

Pattern Recognition: Statistical, Structural and Neural Approaches

Robert J. Schalkoff

Clemson University

John Wiley & Sons, Inc.

New York • Chichester • Brisbane • Toronto • Singapore

Contents

PART 1 INTRODUCTION AND GENERAL PATTERN RECOGNITION CONCERN	S	1
CHAPTER 1 PATTERN RECOGNITION (PR) OVER	VIEW	2
What is This Book About?		2
Overview		2
'Engineering' Approaches to Pattern Recognition		3
Relationship of PR to Other Areas		3
Pattern Recognition Applications		3
Pattern Recognition, Classification, and Description	TRIBATE STRA	4
Abstract Representation of Pattern Mappings		4
Structure of a 'Typical' PR System		5
Patterns and Feature Extraction with Examples		6
Patterns and Features		6
Pattern Distortions—A Fundamental and Difficult F		8
Example: Feature Extraction Using Generalized Cy	linders for	
3-D Object Description and Classification		8
Example: Generating RST Invariant Features and A	Application to	
2-D Figure Recognition		10
Feature Extraction		11
Numerical Results and Analysis	. (1.31.4.75)	12
Analysis		12
What's Really Different Among Different Patterns?		13
The Feature Vector and Feature Space		13
Definitions		14

Classifiers, Decision Regions and Boundaries, and Discriminant	
Functions	15
Training and Learning in PR Systems	16
Using A Priori Knowledge or 'Experience'	16
Learning Curves (Improved 'Performance')	17
Training Approaches	17
Pattern Recognition Approaches	18
The Statistical Pattern Recognition Approach (StatPR)	18
The Syntactic Pattern Recognition Approach (SyntPR)	19
The Neural Pattern Recognition Approach (NeurPR)	20
Comparing and Relating StatPR, SyntPR and NeurPR	20
Examples of Pattern Recognition Approaches	20
StatPR	21
SyntPR	26
Example: Combinations of StatPR and SyntPR	26
Procedures for PR System Engineering	26
Other Approaches to PR	27
'Black Box' Approaches	27
Reasoning-Driven Pattern Recognition	28
Overview of PR Literature and Resources	28
Books	29
Journals	29
Conferences	30
Exercises	30
PART 2 STATISTICAL PATTERN RECOGNITION	
(StatPR)	33
CHAPTER 2 INTRODUCTION TO STATISTICAL	
PATTERN RECOGNITION	34
Introduction to Statistical Pattern Recognition	34
Approaches to Developing StatPR Classifiers	34
Simple Examples of Statistical Models and Applications	35
The Gaussian Case and Class Dependence	39
Gaussian Models for $p(x w_i)$	39
Discriminant Functions	39
Generalized Results (Gaussian Case)	40
Decision Surfaces for Specific Cases	40
A General Look at the StatPR Approach Structure	43
Additional Examples	43
Example: Uniform Densities, $c = 2$, $d = 1$	43
Example: $c = 3$, $d = 2$, Gaussian Case	44
Extensions	47
Training	47

Ties -	Contents	xiii
Alternat	ive Classification Procedures	47
	vised Approaches	48
	Performance, Risk, and Errors	49
	es of Classification Performance	49
General	Measures of Classification Risk	51
Bibliograp	hical Remarks	54
Exercises		54
CHAPTER 3		
	USING PARAMETRIC AND NONPARAMETRIC	
	APPROACHES	58
Introduction	o n	58
Parametrio	c Estimation and Supervised Learning	58
Approac	ches to Parameter Estimation	59
Supervis	sed versus Unsupervised Learning	59
Maximum	Likelihood (ML) Estimation	59
Formula		59
Use of the	he Training Set	59
The Like	elihood Function	60
The Bayesi	ian Parameter Estimation Approach	62
Supervised	l Learning Using Nonparametric Approaches	66
Nonpara	ametric Approaches	66
General	Aspects of Nonparametric Density Estimation	67
The Bas	ic Approach	67
Parzen Wi	ndows	70
Unit Ste	ep Function $\phi(\underline{x})$	70
Extension	on to More General Interpolation Functions	73
k-nn Nonp	parametric Estimation	74
A Proble	em with V_0	74
Estimati	ion of $P(w_i \underline{x})$ Directly	75
	of Nonparametric Learning	75
	ssification Using the Training Set [The	
	Neighbor Rule (NNR)]	75
	R Approach	75
Bibliograp	phical Remarks	83
Exercises		83
CHAPTER 4		
	AND THE DISCRETE AND BINARY	
	FEATURE CASES	89
Introducti		89
	On Discriminant Functions	89
	Linear Discriminant	90
	nd Binary Classification Problems	94
Distrete a	nu Dinary Classification revocuis	

