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ABSTRACT

Internet of Things (IoT) is the interaction of a huge amount of devices (vehicles, build-

ings, etc.) integrating electronics, software, and sensors. They also support network

connectivity that enables them to collect and share huge amounts of data. It has enor-

mous potential for enhancing the quality of life, healthcare, manufacturing, and trans-

portation, among other things. However, IoT devices must continuously manage and

maintain a number of security challenges, including authentication, privacy, access con-

trol, and data gathering and management. Nevertheless, ensuring secure communica-

tion between these devices requires a robust authentication protocol that verifies iden-

tities and prevents malicious entities from accessing the trusted IoT network, as well

as a secure session key for securing transmission following a successful authentication

phase. Traditionally, the secret keys used by these devices as unique identifiers are in-

serted in the integrated circuits’ non-volatile memory immediately after manufacturing.

This renders them susceptible to numerous types of attacks, and it is costly, difficult,

and sometimes impossible to resist these assaults using traditional cryptographic so-

lutions. Traditional symmetric or asymmetric cryptographic algorithms, on the other

hand, necessitate increased computing power, huge memory, and high energy sources

for authentication and communication security. However, the limited memory capac-

ity, processing power, and energy resources of IoT devices prevent the use of typical

authentication procedures in IoT networks. In the last decade, Physical Unclonable

Functions (PUF) have risen to prominence as a promising low-cost security primitive.

A PUF eliminates the need to store secret keys in the device’s memory, allowing it to

replace more secure and less expensive authentication mechanisms for IoT systems.

Consequently, IoT limitations and challenges lead to the introduction of lightweight au-

thentication techniques that consider the unique characteristics and constraints of these

devices. Therefore, any identity and authentication mechanism created for the IoT must

be secure against physical threats, computationally efficient, and robust. Therefore, the

purpose of this thesis is to design a strong and lightweight authentication mechanism

for IoT-based systems using PUF by exploiting the characteristics of IoT chips. This

thesis develops three innovative lightweight mutual authentication and key exchange

protocols (MAKEP) employing PUFs for IoT devices. The first protocol, T2S-MAKEP,

i



ensures secure communication between Things and Servers. T2T-MAKEP enables two

resource-constrained IoT devices to interact via an embedded PUF circuit, while LT2S-

MAKEP is a lightweight version of T2S-MAKEP.

Keywords: Physical Unclonable function, entropy, security metrics, performance, cryp-

tography, haching function, authentication protocols, hardware security, attacks.

ii



�
	
jÊÓ

�
HAJ


	
J
�
®
�
JË @ð l .

×@Q�. Ë @ð
�
H@Qª

�
�
�
��ÖÏ @ l .

×Y
�
K ú




�
æË @

�
éK
XAÖÏ @ Z AJ


�
�


B@ 	áÓ

�
éºJ.

�
� ù



ë ZAJ


�
�


B@

�
I

	
KQ
�
�
	
K @



. AêªÓ
�
HA

	
KAJ
J. Ë @ ÈXAJ.

�
Kð

�
I

	
KQ
�
�
	
KB


@ úÎ« øQ

	
k


B@

�
éÒ

	
¢
	
�


B@ð

�
è 	Qêk.



BAK. ÈA�

�
�B@ Ég.



@ 	áÓ øQ

	
k


B@

�
HAJ


	
K A¾ÓA



K. Yª

�
Kð ñÒ

	
J
�
K
�
éJ
k. ñËñ

	
Jº

�
JË @ è

	
Yë . ZAJ


�
�


B@

�
I

	
KQ
�
�
	
KB



@Yg. AÓAë @
�	
Xñ

	
®
	
K
�
éJ

	
J
�
®
�
JË @ è

	
Yë Q

	
¯ñ
�
K

B .½Ë
	
X úÍ@



AÓð É

�
®
	
JË @ð

�
é«A

	
J�Ë@ð

�
éj�Ë@ É

�
JÓ

�
é
	
®Ê
�
J
	
m×

�
HBAm.

× ú



	
¯
�
èAJ
m

Ì'@
�
éJ
«ñ

	
K

	á�
�j
�
JË

�
éÊ


KAë

�
	
®
	
Kð ÈA�

�
�B@ �

	
®
	
Kð AJ
k. ñËñ

	
Jº

�
JË @ �

	
®
	
K Ð@Y

	
j
�
J�@ ZA

	
J
�
K


@ @

�Q�

�
J» ZAJ


�
�


B@

�
I

	
KQ
�
�
	
K @


Pñê

	
£ Q�


	
ª
�
JK


�
HA

	
KAJ
J. Ë @ ©Ôg

.
ZAJ


�
�


B@

�
I

	
KQ
�
�
	
K @



�
è 	Qêk.



@ Q

	
¯ñ
�
K

	
à


@ I. m.

�'

 , ½Ë

	
X ©Óð . ÈñÒjÖÏ @

	
­

�
KAêË @

�
HA

�
®J
J.¢

�
�

ú



	
¯ Õºj

�
JË @ð

�
éë@

	Q 	�Ë @ ,
�
éK
Qå�Ë @ ,

�
é
�
¯XA�ÖÏ @ ½Ë

	
X ú




	
¯ AÖß. , 	áÓ



B@

�
HAJ
�A�



@

	
àAÖÞ

	
� ©Ó Aî

�
EP@X@



ð

Èñ»ñ
�
KðQK. I. Ê¢

�
JK


�
è 	Qêk.



B@ è

	
Yë

	á�
K.
	áÓ
�
B@ ÈA�

�
�B@

	
àAÖÞ

	
� ,

	
à


@ B@



. ½Ë

	
X úÍ@



AÓð Èñ�ñË@

ZAJ

�
�


B@

�
I

	
KQ
�
�
	
K @



�
éºJ.

�
� úÍ@



Èñ�ñË@ 	áÓ

	á�
Ô
g
.
AêÖÏ @ ©

	
JÖß
ð

�
HAK
ñêË @

	áÓ
�
�
�
®j

�
JK
 A

�
K
ñ
�
¯

�
é
�
¯XA�Ó

�
éÊgQÓ YªK. ÈA�PB


@
	á�
Ó



A
�
JË A

�	
JÓ
�
@
�
é�Êg. hA

�
J
	
®Ó Èñ»ñ

�
KðQ�. Ë @ @

	
Yë Q

	
¯ñK


	
à


@ I. m.

�'

 , A

�	
��




@ .

�
é
�
¯ñ
�
KñÖÏ @

ÈñÊg úÎ«
�
è 	Qêk.



B@ è

	
Yë AêÓY

	
j
�
J�

�
� ú




�
æË @

�
éK
Qå�Ë @ iJ


�
KA
	
®ÖÏ @ YÒ

�
Jª
�
K , A

�
K
YJ
Ê

�
®
�
K .

�
émk
.
A
	
K

�
é
�
¯XA�Ó

Q


K@ðYË@

�
èQ» @

	
X ú




	
¯ AêËA

	
gX@



Õ
�
æK
 YK
Q

	
¯

	
¬QªÒ»

�
éÓY

	
j
�
J�ÖÏ @ iJ


�
KA
	
®ÖÏ @ è

	
Yë .

�
éK
YJ
Ê

�
®
�
JË @ Q�


	
®
�
�
�
�Ë @

�
I

�
¯ñË@ �

	
®
	
K ú




	
¯ð

�
HAÒj. êË @ ¨@ñ

	
K


@ 	áÓ YK
YªÊË

�
é
	
�Q« AêÊªm.

�'

 AÜØ , AêªJ


	
��

�
� Pñ

	
¯

�
éÊÓA¾

�
JÖÏ @

ÈñÊg Ð@Y
	
j
�
J�AK.

�
HAÒj. êË @ è

	
YêË

�
éÓðA

�
®ÖÏ @

�
éÊJ
j

�
��Ó ú

�
ækð

�
éJ.ª� , 	áÒ

�
JË @

�
é
	
¢ëAK.

	
àñº

�
K

�
éÊ
�
KAÒ

�
JÖÏ @ Q�


	
« ð



@
�
éÊ
�
KAÒ

�
JÖÏ @

�
éK
YJ
Ê

�
®
�
JË @ Q�


	
®
�
�
�
�Ë @

�
HAJ
Ó

	PP@ñ
	
k I. Ê¢

�
J
�
K , ÉK. A

�
®ÖÏ @ ú




	
¯ .

�
éK
YJ
Ê

�
®
�
JË @ Q�


	
®
�
�
�
�Ë @

	áÓð .
�
HBA�

�
�B@ 	áÓ



@ð

�
é
�
¯XA�ÒÊË

�
éJ
ËA«

�
é
�
¯A£ PXA�Óð

�
éÒ
	
m�
	
� �

èQ» @
	
X ,

�
èYK
@

	Q��Ó
�
ém.
Ì'AªÓ

�
èñ
�
¯

�
I

	
KQ
�
�
	
K @



�
è 	Qêk.



B

�
é
�
¯A¢Ë@ XP@ñÓð

�
ém.
Ì'AªÖÏ @

�
èñ
�
¯ð

�
èXðYjÖÏ @

�
èQ» @

	
YË @

�
éª�

	
àA



	
¯ ,øQ

	
k


@

�
éêk.

Q�.
�
Jª
�
K . Z AJ


�
�


B@

�
I

	
KQ
�
�
	
K @



�
HA¾J.

�
� ú




	
¯

�
éJ
k.

	
XñÒ

	
JË @

�
é
�
¯XA�ÖÏ @

�
H@Z@Qk. @


Ð@Y
	
j
�
J�@ É

�
Q̄ª

�
K ZAJ


�
�


B@

�
é
	
®Ê¾

�
JK. ð

	
àAÓ



CË @Y«@ðð A

�
ÒêÓ

�
CK
YK. ( PUFs ) pA�

	
�
�
J�CË

�
éÊK. A

�
®Ë @ Q�


	
«

�
éK
XAÖÏ @

	
­



KA
	
£ñË@

AÜØ , 	PAêm.
Ì'@

�
èQ» @

	
X ú




	
¯

�
éK
Qå�Ë @ iJ


�
KA
	
®ÖÏ @ 	áK


	Q
	
m�
�
' úÍ@




�
ék. Am

Ì'@
	

­


KA
	
£ñË@ è

	
Yë ù




	
ªÊ
�
K .

�
é
	
�

	
®
	
j
	
JÓ



.
�
é
	
®Ê¾

�
K É

�
¯


AK. ð ZAJ


�
�


B@

�
I

	
KQ
�
�
	
K @



�
éÒ

	
¢
	
�


@ ú




	
¯ ÈAª

	
¯ É¾

�
��.

�
é
�
¯XA�ÖÏ @

�
HAJ
Ë

�
@ È@YJ.

�
��AK. éË iÒ��


�
HAJ


	
J
�
®
�
K ÈA

	
gX@



úÍ@


ZAJ


�
�


B@

�
I

	
KQ
�
�
	
K @


ÈAm.
× ú




	
¯ Aî

�
D
�
�
�
¯A
	
JÓ

�
IÖ

�
ß ú




�
æË @

�
HAK
Yj

�
JË @ð XñJ


�
®Ë @

�
HX



@

, ½Ë
	
YË .

�
è 	Qêk.



B@ è

	
YêË

�
èYK
Q

	
®Ë @ XñJ


�
®Ë @ð �



�A�

	
mÌ'@ PAJ.

�
J«B@

	á�
ªK.
	
Y
	
g


A
�
K

	
à 	PñË@

�
é
	
®J

	
®
	
k

�
é
�
¯XA�Ó

	áÓ


B@

	
àAÖÞ

	
�

úÎ« ú



	
æJ.Ó Aë



ðA

�
�
	
� @



	
àñºK


	
à


@ I. m.

�'

 ZAJ


�
�


B@

�
I

	
KQ
�
�
	
KB



�
é
�
¯XA�Óð

�
éK
ñë

�
éJ
Ë
�
@ ø






@

	áÓ
	

¬YêË@
	
àA



	
¯ , @

	
Yë Ég.



@ 	áÓ .

�
éK
ñ

�
¯ð

�
éJ
K. A�mÌ'@

�
éJ
kA

	
JË @ 	áÓ

�
éËAª

	
¯ ,

�
éK
XAÖÏ @

�
H@YK
Yî

�
DË @ Y

	
�

�
I

	
KQ
�
�
	
K @

 úÎ«

�
éÖ


ßA
�
®Ë @

�
éÒ

	
¢
	
�


CË

	
à 	PñË@

�
é
	
®J

	
®
	
kð

�
éK
ñ

�
¯

�
é
�
¯XA�Ó

�
éJ
Ë
�
@ Õæ



Ò�

�
� ñë

�
ékðQ£



B@ è

	
Yë

�
é
�
KC

�
K

�
éËA�QË@ è

	
Yë hQ��

�
®
�
K . pA�

	
�
�
J�CË

�
éÊK. A

�
¯ Q�


	
«

�
éK
XAÓ

	
­



KA
	
£ð Ð@Y

	
j
�
J�AK. Z AJ


�
�


B@

�
I

	
KQ
�
�
	
K @



�
è 	Qêk.



B ( MAKEP ) iJ


�
KA
	
®ÖÏ @ ÈXAJ.

�
Kð

�
éËXAJ.

�
JÖÏ @

�
é
�
¯XA�ÒÊË

	
à 	PñË@

�
é
	
®J

	
®
	
k

�
HBñ»ñ

�
KðQK.

T2S-MAKEP , Èð


B@ Èñ»ñ

�
KðQ�. Ë @ . pA�

	
�
�
J�CË

�
éÊK. A

�
¯ Q�


	
«

�
éK
XAÖÏ @

	
­



KA
	
£ñË@ Ð@Y

	
j
�
J�AK. Z AJ


�
�


B@

�
èXðYjÖÏ @ IoT 	áK


	PAêm.
Ì T2T-MAKEP iÒ��
 . ÐX@ñ

	
mÌ'@ð

�
è 	Qêk.



B@

	á�
K.
	áÓ
�
B@ ÈA�

�
�B@ 	áÒ

	
��
 ,

. Lightweight-T2S-MAKEP ñë LT2S-MAKEP AÒ
	
J�
K. , É«A

	
®
�
JËAK. XP@ñÖÏ @

, Z @X


B@ ,

	
àAÓ



B@ ��
K
A

�
®Ó , AJ
K. ð

Q��
	
K @


,
�
éJ
Êª

	
®Ë @ q�

	
�ÊË

�
éÊK. A

�
®Ë @ Q�


	
«

�
é
	
®J


	
£ñË@ :

�
éJ
��




KQË @

�
HAÒÊ¾Ë@

.
�
HAÒj. êË @ ,

�
è 	Qêk.



B@

	
àAÓ



@ ,

�
é
�
¯XA�ÖÏ @

�
HBñ»ñ

�
KðQK. , ÉJ
Ê

	
¢
�
JË @

�
é
	
®J


	
£ð , Q�


	
®
�
�
�
�Ë @

iv



RÉSUMÉ

L’IoT est le réseau d’objets physiques qui intègrent des capteurs, des softwares et

d’autres technologies en vue de se connecter à d’autres terminaux et systèmes sur In-

ternet et d’échanger des données avec eux. Cette technologie fournit l’effet de levier

indispensable à l’IoT. Elle est en pleine croissance et promet un immense potentiel

d’amélioration de la qualité de la vie dans différents domaines tels que, la santé, l’industrie,

le transport, etc. L’essor de l’IoT ne change pas beaucoup tout en utilisant la même

technologie, la même connectivité et les mêmes applications mobiles. Cependant, les

appareils IoT doivent assurer la collecte et la gestion des données tout en garantis-

sant les principes fondamentaux de la sécurité, notamment l’authentification, la con-

fidentialité, l’intégrité, le contrôle d’accès, etc. Néanmoins, assurer une communica-

tion sécurisée entre ces appareils nécessite un protocole robuste qui vérifie les iden-

tités et empêche les personnes malveillantes d’accéder au réseau IoT de confiance.

Aussi, ce protocole doit fournir une clé de session sécurisée pour sécuriser la transmis-

sion après une phase d’authentification réussie. Traditionnellement, les clés secrètes

utilisées par ces dispositifs sont à base de solutions cryptographiques traditionnelles.

Ces clés utilisées comme identifiant unique sont insérées dans la mémoire non volatile

des circuits intégrés immédiatement après la fabrication, ce qui les rend vulnérables

à de nombreux types d’attaques et dans le même temps, il est coûteux, difficile et

voire impossible de résister à ces attaques à l’aide de solutions cryptographiques tra-

ditionnelles. En revanche, les algorithmes cryptographiques traditionnels symétriques

ou asymétriques nécessitent une puissance de calcul accrue, une mémoire énorme et des

sources d’énergie élevées pour la sécurité des communications. Cependant, la capacité

de mémoire, la puissance de traitement et les ressources énergétiques limitées des ap-

pareils IoT empêchent l’utilisation de procédures d’authentification typiques dans les

réseaux IoT. Les fonctions physiques non clonables (PUF) sont une alternative impor-

tante en tant que primitive de sécurité prometteuse à faible coût. Une PUF élimine le

besoin de stocker des clés secrètes dans la mémoire de l’appareil, ce qui lui permet de

remplacer efficacement les mécanismes d’authentification dans les systèmes IoT et avec

le moindre coût. Les limites et les défis discutés de l’IoT conduisent à l’introduction

de techniques d’authentification légères qui prennent en compte les caractéristiques et

v



les contraintes uniques de ces appareils. Par conséquent, tout mécanisme d’identité

et d’authentification créé pour l’Internet des objets doit être sécurisé contre les men-

aces physiques, efficace sur le plan informatique et robuste. Par conséquent, l’objectif

de cette thèse est de concevoir un mécanisme d’authentification fort et léger pour les

systèmes basés sur l’IoT utilisant des fonctions physiques non clonables. Cette thèse

propose trois protocoles légers innovants d’authentification mutuelle et d’échange de

clés (MAKEP) utilisant des PUF pour les dispositifs IoT. Le premier protocole, T2S-

MAKEP, assure une communication sécurisée entre les Objets et les Serveurs. T2T-

MAKEP permet à deux appareils IoT à ressources limitées d’interagir via un circuit

PUF intégré, tandis que LT2S-MAKEP est une léger version de T2S-MAKEP.

Mots clés: Fonction physique non clonable, entropie, métriques de sécurité, perfor-

mances, cryptographie, fonction de hachage, protocoles d’authentification, hardware

security, attack.
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CHAPTER 1

GENERAL INTRODUCTION

This chapter presents the motivation behind the presented work, overall this Ph.D. the-
sis, the research method, as well as the goals and contributions of this dissertation thesis.
Finally, this chapter describes the thesis structure.

1.1 Motivation

The use of smart technologies in our daily lives has made our lives smarter and more
intelligent. Electronic smart devices try to make our lives easier by doing or helping
us do things like route planning, navigation, transportation decisions, monitoring traffic
and health, and keeping an eye on our children. [46]. For instance, a user can remotely
connect to his refrigerator and check on food availability, and smart bracelets can pro-
vide us with our heart rate. The ”Internet of Things” (IoT) is a term for this type of
connection between a user and a smart object or between smart devices [47].

IoT is a network of interconnected things that are capable of sensing, acting, and
communicating with one another and with their environment (i.e., smart things or smart
objects), as well as the ability to share information and act autonomously in response
to real-world events by initiating processes and creating services with or without direct
human intervention [48]. Computers, vehicles, smart phones, home appliances, toys,
cameras, medical instruments and industrial systems, as well as animals, people, and
buildings are all connected and capable of communicating and sharing information via
predefined protocols [49].

Such devices are widely used in many applications, starting from smart homes to
public health. Wireless technology is the most means of communication used by these
devices to transfer a large amount of data, making them a prime target for cyber-attacks.
Further, IoT devices face several security issues that must be continuously managed and
maintained, including authentication, privacy, access control, and data collection and
management [50]. However, ensuring secure communication between these devices re-
quires a robust authentication protocol that refers to verifying identities and preventing
malicious ones from accessing the trusted IoT network and a secure session key for se-
curing transmission after a successful authentication phase. Unfortunately, any defect
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in the authentication protocol allows an unauthorized thing to communicate, inject false
data, get access to confidential data, and launch dangerous attacks with other things.

Traditionally, the secret keys, which are used by those devices as a unique identi-
fier, are embedded immediately after manufacturing into the integrated circuits in non-
volatile memory. This makes them vulnerable to many kinds of attacks such as invasive,
semi-invasive, and side-channel attacks [3]. This allows an attacker to steal the secret
key or to make a full copy of the device and use it in identity theft attacks. On another
side, it is expensive, difficult, and maybe not possible to avoid these attacks with the
classical cryptography systems that are based on the concept of a secret binary key.

From another side, traditional symmetric or asymmetric cryptographic algorithms
require more processing power, large memory, and high energy sources to secure au-
thentication and communication. Nevertheless, the limitations in memory capacity, pro-
cessing power, and energy resources of the IoT devices impede deploying conventional
authentication protocols in IoT networks [51].

Recently, a more attractive alternative has become a hot topic in research and de-
velopment that relies on the physical disorder by giving birth to Physical Unclonable

Functions (PUFs) [52].

A PUF is a one-way function that is derived from the behavior of a complex phys-
ical object. When a challenge (input) is presented to a PUF, a corresponding response
(output) will be generated. The latter is determined by a complex physical function
that is unique to each device and it is impossible to be duplicated because they have
uncontrollable physical parameter variations that occur during hardware device man-
ufacture. Nowadays, PUFs are widely used in identification and authentication. Due
to the physical disorder of integrated circuits (ICs) caused during its fabrication by the
manufacturing process. Silicon PUFs [53] are one of the most proposed and discussed
PUF classes to generate a unique digital signature used as the fingerprint of an IC.

PUFs can generate unique secret information from the physical characteristics of
the IoT device and use it as a unique device fingerprint, making PUF a very efficient
solution for IoT authentication protocol. Silicon PUF eliminate the need to store secret
keys in device memory, making them a potential alternative to deploying more secure
and low-cost authentication protocols for IoT systems.

The PUF-based authentication mechanism is a very efficient solution for IoT authen-
tication protocol since it eliminates the need for storing secret keys in the IoT memory.
Based on the randomness found in the physical characteristics of the physical things,
PUFs extract unique secret information and use it as the IoT device identity, as a unique
device fingerprint. Therefore, the latter can be used for IoT device authentication. Also,
it is low-cost security primitive, which makes it robust against physical attacks [51] and
suitable for the constraint of IoT appliances.
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1.2 Problem Statement

The existing security techniques are not longer sufficient for current IoT systems, es-
pecially for IoT constraint devices, as it is challenging to deploy conventional authen-
tication protocols since they require more processing power, large memory, and high
energy sources [50, 3]. Further, IoT devices operate in open and public places without
being physically protected or guarded, which makes them vulnerable to physical attacks
[51]. Despite all of the benefits of IoT, their applications face many security require-
ments that must be assured, including confidentiality, integrity, and authentication for
users, devices, and data. In particular, authentication is the foremost essential and in-
dispensable security mechanism that can guarantee secure communication between the
entities of an IoT network [44]. The discussed limitations and issues related to the IoT
led to the emergence of lightweight authentication schemes by considering the specific
nature and constraints of these devices. Therefore, any identification and authentication
protocol designed for the IoT needs to be robust, computationally efficient, and secure
against physical attacks.

Therefore, the goal of this thesis is to use physical unclonable function to design
a robust and lightweight authentication protocol suitable for IoT based system. This
solution needs to work in a resource-constrained environment, and the system needs to
be end-to-end secure.

1.3 Thesis Goals

The goals of this dissertation thesis are:

• Learn and comprehend the concepts of PUF and IoT.

• Identifying the security issues, and more precisely, the authentication in IoT sys-
tems.

• Reviewing the recent contributions dedicated to IoT PUF-based authentication
protocols and comparing and judging the reviewed state-of-the-arts.

• Proposition of a PUF-based authentication protocol for IoT systems.

• Validation of the proposed schemes using formal and informal security analysis.

• Validation of the proposed schemes through experience and simulation.

1.4 Research Method

A detailed strategy of steps has been followed in this thesis to achieve the goal: 1) un-
derstanding the required background, 2) studying the literature, 3) developing a theoret-
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ical framework for IoT protocols, 4) analyzing security, and 5) simulating the proposed
schemes.

1.4.1 Needed Background

The first task was to study the general area of interest. Which is Physical Unclonable
Function (PUF) and the Internet of Things (IoT), a starting point was investigated, and
analyses of the concept of PUF were conducted by collecting all the needed background
to fully understand its technology in terms of principles of application, architecture,
and vulnerabilities. It was discovered that the PUF technology is a popular security
primitive for IoT systems. In a second time, we have searched and collected the needed
articles related to IoT. This is to study the IoT technology applications, architecture,
and challenges. Authentication was found to be one of the biggest open issues in terms
of security with IoT.

1.4.2 Literature Review

After receiving the needed materials and information related to our topic, the second
task of this project was reading literature on internet of things-based authentication
protocols, where it was discovered that PUF was one of the newest solutions found in
the literature used as an IoT security primitive. Based on these results, a deep survey
related to IoT PUF based authentication protocols was achieved, and the most recent
schemas and approaches were explored and analysed. From this analysis, gaps were
identified.

1.4.3 Theoretical Work

Following the literature review, an IoT PUF-based authentication protocol was pro-
posed. Through the threat analysis and practicality of the existing work, it is recognized
that a given PUF-based authentication protocol for the IoT must withstand and avoid
known attacks, particularly physical and modeling attacks. From another point of view,
most of the existing PUF-based protocols do not take into consideration the environ-
ment variation when using PUF rather than most of the thing-to-thing authentication
protocols are impractical in a real situation. At the conclusion of this stage, three novel
protocols were proposed: 1) thing-to-server (T2S) authentication; 2) thing-to-thing au-
thentication; and 3) store-less authentication.

1.4.4 Security Analysis

Upon completion of the design phase, the goal of this phase of our research was to eval-
uate the security and performance of the proposed protocols. Two methodologies are
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used to conduct the security analysis: informal analysis and formal verification. Ana-
lyzing the protocols against the security requirements stated for each set of protocols
was the objective of the first step. The formal verification was then used to test the
protocols’ correctness and offer systematic verification. Verifpal [45] was used to do
the formal validation. Once the security analysis has been performed, the protocols’
performance will be evaluated. In addition to protocol execution time, computational
and communication overheads are considered while evaluating protocols.

1.4.5 Simulation Modelling

The next task was to evaluate the performance of the proposed protocols. The first step
was to implement an Arbiter PUF design using the PyPuf simulator, which generated
the necessary data, which was then evaluated in PUF performance metrics. Following
that, the Fuzzy Extractor Technique is used to eliminate noise in the PUF response and
generate a stable, reproducible response. Finally, to demonstrate the efficacy of the new
authentication schemes, the performance evaluation results are compared to the most
pertinent literature.

1.5 Scientific contributions

The contributions achieved during this dissertation thesis are presented in the following
list:

• Conference papers

1. Fahem Zerrouki, Samir Ouchani, Hafida Bouarfa. “Quantifying security
and performance of physical unclonable functions”.IEEE 7th International
Conference on Internet of Things: Systems, Management and Security (IOTSMS
2020). Paris, France.

2. Fahem Zerrouki, Samir Ouchani, Hafida Bouarfa. “Towards an automatic
evaluation of the performance of physical unclonable functions”. Springer,
the fourth International Conference in Artificial Intelligence in Renewable
Energetic Systems (ICAIRES 2020). Tipaza, Algeria.

3. Fahem Zerrouki, Samir Ouchani, Hafida Bouarfa. “Towards a Foundation
of a Mutual Authentication Protocol for a Robust and Resilient PUF-Based
Communication Network”. Elsevier, the 18th International Conference on
Mobile Systems and Pervasive Computing (MobiSPC 2021). Leuven, Bel-
gium.

4. Fahem Zerrouki, Samir Ouchani, Hafida Bouarfa. “A Low-Cost Authentica-
tion Protocol Using Arbiter-PUF Springer”. Springer, the 10th International
Conference on Model and Data Engineering (MEDI 2021). Tallinn, Estonia.
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5. Fahem Zerrouki, Samir Ouchani, Hafida Bouarfa. “Generation and Recov-
ery Framework for Silicon PUFs based Cryptographic Key”, Springer, the
10th International Model and Data Engineering (MEDI 2021) Workshops,
Symposium on Intelligent and Autonomous Systems (SIAS 2021). Tallinn,
Estonia.

• Journal papers

1. ZERROUKI, Fahem, OUCHANI, Samir, et BOUARFA, Hafida. A sur-
vey on silicon PUFs. Journal of Systems Architecture, 2022, vol. 127,
p. 102514.

2. Zerrouki Fahem, Samir Ouchani, and Hafida Bouarfa. ”PUF-based mu-
tual authentication and session key establishment protocol for IoT devices.”
Journal of Ambient Intelligence and Humanized Computing (2022): 1-19.

• Paper under review:

1. “Physical Unclonable Function-based Authentication Protocols for Inter-
net of Things: A Review”. Software and Systems Modeling, Impact fac-
tor=2.211, Classe=Q1.

2. “T2T-MAKEP: A PUF-Based Thing-to-Thing Mutual Authentication and
Key Exchange Protocol for IoT devices”. IEEE Internet of Things Journal,
Impact factor=10.238, Classe=Q1.

3. “A Robust and Low-Cost Authentication Protocol for a Secure IoT Com-
munication”. International Journal of Information Security, Impact fac-
tor=2.427, Classe=Q2.

1.6 Thesis Outline

This thesis will be organized as follows:

• Chapter 2 will be the concepts and background, which will include all the im-
portant concepts that are related to our work, especially IoT systems and PUFs,
as they are the main parts of our thesis.

• Chapter 3 will be the stat of the art, where we will present, discuss and compare
the existing IoT authentication techniques and from another side, the existing
PUF-based authentication protocol schemes.

• Chapter 4 will be the contributions, which is the most important part of this
thesis because it is where we will present and outline the proposed protocols.
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• Chapter 5 will be the verification and analysis, which is dedicated for approving
and studying the robustness of the proposed PUF-based authentication protocols
for IoT systems using formal and informal verification tools.

