Claude Delannoy

Programmer en Fortran

Fortran 90 et ses évolutions Fortran 95, 2003 et 2008

EYROLLES

TABLE DES MATIERES

I. GENERALITES SUR FORTRAN 90	
FORTRAN 90 DE	
1.1 Un exemple de programme en Fortran 90 1.2 Structure générale d'un programme en Fortran 00	2
1.2 Structure générale d'un programme en Fortran 90	2
1.3 Déclarations de type	3
1.4 Pour écrire des informations : l'instruction print	3
1.5 Pour faire une répétition : l'instruction do	4
1.6 Pour lire des informations : l'instruction do	2
1.7 Pour faire des choix : l'instruction if	0
1.8 Différences avec Fortran 77	7
2 QUELQUES REGLES D'ECRITURE 2.1 Les identificateurs	2
2.1 Les identificateurs 8 2.2 Les mots-clés 8	2
2.2 Les mots-clés)
2.4 Les commentaires)
2.4 Les commentaires 9 2.5 Le "format fixe" 12 IL LES TARDES DE 13	
40	
II. LES TYPES DE BASE DE FORTRAN 90 : INTEGER, REAL, DOUBLE PRECISION ET LOGICAL	
2 - LE TYPE INTEGER	
1/	

	3 - LE TYPE REAL	18
	3.1 La représentation en mémoire du type real	18
	3.2 Notation des constantes de type réel	19
	4 - LE TYPE DOUBLE PRECISION	
	5 - LE TYPE LOGICAL	21
	6 - LE TYPAGE IMPLICITE DES VARIABLES	. 23
III	LES EXPRESSIONS ET L'INSTRUCTION D'AFFECTATION	. 25
	1 - LES EXPRESSIONS ARITHMETIQUES	. 26
	1.1 Les opérateurs arithmétiques usuels	. 26
	1.2 L'opérateur d'élévation à la puissance : **	. 27
	1.3 Les priorités relatives	. 28
	1.4 Les expressions mixtes : les conversions implicites	. 30
	1.5 Les conversions forcées par une affectation	. 31
	2 - LES EXPRESSIONS LOGIQUES	. 33
	2.1 Les comparaisons	. 33
	2.2 Les opérateurs logiques	. 34
	3 - LES EXPRESSIONS CONSTANTES	. 36
	3.1 Notion de constante symbolique	. 36
	3.2 Notion d'expression constante	. 36
	3.3 Utilisation d'une expression constante	. 37
	EXERCICES	. 38
TX.	LES INSTRUCTIONS DE CONTROLE	
IV	1 - L'INSTRUCTION IF STRUCTURE	
	1 - L'INSTRUCTION IF STRUCTURE	42 13
	1.1 Réalisation d'une alternative (ou choix simple)	43 11
	1.2 Bloc, instruction simple et instruction structurée	44
	1.4 L'instruction else if	45 16
	1.4 L'instruction else il	40 12
	2 - UN CAS PARTICULIER D'ALTERNATIVE : L'INSTRUCTION "IF	40
	LOGIQUE"	40
	3 - L'INSTRUCTION SELECT CASE	 50
	3.1 Exemple d'instruction select case	50 50
	3.2 D'une manière générale	50 52
	3.3 Syntaxe de l'instruction select case	53
	4 - LA BOUCLE AVEC COMPTEUR	55
	4.1 Introduction	55
	4.1 Introduction	56
	4.2 Syntaxe de la boucle avec compteur (do)	56
	5 - LA BOUCLE "TANT QUE" : L'INSTRUCTION DO WHILE	58
	5.1 Exemple d'introduction de l'instruction do while	59
	5.1 Exemple d'instruction de l'instruction do while	60
	1 / 3VIII XXE DE L'IUNI FUCION DO WING	

