 0.7584 0.7249 0.7209 0.7338 0.7511 
0.50 1.3501 0.8029 0.7454 0.7314 0.7417 0.7566 
0.60 1.7863 0.8488 0.7671 0.7441 0.7520 0.7631 
0.70 2.6125 0.8908 0.7882 0.7588 0.7653 0.7707 
0.80 4.5727 0.9288 0.8063 0.7753 0.7822 0.7792 

Quadratic 
G2 

0.00 0.6009 0.5078 0.5310 0.5556 0.5815 0.6084 
0.05 0.5969 0.5086 0.5313 0.5557 0.5815 0.6084 
0.10 0.5996 0.5109 0.5323 0.5560 0.5815 0.6085 
0.15 0.6088 0.5148 0.5340 0.5564 0.5815 0.6087 
0.20 0.6247 0.5202 0.5364 0.5571 0.5815 0.6089 
0.25 0.6475 0.5269 0.5394 0.5580 0.5817 0.6093 
0.30 0.6775 0.5350 0.5430 0.5592 0.5820 0.6099 
0.40 0.7651 0.5545 0.5520 0.5627 0.5835 0.6115 
0.50 0.9048 0.5776 0.5632 0.5680 0.5869 0.6144 
0.60 1.1382 0.6027 0.5762 0.5760 0.5931 0.6188 
0.70 1.5757 0.6281 0.5907 0.5874 0.6037 0.6255 
0.80 2.5997 0.6513 0.6063 0.6031 0.6200 0.6351 

Cubic 
G3 

0.00 0.5060 0.4246 0.4480 0.4735 0.5006 0.5290 
0.05 0.5012 0.4250 0.4482 0.4736 0.5006 0.5290 
0.10 0.5012 0.4264 0.4488 0.4736 0.5004 0.5290 
0.15 0.5059 0.4286 0.4498 0.4737 0.5001 0.5289 
0.20 0.5152 0.4317 0.4511 0.4738 0.4998 0.5289 
0.25 0.5292 0.4357 0.4528 0.4741 0.4994 0.5289 
0.30 0.5483 0.4404 0.4550 0.4746 0.4992 0.5291 
0.40 0.6045 0.4522 0.4605 0.4763 0.4993 0.5298 
0.50 0.6943 0.4665 0.4678 0.4795 0.5010 0.5316 
0.60 0.8435 0.4829 0.4769 0.4853 0.5054 0.5349 
0.70 1.1207 0.5007 0.4880 0.4945 0.5141 0.5407 
0.80 1.7614 0.5190 0.5013 0.5085 0.5286 0.5487 
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3.5 Results and discussions 

The SIF values calculated from the analytical method of the ASME standard and those obtained 

by the finite element method (ANSYS) are presented in tables 2.2-4. SIF results are given for 

different crack shapes (a/c = 0.2 to 1) and for different crack sizes (a/t = 0.25 to 0.8). 

 

Table 2.2: KI values (MPa√m) calculated by ASME and ANSYS at deepest point (a/t =0.25) 

 

a/c ASME ANSYS Deviation 

0.2 55.62 54.50 2.01 

0.4 47.56 46.62 1.97 

0.6 41.46 40.60 2.07 

0.8 36.62 36.52 0.26 

1 32.20 36.19 12.37 

 

Table 2.3: KI values (MPa√m) calculated by ASME and ANSYS at deepest point (a/t =0.4) 

 

a/c ASME ANSYS Deviation 

0.2 79.80 77.90 2.38 

0.4 63.85 62.74 1.73 

0.6 54.23 53.16 1.99 

0.8 47.69 48.47 1.65 

1 41.48 47.46 14.43 

 

Table 2.4: KI values (MPa√m) calculated by ASME and ANSYS at deepest point (a/t =0.8) 

 

a/c ASME ANSYS Deviation 

0.2 144.97 149.19 2.91 

0.4 101.58 102.48 0.88 

0.6 81.59 88.71 8.73 

0.8 71.08 82.86 16.57 

1 59.54 77.61 30.34 
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Figures 2.4-6 represent the evolution of SIF as a function of crack shape (a/c) for the three crack 

sizes a/t=0.25, 0.4 and 0.8 respectively. It is noted that the SIF values resulting from the two 

methods are almost identical except for the value of a/c = 1 (circular crack). The ASME standard 

stipulates that the procedure is not valid for the case of the circular crack (a/c=1) [19]. The 

results found show the accuracy of our elaborate numerical model. This gives us confidence to 

calculate the rest of the SIF values for the different parametric angles (Փ=0 to 180°). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: SIF values for deepest point (a/t = 0.25) 

 

 

Figure 2.5: SIF values for deepest point (a/t = 0.4) 
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Figure 2.6: SIF values for deepest point (a/t = 0.8) 

 

3.6 Conclusions 

A numerical model has been proposed for the calculation of SIF for longitudinal semi-elliptical 

cracks located in the wall of a pressure vessel. The model has been validated by the ASME 

standard. 