• Chapter 6 will be Implementation, experimentation and simulation, which is
dedicated for approving the proposed authentication protocol through simulation
tools.

• Chapter 7 will be General Conclusion and Future Work, where we highlight
the key conclusions and contributions of our study. We also provide some prospec-
tive research directions.
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CHAPTER 2

CONCEPTS AND BACKGROUND

In recent years, the Internet of Things has become one of the most well-known names
to achieve new heights and establish a global benchmark (IoT). Things in the real world
have become intelligent due to the future of communication. IoT’s functional element
is to connect every object in the world to a single infrastructure, allowing humans not
only to manage those objects but also to get regular and timely status reports. IoT prin-
ciples were introduced a few years ago, and it would not be incorrect to state that this
phrase has become the standard for creating communication among items. However,
specific security measures should be taken to protect the communicated information to
and from these devices. However, the existing conventional security primitives require
large amounts of memory capacity, processing power, and energy resources that con-
tradict the specific nature of devices. On the other hand, they store secret keys on the
devices for future use, making them vulnerable to physical attacks. A new concept,
known as Physically Unclonable Functions (PUFs), has been recently investigated to
mitigate this problem. A PUF is a hardware-specific security primitive uses the ran-
domness found in the disorder of physical media caused by the manufacturing variation
process to provide cryptographic functionalities. Consequently, PUFs are inexpensive
to fabricate, prohibitively challenging to duplicate, admit no compact mathematical rep-
resentation, and are intrinsically tamper-resistant. The main focuses of this chapter are:

1. Introducing the background and concepts related to the Internet of Things.

2. Identifying the main ongoing open problems that IoT is facing.

3. Providing the necessary context and knowledge to understand PUFs and their
applications.

4. Showing how to analyze the performance of PUF.

5. Categorizing the existing attacks proper to PUFs.
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2.1 Internet of things

In 1999, Kevin Ashton coined the term ”Internet of Things” to refer to the network that
connects physical objects to the Internet. But, the concept of the Internet of Things
dates back to the 1980s, when David Nichols, a graduate student in the computer sci-
ence department at Carnegie Mellon University, craved a soda in his office, which was
a considerable distance from the building’s coke machine, and given his classmates’
propensity for caffeine, Nichols knew there was a good chance it was empty or, if re-
cently refilled, the sodas inside would be tragically hot. From this concept, a group of
programmers could connect to the Coca-Cola machine via the Internet to check its sta-
tus and determine whether a cold drink was present or not if they went to the machine
[54].

The Internet of Things (IoT) typically refers to a world of networked smart items,
in which any physical ”thing” with a digital component is interconnected. According
to [47] IoT is defined as follows: A dynamic global network infrastructure with self-

configuring capabilities based on standard and interoperable communication protocols

where physical and virtual ”things” have identities, physical attributes, and virtual per-

sonalities, uses intelligent interfaces, and is seamlessly integrated into the information

network. IoT enables people to have complete and intelligent control over their life by
granting them access to their data from anywhere, at any time, and on any device, and by
enhancing the quality of their businesses’ services. As an example, a home automation
system employs IoT to monitor, regulate, and automate the interconnected electrical
systems in a building. Smartcities provide limitless opportunities for residents to cut
waste and energy usage. IoT has numerous uses in today’s world, such as in health-
care, banking, retail, society, the environment, and manufacturing, among others. The
this first part of this chapter, we provides the necessary background to understand In-
ternet of things technology including characteristics, application, architecture and open
challenges.

2.1.1 Characteristics

Fig. 2.1 shows the fundamental characteristics of the IoT [55, 49] :

• Connectivity: It is one of the most important and standard features of the IoT.
With the global information and communication infrastructure, anything can be
linked to everything else. It helps keep things accessible by connecting the objects
to each other through a network. Also, it helps with compatibility, which is the
ability to send, receive, and make data without any problems or conflicts [49].

• Heterogeneity: IoT devices are different from each other because they use dif-
ferent hardware platforms and networks and can talk to other devices on different
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networks. The lack of a single security service is the biggest problem with het-
erogeneity. Heterogeneity makes it harder for systems to work together and costs
more money and time to interpret each other. Also, it makes security policies and
updates challenging to comprehend [49].

• Sensing and Intelligence: The IoT environment is mostly based on sensing tech-
nologies that detect, measure, and generate status data about our complex phys-
ical world. These technologies give us a true understanding of it or even let us
interact with it in a smart way, thanks to algorithms and computations that make
it smart [55].

• Resources Constraint: The majority of IoT devices lack performance and bat-
tery life. Consequently, older security services such as TLS and AES cannot
be implemented directly to IoT devices. Therefore, these services or algorithms
should be built to be lightweight and simple in order to maximize CPU, memory,
and battery performance [55].

• Dynamic Environment: ToT environments are pretty dynamic. At any time,
devices can be roused, terminated, linked, or disconnected from a network. De-
vices, software, and networks are susceptible to malfunction or compromise. In
IoT contexts, device volatilities are extremely prevalent [49].

• Enormous scale: The number of devices that must be managed and communicate
with one another will be at least an order of magnitude greater than the number
of devices linked to the Internet today. The management of created data and its
interpretation for application purposes will be even more crucial. This relates to
the semantics of data as well as the efficient management of data [55, 49].

• Self-organized Network: The dynamism of the IoT network implies that the
network cannot be statistically organized for its whole life period. It has to be
able to adapt to the constant changes in its environment. It has to think about how
mobile the devices are and how likely it is that new devices will connect or old
devices will leave the network [55].

• Safety: As we obtain benefits from the Internet of Things, we must not neglect
safety. We must design for safety. As both creators and recipients of the IoT, this
involves the protection of our personal information and physical health. Devel-
oping a scalable security paradigm is necessary for securing endpoints, networks,
and the data that flows across them all [49].
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Fig. 2.1 IoT Characteristics.

2.1.2 Architectures

Due to its constant growth and development, the Internet of Things needs a universal
architecture that can be changed to fit its many different types of devices and applica-
tions. At the moment, there is no architecture that everyone uses. Several researchers
have come up with different IoT architectures based on three-layer, four-layer, five-
layer, six-layer, and seven-layer architectures [56]. As illustrated in Fig. 2.2 The three-
layered architecture shows the main idea behind the Internet of Things, which is broken
up into three basic layers and their functions. Next, the layers are shown and talked
about according to the definition given in [47].

1. Application layer: A variety of intelligent IoT application solutions make up
this layer. Due to the immense potential of the IoT market, smart applications
are being developed in practically every area. Numerous Internet of Things (IoT)
applications have already been implemented in a number of industries, including
smart homes, offices, and cities, as well as wearable bands for monitoring one’s
health, traffic, environment, alarm system, and personal assistant. The IoT appli-
cation layer, which acts as an interface between networks and objects, is the top
layer in the IoT architecture. It provides a range of functionalities, including data
formation, presentation, monitoring of device conditions, notifications, and alerts,
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Fig. 2.2 IoT three layer architecture [1].

controlling device functions, management and processing of data, device perfor-
mance optimization, and autonomous operations, all of which are aimed at ensur-
ing end users receive a high level of service. A service support platform, middle-
ware, and computer and communication software are common components of an
application layer. The IoT application layer’s primary objective is to offer various
application services to end users. By protecting applications from illegal access,
assuring software/log integrity, and maintaining the application services’ avail-
ability at all times, data confidentiality, integrity, and availability (CIA) should
be maintained at this layer. Sensitive data processing can lead to problems like
unauthorized access and harmful data manipulation. Additionally, this layer may
be susceptible to various security assaults, such as spoofing, message forging,
viruses, and worms.

2. Network layer: Software, protocols, and technologies that enable object-to-
object and object-to-internet connectivity make up this IoT layer. Local area
networks such wireless and wired networks, personal area networks like ZigBee,
near-field communication (NFC), and Bluetooth, as well as wide area networks
like GSM, LTE, and 5G, as well as cloud computing, are mostly used to cre-
ate it. The M2M communications, machine-to-gateway model, machine-to-cloud
model, and a back-end data-sharing model have been listed as versions of the
IoT communication paradigm. This layer’s primary mission is to send digital sig-
nals made up of data that has been acquired from platforms’ physical layers via a
network connection. This layer is exposed to several security risks and assaults.
Denial-of-Service (DoS), Sinkhole, Hello Flood, and Blackhole are frequent as-
saults in this layer. Secure communication at the network layer is crucial for
secure data transfer over a public network.

3. Physical layer: The physical layer is the core of the Internet of Things architec-
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ture. This layer is also known as the perception layer in the Internet of Things.
Both real-world items and virtual beings are included. This layer’s primary duty
is to gather environmental data using a variety of sensors. Electronic and me-
chanical hardware elements including sensors, antennas, actuators, and CPUs are
embedded in IoT devices. Data processing, identification, connectivity, commu-
nication, and storage capabilities are available in smartphones, RFID technology,
and wearable gadgets. The sensors at the perception layer translate the physi-
cal object data that has been collected into readable digital signals. IoT devices
perceive and collect information from the physical world, including proximity,
humidity, and temperature. But many security attacks, such jamming and tam-
pering attacks, can target this layer of the IoT.

2.1.3 Applications

Through adaptation, IoT has a lot of potential to have positive social, environmental,
and economic effects. Some of the IoT-based concepts include mobility, smart grid,
smart homes and buildings, public safety and environment monitoring, healthcare and
medicine, industrial processing, agriculture and breeding, and independent living [2]. In
some way or another, each of these applications relates to us. The use of these apps and
their striking advantages play a significant role, and there is now a great deal of reliance
on their continued existence. Their existence and usability have recently reached a
visionary level and have taken the utmost significance. It may not be erroneous to say
that the Internet’s future is solely built on the idea and vision of the Internet of Things,
which virtually propels us into the future [57]. Fig. 2.3 illustrates a number of IoT
application areas, that are presented, following [2, 57], as follow:

1. Smart Mobility: Smart Mobility is the methodology that enables efficient, flexi-
ble, and seamless mobility across many modalities. VANETs (Vehicular Ad-hoc
Networks) have attracted considerable interest. Thus, it represents a paradigm
change towards a more flexible and multimodal transportation system. It is a
pillar of the Internet of Vehicles (IoV) that aims to improve road safety by pre-
venting or minimizing accidents and giving new solutions for optimized forms of
mobility. The Smart Traffic System enhances traffic flow based on traffic data col-
lected by IoT-enabled devices. Intelligent traffic management systems necessitate
vehicle identification and traffic factor monitoring. By providing all information
regarding congestion, such as the shortest route and least congested area, intel-
ligent traffic monitoring improves the travel experience. In addition, it provides
road toll collection, traffic accident reporting, vehicle theft detection, and reduced
pollution .

2. Smart Grid: To improve the unwavering quality, reduce the cost, and simplify
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Fig. 2.3 IoT application [2].

the implementation of the traditional power matrix methodology, the Smart Grid
has been planned and implemented. It is anticipated that it will be able to ef-
ficiently increase the quality and power matrix while incorporating increasingly
green and sustainable energy sources including solar power, geothermal heat, and
wind power. It gathers information on energy use and shows the state of the
smart network system. Depending on the specific knowledge and communication
structures of the framework, different applications can be created. The automated
metering framework is one of the techniques that have been suggested to produce
the clever matrix correspondence systems. Security is also one of the most cru-
cial issues in the development of these frameworks because of the vast volume
of information that passes through this particular structure of the project. Attacks
on integrity and the introduction of fake data will annoy the heavy layer charg-
ing structure, the matrix state estimation, the power stream, and delay reaction
requests.

3. Smart Home/Building: A Smart Home or Smart Building is an environment
outfitted with heating, lighting, and other technological gadgets, unlike any other
living environment. The fact that they can be remotely operated by a smart phone
or a computer is a key distinction. In recent years, the notion of ”smart houses”
and ”smart buildings” has emerged by integrating Internet-connected items, such
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as machinery, door locks, surveillance cameras, furniture, and carport entrances,
and managing them by communicating with existing digital frameworks. This
advancement in understanding gives a variety of advantages for improved human
comfort, well-being, safety, and productive use of defining assets, hence enhanc-
ing the quality of life.

4. Public Safety and Environment Monitoring: Public safety and environmental
monitoring is the process of observing weather conditions, endangered species
protection, water quality monitoring, and a variety of other parameters directly or
indirectly associated with our environment. Various sensors and other observa-
tional tools are integrated into applications to monitor environmental changes in
real time. IoT technologies aid in weather forecasting and the prediction of nat-
ural disasters, such as earthquakes, floods, incessant rains, cloud bursting, thun-
derstorms, high speed winds, tides, volcanic eruptions, tornadoes, hail storms,
hurricanes, tsunamis, forest fires, and fires, among others. The IoT plays a sig-
nificant role in predicting the occurrence of natural disasters. This facilitates the
timely evacuation of affected areas. Humans are rescued and relocated to safe
locations. The Internet of Things facilitates the monitoring of air, water, and soil
pollution in a smart environment.

5. Medical and Healthcare: Often referred to as the Internet of Medical Things
(IoMT), this application mode connects healthcare services to the IT system via
multiple computer networks. RFID tags are embedded in RFID-enabled, wear-
able, Internet of Things (IoT)-enabled devices found in smart hospitals. These
wearables are given to hospitalized patients upon their arrival. The doctor and
nurses will be able to monitor the patient’s health by taking note of blood pres-
sure, heart rate, temperature, and pulse, among other conditions. They can be
monitored both on hospital grounds and from the doctor’s home. In emergency
situations such as a stroke, heart attack, or cardiac arrest, IoT is incredibly useful.
Ambulances equipped with IoT-enabled devices arrive on time, and the patient
can be monitored from the hospital while in the ambulance. Prior to reaching the
hospital, treatment can begin considerably earlier. Drone ambulances can trans-
port emergency supplies to the patient, allowing for proper patient monitoring.
Doctors are able to track patients and administer prompt medical care until an
ambulance arrives. IoT is incredibly useful for differently abled, physically or
mentally challenged individuals. The Internet of Things enhances the quality of
life by automating mundane tasks. The machines are capable of monitoring and
making decisions. The IoT is extremely useful in healthcare. Sensors on health
monitoring equipment collect medical information from patients and transmit it
to physicians.
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6. Industrial Processing: In recent years, the IoT concept has also flourished in the
industrial sector. Modern industrial equipment and requirements are so demand-
ing that the IoT’s functional capabilities are either molded or designed to meet
the industry’s needs. Utilizing recognizable evidence and remote, flexible, and
sensor devices to establish the universality of radio-recurrence, IoT has created
the potential for the accumulation of incredible current industrial systems and ap-
plications. In recent years, a vast selection of mechanical IoT applications have
been developed. In general, the combination of sensors/actuators, RFID labels,
and communication constitutes the establishment of the Internet of Things (IoT)
and clarifies how a variety of physical objects and devices in our environment can
be connected to the Internet and enables such objects and devices to communicate
with one another in order to achieve common goals. There is a growing enthu-
siasm for using the advances of IoT in various businesses. Different mechanical
IoT undertakings have been carried out in territories, such as agriculture, food
preparation, ecological observation, security observation, and others.

7. Agriculture and Breeding: Climate-Sensitive Agriculture (CSA) is a method
to reforming and reorienting agricultural production in light of climate change’s
practical implications. There have been substantial developments in the tech-
niques and methods used for agricultural activity. Modern farmers have transi-
tioned from conceptual farming to modernized notions. Researchers in this field
have developed theories and techniques that include smart devices to analyze the
characteristics that contribute to the growth of plants, and agricultural activities
are conducted based on these observations. Automatic temperature management
and other parameters for optimizing production would improve agriculture. It
will monitor soil nutrition, sunshine, and humidity, as well as assure proper wa-
tering and accurate fertilizer application to increase crop yield. This translates
in water and fertilizer savings. Certainly, IoT improves the quality of life for
farmers. The sensor nodes are installed in the ground. Exact soil and agricultural
conditions data and information are collected and analyzed. This analysis facili-
tates effective agricultural planning. They can maintain the health of their crops
by the application of fertilizers and insecticides. Crops will be free of illnesses,
weeds, insects, and other pests if the correct amount of hydration and the right
quality and quantity of pesticides are utilized. It affects the farmer’s life, as he
can earn substantial rewards from his produce. Utilizing innovative technologies,
intelligent agriculture improves the quality and quantity of agricultural products.
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2.1.4 Open Issues

As shown in Fig. 2.4 There are various issues and challenges with IoT that need to be
resolved to ensure wide adoption of IoT. In a smart home, the main door opens using
face recognition, biometric thumb impression, and voice recognition security features.
The heaters and air conditioners monitor and regulate the temperature automatically.
The air controller monitors the humidity and air and regulates it automatically as per
the climatic conditions and as required by users. There is always a risk of security as all
these systems are connected through the Internet and can easily be hacked. Security is
a major concern for unmanned IoT devices, which are geographically distributed. The
sensors consume more energy and are costly, so they are not widely used in all appli-
cations. Various networks and systems are not upgradeable and scalable. This results
in compatibility issues in interoperability and data exchange. Dedicated resources are
required for a single IoT application like smart grids or smart homes. IoT can mend
the usage of the Internet the way it is required by its end-users. This feature also has to
face some of the open issues that are directly or indirectly associated with the concept
of IoT. The most common of them [58] have been discussed as under:

IoT Open Issues

Identification

Authentication
Data

Integrity

Trust

Access
Control

Data
confidentiality

Data
Privacy

Data
Availability

Fig. 2.4 IoT Open Issues.

1. Identification: It is crucial for a smart gadget to know when to expose its identify
and when not to. Disclosing your identify to an attacker can pose a grave risk.
Nonetheless, we must acquire a system that simultaneously gives device identifi-
cation to other authorized devices. Devices that interact with individuals (users)
must recognize their identities and distinguish amongst them.
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2. Authentication: Authentication is challenging because it often necessitates a
suitable authentication infrastructure and servers that accomplish their aim by
exchanging the necessary messages with other nodes. Such strategies are not
viable in the IoT because passive RFID tags cannot exchange too many messages
with authentication servers. The identical logic applies to the sensor nodes.

3. Data Integrity: Cybercriminals are susceptible to a range of external circum-
stances, such as data modifications during the transition, server outages, and elec-
tromagnetic interference. Data integrity is the application of standard surveillance
techniques to secure this valuable data from cybercriminals and prevent external
intervention during transmission and reception. Consequently, the system cannot
alter the data without first identifying the threat. As error detection mechanisms,
checksums and cyclic redundancy checks (CRC) are employed to ensure that data
is accurate and trustworthy.

4. Trust: Trust is a complex, transdisciplinary, and multifaceted notion. Trust en-
compasses a broader scope than security, making its establishment more complex
and challenging. It is also related to the notion of privacy, which refers to an
entity’s ability to select whether, when, and to whom personal information may
be shared. Numerous studies strive to enhance identity trust and achieve privacy
protection in pervasive systems such as the Internet of Things. Many individuals
believe that users will adopt and utilize IoT technology since manufacturers have
ensured the safety of the gadgets.

5. Data confidentiality: Protects the user and ensures that confidential information
can be relied upon by employing a number of techniques to prevent unautho-
rized disclosure. Data encryption, which prevents data from unwanted access,
two-stage authentication, which provides authentication by two dependent com-
ponents, and biometric authentication, each of which is uniquely recognized, are
security measures that secure data privacy. This assures that, for IoT-based de-
vices, sensor networks do not reveal the data of sensor nodes to nearby nodes or
transfer label data to an unauthorized reader.

6. Access Control: Access control refers to the permissions granted to various ac-
tors in a big IoT network to utilize resources. Access control should prioritize
IoT capabilities above per-device granularity, as context-dependent factors sub-
stantially influence access control decisions. Several steps must be completed in
order to give the smart device with the required access control requirements and
authentication.

7. Data Privacy: Due to the proliferation of larger volumes of data in an IoT con-
text, addressing the risk that data will be used for purposes other than or in addi-
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tion to those initially specified becomes even more crucial. As users walk across
IoT environments, devices, sensors, readers, and applications are equipped to cap-
ture a variety of data kinds. There is a chance that individuals could be identified
using the aggregated data. The information obtained based on object identifiers,
sensor data, and the connectivity capabilities of IoT systems may consequently
reveal information about individuals, their habits, location, interests, and other
personal information and preferences maintained for system convenience.

8. Data Availability: When required, IoT provides data to its users. The availability
of data enables the authorized individual to have immediate access to information
sources in both normal and catastrophic circumstances. Implementing a firewall
avoids denial of service (DoS) attacks and prevents end user data from being ac-
cessible. Multiple system failovers are provided by backups and backup methods
to provide system component replication in the case of a system failure or to
assure data integrity and availability.

2.1.5 Summary

In this section, we have defined the IoT concept and its expansion in our lives by pre-
senting its characteristics and applications, and we have also introduced the basic ar-
chitecture. In addition, we have listed the existing open issues related to IoT security,
where we found that authentication is one of the most important security issues fac-
ing IoT. In the next section, we present physical unclonable functions that represent a
fundamental part of our project.

2.2 Physical Unclonable Functions

Integrated Circuits (ICs) and electronic devices have become an integral part of daily
human life (mobile, home, car, etc.). However, specific security measures should be
taken to protect the communicated information to and from these devices. However,
the existing conventional security primitives require large amounts of memory capac-
ity, processing power, and energy resources that contradict the specific nature of de-
vices. On the other hand, they store secret keys on the devices for future use, making
them vulnerable to physical attacks. A new concept, known as Physically Unclonable
Functions (PUFs), has been recently investigated to mitigate this problem. A PUF is
a hardware-specific security primitive that uses the randomness found in the disorder
of physical media caused by the manufacturing variation process to provide crypto-
graphic functionalities. Consequently, PUFs are inexpensive to fabricate, prohibitively
challenging to duplicate, admit no compact mathematical representation, and are in-
trinsically tamper-resistant. This section gives the needed background to understand
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PUF’s ideas by talking about the concepts of randomness and variability, as well as
their classes and properties. Then, the principal metrics used to evaluate the PUFs’ per-
formance and present some related attacks were given. Finally, a short summary of all
the presented background was given.

2.2.1 PUFs background

Some of the most common terms and measurements that describe PUFs are shown in
this section. They help us understand PUFs and how they work.

2.2.1.1 Physical disorder

Physical disorder refers to the random imperfections found in the structure of physical
objects. This phenomenon is typically observed at the nano-scale level of the physical
objects’ structures. Many fascinating randomnesses exist around us, taking various
forms such as biological, physical, chemical entities, and so on, caused by nature or
any manufacturing process [3].

As a naturally physical disorder example, the surface with three-dimensional ran-
dom structures of a coffee bean is presented as a microscopic image as shown in Fig.
2.5. (a). Fig. 2.5. (b) represents the microscopic image of a biological physical disor-
der example of a human tooth. Fig. 2.5. (c) shows the irregular structure of the metal
conductors in a semi-conductor chip fabricated using 90 nm technology.

Fig. 2.5 Examples of physical disorder: (a) a coffee bean, (b) a tooth, and (c) an inte-
grated circuits [3].

This physical disorder is unique to each object and is hard or impossible to replicate,
and it can be used as an identity for this object or the device embedded in it.

2.2.1.2 Manufacturing Variation

As a main principle, the manufacturing process of any product should be identical in its
shape and structure to the needed product design. However, this is not the case in most
modern chips and integrated circuits due to the manufacturing process and continuous
scaling of semiconductor technologies [3].
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The manufacturing process variability is affected mainly by four factors: physical
geometric structure, internal material parameters, interconnect geometry, and intercon-
nect material structures [3]. The impact of variability on the electrical parameters of
very large-scale integrated (VLSI) circuits is expected to be significant. Fig. 2.6 shows
the magnitude of variation in device threshold voltage (Vth) and the performance of
VLSI circuits. We observe that the impact of variations on threshold voltage increases
significantly compared to the performance evaluation of the VLSI circuit, which endan-
gers the stability of the circuit operations. However, these variations can be exploited
to design a physically unclonable function.

Fig. 2.6 The impact of variability on the electrical parameters of VLSI circuits [3].

2.2.1.3 Challenges and Responses Pair (CRP)

Challenges are entries given as inputs to an instance of a PUF. When a challenge stim-
ulates a device where an instance of a PUF is embedded, the latter will interpret it in
its internal system using the complex physical function unique to each device or PUF
instance. Then, the PUF will produce unpredictable but repeatable data, called a re-
sponse. The PUF’s design determines the forms of the challenges and responses.Also,
as a PUF is derived from the concept of one-way function, it should be impossible to
revert the system, meaning that an adversary cannot predict a response as an entry to
find the original challenge or vice versa. Finally, as a PUF will always produce the same
response to a given challenge, we will talk about the Challenge-Response Pair (CRP),
representing the link between a challenge and its response [4].

However, the CRP will change if we build another instance of a PUF (meaning that
we take the same design and the same blueprints but build another one with random
components and in another environment). Indeed, the way the PUF works is always
the same, but due to the manufacturing variation, its internal components are never
identical, causing each PUF to (ideally) always produce different responses compared to
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other instances. This uniquely allows the PUF to play the role of a perfect identification
system, where the set of CRPs is the fingerprint of the PUFs or the device embedded in
[59]. The particular dependence of responses on physical parameters and challenges for
a given PUF was generally called the challenge-response behaviour of that PUF [60].
Fig. 2.7 shows the PUF’s challenge-response behaviour.

Fig. 2.7 The challenge response behaviour [4].

2.2.1.4 Intra-distance

The intra-distance, also called intra-chip or intra-die of a PUF response, is described by
a random variable describing the distance between two responses from the same PUF
instance and the same challenge [61]. By taking two evaluations Ri(c) and R′i(c) of the
same PUF instance i and the same challenge c, let dist [. , .] to be any distance metric
over the response set R, the intra-distance of a PUF i is given by Equation 2.1 [61].

Intra− distancei
∆
= dist

[
Ri(c), R

′
i(c)

]
(2.1)

In this survey, responses are always considered as bit vectors, and the hamming
distance (HD) is used as a distance metric. Therefore, Equation 2.1 will be:

Intra− distancei
∆
= HD

[
Ri(c), R

′
i(c)

]
For a range of [0,1], when the Intra − distancei result is close to ”zero”, that

means the PUF is highly reliable. Conversely, if the result is close to ”one, ” the PUF
is least reliable. This, due to the environmental conditions under which responses are
generated, such as temperature variation and supply voltage [61]. Where the intra-
distance between two responses generated from the same challenge with the same PUF
instance under the same environmental condition is less than the intra-distance between
the same responses generated under two different conditions [62]. Fig. 2.8 shows the
intra-distance of a PUF.
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Fig. 2.8 PUF’s Intra-distance. Fig. 2.9 PUF’s Inter-distance

2.2.1.5 Inter-distance

The inter-distance, inter-chip, or inter-die of a PUF response is described by a random
variable [61]. It is the distance between two responses generated by two different PUF
instances, PUFi and PUFj , stimulated by the same challenge c. For two responses
Ri(c) and Rj(c) of two different PUF instances, i and j, for the same challenge c;
Equation 2.2 uses HD as a distance metric to measure the inter-distance of R(c).

Inter − distanceR(c)
∆
= HD

[
Ri(c), Rj(c)

]
(2.2)

If the result of Equation 2.2 is close to ”zero” for a range of [0,1] that means the PUF
is less unique. Conversely, if the result is close to ”one” the PUF is highly unique. The
inter-distance between PUF responses is also susceptible to variations in environmental
conditions. Fig. 2.9 depicts the inter-distance of a PUF.

2.2.1.6 Environmental effects

In addition to the manufacturing process, which makes the integrated circuits physical
disorder objects, environmental variation or variability in the environmental conditions
plays a significant role in the circuit operating conditions, and it has a significant impact
on the stability and the reliability of the output of the PUF or the device where it is
embedded in. The factors that cause this variation can be temperature, power supply,
ground bounce, crosstalk, radiation hits, or even aging1 [3].

2.2.1.7 PUF properties

To show a PUF’s strength and robustness, we use its CRP, which acts as a signature or
fingerprint. The function ⊓ : C → R such that ⊓(c) = r expresses the relationship
between the challenge and the response, where c ∈ C and r ∈ R. Fig. 2.10 describes
the basic PUF properties that we consider [63, 61, 64, 62].

• Realizable: A given PUF is realizable if it is easy to invoke its creation procedure
and produce a random and unclonable PUF instance given its physical properties.

1In some literature, aging is not considered an environmental effect.

24



Fig. 2.10 The basic properties of PUF [5].

• Evaluable: It means a PUF can[scale=0.5] easily produce a response to a random
challenge. For a given ⊓ and c, a PUF should be easy to evaluate according to the
function r = ⊓(c) since it does not need any specific requirements.

• Reproducible: For a given challenge, the response may diverge due to the phys-
ical environment or the PUF characteristics. Hence, reproducibility means that
the PUF must be able to correct this divergence to generate the same response at
any time. Thus, a response r = ⊓(c) can be reproduced with a small error.

• Unique: The function ⊓ contains the identity-related information about the phys-
ical entity embedding the PUF, which means the CRPs can be used as a unique
identifier of the PUF.

• Physically unclonable: A PUF was considered unclonable when it was not pos-
sible to find a corresponded response r of challenge c without the physical PUF.
Even if an adversary has the PUF, it is not possible to make a PUF copy. For a
given ⊓, it was difficult to fabricate a physical element containing another PUF
⊓’ where ∀c ∈ C : ⊓′(c) ≃ ⊓(c).

• Mathematically unclonable: For a given PUF ⊓, it is hard to construct a math-
ematical procedure f⊓ such that ∀c ∈ C : f⊓(c) ≃ ⊓(c).

• Unpredictable: For a set of CRPs Q = {(ci, ri) : i > 0 ∧ r = ⊓(c)}, it is hard
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to predict r = ⊓(c) up to a small error (r ≈ ⊓(c)) for a random challenge c which
did not appear in Q.