	6 - POUR MODIFIER LE DEROULEMENT D'UNE BOUCLE : LES INSTRUCTIONS EXIT ET CYCLE	17.5
	6.1 Sortie anticipée de boucle : l'instruction exit	6.
	6.2 Bouclage anticipé : l'instruction cycle	6.
	7 - LA STRUCTURE DE BOUCLE INFINIE : L'INSTRUCTION DO	64
	7.1 Introduction	63
	7.2 Syntaxe	63
	7.3 Exemples	66
	8 - LES INSTRUCTIONS GO TO ET STOP	66
	8.1 L'instruction go to et la notion d'étiquette	0
	8.2 L'instruction stop	
	EXERCICES	71
V.	LES TABLEAUX	73
	1 - DECLARATION ET UTILISATION CLASSIQUE D'UN TABLEAU	
	A UNE DIMENSION	74
	1.1 Exemple introductif	74
	1.2 D'une manière générale	75
	2 - LES TABLEAUX A PLUSIEURS DIMENSIONS	÷ 78
	2.1 Déclaration et utilisation de tableaux à plusieurs dimensions	78
	2.2 Rang, étendue, taille et profil d'un tableau	78
	2.3 Remarque à propos des déclarations de tableaux en Fortran 77	79
	3 - LES OPERATIONS GLOBALES RELATIVES AUX TABLEAUX	80
	3.1 Affectation collective d'une valeur à tous les éléments d'un tableau	80
	3.2 Les "expressions tableau"	82
	3.3 Application des fonctions élémentaires à un tableau	87
	3.4 Les fonctions portant sur des tableaux	99
	4 - CONSTRUCTION ET INITIALISATION DE TABLEAUX	88
	4.1 Construction de tableaux à une dimension	89
	4.2 Initialisation de tableaux à une dimension	93
	4.3 Construction et initialisation de tableaux à plusieurs dimensions	94
	5 - LES SECTIONS DE TABLEAU	95
	5.1 Sections régulières d'un tableau à une dimension	96
	5.2 Section quelconque d'un tableau à une dimension à l'aide d'un vecteur	
	d'indices	100
	5.3 Sections de tableaux à plusieurs dimensions	103
	5.4 Les sections de tableaux en général	104
	5.5 Exemples	104
	6 - L'INSTRUCTION WHERE	106
	6.1 Introduction	106
	6.2 Syntaxe de l'instruction where	107
	6.3 Quelques commentaires	108

	7 - ENTREES-SORTIES DE TABLEAUX	109
	7.1 Dans une liste, un nom de tableau est équivalent à la liste de tous ses	10000
	éléments	109
	7.2 Cas des sections de tableaux	110
	7.3 D'une manière générale	110
	7.4 Utilisation de listes implicites	111
	EXERCICES	112
VI	LES ENTREES-SORTIES STANDARDS	
	1 - LE FORMAT LIBRE EN LECTURE	116
	1.1 Ecriture des informations	116
	1.2 Séparation des informations	117
	13 On peut omettre des informations	118
	1.4 On peut mettre des informations "en facteur"	119
	2 - LE FORMAT LIBRE EN ECRITURE	119
	3 - UTILISATION D'UN FORMAT DANS UNE INSTRUCTION	-
	D'ENTREE-SORTIE	120
	4 - LES PRINCIPAUX DESCRIPTEURS DE FORMAT EN ECRITURE	121
	4.1 Pour écrire des entiers : le descripteur Iw	121
	4.2 Pour écrire des réels en notation flottante : le descripteur Fw.d	122
	4.3 Pour écrire des réels en notation exponentielle : le descripteur Ew.d	122
	4.4 Pour introduire des libellés dans le format	123
	4.5 Pour introduire des espaces : le descripteur wX	124
	4.6 Pour écrire des valeurs logiques : le descripteur Lw	124
E.	4.7 Pour se "positionner" dans le "tampon" : le descripteur Tp	124
	4.8 Pour "changer de ligne" : le descripteur /	126
	4.9 Attention aux erreurs de descripteurs	127
	4.10 Cas particulier de certains périphériques d'impression	127
	5 - LES PRINCIPAUX DESCRIPTEURS DE FORMAT EN LECTURE	128
	5.1 Lecture d'entiers : le descripteur Iw	128
	5.2 Lecture de réels : les descripteurs Fw.d et Ew.d	129
	5.3 Pour "sauter" des informations : le descripteur wX	130
	5.4 Pour se positionner dans le "tampon" : le descripteur Tp	130
	5.5 Pour lire une nouvelle ligne : le descripteur /	13
	5.6 Cas des espaces figurant à l'intérieur d'une donnée	131
	5.7 Quand on fournit trop ou trop peu d'informations	132
	6 - LA SYNTAXE DES INSTRUCTIONS D'ENTREES-SORTIES	
	(PREMIERE FORME)	132
	7 - LE FORMAT D'UNE MANIERE GENERALE	133
	7.1 Utilisation de facteur de répétition de descripteurs	134
	7.2 Règles de correspondance entre le format et la liste	13
	EXERCICES	13

