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على يعتمد خطي غير تحسين نموذج استخدام هو البحثي المشروع هذا من الهدف
التي: الآلي الصراف لأجهزة النقدي للتجديد البرمجة

الآلي الصراف أجهزة جميع أن ضمان مع النقدي للتجديد الإجمالية التكلفة من تقلل .1
كافية. نقدية يات مستو لديها

على والطلب ، الآلي الصراف أجهزة استخدام أنماط مثل عوامل لإعتبار بعين تأخذ .2
الميزانية. وقيود التخزين سعة والنقد ، النقد

العمليات من للحد الحقيقي العالم في الآلي الصراف أجهزة شبكات في تنفيذها يمكن .3
النقد. إدارة وتحسين المكلفة

أجهزة لشبكات النقدي التجديد تكلفة لتحسين مفاهيمي إطار إنشاء على العمل هذا تركز
الإجمالية التكلفة تقليل هو الهدف فيها. الأموال نقص حاالت وتقليل الآلي الصراف
في النهج هذا يأخذ إرضائهم. و العملاء خدمة وتحسين والمخزون اللوجستية للخدمات

التالية: التقنيات بين الجمع الاعتبار
المحلي التقويم من والأحداث والإتجاهات الموسمية مراعاة مع الزمنية بالسلاسل التنبؤ -

آلي. صراف ماكينة لكل تجديده المراد النقد ومبلغ تواتر تحديد الجرد) ية (نظر



Résume

L'objectif de ce travail de recherche est d'utiliser un modèle d'optimisation non linéaire basé sur

la programmation pour le réapprovisionnement en espèces des guichets automatiques qui:

1. Minimise le coût total de réapprovisionnement en espèces tout en veillant à ce que tous Les

guichets automatiques ont des niveaux de trésorerie adéquats.

2. Prend en compte des facteurs tels que les habitudes d'utilisation des guichets automatiques,

la demande en espèces, les espèces capacité de stockage et contraintes budgétaires.

3. Peut être mis en œuvre dans des réseaux ATM du monde réel pour réduire les opérations

coûts et améliorer la gestion de trésorerie.

Cette étude se concentre sur l'établissement d'un cadre conceptuel pour optimiser le coût de réap-

provisionnement en espèces pour les réseaux de guichets automatiques et minimiser les cas de

manque d'argent aux guichets automatiques individuels. L'objectif est de minimiser le coût total

de la logistique, de l'inventaire et de l'amélioration de la satisfaction du service client. Cette ap-

proche considère la combinaison des techniques suivantes:

- Prévision des séries chronologiques tenant compte de la saisonnalité, des tendances et des événe-

ments du calendrier local-Théorie de l'inventaire

-détermination de la fréquence et de la quantité de liquidités à reconstituer pour chaque guichet

automatique



Abstract

The objective of this work is to use a NonLinear programming based optimization model for

ATM cash replenishment that:

1. Minimizes the total cost of cash replenishment while ensuring that all ATMs have adequate

cash levels.

2. Takes into account factors like ATM usage patterns, cash demand, cash storage capacity,

and budget constraints.

3. Can be implemented in real-world ATM networks to reduce operational costs and improve

cash management.

This study focuses on establishing a conceptual frame work for optimizing the cost of cash re-

plenishment for networks of ATMs and minimizing the cash-dry instances at individual ATM. The

objective is to minimize the total cost of logistics, inventory, and improving customer service sat-

isfaction.

This approach considers the combination of following techniques:

- Time series forecasting accounting for seasonality, trend and local calendar events - Inventory

theory

– determining frequency and quantity of cash to be replenished for each ATM .



Introduction

Cash plays a pivotal role in everyday life and can be considered the backbone of the economy,

at all times, government institutions must ensure a sufficient supply of banknotes and coins to the

public.

Maintaining a minimum amount of cash in Automated TellerMachines (ATM) is often a controlled

operating requirement for commercial banks, which are enforced by central banks to ensure that

customer experience is consistently fulfilled. The number of cardholders is drastically increasing

daily and with these rising numbers, cash withdrawal transactions have become predominantly

relevant, especially in those countries which are in the process of being paperless.

Usually, banks tend to estimate the expected value without understanding the essence of cash in-

flows or outflows in a given ATM. The refill varies fromATM to ATM, depending on their location

, peak times, Paydays, weekends, holidays, open hours and several other factors.

For example, an ATM located in an urban area will have a greater amount of transactional load

than an ATM located in any rural area. This phenomenon can result in a stock out situation. One

survey conducted in 2013 showed that 20% of people switch to other bank ATMs because of out

of cash circumstances. Hence, there is a need for an efficient cash management solution that helps

banks to anticipate the need for ATMs to replenish cash. The technology and the underlying al-

gorithms should also be versatile enough to allow the bank to predict future demand and conduct

what-if analysis to optimize the ATM supply network for cash distribution.

Another concern is that the topic of cash management is generally perceived and discussed only

as a market management problem, not from the point of view of cost optimization . The key goal

can therefore be set as an improvement of cash levels to reduce costs and ensure customer loyalty.

Implementing cash forecasting and optimization solutions helps the bank to take better advan-
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tage of the funds available for investment .

In turn, introducing integrated cash optimization models would centralize the logistics phase of

cash management for any ATM branch, and hence enable banks to reduce overall costs incurred

in physical cash operations.

Consumer sales for each ATMmust be estimated to assess the volume of cash that should be stored

in these ATMs. However, modern forms of ATM make cash deposited by consumers eligible for

dispensing until the money is validated, thereby, reducing the expense of cash re-supply and main-

tenance.

Although the problem of optimizing cash supply has many similarities with optimizing ATM cash,

there are important variations that need to be considered when forecasting cash demand and trans-

fers. For example, ATMs have a quota on banknotes, while branches are expected to keep as many

banknotes as possible. The amount of money that can be withdrawn from an ATM is capped, but

customers are entitled to withdraw money from branches below a predefined amount at any point

in time. ATMs run at night, on weekends, and holidays, while branches are closed during certain

days. These variations must be taken into account when developing both prediction and optimiza-

tion models.

The main task of an ATM cash forecast model is to statistically link the volume withdrawn to the

date, position, and additional variables. Although this is a classical continuous-value prediction

problem over time, the above-mentioned auxiliary factors add substantial stochasticity and the pre-

diction varies from one ATM to another. For banks, it is also difficult to build a statistical model

for their entire ATM network.

A procedure is developed to statistically forecast customer demand which estimates the demand

during replenishment order lead-times and replenishment cycles.

Nowadays ATM network and credit cards are the essential parts of modern lifestyle, consequently

one of the most actual problem in the bank’s ATM network is optimization of cash flow and orga-

nization of uninterrupted work. For the bank it is important to prevent the rush demand for cash

withdrawals by customers, that can be provoked by the delayed loading of ATMs, and reduce the

service expenses.

In this work we consider a problem in which a set of geographically dispersed ATMs with

2



known requirements must be served with a fleet of money collector teams stationed in the depot

in such a way as to minimize some distribution objective.

This Serving the ATMs network is a costly task: it takes employees time to supervise the network

and make decisions about cash management and it involves high operating costs (financial, trans-

port, etc.) The increase of transportation and servicing cost can be substantial for banks.

Route optimization for the collector teams is allow to reduce bank expenses and to control the en-

cashment process. Problem is combined with the problem of composition of service requests from

the ATM network. We assume that the money collector teams are identical with the equal capacity

and must start and finish their routes at the depot. At the present time more and more banks are

turning their attention to have greater efficiency in how they manage their cash in ATMs.

In current section we consider a problem of cash flow forecasting in the ATM network, especially

focused on forecasting of cash balance in ATMs and the moment of ATM upload.

Moreover, we find the moment of each ATM refusal and compile the requests for the bank’s pro-

cessing center. We analyzed cash flows of each ATM, using statistical data, and found that cash

withdrawal is heterogeneous process which depends on following factors:

• Paydays, weekends, holidays, etc.

• ATM location.

• ATM open hours.

3



Chapter 1

Backround definition and notation

1.1 Optimisation models:

Optimization models are mathematical representations of real-world problems that aim to find

the best possible solution among a set of feasible options. These models are used in various fields,

Here are some common types of optimization models:

1.1.1 Linear programming

Also called linear optimization, is a method to achieve the best outcome (such as maximum

profit or lowest cost) in a mathematical model whose requirements are represented by linear re-

lationships. Linear programming is a special case of mathematical programming (also known as

mathematical optimization).

More formally, linear programming is a technique for the optimization of a linear objective

function, subject to linear equality and linear inequality constraints. Its feasible region is a convex

polytope, which is a set defined as the intersection of finitely many half spaces, each of which is

defined by a linear inequality. Its objective function is a real-valued affine (linear) function de-

fined on this polyhedron. A linear programming algorithm finds a point in the polytope where this

function has the smallest (or largest) value if such a point exists.

Linear programs are problems that can be expressed in canonical form as:

Find a vector x

That minimize ctx

4



Subject to Ax ≤ b

And x ≥ 0

Here the components of x are the variables to be determined, c and b are given vectors (with ct

indicating that the coefficients of c are used as a single-row matrix for the purpose of forming

the matrix product), and A is a given matrix. The function whose value is to be maximized or

minimized (x → ctx in this case) is called the objective function. The inequalities Ax ≤ b and

x ≥ 0 are the constraints which specify a convex polytope over which the objective function is to

be optimized. In this context, two vectors are comparable when they have the same dimensions.

If every entry in the first is less-than or equal-to the corresponding entry in the second, then it can

be said that the first vector is less-than or equal-to the second vector.