• One way: For a given r and ⊓, it is not possible to find c ∈ C such that ⊓(c) = r.

• Tamper evident: Since a PUF is embedded into a physical entity, any alteration
of this entity will convert ⊓ into ⊓’ and with high probability we got ∃c ∈ C :

⊓(c) ̸= ⊓′(c) even with a small error (⊓(c) ̸≈ ⊓′(c)).

2.2.1.8 PUF classes

As shown in Fig. 2.11, we classify PUFs into four classes concerning the implemen-
tation technology, the size of challenge-response pairs, the response’s dependency, and
the physical construction properties.

Fig. 2.11 The classification of PUFs [5].

• Physical construction properties: This class is based on the physical structure
properties of the PUF that can be intrinsic or non-intrinsic. In the first case,
PUF’s construction needs to meet at least two conditions: its uniqueness must
be assured during the manufacturing processes, and it must internally evaluate
itself from embedded measurement equipment. Otherwise, it is considered non-
intrinsic [65].

• Challenge-response pairs (CRPs): The size of challenge-response pairs (CRPs)
directly impacts PUF applications among metrics that determine their strength
and quality. For the size of CRPs, the results exhibited strong or weak PUFs [19].
The weak have a small number of CRPs due to the lower number of symmetric
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component blocks used to create the PUF [63]. Thus, an attacker can observe
the pairs if he gains physical access to the PUF. Responses from a weak PUF are
not public and not unpredictable [66]. Strong PUFs support a massive number of
CRPs that grow exponentially with the primary cells or the symmetric component
blocks, forming PUFs [63]. This property makes it robust against physical attacks
if an attacker has physical access to the PUF. In this case, it is impossible to read
all the CRPs since an adversary cannot derive a response to an unknown challenge
even with the reverse engineering modeling attacks [67].

• Response dependency: This class is based on the response generation depen-
dency by taking into account the time factor. Practically, the most existing and
used PUFs are static, meaning that the generated response is independent of the
generation time. In addition to the challenges and the physical features, dynamic
PUFs use time as a third dependency, which means dynamic PUFs give different
responses to the same challenge at different time slots. Hence, two categories
exist in this class: static and dynamic.

• Implementation technology: Various materials and technologies such as glass,
plastic, paper, electronic components, and silicon integrated circuits are used to
construct PUFs. Thus, each type of material that can be either electronic or not
was considered a class of PUFs. The non-electronic PUFs can use electronic
subsystems to accomplish their secondary functions [65]. Whereas electronic
PUFs use electronic components for their essential operation, such as resistance
and capacitance [68].

2.2.2 PUFs Performances

To evaluate the performance of a given PUF, we consider the metrics shown in Fig. 2.12:
uniqueness, steadiness, randomness, correctness, bit aliasing, uniformity, reliability,
diffuseness and security [69, 70, 71].

For a better mathematical formulation of these metrics, we first use the notation
shown in Table 2.1.

2.2.2.1 Uniqueness

Let us consider two PUFs with the exact implementation embedded into two devices
d1 and d2 that generate respectively responses Rd1,m and Rd2,m to the same challenge
c under the same measurement m where both responses must be very different. Thus,
the uniqueness requirement measures how much a PUF instance is different from others
by evaluating the uncorrelated responses across dying. When the same challenge sets
are presented to different PUFs, the response of each PUF is expected to be different.

27



PUF metrics

Uniqueness

Steadiness
Randomness

Correctness

Bit-aliasing

Uniformity
Reliability

Diffuseness

Security

Fig. 2.12 The metrics of PUFs [5] .

Table 2.1 The notation symbols.

Symbol Description

d Index of a device (1 ≤ d ≤ D).
D Number of devices.
c Index of a challenge (1 ≤ c ≤ C).
C Number of challenges.
p Index of a PUF bit within a response vector (1 ≤ p ≤ P ).
P Length of a PUF response vector.
M Number of measurements.
m Index of a measurement under an environmental condition (1 ≤ m ≤M ).
R Number of responses generated by a device.
r Index of a response 1 ≤ r ≤ R.
rp,d,m Binary response bit p of a device d within a measurement m.
Rd,m Response vector of a device d for a measurement m with Rd,m = {0, 1}p.
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Uniqueness indicates that responses resulting from evaluating the same challenge on
different PUF instances should be dissimilar with a high probability.

Since the generated response can be (or be transformed into) a vector of bits, the
Hamming distance (HD) will compare two-bit vectors. The HD is the number of posi-
tions in which two PUF responses are different, e.g. “11011” and “11011” is 0, while
the HD of “11011” and “10101” is 3. The device uniqueness is defined as follows:

Uniqueness =
2

D(D − 1)

1

P

D−1∑
d1=1

D∑
d2=d1+1

HD(Rd1,m, Rd2,m)

The main function in this formula is the hamming distance calculation given by HD.
It calculates the sum of XOR operations between each binary response bit rp,d1,m and
rp,d2,m of two responses Rd1,m and Rd2,m in the m measurement. Ideally, the uniqueness
should be close to 50%.

HD =
P∑

p=1

(rp,d1,m ⊕ rp,d2,m)

As illustrated in Fig. 2.13, the two instances d1 and d2 of a given PUF are assumed
to be implemented on two different chips. When a challenge (c1= 1010) is presented in
both instances, with the same measurement m, each PUF generates a unique response.
In this case, the HD between both of them is 2 which means the uniqueness of this PUF
is 37.5%.

Fig. 2.13 An example of the uniqueness evaluation of a given PUF design.

2.2.2.2 Reliability

This requirement shows how stable a PUF design is when the same challenge values are
stimulated for a given PUF instance while the latter should generate the same response
values. It measures the repeatability and the consistency with which a PUF generates its
response across environmental variations such as ambient noise and aging. To measure
the reliability of a PUF, we evaluate the deviation/bias degree of a response generated
from the same challenge across different measurements.

For a given device d1 which has a response Rd,m1 of P -bit reference at normal
operating conditions m1 and the response Rd,m2 of P -bit at different conditions m2
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for the same challenge c, the reliability is defined as follows using Hamming distance,
where less reliability means more changes and instability. The optimal value of the
reliability indicator should be 100%.

Reliability = 1− 1

RMP

M∑
m2=2

P∑
p=1

(rp,d,m1 ⊕ rp,d,m2)

By taking the example of the device d1 depicted in Fig. 2.14, when a challenge (c1 =
1010) is applied on this device at two different temperatures, m1 (30k) and m2 (80k),
we observe that the initial response ’10100101’ differs from the second one ’10101101’
only on one bit. Then, the reliability of the PUF design embedded on d1 is 93.75, which
means it is not a very reliable design.

Fig. 2.14 An example of the reliability evaluation of a PUF design.

2.2.2.3 Uniformity

This metric estimates how uniform the n-bit of a response Rd,m are distributed by mea-
suring the percentage of ‘0’s and ‘1’s in the response bits. For an excellent response,
the proportion of ‘0’s and ‘1’s in its responses should be equal to 50%. The PUF in-
stance is biased towards ‘0’ or ‘1’ in its responses. In this case, the attacker can guess
that response. The uniformity of the response bits Rd,m is defined as the percentage of
Hamming weight (HW) of the n-bit response. So, the uniformity of a response Rd,m for
a PUF instance d, generated with m measurement, is defined by:

Uniformity =
1

P

P∑
p=1

(rp,d,m)

Taking for example the 8-bit response of ‘01010101’. The HW of this response is 4
and its uniformity is 50%, which makes it uniform. This due to the same ratio of ones
and zeros in the given 8-bit response.

2.2.2.4 Randomness

The P-bit response of a PUF is expected to be uniformly distributed, so the randomness
measures the balance of ones and zeros of the response bits value rp,d1,m. The optimal
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value of the randomness metric is 100%, and for a device d, it is calculated by:

Randomness = −log2max(pd, 1− pd)

pd is the relative frequency of ‘1’ appearing in all the response bits R generated in a
device d at different measurements m, and it is given by:

pd =
1

RMP

R∑
r=1

M∑
m=1

P∑
p=1

rp,d,m

2.2.2.5 Correctness

This requirement gauges how well the PUF responses are accurate. Imagine that a part
of the device where a PUF is embedded is broken for some reason after the correct
response r for a given challenge c is determined. Then, compared with the correct
response, a PUF instance on the device could always generate a wrong response bit
value for the same challenge c. In this case, the new response r′ becomes stable but
incorrect. The correctness requirement is to determine if such a device is defective or
degraded by aging. Correctness is similar to reliability, and its ideal value is 100%. It
is calculated as follows.

Correctness = 1− 2

RMP

M∑
m2=2

P∑
p=1

(rp,d,m1 ⊕ rp,d,m2)

The relationship between reliability and correctness is defined by:

Correctness = (2 ∗Reliability)− 1

2.2.2.6 Bit-aliasing

This metric estimates the bias of a particular response bit among the set of PUF in-
stances. The bit-aliasing of rp,d1,m for a challenge c is estimated as the average Ham-
ming weight of the pth bit across different PUF instances. Ideally, this value should be
around 50%. The bit-aliasing of the pth response bit generated on the same measure-
ment m, across D different devices is given by:

Bit− Aliasing =
1

D

D∑
d=1

rp,d,m

Taking for example the challenge (c1 = 1010) applied to three different devices d1,
d2 and d3 with the same measurement m (see Fig. 2.15), the HW value of the 1th bit
is 2. so, the bit-aliasing of this bit is 67% which means that this bit is biased towards
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binary value 1.

Fig. 2.15 An example of bit-aliasing evaluation of the 1th bit.

2.2.2.7 Steadiness

When applying the same challenge c to the same device d1 with different measurements
m, the output responses R are expected to be identical. The steadiness measures the
degree of bias of the pth response bit rp,d1,m for the given challenge. Steadiness is how
strongly rp,d1,m is biased toward 0 or 1, and its optimal value is 100%. That is calculated
as follows.

Steadiness = 1 +
1

RP

R∑
r=1

P∑
p=1

log2max(pd, 1− pd)

where

pd =
1

M

M∑
m=1

rp,d,m

Fig. 2.16 represents the steadiness metrics of the 1th bit of the response generated
for the same challenge c1 on the same device d1 with two different measurements, m1

(30k) and m2 (80k). The steadiness of this bit challenge is 25% which means that this
bit is biased towards binary value 0.

Fig. 2.16 An example of the steadiness evaluation of the 1th bit.

2.2.2.8 Diffuseness

As a result of applying different challenges to the same PUF instance, the generated
responses should be different. The diffuseness represents the difference among the
generated responses from different challenge sets in the same PUF instance. Using the
mean Hamming distance (HD) of the generated responses R from the challenges C, on
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the same device d1 and with the same measurement m. The diffuseness of the device d

is defined by:

Diffuseness =
4

P.R2

R−1∑
r1=1

R∑
r2=r1+1

P∑
p=1

(r1(p,d,m) ⊕ r2(p,d,m))

Fig. 2.17 An example of the diffuseness evaluation of a PUF design.

Any cryptosystem is exposed to classical cryptosystem attacks like trying to read out
secret keys from memory and communication attacks, in addition to two new threats:
Side-Channel Attacks, where an attacker has physical access to the device, and mod-
eling attacks, where the adversary has a large number of CRPs. In addition to these
metrics, some researchers consider security as a metric too[72].

2.2.2.9 Security

It is the ability of a PUF to resist all attacks. In contrast to the previous metrics, there is
no specific formula to evaluate the security of PUFs.

2.2.3 PUFs Attacks

PUFs are a great solution to replace the actual protection mechanisms, such as hash
functions and secret-key algorithms. Unfortunately, they are not entirely secure and
suffer from some vulnerabilities. Strong PUFs are very difficult to break, and the current
technologies are not advanced enough to manage to break them compared to weak PUFs
that can be easily broken by different types of attacks. Security attacks are generally
classified into invasive, semi-invasive, and non-invasive attacks [3].

2.2.3.1 Non-invasive attacks

Non-invasive are low-cost attacks based only on observation and speculation about the
device without harming it. This type of attack does not need much equipment as the field
of action is restricted. The attackers extract secret information by exploiting only the
observed data (e.g., power consumption, delay time, and CRPs) without direct access to
PUF components. The two most celebrated types of non-invasive attacks are machine
learning (ML), and side-channel attacks (SCAs) [73].
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• Machine learning attacks: Strong PUF’s challenge-response behaviour is vul-
nerable to modeling attacks, which use machine learning algorithms to predict
PUF responses. The principle of machine learning is to create a specific algorithm
and give it some sample data to train the algorithm and create a statistical model
that will simulate the PUF’s behavior. Then, it will be easy to request the model
to predict new data. After constructing an adversary machine and collecting a
subset of all the CRPs of the target PUF, the attacker can build a numerical model
from the collected CRP data. Thus, the model can be used for future response pre-
diction to arbitrary challenges with high probability. In [74], (author?) showed
that several PUF architectures [7, 75, 8, 16, 6, 76] can be broken using various
machine learning techniques, including Support Vector Machines (SVMs), Evo-
lution Strategies (ES), Logistic Regression (LR), and also briefly Neural Nets and
Sequence Learning [77]. In [78], probably approximately correct (PAC) learning
has been used to develop attack models for Arbiter, XOR Arbiter, RO-PUF, and
BR-PUFs. To check the robustness of PUFs towards ML attacks, (author?) [79]
developed a testing environment, called PUFmeter, to evaluate the security of
PUFs under ML attacks. Also, (author?) [80] relied on the PAC-learnability of
PUFs to derive the PAC-learnability bound from the representation of a PUF ar-
chitecture described in the PUF-G language [80]. Then, they verify the robustness
and resilience of the given PUF against ML-based attacks.

As a countermeasure against ML attacks, (author?) [81] proposed raising the
number of XORs in an XOR Arbiter PUF and a Lightweight PUF. In order to
mitigate the PUF modeling vulnerability, (author?) [66] proposed to encrypt
challenge-bit via the AES algorithm, where the encryption key is generated using
a weak PUF. Similarly in [82], instead of storing the response, the hash value of
the PUF response is stored on the server. To resist against ML attacks, (author?)
[83] proposed a new PUF construction called a CRC-PUF where the input chal-
lenges are de-synchronized from the output responses. (author?) [84] proposed
a challenge permutation and substitution techniques to increase the ML-attack
resistance of Strong-PUFs. They showed that the predictability of Arbiter-PUF
and TCO-PUF responses could be reduced to less than 70%. (author?) [85]
showed that challenge obfuscation schemes implemented on a standard arbiter-
PUF makes it secure against modeling attacks.

• Side-channel attacks: Another non-invasive example that is (hopefully) more
complex is the side-channel attack [86], well-known in cryptanalysis. The idea
is to exploit leaked information from the physical implementation of a crypto-
graphic primitive of the device running the algorithm or the physical system
regarding PUFs and extract information as much as possible to understand the
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algorithm’s behaviour. For example, when attempting to break RSA, some at-
tackers tried to measure their CPU usage to understand when the most extensive
computation occurs, which one, and even the produced data. This type of attack
is classified into two groups: passive and active attacks. The attacker observes
side channels in the first case, such as timing delays, power consumption, tem-
perature, and electromagnetic noise. In the second, the attacker requires infor-
mation on the internal structure and operation of the PUF, such as fault injection
methods [87]. Various s-channel techniques have been applied to PUFs, such as
Helper Data Leakage, Power Analysis Attacks, and Fault Injection Attacks [3].
(author?) [88] exploited the information leaked through the power side-channel
in the initial step in the syndrome decoding phase of BCH and Reed-Solomon
decoder fuzzy extractor implementations to recover the fuzzy extractor’s input
that refers to the PUF’s response. (author?) [89] have demonstrated how RO
PUFs can be attacked using electromagnetic (EM) attacks. In [90], (author?)
analyzed side-channel vulnerabilities of the Loop PUF and showed that it is vul-
nerable to side-channel analysis (SCA) attacks. (author?) [91] proposed a power
consumption and time-side channel attack method for XOR PUF and lightweight
security PUF. (author?) [85] showed that arbiter-PUFs based challenge obfusca-
tion schemes are vulnerable to power side-channel attacks. In [73], authors have
also proposed a combined side-channel and modeling attack.

As a countermeasure against PUF Side-channel attacks, (author?) [89] proposed
a measurement path randomization by randomizing the RO selection logic and
the interleaved placement to disguise RO EM emission as two countermeasures.
Also, to mitigate the attack presented in [90], they introduced a countermeasure
based on temporal masking to thwart side-channel analysis that requires only one
bit of randomness per a PUF response bit. (author?) [85] proposed dual flip-
flop mitigation and randomized response settings to improve the resiliency of
challenge obfuscation PUFs against power trace attacks.

2.2.3.2 Invasive attacks

This type of attack is among the most expensive ones where the attacker can extract
information from the system, understand the internal behavior, and access the device.
However, the required equipment to achieve this type of attack is expensive and requires
more knowledge and time. However, invasive attacks are less popular, and they need
more sophisticated equipment and precise expertise. Micro-probing and reverse engi-
neering are two types of invasive attacks [92]. The first one requires a micro-probing
station, a gigantic microscope with some probes to get information, such as the electric
signals, from the circuits to understand the interactions between the different compo-
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nents and when they need to communicate. This station can also be used to alter the
device, as we can manipulate the system. And the second one requires observing and
manipulating the device or the software to derive some information about its behaviour.
Then, the attacker can attempt to reproduce it.

2.2.3.3 Semi-invasive attacks

This class is a compromise between the attacks categories mentioned above. In terms
of requirements (affordability and knowledge), it is between invasive and non-invasive.
In addition, there are many other types of attacks appropriate to a specific target of
a PUF design. They have access to some parts of the internal devices in a system
without damaging them. For example, an attacker can add extra circuitry with malicious
functionality into a PUF design. When the PUF is used, the attacker uses this circuit to
access the PUF. This attack is called ’Trojan insertion’. Also, the PUF can be attacked
by exploiting the vulnerabilities of the application domain, like the man-in-the-middle
attack, where the attacker tries to intercept the transport data used in the authentication
protocol [3].

2.2.4 Summary

In this section, we have defined physical unclonable functions in general. First, we
presented the different aspects and concepts that allowed the birth of PUFs. We also
provided the needed PUF properties and their classifications regarding the implemen-
tation technology, the size of challenge-response pairs (CRPs), the response’s depen-
dency, and the physical construction properties. After that, we have presented the nine
metrics used to evaluate PUFs by giving the mathematical formula and the graphical
representation for each metric, except the security one. Finally, we have classified the
existing PUF attacks into non-invasive, invasive, and semi-invasive.

2.3 Conclusion

In this chapter, we present the necessary context and concepts for the subject of this
thesis, such as the internet of things and physical unclonable functions. In the first sec-
tion, we discussed the IoT by discussing its characteristics, applications, architecture,
and open concerns. Second, we have described the various factors and ideas that led to
the development of PUFs. In addition, we included the necessary PUF features, their
classifications, and the existing assaults.

In the following chapter, we will conduct a literature review pertaining to our issue,
beginning with a discussion of the silicon PUF architectures and applications, followed
by a survey of IoT-based authentication mechanisms. IoT PUF-based authentication
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mechanisms will next be examined, discussed, and compared. The next chapter is vital
to the description of the proposed protocol.
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CHAPTER 3

STATE-OF-THE-ARTS

With the wide range of IoT applications, vast amounts of data are collected, extracted,
managed, communicated, analyzed, and stored. Furthermore, because of the physical
characteristics of IoT devices, such as memory capacity, processing power, and energy
resources, it is difficult to apply traditional cryptosystems and symmetric/asymmetric
algorithms to constrained applications. Their complexity makes them unsuitable for
ensuring the security of IoT systems, including authentication, privacy, access control,
as well as data collection and management. Authentication is a critical requirement and
the main security challenge in the IoT. Any weakness in the authentication process leads
to a compromised IoT network. Authentication refers to how to verify a device’s iden-
tity and prevent malicious devices from accessing the IoT system. In the last decade,
PUFs became a perfect and ideal security primitive used in IoT systems, principally
during the authentication phase, based on the PUF’s behavior.

The main focus of this chapter are:

1. Surveying the recent silicon PUF architectures and applications.

2. Comparing the existing architectures and applications related to silicon PUFs.

3. Surveying the existing techniques used in IoT-based authentication protocols.

4. Given a review of recent existing contributions to IoT PUF-based authentication
protocols.

5. Classify, compare and discuss the reviewed work.
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3.1 Silicon PUF

This section focuses more the existing architectures proper to Silicon PUF as well as
their related applications.

3.1.1 Silicon PUF Architectures

The PUF is a one-way function that exploits the unique random imperfections found at
the nano-scale level of the structure of physical objects [3]. A PUF could be defined as
a “digital fingerprint” that is derived from a complex physical object. It is like a black
box that takes a challenge as input and produces a response that can be used as a unique
identity of the subject or as a cryptographic key.

The term ”silicon PUF” has been introduced in [93], which refers to physical un-
clonable objects built using conventional integrated circuits. Silicon PUF forms a major
subclass of electronic PUFs considered integrated circuits (ICs). They can be embedded
in silicon chips to accomplish PUF’s goals by exploiting their manufacturing process
[68]. The Silicon PUF is certainly the simplest PUF as it does not require any modifi-
cation in the manufacturing process to be used. It exploits the inherent manufacturing
variations of transistors and wires that differ from one circuit to another, even if they
are part of the same silicon wafer. The Arbiter PUF is the first silicon PUF, introduced
by (author?) [76].

According to the different sources of variation, silicon PUFs can be categorized into
three major classes: delay-based PUFs, memory-based PUFs, and analog electronic
PUFs.

3.1.1.1 Delay-based PUFs

The response generated by the delay PUFs depends on the propagation delay between
the different delay paths of the PUF’s circuits, and it can be affected by the temperature
changes of the circuit [94]. Mainly, this type of PUF includes:

• Arbiter PUF: Due to the inherent manufacturing variations of transistors and
wires, each IC has its own unique delay characteristics, (author?) [6] used this
property to build secret information unique to each IC, which is called arbiter-
based PUF or multiplexer (MUX) PUF.

The idea behind the arbiter PUF is to explicitly introduce a race condition between
two digital paths on a silicon chip. It consists of the two delay paths as chains
of switch blocks (multiplexers) and an arbiter block at the end of the chain. As
shown in Fig. 3.1, the switch block has two possible configurations depending on
the challenge bit; straight if the challenge bit is 0 and crossed if it is 1. Each switch
block has three outputs: the two outputs from the previous stage and a single bit
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of the challenge. The inputs of the first switch block are connected to a common
enable signal, and the outputs of the last switch block are connected to the arbiter
block, which determines which signal arrived first. The arbiter generates a single
bit known as the response bit based on this result.

Fig. 3.1 First structure of Arbiter PUF [6].

The same authors of [6] showed that by exploiting the linearity of delay paths, an
arbiter PUF was not secure against machine learning attacks. To introduce non-
linearity into the PUF scheme, they proposed the feed-forward arbiter PUF (FF
APUF) [95], which is an extension of their primary arbiter PUF, where an inter-
mediate arbiter internally generates some challenge bits. Then, these challenges
are hidden from an adversary.

Fig. 3.2 depicts the concept of a feed-forward arbiter PUF scheme with one feed-
forward arbiter.

Fig. 3.2 The feed forward arbiter PUF [7].

In the same direction, several constructions based on the Arbiter PUF have been
proposed, such as: XOR PUF or XOR-Arbiter PUF [16], Feed-Forward XOR
PUFs [75, 9], Lightweight PUF [7], m−n APUF [96], Multiplexer-based arbiter
PUF [11], multi-PUF (MPUF) [12], multi-PUF [97], and Interpose PUF (IPUF)
[14].

XOR PUF or XOR-Arbiter PUF [16] combines several rows of the basic arbiter
PUF by XORing the outputs of each arbiter PUF into a one-bit response. The
length of this implementation is measured by two factors (the length of the chal-
lenge’s number of switch blocks and the number of rows that indicate the input
size of the XOR). Fig. 3.3 shows a 2-XOR PUF with two rows and n switch
blocks.

Recently, (author?) [75, 9] proposed Feed-Forward XOR PUF, which is a com-
bination between Feed-Forward APUF and XOR PUF. Instead of using APUF as
a component of XOR PUF, FFXOR PUF uses FF APUF as a new component.
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Fig. 3.3 An example of 2-XOR PUF [8].

According to [75] [75, 9], FFXOR PUF has shown good reliability, uniqueness,
and resistance against attacks compared with the classical XOR PUF. However,
no document has proposed or analyzed the safety and reliability aspects of this
proposed PUF. Fig. 3.4 shows the general architecture of the Feed-Forward XOR
PUF.

Fig. 3.4 The architecture of Feed-Forward XOR PUF [9].

Lightweight Secure PUFs or Lightweight PUFs have been introduced by (au-
thor?) [7]. It is a variant of the XOR APUF based on several APUF arranged in
parallel. However, the challenge bits are rearranged and modified for each chain.
Also, the output response bits of each chain are XORed to obtain a multi-bit re-
sponse. Fig. 3.5 shows the general architecture of the LSPUF. Since LSPUF
outputs are generated using x-XOR PUF, most of the attack strategies developed
for XOR PUF can also be applicable to LSPUF, which consequently makes it
vulnerable to LR[98] when x≤9.

Fig. 3.5 The architecture of LSPUF [7].

From a security perspective, (author?) [74] showed that all the previously pre-
sented PUF implementations can be attacked using ES and LR machine learning
attacks, and recently, in [99] authors proved that APUF, XOR APUF, and FF
APUF are vulnerable to Deep Learning (DL) modeling attacks. To enhance the
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unpredictability of APUF’s responses, (author?) [96] proposed m− n APUF or
double arbiter PUF (DAPUF). Like n−XOR PUF, it is based on APUF, where
m refers to the number of chains and n to the length of the response. Instead of

Fig. 3.6 The structure of the 2− 1 Double Arbiter PUF [10].

comparing the propagation delays of two paths of the same chain like APUF do,
DAPUF compares the propagation delays of the same paths across m chains. The
response of DAPUF is obtained by XORing all the results of the last comparison
process. The experimental results showed that the uniqueness of the proposed 3-1
DAPUFs was approximately 50%, which is much superior to that of 3-1 APUFs.
In [100], (author?) proposed a 4-1 Double Arbiter PUF and compared 3-1 DA-
PUF with 3−XOR PUF. This comparison showed that 85% of the responses from
the second design could be predicted with machine learning. Contrarily, a 3-1
DAPUF resulted in a prediction rate of 57%, and recently, modeling attacks have
been successful against different DAPUFs architectures [10] except for the 4-1
DAPUF. Fig. 3.6 shows the structure of the 2-1 DAPUF.

(author?) [11] proposed a Multiplexer-based arbiter PUF (MPUF) built with
multiplexers and APUFs. An (n, k)−MPUF consists of a 2k−1 MUX and 2k+k

APUFs where each APUF receives n bit challenge. The outputs of 2k+k APUFs
are used as inputs of MUX, where each MUX of the 2k − 1 MUXs has three in-
puts, two data inputs from 2k APUFs, and one selection input from k APUFs. The
2k−1 MUX selects one of the data inputs as the final response. The robustness of
this PUF is that an adversary does not have access to responses of 2k + k APUFs.
Fig. 3.7 shows the architectural overview of an (n, 3)−MPUF which generates a
one-bit response to an n bit challenge by using 7 MUXs and 11 APUFs.

Based on PUF composition principles, two major challenges have been identified
to overcome vulnerability against modeling and statistical attacks and lack of
reliability. In the same paper, (author?) [11] proposed two other variants, rMPUF
and cMPUF, to ensure reliability and to resist respectively to ML-based attacks
and linear cryptanalysis (LC) attacks. Unfortunately, MPUF and its variants can
be broken by two recently proposed attacks: logical approximation method and
filter-based global approximation attacks [101]. Fig. 3.8 shows an example of
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Fig. 3.7 The structure of (n, 3)−MPUF [11].

(n,3)-rMPUF and (n,2)-cMPUF MPUF variants.

Fig. 3.8 Example of MPUF variants: (a) the basic (n,3)-rMPUF and (b) (n,2)-cMPUF.
[11].

Using the same names but with different implementations, (author?) proposed a
new arbiter-based multi-PUF (MPUF) [12] as a combination of weak and strong
PUF. As shown in Fig. 3.9, MPUF is composed of n PicoPUF [102] and one
Arbiter PUF with n switch blocks. To mask the original challenge bit Ci, it is
XORed with the response ki of the ith PicoPUF to generate the new challenge
C∗i, which is used as the challenge for APUF. As the input of the strong PUF
is depending on the output of weak PUF(s), the response of this strong PUF has
a strong uniqueness and reliability. MPUF is vulnerable to Deep Learning (DL)
modeling attacks [99].

(author?) [13] showed that the uniqueness and the reliability of PUFs could not
be guaranteed due to the low hardware resources and the small CRP space. Thus,
to enhance the performance of PPUF, they proposed a reconfigurable Pico-PUF
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Fig. 3.9 The multi-PUF design based on a PicoPUF and APUF [12].

(RPPUF) composed of two configurable logic structures, as shown in Fig. 3.10.
The RPPUF is a simple NAND-based SR latch with two flip-flop structures and
two configurable logic circuits connected before the set-reset latch.

Fig. 3.10 The proposed RPPUF design with configurable logic [13].

Another multi-PUF implementation was proposed by (author?) [97] by combin-
ing the Ring-Oscillator PUF [16] and Arbiter PUF. The composed PUF is called
a Composite PUF, and it is characterized by a larger challenge space and superior
quality metrics for each of its components. However, this combined PUF is not
secure against cryptanalysis, and modeling attacks [98].

(author?) proposed one of the most recently designed strong PUFs, called Inter-
pose PUF (IPUF) [14], a combination of two XOR PUF. As shown in Fig. 3.11,
an (x, y)-IPUF consists of two layers, the upper layer and the lower layer. The
upper layer is a x-XOR APUF (x arbiter PUFs) with n challenge bits, whereas
the lower one is a y-XOR APUF (y arbiter PUFs) with n+ 1 challenge bits. The
response rx of the x-XOR APUF is interposed in the nth challenge bit to form
n+ 1 challenge bits.