V	II. LES SOUS-PROGRAMMES ET LES FONCTIONS	14
	1 - NOTION DE PROCEDURE EXTERNE	143
	1.1 Exemple de définition d'un sous-programme externe	144
	1.2 Exemple d'utilisation	14
	1.3 Mise en oeuvre	1/16
	2 - NOTION DE PROCEDURE INTERNE	147
	2.1 Exemple de sous-programme interne	147
	2.2 La notion de variable globale	148
	2.3 Quelques règles concernant les procédures internes	150
	3 - LES DIFFERENTES SORTES D'ARGUMENTS EN FORTRAN 90	151
	4 - LES INTERFACES	153
	4.1 Une première motivation pour l'utilisation d'interfaces : fiabiliser les	
	appels de procédures	153
	4.2 Comment utiliser une interface	154
	4.3 D'une manière générale	155
	5 - LES FONCTIONS	155
	5.1 Exemple de définition d'une fonction	156
	5.2 Exemple d'utilisation d'une fonction	157
	5.3 La fonction comme cas particulier du sous-programme	158
	6 - CAS DES TABLEAUX TRANSMIS EN ARGUMENT	159
	6.1 Tableau de profil connu	160
	6.2 Tableau de profil ajustable	161
	6.3 Cas des sections de tableaux	165
	7 - LES VARIABLES LOCALES SONT GEREES DE MANIERE	
	"AUTOMATIQUE"	165
	7.1 Notion de variable automatique ou statique	165
	7.2 Initialisation de variables locales	167
	7.3 Cas des tableaux automatiques	168
	8 - FONCTIONS FOURNISSANT UN TABLEAU EN RESULTAT	170
	9 - LES ARGUMENTS A MOT CLE ET LES ARGUMENTS	270
	OPTIONNELS	172
	9.1 Les arguments à mot clé	172
	9.2 Les arguments optionnels	173
	10 - TRANSMISSION D'UNE PROCEDURE EN ARGUMENT	176
	10.1 Notion d'argument procédure	176
	10.2 Exemple: calcul numérique d'intégrale	177
	11 - RESTRICTIONS CONCERNANT LES ARGUMENTS EFFECTIFS	180
	11.1 Nature des arguments effectifs	180
	11.2 Type des arguments effectifs	181
	12 - LES PROCEDURES RECURSIVES	181
	EXERCICES	183