Linear programming can be applied to various fields of study. It is widely used in mathematics

and, to a lesser extent, in business, economics, and some engineering problems. Industries that use

linear programming models include transportation, energy, telecommunications, and manufactur-

ing. It has proven useful in modeling diverse types of problems in planning, routing, scheduling,

assignment, and design.

1.1.2 Integer linear programming:

An integer programming problem is a mathematical optimization or feasibility program in which

some or all of the variables are restricted to be integers. In many settings the term refers to inte-

ger linear programming (ILP), in which the objective function and the constraints (other than the

integer constraints) are linear.

Integer programming is NP-complete[citation needed]. In particular, the special case of 0-1 integer

linear programming, in which unknowns are binary, and only the restrictions must be satisfied, is

one of Karp's 21 NP-complete problems.

If some decision variables are not discrete, the problem is known as a mixed-integer programming

problem.

Canonical and standard form for ILP:

In integer linear programming, the canonical form is distinct from the standard form. An integer

linear program in canonical form is expressed thus (note that it is the x vector which is to be

decided):

5



Maximize ctx

Subject to Ax+ s = b,

x ≥ 0

And x ∈ Zn

and an ILP in standard form expressed as:

Maximize ctx

Subject to Ax+ s = b,

s ≥ 0

x ≥ 0

And x ∈ Zn

Where c ∈ Rn are vectors andA ∈ Rm∗n is a matrix. As with linear programs, ILPs not in standard

form can be converted to standard form by eliminating inequalities, introducing slack variables (s)

and replacing variables that are not sign-constrained with the difference of two sign-constrained

variables.

1.1.3 NONLINEAR PROGRAMMING:

In mathematics, nonlinear programming (NLP) is the process of solving an optimization prob-

lemwhere some of the constraints or the objective function are nonlinear. An optimization problem

is one of calculation of the extrema (maxima, minima or stationary points) of an objective function

over a set of unknown real variables and conditional to the satisfaction of a system of equalities

and inequalities, collectively termed constraints. It is the sub-field of mathematical optimization

that deals with problems that are not linear.

Let n,m, and p be positive integers. Let X be a subset of Rn, let f , gi, and hj be real-valued

functions on X for each i in {1,…,m} and each j in {1,…, p}, with at least one of f , gi, and hj

being nonlinear.

A nonlinear minimization problem is an optimization problem of the form:

Minimize f(x)

Subject to gi(x) ≤ 0 ∀i ∈ {1,…,m}
Hj(x) = for each j ∈ 1,…, p
x ∈ X .

6



A nonlinear maximization problem is defined in a similar way.

1.2 Decomposition Methods:

We introduce two main categories of methods that generate boundaries by iterative construc-

tion of polyhedral approximations of the convex hull of some MILP's feasible solutions. The first

category, called conventional methods, considers the intersection of a polyhedron with a compact

description and a polyhedron generated implicitly by solving an auxiliary problem. This happens

because the size of the description of the second polyhedron is exponential, so it cannot be defined

explicitly and efficiently. Traditional methods are further divided into outer methods, such as the

cut plane methodTapez une équation ici., and inner methods, such as the Dantzig-Wolfe method

and the Lagrangian method. The second category, called built-in methods, can exponentially in-

crease the size of both polyhedra. This category includes algorithms that can simultaneously inte-

grate both internal and external methods.

1.3 Traditional Decomposition Methods :

1.3.1 Cutting-Plane Method:

Using the cutting-plane method, the bound ZD = minx∈P ′∩Q′′{cTx} can be obtained dynami-

cally by generating the relevant portions of an outer description of P ′ . Let [D, d] denote the set of

facet defining inequalities of P ′:

P
′
= {x ∈ Rn|Dx ≥ d}.

Then the cutting-plane formulation for the problem of calculating zD can be written as

ZCP = min{cTx|Dx ≥ d} x ∈ Q
′′

This is a linear program, but since the set [D, d] of valid inequalities is potentially of exponential

size, we dynamically generate them by solving a separation problem. An outline of the method is

presented in Figure 2.3.1;2.

7



Figure 1.1: cutting plane method

In Step 1, we need to initialize the set of valid inequalities to obtain the first approximation.

Typically, if Q is compact, this is done by using the initial set of inequalities [A, b]. If Q is not

compact, then we start with [D
′
, d

′
] = [A

′′
, b

′′
] and define the initial outer approximation P

′
O =

Q
′′ . In Step 2, the master problem is a linear program whose feasible region is the current outer

approximation P t
O.

Step 3. Solving the master problem in iteration t, we generate the relaxed (primal) solution

xt
CP and a valid lower bound. In the figure, the initial set of inequalities is taken to be those of

Q00, since it is assumed that the facet-defining inequalities for P ′ , which dominate those of Q′ ,

can be generated dynamically. In practice, however, this initial set may be chosen to include those

of Q′ or some other polyhedron, on an empirical basis.

1.3.2 Dantzig-wolfe Method:

The Dantzig-Wolfe method is an algorithm used for solving large-scale linear programming

problems by exploiting the problem's block structure. It was proposed independently by George

Dantzig and Philip Wolfe in the 1960s. The primary idea behind this method is to decompose

a large linear programming problem into smaller subproblems and then iteratively solve them to

obtain the optimal solution for the original problem.

In the Dantzig-Wolfe method, the bound zD can be obtained by dynamically generating the

relevant portions of an inner description of P ′ and intersecting it with Q′′ . Consider Minkowski’s

8



Cutting - Plane Method
Input: An instance OPT (P , c)
Output: A lower bound zCP on the optimal solution value for the instance, and x̂CP ∈ Rn

such that zCP = cT x̂CP

1. Initialize: Construct an initial outer approximation

P0
O = {x ∈ Rn|D0x ≥ d0} ⊇ P (1.1)

where D0 = A
′′ and d0 = b

′′ and set t← 0.

2. Master Problem: Solve the linear program

ztCP = min
x∈Rn

{
cTx|Dtx ≥ dt

}
(1.2)

to obtain the optimal value ztCP = minx∈Pt
O

{
cTx

}
≤ zIP and optimal primal solution

xt
CP

3. Subproblem: Call the subroutine SEP (P , xt
CP ) to generate a set [D̃, d̃] of potentially

improving valid inequalities for P , violated by xt
CP .

4. Update: If violated inequalities were found in Step 3 , set [Dt+1, dt+1] ←

Dt dt

D̃ d̃


to from a new outer approximation

P t+1
O = {x ∈ Rn|Dt+1x ≤ dt+1} ⊇ P (1.3)

and set t← t+ 1. Go to step 2

5. If no violated inequalities were found, output zCP = ztCP ≤ zIP and x̂CP = xt
CP

Figure 1.2: Outline of the cutting-plane method

9



Representation Theorem, which states that every bounded polyhedron is finitely generated by its

extreme points and extreme rays. Since we assume the feasible region for the problem of interest

is bounded.

Figure 1.3: Dantzing-wolf method

1.3.3 Lagrangian Method:

The Lagrangian method is a general approach for computing zD that is closely related to the

Dantzig-Wolfe method but is focused primarily on producing dual solution information. The

Lagrangian method can be viewed as a method for producing a particular face of P’, as in the

Dantzig-Wolfe method, but no explicit approximation of P’ is maintained. Although there are im-

plementations of the Lagrangian method that do produce approximate primal solution information

similar to the solution information that the Dantzig-Wolfe method produces our viewpoint is that

the main difference between the Dantzig-Wolfe method and the Lagrangian method is the type of

solution information they produce. This distinction is important when we discuss integrated meth-

ods. When exact primal solution information is not required, faster algorithms for determining

the dual solution are possible. By employing a Lagrangian framework instead of a Dantzig-Wolfe

framework, we can take advantage of this fact.

ZLD = max{α + b
′′Tu...

′′ |(cT − uTA
′′′
)s− α ≥ 0 ∀s ∈ ξ} = zDW

10



Danzig -Wolfe Method
Input: An instance OPT (P , c)
Output: A lower bound zDW on the optimal solution value for the instance,a primal solution
λ̂ ∈ Rξ, and a dual solution (ûDW , α̂DW ) ∈ Rmn+1.

1. Initialize: Construct an initial outer approximation

P0
I =

{∑
s∈ξ0

sλs

∣∣∣∣∑
s∈ξ0

λs = 1, λs ≥ 0 ∀s ∈ ξ0, λs = 0,∀s ∈ ξ \ ξ0
}
⊆ P ′ (1.4)

from an initial set ξ0 of extreme points of P ′ and set t← 0.

2. Master Problem: Solve the Danzig -Wolfe reformulation

z̄tDW = min
λ∈Rξ

+

{
cT
(∑

s∈ξ

sλs

)∣∣∣∣A′′
(∑

s∈ξ

sλs

)
≥ b

′′
,
∑
s∈ξ

λs = 1, λs = 0, ∀s ∈ ξ \ ξt
}
(1.5)

to obtain the optimal value z̄tDW = minPt
I∩Q

′′ cTx ≥ zDW , an optimal primal solution
λt
DW ∈ Rξ

+ and optimal dual solution (ut
DW , αt

DW ) ∈ Rm
′′
+1

3. Subproblem: Call the subroutine SPT
(
P ′

, cT −(ut
DW )TA

′′
, αt

DW

)
, generating a set

ξ̄ of improving membres of ξ with negative reduced cost, where the reduced cost of
s ∈ ξ is

rc(s) =

(
cT − (ut

DW )TA
′′
)
s− αt

DW (1.6)

If s̄ ∈ ξ̄ is a member of ξ with smallest reduced cost, then ztDW = rc(s̄) + αt
DW +

(ut
DW )T b

′′ ≤ zDW provides a valid lower bound.