The experimental results showed that iPUF is not vulnerable to the reliability-
based machine learning attack (CMA-ES) and the classical machine learning at-
tack (Logistic Regression). But, the iPUF of 64-bit challenge length and size of
8 APUF in both layers is broken by the modeling attacks [103].

In order to improve APUF’s security against machine learning attacks, (author?)
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Fig. 3.11 The structure of the (x, y)-iPUF [14].

recently proposed a complex model of APUF, called the Racing APUF (R-APUF)
[15]. R-APUF consists of two symmetric paths. However, instead of MUX, the
path of R-APUF consists of sub-chains. Each sub-chain has a series of stages
based on MUX. the sub-chain is ended by a route selector such as an AND gate
or OR gate. R-APUF is characterized by the number of sub-chain in each path
and the number of channels in each sub-chain. The structure depicted in Fig. 3.12
can be referred to as a 2-channel 2-stage R-APUF.

Fig. 3.12 2-channel 2-stage racing APUF [15].

• Ring-Oscillator PUF: Rather than the basic arbiter PUF and its derivatives, ring
oscillator PUF (RO PUF) is another PUF design based on the delay difference of
identical electrical paths initially proposed by (author?) [16].

As represented in Fig. 3.13, a typical RO PUF consists of N identically laid-
out delay loops, or ring oscillators (ROs), two multiplexers, two counters, and
an arbiter. Theoretically, each RO oscillates at the same frequency, but due to
manufacturing variations and environmental conditions, it oscillates at a slightly
different frequency. To generate a one-bit response from these N ROs, a pair of
ROs needs to be selected. This selection is determined by the input (challenges)
applied to both MUX and a comparison of the frequency of the selected RO
pair. The response bit is set to 1 or 0 depending on the comparison, 0 if the first
oscillates faster than the second, and 1 if it is not. From N ring oscillators, RO-
PUF can produce log2(N !) bits [16]. For example, 32 oscillators can produce 118
bits. Compared to APUFs, RO PUFs allow easier implementation for FPGAs
and ASICs, easier evaluation of entropy, and higher reliability. Nevertheless,
RO PUFs took longer, used more power, and needed more space to make the
responses.
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Fig. 3.13 Ring oscillator based PUF circuit [16].

Due to the low number of CRPs generated by RO PUF, it was classified as a weak
PUF and is vulnerable to cryptographic analysis attacks. In [74] they showed
that machine learning algorithms could model RO PUFs, and in [104] they used
electromagnetic attacks to break the security of RO PUFs. Therefore, several
variants of RO PUFs have been proposed.

To reduce the noise in RO PUF responses and increase the number of CRPs of
the basic RO PUF, the first configurable ring oscillator PUF (CRO PUF) has been
introduced in [17]. As shown in Fig. 3.14, a multiplexer has been added after
each stage of the RO to check if the inverter will be selected as a member of the
RO. According to the input selection bit, each MUX selects one output of the two
inverters. So for RO with three stages, eight configurations are possible.

Fig. 3.14 Configurable RO [17].

Based on the same idea, (author?) [18] proposed another configuration of RO
PUF, called configurable RO PUF or flexible RO PUF [18]. Fig. 3.15 shows that
the selection of an inverter from the ring is chosen dependingn the input selection
bit. If the bit is 0, the corresponding inverter is discarded, else it will be used
in the ring. So, for a RO with three inverters, eight configurations are possible.
CRO PUF is vulnerable to modeling attacks while it is characterized by a low
number of CRPs as well as to machine learning attacks [105]. Fig. 3.15 depicts
the architecture of one ring of CRO PUF.

(author?) [106] proposed the k-sum PUF that consists of k pairs of ring oscil-
lators. To generate the one-bit response, k-sum PUF measures the difference
between two delay terms, each produced by the sum of k ring oscillator values.
To build these two terms for each k stage (Fig. 3.16), the challenge bit Ci defines
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Fig. 3.15 Architecture of the configurable RO [18].

which RO is used to compute the bottom and top delay terms. However, K-sum
PUF is vulnerable to machine learning attacks [107].

Fig. 3.16 K-sum PUF [19].

In [20], (author?) proposed the Transient Effect Ring Oscillator (TERO) PUFs
as an alternative to RO PUFs with a similar structure, but it is constructed from
TERO cells that have two states: stable and transient oscillating. As shown in
Fig. 3.17, the basic structure of a TERO PUF is an RS flip flop, where the TERO
cell is composed of two identical and symmetrical branches (Branch 1, Branch
2). Each branch is designed with an initialization stage and inverters whose exact
number is used for both branches. The circuit starts oscillation for a short time by
setting the init signal to one and depending on the mismatch in the delays between
the two branches of the TERO cell caused by CMOS process variations. This
behavior results in a finite number of oscillations of the TERO cell output that is
considered as the TERO PUF response. Also, they showed that TERO PUF is not
as susceptible to frequency injection and cloning attacks through electromagnetic
analysis. But in [108], (author?) showed that using non-invasive electromagnetic
measurements and tailored attack methodology could recover up to 25% of the
TERO PUF response’s bits without errors.

Fig. 3.17 Generic Structure of a TERO cell [20].
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Recently, (author?) [21] proposed a new FPGA-compatible design named the
Delay Difference PUF (DD-PUF), which requires a minimal area footprint and
provides excellent reproducibility under temperature and supply voltage varia-
tions. Fig. 3.18 describes a single DD-PUF cell composed of two inverters (I1
and I2), interposed between two D-Latches (L1 and L2) forming two identified
paths that can be identified (P1 = L1-I1 and P2 = L2-I2 ). The DD-PUF needs
two control signals, START and RESET, connected to the enabling gate and used
to clear the pins of the two latches. When the asynchronous RESET is set to 1,
both latches’ output pins are forced to 0. When the START signal is set to 1 for a
period of time interval, an oscillatory state is produced within the DD-PUF cell.
At this point, only the small delay difference between P1 and P2 determines the
resulting stable bit (response).

Fig. 3.18 The architecture of a single DD-PUF cell [21].

• Glitch PUF: It is the first FPGA-specific PUF [22] design proposed to reduce
the ease of predicting the relationship between challenges and responses in delay
PUFs. GPUF exploits glitch waveforms caused by variations in the delay be-
tween gates to generate the responses. Its architecture consists of three parts: 1)
a combinational circuit for generating glitch waveforms, 2) a sampling circuit for
Glitch, and 3) a response generator. First, the input value of the glitch generator
is presented to a data register as a challenge. Then, the acquisition of the glitch
waveforms. Finally, the conversion of the waveforms into response bits. Com-
pared to other PUF designs, GPUF has good performance, and it is ranked among
the most secure PUFs against modeling attacks. Fig. 3.19 represents the whole
structure of Glitch PUF.

As shown in Fig. 3.19, the circuit area of the discussed glitch PUF is large.
Hence, (author?) [23] have proposed a simplified glitch PUF called the second
glitch PUF. As shown in Fig. 3.20 the second PUF glitch is simplified in terms
of eliminating certain circuit blocks. More precisely, the sampling circuit. In
addition, the output of the glitch generator is connected directly to the toggle
flip-flop converter (TFF). From the security side , no successful machine learning
attack model against the two glitch PUF designs has been proposed.

• Intellectual property PUF (IP-PUF): To ensure the intellectual property (IP)
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Fig. 3.19 Whole structure of Glitch PUF [22].

Fig. 3.20 Second glitch PUF [23].

of personal use, (author?) [109] proposed the use of a set of silicon circuits
embedded on a personal computer (PC) as a PUF named Intellectual Property
PUF (IP-PUF). Mainly, the authors used the intrinsic features found in silicon
circuits to exploit mismatches in frequencies of oscillators of the CPU clock or
the timer interrupt clock. Then, by exploiting the value of the time period needed
to load instructions from the processor cache into the register memory that varies
from one PC to another one.

• Clock PUF: The clock network routes a timing signal from the clock to various
sections of the circuit design. It ensures synchronicity by respecting the time
taken by the signal from the clock to reach any given area of the circuit. Other-
wise, the issue of clock latency variation is known as clock skew. Based on these
variations and skewing, (author?)[24] proposed the clock PUF (CLK-PUF) simi-
lar to an arbiter PUF since it uses MUXes to select two paths of the clock network
and compares their delays using an arbiter to generate a response bit (Fig. 3.21).
CLK-PUF has been broken by machine learning based attacks [14] and is vulner-
able to non-invasive attacks [110].

3.1.1.2 Memory-based PUFs

The response generated by the memory-based PUFs depends on the initial state of the
memory structures. At a power-up, the structures are set in an unstable state, and the
response corresponds to the stable state of the structures caused by an external data
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Fig. 3.21 The architecture of Clock PUF [24].
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signal input [94]. This type of PUF family mainly includes:

• SRAM PUF: (author?) [111] proposed static random-access memory, or SRAM
PUF, as the first intrinsic PUF construction based on the power-up state of an
FPGA’s SRAM memory. It does not need any modifications in the manufacturing
process. It is based on the static-noise margin (SNM) that requires a memory cell
to change its logical value. A SRAM cell is logically constructed as two cross-
coupled inverters, hence leading to two stable states [62]. During the start-up,
the initial value 0/1 of a SRAM cell is given randomly and independently by the
SNM. This randomness is due to the manufacturing process of the SRAM cell. In
order to generate the response, SRAM PUF uses a range of memory locations of
an SRAM memory block as a challenge, and the responses are the start-up values
of the whole SRAM cells that compose the challenge. In its first implementation,
SRAM PUF was used in protocols for the IP protection problems implemented on
FPGAs. Fig. 3.22 shows the design of the SRAM PUF cell with six transistors.
In [112], authors showed that it is possible to clone SRAM PUF.

Fig. 3.22 SRAM cell with 6 transistors.

The start-up values of the SRAM cells are controlled by the IC manufacturer,
which renders SRAM PUF useless for FPGAs [113]. To overcome this issue,
many improved implementations of the SRAM PUF have been proposed, such
as the Butterfly PUF [25], Flip-flop PUF [113], Latch PUF [114] and Buskeeper
PUF [27].

SRAM PUFs [111] are used only on FPGAs that support initialized SRAM mem-
ory. In order to resolve this problem, (author?) proposed replacing the inverter
with latches or flip-flops to build a cross-coupled circuit, and they called it But-
terfly PUF [25]. As shown in Fig. 3.23 the structure of the BPUF cell consists
of two latches, where each latch is a cross-coupled circuit, which represents a
fundamental building block used in all types of storage elements in electronic cir-
cuits. This cross-coupled circuit has two different stable operating points, 0/1 and
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an unstable operating point. An unstable state can be introduced, after which the
circuit converges back to one of the two stable states. BPUF exploits this random
assignment of a stable state from an unstable one to generate the secret key. This
assignment can be comparable to the stat of the SRAM cell after power-up. After
experimentation, they found that the proposed PUF can be used in IP protection
and in cryptographic applications by generating a secret volatile key.

Fig. 3.23 Butterfly PUF cell [25].

(author?) used the power-up values of the flip-flops present on the FPGA as a
PUF, named Flip-flop or D flip-flop PUFs [113], in the same way as an SRAM
PUF. This is due to manufacturing variations. When the IC is powered up, the
output state of each flip-flop has a random value; hence, it can be zero or one. The
experimental results found that the amount of randomness present in the power-
up values of the flip-flops is limited, so power-up bits cannot be used directly. So,
to increase the quality of responses, post-processing is required [113]. The main
advantage of this design is that it is easily spread over an IC and it is challenging
to locate it, so it is robust against a reverse-engineering attack.

As we have seen, SRAM and Flip-flop PUF require being powered-up to generate
the response bits. This means the cells of these two PUFs should be repowered
whenever the responses are needed. Furthermore, Flip-Flop PUF requires some
extra processing to extract uniform randomness.

Unlike SRAM and flip-flop PUFs, (author?) introduced the Latch, or SR-Latch
PUF [114], which generates the response when its input is simultaneously en-
abled. The SR-Latch PUF consists of two cross-coupled NOR gates. Using the
metastable value of these gates, LPUF can generate responses without an actual
device power-up. As shown in Fig. 3.24, when the input is triggered with the ris-
ing edge, the SR-Latch starts oscillating and enters into a metastable state. After
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a period of time, the SR-Latch stops oscillating and becomes stable. Due to the
manufacturing variation, the state that the SR-Latch falls into is unknown, and
it can be used as a response bit [26]. LPUF can be implemented on both ASIC
and FPGA. But it is not appropriate for low-cost implementation of a PUF. Hence
another approach is proposed to address this issue [26].

Fig. 3.24 Basic structure of SR-Latch cell [26].

In order to improve the D Flip-flop PUF, (author?) were the first to exploit the
existing buskeeper cell as a viable alternative to the D-Flip-flop one. The big
advantage over using a DFF cell for constructing a PUF is that the Buskeeper
cell is minimal, and it does not require any additional circuits or processes to
generate a reliable response bit [27]. As shown in Fig. 3.25, the Buskeeper or
busholder PUF [27], consists of two inverters. The principle of BPUF is similar
to all memory-based PUFs, where the initial patterns are read at the memory
power-up. The authors’ experiments prove that BPUFs have better reliability and
uniqueness compared to DFF-PUFs [27].

Fig. 3.25 Buskeeper cell structure [27].

• Bistable Ring PUF: SRAM, Butterfly, Flip-flop, and Buskeeper PUF possess an
even smaller number of CRPs, which is proportional to their size. Hence, they
can be used as so-called Weak PUFs. The Bistable Ring PUF [28] was the first
strong memory-based PUF proposed by (author?) As shown in Fig. 3.27 BR-
PUF consists of an even number of inverters connected to each other to build
a ring. When the device is powered up, each inverter in the ring tries to force
its output from an initial value of 0 to 1. For a BR-PUF of 6 inverters, the ring
has two possible, stable states, 101010 or 010101. Hence, the output of the last
inverter is the one-bit response generated according to which state the ring falls
into, and this initial state corresponds to the response. In order to generate an
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exponential number of CRPs, they proposed an architecture where the inverter
count was duplicated to be used as a strong PUF. BR PUFs can be vulnerable to
modeling attacks [115, 116].

Fig. 3.26 Two possible stable states of an eight-stage bistable ring [28].

3.1.1.3 Analog electronic PUFs

The response generated by the analog electronic PUFs depends on the analog move-
ments of the electronic components such as resistance and capacitance [68]. This type
of PUF mainly includes:

• ICID PUF: Integrated Circuit IDentification (ICID) was proposed by (author?)
[29]. It consists of some transistors with identical designs arranged in an address-
able array. Each addressed transistor drives a resistive load due to the voltage
thresholds, a random placement function of the doping atoms in the impurities of
the silicon channels. The voltage on the load is measured and converted into a
bit response where the challenge is the number of the transistor component. Fig.
3.27 shows a block diagram of the ICID PUF.

Fig. 3.27 Block diagram of ICID PUF [29].

• Coating PUF: Based on the idea ”thou shalt not store secret keys in digital mem-
ory”, (author?) introduced the first Coating PUF [30] using the randomness con-
tained in the protective coating of an IC that is introduced during the manufactur-
ing process. They drive the key, which could be used as the device’s fingerprints.
This is depicted in Fig. 3.28. The proposed experimental security evaluation says
that the proposed PUF is safe from physical attacks.
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Fig. 3.28 Schematic cross-section of a Coating PUF IC [30].

• Power grid PUF: Since the voltage drops and the equivalent resistances are af-
fected by random variations in the manufacturing process, (author?) have intro-
duced a new PUF, called the Power Grid or Power Distribution PUF [117], which
is based on the resistance variations in the electrical network of an IC. PG-PUF
is susceptible to machine learning attacks [118]. Fig. 3.29 shows a circuit for the
generation of the response using a power grid.

Fig. 3.29 Circuit for generation of the signature using power grid [31].

3.1.2 Silicon PUF Applications

PUFs have been used in a wide range of applications to secure devices depending on
the PUF class (weak or strong) of the embedded chip within the device. This section
surveys the existing application areas and use cases of Silicon PUFs that are illustrated
in Fig. 3.30. Two applications were widely found: Secret key generation and authenti-
cation.

3.1.2.1 Authentication Protocols

One of the main objectives of any security system is to achieve robust authentication,
which refers to verifying the device’s identities and preventing malicious ones from
accessing a trusted area or a network. However, numerous works have been proposed in
the literature demonstrating various PUF-based authentication protocol schemes.Before
surveying these works, we present a basic scheme for achieving authentication between
a server and a device equipped with a PUF chip.

Fig. 3.33 depicts a conceptual PUF-based authentication process between a device
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Fig. 3.30 Silicon PUFs Applications Areas and Use Cases [5].
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equipped with a PUF and a trusted server. PUF-based authentication protocols can be
accomplished in two distinct phases. Firstly, during the enrolment phase, the server
has access to the IoT device to apply a set of random challenges and then stores their
corresponding sets of responses that are extracted from the PUF circuit integrated with
the IoT device. The second phase is verification, in which the device verifies the identity
of the IoT device. Next, the server randomly selects from its CRP database a challenge
that has never been used. Then, the IoT device generates its corresponding response
and sends it back to the server. If the response from the server side matches the one that
was stored for the challenge that was used, then the IoT device is real and can connect
to the IoT network.

Fig. 3.31 A PUF-based Authentications Protocol Overview [32].

Over the last decade, a considerable amount of research has been conducted in the
PUF-based authentication field. These protocols use a variety of silicon PUF types
and different authentication mechanisms and aim to provide a lightweight and secure
authentication scheme under various settings.

• Internet of Things (IoT): (author?) [33] proposed a lightweight PUF-based pro-
tocol that offers mutual authentication for IoT devices. Instead of storing the
generated CRPs on the server, this scheme stores a so-called CRP soft model that
can be obtained by performing a machine learning attack on the generated CRPs.
This protocol does not ensure the reliability of communication, especially the
error correction. (author?) [37] presented a PUF-based authentication protocol
that does not offer mutual authentication, and many attacks were not considered
in their scheme. However, they used a Convolutional Neural Networks (CNN) as
a solution to eliminate the need for error correction mechanisms. Using elliptic
curve cryptography (ECC) as a second security primitive, (author?) proposed a
PUF-based authentication protocol [41] that does not consider noise elimination.
(author?) [43] proposed a PUF-based authentication protocol that is vulnerable
to physical attacks since the device stores an initial session secret key that will
be used in the authentication phase. Rather than that, the proposed scheme does
not use any noise elimination technique, making it impractical in a real appli-
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cation. (author?) [44] proposed a mutual two-factor authentication mechanism
between a device and a server, where the device is equipped with a strong and
weak PUF. The first one is used for authentication and the second for encryption.
This scheme does not present noise elimination, making it impractical in real ap-
plications and different environments. (author?) [119] presented a light-weight
mutual PUF-based authentication protocol for IoT systems, including device-to-
device or device-to-server communication. However, the proposed protocol does
not consider error correction in the authentication steps.

• Unmanned Aerial Vehicles (UAVs): Nowadays, Unmanned Aerial Vehicles (UAVs)
are becoming very popular due to the emergence of their areas of application:
delivery, first-aid emergency, military, etc. Nevertheless, the communication be-
tween a UAV and its ground station (GS) is critical (sensitive data, weather, en-
vironmental changes, etc.) . In [39], (author?) proposed a mutual authentication
protocol between a drone equipped with a PUF and its ground station without the
support of error correction. Also, the authors do not show the details regarding
the security analysis of the proposed protocol. (author?) [120] proposed UAV-
GS and UAV-UAV PUF-based authentication mechanisms. The ground station
plays an important role in the authentication phase, and it is also responsible for
session key generation and delivery. The noise elimination process has not been
considered, making both schemes impractical. Also, (author?) [121] presented
mutual authentication in UAV swarm networks using PUFs. The proposed pro-
tocol uses a spanning tree protocol to identify the flow of authentication request
messages in dynamic typologies and mobile UAVs.

• Internet of Medical Things (IoMT): For the safety of patients, PUFs have been
used to secure the communication between devices, sensors and the health care
monitoring system. (author?) [35] presented a PUF-based authentication scheme
between the IoMT devices and the server, where the server is also equipped
with its proper PUF. In addition, a secure database was used as a third party
to store collected CRPs. However, the exchanged messages between the device
and the server have not been subject to any encryption or camouflage techniques
that facilitate easily launching modeling attacks. (author?) [122] proposed a
lightweight and reliable authentication protocol for wireless medical sensor net-
works, that is composed of cutting-edge blockchain technology and a PUF. Also,
(author?) [123] used a one-way cryptographic hash function and BS-PUF to
ensure lightweight authentication between IoMT sensors and fog devices. (au-
thor?) [124] introduced a new lightweight anonymous authentication protocol
for IoMT that is resilient against machine learning attacks on PUFs. To prevent
various security weaknesses such as user anonymity, offline passwords, smart de-
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vice theft, privileged insiders, and cloning attacks in WMSN, (author?) [125]
proposed a three-factor-based mutual authentication scheme using PUFs.

• Internet of Vehicles (IoV): To guarantee the security and privacy of driving data
in IoV, (author?) [126] introduced a secure authentication and key exchange pro-
tocol for IoV using two-factor security that combines PUFs with the user’s pass-
word. The second factor is used if an advisory could hold the vehicle equipped
with a PUF. Then, they added biometrics as a third factor to the same proto-
col [127]. In [128] vehicles and roadside units (RSU) use PUFs to authenticate
themselves to the certificate authority. In this scheme, the authentication process
depended on the reception of the silicon PUFs’ unique fingerprint and the valid
delivery certificate.

• Smart Grid: A smart grid (SG) can provide reliable, secure, economic, efficient,
clean and high-quality electricity services. Smart meters are devices collecting
data on smart grids, that can also receive instructions from the control center.
However, the communication between smart meters and the control center con-
fronts security and privacy challenges. Instead of storing a set of CRPs on the
server, (author?) [34] proposed a PUF-based authentication protocol where only
one pair of CRPs is stored on the server. The used pair is updated at the end
of each successful authentication phase. This protocol is vulnerable to physi-
cal attacks since it stores secret information on the device’s memory. To protect
smart meters from physical attacks, (author?) [129] addressed the security and
privacy problems in collecting metering data by proposing a lightweight privacy-
preserving authenticated data collection scheme based on PUFs. In the case of
fault or improper behaviour due to the high-tension power lines of the smart city,
sensor nodes deployed on these lines send information to the control center to
request in an emergency the recovery team. In [130], (author?) introduced an
identity PUF-based lightweight authentication protocol for supply-line surveil-
lance system between the sensor nodes and the control center.

3.1.2.2 Cryptographic Key Generation:

In any cryptographic primitive, it is recommended that the key must stay constant and
can be reproduced several times. As silicon PUFs are a source of high randomness, their
generated responses could be used as cryptographic keys in different security applica-
tions. However, the change in environmental conditions will cause noise in the output
of the PUFs. This noise can cause one or more PUF output bits toggle, resulting in an
incorrect and unusable key because it is not the same as the original key. Therefore,
the response cannot be directly used as a cryptographic key. Hence, error correction
must be used in order to tackle this issue [131]. Fuzzy Extractor (FE) and many coding

60



techniques for error correction are being employed in order to improve the reliability of
PUFs’ applicability [132].

Fuzzy Extractor (FE) [133] is designed for extracting nearly uniform random strings
from noisy and non-uniform random data with high entropy. FE is built from a pair of
algorithms to extract stable, reproducible information from the PUF responses; genera-
tion (Gen) and reproduction (Rep). Gen takes the initial response and outputs uniform
random string data (refer to the cryptographic key) and non-secret data called public
helper data. To reproduce the key from a noisy response, the reproduction algorithm,
Rep, takes two inputs: the noisy response and the public helper data. The reproduction
succeeds only if the initial and noisy responses are close enough. As shown in Fig.
3.32, given the same challenge c as input to the same PUF module PUFi, in different
temperatures m1 = 30K and m2 = 80k, the PUF generates two different responses
Ri(c) and R′i(c). We consider the first response as the reference and the second one as
noisy. We use the Gen procedure to generate the secret key k and the public helper data
P . Then, for the reproduction of the same key, we use the Rep procedure, which takes
the noisy response and P as input [134].

Fig. 3.32 Fuzzy Extractor.

3.1.2.3 Intellectual Property Protection

Electronic products suffer from many security challenges such as counterfeiting, cloning,
reverse engineering, and the vicious addiction of components, making semiconductor
companies suffer tremendous financial losses. Consequently, it is crucial to protect the
intellectual property (IP) components of an IC design. (author?) [111] introduced a
protocol for the hardware IP protection problem on FPGAs based on SRAM PUF. Also,
(author?) [135] presented a PUF-based mechanism for firmware tempering protection
to prevent the software and the hardware IP from being copied by third parties. To pro-
tect IPs from being copied, cloned, or used with unauthorized integration, (author?)
[136] proposed PUF-based IP protection mechanism that restricts IP’s execution only
on specific FPGA devices, and enforces the pay-per-device licensing. (author?) [137]
proposed a PUF-based pay-per-device scheme for protecting IPs from attacks based on
CNN models.
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3.1.2.4 Random Number Generation

The fourth application of PUFs is the generation of random numbers used in cryptog-
raphy as an encryption key. Pseudo-Random Number Generators (PRNGs) were not
truly random since the pattern repeated itself after a certain value. In fact, the Hardware
Random Number Generators (HRNGs) are used to generate a true random without any
initial condition [20]. By exploiting the randomness found in the inherent nature of the
silicon PUFs, it could be used as a source of random number generation. (author?)
[138] used the PUF response as an initial seed and (author?) [139] combined Chua cir-
cuits with PUFs. The former are a type of chaotic system that has the ability to produce
different results from a fractional change in the initial conditions. PUFs are used as a
random number generation mechanism to be used in cryptographic systems.

3.1.2.5 Payment

Electronic money (e-money or e-Cash) is the digital representation of physical ban-
knotes where authentication, encryption, privacy, and anonymity play central roles. To
not steal, predict, and/or clone tokens used by a device, (author?) [140] introduced an
e-Cash based on PUFs called PUF-Cash, where the PUFs response is used in the authen-
tication bit-strings, encryption keys, and e-Cash token generation. In [141], (author?)
combined Leveraging TrustZone and SRAM PUFs technology to design the architec-
ture of trusted mobile, which can be used in e-payment schemes while guaranteeing the
anonymity of the users’ identities to other entities, such as banks and merchants. (au-
thor?) [142] proposed a credit/debit PUF equipped with a weak PUF chip responsible
for secure communication, data authentication and a private key stored by a customer.

3.1.2.6 Memory protection

In this field, the PUF’s output is used to secure program execution by protecting the con-
fidentiality and integrity of the memory instructions and the stored data against physical
and software attacks [143].

3.1.2.7 Software licensing

Software licensing is a way to protect software from unauthorized modifications and
from running on unauthorized platforms. To achieve this protection, many approaches
were proposed such as the use of a hash function or checksum, where each block code
has its own hash value to be checked in the next bloc by verifying the integrity of the
first one. Other solutions include the use of the obfuscation method to protect software
from reverse engineering and malicious modification. Meanwhile, software protection-
based PUF has been proposed. The idea is to provide software with the possibility to
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communicate with the PUF to perform some operations based on the generated keys
where both static and dynamic PUF are used with more intention on the dynamic one
[144]. (author?) [145] proposed a software licensing mechanism based on SRAM
PUF. In this scheme, the user’s PC is equipped with the SRAM PUF, giving it a unique
identity. When the user needs to buy a needed software, a company will initiate a con-
nection with the user’s PC to have the SRAM PUF’s outputs and make them available
in the software as a license. The customer installs the software, and during installation,
an authentication mechanism occurs between the software and the PC, where the em-
bedded license is compared to the SRAM PUF’s outputs. (author?) [146] combined
self-checksumming code techniques with PUFs to establish hardware-assisted software
protection. The self-checksumming code is used to check the program’s integrity and
protect it against tampering attacks. Then, PUFs guarantee the execution of the software
instance only on the specific device (hardware) equipped with the right PUF.

3.1.2.8 Securing communication

As we presented before, PUF is widely used in the authentication protocol, especially
when launching communication in many use cases. Another application of silicon PUF
is communication, where the generated response will be used to guarantee secure com-
munication by ensuring the confidentiality and integrity as well as non-repudiation of
the exchanged messages.(author?) [36] proposed a PUF-based key-exchange protocol
between IoT devices without the need for a trusted entity. After a successful authen-
tication phase, both devices use PUF data to construct and exchange the session key
to secure the communication. Also, (author?) [147] used Elliptic Curve Cryptogra-
phy and PUFs to secure device-to-device communication. The registration centre is
responsible for authentication and session key generation in this scheme. However,
error corrections have not been considered in this mechanism.

3.1.3 Comparison

3.1.3.1 Architectures Comparison

Table 3.1 classifies the surveyed PUF schemes into their classes in terms of their strength
(weak’W’ or strong ’S’), performance (uniqueness and reliability), and resistance to
different attacks. Based on this classification, we observe that.

• Arbiter PUF [6] is one of the most used PUF, and its improved architectures
[95, 16, 75, 9, 7, 96, 11, 12, 97, 14, 15] achieve good performance in the two
well-defined quantitative metrics: uniqueness (≈ 50) and reliability (≈ 100) (see
Table 2.1 for more details). However, they do not perform well in other equally
important metrics, especially security which is the most important metric that
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Table 3.1 Comparison of Silicon PUFs Architectures.