VI	II. LES CHAINES DE CARACTERES	
	1 - EXEMPLE D'INTRODUCTION	. 186
	2 - DECLARATION ET UTILISATION DE CHAINES	. 187
	2.1 Déclaration de variables de type chaîne	
	2.2 Ecriture des constantes de type chaîne	
	2.3 Affectation entre chaînes	
	2.4 Comparaisons entre chaînes	
	2.5 Chaînes et initialisations	
	3 - ENTREES-SORTIES DE CHAINES	
	3.1 Entrées-sorties en format libre	. 192
	3.2 Entrées-sorties avec un format : les descripteur A et Aw	. 193
	4 - LES SOUS-CHAINES	194
	4.1 Notion de sous-chaîne	
	4.2 La sous-chaîne en général	194
	4.3 En cas de recoupement	195
	4.4 Exemples	196
	5 - OPERATIONS REALISABLES AVEC DES CHAINES	
	5.1 La concaténation et la fonction trim	197
	5.2 Longueur d'une chaîne : les fonctions len et len_trim	198
	5.3 Recherche d'une sous-chaîne dans une chaîne : la fonction index	199
	6 - TRANSMISSION DE CHAINES EN ARGUMENT	
	6.1 Argument muet de longueur fixe	
	6.2 Argument muet de taille variable	
	7 - LES CHAINES AUTOMATIQUES	202
	8 - FONCTION FOURNISSANT UNE CHAINE EN RESULTAT	
	9 - TABLEAUX DE CHAINES	
	9.1 Notion de tableau de chaînes	
	9.2 Construction et initialisation de tableaux de chaînes	
	9.3 Tableaux ajustables et chaînes variables	
	EXERCICES	207
IX	LES STRUCTURES (OU TYPES DERIVES)	209
	1 - DECLARATION D'UNE STRUCTURE	210
	2 - UTILISATION DE STRUCTURES	
	2.1 Utilisation des champs d'une structure	
	2.2 Utilisation globale d'une structure	211
	3 - CONSTRUCTION ET INITIALISATION DE STRUCTURES	212
	4 - IMBRICATION DE STRUCTURES	
	4.1 Structure comportant des tableaux ou des chaînes de caractères	
	4.2 Tableaux de structures	
	5 -STRUCTURES ET PROCEDURES	
	5.1 Transmission d'une structure en argument	

	5.2 Transmission en argument d'un tableau de structures	219
	5.3 Fonction fournissant un résultat de type structure	
	EXERCICES	
_		
K.	LA GESTION DYNAMIQUE ET LES POINTEURS	
	1 - LES TABLEAUX DYNAMIQUES	. 224
	1.1 Introduction	. 224
	1.2 Exemple d'utilisation d'un tableau dynamique	. 225
	1.3 D'une manière générale	
	1.4 Tableaux automatiques et tableaux dynamiques	. 230
	2 - PRESENTATION DE LA NOTION DE POINTEUR DANS LE CAS	
	DE VARIABLES SIMPLES	. 231
	2.1 Premier exemple	. 231
	2.2 Deuxième exemple	. 233
	3 - POINTEURS SUR DES CHAINES	
	3.1 Premier exemple	. 235
	3.2 Application : tri de chaînes	. 236
	4 - POINTEURS SUR DES STRUCTURES	. 237
	5 - POINTEURS SUR DES TABLEAUX	
	5.1 Exemple	. 238
	5.2 D'une manière générale	. 239
	6 - RECAPITULATIF: AFFECTATION D'UNE VALEUR A UN	
	POINTEUR	. 241
	7 - POINTEURS ET GESTION DYNAMIQUE	. 241
	7.1 Premier exemple	. 242
	7.2 Pour permuter deux chaînes	
	7.3 Syntaxe générale des instructions allocate et deallocate	
	7.4 L'instruction nullify et la fonction associated	. 244
	8 - POINTEURS ET PROCEDURES	. 246
	9 - EXEMPLE D'APPLICATION DE LA GESTION DYNAMIQUE : LA	
	LISTE CHAINEE	
	EXERCICES	. 252
V	LES MODULES ET LA GENERICITE	255
(M.)		
	1 - NOTION DE MODULE	. 256
	1.1 Premier exemple de module : définition d'un type	. 256
	1.2 Deuxième exemple de module : définition d'une procédure	. 258
	1.3 Troisième exemple de module : partage de données	
	1.4 Dépendances entre modules	260
	1.5 Procédures internes aux procédures de module	261
	1.6 Contrôle de l'accès aux ressources du module	262
	1.7 La syntaxe générale de l'instruction use	
	1.8 Privatisation de certaines ressources d'un module	263