The results obtained show good agreement with those reported in the literature. They show that 

the SIF depends on the ratios a/c and a/t, as it depends on the parametric angle Փ. These results 

also show that SIF calculations based on the simplistic infinite plate assumption give lower 

values than reality, because they misrepresent the stress distribution with respect to the crack 

extent. 

As it has already been said previously that the ASME procedure is only valid for two parametric 

angles Փ=0 and Փ=90. In chapter 3 we will calculate the SIF for an angle varying between 0° 

and 180° and this for the different shapes of the crack (a/c) and for the different sizes of the 

crack (a/t). 
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Chapter III: Analysis of a longitudinal crack developing in the vessel pressure wall 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IIII: Analysis of a longitudinal crack 

developing in the vessel pressure wall 
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4.1 Introduction 

In the design of pressure vessel, the use of fracture mechanics theory and non-destructive 

testing are the most effective tools for design engineers. Fracture mechanics is generally used 

to predict the failure of components caused by the preexistence of small cracks. It also allows 

us to take our precautions to stop any future propagation of the crack or to determine the life 

of the structure in the event that propagation is unavoidable. 

In the case of an elastic material (brittle fracture), one of the most used cracking criteria is the 

stress intensity factor (SIF). However, and because it is difficult to accurately determine the SIF 

for cracks in complex structures by analytical solutions, the use of numerical methods such as 

finite elements become the only appropriate tool [20, 21]. 

In this work we will proceed to the calculation of the SIF in the vessel pressure wall, we will 

be interested, more particularly, in the investigation of the effect of the ratio of the depth of the 

crack on the thickness of the vessel (a/t) and the effect of the ratio of the geometry of the crack 

(a/c) on the SIF. The analysis of the SIF is done under the assumption that the propagation takes 

place radially (according to the thickness of the vessel) subject to a triaxial stress field. 

4.2 Numerical model description 

Finite element (FE) analysis is performed using ANSYS 2022R1 code. The developed 

Workbench 2022R1 model is shown in Figure. 1. 3D finite element model of pressure vessel 

with crack was prepared for SIF modelling. As the pressure vessel is symmetric only 1/12 of 

the component was modeled (Figure. 2) The prepared FE model with applied pressure and 

boundary conditions is shown in Figure. 3. Symmetry boundary conditions were applied to all 

four edge surfaces. A pressure of 8.25 MPa was applied to the inner vessel. 

The ANSYS code adopts two approaches for the evaluation of SIFs: 

• Contour integral method: the calculation of the SIF is performed during the solving phase 

and the results are stored for post-processing. 

• Displacement extrapolation method: the calculation of the SIF is performed during post-

processing. This method is limited to linear elasticity problems with homogeneous isotropic 

materials near the crack region. 

The contour integral method is suitable for a wide range of applications. In finite element 

analysis, this method is suitably accurate for the evaluation of mixed-mode SIF and it is also a 

robust tool for heterogeneous models with continuous, discontinuous or nonlinear material 

properties. This method gives more accurate results because the contour integral is evaluated at 

points away from the crack. In our study, we used the contour integral method. 
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Figure 3.1: Workbench 2022R1 model 

 

 

Figure 3.2: FE model of 1/12 of vessel pressure vessel with applied boundary conditions and 

load prepared with ANSYS. 
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Figure 3.3: Load applied and boundary conditions 

 

The main configurations used by ANSYS in the rupture module are (Figure. 4): 

a. Major Radius: Specifies the major radius, which defines the size of the crack shape along 

the Z axis (that is, the width of the crack “c”). 

b. Minor Radius: Specifies the minor radius, which defines the size of the crack shape along 

the X axis (that is, the depth of the crack “a”). 

c. Mesh Method: This property enables us to select the mesh method to be used to mesh the 

semi-elliptical crack. Options include Hex Dominant (default) and Tetrahedrons. 

d. Largest Contour Radius: Specifies the largest contour radius for the crack shape. 

e. Crack Front Divisions: Specifies the number of divisions for the crack front. 

f. Fracture Affected Zone: The fracture affected zone is the region that contains a crack. The 

Fracture Affected Zone control determines how the fracture affected zone height is defined: 

• Program Controlled: The software calculates the height, and Fracture Affected Zone 

Height is read-only. This is the default. 