Class Scheme W/S Year Uniqueness(%) Reliability(%) Attacks

Delay-
based

APUF [6] s 2004 23 99.76 [74, 99]
FF APUF [95] s 2004 38 90.16 [74, 99]
XOR APUF [16] s 2007 46.15 99.52 [74, 99]
FFXOR PUF [9] s 2020 ≈ 50 89 -
R-APUF [15] s 2019 - 94.74 -
LSPUF [7] s 2008 46.16 92.32 [98]
m− n APUF [96] s 2014 ≈ 50 - [10]
MPUF [11] s 2017 50 99.70 [101]
rMPUF [11] s 2017 50 99.55 [101]
cMPUF [11] s 2017 49.99 99.68 [101]
MPUF [12] s 2018 40.60 - [99]
CPUF [97] s 2014 49.04 97.48 [98]
IPUF [14] s 2019 ≈ 50 ≈ 100 [103]
RO-PUF [16] w 2007 46.15 99.52 [74]
CRO-PUF [17] w 2011 47.31 99.14 -
TERO PUFs [20] w 2017 49.65 96.32 -
DD-PUF [21] w 2021 49.48 98.33 -
RPPUF [13] S 2021 45.80 99.23 -
FR-PUF [18] w 2014 46.88 - [105]
k-sum PUF [106] s 2010 - - [107]
G-PUF [22] s 2010 41.50 > 93.40 -
SG-PUF [23] s 2012 35 > 93 -
IP-PUF [109] s 2011 - - -
CLK-PUF [24] s 2013 - - [14, 110]

Memory-
based

SRAM PUF [111] w 2007 49.97 > 88 [112]
B-PUF [25] w 2008 ≈ 50 > 96 -
FF-PUF [113] w 2008 ≈ 50 95 -
L-PUF [114] w 2008 50.55 96.96 -
Buskeeper PUF [27] s 2012 48.27 80.98 -
BR-PUF[28] s 2011 ≈ 50 97.81 [115, 116]

Analog
electronic

ICID-PUF [29] w 2000 49 > 95 -
C-PUF [30] w 2006 ≈ 50 > 88 -
PG-PUF [117] w 2009 - - [118]
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determines its acceptability in real-life systems. Further, since a relationship be-
tween the challenge and the signal propagation time of the arbiter PUF can be
represented as the linear model, exploiting this weakness, APUFs are vulnerable
to many types of modeling attacks such as machine learning and deep learning
attacks. However, strong silicon PUF is suitable for authentication by using many
CRPs. Even though APUF is simple and easy to implement, its production pro-
cess is precise, while the lines must be of the same length.

• Ring-Oscillator PUF [16, 17, 18, 106] is another widely used daily based PUF
due to the simplicity of its design and ease of CRP extraction. However, the
path between the oscillators and the counters should be exactly the same. As it
is classified as a weak PUF, it is suitable for secret key generation, but is also
vulnerable to modeling attacks. Compared with other daily-based PUF, RO PUFs
are more considerable and consume more power, but provide higher reliability.

• Glitch PUF [22, 23] is predominant compared to other delay-based PUFs in terms
of resistance against modeling attacks. It is suitable for secret key generation, but
its design and glitch acquisition process are crucial.

• SRAM PUFs [111, 25, 113, 114, 27] are one of the most popular weak PUFs.
Due to their simplicity and intrinsic categories, they do not require any extra
hardware. However, as they have a restricted number of CRP, they are suitable for
secret key generation and are widely used for identification. Compared with other
PUFs, SRAM PUFs are sensitive to environmental conditions such as temperature
and voltage. Therefore, error correction techniques are vital to moderate these
impacts and provide reliable keys. SRAM PUFs are secure against modeling
attacks, but are more susceptible to cloning attacks and invasive attacks in general.

• Bistable Ring PUF [28] is a strong memory-based PUF suitable for authentica-
tion. The BR PUF has a good uniqueness and reliability, and generally, it is
reliable against aging, but it is also vulnerable to modeling attacks.

• ICID PUF or VT PUF [29] has limited IDs and fewer CRPs. Thus, it is suitable
for secret key generation and identification. It is cheap and small in size, but
vulnerable to cloning attacks, and It needs a particular design.

• Coating PUF [30] is suitable for secret key generation, identification, and for
detecting physical tampering. It is small, fast, and cheap, but it needs a special
design.

• Power Grid PUF [117] is suitable for secret key generation. It needs a special
design, and it is vulnerable to cloning attacks.
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We can resume that:

1. Delay-based PUFs are a class based on frequency variations or digital race con-
ditions to generate PUF responses within integrated circuits (ICs) resulting from
manufacturing variations. Several delay-based PUFs are made of arbiter PUF as
a basic element. All delay-based PUFs are extrinsic PUFs, meaning they need
specific extra hardware to be used in a silicon chip. The latter needs a precise
process to generate a unique and reliable response. The number of the responses
of several delay-based PUF is not limited, making them suitable for authentica-
tion. Whereas delay-based PUFs are not proficient in material resources and are
subject to modeling attacks, this allows an attacker to build a mathematical clone
of a PUF to estimate the PUF’s responses.

2. Memory-based PUFs are based on the metastable state of memory cells and un-
predictable start-up values. The generation of the response is limited by the
number of memory cells. So, most of the memory-based PUFs are weak and
have fewer CRP. However, they are suitable for identification and secret key gen-
eration. Memory-based PUFs are intrinsic PUFs (except BPUF) because their
circuits are implanted within the design itself and do not require any additional
hardware.

3. Analog electronic PUFs are a class of PUFs that exploit the analog measurement
of an electric component to generate a response. Analog electronic PUFs are more
suitable for integrated circuit identification and physical tampering. Generally,
they are represented by power grid PUFs and coating PUFs. Analog electronic
PUFs are vulnerable to cloning attacks.

3.1.3.2 Applications Comparison

Table 3.2 classifies and compares the surveyed contributions related to silicon PUF-
based applications. We consider different criteria, including the area of application
and the specification of use cases. We also show if the surveyed work relies only on
silicon PUFs or uses other security primitives like hashing and cryptographic functions.
Also, we consider the integration of noise cleaning and error correction. Further, PUF
implementation is verified by checking if the proposed work indicates the architecture
of the used PUFs. Based on this comparison, PUFs are used in many applications and
fields, from cryptographic key generation to e-payment. Most of the proposed work in
different application areas uses extra security primitives to achieve their objectives such
as the hashing function and XORing operation. Also, sometimes PUFs are combined
with elliptic curve cryptography or blockchains. From the reliability side, most of the
discussed works do not consider error correction and noise elimination process in their
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proposed scheme, making their solution impractical in any application and use case
area since the PUFs reliability is considered as a principal metric that could gauge the
efficiency of any proposed PUFs based scheme. Also, we observed that most of the
discussed works do not indicate the architecture of the deployed PUF in their proposed
scheme.

3.1.4 Summary

In this first section, we surveyed the state-of-the-art silicon PUF architectures and clas-
sified them into delay-based PUFs, memory-based PUFs, and analog electronic PUFs.
Additionally, we listed the most existing implementations for each class and explained
their operating processes with graphical representations. Furthermore, we have also
surveyed, classified and compared the existing Silicon PUF applications and use cases.
The next section is fundamental to our project since it will be dedicated to present-
ing the exciting related work, where a review of PUF-based authentication protocols is
presented and compared.
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Table 3.2 Comparison of the Applications and Use Cases of Silicon PUF.

Application Use case Works Year Only PUFs Error Type PUF

Authentication

IoT

[33] 2021 No No Delay-based PUF
[37] 2021 Yes No DRAM PUF
[41] 2020 No No -
[43] 2018 No No -
[44] 2020 No No APUF+SRAMPUF

[119] 2017 No No -

UAV
[39] 2020 No No -

[120] 2020 No No -
[121] 2021 No No -

IoMT

[35] 2019 No No Arbiter PUF
[122] 2021 No yes -
[123] 2021 No No BS-PUF
[124] 2021 - - -
[125] 2021 No Yes -

IoV
[126] 2019 No Yes -
[127] 2021 No Yes -
[128] 2021 No No -

Smart grid
[34] 2020 - - -

[129] 2021 No Yes -
[130] 2021 No No -

IP
Protection

Hardware IP [111] 2007 - Yes SRAM PUF
Software IP [135] 2014 - No drPUFs
Pay-per-
device

[136] 2015 - No Delay-based PUF
[137] 2018 - - -

Payment
e-Cash

[140] 2019 - No HELP [148]
[141] 2016 No yes SRAM PUF

Credit cards [142] 2017 - No -

Licensing Software
[144] 2019 No No -
[145] 2018 No Yes SRAM PUF
[146] 2015 No Yes SRAM PUF

Securing
communication

IoT
[36] 2021 No Yes -

[147] 2021 No No -
Memory - [143] 2007 No No RO PUF
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3.2 IoT PUF-Based Authentication Protocols

Indeed, IoT applications have a wide range of advantages, including making our life
easier, more intelligent, more convenient, and also personalized by altering the way we
carry out our daily tasks. However, despite all of the benefits of IoT, these devices face
several security issues, and hazards that must be continuously managed and maintained,
including authentication, privacy, access control, and data collection and management
[50]. Practically, wireless technology is the most used means of communication by IoT
devices, and a secure network communication system requires a robust authentication
protocol providing secure transmission sessions.

The authentication of IoT devices refers to verifying the device identity and pre-
venting malicious devices from accessing the IoT network. However, this process is
considered an essential requirement and the main security challenge in any IoT sys-
tem. Unfortunately, any weakness in the authentication process will afford a compro-
mised IoT device to get access to the IoT trusted network and to establish unauthorized
communication, inject false data, get access to confidential data, and launch danger-
ous attacks. Hence, secure transmission protects data during the transmission process
by guarantying integrity, confidentiality and non-repudiation of the data using different
encryption schemes [149].

3.2.1 Authentication in IoT Devices

Mutual authentication must be secure to protect the privacy and confidentiality of data
sent between a device and a server. Numerous authentication schemes have been de-
veloped for IoT devices. The three primary ones are as follows : (1) the encryption/de-
cryption cryptography authentication technique, in which an encryption/decryption al-
gorithm is used for authentication; (2) the localization and device environmental data
authentication technique, in which the placement and surrounding information of the
IoT device can be used to authenticate it; and (3) the PUF authentication technique,
which uses the intrinsic characteristics of the IC in the IoT device [44]. In the subsec-
tions that follow, we discuss briefly each strategy.

3.2.1.1 Authentication via Encryption/Decryption

Either symmetric or asymmetric key cryptography can be used to authenticate a de-
vice in the IoT system. In symmetric key authentication, both the IoT device and the
server share and securely store a secret key. Advanced Encryption Standard (AES) is
the most prevalent algorithm used in symmetric key encryption [150]. In asymmet-
ric key authentication, both the IoT device and the server employ a pair of public and
private keys, where only the public key is shared. The private key is used to generate
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signatures, whereas the public key is used to verify signatures. Both symmetric and
asymmetric approaches need the safe storage of a key on the device. Numerous ap-
proaches for employing and securing the device’s secret cryptographic key have been
devised [151, 152]. There are credential-specific software solutions, for instance, that
may be configured to manage the authentication credentials of a device. Other solutions
utilize physical components such as Central Processing Units (CPUs) or integrated cir-
cuits (ICs) with memory storage to store the secret keys in their memory, which is
always powered. Storing cryptographic keys on the IoT device is inherently vulnerable
to certain types of attacks, such as firmware assaults, in which the attacker physically
or remotely connects to the device and reveals the stored key.

3.2.1.2 Authentication via Localization and Device Environmental Data

It is possible to authenticate an IoT device by finding it or by having information about
its neighboring devices or the characteristics of its communication channel. The server
can collect information about the IoT device’s location and its surrounding environment,
such as arrival time and/or signal strength, examine the collected data, and authenticate
the IoT device accordingly. Different technologies, such as the Global Positioning Sys-
tem (GPS) or a base radio station in a Wireless Local Area Network (WLAN), can
be used to localize the device [153]. This technique can also be utilized with a smart
phone. After the server registers the device’s identity information, location information,
and permission policies, the protocol executes the location-based authentication and au-
thorisation procedure each time the device requests access to a resource or service.

3.2.1.3 Authentication via Physical Unclonable Functions

PUFs ensure secure authentication without storing the secret key on the device. An
IoT device can be authenticated using its PUF component since PUFs generate unique
information from the physical characteristics of an IC on demand. This uniqueness of
the output is used as a unique identity of the IoT device and its authentication.

3.2.2 Basic PUF-Authentication protocol

As shown in Fig. 3.33, PUF-based authentication protocols can be accomplished through
two distinct phases. Firstly, during the enrolment phase, the server has secure access
to the IoT device, applies a set of challenges, and then stores their corresponding re-
sponses extracted from the PUF circuit integrated within the device. The second phase
is verification, in which the server verifies the identity of the IoT thing. Then, the server
randomly selects from its CRP database a challenge that has never been used. Then, the
IoT device generates its corresponding response and sends it back to the server. If the
received response from the server-side matches the stored one corresponding to the used
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challenge, then the IoT thing is authenticated and can have access to the IoT network.
Otherwise, the authentication fails.

Fig. 3.33 A PUF-based Authentications Protocol Overview.

3.2.3 Requirements

Compared with the existing authentication protocols mechanisms, PUF-based authen-
tication protocol have been proposed to ensure the device identity without storing any
secret information on the device’s memory. However, any PUF-based authentication
protocol should respect the following requirements [154]:

• Complete Specification: A protocol should be specified in a complete description
including textual description, graphical representation, and clearly detailing all
authentication steps, especially exchanged messages.

• Leakage Resilience: A PUF-based protocol should be resilient against local mem-
ory information leakage. Ideally, it has to ensure a secure authentication mech-
anism without storing sensible and secret information on the device memory,
which avoid attacks such as the physical ones.

• Able to Handle Noisiness: Noise elimination found in the PUF responses should
be taken into account. This makes the possibility to use the PUF response as
cryptographic keys in different environments.

• Counteracting Strong PUF Modeling Attacks: As showed before, strong PUF
is used in authentication protocol. However, it is also vulnerable to machine
learning attacks. So far, this attack should be always taken in the security analysis
of the protocol, since it can be used to anticipate the response of a given challenge.
This is achieved by building a soft model of the PUF.

• Strong PUF Response Space Expansion: All PUF-based authentication protocols
use CRPs as the principal data. So to avoid brute-force and random guessing
attacks, the used PUF design should to be able to generate a huge number of
CRPs.
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• Low-Cost and Resource-Constrained: Since PUF is considered as a lightweight
security primitive, any PUF-based authentication protocol has to guarantee a low-
cost and resource-constrained by minimizing the processing and storage opera-
tions.

• Resistance against Protocol Attacks: The PUF-based authentication protocol have
to resist to a conventional protocol attacks, such as DOS attacks.

• Identification Prior to Authentication: PUFs provide a unique identity, so before
use it as authentication mechanism, it guarantees always the devices identifica-
tion. Unfortunately, identification prior authentication is more practical.

• On the Mutual Authentication Order: For more security, it is a good practice to
check and verify the authenticity of the server first.

3.2.4 Attacks

In this section, we present a brief definition of the common existing attacks that can be
launched upon a PUF-based authentication protocol [34, 155, 44].

• Message Analysis Attack: This kind of attack concerns the confidentiality of the
exchanged message during or after a successful authentication phase. Meaning
that an adversary tries to obtain the transmitted information between the commu-
nication entities.

• Replay attack: In this attack, the adversaries store the transmitted information of
the valid authentication operation with the hope to utilize them in future authen-
tication.

• DoS attack: The goal of adversaries in this attack is to exploit all the resources
of the target device, and/or to temporarily or indefinitely disrupting services. It
is accomplished by flooding the targeted device with superfluous authentication
requests.

• Physical attack: In this kind of attack, an adversary may attempt to physically
get access to a device and tries to obtain the secret information stored on its local
memory.

• MITM attack: In this attack, an adversary tries to intercepts the exchanged infor-
mation between different entities during their authentication process. It possibly
also alternating the communications between them and makes them believe that
they are directly communicating with each other.
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• Injection attack: The goal of the adversary in this type of attack is to inject and
change the transmitted messages between authenticated devices, or even create
its malicious message and inject it during the communication steps.

• Helper data manipulation: In this attack, an adversary tries to manipulate and
modify the helper data, stored on the device memory using physical attacks or
manipulated during the transmission process using an injection attack. Any ma-
nipulation makes the fuzzy extractor operation impossible.

• Modeling attack: From the communication between the server and the device,
an adversary tries to get CRPs of the used PUF. Then, it executes the machines
learning techniques on the CRPs dataset and offers to the adversary the possibility
of predicting the correct response related to a given challenge.

3.2.5 Existing Literature

In this section, we review the recently published IoT PUF-based authentication proto-
cols (during the last five years, since 2016). For each contribution, we describe the steps
of the developed protocol including its schema, and discuss its analysis techniques if
exist. Also, we explain its strengths, and its security level and weaknesses. Further, we
show each protocol’s experimentation and applications.

Strong PUFs are vulnerable to modeling attacks, where adversaries collect the ex-
changed CRPs that are used in the authentication sessions and apply machine learning
algorithms to produce a soft model of the PUF circuit. Also, using a hashing function to
counter this attack by encrypting the exchanged information (responses) is expensive in
terms of computation [33]. (author?) proposed a lightweight PUF-based protocol that
offers mutual authentication for constrained devices on IoT networks (Fig. 3.34) [33].

Instead of storing the CRPs on the server, they save the CRPs trained soft model
while except challenges are exchanged during the authentication process. In this case,
it is considered as a ‘pseudo’ challenge since it is never used as direct input to the PUF
circuit. By using a predefined challenge transformation functions, pseudo challenges
are dynamically transformed for being fed to the PUF circuit. Thus, the authentica-
tion process run in three steps. First, each IoT device and server generate an (n/2)-bit
pseudo challenge and exchange them (exchanging C11 and C12). Secondly, the device
uses the PUF to generate the response of the transformed challenge, as well as for the
server, but by using a soft computing PUF model. Finally, based on the generated re-
sponse, the device generates two random variables and sends them to the server. If they
satisfy the generated response from the soft model, so the device is authenticated. In
fact, this protocol develops and uses extensive computational functions with respect to
the motivation of this work that targets lightweight protocols. The trade-off between
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Fig. 3.34 Pseudo challenges based PUF authentication protocol [33].

energy consumption and computational functions should be token into account espe-
cially in this category of protocols. Moreover, the protocol does not ensure the devices
anonymity and either the communication reliability especially error correction.

Following the same idea of using PUF without storing many CRPs on the server,
Kaveh et al. [34] proposed a two-way authentication protocol (Fig. 3.35) by relying on
the PUFs of smart meters (device) and their neighborhood gateways (server) in smart-
grids.

Fig. 3.35 Two-way Authentication Protocol [34].
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The developed authentication mechanism goes through two phases: offline and on-
line. In the former, the first CRP is generated by the smart meter and stored on the
neighborhood gateway. Thus, for its first authentication, the initial stored CRP is used.
Then, each successful authentication phase is ended by the generation and storage of
a new CRP. Unfortunately, the protocol is considered as incomplete since the initial
response is needed to decrypt some received information from the server. In addition,
the response is stored on the device, rather than other variables that are classified as
secret. This protocol do not satisfy the PUF principles that accomplish security primi-
tives without storing keys. This protocol could be improved by resuming some unused
variables, and enhancing its reliability and assuring the anonymity.

(author?) [35] presented a PUF-based authentication scheme for the Internet of
Medical Things (IoMT) where both the server and the IoMT are equipped with a PUF
(Fig. 3.36). Instead of storing the CRPs on the server, they are only stored in a third
entity (secure database).

Fig. 3.36 PUF-based authentication scheme for IoMT [35].

The authentication process is performed in three steps. First, after the authentication
request, the database selects a challenge and sends it to the server, which uses its proper
PUF to generate the response. Then, the response is passed to the IoMT device as a
challenge, after which the device generates a response to be sent back to the server as
a new challenge. Finally, the server generates a corresponding response of the received
challenge and sends it to the database to compare it with the stored one and decide the
authenticity of the IoMT device. The exchanged challenge and the response between the
server and the IoMT device has not been subject to any encryption or camouflage tech-
niques which facilitates easily launching modeling attacks. Also, no security analysis
has been presented, rather than, error correction has not been token into consideration.
Thus, the authentication could never succeed as the database compares the hash of the
new noisy response with the initial stored one.

Compared to database-driven or server-based IoT authentication approaches, (au-
thor?) presented a Peer-to-Peer (P2P) IoT connection [36]. They proposed a lightweight
PUF-based mutual authentication and a key-exchange protocol between IoT devices
without the need of third entities (trusted server or secure database) (Fig. 3.37).
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Fig. 3.37 IoT P2P PUF-based Protocol [36].

First, both IoT devices (A,B) go through the enrolment phase with a trusted server.
From the CRPs of both devices, the server generates useful information to be stored on
the memory of both devices that will be used later in the authentication phase. Let’s
take an example for the device A (the shared challenge CA,B, Identity of B IDB, the
helper data of A hA, and a secret variable Φ that is the result of xoring the hash of both
responses of A and B when applying the same challenge CA,B). In the authentication
phase, when A wants to communicate with B, first B checks the existence of IDA in
its local database. When found, to decrypt Φ, its PUF is used to generate the response
of the stored challenge CA,B. This phase is to retrieve the response of A and use it to
encrypt a message M to be communicated to A. The latter uses its PUF to generate the
response of the stored challenge CA,B with the stored helper data hA to eliminate the
noise on this response and use the result to decrypt the received encryption information
M . Then, the device A sends the hash of M to B and compares it with M. Finally, both
devices exchange the session key that is used to secure the communication between A
and B. In fact, the protocol was designed for low-cost and resource-limited devices,
but awkwardly it needs to store four variables for each device that wants to establish
a connection with it. If A wants to communicate with N devices, it must store N × 4
variables in its local memory. Some of this information is classified as private, which
make them vulnerable to physical attack. Practically, this protocol is not easy to be
deployed because if a new device C wants to communicate with a device A, which is
already in service. First, the device A and C have to pass through the enrolment phase to
receive the needed information from the trusted server, that help them to communicate

76



in a secure way.

As evidence, by applying several times the same challenge as input on a PUF, the
generated response has to remain unchanged. Inadequately, due to the aging and the
environment variations, the response could be noisy and differs from the original one
with some error bits. To overcome this issue, error correction techniques such as fuzzy
extractors have to be applied on the noisy output of the PUF. However, this solutions
cause additional costs and cannot be efficiently implemented in a constrained IoT device
[51, 37]. (author?) [37] presented a device authentication protocol without using error-
correction codes by relying on a deep CNN as an alternative solution (Fig. 3.38).

Fig. 3.38 CNN-PUF based Authentication Protocol [37].

During the enrollment phase of a device, its CRP dataset is created then the CNN is
used to extract the shared features and the failure patterns of the generated responses of
the dataset. In the authentication phase, the server sends one of the stored challenge to
the device, and the latter generates its associated response to be sent back to the server.
Afterward, the response is received as a raw of bits and identified by the CNN struc-
tured classes during the enrollment phase. If the class label in which the response was
categorized matches the used challenge, the device will be authenticated. Therefore,
they are several disadvantages related to this scheme. First, it does not offer mutual
authentication, and does not support the anonymity. In addition, many attacks are not
considered such as modeling, man-in-the-middle and DoS attacks.

Taking the scenario, when a user wants to access and manage an IoT device in the
network. First, he/she needs to authenticate on the target network. In order to protect
the integrity and the authenticity of the confidential data (password) in IoT systems,
Zhenyu et al. [38] proposed an identity PUF-authentication protocol for IoT devices
(Fig. 3.39) using the PUF outputs and the user password as a two-factor authentication.
The proposed protocol is composed from three main entities: the user, the IoT device
that should be equipped with a PUF, and the trusted server with a secure database. To
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generate a response, the two-factor authentication uses the user password to create the
challenge of the PUF. First, it will be combined with the user password and send it
later to the device as a a challenge. With respect to the proposed scheme, no security
analysis process has been developed. In addition, the user is implicated in all steps of the
authentication by receiving and transmitting data from the device to the server. Ideally,
the user could be interrogated only when the credential information are asked. Further,
the other steps should be done directly between the server and the device without user
interactions. Furthermore, the protocol does not take into consideration the constrained
IoT, especially the device executes many mathematical operations which is a kind of
contradiction with the PUF principles (using only CRPs).

Fig. 3.39 Identity PUF-authentication Protocol [38].

The intrinsic resource constraints of aerial vehicles (UAVs) and the specific nature
of wireless communication network make the traditional cryptographic techniques in-
efficient to secure communication, data storage, and privacy in UAVs application. Cong
and Yucheng [39] proposed a lightweight mutual authentication protocol between aerial
vehicles and the ground stations while each UAV has its proper PUF (Fig. 3.40). By
taking a drone as an UAV example, the authentication protocol is executed as follows.

First, the drone x generates a nonce Nx and sends it to the ground station with
its identity, IDx.Then, the ground station checks the existence of IDx in its database.
When found, it generates a random number PRFGS, and creates a new message Mx,
(IDx|Nx|PRFGS). By applying the Duffing map system and randomly selecting a
CRP (Cx, Rx), it encrypts Mx and sends it to the drone with the used challenge Cx in
addition to the message authentication code (MAC) to guarantee the integrity of Mx

and Cx. When received, the drone generates the response of the received challenge and
used it to decrypt Mx and checks the validity of the MAC value. Then, it generates
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Fig. 3.40 UAV-PUF based Protocol [39].

a random number PRFx and combines it with PRFGS to compute a new challenge
Ci+1, then generates a new response of this challenge. The drone generates a new
encrypted message Mgs (IDx—Nx— PRFx—PRFGS—Ri+1) using (Ci, Ri). Finally,
the ground station decrypts the received message Mgs, and recuperates PRFx with the
new response Ri+1, and computes its corresponding challenge Ci+1. Also, the new
CRP(Ri+1, Ci+1) is stored for a future authentication process. At this end, both the
drone and the ground station can compute the session key by Xoring PRNG(PRFx)
and PRNG(PRFGS) values. Unfortunately this protocol is unpractical, since the error
correction is not considered in an UAV environment known by its dramatic changes.In
practice, this situation makes the decryption operation impossible. Further, the author
does not show the details regarding Duffing map system and the security analysis of the
protocol.

(author?) [40] proposed a mutual authentication between IoT devices and the server.
They rely on PUFs as the main security component in addition to hashing functions and
XORing operations (Fig. 3.41).

First during the registration phase, contrarily to the previously discussed protocols,
the device generates itself the challenge, the corresponding response, and some random
time variables to be sent to the server for a secure storage. Then, the IoT device stores
some private and sensitive information. Later in the authentication phase, the server
computes a set of hashing and xoring operations of the stored variables with some nonce
while the result is sent back to the IoT device. The latter first checks the validity of the
received information to prove the authenticity of the server, then it generates the secret
key and the helper data using the fuzzy extractor. It uses this result with other stored
variables and a new random one to prove its identity. Finally, the server and the IoT
device compute the secret session key. This protocol is characterized by eliminating
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Fig. 3.41 Lightweight Authentication Protocol [40].

noise while running the generation algorithm on the device side and the reproduction
on the server side. It could be interesting to show the security analysis on a real case
scenario.

Since physical attacks is one of the major concerns for IoT device security, (au-
thor?) proposed a PUF-based authentication protocol (Fig. 3.42) called RapidAuth
[41] that resists to physical attacks. Rather than using only PUFs as a security primitive
by IoT device, elliptic curve cryptography (ECC) is also integrated. Before the authen-
tication phase, the server is assumed to have the CRP of the IoT device. The server uses
the stored response and ECC to encrypt some generated random variables. Then, the
result of the encryption, the challenge and the MAC message are sent to the IoT device.
To decrypt and check the integrity of the received information, the device generates
the corresponding response of the selected challenge. Thus, after the verification of
the authenticity of the server, the IoT device generates random variables and computes
some data using the response and ECC, then send the result to the server within the
MAC message. Finally, the server checks the identity of the IoT device using the stored
response. Both IoT device and the server compute a session secret key by Xoring two
generated random variables. As showed on all steps of the protocol, it does not take
into consideration the noise elimination that plays a main role in the encryption and
decryption steps of the proposed PUF authentication protocol. In addition, it does not
guarantee the anonymity of the IoT devices.

To minimize the risk of the authentication key exposure and the load of authenti-
cation server in the IoT network. (author?) [42] proposed a PUF-based IoT device
authentication protocol (Fig. 3.43). They follow the same strategy presented in [39]
where the device stores only one CRP pair. For the authentication, the device and the
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Fig. 3.42 RapidAuth Protocol [41].

server go through an offline and secure phase, where a single CRP is generated and
stored in the server. When the IoT device wants to authenticate, the server challenges
it. Then, the IoT device generates the response of the received challenge, and a secret
key (symmetric key) by combining the response and the challenge. Also for a future
authentication, the IoT device generates a new CRP, by selecting a new random chal-
lenge and generates its response. Finally, the IoT Device encrypts the first generated
response and the new pair by the generated symmetric key,then sends back the result to
the server. From the server side, it computes the symmetric key using the stored CRP,
and decrypts the received data. It verifies the authenticity of the device by comparing
the stored response and the received one. Also, it stores the new CRP for a future au-
thentication and deletes the previously used one. Using the response as cryptographic
key without correcting errors makes the application of the proposed symmetric encryp-
tion impossible since the key is generated from the responses. Also, the authors have
not shown how they prove the correctness and the security of the developed protocol.

To ensure a secure communication among smart IoT devices, (author?)[43] pro-
posed a PUF-based authentication protocol, called PAS (PUF Authentication Scheme,
Fig. 3.44). Initially, the device and a gateway generate a session key that will be used
in the authentication phase. Both of them store the session secret key Ku − G, the
device credentials, the user’s fingerprint FPu, and the device’s Serial Number SNu. In
the authentication phase, first the device prepares a cipher text E Ku −G, (SNu, FPu,
N1u, IDu, hash (SNu —— FPu —— N1u)), where N1u is a random nonce to be
transmitted to the gateway with the IDu. Then, the gateway decrypts the received ci-
pher text using the stored session key, and verifying the validation and the existence of
FPu in its repository. If found, the gateway generates a challenge CG and sends it to
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Fig. 3.43 Symmetric Key PUF based Protocol [42].

the device through a new cipher text using the same used session key. As a next step,
the device decrypts the cipher text and generates the response Ru of the received chal-
lenge. Then, it generates a new secret key Sku − G = h(N1u) xor h(FPu) xor h(Ru).
Finally, the device prepares a new cipher text using Sku − G, and transmits the result
to the gateway. The latter decrypts the received cipher text, and checks the authenticity
of the smart device by verifying the content of the decrypted text such as the response
Ru. Unfortunately, the proposed protocol does not use any error correction and noise
elimination technique, which make the protocol impractical. Further, the device stores
the initial session key which allows physical attacks.