4. Update: If ξ̄ ̸= ∅ , set ξt+1 ← ξt ∪ ξ̄ to from the new inner approximation

P t+1
I =

{ ∑
s∈ξt+1

sλs

∣∣∣∣ ∑
s∈ξt+1

λs = 1, λs ≥ 0 ∀s ∈ ξt+1, λs = 0,∀s ∈ ξ \ ξt+1

}
⊆ P ′ (1.7)

and set t← t+ 1. Go to step 2

5. If ξ̄ = ∅ , output the bound zDW = z̄tDW = ztDW , λ̂DW = λt
DW and (ûDW , α̂DW ) =

(ut
DW , αt

DW )

Figure 1.4: Outline of the Dantzig-Wolfe method11



Lagrangian method
Input: An instance OPT (P , c)
Output: A lower bound zLD on the optimal solution value for the instance, and a dual
solution ûLD ∈ Rm

′′

1. Initialize: Let s0LD ∈ ξ define some initial extreme point of P ′ , u0
LD some initial

setting for the dual multipliers and set t← 0.

2. Master Problem: Using the solution information gained from solving the pricing
subproblem, and the previous dual setting ut

LD. revise the dual multipliers ut+1
LD .

3. Subproblem: Call the subroutine SPT
(
P ′

, cT − (ut
LD)

TA
′′
)

, to solve

ztLD = min
s∈ξ

{(
cT − (ut

LD)
TA

′′
)
s+ b

′′Tut
DW

}
(1.8)

Let st+1
LD be the optimal solution to this subproblem, if one is found.

4. If a prespecified stopping criterion is met , then output zLD = ztLD and ûLD = ut
LD

otherwise, go to step 2.

Figure 1.5: Outline of the Lagrangian method
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1.4 Integrated Decomposition Methods:

In precedent section, we demonstrated that traditional decomposition approaches can be viewed

as utilizing dynamically generated polyhedral information to improve the LP bound by building

either an inner or an outer approximation of an implicitly defined polyhedron that approximates P .

The choice between inner and outer methods is largely an empirical one, but recent computational

research has favored outer methods. In what follows, we discuss two methods for integrating inner

and outer methods. over those achieved by either approach alone. While traditional decomposition

approaches build either an inner or an outer approximation, integrated decomposition methods

build both an inner and an outer approximation. These methods follow the same basic logic as

traditional decomposition methods, except that the master problem is required to generate both

primal and dual solution information, and the subproblem can be either a separation problem or

an optimization problem. The first two techniques we describe integrate the cutting-plane method

with either the Dantzig-Wolfe method or the Lagrangian method.

1.4.1 Price-and-Cut:

The integration of the cutting-plane method with the Dantzig-Wolfe method results in a proce-

dure that alternates between a subproblem that attempts to generate improving columns (the pricing

subproblem) and a subproblem that attempts to generate improving valid inequalities (the cutting

subproblem). Hence, we call the resulting method price-and-cut. When employed in a branch

and bound framework, the overall technique is called branch-and-priceand-cut. This method has

already been studied previously by a number of authors and more recently by Aragao and Uchoa .

As in the Dantzig-Wolfe method, the bound produced by price-and-cut can be thought of as result-

ing from the intersection of two approximating polyhedra. However, the Dantzig-Wolfe method

required one of these, Q′′ , to have a short description. With integrated methods, both polyhedra

can have descriptions of exponential size. Hence, price-and-cut allows partial descriptions of both

an inner polyhedron PI and an outer polyhedron PO to be generated dynamically. To optimize

over the intersection of PI and PO, except that the [A′′
, b

′′
] is replaced by a matrix that changes

dynamically. The outline of this method is shown in Figures 2.4.1.

13



Price-and-cut method
Input: An instance OPT (P , c)
Output: A lower bound zPC on the optimal solution value for the instance,a primal solution
x̂PC ∈ Rn, an optimal decomposition λ̂PC ∈ Rξ, and a dual solution (ûPC , α̂PC) ∈ Rmt+1,
and the inequalities [DPC , dPC ] ∈ Rmt×(n+1).

1. Initialize: Construct an initial inner approximation

P0
I =

{∑
s∈ξ0

sλs

∣∣∣∣∑
s∈ξ0

λs = 1, λs ≥ 0 ∀s ∈ ξ0, λs = 0∀s ∈ ξ \ ξ0
}
⊆ P ′ (1.9)

from an initial set ξ0 of extreme points of P ′ and an initial outer approximation

P0
O = {x ∈ Rn|D0x ≥ d0} ⊇ P (1.10)

where D0 = A
′′ and d0 = b

′′ and set t← 0, m0 ← m
′′ .

2. Master Problem: Solve the Danzig -Wolfe reformulation

z̄tPC = min
λ∈Rξ

+

{
cT
(∑

s∈ξ

sλs

)∣∣∣∣Dt

(∑
s∈ξ

sλs

)
≥ dt,

∑
s∈ξ

λs = 1, λs = 0, ∀s ∈ ξ \ ξt
}
(1.11)

of the LP over the polyhedron P t
I ∩ P t

O to obtain the optimal value z̄tPC , an optimal
primal solution λt

PC ∈ Rξ, an optimal fractional solution xt
PC =

∑
s∈ξ s(λ

t
PC)s, and

optimal dual solution (ut
PC , α

t
PC) ∈ Rmt+1.

Figure 1.6: Outline of the price-and-cut method
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3. Do either (a) or (b).

a Pricing Subproblem and Update: Call the subroutine SPT
(
P ′

, cT −(ut
PC)

TDt, αt
PC

)
generating a set ξ̃ of improving membres of ξ with negative reduced cost (defined in
Figure 2.4), If ξ̂ ̸= ∅ , set ξt+1 ← ξt ∪ ξ̂ to from a new inner approximation P t+1

I . If
s̃ ∈ ξ is a member of ξ with smallest reduced cost, then ztPC = rc(s̃)+αt

PC +(dt)Tut
PC

provides a valid lower bound. Set [Dt+1, dt+1] ← [Dt, dt], P t+1
O ← P t

O, mt+1 ← mt,
t← t+ 1, and go to step 2.

b Cutting Subproblem and Update: Call the subroutine SPT
(
P ′

, xt
PC

)
to generate

a set of improving valid inequalities [D̃, d̃] ∈ Rm̄×n+1 for P , violated by x̂PC . If

violated inequalities were found, set [Dt+1, dt+1] ←

Dt dt

D̃ d̃

 to from a new inner

approximation P t+1
O . Set mt+1 ← mt + m̃, ξt+1 ← ξt,P t+1

I ← P t
I , t← t+ 1, and go to

step 2

4. If ξ̄ = ∅ and no valid inequalities werz found, output the bound zPC = z̄tPC = ztPC =

cTxt
PC , x̂PC = xt

PC ,λ̄PC = λt
PC , (ûPC , α̂PC) = (ut

PC , α
t
PC), and [DPC , dPC ] = [Dt, dt].

Figure 1.7: Outline of the Dantzig-Wolfe method

Figure 1.8: Price and cut method

15



1.4.2 Relax-and-Cut:

Just as with the Dantzig-Wolfe method, the Lagrangian method of Figure 2.8 can be integrated

with the cutting-plane method to yield a procedure several authors have recently termed relaxand-

cut [26, 62, 56]. This is done in much the same fashion as in price-and-cut, with a choice in

each iteration between solving a pricing subproblem and a cutting subproblem. In each iteration

that the cutting subproblem is solved, the generated valid inequalities are added to the description

of the outer polyhedron, which is explicitly maintained as the algorithm proceeds. As with the

traditional Lagrangian method, no explicit inner polyhedron is maintained, but the algorithm can

again be seen as one that computes a face of the implicitly defined inner polyhedron that contains

the optimal face of solutions to a linear program solved over the intersection of the two polyhedra.

When employed within a branch-and-bound framework, we call the overall method branch-and-

relax-and-cut.

Figure 1.9: Relax and cut method

1.4.3 Decompose-and-Cut:

the use of decomposition in price-and-cut separation and decompose-and-cut, an algorithm re-

lated to integrated decomposition methods. It reviews structured separation and decomposeand-

cut, a separation algorithm that derives decomposition cuts, a class of cutting planes.the use of

decomposition in price-and-cut separation and decompose-and-cut, an algorithm related to inte-

grated decomposition methods. It reviews structured separation and decomposeand-cut, a separa-

tion algorithm that derives decomposition cuts, a class of cutting planes.
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Relax-and-cut method
Input: An instance OPT (P , c)
Output: A lower bound zRC on the optimal solution value for the instance and a dual
solution ûRC ∈ Rmt .

1. Initialize:Let s0RC define some initial extreme poit of P ′ and construct an initial
outer approximation

P0
O = {x ∈ Rn|D0x ≥ d0} ⊇ P (1.12)

where D0 = A
′′ and d0 = b

′′ .Let u0
RC ∈ Rm

′′
be some initial set of dual multipliers

associated with the constraints [D0, d0]. Set t← 0 and mt = m
′′ .

2. Master Problem: Using the solution information gained from solving the pricing
subproblem, and the previous dual solution ut

RC , update the dual solution (if the
pricing problem was just solved) or initialize the new dual multipliers (if the cutting
subproblem was just solved) to obtain ut+1

RC ∈ Rmt .

3. Do either (a) or (b).

(a) Pricing Subproblem: Call the subroutine SPT
(
P ′

, c− (ut
RC)

TDt
)

to obtain

ztRC = min
s∈ξ

{(
cT − (ut

RC)D
t + dt(ut

RC)
)}

(1.13)

Let st+1
RC ∈ ξ be the optimal solution to this subproblem. Set [Dt+1, dt+1] ←

[Dt, dt], P t+1
O ← P t

O, mt+1 ← mt, t← t+ 1, and go to step 2.