• Manual: You enter the height in the Fracture Affected Zone Height field. 

g. Fracture Affected Zone Height: This value specifies two things: 1) the height of the 

Fracture Affected Zone, which is in the Y direction of the crack coordinate system; and 2) 

the distance in totality by which the Fracture Affected Zone is extended in the positive and 

negative Z direction of the crack coordinate system from the crack front extremities. 

h. Circumferential Divisions: Specifies the number of circumferential divisions for the crack 

shape. 
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i. Mesh Contours: Specifies the number of mesh contours for the crack shape. 

 

Figure 3.4: The different configuration parameters of the semi-elliptical crack [22] 

 

Table 1 summarizes the analyzed crack geometries. For each crack geometry of the fifteen 

analyzed cases, a configuration of the crack parameters is introduced (crack front division, 

circumferential division, mesh contours, etc). 

Table 3.1: The different shapes of cracks analyzed 

a/c 0.2 0.4 0.6 0.8 1  

a [mm] c [mm] a/t 

12.5 62.5 31.25 20.83 15.62 12.5 0.25 

20 100 50 33.33 25 20 0.4 

40 200 100 66.66 50 40 0.8 

 

 

Figure 3.5 shows the refinement of the mesh around the crack. 
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Figure 3.5: Refinement mesh around the crack 

 

4.3 Results and discussions 

Figures 3.6-8 show the evolution of SIF as a function of the parametric angle Փ for crack sizes 

(a/t) equal 0.25, 0.4 and 0.8 respectively. The first observation is that the value of the SIF 

increases with the size of the crack (a/t). It is also observed that the maximum stress-intensity 

factor occurs at the maximum depth point for small ratios of crack depth to crack length (a/c) 

and at the intersection of the crack with the front surface for large ratios. As one approaches the 

circular shape (a/c=1), the maximum of the SIF shifts towards the free surface (intersection of 

the crack with the wall). This result is consistent with several previous studies, including that 

of J. C. Newman [19]. From these figures, it can be seen that the crack propagates along the 

semi-elliptical trajectory.  
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Figure 3.6: KI values depending on the parametric angle Փ (a/t =0.25) 

 

 

 

Figure 3.7: KI values depending on the parametric angle Փ (a/t =0.4) 
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Figure 3.8: KI values depending on the parametric angle Փ (a/t =0.8) 

 

4.5 Conclusions 

A three-dimensional, finite-element stress analysis was used to calculate mode I stress-intensity 

factor variations along the crack front for a wide range of semielliptical surface cracks in vessel 

pressure subjected to inner pressure. The maximum stress-intensity factor occurs at the 

maximum depth point for small ratios of crack depth to crack length and at the intersection of 

the crack with the front surface for large ratios. 
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Longitudinal cracks that can develop in pressure vessels are a critical hazard. These cracks are 

generally born in the discontinuities of the structure such as the weld joint. Through this 

study, a three-dimensional numerical model, using ANSYS software, is proposed for the 

calculation of the stress intensity factor (SIF) along the longitudinal semi-elliptical crack tip 

located in the wall of a pressure vessel. 

The validation of the proposed methodology using software ANSYS was performed by 

analytical analysis according ASME requirement. Section XI, Article A-3000, of the ASME 

Boiler and Pressure Vessel Code provides a method for calculating stress intensity factors K I 

using membrane and bending stresses and it is valid for the calculation of SIFs due to thermal 

gradients and due to residual stresses. 

The results showed that the maximum stress-intensity factor occurs at the maximum depth 

point for small ratios of crack depth to crack length and at the intersection of the crack with 

the front surface for large ratios. 