Fig. 3.44 PUF Authentication Scheme [43]

To ensure a secure communication between IoT devices and a trusted server through
a public network, and also to avoid cloning and side-channel attacks, (author?) [44]
proposed a lightweight mutual two-factor authentication mechanism between a device
and a server (Fig. 3.45). The proposed scheme uses the strong PUF for the authen-
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tication process whereas the weak PUF is to generate cryptographic key. First, the
device generates a secret key SRAMk using the SRAM PUF, a timestamp TS1, com-
putes HMAC(SRAMk, TS1) and sends all the result to the server with the device’s
identity IDd. To check the integrity of the received data, the server uses the stored
SRAMk that corresponds to the received IDd and calculate HMAC(SRAMk, TS1).
Then, the server generates a timestamp TS2, selects randomly a challenge C, and cal-
culates HMAC(SRAMk, C ||TS2) message. Afterward, it sends it to the IoT device with
C and TS2. Later on when the IoT device receives the server message, it checks the in-
tegrity of the received challenge C by calculating HMAC(SRAMk, C || TS2), and gen-
erates the corresponding response R, the timestamp TS3, and calculates HMAC(RAMk

R ||TS3) message to be send to the server. Thus, the server calculates HMAC(SRAMk,
R ||TS3) and compares it with the received one to check the authenticity of the device.
This scheme does not present the noise elimination which make it impractical in real
applications and different environments.

Fig. 3.45 Lightweight mutual two-factor authentication mechanism [44]

3.2.6 Comparison and Discussion

In this section, we run a comparison between the previously discussed protocols in Sec-
tion 3.2.5. First, we compare the protocols in terms of their performance, strengths and
portability. Then, we check how much a protocol is satisfying the known authentication
protocols requirements. Finally, we look how the protocols are mitigated or designed
against the existing attacks.

3.2.6.1 Performance

In the first comparison, Table 3.3 classifies the surveyed PUF-based authentication pro-
tocols that are proposed during the last five years. Indeed, for our comparison we took
into consideration many criteria including the area of application. We show also that
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if the protocol relies on less processing operations like Boolean logic operands (and,
or, XoR, etc), or computes more complex ones, like hashing and cryptographic func-
tions. In addition, the authentication as a main objective of PUF protocol, we look if the
proposed protocols support the different authentication mechanism: mutual, device to
device, device to server, works on an open-secure environments, etc. Also, we consider
the integration of noise cleaning and error correction as a strong point of a protocol
since it makes it applicable in different area. Further, the correctness and the soundness
of the proposed protocol are verified by checking if a verification tool, an experimen-
tal process, or a simulation based approach has been ran. In Table 3.3, ✓ means the
protocol has this criteria and ✗ when it does not.
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(author?) [33] 2021 IoT ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓

(author?) [34] 2020 Smart Grid ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

(author?) [35] 2019 IoMT ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓

(author?) [36] 2021 IoT ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓

(author?) [37] 2021 IoT ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓

(author?) [38] 2019 IoT ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓

(author?) [39] 2020 UAV ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓

(author?) [40] 2021 IoT ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗

(author?) [41] 2020 IoT ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗

(author?) [42] 2019 IoT ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

(author?) [43] 2018 IoT ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

(author?) [44] 2020 IoT ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓

Table 3.3 Summary description of the proposed PUF-Based authentication Protocols.

3.2.6.2 Requirements Satisfiability

In a second time, Table 3.4 checks if the surveyed protocols respect and satisfy the
main requirements already defined in Section 3.2.3. In Table 3.4, ✓ means the protocol
satisfies the presented requirement, otherwise ✗ is mentioned.
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3.2.6.3 Security

From the security perspective, Table 5.2 presents a comparison of the surveyed proto-
col by checking their capability to avoid the nine attacks defined in Section 3.2.4. In
addition, it certifies if the indicated protocol respects the following security policies:

1. Anonymity Device/Server: It is essential for archiving secure authentication. It
allows to reveal the identity of the IoT device/server in the network, and it avoids
traceability of the device/server and its exchanged messages.

2. Integrity: It ensures that the authentication messages are not tampered during the
authentication process.

3. Confidentiality: It protects the exchanged messages between two entities by en-
suring that only the authorized device can view and use the content of an ex-
changed message.
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(author?) [33] ✓ ✗ ✗ ✓ ✗ ✓ ✗

(author?) [34] ✗ ✗ ✓ ✓ ✗ ✓ ✓

(author?) [35] ✗ ✓ ✗ ✓ ✓ ✓ ✗

(author?) [36] ✓ ✗ ✓ ✓ ✗ ✓ ✓

(author?) [37] ✗ ✓ ✗ ✓ ✓ ✓ ✗

(author?) [38] ✓ ✗ ✓ ✓ ✗ ✓ ✗

(author?) [39] ✓ ✓ ✗ ✓ ✓ ✓ ✓

(author?) [40] ✓ ✗ ✓ ✓ ✓ ✓ ✓

(author?) [41] ✓ ✓ ✗ ✓ ✓ ✓ ✓

(author?) [42] ✓ ✗ ✗ ✓ ✓ ✓ ✗

(author?) [43] ✓ ✓ ✗ ✓ ✓ ✓ ✓

(author?) [44] ✓ ✗ ✗ ✓ ✓ ✓ ✓

Table 3.4 PUF-based Authentication Protocol Requirements Satisfiability.

85



4. Non-repudiation: It ensures that no party of the authenticated devices can deny
that it sent or received a message.

In the following comparison, ✓ means that the protocol is not secure against the
indicated attack. But when it comes to the security policies, ✓ means that this protocol
guarantees the corresponding policy. However, ✗ means the inverse of the previous
statements regarding the attacks and the policies. Also, ? means that the authors of the
cited contribution did not show any purpose regarding the selected criteria.
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(author?) [35] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ? ✗ ✗ ✗ ✗ ✗

(author?) [36] ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓

(author?) [37] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ? ? ✗ ✗ ✗ ✗ ✗

(author?) [38] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ? ✗ ✗ ✗

(author?) [39] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ? ✗ ? ✓ ✓ ✗

(author?) [40] ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ? ✓ ✓ ✗

(author?) [41] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

(author?) [42] ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ? ✗ ? ✗ ✓ ✗

(author?) [43] ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ? ✗ ✗ ✓ ✓ ✓

(author?) [44] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ? ✗ ? ✓ ✓ ✗

Table 3.5 Security of the proposed PUF-Based authentication Protocols.

The discussed IoT PUF-Based authentication protocols are compared in terms of
practicality and performance, requirement satisfiability, and their resistance to the de-
fined attacks. Based on the results showed in the comparison section, we found that.

• Most of the studied IoT protocols are designed for generic IoT systems without
specifying their field of application, except three are about: IoMT, Smart Grid,
and UAV. However, when a protocol is dedicated to a specif application, it will
consider the requirements dedicated to that field and application. Indeed, many
era of applications are affected by this case, especially critical systems and those
known by their standards and norms, example: automotive, aviation, healthcare
systems and military applications. From a technical point of view, most of the
protocols use Hash algorithm and XOR operation to obfuscate messages, secure

86



the protocol, and guarantee the security requirements. When both techniques
were not used, the protocol is hardened by a cryptographic algorithm such as
Elliptic Curve. Further, CRPs are affected by the environment condition, thus
fuzzy extractor is trivial to generate a stable and unique response. Hence, we
found that the half of the proposed protocols guarantee noise elimination using
fuzzy extractor techniques, which play an important role in the practicality of
a protocol. In terms of authentication, only one protocol proposed a peer-to-
peer authentication between IoT devices, while most of them do not generate
session keys at the end of the authentication process. Concerning the verification
and security analysis, most of works do not apply formal and informal analysis
technique where some of them run simulation. We mention that ProVerif [156]
is the most used tool for the security verification of the proposed protocols [36].
Also, BAN logic 1 has been proposed to specify the requirements and to prove the
security of the protocols [40, 36]. For error correction, no prior definition behind
the used techniques dedicated to Generation and Reproduction procedures of the
deployed fuzzy extractor.

• From the learnt lessons regarding the studied requirements and their presented
satisfiability in Table 3.4, we can say that all the surveyed protocols satisfy the
strong PUF Response Space Expansion (fourth requirement) as well as the iden-
tification Prior to Authentication (sixth requirement) since they rely more on
strong PUF and consider the uniqueness of the response, respectively. Also,
we observe that most of protocols give a complete specification, except three
[34, 37, 35]. In addition, for the leakage resilience, some protocols store se-
cret and private information on the device memory [155, 38, 36, 43]. Unfortu-
nately, many of them do not take into consideration noise elimination process
[33, 35, 37, 39, 41, 42, 43, 44], low-cost and resource constraint of the IoT de-
vices [33, 155, 36, 38]. Finally, some protocols do not offer mutual authentication
[33, 35, 37, 38, 42].

• From a security perspective and by basing on the discussed PUF-based authen-
tication protocols, it is clear that none of them is vulnerable to cloning attack
due to the unclonability property of the used PUF. For the replay, message anal-
ysis, MITM, and injection attacks are present and can be successful within the
protocols (like [35, 37]) that exchange the authentication messages in a clear
text without adopting the appropriate solutions especially the hashing operations,
cryptographic systems, and the use of timestamps variable. Physical attacks have
been succeeded only with the protocols that store private and secret information
on the device local memory [155, 36, 38, 43]. Dos attack is present only with the

1https://www.cl.cam.ac.uk/ rja14/Papers/SEv2-c03.pdf

87



scheme that does not verify the server trust and not use timestamp variables. Fur-
ther, only the protocols that exchange CRPs without obfuscation or encryption are
vulnerable to modeling attacks. For the helper data manipulation, only the pro-
tocols that use fuzzy extractor are vulnerable to this attack, especially when the
helper data is stored in the device or transmitted over the communication channel
in a plain text. Concerning the security policies, the anonymity properties are
not present in the studied protocols. Except two [155, 38], by using the hashing
value of the device identity instead of its ID only. In addition, the integrity of
the exchanged data during the authentication process is guaranteed using, hash,
MAC, and HMAC algorithms. Also, the confidentiality is ensured by deploying
the cryptographic techniques. The non-repudiation is guaranteed only by three
schemes: [36, 41, 43] .

3.2.7 Summary

In this section, we first give a short survey of the main existing authentication techniques
used with IoT systems, including cryptography-based authentication, localization-based
authentication, and PUF-based authentication. After that, we give a detailed survey of
IoT PUF-based authentication protocols, where we give a description summary of each
reviewed protocol, and further, we give its graphical representation. Finally, we com-
pared the related works presented in terms of performance, requirements satisfiability,
and security.

3.3 Conclusion

In this chapter, we provide a list of the relevant literature studies. We begin by dis-
cussing the innovative Silicon PUF architectures, followed by an overview of PUF
applications. Then, we compared and debated the applications and architectures pre-
sented. In the second section of this chapter, we examine the current PUF-based au-
thentication mechanisms for the Internet of Things. First, we assessed their security
concerns, including the authentication methods in use. Then, we examined recent addi-
tions to authentication systems that leverage the randomness of IoT devices (IoT-based
PUFs). Finally, we compared the assessed IoT PUF-based authentication protocols on
the basis of their performance, strengths, portability, satisfaction of requirements, and
resistance to existing vulnerabilities. This section is essential for identifying the con-
straints of the existing work, which will be necessary for the development of a robust
authentication mechanism. We present our suggested IoT PUF-based authentication
protocols in the following chapter, which constitutes the primary body of this thesis.
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CHAPTER 4

LIGHTWEIGHT IoT PUF-BASED AUTHENTICATION
PROTOCOLS

Nowadays, more constrained devices become connected, building an extensive Internet
of Things (IoT) network but suffering from many security issues. In particular, authenti-
cation has become a severe research challenge for IoT systems. Furthermore, confiden-
tiality, integrity, and availability are considered the core underpinnings of information
security in general. Unfortunately, it is challenging to deploy conventional authentica-
tion protocols for IoT devices in practice for two main reasons. First, IoT devices are
limited in memory capacity, processing power, and energy resources. Second, these
protocols store secret keys on the IoT devices’ volatile memory, making them vulner-
able to physical attacks. Luckily, Physical Unclonable Functions (PUF) have emerged
as a promising low-cost security primitive. A PUF eliminates the need to store secret
keys in device memory, making them a potential alternative to deploying more secure
and low-cost authentication protocols for IoT systems. Thing-to-Thing (T2T), or direct
connection between IoT devices, represents a promising technique to enable things to
communicate directly without the interaction of a trusted third party. In this chapter,
our proposed authentication protocols were presented. We have designed three novel
lightweight Mutual Authentication and Key Exchange Protocols (MAKEP) for IoT de-
vices using PUFs. The first scheme ensures secure communication for Thing-to-Server
(T2S) and is called T2S-MAKEP. The second, T2T-MAKEP, allows two IoT devices
to communicate with each other via an embedded strong PUF circuit, and the third
one is LT2S-MAKEP, for Lightweight T2S-MAKEP, which is suitable for resource-
constrained IoT devices. All of the proposed protocols, T2T-MAKEP, T2S-MAKEP,
and LT2S-MAKEP, allow robust authentication without storing any information on the
device’s memory and simultaneously establishing the session key exchange. The main
focuses of this chapter is:

1. Presenting the system and security models as well as the requirements related to
the proposed protocols.

2. Showing how generating, producing, and correcting the stream keys.
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3. Introducing T2S-MAKEP for mutual authentication and key exchange protocol
between a thing and a server.

4. Introducing T2T-MAKEP for direct mutual authentication and key exchange pro-
tocol between two things.

5. Introducing LT2S-MAKEP for for lightweight mutual authentication and key ex-
change protocol between a thing and a server.

4.1 Architecture Settings

This section details the system model, security model, the used notation requirements,
and the assumptions used in the design of the proposed protocols.

4.1.1 System Model

As shown in Fig. 4.1, we consider the same system model of IoT as in [157, 36, 119].
The network model mainly contains two entities: Things and the server. Things could
include various sensor devices, and the server is responsible for managing things and
storing security parameters. Things can communicate with the server, but they can
communicate directly with other things through the internet network. Although the
considered system model is simple, the proposed protocol can be applied to various
complex IoT network models. In this paper, we assume that:

• Each IoT thing is equipped with an embedded PUF circuit.

• Any physical tampering with the PUF will irreversibly modify the slight physical
variations in the integrated circuit, which in turn changes the PUF challenge-
response behaviour, or even destroys the PUF circuit.

• The IoT things have limited storage capacity and cannot protect any stored secrets
in their local storage memory.

• The server is considered the trusted party with no limitation of resources that can
be found only in a secure area.

• The communication between the IoT thing microcontroller and its PUF compo-
nent cannot be accessed only through a secure channel [119].

• The proposed solution targets single-hop networks.
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Fig. 4.1 System model [32].

4.1.2 Security Model

In the mentioned network model, we consider that the IoT things are untrustworthy
devices, and they could be installed in a public space, which allows an attacker to cap-
ture things and obtain the crucial secrets from their memory. In addition, each thing
communicates with the other through the Internet using wireless technology, where an
attacker can read, manipulate, forge, reply, delay, and delete messages during the com-
munication between things or between things and the server. Also, it is assumed that an
adversary can disrupt the network using a denial of service attack. Besides, the attacker
cannot have access to the server’s database.

4.1.3 Requirements

This section contains the design requirements for three proposed protocols. Functional
requirements, security requirements, and performance requirements make up these re-
quirements.

4.1.3.1 Functional Requirements

T2S-MAKEP, T2T-MAKEP, and LT2S-MAKEP are designed to satisfy the following
functional requirements.
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• Achieve identification of IoT devices: The trusted server or the Internet of
Things (IoT) device (T2T-MAKEP) must be able to identify each new object
that requests authentication. This identification should rely solely on the answer
generated by the PUF utilized by the new entity.

• Achieve authentication of IoT devices: Each thing should be authenticated se-
curely by the server before accessing the trusted network.

• Achieve authentication of the server: The thing communicating with the server
should authenticate the server.

• Achieve data authenticity during the authentication execution process: This
is necessary to ensure the origin authentication and integrity protection of data
sent to or generated by the communicating entities. In other words, the exchanged
messages during authentication must maintain their integrity.

4.1.3.2 Security Requirements

This section specifies a set of security requirements for the proposed designs.

• Entity Authentications: Entity authentication is to ensure that an entity is the
one that it claims to be. This is to ensure that only trustworthy objects can connect
to the trusted network. This should cover mutual authentication between a device
and a trusted server. Or among two objects.

• Authenticity of Protocol Messages: Origin authentication and integrity protec-
tion should also be applied to all protocol messages (requests and responses) that
help to achieve the identification and authentication process.

• Confidentiality of Protocol Messages: Entity identification and authentication
data carried in protocol messages should be kept confidential.

• Confidentiality of the stored data: The confidentiality of the stored data on the
server used in the entity identification and authentication process should be kept
secret.

4.1.3.3 Performance Requirements

In addition to functional and security requirements, the design must also meet perfor-
mance requirements in order to be as effective as possible. The following criteria are
examined in terms of performance:

• The communication overhead: The communication overhead introduced in
each proposed protocol should be as low as possible. This means that both the
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number of authentication messages and the length of each message should be as
low as possible.

• The computational overhead: The computational overhead incurred in accom-
plishing the functions of each proposed protocol should be as low as possible.
This means that the computational costs of any algorithms and/or cryptographic
primitives chosen for the implementation of the these functions should be taken
into account.

• Storage Data : The stored data on the IoT device and the server should be min-
imised as possible.

4.1.4 Notations

Table 4.1 defines the notations used by both proposed protocols: T2S-MAKEP and
T2T-MAKEP.

Symbols Definitions
IDA The identity of a IoT device A
Regreq Registration request
Authreq Authentication request
CA,i The ith challenge of the device A
h(.) One-way hash function
PUFA The PUF of a device A
RA,i A response of the challenge CA,i

R′A,i A noisy response of CA,i

Gen(.) Generation procedure of Fuzzy Extractor
Rep(.,.) Reproduction procedure of Fuzzy Extractor
KA,i Extracted key from RA,i

PA,i Helper data of RA,i

TS Timestamps
|| Concatenation symbol

Table 4.1 Authentication protocol’s symbols.

In addition to those notation listed in Table 4.1, Table 4.2 defines some of new
notations used by LT2S-MAKEP.

4.2 T2S-MAKEP Scheme

In this section, we provide a detailed description of the proposed mutual authentica-
tion protocol between an IoT device, equipped with a PUF, and the server. A physical
unclonable function, a hashing function, and a fuzzy extractor are employed in our
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Symbol Definition
IDd Device Identity i
C Challenge
APUF Arbiter PUF of device IDd

SRAM.PUF SRAM PUF of device IDd

RAPUF A response of C Generated by APUF
RSRAM A response of C Generated by SRAM PUF
R′APUF A noisy response of C Generated by APUF
R′SRAM A noisy response of C Generated by SRAM PUF
KAPUF Extracted key from RAPUF

KSRAM Extracted key from RSRAM

PAPUF Helper data of RAPUF

PSRAM Helper data of RSRAM

Table 4.2 LT2S-MAKEP’s symbols.

scheme. The protocol consists of three modules; 1) the enrollment phase, 2) the authen-
tication phase, and 3) session key establishment. Fig. 4.2 shows T2S-MAKEP system
model.

Fig. 4.2 T2S-MAKEP system model.
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4.2.1 Enrollment Phase

In the most existing PUF-based authentication protocols that store a considerable num-
ber of CRPs in the authentication process the server challenges the IoT device with one
randomly selected pair, and at the end, it will be deleted from the server database. In our
proposed mechanism, the server stores only one pair. It minimizes the security threat
due to the confidentiality of the stored data and the resources of the server database [42].
In this phase, when a new IoT device needs to be added as a member of the trusted net-
work, it goes first with the server through the enrollment phase. This phase is executed
in a trusted and secure environment. Fig. 4.3 describes the main steps of this phase to
be performed by the IoT-Device-A and the Trusted− server are as follows.

• IoT-Device-A sends its identity IdA in plain text to the Trusted− server with a
registration request Regreq.

• Trusted−server generates randomly a challenge CA,i, and sent it to IoT-Device-

A within IDA.

• The IoT-Device-A inputs this challenge into its PUF component to output the
corresponding response RA,i=PUFA(CA,i). Then, IoT − DeviceA sends to the
server IDA, CA,i, RA,i.

• Using the generation procedure of fuzzy extractor Gen, the Trusted−server ex-
tracts the secret key KA,i and the public helper data PA,i, (KA,i, PA,i)=Gen(RA,i).
Then, the server computes the hash of the device identity and the secret key and
stores h(IDA), CA,i, h(KA,i), PA,i on its local secure database.

• In the end, Trusted − server informs IoT-Device-A about the end of the regis-
tration process.

Fig. 4.3 Enrollment Phase.

After a successful registration, the Internet of Things device may be deployed and
activated. Since preserved credentials (CA,i, h(KA,i), PA,i) are automatically created at
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the conclusion of every successful authentication operation, the device will never seek
for the server’s permission to register.

4.2.2 Authentication Phase

Our proposed mutual authentication scheme is based on deploying a silicon PUF, espe-
cially a strong PUF, in the IoT device. The idea behind using the PUF is that the IoT
device uses the challenge-response pair of the PUF as a fingerprint and uses it to prove
its identity with the server. The device and the server achieve mutual authentication
since only those who know about the generated secret key for a given challenge in the
enrollment phase and stored on the trusted server. In this proposed protocol, the server
stores only one pair of CRPs to avoid attacks on the server. One of the most vital points
of our protocol is that the IoT device does not store any secret or public information,
which avoids physical attacks.

In the authentication phase to check the device’s identity, PUF-based authentication
protocols mainly compare the stored response in the enrollment phase to the new gen-
erated one to the same given challenge. Unfortunately, generating the same response
for the same challenge in different environments and conditions such as voltage and
temperature makes the response noisy or hazarded compared to the original one. This
step is processed differently in our case, so to generate the secret key and store it safely
on the server for the authentication process, the error correction technique has been
adopted to eliminate the noise and ensure the comparison operation. More precisely,
the proposed protocol takes into consideration the noise elimination process using the
fuzzy extractor.

As shown in Fig. 4.4 the authentication process between the IoT device (IoT-Device-

A) and the server (trusted-server) is running as follows.

1. Firstly, in step (1), when the IoT-Device-A wants to communicate with the server,
it generates a timestamp TS1 and calculates a hash value of its identity (IDA),
h(IDA, TS1). Then, it sends the hash of its identifier h(IDA), the authentication
request Authreq and h(IDA, TS1) message to the server.

2. In Step (2), upon receiving the message from the IoT device, the server executes
the following operations:

• The server checks the existence of the received h(IDA) in its database.

• If the finding fails, the server rejects the authentication request. Otherwise,
the server verifies the received message integrity by calculating h(IDA, TS1)

message and matches both the calculated hash messages within the received
one.
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• If the matching fails, the server rejects the authentication request. Other-
wise, the server makes sure that the message has not been corrupted or
tampered during the transmission phase. To calculate the message m2:
h(IDA, CA,i, PA,i, KA,i, TS2), the trusted server retrieves CA,i, PA,i, h(KA,i)

associated with the IDA from its database and generates a timestamp TS2.

• Finally, the server sends to the IoT device A: the stored challenge CA,i,
the helper data corresponding to this challenge PA,i, TS2, and the message
h(IDA, CA,i, PA,i, KA,i, TS2).

3. In Step (3), once the IoT device receives the server response, the following steps
are executed.

• The IoT device uses its PUF to generate the response of the received chal-
lenge: R′A,i = PUFA(CA,i).

• By default, the generated response is considered noisy. Then, the device
reproduces the secret key KA,i = Rep(R′A,i, PA,i) from the noisy response
R′A,i using the reproduction process of the fuzzy extractor.

• To verify the integrity of the received message from the server, IoT-Device-A

calculates h(h(IDA), CA,i, PA,i, h(KA,i), TS2), and compares the received
and the calculated hash messages. A successful matching provides the first
factor for authenticating the server within the IoT-Device-A. This matching
is ensured since the server is the only entity in the network that knows the
secret key KA,i generated from the response RA,i of CA,i.

• If the comparison fails, the connection is rejected by the IoT device. Other-
wise, the IoT device generates a timestamp TS3, computes a new challenge
CA,i+1 = h(CA,i||KA,i), and generates the response corresponding to the
new computed challenge RA,i+1 = PUFA(CA,i+1).

• Finally, the device calculates h(IDA, TS3, kA,i, RA,i+1) message, encrypts
the new response with the reproduced secret key (RA,i+1)h(KA,i), and sends
back the calculated message with TS3 and the encrypted data.

4. Upon receiving the message from the IoT device, the server executes the follow-
ing operations:

• Decrypts (RA,i+1)h(KA,i) using the stored secret key h(KA,i).

• Verifies the integrity of the received data by calculating h(IDA, TS3, kA,i, RA,i+1).

• Compares the received and the calculated hash messages. If the matching
fails, the server terminates the connection. Else, the server validates the
authenticity of the IoT device as a successful matching of these two hash
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messages. Consequently, the IoT is authenticated and the server communi-
cates with the right IoT device.

Thing − A

Generate: TS1

Calculate: m1 = h(IDA, TS1)

Generate:R′A,i

R′A,i=PUFA(CA,i)
Reproduce: KA,i

KA,i = Rep(R′A,i, PA,i)
Calculate and verify:

m2

Yes

Calculate: CA,i+1

CA,i+1 = h(CA,i||KA,i)
Generate:RA,i+1,TS3

RA,i+1=PUFA(CA,i+1)
Calculate:

m3 = h(IDA, TS3, kA,i, RA,i+1)
m4 = (RA,i+1)KA,i

Trusted− server

h(IDA) in the pairing list?

Yes

Calculate and verify:
m1

Yes

Retrieve: CA,i, PA,i, KA,i

Generate: TS2

Calculate:
m2 = h(IDA, CA,i, PA,i, KA,i, TS2)

Decrypte: m4

Calculate and verify:
m3

Yes

Generate: (KA,i+1, PA,i+1)
(KA,i+1, PA,i) = Gen(RA,i+1)

Delete: CA,i, PA,i, KA,i

Store: CA,i+1, PA,i+1, KA,i+1

Step(1): {h(IDA),Authreq, TS1,m1}

Step(2):{CA,i, PA,i, TS2,m2}

Step(3): {TS3,m3,m4}

Secure communication session established using KA,i

Reject

Reject

Reject

Reject

Fig. 4.4 T2S-MAKEP Protocol.

4.2.3 Session key establishment

After authenticating the IoT device in the trusted server, both communicating entities
can use the secret and exchanged key h(KA,i) as a session key to secure the commu-
nication during the current session. h(KA,i) is securely generated by the device and
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stored by the server. Also, it has never been used and communicated in plain-text.
At the end of the communication, the server generates a new secret key and its cor-
responding helper data from the new generated response RA,i+1, using the generation
procedure of the fuzzy extractor (KA,i+1, PA,i) = Gen(RA,i+1). Then, it calculates the
new challenge CA,i+1 = h(CA,i||KA,i). Finally, the server updates the used information
CA,i, PA,i, h(KA,i) by the new one CA,i+1, PA,i+1, h(KA,i+1) for a next authentication
of the device IDA.

4.3 T2T-MAKEP Scheme

In this section, we detail the proposed mutual authentication and key exchange protocol
between two things (Thing-A and Thing-B). By following T2T-MAKEP rules, things
could authenticate and communicate each to others without a real participation of the
trusted server. As the first schema, T2T-MAKEP consists of three modules; 1) the
enrollment phase, 2) the authentication phase, and 3) session key establishment. Fig.
4.5 shows T2T-MAKEP system model.

Fig. 4.5 T2T-MAKEP system model.

4.3.1 Enrollment Phase

This phase is identical to the one presented in T2S-MAKEP.
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Thing − A

Generate: TS1

Calculate: m1 = h(IDA, h(IDB), TS1)

Decrypt: m3

Verify: m2

Yes
Generate: TS3

Calculate: m4 = h(CB,i, PB,i, KA,i, TS3)
m5 = (KA,i)KB,i

S = h(KB,i ⊕KA,i)

Thing −B

R′B,i=PUFB(CB,i)
KB,i = Rep(R′B,i, PB,i)

Decrypt: m5

Verify: m4

Yes
Calculate: S = h(KB,i ⊕KA,i)

Generate: TS4

CB,i+1 = h(CB,i||KB,i)
RB,i+1=PUFB(CB,i+1)

m6 = h(IDB, TS4, kB,i, RB,i+1)
m7 = (RB,i+1)KB,i

Trusted− server

h(IDB) in the pairing list?

Thing − A is authenticated ?

Yes
Retrieve: CB,i, PB,i, KB,i

Generate: TS2

Calculate: m2 = h(IDA, CB,i, PB,i, KB,i, TS2)
m3 = (KB,i)KA,i

Decrypte: m7 and verify: m6

Yes
(KB,i+1, PB,i) = Gen(RB,i+1)

Delete: CB,i, PB,i, KB,i

Store: CB,i+1, PB,i+1, KB,i+1

Step(1) {h(IDA), h(IDB),Comreq, TS1,m1}

Step(2) {CB,i,PB,i,TS2,m2,m3}

Step(3) {h(IDA),Comreq,CB,i, PB,i,TS3,m4,m5}

T2S-MAKEP

Secure communication session using S

Step(4): {h(IDB), TS4,m6,m7}

Fig. 4.6 T2T-MAKEP Protocol.
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4.3.2 Authentication Phase

As shown in Figure 4.6, T2S-MAKEP is used as an essential step at the first stage
of T2T-MAKEP executions that are detailed as follows. When an IoT end-device
Thing − A wants to communicate with another end-device Thing − B, first in Step
(1), Thing − A generates a timestamp TS1 and calculates a message m1, where m1 =

h(IDA, h(IDB), TS1) to ensure the integrity of the T2T communication request mes-
sage. Then, the IoT device sends the hash of its identifier h(IDA), the hash of Thing−
B identifier h(IDB), the authentication request Comreq, and the message m to the
server.