(b) Cutting Subproblem: Call the subroutine SPT
(
P ′

, stRC

)
to generate a set

of improving valid inequalities [D̃, d̃] ∈ Rm̄×n+1 for P , violated by stRC . If vio-

lated inequalities were found, set [Dt+1, dt+1] ←

Dt dt

D̃ d̃

 to from a new outer

approximation P t+1
O . Set mt+1 ← mt + m̃, st+1

RC ← stRC , t← t+ 1, and go to step
2

4. If a pre-specified stopping criterion is met, then output zRC = ztRC and ûRC = ut
RC .

5. otherwise go to step 2

Figure 1.10: Outline of the relax-and-cut method17



A template class with a known structure is used for identity verification procedures. Each

class is individually injured, and a template class of valid inequalities in P is a set of related

inequalities that describe the polyhedron containing P. Two known classes of valid inequalities

in TSP are subtour elimination constraints and Comb inequality. Class C separation problems

of valid inequalities for P are defined as facets. A valid inequality depends on the form of the

inequality, and the worst-case execution time is independent of the isolation problem.

Inequality separation problems for certain classes can be easier, as they are solved as general

facet identification problems for P . The convex hull facet identification problem of TSP ′
s fea-

sible solutions is generally an NP-complete problem, with the intersection point being the poly-

hedron associated with it. The class of inequalities that can meaningfully solve the separation

problem is not equal to P , and applying decoupled routines to increasingly difficult classes of

inequalities often assumes a more difficult class of routines.

Min{x+ + x−|
∑
s∈ξ

Sλs + x+ − x− =∧ xCP ,
∑
s∈ξ

λs = 1} λ ∈ Rξ
+, (x

+, x−) ∈ Rn
+

Figure 1.11: Decompose and cut method

1.4.4 Heuristic and metaheuristique:

Heuristic Methods:

Heuristic methods involve using intuitive approaches and rules of thumb to find approximate so-

lutions to problems.

To apply a heuristic, you need to design a set of rules or algorithms that guide the search process
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towards potentially good solutions.

Heuristics may not guarantee an optimal solution but can be useful for finding reasonably good

solutions quickly.

Implementation of heuristic methods involves defining the heuristics, applying them to the prob-

lem, and refining the solution based on feedback.

Metaheuristic Methods:

Metaheuristic methods guide problem-solving by combining search techniques like Genetic Algo-

rithms, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization, and Tabu

Search. They involve designing an algorithmic framework, defining operators, and setting param-

eters for exploration and exploitation.The effectiveness of these methods depends on the specific

problem, the formulation of the objective function, the quality of the heuristics or operators used,

and the tuning of algorithm parameters. Heuristics and metaheuristics are widely used in combina-

torial optimization, global optimization, and other complex problemswhere finding exact solutions

is challenging or computationally infeasible.

To apply heuristic or metaheuristic methods to a specific problem, you would typically write code

in a programming language of your choice, define the problem's objective function and constraints,

and implement the heuristic or metaheuristic algorithm. After running the algorithm for a certain

number of iterations or until a termination criterion is met, you would analyze the results to see if

the solutions obtained are satisfactory. If not, you might need to adjust the algorithm parameters

or experiment with different heuristics or metaheuristics to improve the result.
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Chapter 2

Definition of ATM cash
replenishment Problem

2.1 Problem definition:

The increased cost of cash, the increased seriousness of security incidents, and the increased

power of the customers drive the need for efficient, secure, and customer-oriented cash logistics.

The affected institutions are required to anticipate the changing payment industry. Not all countries

and cash supply chains across the globe experience the same gravity of this payment shift (yet),

but in countries where the shift is paramount, a serious decline in cash usage is observed over

the past decade. This shift, amplified by the financial crises that struck the world in 2008, has

been the underlying Before 2008, commercial banks were not fully aware of the cost impact of

cash and were not sufficiently interested in managing it efficiently. More attention was devoted to,

for instance, developing and commercializing financial services (e.g., mortgages and loans). The

lack of priority of the incurred cost by cash logistics is remarkable since the total cost of cash is

primarily carried by these institutions. Before 2008, managing physical activities regarding cash

was not considered to be a core business, but rather a burden that needed to be taken care of. The

aforementioned shift in cash payments and the financial crises forced commercial banks to rethink

their business processes. More and more institutions realize that cash has indeed had a pivotal

impact on their statement of earnings and feel the need to improve the efficiency of cash logistics.

And who says bank, treasury, also says Automate Teller Machines the most important ma-
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chine that makes life easier for people today easier on the banking service deposit, transfer and

withdraw money. Cash management for ATMs is one of the important problems a bank faces. The

costs of operating and maintaining ATMs are very high and include the cost of the ATMmachines,

renting facilities, networking, administration and the opportunity cost for depositing money in the

machine. An ATM transaction is an expensive financial transaction and the banks can make little

profit from it, but they must still support this service for customers. In this case, since the adminis-

trative cost and the opportunity cost for storing money in the machine are the crucial management

costs that banks can plan and manage, we focus on the development of an efficient ATM cash in-

ventory policy that satisfies customer demand. Inventory costs occur when the bank stores money

in the ATMs and the cash centers, which are places for storage of cash moving to or from the cen-

tral bank through commercial banks and cash centers to the bank branches and self-service devices

(ATMs) to satisfy customer cash demand. The amount of money to place in ATMs and cash centers

depends on future unknown demands. If the amount of money in ATMs and cash centers is higher

than the customer demand, then an opportunity cost of holding cash will occur. The cost of money

or the opportunity cost will be associated with interest rates and may also include insurance costs

for the money held in the ATM. But if the amount of money is lower than the customer demand,

the bank incurs a shortage cost.

when the ATM runs out of cash and is unable to meet customer demand. These costs can in-

clude both direct and indirect expenses. Here are a few examples: Transaction Reversals: When

an ATM runs out of cash, customers may attempt to withdraw money, but the transaction fails. In

such cases, the bank may need to reverse those failed transactions, which can result in administra-

tive costs.

Customer Dissatisfaction: Cash shortages can lead to customer dissatisfaction and frustration.

If customers are unable to withdraw money when needed, it may damage the reputation of the

bank and result in customer attrition.

Customer Service and Support: When a customer encounters an out-of-cash ATM, they may

seek assistance from the bank's customer service representatives. Handling customer complaints
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and inquiries related to ATM cash shortages requires additional resources and may incur costs.

Operational Efficiency: Cash management and replenishment processes become more com-

plex when an ATM experiences frequent shortages. Additional efforts and costs are required to

monitor ATM cash levels, schedule cash deliveries, and optimize the cash replenishment process

to avoid shortages.

Lost Transaction Revenue: When an ATM is unable to dispense cash due to a shortage, the bank

may lose potential transaction revenue. This can be especially significant during peak periods or

in high-traffic locations.

Thus, the development of an advanced algorithm for ATM services to reduce the overall costs of

running the ATMs is very important for banks.

The banks must pay an interchange fee when its customers use another bank’s ATM. The bank

may also have to pay a refill cost associated with replenishing the ATM. If the ATM is inside a

bank branch, then there is no cost of moving cash to and from the ATM. However, if the ATM is

not in a bank branch, then a refilling cost or ordering cost is incurred when the money in the ATM

is refilled. This cost is independent of the amount of money refilled.

The goal of this research is to determine how much money to store in ATMs and cash centers and

the frequency of cash replenishment in each period based on banks so that all demands are satisfied

with minimum total costs for running the ATMs. Customer demand at cash ATM is assumed to be

known and deterministic and shortages are not allowed.

Note that, since there is no cost for restocking cash at the ATMs in local branches they are consid-

ered part of cash management in branches and are not considered for this problem.

Through cash management optimization banks can avoid falling into the trap of maintaining too

much cash and begin to profit by mobilizing idle cash. Effective cash management and control

starts with accurate prediction of ATMs refusal, allowing banks to forecast cash demand for the

network, and find an optimal routes, which manage to reduce servicing costs. The increase of

transportation and servicing cost can be substantial for banks. Route optimization for the collec-

tor teams is allow to reduce bank expenses and to control the encashment process (Simutis et al.,

2007).

In this work we consider a problem in which a set of geographically dispersed ATMs with known
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requirements must be served with a fleet of money collector teams stationed in the depot in such

a way as to minimize some distribution objective.

This problem is combined with the problem of composition of service requests from the ATM

network. We assume that the money collector teams are identical with the equal capacity and must

start and finish their routes at the depot.

Cash demand in ATMs require accurate prediction which is no different than in other vending

machines. The only difference is the product which is cash needs to be replenished for a priory

set period of time. If the forecast is wrong, it induces a considerable amount of costs. In the case

of high forecast and high unused cash stored in the ATM incur costs to the bank. The bank pays

different re-filling costs depending on its policy with the money transportation company. Banks

normally pay a significant amount of fixed fees for the re-filling, additional extra cost for the

transportation with security arrangement.

Some banks might store 40%more cash in ATMs than the actual demand and banks might have

thousands of nationwide ATMs. Therefore, a small optimization in business operations would

contribute to high earnings.

Business use-case ATMs should not be filled with large amounts of cash which may bring low

transport/logistics cost but high freezing & high insurance costs. On the other hand, if banks do not

have the proper mechanism to track the usage pattern, then frequent re-filling ATMs will reduce

freezing and insurance cost but increase logistics cost.

It is quite obvious that daily cash withdrawal amounts are time series. Therefore, in this typical

cash demand forecast models we will present time series and regression machine learning models

to troubleshoot the above use case. We will work on the demand for a single ATM (a group of

ATMs can also be worked that is treated as a single ATM) to develop a model for the given data

set.