The results show good agreement with those reported in the literature. They show that the SIF 

depends on the ratios a/c and a/t, as it depends on the parametric angle Փ. These results also 

show that SIF calculations based on the simplistic infinite plate assumption give lower values 

than reality, because they misrepresent the stress distribution with respect to the crack extent.
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Appendix A: Coefficients G0 through G3 for surface crack at free surface 

Coefficient a/t Flaw Aspect Ratio 

a/2c 

0.0 0.1 0.2 0.3 0.4 0.5 

Uniform 
G0 

0.00 0.0000 0.5450 0.7492 0.9024 1.0297 1.1406 
0.05 0.0000 0.5514 0.7549 0.9070 1.0330 1.1427 
0.10 0.0000 0.5610 0.7636 0.9144 1.0391 1.1473 
0.15 0.0000 0.5738 0.7756 0.9249 1.0479 1.1545 
0.20 0.0000 0.5900 0.7908 0.9385 1.0596 1.1641 
0.25 0.0000 0.6099 0.8095 0.9551 1.0740 1.1763 
0.30 0.0000 0.6338 0.8318 0.9750 1.0913 1.1909 
0.40 0.0000 0.6949 0.8881 1.0250 1.1347 1.2278 
0.50 0.0000 0.7772 0.9619 1.0896 1.1902 1.2746 
0.60 0.0000 0.8859 1.0560 1.1701 1.2585 1.3315 
0.70 0.0000 1.0283 1.1740 1.2686 1.3401 1.3984 
0.80 0.0000 1.2144 1.3208 1.3871 1.4361 1.4753 

Linear 
G1 

0.00 0.0000 0.0725 0.1038 0.1280 0.1484 0.1665 
0.05 0.0000 0.0744 0.1075 0.1331 0.1548 0.1740 
0.10 0.0000 0.0771 0.1119 0.1387 0.1615 0.1816 
0.15 0.0000 0.0807 0.1169 0.1449 0.1685 0.1893 
0.20 0.0000 0.0852 0.1227 0.1515 0.1757 0.1971 
0.25 0.0000 0.0907 0.1293 0.1587 0.1833 0.2049 
0.30 0.0000 0.0973 0.1367 0.1664 0.1912 0.2128 
0.40 0.0000 0.1141 0.1544 0.1839 0.2081 0.2289 
0.50 0.0000 0.1373 0.1765 0.2042 0.2265 0.2453 
0.60 0.0000 0.1689 0.2041 0.2280 0.2466 0.2620 
0.70 0.0000 0.2121 0.2388 0.2558 0.2687 0.2791 
0.80 0.0000 0.2714 0.2824 0.2887 0.2931 0.2965 

Quadratic 
G2 

0.00 0.0000 0.0254 0.0344 0.0423 0.0495 0.0563 
0.05 0.0000 0.0264 0.0367 0.0456 0.0538 0.0615 
0.10 0.0000 0.0276 0.0392 0.0491 0.0582 0.0666 
0.15 0.0000 0.0293 0.0419 0.0527 0.0625 0.0716 
0.20 0.0000 0.0313 0.0450 0.0565 0.0669 0.0764 
0.25 0.0000 0.0338 0.0484 0.0605 0.0713 0.0812 
0.30 0.0000 0.0368 0.0521 0.0646 0.0757 0.0858 
0.40 0.0000 0.0445 0.0607 0.0735 0.0846 0.0946 
0.50 0.0000 0.0552 0.0712 0.0834 0.0938 0.1030 
0.60 0.0000 0.0700 0.0842 0.0946 0.1033 0.1109 
0.70 0.0000 0.0907 0.1005 0.1075 0.1132 0.1183 
0.80 0.0000 0.1197 0.1212 0.1225 0.1238 0.1252 

Cubic 
G3 

0.00 0.0000 0.0125 0.0158 0.0192 0.0226 0.0261 
0.05 0.0000 0.0131 0.0172 0.0214 0.0256 0.0297 
0.10 0.0000 0.0138 0.0188 0.0237 0.0285 0.0332 
0.15 0.0000 0.0147 0.0206 0.0261 0.0314 0.0365 
0.20 0.0000 0.0159 0.0225 0.0285 0.0343 0.0398 
0.25 0.0000 0.0173 0.0245 0.0310 0.0371 0.0429 
0.30 0.0000 0.0190 0.0267 0.0336 0.0399 0.0459 
0.40 0.0000 0.0234 0.0318 0.0390 0.0454 0.0515 
0.50 0.0000 0.0295 0.0379 0.0448 0.0509 0.0565 
0.60 0.0000 0.0380 0.0455 0.0513 0.0564 0.0611 
0.70 0.0000 0.0501 0.0549 0.0587 0.0621 0.0652 
0.80 0.0000 0.0673 0.0670 0.0672 0.0679 0.0687 
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