	2 - LES PROCEDURES GENERIQUES	
	2.1 Le principe	265
	2.2 Exemple de mise en oeuvre, sans utiliser un module	
	2.3 Exemple de mise en oeuvre avec un module	
	2.4 D'une manière générale	269
	3 - SURDEFINITION D'OPERATEURS	
	3.1 Le principe	. 270
	3.2 Exemples	. 270
	3.3 Priorités des opérateurs surdéfinis	. 273
	4 - SURDEFINITION DE L'AFFECTATION	
	5 - EXEMPLES D'UTILISATION DE MODULES	
	5.1 Bibliothèques de procédures	. 275
	5,2 Création d'un type abstrait de données	
	5.3 Exemple de type abstrait : nombres rationnels	. 277
	5.4 Création d'objets	. 279
XI	II. LES FICHIERS	. 281
	I - GENERALITES	
	1.1 Notion d'enregistrement	
	1.2 Accès séquentiel et accès direct	
	1.3 Entrées-sorties formatées ou non formatées	
	1.4 Numéro d'unité associé à un fichier	
	2 - LES ENTREES-SORTIES SEQUENTIELLES NON FORMATEES	
	2.1 Exemple de création d'un fichier séquentiel non formaté	. 285
	2.2 Exemple de lecture d'un fichier séquentiel non formaté	. 289
	3 - LES ENTREES-SORTIES SEQUENTIELLES FORMATEES	. 292
	3.1 Les entrées-sorties séquentielles formatées usuelles	
	3.2 Les entrées-sorties standards	
	3.3 Pour n'accéder qu'à une partie d'enregistrement : le paramètre	
	advance	296
	4 - L'ACCES DIRECT	299
	4.1 Création d'un fichier non formaté à accès direct	299
	4.2 Utilisation d'un fichier non formaté à accès direct	302
	5 - GESTION DES ERREURS DANS LES INSTRUCTIONS	
	D'ENTREES-SORTIES	303
	5.1 Le paramètre iostat	304
	5.2 Les paramètres end, err et eor	304
	5.3 Exemples de gestion de fichier avec prise en compte des erreurs	305
	5.4 Exemple de lecture conversationnelle avec gestion des erreurs	308
	6 - LES FICHIERS INTERNES	
	6.1 Notion de fichier interne	
	6.2 Exemples	310
	6.3 D'une manière générale	310

	7 - SYNTAXE GENERALE DES INSTRUCTIONS D'ENTREES- SORTIES	
	8 - LES INSTRUCTIONS OPEN ET CLOSE 8.1 L'instruction open	311
	8.1 L'instruction open	313
	9 - L'INSTRUCTION INQUIRE	316
A	D'UN FICHIER	319
-	NNEXE A: LES PROCEDURES INTRINSEQUES DE FORTRAN 90	321
	1-LES FONCTIONS D'INTERROGATION UTILISABLES POUR TOUS LES TYPES	
	2 DESTONCTIONS NUMERICITES	
	2.1 Les fonctions numériques élémentaires	322
	2.2 Les fonctions numériques d'interrogation	322
	5 ELSTONCHONS RELATIVES ATTY CHAINES	
	or tolletions cicinematres relatives any chains	
	5 DESTONCTIONS DE MANIFILIATION DE DITE	
	or the robotion difficulty of the size	224
	The sections de multiplication de vecteure et de moterne	
	0.5 Les fonctions à microgation relatives any tableaux	0.40
	or Los tottottotto de colletticion et de manipulation de tellacorre	
	7-TROCEDURES DIVERSES	245
	7.1 La fonction transfer	215
	7.2 Les sous-programmes non élémentaires	346
A	NNEXE B: LES VARIANTES DES TYPES DE BASE	349
	1. Généralités	2.10
	2. Declaration des variables	250
	5. Notation des constantes	250
	- Les variantes du type intégér	251
	3. Les variantes du type real	0.54
	o. Les variables du type complex	250
	7. Les variantes du type logical	252
	8. Les variantes du type character	252