We have to remember that, cash withdrawals from an ATM are not only time dependent. There

could be seasonality, e.g. 1) people will have a tendency to withdraw money on Friday for the

weekend or 2) end of the month when people get their salaries or 3) between 7–10th day of each

month some people get their pension. Therefore, developing cash demand forecasting model for

ATMnetwork is a challenging task. Also, the chronological cash demand for every ATM fluctuates

with time and often superimposed with non-stationary behavior of users.
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2.2 Cash Replenishment Optimization:

Banks need to find out a way to optimize howmuch cash and how frequent to load cash into each

ATM machine. Loading cash to an ATM has a cost independent from the amount loaded. We can

reduce this cost by trying to reduce the number of replenishments. However, that means loading

larger amounts each time an ATM is loaded, which generates an interest cost for each day that cash

stays in the ATM. Therefore, an optimized solution tries to reduce the number of replenishment to

decrease the loading cost and reduce the amount loaded into an ATM to reduce the interest cost.

These two objectives are contradictory and therefore the optimum solution should do these deci-

sions to minimize the overall cost. The inputs of the cash replenishment optimization problem

(ROP) are as follows:

predicted withdrawal amounts for N consecutive days for an ATM,

cash transportation/loading cost, and,

the daily interest rate,

location (optional).

2.3 Examples of models used to solve this problem:

In this section we have some examples from other thesis about the resolution of this problem

2.3.1 A stochastic programming approach to cash management in

banking:

The methods used in this paper are stochastic programming techniques to develop models

for cash management in ATMs and compensation of credit card transactions. The models take

into account the uncertainty of future customer demand and provide optimal solutions for short-

term and mid-term problems with fixed and staircase costs. The short-term model with fixed costs

results in an integer problem which is solved by a fast algorithm. The short-term model with fixed

and staircase costs is solved through its MILP equivalent deterministic formulation. The mid-term

model with fixed and staircase costs gives rise to a multi-stage stochastic problem, which is also

solved by its MILP deterministic equivalent.
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In the two-stage stochastic programming problem a set of first-stage decisions x ∈ Rn1 must be

taken before the values of some stochastic parameters, dependent of random variable n, are known.

The cost of first-stage decisions is represented by c(x). Once n is known, we must adjust another

set of second-stage variables y ∈ Rn2 to minimize the costs we incurred by our choice of x and

the particular value of n; the function of second-stage costs is Q(x, ξ). We look

for the decisions x that, in average, according to the distribution of n, provide the minimum

costs. The general model (with fixed recourse) is:

Min c(x) + Φ(x) (2.1)

Subject to x ∈ X ⊂ Rn1

Where Ω(x, ξ) = min q(y, ξ) (2.2)

Φ(x) = Eϵ|Ω(x, ξ) and subject to Wy = h(ξ)− T (ξ)x,

y ∈ Y ⊂ Rn1

c(x) and x ∈ X in (1.1) are usually a linear function cx and a convex polyhedron defined by

X = {x : Ax = b, x 0}, respectively. Integrality constraints x ∈ Z, either for a subset or for

all the first-stage variables, may also appear in (1.1). Φ(x), known as the recourse function, is

the future average cost of our first-stage decisions x, for all scenario (i.e., for all realization of ξ).

q(y, ξ) and y ∈ Y in (1.2) are usually a linear function q(ξ)y and nonegativity constraints y ≥ 0,

respectively.

Integrality constraints y ∈ Z can also appear in y ∈ Y , either for a subset or for all the

second-stage variables; indeed we will need them in the cash management problem for ATMs.

The stochastic parameters of this general formulation are q(ξ), h(ξ) and T (ξ). In the models of

next sections only h(ξ) is stochastic, and is defined as h(ξ) = ξ, ξ being the customers demand of

money, either from the ATM or through the credit card.

25



For some particular problems we can obtain a closed form solution for Q(x, ξ) = q(y∗; ξ), y∗

being the optimum second-stage decisions. In these cases we may be able to ‘‘compute’’ Φ(x) =

Ω[(x, ξ)], either evaluating the expectation (e.g., for discrete distributions or some low dimensional

random variable) or approximating it (e.g., for multi-dimensional continuous variables) . This

allows the solution of (1.1) only in terms of the first-stage decisions.

In general, however, no closed form exists forQ(x, ξ) and we are forced to solve the extensive

form or deterministic equivalent of the stochastic problem. For this purpose we consider n is a

discrete random variable of s values ξ1, ..., ξs with probabilities p1, ..., ps. Each particular value

ni, i = 1, ..., s is usually known as a scenario. Replicating for each scenario the second-stage

variables (i.e, yi, i = 1, ..., s) and constraints, and combining problems (1.1) and (1.2), we obtain

the following problem:

min c(x)
S∑

I=1

(piq)(yi; ξ)

subject to x ∈ X

Wyi = h(ξi)–T (ξi)x i = 1,…., s yi ∈ Y i = 1,…., s (2.3)

roblem (1.3) can be solved with standard linear, integer or nonlinear programming algorithms if it

is of moderate size; otherwise we need to apply specialized procedures that exploit the particular

problem structure.

2.3.2 An optimization-based heuristic for a capacitated lot-sizing

model in an automated teller machines network:

This thesis proposes a mathematical model to solve the cash inventory problem in ATM networks

by determining the amount of money to place in ATMs and cash centers for each period over a

given time horizon.

The problem is formulated as a Mixed Integer Programming (MIP) for the resulting optimization

of this problem.

Parameters and decision variables regarding the model are listed as follows:

T = Number of time periods in the planning horizon
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t = Time period index; t = 1, 2, ..., T

m = The total number of cash centers

i = Cash center index; i = 1, 2, ...,m

ni = The total number of ATMs in each cash center i

j = ATM index; j = 1, 2, ..., ni

Dijt = Amount cash demanded of ATM j managed by cash center i at period t

qi = Refilling cost (Baht per trip) from the bank to cash center i

o = Opportunity cost (per day) of money stored in cash center or ATM

rij = Refilling cost (Baht per trip) from cash center i to ATM j

aij = Sufficiently large number for an upper bound of a cash order for each ATM j from cash

center i

bi = Sufficiently large number for an upper bound of a cash order for each cash center i

CATM = Available cash storage capacity of each ATM

Ccc = Available cash storage capacity of each cash center

Decision Variables:

Qit = Order quantity of cash center i at period t

Xijt = Order quantity of ATM j delivered by cash center i at period t

Jit = Inventory level of money stored in cash center i at the end of period t

Iijt = Inventory level of money stored in ATM j managed by cash center i at the end of period t.

γit = Binary setup variable indicating where order quantity is allowed for cash center i in period

t (=1, if cash is refilled in cash center i in period t, 0 otherwise)

δijt =Binary setup variable indicating where order quantity is allowed for ATM j under cash center

i in period t (=1, if cash is refilled in ATM j managed by cash center i in period t, 0 otherwise)

Our formulation of the problem is described by the following mathematical program Equation:

Minimize Total Cost
m∑
i=1

T∑
t=1

(qiγit + oJit) +
m∑
i=1

ni∑
j=1

T∑
t=1

(rijδijt + oIijt) (2.4)
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Subject to

Iij(t−1) +Xijt − Iijt = dijt; ∀i ∈ {1…m}, j ∈ {1…n}, t ∈ {1…T} (2.5)

Xijt − (αijδijt) ≤ 0; ∀i ∈ {1…m}, j ∈ {1…n}, t ∈ {1…T} (2.6)

Xijt − Iij(t−1) ≤ CATM ; ∀i ∈ {1…m}, j ∈ {1…n}, t ∈ {1…T} (2.7)

Ji(t−1) +Qit − Jit =
ni∑
j=1

Xijt; ∀i ∈ {1…m}, j ∈ {1…n}, t ∈ {1…T} (2.8)

Qit − (biγit) ≤ 0; ∀i ∈ {1…m}, j ∈ {1…n}, t ∈ {1…T} (2.9)

Qit − Ji(t−1) ≤ Ccc; ∀i ∈ {1…m}, j ∈ {1…n}, t ∈ {1…T} (2.10)

Xijt, Iijt ≥ 0; ∀i ∈ {1…m}, j ∈ {1…n}, t ∈ {1…T} (2.11)

Qit, Jit ≥ 0; ∀i ∈ {1…m}, t ∈ {1…T} (2.12)

δijt ∈ 0, 1; ∀i ∈ {1…m}, j ∈ {1…n}, t ∈ {1…T} (2.13)

γit ∈ 0, 1; ∀i ∈ {1…m}, t ∈ {1…T} (2.14)

The objective function (1.1) is to minimize the total costs for allocating cash in cash centers and

ATMs (refilling costs and opportunity cost). Constraints (1.2) and (1.5) are the inventory balance

constraints for ATMs and cash centers, respectively. Constraints (1.3) and (1.6) forces a set-up cost

to be incurred for periods with positive ordering cash of each ATM and each center; it requires δijt
to be 1 if Xijt is non-zero and it requires γit to be 1 if qit is non-zero. Constraints (1.4) and (1.7)

represent the capacity constraints: the overall cash in ATM must remain lower than the available

capacity. Constraints (1.8) and (1.9) are non-negative variables for order quantities and inventory

level. Constraints (1.10) and (1.11) specify the binary setup variables.

For the large sizes of problem, the MIP formulation cannot solve or is very hard to solve in rea-

sonable computational time. Thus, we develop an approach based on reformulating the model as

a shortest path problem for finding a near-optimal solution.