In Step (2), upon receiving the message from ThingA, the server checks the validity
of ThingB identity by checking h(IDB) in its database. If the finding fails, the server
rejects the authentication request. Otherwise, the server follows steps of Section 4.2.2
to launch T2S-MAKEP process and verify the authenticity of the IoT device lunched
the communication request (ThingA).

At the end of the T2S-MAKEP phase, if the authentication fails, the server rejects
the authentication request. Else, Thing − A is authenticated and the message of the
communication request was not corrupted or tampered during the transmission phase.
Then, the server retrieves the correspondent stored data of Thing−B: IDB, CB,i, PB,i,

KB,i and generates a timestamp TS2.

After that, the server calculates both messages m2 and m3, where m2 is used to guar-
anty the integrity of the transmitted data. In addition, m3 = (KB,i)KA,i

is a result of the
cryptographic operation on the secret key KB,i using the secure session key KA,i estab-
lished at the end of T2S-MAKEP phase. Finally, the server sends CB,i, PB,i,TS2,m2

and m3 to the device that lunched the communication request Thing − A.

In Step (3), once Thing − A receives the server response, it decrypts m3 by us-
ing the T2S-MAKEP session key KA,i. Then, it verifies the integrity of the received
response by calculating m2 using the decrypted message KB,i and the non-encrypted
received data (CB,i, PB,i, and TS2). If the verification fails and the connection does
not rejected rejected, Thing − A generates a timestamp TS3 and calculates m4 =

h(CB,i, PB,i, KB,i, TS3), m5 = (KA,i)KB,i
, and S = h(KB,i ⊕KA,i) which is the new

session key used to secure the communication between the two things by Xoring the
secret keys of both devices. Finally, Thing−A sends the hashed identity of Thing− b

IDB), the challenge CB,i, the helper data PB,i, a timestamp TS2, the control of the
integrity m4 , and Thing − A encrypted secret key m5.

Afterwards,Thing − B uses its PUF component and generates the response of the
received challenge R′B,i = PUFB(Cb,i), which is considered as a noisy response. Then,
it reproduces the original secret key KB,i from the noisy response through the fuzzy
extractor reproduction process KB,i = Rep(R′B,i, PB,i). It uses this key to decrypt the
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received encrypted message m5, then the result KA,i is used to calculate and verify the
integrity of m4. In the communication request is granted, the IoT end-device Thing−B
makes sure that the message was not tampered during the transmission phase. Also
since only the server has a secret key KB,i, the device requesting the connection is
trusted with the same trusted network and server.

4.3.3 Session key establishment

Finally, Thing − B calculates the new session key S = h(KB,i ⊕KA,i) used to se-
cure the communication with Thing − A. At this step, both IoT end-devices could
communicate securely using the secret session key S.

Finally, in Step (4) Thing −B and the server execute the needed operations to up-
date the used information CB,i, PB,i, KB,i by the new generated one CB,i+1, PB,i+1, KB,i+1

4.4 LT2S-MAKEP Scheme

In this section, we present our third contribution named LT2S-MAKEP for lightweight
thing-2-server mutual authentication and key exchange protocol between a thing and a
server, in this scheme, we exploit two silicon PUFs built-in with a given IoT device, one
is a weak PUF (SRAM) and another is a strong PUF (Arbiter PUF). SRAM PUF is used
to generate a secret cryptographic key used to encrypt the exchanged messages during
the authentication phase, and the APUF is used during the authentication process. Uti-
lizing the weak PUF with APUF in the same IoT device avoids the need of using another
cryptographic primitive to protect the response during transmission phase. Thus, the de-
vice uses the response generated by APUF to prove its identity in the network. On the
other side, this scheme differs from T2S-MAKEP and T2T-MAKEP, since it achieve
a a secure authentication using PUF without a need to noise elimination process such
as fuzzy extractor, this due to the advanced research that showed that weak PUF is
more reliable and has zero bit-error-rate when regenerate the same response for a given
same challenge [158, 159]. Further, the authenticated is based on the comparison of the
stored APUF response R APUFA,i with the new generated one R APUF ′A,i regarding
if they are close each to other. This comparison principal is inspired from the Fuzzy
extractor technique (see fuzzy extractor and secure sketch definition.A.2.3). Fig. 4.7
shows the network model of the LT2S-MAKEP proposed scheme, where each IoT de-
vice is assumed to communicate with the trusted server through a public and unsecured
network like the Internet. Each IoT device is considered as a resource limited (memory
and processing) and is equipped with two PUFs.
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Fig. 4.7 LT2S-MAKEP system model.

4.4.1 Enrollment phase

Fallowing the same principal, in this proposed scheme the server stores only one pair
of challenge and response. When a new device, equipped with an APUF and SRAM
PUF, needs to be added as a member of the trusted network, the device and the server
go first through the Enrollment phase. This phase is executed in a trusted and secure
environment. Fig. 4.8 describes the main steps of this phase to be performed by the
Thing − A and the Trusted− server are as follows.

• Thing − A sends its identity IdA in plain text to the Trusted − server with a
registration request Regreq.

• Trusted−server generates randomly a challenge CA,i, and sent it to Thing−A

within IDA.

• The Thing−A inputs this challenge into its both PUFs APUF and SRAM PUF to
output the corresponding responses, respectively R SRAMA=SRAM PUFA(CA,i)
and R APUFA,i=APUF (CA,i). Then, Thing−A sends the generated responses
to the server R SRAMA and R APUFA,i with its IDA.

• The Trusted − server calculates the secret key K SRAMA by computing the
hash of R SRAMA, and stores IDA, CA,i, K SRAMA, R APUFA,i on its local
secure database.
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Thing − A

Generate:
R SRAMA=SRAM PUF (CA,i)

R APUFA,i=APUF (CA,i)

Trusted− server

Calculate: K SRAMA =h(R SRAMA)
Store: IDA, CA,i, K SRAMA, R APUFA,i

Generate:CA,i

{IDA, Regreq}

{IDA, CA,i}

{IDA, R SRAMA,R APUFA,i}

End

Fig. 4.8 LT2T-MAKEP Enrollment Phase.

• In the end, Trusted−server informs Thing−A about the end of the registration
process.

4.4.2 Authentication phase

Our proposed scheme is a two-factor authentication by using two silicon PUFs built
within the IoT device, SRAM PUF and APUF. The IoT device does not store any infor-
mation, besides the server store only one CRP pair of each used PUF. In our scheme,
we use PUF only as security primitive, where the exchanged responses secure and en-
crypt the communication by using the secret key extracted from the weak PUF, and for
the integrity of the transmitted information, a one-way hash function is used in each
transmitted message. Also, to ensure the freshness of messages and to prevent replay
attacks, we send with each message a timestamp value. Fig. 4.9 shows the detailed
steps of our proposed protocol described below.

• The device first sends the authentication request Authreq, the device identity IDA

and a timestamp Ts1.

• Upon receiving the message from the IoT device by the server, it directly veri-
fies the identity of the device IDA in his storage system and the integrity of the
received message m1.

• If it fails to find it, the connection is rejected. Otherwise, the Trusted − server

loads from its memory the stored information among the received IDA that are:
the SRAM secret key K SRAMA and the stored response of APUF R APUFA,i.
Then generates a timestamp Ts2. After that, it calculates the messages m2 =

CA,i, T s2, h(IDA, CA,i, K SRAMA, TS2).
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• Then, the server sends to the device its identifier (IDd), the challenge CA,i, and
the calculated message m2.

• Once received by the device, first, it verifies the integrity of m2, if the verifica-
tion process fails, the connection is rejected. Otherwise, it generates the response
proper to the challenge using SRAM PUF and APUF, (R SRAMA=SRAM PUF (CA,i))
and R APUF ′A,i=APUF (CA,i), respectively. Then, calculate the secret key K SRAMA

=h(R SRAMA). After that, it generates a new timestamp Ts3, and calculates two
new messages m3 = h(IDA, TS3, R APUF ′A,i)

m4 = (R APUF ′A,i)K SRAMA
. Finally, the device sends to the server TS3, m3,

and m4.

• When received by the server, it decrypts m3 and verify the validity of m4. If the
verification fails, the server terminates the connection. Else, the server compares
the received APUF response R′ APUFA,i with the sored one R APUFA,i, if both
response are close each to other, the server validates the authenticity of the IoT
device as a successful matching of these two response messages. Consequently,
the IoT is authenticated and the server communicates with the right IoT device.
Else, the connection is rejected.

• At this step, both the server and the device calculate the secret session key KA,i

and they can communicate in a secure way.

• As the server stores only one CRP, the proposed protocol need an update phase at
the end of each successful authentication. for this, Thing −A generates a times-
tamp TS4, computes a new challenge CA,i+1 = h(CA,i||KA,i), and generates the
response corresponding to the new challenge R APUFA,i+1=APUF (CA,i+1).
Then, the device calculates m5 = h(IDA, TS4, R APUFA,i+1) message, en-
crypts the new response with the secret key m6 = (R APUFA,i+1)KA,i

, and sends
back the calculated message with TS3 and the encrypted data.

• At the end, the server decryptes m6 and verifies m5, if the verification pass, the
server, the server updates the used information CA,i, R APUFA,i by the new one
CA,i+1, R APUFA,i+1 for a future authentication of the device IDA.

4.5 Conclusion

In this chapter, we have proposed three schemes of IoT PUF-based authentication pro-
tocol, a thing-to-thing mutual authentication and key exchange protocol for IoT devices
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Thing − A

Generate: TS1

Calculate: m1 = h(IDA, TS1)

Calculate and verify:
m2

Yes

R SRAMA=SRAM PUF (CA,i)
K SRAMA =h(R SRAMA)
R APUF ′A,i=APUF (CA,i)

Generate: TS3

Calculate:
m3 = h(IDA, TS3, R APUF ′A,i)
m4 = (R APUF ′A,i)K SRAMA

Calculate : KA,i = h(R APUF ′A,i)

Generate: TS4

CA,i+1 = h(CA,i||KA,i)
R APUFA,i+1=APUF (CA,i+1)

m5 = h(IDA, TS4, R APUFA,i+1)
m6 = (R APUFA,i+1)KA,i

Check: h(IDA)

Yes

Calculate and verify:
m1

Yes

Load: IDA, CA,i, K SRAMA, R APUFA,i

Generate: TS2

Calculate: m2 = h(IDA, CA,i, K SRAMA, TS2)

Decrypte: m4

Calculate and verify:
m3

Yes

Compared : R APUF ′A,i with R APUFA,i

Yes

Calculate : KA,i = h(R APUF ′A,i)

Decrypte: m6, verify: m5

Yes

Replace: CA,i, R APUFA,i

With: CA,i+1, R APUFA,i+1

Trusted− server

Step(1): {h(IDA),Authreq, TS1,m1}

Step(2):{CA,i, TS2,m2}

Step(3): {TS3,m3,m4}

Secure communication session established using KA,i

Step(4): {TS4,m5,m6}

Fig. 4.9 LT2S-MAKEP Protocol.
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(T2T-MAKEP), where a thing wants to communicate with another. First, it has to au-
thenticate with trusted server using the T2S-MAKEP scheme. In practicality, the pro-
posed schemes guarantee error correction and noise elimination using a fuzzy extractor
solution. Further, T2T-MAKEP does not need an update phase without storing any se-
cret or non-secret information on the local memory of the IoT end-device. Also, at the
end of each successful authentication phase, our schemes generate a session key and ex-
change it securely between the communicating entities. Further, we have developed a
Lightweight low-cost protocol LT2S-MAKEP that relies on two PUFs: the SRAM PUF
and the Arbiter PUF. The first is used for encryption, whereas the second is used for
authentication. In the next chapter, we verify the robustness of the proposed protocols
using formal and informal security analysis techniques.
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CHAPTER 5

VERIFICATION AND ANALYSIS

Before implementation, we first check the correctness, the soundness and the robustness
of our proposed authentication protocols. This chapter provides formal and informal
analysis of the proposed authentication protocols’ security. To give additional evidence
for the security of the protocols, we modeled and formalized the developed schemes
using the Verifpal verification tool. In addition, the evaluation of the performance of
the proposed protocols is examined in terms of computational overhead, communication
overhead, and storage restrictions. Principally, the main concerns of this chapter is:

1. Presenting the existing attacks against IoT PUF-based authentication protocols.

2. Argumenting the use of Verifpal verification tool.

3. Presenting and detailing the formal and informal security analysis of T2S-MAKEP,
T2T-MAKEP, and LT2S-MAKEP schemes.

4. Presenting and discussing the performance analysis of the proposed protocols.

5. Comparing the proposed protocols within the existing ones in terms of security.

5.1 Attack Scenarios

A brief definition about the most known attacks [34, 44] that an advisory can launch on
an IoT PUF-based authentication protocol is presented as follows:

• Message Analysis Attack: This kind of attack concerns the confidentiality of the
exchanged message during or after a successful authentication phase. Meaning
that an adversary tries to obtain the transmitted information between the commu-
nication entities.

• Replay attack: In this attack, the adversaries store the transmitted information
of the valid authentication operation with the hope of utilizing it in future authen-
tication.
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• DoS attack: The goal of adversaries in this attack is to exploit all the resources
of the target device, and/or to temporarily or indefinitely disrupt services. It is
accomplished by flooding the targeted device with superfluous authentication re-
quests.

• Physical attack: In this kind of attack, an adversary may attempt to physically
get access to a device and try to obtain the secret information stored on its local
memory.

• MITM and Injection attack: In this attack, an adversary tries to intercepts the
exchanged information between different entities during their authentication pro-
cess. It possibly also alternating the communications between them and makes
them believe that they are directly communicating with each other.

• Modeling attack: From the communication between the server and the device,
an adversary tries to get CRPs of the used PUF. Then, it executes the machines
learning techniques on the CRPs dataset and offers to the adversary the possibility
of predicting the correct response related to a given challenge.

• Helper data manipulation: This attack targets to make the fuzzy extractor oper-
ations impossible by modifying the helper data transmitted or stored on the device
memory.

• Cloning attack: Our proposed protocol resists cloning attacks since it exploits
PUFs for authentication, and the main feature of PUF is unclonability as its name
says.

• Camouflage attacks: In this attack, an adversary inserts into the network a coun-
terfeit IoT device to operate as a normal device or attacks an authorized device
in order to obtain, process, send or redirect and manipulate packets, or be passive
and just analyze the traffic [160] .

• Anonymity Device: In this attack, the intruder targets to reveal the identity of
the IoT device and its traceability in the network.

5.2 Verifpal

In order to analyze our proposed protocols formally, we have selected Verifpal, a mod-
ern tool dedicated to the formal verification of the security of cryptographic protocols.
It is inspired by some older formal verification tools such as ProVerif, and it covers the
most well-known model, Dolev-Yao, which is a modelling technique for verifying cryp-
tographic protocols [161]. Verifpal is a the symbolic verification tool, Verifpal. Com-
pared to the most relevant protocol verification tools based on symbolic models, mainly
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Tamarin and ProVerif, Verifpal extends them to cover more properties to construct cor-
rectly and verify efficiently cryptographic communication protocols, especially the fol-
lowing.

• Modeling looks if graphical or pre-defined behaviours can be instantiated and
repeated.

• Cryptography shows if cryptographic syntax is supported like standard hashing,
encryption and decryption functions.

• Unbound is to not limit the number of communication sessions.

• Equational presents if the user defined functions are supported, in addition to
classical communication calculus properties, like: associative and commutative
properties.

• Mutability shows if the tool support the verification of protocols with global
mutable state.

• Equivalence checks if the properties related to equivalence checking are enabled,
like: trace equivalence, bisimilarity, etc.

• Implementation shows how possible is generating an executable code.

The comparison presented in Table 5.1 extending the results presented in [162]
shows that Verifpal [45] is a good candidate to specify correctly and verify efficiently
cryptographic protocols.
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CPSA [163] # #  #  # #
DEEPSPEC [164] # G# # G#   #
F7 [165] # G#  G#  #  
Maude-NPA [166] # G#   #  #
ProVerif [167] G# G#  G# #  #
Scyther [168] G# #  # # # #
Tamarin [169] G# G#     #
Verifpal [45]    G#  G# G#

Table 5.1 Comparison between Verifpal with the main symbolic security analysis tools
[45].
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5.3 T2S-MAKEP analysis

In this section, we check the robustness of the T2S-MAKEP protocol against the IoT
known attacks, and in the second, we use Verifpal [45] as an automatic security ver-
ification tool, which is used to analyze the proposed protocol formally. Finally, its
performance evaluation is given.

5.3.1 Informal security analysis

A defence assessment of each presented attack scenario is given in the following points.

• Message Analysis Attack: In our scheme, the exchanged data during the authen-
tication steps is hashed by using a one-way hash function or encrypted using a
secret key h(kA,i). Also, the hashed values are not vulnerable to this attack, and
the secret key h(kA,i) is known only by the IoT device and the trusted server.
Furthermore, the secret key changes after each session. Hence, this attack is not
practical for our scheme.

• Replay attack: In our scheme, both the IoT devices and the trusted server include
timestamps in exchanged messages, which helps prevent this kind of attack. Be-
sides that, the used information (challenge, response, helper data and secret key)
changes in each authentication phase, and the session key also changes for each
session. Hence, the attack will not be possible.

• DoS attack: In our proposed protocol, each entity verifies the received packets
immediately by computing a hash value of the received message. If the integrity
of the message is compromised, the attempted communication is banned. Fur-
ther, except for the authentication request where the verification is based on the
presence of the h(IDA) on the server’s database, the random guessing of the hash
value is not applicable as each hashed value contains the secret key h(kA,i) which
is known only by the server and the device equipped with the right PUF. Further,
the server is installed in a secure environment, such as a data center, which can
avoid and resist this kind of attack using software and hardware solutions. As a
result, the proposed protocol has shown good resistance against DoS attacks.

• Physical attack: As mentioned before, our scheme is based on PUFs, which is
a perfect solution against this kind of attack, where the keys are generated and
reproduced through performing PUF operations, so there is no need to store the
secret key. Further, in our scheme, the IoT device does not store any information
in its local memory. Hence, the IoT device does not reveal any secrets even if
an adversary has physical access, making the proposed protocol secure against
physical attacks.
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• MITM and Injection attack: In our authentication mechanism, the IoT device and
the server do not exchange sensitive data (such as h(kA,I), or the new response
RA,i+1) in plaintext over the unsecured communication channel. Also, an adver-
sary has no access to these secrets to calculate the right hashed value for passing
the verification step. So, the proposed protocol is secure against MITM attacks.

• Modeling attack: In our mutual authentication scheme, we do not exchange the
PUF response in plaintext, so if an adversary could capture the exchanged mes-
sages between the IoT device and the server, she/he could not run a machine learn-
ing attack since she/he possesses only the challenge that is exchanged in plaintext.
Further, if an attacker has access to the trusted server, she/he can capture only one
pair of CRPs. Therefore, launching a modelling attack on our proposed protocol
is not applicable.

• Helper data manipulation: In our scheme it is securely generated by the server
and transmitted to the IoT device. For each exchanged helper data, its hashed
message with some other information are transmitted to help in verifying the in-
tegrity of the helper data on the IoT side. In addition, the manipulation can be
executed only during the communication phase, where the helper data is trans-
mitted to the IoT device. Consequently, a helper data manipulation attack is not
feasible in our mutual authentication scheme.

• Cloning attack: Our proposed protocol resists cloning attacks since it exploits
PUFs for authentication, and the main feature of PUF is unclonability as its name
says. It has been shown that each PUF output is a unique value and it is hard to
clone a PUF, due to the fact that any modification to the physical characteristics
of the PUF circuit makes the cloned version a new instance of the PUF which
results in generating different responses from the original PUF circuit.

• Camouflage attacks: In our scheme, before adding the device to the network, it
goes first through the enrollment phase with the server in a trusted environment,
where the initial authentication credentials (CA,i, h(KA,i), PA,i) were generated
using embedded PUF component, and stored on the server. Further, the creden-
tials are unique for each IoT device since they are extracted from the silicon PUF,
which is a good solution for anti-counterfeiting [170]. So, even if an attacker in-
serts a forgery device equipped with a PUF, a camouflage attack cannot succeed
as it does not figure out the server’s database.

• Anonymity Device: In our scheme, the identity of the device is encrypted using
a one-way hashing function that makes it difficult to recover the device identity
from the hashing results.
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5.3.2 Formal security analysis

To model and check how much our developed protocols are secure using Verifpal, we
must first define whether our schemes will be analyzed under a passive or active at-
tacker. A passive attacker can observe the communication messages over the network
and cannot inject or modify these messages. Contrarily, an active attacker can observe,
modify, and inject new messages. In our case, we chose the active one who can alter
the authentication messages and inject its data. Secondly, we have to define the differ-
ent principles (devices and the trusted server) taking part in our communication system,
including the active attacker. Then, we describe the authentication messages being com-
municated between the model’s parts across the network. Finally, we query Verifpal the
following queries about the integrity, privacy, and freshness of the messages exchanged
and the authentication of the participants. The Verifpal code that was utilized to analyze
T2S-MAKEP is presented in A.2.3.

• Integrity: In each step, after receiving the message by the device or the server,
we check the integrity of the received packet by computing its hash function. To
check this property, we use ASSERT a Verifpal’s predefined primitive. msg 1

checking integrity using Verifpal is illustrated as follows.

ASSERT(HASH(ID a, TS 1),msg 1)?

– Reachability and Secrecy: The first objective of T2S-MAKEP protocol
is to guarantee the reachability and secrecy of the shared secrets between
the IoT end-device and the trusted server. Using Verifpal, we show that the
considered secrets ida, hka1 and ra2 are secretly shared between Thing−A

and the server (i.e. these secrets cannot be obtained, deleted or altered by an
active attacker). To test this property, the following variables are declared.

knows private ida

knows private hka1

knows private ra2

knows private is a Verifpal’s predefined primitive used to declare private
information. The first variable is declared private to guarantee the anonymity
of Thing-A identity. The second is the secret and the session key. The last
one is the new generated response used to generate the new secret key that
will be used for future authentication. At the end of the model, we ask
Verifpal for the next confidentiality query of the privates used information.
The confidentiality query is the most basic of all Verifpal queries, which are
used to test if an attacker could obtain the private information communi-
cated between Thing − A and the server during the authentication phase.
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Those queries are expressed as follows to check the confidentiality of id a,
h k a 1, and r a 2.

confidentiality? id a

confidentiality? h k a 1

confidentiality? r a 2

– Mutual Authentication: The second objective of the proposed T2S-MAKEP
scheme is the mutual authentication between the IoT device and the server,
which adds more resistance to the protocol against man-in-the-middle and
replay attacks. To test this security property under Verifpal, we use the fol-
lowing two authentication queries:

authentication? Trusted server −→ Ting a: msg1

authentication? Thing a −→ Trusted server: msg2

The first query checks if Thinga can authenticate the Trusted server based
on the received message msg1 in step (2) of T2S-MAKEP scheme. This
operation succeeds because msg1 results from a one-way hash function,
which contains the secret key hka1 known only by the server and is commu-
nicated in the setup phase. So, this secret information guarantees that msg1

comes from an authentic entity, the Trusted server. Also, in the second
authentication query, the server authenticates Thinga based on the value of
the secret key that is reproduced using FE on the noisy generated response.
This step succeeds because only Thing a could use its PUF to regenerate
the same stored key corresponding to the stored one on the server. Both
queries guarantee mutual Authentication.

– Freshness: In addition to the above-specified security properties, freshness
of the transmitted messages is also a pillar requirement. Freshness query
is useful for detecting replay attacks, where an attacker could manipulate
one message to make it seems valid in two different contexts. To assert
this property, the following Verifpal queries are declared, where each tested
message contains a timestamp value that guarantees the freshness of data.

freshness? msg1

freshness? msg2

freshness? msg3

The verification results of the formal security analysis of the proposed protocol are
shown by the execution of the Verifpal code given in appendix A.2.3. Fig. 5.1 shows
that all the quires were passed successfully. This means that it is infeasible for active
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attackers to decrypt messages without secret keys and either to get the secret session key
used between the IoT device and the trusted server. Further, an intruder cannot launch
MITM and injection attacks due to the freshness of the timestamp value. Finally, both
the IoT device and the trusted server can authenticate each other based on the secret
key generated using PUF. Consequently, the mutual authentication protocol using PUF
is secure and guaranteed.

Fig. 5.1 T2S-MAKEP’s Verifpal outputs.

5.4 T2T-MAKEP analysis

5.4.1 Informal security analysis

A defence assessment of each presented attack scenario is given in the following points.

• Resisting to message analysis attack. In this schemes, secret keys, session keys,
and responses are confidential and cannot be accessible by an attacker despite the
fact the possibility of intercepting the authentication messages. This is achieved
by encryption and hashing the transmitted messages and not storing them locally.

• Resisting to replay attack: By considering an attacker was able to intercept old
authentication messages and want to replay them, she/he cannot forge the cur-
rent transmitted message since a valid timestamp is assigned at each transmitted
message. Further, except for the identity of IoT end devices, all parameters are
updated after each new session. Consequently, replay attacks are prevented effi-
ciently.

• Resisting to denial of service attacks: Only two types of entities could be found
in both proposed protocols, a server and the IoT end-device. However, the DOS
attack is infeasible on the server side due to its high computation power [34].
So, this attack is considered only on the ToT end-device side. The attack can be
done in step (2) and step (3) for the T2T-MAKEP scheme. In each step, after
receiving the message by the device, it checks the integrity of the received packet
by computing its one hash function. Further, the probability that the random
guessing of the hashing value to pass the verification process is negligible due to
the confidentiality of the secret key included in each hashed value. As a result,
the Dos attack is not practical in our scheme.
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• Resisting physical attack: In this scheme, IoT end-devices, do not store any secret
or sensitive information in their local memory. Further, one of the assumptions
of the target system model is that the communication between the PUF circuit
and the IoT device’s micro-controller is considered secure. Thus, making our
proposed protocols secure against physical attacks, even if An attacker captures
ioT end-devices.

• MITM and Injection attack: All the authentication messages do not include any
secret or sensitive information in plaintext in our proposed protocols. The only
exchanged data in plaintext during authentication are the thing’s identity, times-
tamps, challenges and public helper data. Also, any secret is hashed or encrypted
using a one-way hashing function or a generated secret key known only by the
authentication entities. A MITM attack will not benefit from any captured data in
such settings. Thus, the proposed protocol is secure against this type of attack.

• Modeling attack: This type of attack is based on capturing a set of CRPs. In our
mechanism, only the challenge was communicated from the server to the IoT end-
devices in plaintext. So, even if an attacker could intercept the authentication’s
messages, she/he will see only the challenge, which will be useless for launch-
ing a modelling attack. This mechanism makes this attack not applicable in this
scheme.

• Helper data manipulation: In our mechanism, the helper data is securely stored
on the server and transmitted to the IoT end-devices in plaintext to reproduce
secret keys. So, this parameter can be manipulated only during its transmission.
Further, each helper data is transmitted with a hashed message of helper data and
other additional information. The hashed value guarantees that the public helper
data was not manipulated during the transmission. So, this attack is not feasible
with T2T-MAKEP.

5.4.2 Formal security analysis

This section presents the security analysis for T2T-MAKEP. This analysis follows the
same verification and security properties specification as the same analysis paradigm of
T2S-MAKEP. We do not repeat the T2S-MAKEP authentication step between Thing−
A and the trusted server to avoid repetitions. Thus, we consider that Thing −A is suc-
cessfully authenticated, and our analysis started from Step (2) of T2T-MAKEP scheme.
The Verifpal code that was utilized to analyze T2T-MAKEP is presented in A.2.3.

As shown in Figure 5.3, in addition to the IoT end-device identity ida, hka1 and
hkb1 that are secret keys of Thinga and Thingb respectively; SAB and SBA are equals
calculated session keys between both devices (SAB = SBA). After the declaration of
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these device, we check their confidentiality using the confidentiality query. Further, by
using the authentication query, we verify the mutual authentication property between
the participants in our scheme.

Fig. 5.2 T2T-MAKEP’s Verifpal queries code.

Based on the exchanged m2 and m4, and the encrypted ones m3 and m5, we check
the freshness of m2 and m4 using the freshness query. Then, we verify if both IoT
end-devices could calculate the same secret session key S, using the equivalence query
between the generated keys (SAB) and (SBA) by Thinga by Thingb, respectively.

Figure 5.3 shows that T2T-MAKEP has successfully achieved mutual authentication
between the IoT end-devices. Further, the confidentiality of secret information and the
freshness of the messages are guaranteed. In addition, the generation of the same and
unique secret session key generation is satisfied by both devices.

Fig. 5.3 T2T-MAKEP’s Verifpal outputs.

5.5 LT2S-MAKEP analysis

5.5.1 Informal security analysis

• Modeling Attacks: The protocol is strong against machine learning attacks es-
pecially it ensures mutual authentication between devices and the provers/server.
An attacker cannot impersonate the server either the device. Even an attacker try
to generate challenge, it cannot get any information regarding responses. Addi-
tionally, the protocol uses two classes of CRPs from a weak and strong PUFs. Get
any information from one does not infer piece of information even if the helper
data is public.
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• Spoofing Attack: Since the protocol is strong against modelling attack, an intruder
cannot impersonate a device or decrypt an intercepted session.

• MITM Attack: An attacker impersonating the device and tries to initiates an au-
thentication attempt cannot succeed since the server verifies the authenticity of
the device through m4. Similarly, if it wants to impersonate the server, a device
verifies the identity using m2 thanks to SRAM.