Classification Procedures for Discrete Feature Data	94
	95
Formulation for the Binary Case	95
Classification Procedures for the Binary Case	90 98
Nonparametric Estimation of $P(\underline{x} w_i)$	99
Techniques to Directly Obtain Linear Classifiers	
The Concept of Linear Separability	99
Design of Linear Classifiers	99
Bibliographical Remarks	104
Exercises	105
CHAPTER 5 UNSUPERVISED LEARNING AND	
CLUSTERING	109
Formulation of Unsupervised Learning Problems	109
A Modified Training Set	109
Unsupervised Learning Approaches	110
Clustering for Unsupervised Learning and Classification	114
The Clustering Concept and the Search for 'Natural Clusters'	114
The c-means Algorithm	115
Learning Vector Quantization (LVQ)	116
Formal Characterization of General Clustering Procedures	117
Clustering Strategies	118
'Cluster Swapping' Approaches	119
Extended Example: A Hierarchical Clustering Procedure	120
Bibliographical Remarks	121
Exercises	121
PART 3 SYNTACTIC PATTERN RECOGNITION	
(SyntPR)	127
	100
CHAPTER 6 OVERVIEW	128
Syntactic Pattern Recognition (SyntPR) Overview	128
Quantifying Structure in Pattern Description and Recognition	129
Hierarchical Approaches	129
Relational Models	130
Grammar-Based Approach and Applications	130
Using Formal Linguistics to Model and Describe Patterns	130
Structural Analysis and Description Applications	131
Elements of Formal Grammars	133
Definitions and Conventions	133
Grammar and Languages Using Strings	135
Grammar Application Modes	136
Grammar Types and Productions	100
	137
	137
Other Production Constraints in String Grammars Additional Introductory Concepts	137 139 141

0-		_	
CO	ntent	S	XV

Example: Context-Sensitive, Context-Free, and Finite S	State
(Regular) Grammar Productions	142
Examples of String Generation as Pattern Description	144
Example: 2-D Line Drawing Description Grammar [Sh	aw 1970] 144
Example: Character Description Using PDL	146
Example: Object Description Using Projected Cylinder	Models 146
Extended Example: Blocks World Description	146
Remarks on the Heuristic Generation of Grammars	149
Bibliographical Remarks	150
Exercises	150
CHAPTER 7 SYNTACTIC RECOGNITION VIA PARSIN	
AND OTHER GRAMMARS	155
Recognition of Syntactic Descriptions	155
Recognition by String Matching	155
Recognition by Parsing	156
Parsing	156
Fundamental Concepts	156
An Abstract View of the Parsing Problem	157
Parsing Approaches	159
The Cocke-Younger-Kasami (CYK) Parsing Algorithm	160
The Approach	160
The CYK Table	160
(Augmented) Transition Networks (ATNs) in Parsing	163
Transition Networks	163
Augmented Transition Nets (ATNs)	164
Higher Dimensional Grammars	165
Introduction	165
Tree Grammars	166
Traversing and Describing Trees	166
Productions and Derivations with Trees	169
Stochastic Grammars and Applications	170
Stochastic Grammars	171
Derivations in a Stochastic Language	172
Bibliographical Remarks	173
Exercises	174
CHAPTER 8 GRAPHICAL APPROACHES TO	14
SyntPR	176
Graph-Based Structural Representations	176
From Digraphs to Semantic Nets to Relational Graphs	176
Application of Relational Graphs to PR	177
Graph Isomorphism	179

Uniqueness of Digraph-Based Structural Description and	
Isomorphism	179
Determining Isomorphism	180
Extensions to the Elementary Graph Matching Approach	181
A Formal Characterization of the Relational Graph Similarity	
Problem	182
Extensions of Relational Graphs (Attributed Graphs)	183
A Structured Strategy to Compare Attributed Graphs	185
Relaxing Requirements for Pattern Isomorphism and	
Subisomorphism	185
Match Graphs (MGs)	185
Recursive Procedure to Find Cliques [cliques (X, Y)]	186
Other Attributed Graph Distance or Similarity Measures	187
Design and Selection of Similarity Measures	187
Transforming G_i into G_j	188
Extended Example: Structural Unification Using Attributed	
Graphs	188
Bibliographical Remarks	191
Exercises	192
CHAPTER 9 LEARNING VIA GRAMMATICAL	
INFERENCE	194
Learning Grammars	194
Problem Overview	194
Difficulties in Structural Learning	194
Problem Formulation	195
Characterizing the Grammar Source, Ψ	195
Concerns Related to the Training Set	195
Grammatical Inference (GI) Approaches	197
Grammatical Inference Objectives	197
Intuitive Sample GI Procedure	197
Procedures to Generate Constrained Grammars	198
Using a Single String to Partially Infer G_{learn}	198
Generation of Cannonical Definite Grammars	199
General Procedure to Generate CDFSG, (G_c)	199
Bibliographical Remarks	200
Exercises	201
PART 4 NEURAL PATTERN RECOGNITION (NeurPR)	203
CHAPTER 10 INTRODUCTION TO NEURAL NETWORKS	204
Neurons and Neural Nets	204
Introduction	