2.3.3 The Shortest Path Reformulation:

Eppen and Martin (1987) presented the shortest path formulation approach to reformulate the

capacitated lot-sizing problems based on a network diagram shown in Fig. 1. The new formulation

proposes variables Zijkl that is the fraction of the accumulated demand from period k to period l.
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Figure 2.1: Shortest path representation of the lot sizing dynamic program for 1 item and
4 periods

Each node of network flow represents the period 1, 2, 3, 4 and a dummy period 5. The arc be-

tween nodes k and l means the choice of ordering the whole demand from period k to period l− 1

in period k.

The solution is to find the shortest path from node 1 to node 5.

They reformulate the MIP as described in Equation (1.1-1.11) as a SP reformulation. Only con-

straints that are related to capacity constraints, setup constraints and inventory balance constraints

for managing ATMs will be relaxed. The rest of the constraints will not change from the original

model. The decision variables and SP reformulation are as follows:

Decision Variables

Zijkl fraction of the total demand refilled in period k for demand in periods k to l of ATM jmanaged

by cash center I Equation (1.12-1.26):

Minimize Total Cost
m∑
i=1

T∑
t=1

(qiγit + otJit) +
m∑
i=1

ni∑
j=1

T∑
t=1

(rijδijt + otIijt) (2.15)
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Subject to
T+1∑
I=2

Zij1I = 1; ∀i ∈ {1…m}, j ∈ {1…n} (2.16)

I=1∑
k=2

Zij1I =
T+1∑

k=I+1

Zij1I ; ∀I ∈ {2, ...T},∀i ∈ {1…m}, j ∈ {1…n} (2.17)

T+1∑
I=k+1

Zij1I ≤ δijkI ; ∀k ∈ {1, ...T},∀i ∈ {1…m}, j ∈ {1…n} (2.18)

T+1∑
I=k+1

∑
u=k

Zij1I = Xijt; ∀k ∈ {1, ...T},∀i ∈ {1…m}, j ∈ {1…n} (2.19)

Iij(t−1) +Xijt − Iijt = dijt; ∀i ∈ {1…m}, j ∈ {1…n}, t ∈ {1…T} (2.20)

Xijt + Iij(t−1) ≤ CATM ; ∀i ∈ {1…m}, j ∈ {1…n}, t ∈ {1…T} (2.21)

Ji(t−1) +Qit − jit =
ni∑
j=1

Xijt; ∀i ∈ {1…m}, t ∈ {1…T} (2.22)

Qit − (biγit) ≤ 0; ∀i ∈ {1…m}, t ∈ {1…T} (2.23)

Qit − Ji(t−1) ≤ Ccc; ∀i ∈ {1…m}, t ∈ {1…T} (2.24)

Xijt, Iijt ≥ 0; ∀i ∈ {1…m}, j ∈ {1…n}, t ∈ {1…T} (2.25)

Qit, Jit ≥ 0; ∀i ∈ {1…m}, t ∈ {1…T} (2.26)

γit ∈ 0, 1; ∀i ∈ {1…m}, t ∈ {1…T} (2.27)

δijt ∈ 0, 1; ∀i ∈ {1…m}, j ∈ {1…n}, t ∈ {1…T} (2.28)

Zijkl ≥ 0; ∀i ∈ {1…m}, j ∈ {1…n}, k ∈ {1…T}, I ∈ {2, ...T + 1} (2.29)

The objective function (1.12) is to minimize the total costs for allocating cash in cash centers

and ATMs (refilling costs and opportunity cost). Constraint (1.13) ensures that there is no more

than one arc outgoing from node 1 for refilling each ATM. Constraint (1.14) ensures that if cash

is placed in ATM in period l, it must exist in period +1. Constraint (1.15) forces the setup binary

variables δijk to be one whenever money is refilled inATMj managed by cash center i in period t.

Constraint (1.16) is used to find the order quantity for ATMj managed by cash center i at period

t. Constraint (1.17) is used to find the inventory level of money stored in ATM j managed by

cash center i at the end of period t. Constraints (1.17)-(1.25) are identical to Constraints (1.2),

(1.4)-(1.11) in the original model. Constraint (1.26) enforces the non-negativity requirements for
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variables.

2.3.4 Computational results:

We use running time to evaluate the quality of the algorithms. Table 1 reports a solution, a

solution time (CPU time in seconds) and a percent difference of the solutions of the two approaches

for different numbers of ATMs with fixed number of cash centers and time periods.

No.of
ATMs

MIP
...........
Total
costs

...........
CPU

time(sec)

SPR
...........
Total
costs

...........
CPU

time(sec)

% Diff
of total
costs

10
20
30
40
50
100
150
200
250
300
500
1000

82.799
109774
128.539
156.312
186.800
323.111
456.847

-
-
-
-
-

1.082
2.19
9.34
12.18
19.25
41.43
15556
> 8h

-
-
-
-

82.849
109785
128.539
156.316
186.841
323.257
456.847
588.687
706.289
839.144

1.325.148
2.631.580

3.01
5.68
10.48
12.45
11.48
8.63
13.07
20.99
23.38
27.80
47.69
106.60

0.060
0.010
0.000
0.003
0.030
0.050
0.000

-
-
-
-
-

Table 2.1: Comparison between the MIP formulation and the SPR approach

From Table 1, it can be seen that the MIP formulation can only solve small sizes of the problem

and spends more computational time when the numbers of ATMs increase (Fig. 2). As the SPR

algorithm can give solutions in less computational time although the problem is large. It was solved

in a few minutes with 1,000 ATMs. Comparing the total costs of the two methods found that the

SPR approach gave the optimal or close to optimal solution.
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Figure 2.2: Illustrate a graph comparison of CPU Time between the MIP formulation and
the spr approach.

The conclusion is that the proposed optimization-based heuristic approach (shortest path re-

formulation) is effective in solving the cash inventory problem in ATM networks. The approach is

able to find near-optimal solutions for large-sized problems in a shorter amount of time compared

to the traditional MIP formulation. The paper contributes to the field of inventory management

and logistics by addressing the cash inventory problem in ATM networks and providing a new

approach to solve it.
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Chapter 3

Resolution of the problem:

In the scope of this thesis, two approaches are followed and applied to find an optimum solution

for atm cash replenishment problem. The first one is mixt integer linear programming approach

using SAS code and the second one non linear programming approach using MATLAB code. this

section, I will give more detailed information about those approaches and how they are used for

this specific solution.

3.1 ATM cash management Problem:

The goal of this application is to determine a schedule for allocation of cash inventory at bank

branches to service a preassigned subset of automated teller machines (ATMs). Given historical

training data per day for each ATM, we first define a polynomial fit for the predicted cash flow

need. This is done using Casadi framework in Matlab environment to formulate the NLP model

and determine the expected total daily cash withdrawals and deposits at each branch.

The modeling of this prediction depends on various seasonal factors, including the days of the

week, the weeks of the month, holidays, typical salary disbursement days, location of the branches,

and other demographic data. We thenwant to determine themultipliers that minimize themismatch

based on predicted withdrawals. The amount of cash allocated to each day is subject to a budget

constraint. In addition, there is a constraint for each ATM that limits the number of days the cash

flow can be less than the predicted withdrawal.

This scenario is referred to as a cash-out. Cash allocation plans are usually finalized at the
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beginning of the month, and any deviation from the plan is costly. In some cases, it may not even

be feasible.

So, the goal is to determine a policy for cash distribution that balances the inventory levels

while satisfying the budget and customer dissatisfaction constraints. By keeping toomuch cash-on-

hand for ATM fulfillment, the banks will incur investment opportunity loss. In addition, regulatory

agencies in many nations enforce a minimum cash reserve ratio at branch banks. According to

regulatory policy, the cash in ATMs or in transit, do not contribute towards this threshold.

3.2 Mixed Integer Nonlinear Programming Formula-

tion:

The most natural formulation for this model is in the form of a mixed integer nonlinear program

(MINLP). Let A denote the set of ATMs and D denote the set of days used in the training data.

The predictive model fit is defined by the following set of parameters: (cxad, c
y
ad, c

xy
ad, c

u
ad) for each

ATM a on each day d. Define variables (xa, ya, ua) for each ATM that, when applied to the pre-

dictive model, give the estimated cash flow need per day, per ATM. In addition, define a surrogate

variable fad for each ATM on each day that defines the net cash flow minus withdrawals given

by the fit. Let Bd define the budget per day, Ka define the limit on cash-outs per ATM, and Wad

define the historical withdrawals at a particular ATM, on a particular day.

cx and cy are the costs associated with activating an ATM and making a replenishment, respec-

tively.

A the set of atms a.

D the set of days d.

cyad is the cost associated with making a replenishment for ATM a on day d.

cxy and cxyad are the costs associated with activating an ATM and making a replenishment simulta-

neously for ATM a on day d.

Wad is the cash withdrawn by customers from ATM a on day d.

fad is the actual cash demand for ATM a on day d.

Bd is the maximum cash limit for day d.

ua represents the amount of cash present in an ATM machine denoted by a.
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Then the following NLP models this problem.

Minimize
∑
a∈A

∑
d∈D

|fad|

Subject to:

cxadxa + cyady
a + cxyadxaya + cuadua −Wad = fad ∀a ∈ A,∀d ∈ D (3.1)

|{d ∈ D|fad < 0}| ≤ Ka (3.2)∑
a∈A

(fad+Wad) ≤ Bd (3.3)

(xa, ya) ∈ [0, 1] ∀a ∈ A (3.4)

ua ≥ 0 ∀a ∈ A (3.5)

fad ≥ −Wad∀a ∈ A, ∀d ∈ D (3.6)

Inequalities (2) and (3) ensure that the solution satisfies the budget and cash-out constraints,

respectively. Constraint (1) defines the surrogate variable fad, which gives the estimated net cash

flow. In order to put this model into a more standard form, we first must use some standard model

reformulations to linearize the absolute value and the cash-out constraint (3).