ANNEXE C : LE TYPE COMPLEX	353
Constantes de type complex	353
2. Entrées-sorties de complexes	354
3. Les opérateurs	354
4. Les expressions mixtes.	354
5. Conversions forcées par affectation	354
6. Les fonctions usuelles relatives aux complexes	355
7. Les variantes du type complex	355
8. Exemple récapitulatif	355
ANNEXE D: LES DESCRIPTEURS DE FORMAT	357
1. LES DESCRIPTEURS NUMERIQUES	358
1.1 Règles générales concernant la lecture	358
1.2 Les descripteurs actifs relatifs aux entiers	358
1.3 Les descripteurs actifs relatifs aux réels	358
1.4 Les descripteurs passifs d'édition de signe	359
1.5 Les descipteurs passifs de facteur d'échelle	360
1.6 Les descripteurs passifs relatifs aux espaces en lecture	360
2 - LES DESCRIPTEURS LOGIQUES	361
3 - LES DESCRIPTEURS POUR LES CHAINES DE CARACTERES	361
4 - LES AUTRES DESCRIPTEURS PASSIFS	362
4.1 Les descripteurs agissant sur le pointeur du tampon	362
4.2 Le descripteur de changement d'enregistrement :/	362
4.3 Le descripteur de fin d'exploitation d'un format ":"	362
TABLEAU RECAPITULATIF	363
ANNEXE E: LES PRIORITES DES OPERATEURS	364
ANNEXE F: LES INSTRUCTIONS DE DECLARATION	365
I - LA FORME FORTRAN 90 DE LA DECLARATION DES VARIABLES	366
II - LES AUTRES FORMES DE DECLARATIONS	368
2.1 Déclaration par attribut	368
2.2 Cas des dimensions de tableaux	369
2.3 Cas des chaînes	369
III - TYPAGE IMPLICITE	370
ANNEXE G: ORDRE DES INSTRUCTIONS	372

ANNEXE H: LA PROGRAMMATION ORIENTEE OBJET AVEC FORTRAN 2003	373
1. LE CONCEPT D'OBJET : ASSOCIATION DE PROCEDURES A UN TYPE	
1.1 Introduction	373
1.2 Présentation du mécanisme sur un exemple	37/
1.3 Constructeur de classe	277
1.4 Objets transmis en argument d'une méthode	370
1.5 Action sur l'argument implicite fourni à une méthode : pass	290
1.6 Les différentes façon d'attacher une méthode à un type	201
2 – L'HERITAGE	202
2.1 Le mécanisme	294
2.2 Redéfinition de méthodes	296
2.3 Quelques règles	290
3 – LE POLYMORPHISME	290
3.1 Exemple introductif	200
3.2 Les variables polymorphiques en Fortran	201
3.3 Une autre situation exploitant le polymorphisme	302
3.4 Polymorphisme universel	205
4 – L'INSTRUCTION SELECT TYPE	206
5 – LES CLASSES ABSTRAITES ET LES METHODES RETARDEES	307
ANNEXE I: FORTRAN 95, 2003, 2008	
1. LA BOUCLE FORALL POUR LES TABLEAUX	401
1.1 L'instruction forall	401
1.2 La construction forall	402
2 – AMELIORATION DE LA GESTION DYNAMIQUE	403
2.1 Tableaux dynamiques en argument muet	403
2.2 Variables dynamiques	404
3 – AMELIORATION CONCERNANT LES POINTEURS	408
3.1 Pointeurs de procédures	408
3.2 Amélioration des pointeurs sur des tableaux	410
4 – LES TYPES PARAMETRES	411
5 – AMELIORATION DES ENTREES-SORTIES	412
5.1 Types dérivés	412
5.2 Entrées-sorties asynchrones	412
5.3 Entrées-sorties en mode « stream » (flux)	412
6 – INTEROPERABILITE AVEC LE LANGAGE C	413
7 – DIVERSES AUTRES FONCTIONNALITES	413
7.1 Standard IEE et gestion des exceptions	413
7.2 Structure de bloc	413
7.3 Co-tableaux	414
7.4 Sous-modules	414

£.

ANNEXE J: LES INSTRUCTIONS OBSOLETES	415
1 - L'INSTRUCTION EQUIVALENCE	
2 - L'INSTRUCTION COMMON	416
3 - L'INSTRUCTION DATA	417
4 - L'INSTRUCTION BLOCK DATA	418
5 – L'INSTRUCTION GO TO CALCULE	418
6 – ANCIENS NOMS DE PROCEDURES INTRINSEQUES	419
7 – LA DIRECTIVE INCLUDE	420
8 – L'INSTRUCTION IF ARITHMETIQUE	420
9 – INSTRUCTIONS ASSIGN ET GO TO ASSIGNE	420
10 - L'INSTRUCTION NAMELIST	421
CORRECTION DES EXERCICES	423
INDEX	445