	History	205
	Neural Networks as a Black Box Approach and 'Artificial' Neural	205
	Systems	205
	Key Neural Network Concepts	206
	Characteristics of Neural Computing Applications	206
	'Connectionist' Models and Computing	207
	Neural Network Structures for PR Applications	207
	Neural Network Structure (How Should I Connect My Neurons?)	207
	Learning in Neural Networks	208
	The Neural PR Application Design Phase	210
	Why Is Neural Computation So Important?	210
	Physical Neural Networks	211
	The Physical Neuron	211
	Dynamics of a Biological Neural System	212
	The Artificial Neural Network Model	213
	Artificial Neuron Activation and Output Characteristics	213
	Neural Unit Interconnection Strengths (Weights)	217
	Other Neural Network Parameters	218
	Network Implementations for Constraint Satisfaction and Matching	
	Problems	219
	Hardware Realizations of Neural Networks	220
	Bibliographical Remarks	220
1	CHAPTER 11 INTRODUCTION TO NEURAL PATTERN	
	ASSOCIATORS AND MATRIX	
	APPROACHES	221
	Neural Network-Based Pattern Associators	221
	Introduction	221
	Design Procedure	221
	'Black Box' Structure	222
	CAM and Other Neural Memory Structures	223
	Desirable Pattern Associator (PA) Properties	224
	Matrix Approaches (Linear Associative Mappings) and Examples	224
	An Elementary Linear Network Structure and Mathematical	
	Representation	224
	Approach 1: A Linear CAM ('Hopfield') Network	226
	Approach 2: Matched Filters/Adaptive Filters	227
	Approach 3: Outer Product Formulations	228
	Approach 4: Generalized Inverse Applications	229
	Extended Example: Heteroassociative Memory Design	231
	Hebbian or Correlation-Based Learning	232
	Bibliographical Remarks	233
	Exercises	233

Contents

xvii

CHAPTER 12 FEEDFORWARD NETWORKS AND TRAINING BY BACKPROPAGATION	236
Multilayer, Feedforward Network Structure	236
Introduction	236
Overall Feedforward Structure	236
The Role of Internal/Hidden Layers (What's 'Hidden'?)	238
Training Considerations	239
Training the Feedforward Network: The Delta Rule (DR) and	
Generalized Delta Rule (GDR)	240
Overview	240
Gradient Descent Approaches for Training	241
Training by Sample or Training by Epoch	241
Derivation of the DR	242
A General Assessment of Error Sensitivity	242
Extension of the DR for Units in the Hidden Layers [The	
Generalized Delta Rule (GDR)]	246
Back Propagation—Summary of the Multistep Procedure	247
Adding Momentum to the Training Procedure	247
Training the Unit Bias Inputs	249
Example: 'Handworked' Training of a Single Unit Using the GDR	250
Extended Example: Pattern Associator for Character Classification	251
Chosen Features	251
Case 1: Single 4-Valued Output, Pseudoinverse Solution	252
Case 2: Single 4-Valued Output, 2-Layer Neural Network Solution	252
Case 3: 4 Output ('One-of') 2-Layer Neural Network Solution	253
Case 3: Summary of Results	254
Case 4: 4-Output, 3-Layer (Hidden) Neural Network Solution	254
Other Ramifications of Hidden Units	257
Bibliographical and Historical Remarks	258
Exercises	259
CALL DEED 42 CONTENTS ADDRESS DI E MEMORY	
CHAPTER 13 CONTENT ADDRESSABLE MEMORY	
APPROACHES AND UNSUPERVISED	264
LEARNING IN NeurPR	264
Introduction	264
The Hopfield Approach to Neural Computing	265
Network Parameters	265
Network Dynamics	265
Hamming Distance and Its Significance in CAM	267
Example: Hamming Distances Between Stored States	267
Example: Design of a Simple Hopfield Network—Storing and	
Accessing Stable States	268
Why the Honfield Strategy Should Work	271

		Contents	xix
Additional H	Examples of CAM Applications in PR		272
Example:	Character Recognition		272
Example:	Relational Constraint Satisfaction (Coloring)		273
	Symbolic Constraint Satisfaction (Labeling)		275
_	ed Learning in NeurPR: Self-Organizing Networks		275
Introducti			275
	Resonance Architectures		276
	nizing Feature Maps (Kohonen)		280
Summary			284
	ical Remarks		285
Exercises			286
APPENDIX 1	Linear Algebra Review		289
APPENDIX 2	Probability and Random Variables/Vectors		298
	Discrete Mathematics Review		314
APPENDIX 4	Descent Procedures: Examples and Error Function	n	
	Contours		323
APPENDIX 5	Similarity Measures, Matching Techniques, and		
	Scale-Space Approaches		328
APPENDIX 6	Geometry for Classification and State-Space		
	Visualization		337
REFERENCES	S		344
PERMISSION	SOURCE NOTES		360
INDEX			361