Linearization of Absolute Value. A well-known reformulation for linearizing the absolute value

of a variable is to introduce one variable for each side of the absolute value.

The following system:

min |y|, is equivalent to min y+ + y−,

s.t.Ay ≤ b s.t.A(y+ − y−) ≤ b,

y+, y− ≥ 0

Let f+
ad and f

−
ad represent the positive and negative parts, respectively, of the net cash flow.Then,

we can rewrite the model, removing the absolute value, as the following:

Minimize
∑
a∈A

∑
d∈D

|f+
ad + f−

ad|
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Subject to:

cxadxa + cyady
a + cxyadx

aya + cuadua −Wad = f+
ad + f−

ad ∀a ∈ A, ∀d ∈ D∑
a∈D

(f+
ad − f−

ad +Wad) ≤ Bd ∀d ∈ D,

|{d ∈ D|(f+
ad − f−

ad) < 0}| ≤ Ka ∀a ∈ A,

xa, ya ∈ [0, 1] ∀a ∈ A

ua ≥ 0 ∀a ∈ A

f+
ad ≥ 0

f−
ad ∈ [0,Wad] ∀a ∈ A,∀d ∈ D

Modeling the Cash-Out Constraints In order to count the number of times a cash-out occurs,

we need to introduce a binary variable to keep track of when this event occurs. Let vad be an

indicator variable that takes value 1when the net cash flow is negative. We canmodel the following

implication f−
ad > 0⇒ vad = 1, or its contrapositive vad = 0⇒ f−

ad ≤ 0, by adding the constraint.

f−
ad ≤ Wadvad ∀a ∈ A,∀d ∈ D

Now, we can model the cash-out constraint simply by counting the number of days the netcash

flow is negative for each ATM, as follows:

∑
d∈D

(vad) ≤ Ka ∀a ∈ A

The MINLP model can now be written as follows:

Minimize:

∑
a∈A

∑
d∈D

(f+
ad − f−

ad)
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Subject to:

cxadxa + cyady
a + cxyadx

aya + cuadua −Wad = f+
ad − f−

ad ∀a ∈ A, ∀d ∈ D∑
a∈A

(f+
ad − f−

ad +Wad) ≤ Bd ∀d ∈ D,

f−
ad ≤ WadVad ∀a ∈ A, ∀d ∈ D∑
d∈D

vad ≤ Ka ∀a ∈ A,

xa, ya ∈ [0, 1] ∀a ∈ A

ua ≥ 0 ∀a ∈ A

f+
ad ≥ 0 ∀a ∈ A,∀d ∈ D

f−
ad ≥ 0 ∈ [0,Wad] ∀a ∈ A, ∀d ∈ D

Vad ∈ [0, 1] ∀a ∈ A, ∀d ∈ D

We tried using this model with several of the available MINLP solvers on the NEOS Server for

Optimization . However, we had little success solving anything but models of trivial size. We also

solicited the help of several researchers doing computational work in MINLP, but thus far, none

of the solvers have been able to successfully solve this problem. Presumably the difficulty comes

from the non-convexity of the prediction function, then we testes an MILP model by changing the

data (5 ATM and 10 Days). (Appendix )

Another approach is to formulate a nonlinear problem, I have used casadi framework in Matlab

environment.

3.3 Nonlinear programming:

This model is a forecast model taken form a ‘Mathew.Galati’ book section 5 , so the search for

the optimal multiplier is based on non-deterministic methods. Data is the least important. Rather,

we want to provide the best possible solution in a reasonable amount of time.

therefore, it is perfectly acceptable to use NLP to approximate MINLP. In the original problem,

we have the cash-out constraint in order to count the number of times a cash-out occurs, to count

the number of payouts, to get a nonlinear programming we ignored this constraint and we worked
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with NLP model:

This is the nonlinear programming:

Minimize
∑
a∈A

∑
d∈D

|fad|

Subject to:

cxadxa + cyady
a + cxyadx

aya + cuadua −Wad = fad ∀a ∈ A,∀d ∈ D (3.7)∑
a∈A

(fad +Wad) ≤ Bd ∀d ∈ D (3.8)

xa, ya ∈ [0, 1] ∀a ∈ A (3.9)

ua ≥ 0 ∀a ∈ A (3.10)

fad ≥ −Wa ∀a ∈ A (3.11)

The objective function is to minimize the sum of the absolute values of the difference between

the actual cash demand (fad) and the cash replenishment for all ATMs (a) and days (d).

The constraints are as follows:

The optimization problem is subject to a set of constraints, which are also represented as mathe-

matical equation:

The first constraint is a linear equation that relates the decision variables xad, yad, and uad to the

coefficients cxad, cxad, cxd , and cuad, as well as a constant value Wad and the variable fad. The equa-

tion must hold true for all combinations of a and d in the sets A and D, respectively.

The second constraint The total cash replenishment for each day should not exceed the maximum

cash limit (Bd) for that day.

The decision variables x and y are binary variables representing whether an ATM is active or not

and whether a replenishment is made or not, respectively.

The decision variable u represents the amount of cash replenishment made for each ATM and day.

The fifth constraint ensures that the difference between the available and required cash is always

greater than or equal to the negative of the maximum withdrawal amount for all ATMs and time

periods.

In this model we have suppressed the the constrain of cash-out limit which count the number of
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payouts, to get a nonlinear programming.

this is the nonlinear programming, we have used casadi framework in matlab environment to for-

mulate it, after that ipopt slover has been used to solve this problem and find the optimal solution.

3.4 Why using CasADI framework:

CasADi is a software framework that provides a symbolic modeling language and numerical opti-

mization methods for solving dynamic optimization problems. While CasADi is primarily written

in C ++, it also provides interfaces for various programming languages, including MATLAB.

There are several reasons why one might choose to use CasADi in the MATLAB environment:

Symbolic modeling: CasADi allows you to define optimization problems using a symbolic syntax.

This makes it easier to express complex mathematical models in a concise and readable manner.

You can leverage the power of symbolic computation while working in a familiar MATLAB envi-

ronment.

Numerical optimization: it offers a wide range of numerical optimization algorithms, including

both local and global optimization methods. These algorithms are specifically designed for solv-

ing dynamic optimization problems, where the objective and constraints depend on time or other

variables. you can access these optimization algorithms and efficiently solve dynamic optimiza-

tion problems.

Automatic differentiation: CasADi provides automatic differentiat ion capabilities, which enable

the efficient computation of gradients and Hessians of mathematical expressions. This feature is

particularly useful for optimization algorithms that rely on gradient-based methods, such as non-

linear programming. And you can easily compute derivatives of complex objective functions and

constraints, which are essential for efficient optimization.

Integration with other MATLAB tools: MATLAB is a widely used platform for scientific and en-

gineering computations. you can seamlessly integrate your optimization models with other MAT-

LAB functionalities, such as plotting, data analysis, and simulation tools. This integration allows

you to take advantage of the rich ecosystem of MATLAB for pre-and postprocessing tasks related

to your optimization problems.

In summary, CasADi provides a powerful framework for symbolic modeling and numerical op-
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timization of dynamic optimization problems. you can combine the benefits of symbolic com-

putation, numerical optimization, automatic differentiation, and integration with other MATLAB

tools, making it a popular choice for researchers and engineers working on optimization problems

in MATLAB.

3.5 Why using Ipopt:

The Ipopt (Interior Point OPTimizer) solver is a popular open-source optimization solver that is

widely used for nonlinear optimization problems with constraints. It is known for its effectiveness

in solving large-scale optimization problems, and that is what we need.

Here are a few reasons why you might consider using Ipopt solver in MATLAB:

Nonlinear optimization: Ipopt is specifically designed for solving nonlinear optimization prob-

lems, which involve finding the optimal values for variables in the presence of nonlinear objective

functions and constraints. If you have a problem that falls into this category, Ipopt can be a suitable

choice.

Large-scale problems: Ipopt is efficient in handling large-scale optimization problems, wherethe

number of variables and constraints is significant. It uses an interior point method, which allows

it to handle problems with a large number of variables and constraints more effectively compared

to some other solvers.

Constraint handling: Ipopt can handle both inequality and equality constraints in the optimization

problem. It is capable of handling nonlinear constraints as well, making it suitable for a wide range

of optimization applications.

Open-source andwidely used: Ipopt is an open-source solver that is widely used in the optimization

community. It has an active development community and is regularly updated with new features

and bug fixes. Being open-source, it allows users to modify and customize the solver as per their

requirements.

To use the Ipopt solver inMATLAB, you would typically need to install the Ipopt software package

separately and then integrate it with MATLAB using the appropriate interface or wrapper provided

by the Ipopt developers. You can refer to the Ipopt documentation and resources for detailed in-

structions on how to install and use Ipopt in MATLAB.

40



3.6 Digital application:

This section presents a computational analysis of the worked done in MATLAB of the nonlinear

programming, After the execution we obtained this optimal objective value, which is the ob-value:

ob-value =

2.1424e+006

And the results for MILP model (5ATMs – 10days) is:

fval =

5.9704e+04
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Conclusion

Which tools and approaches offer a long-term solution for controlling automated teller machine

(ATM) inventories and planning cash deliveries, thereby improving the costefficiency of cash sup-

ply chains, the ATMusers" satisfaction, and the security of cash logistics?" This question is divided

into several sub-questions per research study, we have seen this in the chapters of our thesis.

The success of decomposition-based methods in real applications shows the potential for this area

to make a positive impact on the field of mathematical programming, in this thesis we have seen

various methods based on the decomposition methods for generating convex hull approximations

of feasible solutions of an integer linear program.

Then find an optimal for ATM cash replenishment using Nonlinear programming, a model refor-

mulated from an MINLP, we have used the Ipopt solver in MATLAB environement, we presented

the computational results in the last section, we also tried an MILP model by changing data (5atms

and 10days). Our research aim to ensure that the atms has enough cash available to dispense to

customers. As people withdraw money from ATMs, the cash inside the machine decreases, and

eventually, it needs to be replenished to maintain its functionality.
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Appendix 1

addpa th ( 'C : \ Use r s \ sa lem \ Desktop \MATLAB IPOPT CODE\ c a s ad i−windows

−matlabR2016a−v3 . 5 . 5 ' )

impo r t c a s a d i .* % impo r t c a s a d a i framework

c l e a r

c l c

A = 20 ; % number o f ATMs

D = 100 ; % number o f days

%% impo r t d a t a . r e s h a p e i t i n t om a t r i c e s (ATMs, DAYS) .

f u l l _ d a t a = impo r t d a t a ( ' ATM_data . mat ' ) ; % cx cy cz cu c w

Budge t_da t a = impo r t d a t a ( ' Budget . mat ' ) ; %budge t d a t a

d a t a _ cx = r e s h a p e ( f u l l _ d a t a ( : , 1 ) , 1 0 0 , 2 0 ) ' ;

d a t a _ cy = r e s h a p e ( f u l l _ d a t a ( : , 2 ) , 1 0 0 , 2 0 ) ' ;

d a t a _ c z = r e s h a p e ( f u l l _ d a t a ( : , 3 ) , 1 0 0 , 2 0 ) ' ;

d a t a _ cu = r e s h a p e ( f u l l _ d a t a ( : , 4 ) , 1 0 0 , 2 0 ) ' ;

d a t a _ c = r e s h a p e ( f u l l _ d a t a ( : , 5 ) , 1 0 0 , 2 0 ) ' ;

data_W = r e s h ap e ( f u l l _ d a t a ( : , 6 ) , 1 0 0 , 2 0 ) ' ;

%%%%%%%%%%%%%%Take p a r t s from t h e d a t a . A atm and D day .

%%%%%%%%%%%%%%fo r f u l l d a t a . we use A=20 and D=100.

Cx = da t a_ cx ( 1 :A, 1 :D ) ;

Cy = da t a_ cy ( 1 :A, 1 :D ) ;

Cz = d a t a _ c z ( 1 :A, 1 :D ) ;

Cu = da t a_ cu ( 1 :A, 1 :D ) ;
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C = da t a _ c ( 1 :A, 1 :D ) ;

Wi thdrawal = data_W ( 1 :A, 1 :D ) ;

B = Budge t_da t a ( 1 :D ) ; % Budget

w i t hd r awa l = r e s h a p e ( Withdrawal ,A*D, 1 ) ;

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fp = SX . sym ( ' fp ' , A,D ) ; %%% f

x = SX . sym ( ' x ' ,A ) ;

y = SX . sym ( ' y ' ,A ) ;

u = SX . sym ( ' u ' ,A ) ;

Bin = [ ] ; %c o n t a i n s c o n s t r a i n t s and i n q u a l i t y c o n s t r a i n t s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c o s t f = 0;% co s f f u n c t i o n :

f o r i = 1 :A

f o r j = 1 :D

c o s t f = c o s t f + abs ( fp ( i , j ) ) ; % c a l c u l a t e c o s t f u n c t i o n

%pu t t h e e q u a l i t y c o n s t r a i n t s on t h e f i r s t A*D elemen t

Bin = [ Bin ; Cx ( i , j )*x ( i ) + Cy ( i , j )*y ( i ) + Cz ( i , j )*x ( i )*y ( i )
+ Cu ( i , j )*u ( i ) + C( i , j ) − Withdrawal ( i , j ) − fp ( i , j ) ] ;

end

end

f o r j = 1 :D

%pu t t h e i n e q u a l i t y c o n s t r a i n t s a f t e r t h e e q u a l i t y c o n s t r a i n t

Bin = [ Bin ; sum ( fp ( : , j ) ) + sum ( Wi thdrawal ( : , j ) ) ] ;

end
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%%%%%%% pa r ame t e r s c o n s t r a i n t s

l b = z e r o s (A*D+3*A, 1 ) ; %% lower bounds s e t t o z e r o .

l b ( 1 :A*D) = −wi t hd r awa l ; % lower bound f o r Fe i s s e t t o −w

%%%%%%%%%%%

ub = ones (A*D+3*A,1 )* i n f ; %% upper bound i s s e t t o i n f ( i n f i n i t y )

which means t h e r e i s no uppe r bound

ub (A*D+1:A*D+2*A) = 1 ; %% upper bound f o r x and y i s s e t t o 1 ( x , y <1)

%%%% no n l i n e a r c o n s t r a i n t s

%pu t t h e lower and uppe r bounds t o 0 .

%which means t h a t on ly 0 i s a c c p e t e d .

l bg ( 1 :A*D+D) = 0 ;

ubg ( 1 :A*D+D) = 0 ;

%%%% i n q u a l i t y c o n s t r a i n t s :

l bg (A*D+1:A*D+D) = −ones ( 1 ,D)* i n f ;
ubg (A*D+1:A*D+D) = B;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%cho s s i n g t h e s o l o v e r

OPT_var = [ r e s h a p e ( fp ,A*D, 1 ) ; x ; y ; u ];% r e s h a p e x , y , u and Fe i n t o one

b ig v e c t o r

n l p_p rob = s t r u c t ( ' f ' , c o s t f , ' x ' , OPT_var , ' g ' , Bin ) ; %pu t c o s t f

and t h e s e t o f v a r i a b l e s and t h e c o n s t r a i n t

v e c t o r t o s o l v e

%So l v e r o p t i o n s

o p t s = s t r u c t ;

o p t s . i p o p t . max_ i t e r = 1000 ; %%max i t e r a t i o n number

%%%%% Ipop t s o l v e r

s o l v e r = n l p s o l ( ' s o l v e r ' , ' i p op t ' , n lp_prob , o p t s ) ;

%%%%% i n i t i a l i s i n g :

x0 = [ wi thd rawa l ' , z e r o s (1 ,3*A) ] ; % choos i ng i n t i a l p o i n t t o s t a r t from
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%%%%so l v i n g

s o l = s o l v e r ( ' x0 ' , x0 , ' lbx ' , lb , ' ubx ' , ub , . . .

' lbg ' , lbg , ' ubg ' , ubg ) ;

%%%%% op t ima l v a r i a b l e s :

F_op t ima l = r e s h a p e ( s o l . x ( 1 :A*D) ,A,D ) ; % f from 1 t o A*D
x_op t ima l = s o l . x (A*D+1:A*D+A) ; % x from A*D+1 t o A*D+A
y_op t ima l = s o l . x (A*D+A+1:A*D+2*A) ; % y from A*D+A+1 t o A*D+2*A
u_op t ima l = s o l . x (A*D+2*A+1:A*D+3*A) ; % u from A*D+2*A+1 t o A*D+3*A
%%%%% ob j e c t i v e v a l u e

ob_va lue = s o l . f ;

Appendix 1 Detailed

Importing the necessary libraries and clearing the workspace.

Importing data from two .mat files: 'ATM-data.mat' and 'Budget.mat'. The data represents infor-

mation related to ATMs and their daily operations.

Reshaping the imported data into matrices based on the number of ATMs (A) and the number of

days (D).

Setting up the initial parameters and separating data for a specific ATM (A) and specific days (D).

The main optimization problem is formulated as follows:

Objective:

Minimize the cost function, which is the sum of the absolute values of the variables fp (A × D

matrix), representing some decision variables.

Constraints:

For each ATM and day, there is an equality constraint related to the balance:

Cx(i, j)
∗x(i)+Cy(i, j)

∗y(i)+Cz(i, j)
∗x(i)∗y(i)+Cu(i, j)

∗u(i)+C(i, j)−Withdrawal(i, j)−fp(i, j) = 0

where x, y, and u are decision variables for ATM i, and fp represents the decision variable for a

function.
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This equality constraint ensures that the balance at the end of each day is equal to the initial bal-

ance, considering the withdrawals and the function fp.

For each day, there is an inequality constraint related to the budget:

sum(fp(:,j)) + sum(Withdrawal(:,j)) <= B(j)

This inequality constraint ensures that the total of all fp and withdrawals on each day doesn't ex-

ceed the available budget B(j).

The code then defines the decision variables, bounds, and constraints to set up the optimization

problem. It uses the IPOPT solver from CasADi to find the optimal solution.

The optimal solution provides the values of the variables fp, x, y, and u that minimize the cost

function while satisfying the given constraints. The optimal value of the cost function (ob-value)

represents the optimized objective value.

Note: Without specific data for the 'ATM-data.mat' and 'Budget.mat' files, we cannot assess the

actual results or the real-world implications of this optimization problem. The explanation above

is based solely on the code's structure and provided comments.

Appendix 2

c l e a r

c l c

prob = mpsread ( ' atm_5_10_1 . mps ' )

[ x , f v a l , e x i t f l a g , o u t p u t ] = i n t l i n p r o g ( prob ) ;

Appendix 1 results

The code is solving an integer linear programming problem defined by theMPS file 'atm_5_10_1.mps'.

The objective function and constraints of the optimization problem are likely specified in that file.

The intlinprog function is used to find the optimal values of the decision variables that satisfy

the constraints and optimize the objective function. The result is stored in the variables x, fval,

exitflag, and output.
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Abreviation

LP: Linear Programming

ILP: Integer Linear Programming

MILP: Mixt Integer Linear Programming

NLP: Nonlinear Programming

TBA: Trust Bank Algeria

CRO: Cash Replenishment Optimization
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