• DoS Attack: A successful DoS attack can be only if a soft model is constructed
and this is not possible since the responses are encrypted. In addition, if does the
identified not found in the data base then the attacker is banned.

5.5.2 Formal security analysis

The full Verifpal code that was utilized to analyze LT2S-MAKEP is presented in A.2.3.

• Confidentiality: the first objective of our protocol is guaranteeing the confiden-
tiality of the shared and communicated secrets between the IoT device and the
server. In our scheme KSRAM , RSRAM , RAPUF , KAPUF , R

′
APUF are considered

as secret information for the attacker, but are known by the IoT device and the
server. Using Verifpal, we show that the active attacker could not have access to
the considered secrets information. To test this property, we use knows private a
Verifpal’s predefined primitive, and the secret information is declared as follows:

knows private K SRAM, R SRAM, R APUF, K APUF, R’ APUF

After that, we ask Verifpal the next confidentiality query of the privates declared
information. This query test if an attacker could obtain the private information
communicated between the IoT device and the server during the authentication
phase. One example of these queries is expressed as follows to check the confi-
dentiality of K SRAM.

confidentiality? K SRAM

• Mutual Authentication: The second objective of the proposed protocol is to
ensure mutual authentication between the IoT device and the server. After de-
scribing the transmitted messages during the authentication phase, we use the
authentication query of Verifpal using the following two authentication queries:

authentication? Server −→ Device: msg 2

authentication? Device −→ server: msg 4
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The first query checks if the device can authenticate the server, upon receiving
the message msg 2, and the second asserts if the server authenticates the device
through msg 2. Both queries guarantee the mutual Authentication. The first
one attests that the secret information K SRAM is known only by the server,
so the IoT device can authenticate the server based on msg 2 and in the second
msg 4 contains R APUF which is can be generated only by the device using the
APUF .

• Freshness: In addition to the above correspondence security proofs, freshness
of the transmitted messages is also evaluated using Verifpal. Using the freshness
query helps to detect replay attacks, where an attacker could manipulate one mes-
sage, and send it at different time. Using timestamp variable avoids this type of
attacks, an example of testing the freshness of msg 2 using freshness query is as
follows.

freshness? msg 2

By executing the Verifpal code, the results of the formal security analysis of the pro-
posed protocol are displayed. Fig. 5.4 shows that all questions were satisfactorily an-
swered. This means that active attackers cannot decrypt messages without secret keys
and cannot obtain the secret session key used between the IoT device and the trustwor-
thy server. In addition, an intruder cannot conduct MITM and injection attacks because
the timestamp value is current. Lastly, both the IoT device and the trusted server are
able to authenticate each other using the PUF-generated secret key. Therefore, the PUF-
based mutual authentication technique is secure and guaranteed.

Fig. 5.4 LT2S-MAKEP’s Verifpal outputs.

5.6 Comparison

With respect to the existing protocols, Table 5.2 compares our developed protocols to
the recently deployed ones by considering their capabilities to avoid the above discussed
attacks in Section 5.3.1. In the following comparison, ✓ means that the protocol is not
secure against the indicated attack. ✗ means the inverse of the previous statements
regarding the attacks. Also, ? means that the authors of the cited contribution did not
express any purpose regarding the selected attack.
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(author?) [33] ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ? ✗ ✗

(author?) [34] ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

(author?) [35] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ? ✗ ✗

(author?) [36] ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

(author?) [37] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ? ? ✗ ✗

(author?) [38] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ?
(author?) [39] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ? ✗ ?
(author?) [40] ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ?
(author?) [41] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

(author?) [42] ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ? ✗ ?
(author?) [43] ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ? ✗ ✗

(author?) [44] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ? ✗ ?
(author?) [171] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ? ? ✓ ✗

(author?) [172] ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ? ✗

T2S-MAKEP ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

T2T-MAKEP ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

LT2S-MAKEP ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Table 5.2 Security of the proposed PUF-Based authentication Protocols.

T2S-MAKEP, T2T-MAKEP, and LT2S-MAKEP are robust against the attacks pre-
sented in Section 5.1. This strength comes from using PUF without storing any infor-
mation (secret or not) in the local memory of the IoT end devices. Rather than, no
sensitive information is transmitted in clear during the authentication process of both
proposed protocols.

In the second step, we run a comparison between our proposed schemes and the
existing work reviewed in Section 3.2.5. Our comparison summarised in Table 5.3
is based on the following characteristics. ✓ means that the protocol considers the
characteristics. However, ✗ means the inverse of the previous statements.

1. T2T and T2S schemes to indicate if the considered architecture supports one of
both authentication schemes.

2. PUF-based authentication shows if the referred protocol uses PUF only as a se-
curity primitive to achieve authentication successfully or it needs other computa-
tional primitives like the elliptic curve. We do not consider one-way functions,
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hashing and XORing as complex security primitives.

3. Formal/informal security analysis this criteria specify the type of the analysis.
Formal relies on sound mathematics approaches to show the correctness of the
proposed protocol, whereas informal refers only to a textual description.

4. Mutual authentication shows if the protocol supports mutual authentication be-
tween all authenticated entities.

5. Session key generation indicates if the referred protocol generates a session key
to secure the communication after each successful authentication.

6. Practicality checks if the protocol is portable, scalable, and robust.

7. Error correction indicates if errors and noise in responses are considered.

8. Thing storage shows if the IoT device does not store any secret or non-secret
information that helps to accomplish the authentication process.

9. Confidentiality indicates if the protocol’s secret information is kept confidential
during the authentication phase.

10. Freshness checks if the exchanged messages are received with respect to precise
variables like timestamp, which help not to use an old message in a new authen-
tication.

We found that most of the studied IoT protocols are designed for the T2S authen-
tication protocol scheme, except two [36, 173] that support T2T and only one ([119])
covers both T2S and T2T. From a technical point of view, most of the protocols use
one-way and hashing functions to ensure the confidentiality of secret information. In-
stead of using these two functions, two contributions [38, 41] use another cryptographic
algorithm such as Elliptic Curve. In terms of correctness validation and performance
evaluation, most of the reviewed protocols do not apply formal and informal security
analysis techniques. Regarding the authentication, some of them do not offer mutual
authentication [33, 37, 35, 38, 42], nor generate a session key for securing the commu-
nication after each successful authentication operation [33, 37, 35, 38, 41, 42]. Further,
most of the studied schemes do not consider error correction, which plays a vital role
in the practicality of a protocol. Also, for the leakage resilience, we observe that some
of the protocols store sensitive information on the local memory of the IoT device. In
addition, most of the reviewed protocols ensure the confidentiality of the transmitted
secret information but less guarantee the freshness of the transmitted messages.
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Table 5.3 Comparison’s summary between T2T-MAKEP and the reviewed PUF-based
authentication protocols
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(author?) [33] ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗

(author?) [34] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

(author?) [35] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

(author?) [36] ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓

(author?) [37] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

(author?) [38] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗

(author?) [39] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗

(author?) [40] ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(author?) [41] ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓

(author?) [42] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

(author?) [43] ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗

(author?) [44] ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

(author?) [173] ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓

(author?) [119] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

T2T-MAKEP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T2S-MAKEP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LT2S-MAKEP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

5.7 Conclusion

In this chapter, the security analysis of the proposed authentication protocols is given.
For each proposed scheme, we gave both informal and formal security analysis as well
as evaluations of how well it would work. In the informal analysis, we study and verify
the robustness of each proposed protocol against the existing IoT PUF-based authenti-
cation ones. Then, Verifpal, the formal verification for cryptographic protocols, is used
to prove formally the correctness and show the security of the proposed protocols.

Finally, we compared our proposed schemes with the works presented in section
3.2.5. In the next chapter, the implementation of the proposed schemes within the
experimental results will be presented.
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CHAPTER 6

IMPLEMENTATION, EXPERIMENTATION AND SIMULATION

In this chapter, we shall to show the effectiveness of the developed protocols. To im-
plement our proposed IoT PUF-based authentication protocols, we first design then
simulate the arbiter PUF that will be embedded within the IoT circuit of a given device.
Before bringing the constructed PUF into operation, it is required to evaluate the gen-
erated CRP for each simulated APUF instance in order to determine its performance.
In addition, it is essential to implement error correction and noise elimination meth-
ods to assure its capacity to produce steady and dependable output. At this point, the
selected and evaluated APUF can be integrated into the IoT device and utilized by it.
Finlay, we study and evaluate the performance of the proposed protocols regarding a
given scenarios.

The main focus of this chapter is:

1. Implementation and evaluation of a 16-arbiter PUF.

2. Presentation and implementation of the noise elimination process and PUF re-
sponse reproduction.

3. Presentation the performance evaluation on the real scenario using Unmanned
Aerial Vehicles.

6.1 Arbiter PUF Design

Currently, we lack access to hardware components such as ASIC and FPGA fabrication,
which are often used to propel PUF. We employ simulation as an alternative to gaining
experience, simulating an arbiter PUF with the PyPuf simulator. In this part, we will
first introduce the PyPuf simulator, followed by the methods required to simulate an
arbiter PUF. Then, we generate the necessary CRP sets. In Finlay, we use PUF metrics
to evaluate the performance of the simulated APUF.

6.1.1 PyPuf Simulation

PyPuf [174] is a a toolbox for simulation, testing, and attacking Physically Unclonable
Functions. PyPuf is a Python-based Physical Unclonable Function, as suggested by
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its name, which is derived from the programming language Python and the acronym
for Physical Unclonable Function. PyPuf is open-source software distributed under the
GNU GPLv3 and is accessible to everybody via 1. PyPuf includes three modules. Sim-
ulation, learning, and experimenting are examples. Using the experimentation model,
reproducible experiments can be conducted. The learning model is used to evaluate Py-
PUF’s resistance against modification attacks. This is achieved by employing machine
learning-based attacks. In our instance, however, we utilize only the first model, which
is the simulation, which allows us to simulate a variety of PUF topologies.

In terms of topologies, PyPuf focuses on some PUF constructions introduced in
section 3.1.1.1, such as the APUF, and the XOR PUF. These PUF constructions are
simulated using a broad class called LTF array that creates arrays of Linear Threshold
Functions (LTFs). In the book Analysis of Boolean Functions [175] Ryan O’Donnell
goes into great detail about what LTFs are, but in this context it is enough to know
that LTFs are useful to simulate the above mentioned PUF constructions. Thus far, this
report has mostly used the 0, 1 bit notation, indicating false and true, respectively. This
bit notation excels at describing relative voltages, which is, of course, very common
in electronics. This notation is supported in PyPuf, but that appears to be the case
mostly for compatibility reasons. The more common bit notation in PyPuf is the 1, 1 bit
notation, indicating False and True, respectively. Specifically, note that 1 corresponds
to False in this notation. This seems to be the notation that O’Donnell prefers using
as well. A plausible reason for using this notation is that notation choice influences
required mathematical operations to perform certain calculations.

6.1.2 Experience Setup

In our experience, the arbiter PUF construction has been chosen from all the construc-
tions offered by PyPuf since it is the basis of all other existing strong PUF designs. We
simulate a 16-APUF, which means an arbiter PUF with 16 delay stages (16 bits as in-
puts) and one bit as output. Each stage is composed of two 2-to-1 multiplexers as shown
in Figure 6.1. A rising pulse at the input propagates through two nominally identical
delay paths. The paths for the input pulse are controlled by the switching elements,
which are set by the bits of the challenge. For c = 0, the paths go straight through, while
for c = 1, they are crossed. Because of manufacturing variations, however, there is a
delay difference between the paths. An arbiter at the end generates a response of ‘0’ or
‘1’ depending on the difference in arrival times.

Unfortunately, the output of the simulated 16-APUF could not be used directly in
our proposed authentication protocol because it generates only one bit as a response,
either zero 0 or one 1, which is impractical in the authentication process because a third

1https://github.com/nils-wisiol/pypuf
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Fig. 6.1 A generic structure of an arbiter PUF with 16 stages.

party (attacker) can easily break the authentication operation with this configuration.
To avoid this scenario, we have learned to generate a 12-bit response. For this, several
adjustments must be made to the existing PyPuf. By simulating 12 instances of the
16-APUF in parallel and by concatenating the output of each instance with other, it is
possible to get replies of 12 bits (Figure 6.2).

Fig. 6.2 12 bit response generation using 16-APUF.
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6.1.3 CRPs Generation

After adding the needed module to the existing PyPuf, we can easily simulate a PUF
component that could generate a 12 bit response. According to the given scenario, we
have three IoT devices in the described network, so we need to simulate 3*12*16-Apuf,
which means 36 16-APUF instances. Each instance generates a one-bit response from
a 10000 challenge of 16 bit length. This means we have 10000 response bits generated
from each 16-APUF instance. To test the effect of noise on the simulated PUF, the
same challenge is subjected to the 12− st 16-APUF with the noise parameter of PyPuf
(noisiness).

6.1.4 16-APUF Evaluation

Before we use the simulated 16-APUF in our proposed authentication protocols, we
evaluate its performance first. By checking the presented metrics in section 2.2.2, we
evaluate their uniqueness, steadiness, randomness, correctness, bit aliasing, uniformity,
and diffuseness. To evaluate reliability, we obtained 12-bit length responses at noise
value of 0, 0.1 and 0.3 and compared them to see if they were identical. A reference
response was obtained at noisiness = 0.Following these metrics, table 6.1 and Figure
6.3 show the results of this evaluation.

Metrics (%) Result Ideal value (%)
Uniqueness 48.07 50
Randomness 99.8 100
Bit Aliasing 49.93 50
Uniformity 49.93 100
Reliability 97.96 100

Table 6.1 Evaluation results.
Fig. 6.3 16-APUF Evaluation re-
sults.

As illustrated in Table 6.1, it was clear that the four metrics uniformity, unique-
ness, bit-aliasing and the randomness of the generated CRPs data are closer to the ideal
values. It is well observed that both values of uniformity and bit-aliasing are equiv-
alent which confirm the existing results in the literature. Also, the reliability of the
used APUF is 97.96%, where the ideal value is 100%. This means that all 30 APUF
instances generate a near stable response at different noise parameter 0, 0.1, and 0.3.
Using the same challenge as an input, this simulated 16-APUF outputs a noisy response
that has some error bits, compared to the reference response (initial response), so fuzzy
extractor operation must be executed to eliminate this noise and generate a stable and
reproducible response.
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6.2 Noise Elimination and Response Reproduction

To show the impracticability of using the PUF response directly in the authentication
operation directly without noise elimination process, let us consider the task of biomet-
ric data authentication. As a user, Alice uses her biometric data (e.g., iris) as a unique
identity w when she wants to gain access to her account. A trusted server stores some
information y = f(w) about the password. When Alice enters w, the server lets Alice if
only if f(w) = y. In this naive authentication scheme, we accept that Alice could use w

itself as her identity for the verification process. Hence, two issues can be found with
this authentication process. First, when Alice reused her biometric information w’ at a
latter authentication step, the new generated identity w’ will differ from the initial one.
Unfortunately, it is close to it, but not equal to the initial value w, due to some noise
on w’. In fact, she will not be able to recover her original identity by using a standard
encryption scheme. Second, w is not uniform, and it cannot be used as a cryptographic
key in standard encryption schemes.

6.2.1 Noise elimination process

Similarly, one of the biggest challenges with PUF is to guarantee the stability of the
key in each regeneration phase, which is caused by the environmental variables. This
since the outputs of PUF are affected by the environment conditions, and To achieve
the stability (zero error rate) of the PUF response, it usually needs to be post-processed.
The latter is generally composed of two phases: enrollment and reconstruction (see
Figure 6.4).

Fig. 6.4 Enrollment and reconstruction phases.

During the enrollment phase, the unique identifier (or the key) is generated from
the initial PUF response. At the same time, the public helper data is also generated.
Clearly, the key has to be kept secret as it is used in cryptographic applications. On
the other hand, if the helper data does not reveal information about the secret, it can be
classified as public and stored in non-secure non-volatile memory. At the reconstruction
phase, the stored public helper data is used to recover the enrolled key and to correct
the bit errors that occurred in the actual PUF response (noisy response). This can be
achieved since the helper data content describing the secret key allows a reliable key
reconstruction, even under the variations of the environmental conditions.
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Several approaches have been used to correct an error in the PUF response and
generate a unique reproducible key such as Fuzzy Commitment, fuzzy vault, Code-
offset fuzzy extractor, Syndrome construction, Parity construction, and Systematic low
leakage coding. [176].

Since the reconstruction procedure of the initial PUF response from the noisy one
depends mainly on the distance between both responses. From the three metrics Set
difference, Edit and Hamming metric, we focus on the latter one, since it is used in
the generation of PUF-based keys. Further, the main building block of fuzzy extractor
construction is the secure sketch (See annexe A.2.3). In other words, in the PUF-based
key generation process, a secure sketch is used to correct errors in the noisy PUF out-
put using the Helper Data. Thus, the use of error-correcting codes (ECC) is one of the
solutions. Many possibilities exist to realize a Secure Sketch based on error-correcting
codes like syndrome construction, code-offset construction, index-based syndrome cod-
ing, complementary index-based syndrome coding, and differential sequence coding.

As our experience is based on the binary string response, that allows the use of
the Hamming distance metric, syndrome construction is the prevalent secure sketch in
a PUF-based key generation. During Syndrome construction , compute s = w.HT ,
where HT is the transposed parity-check-matrix of the used linear error correction code
C. For recovery, compute s′ = w′.HT . Determine e = locate(s′ ⊕ s) by using the
error-location algorithm locate() of the code C. Then, w∗ = Rec(w′, s) = w′ ⊕ e

with w∗ = w if d(w′, w) ≤ t. The syndrome construction does not require extra input
random codeword c to extract the helper data s.

6.2.2 Response reproduction process

In this section, we present the needed steps used by the Fuzzy extractor to accomplish
PUF-based response regeneration operation using secure sketches and strong random-
ness extractors. Here, we use syndrome construction as secure sketch construction and
hash function as strong randomness extractors function. From our generated data, we
applied the reconstruction phase only on the 16-APUF where the noise parameter is
added, this to show the regeneration process.

Let’s consider the initial and reference PUF response from what the key is extracted
the first time, w = 100010010111 with 12 digits, and for the error correction code lets
refer to the used binary linear block code (6, 3, 1) with the flowing transposed parity-
check-matrix HT (Matrix A.2.1).

In the enrollment phase, the secret string key and a public helper data s are extracted
from the initial PUF response w, using a hash function for the first one as a strong
randomness extractor (ext) and the sketching procedure (SS) for the second one. First,
let us compute the helper data s where:s = w.HT , with (6, 3, 1). The initial response
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needs to be segmented in message blocks of length (n = 6) which results in four
messages {m0 = 100010,m1 = 010111}. To compute s, we calculate si correspondent
to each message mi, where si = mi.H

T . The syndrome s0 of the first message m0 is
calculated as follow.

s0 = m0.H
T = (100010).



1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 0 1


= 100 + 011 = 111

Hence, s0 = 111 and by following the same steps we found s1 = 010, and finally
the helper data will be s = (111, 010).

Second, for the secret key generation from the response w, lets use a universal hash
function sha1 as a strong randomness extractor (ext), ext(w) = sha1(w).

sha1(w) = sha1(100010010111) = fc85f381d98096c60b763230399e4e4c40bfa693

So, we have the secret string key=fc85f381d98096c60b763230399e4e4c40bfa693, and
the public helper data is s = (111, 010).

In the reconstruction phase, we use the stored helper data s to recover the initial
response w from a noisy one w′, and calculate the secret key key from the recovered
response w. Lets consider a noisy response w′ = 110010010101. First, we compute
s′ = w′.HT . So, s′0 = m′0.H

T = 110010.HT = 101, s′1 = 010101.HT = 001,
and we consider s′ = (101, 001). Then, we evaluate s′0 ⊕ s0 = 101 ⊕ 111 = 010

to compute e0 = locate(010). locate(010) uses Table A.1 to find the corresponding
error pattern e0 for the syndrome 010, which is e0 = 010000. Then, m∗0 = m′0 ⊕ e0 =

110010⊕ 010000 = 100010 = m0.

By repeating the same steps to calculate m∗0, s′1 ⊕ s1 = 001 ⊕ 010 = 011, and
e1 = locate(011) = 000010, then m∗1 = m′1⊕ e1 = 010101⊕ 000010 = 010111 = m1.

To reproduce and recover the secret information key, we concatenate m∗0 and m∗1

that gives w∗ and by using sha1 we will have:
sha1(w∗) = sha1(100010010111) = fc85f381d98096c60b763230399e4e4c40bfa693

Finally, we can show that using the public helper data s = (111, 010), the secret string
key=fc85f381d98096c60b76 3230399e4e4c40bfa693 has been recovered from a noisy
response w’=110010010101.
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6.3 Experiments and Performance

The implementation of a 16-APUF and the good results of the evaluation operation of
the generated CRPs as well as fuzzy extractor guarantee the generation of a sable key
from the used 16-APUF. The simulated 16-APUF can be used to test and implement
the proposed protocols. In this section, we present a scenario in which the proposed
protocols are compared to other works.

6.3.1 Scenario

The network model is described in Fig. 6.5, which consists of two participants: UAVs
and a ground station. Each UAV is equipped with an integrated circuit consisting of
an APUF. Any adversary that attempts to probe or alter the circuit of a captured UAV
will irreversibly modify the slight physical variations in the integrated circuit, which
in turn changes the PUF challenge-response mapping, or even destroys the PUF. Each
UAV has limited resources due to the stringent constraints imposed by its size, weight,
and power limitations. The ground station is a trusted party and has no limitations on
resources.

During the enrolment phase, the ground station obtains an initial CRP from each
UAV in a trusted and secure network. Once the UAV exchanges the initial CRP with the
ground station, it can function independently. Thus, the ground station stores the CRP
for each UAV, while the UAV does not store any secret information. Due to the long
distance between the UAV and the operator and the lack of physical protection, the UAV
can be easily captured by an adversary. The open nature of wireless communication can
also enable the adversary to overhear, duplicate, corrupt, or alter the data. The goal of
the adversary is to establish an authentication with the ground station without being
detected to cause more financial and strategic damage.

6.3.2 T2S-MAKEP

In this section, the performance evaluation of the proposed protocol is analyzed in terms
of computational complexity, communication overhead, and storage constraints. We
compare T2S-MAKEP scheme to (author?) [172] and (author?) [34] since they con-
sider our protocol’s features like mutual authentication and error correction.

6.3.2.1 Computational Complexity

As illustrated in Table 6.2, the computational complexity consists of the primary opera-
tions and their frequency involved in completing the authentication process. In the pro-
posed schemes, the main used operations are hashing, encryption/decryption, and PUF
operations. Table 6.2 shows the time required by the IoT device and the trusted server to
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Fig. 6.5 UAV scenario network model

achieve the authentication steps of our proposed mechanism, (author?) scheme [172]
and (author?) scheme [34] . The hashing time is denoted by NH and NPUF is the time
for a PUF to produce a response, NENC is the time needed for encryption/decryption
operations, and NFUZZ represents the time of fuzzy extractor operations. We measure
these values by counting their number of occurrences from T2S-MAKEP operations.

Works IoT Device Server
(author?) 5 NH + 1 NFUZZ +1 NPUF +3 NENC 6 NH+1 NFUZZ + 3 NENC

(author?) 5 NH + 1 NFUZZ +2 NPUF+3 NENC 5 NH+1 NFUZZ+3 NENC

T2S-MAKEP 5 NH + 1 NFUZZ +2 NPUF +1 NENC 4 NH+1 NFUZZ +1 NENC

Table 6.2 T2S-MAKEP’s computational complexity comparison.

Let’s assume the use of a one-way hashing function such as SHA-2 that has a worst-
case running time of O(n), where n is the number of bits in the Hashing operation’s
outputs. Also, by using block ciphers, the average encryption and decryption times
vary with respect to the key length, and its complexity can be considered O(n).

As illustrated in Fig. 6.6 and Fig. 6.7, both compared schemes have the same num-
ber of PUF and fuzzy extractor operations. The proposed protocols have a complexity
of O(n) for the IoT devices as well as the server. Thus, the computational complexity of
T2S-MAKEP mechanism is lower since hashing, encryption, and decryption operations
in the presented schemes in Table 6.2 are higher than in our proposed one.

6.3.2.2 Communication Overhead

The communication overhead corresponds to the total number of transmitted bytes be-
tween the IoT device and the server during the authentication phase. To calculate the
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Fig. 6.6 The Computational Complexity on the device side.
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Fig. 6.7 The Computational Complexity on the server side.
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length of each transmitted message, we use the message parameters that are communi-
cated along with their sizes given in Table 6.5.

Message Parameters Size in Bits
Authreq 1
Hash function 256
Timestamps TS1, TS2, and TS3 48
Challenge 128
Helper data 64
Encrypted data 128

Table 6.3 Authentication messages’ parameter values.

Based on the values in Table 6.5 and the protocol steps, we infer that the transmitted
bytes in step (1), step (2), and step (3) of the authentication phase are 70, 78 and
54, respectively, which results-in 202 transmitted bytes between the IoT device and
the server. The communication overhead of (author?)’s protocol is 248 bytes. As a
result,the communication overhead in T2S-MAKEP scheme is lower than (author?)’s
mechanism by 18.55%.

6.3.2.3 Storage Constraints

Compared to the most surveyed IoT PUF-based mutual authentication protocols that
store a large number of CRPs on the server-side for each device, our proposed mutual
authentication protocol is very efficient in terms of storage requirements. Rather than
the IoT device does not store any secret or non-secret information, the server keeps only
one CRP pair for each device’s new authentication which makes our mechanism more
scalable for a large number of IoT devices that could be deployed in the system. After
establishing a secure connection, the server deletes the data used during the authentica-
tion process except for the device identity. Contrarily, the IoT devices in [34, 172] have
a storage constraint: they have to keep secret information in their local memory.

6.3.3 T2T-MAKEP

6.3.3.1 Computational Complexity

The computational complexity of the authentication process is determined by the num-
ber of primary operations performed and their frequency. Initially, the fundamental
operations of the proposed and compared schemes are hashing (NH), encryption and
decryption (NE), PUF (NP ), and the error correction (NF ). T2T-MAKEP steps can be
used to figure out how evaluating the identified criteria.

Table 6.4 shows the main operations carried out by IoT devices to achieve end-
to-end authentication. We compare the proposed T2T-MAKEP’s protocol with [36]
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Table 6.4 T2T-MAKEP’s computational complexity comparison.

Works [36] [119] T2T-MAKEP
IoT Device A 4NH+1NP+4NE+1NF 7NH+2NP+4NE 8NH+1NP+4NE+1NF

IoT Device B 4NH+1NP+4NE+1NF 5NH+2NP+3NE 4NH+2NP+3NE+1NF

and [119] , which allow device-to-device authentication. Regarding error correction
consideration, we can still conclude that our protocol has a slight advantage compared
with the protocol in [119]. In general, the computation costs of T2T-MAKEP’s scheme
are similar to those of [36]. However, we do not consider the update phase in [36]
that grows their operations considerably, making the computational complexity of the
proposed protocols lower than the compared ones.

6.3.3.2 Communication Overhead

Total bytes sent and received during the authentication process is what we mean by
”communication overhead”. Table 6.5 lists the message parameters and their sizes,
which we use to figure out the length of each message that’s being sent.

Table 6.5 Authentication messages’ parameter values.

Message Parameters Size in Bits
Authreq/Comreq 1
Hash function 256
Timestamps 48
Challenge 128
Helper data 64
Encrypted data 128
Device identity 48

Based on the values in Table 6.5 and the protocol’s steps, we infer that the trans-
mitted bytes in the T2S-MAKEP scheme are 186 bytes, which is higher than [177] and
[178], which have similar transmitted bytes of 150 bytes.On the other hand, to calculate
the communication overhead of the T2T-MAKEP protocol, we consider only the trans-
mission between IoT end devices and compare it with the proposed mechanism in [36].
The communication overhead of the T2T-MAKEP protocol is 110 bytes, and 126 bytes
for (author?)’s protocol. As a result, the communication overhead in our proposed
mutual authentication scheme is lower than (author?)’s mechanism by 12.7%.

6.3.3.3 Storage Constraints

The same outcomes as T2S-MAKEP, as the T2T-MAKEP approach imposes no restric-
tions on the IoT device’s storage for storing sensitive data. In addition, the server only
retains a unique identifier for each IoT device in the system. Therefore, the server in
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our suggested authentication process is better for a system with a large number of IoT
devices.

6.3.4 LT2S-MAKEP

6.3.4.1 Computational Complexity

Table 6.6 shows the time required by the IoT device and the trusted server to achieve the
authentication steps in LT2S-MAKEP proposed scheme and two similar other schemes
presented in [172] and [34]. Where, both compared schemes have the same number of
PUF and fuzzy extractor operations. LT2S-MAKEP have a complexity of O(n) for the
IoT devices as well as the server. Thus, the computational complexity of LT2S-MAKEP
is lower since no fuzzy extraction is required and the encryption operations are higher
than in LT2S-MAKEP.

The table 6.6 compares the amount of time required by the IoT device and the trusted
server to complete the authentication procedures for the LT2S-MAKEP scheme and
two similar schemes provided in [172] and [34]. In instances where both competing
schemes have fewer PUF operations than our suggested scheme. LT2S-MAKEP has
an O(n) complexity for both IoT devices and the server. Therefore, LT2S-MAKEP
is simpler to compute as it does not require fuzzy extraction. In contrast, encryption
processes are more difficult with LT2S-MAKEP.

Works IoT Device Server
(author?) 5 NH + 1 NFUZZ +1 NPUF +3 NENC 6 NH+1 NFUZZ + 3 NENC

(author?) 5 NH + 1 NFUZZ +2 NPUF+3 NENC 5 NH+1 NFUZZ+3 NENC

LT2S-MAKEP 7 NH +3 NPUF +2 NENC 6 NH +2 NENC

Table 6.6 LT2S-MAKEP’s computational complexity comparison.

6.3.4.2 Communication Overhead

Based on the values in Table 6.5 and the protocol steps, we infer that the transmitted
bytes in step (1), step (2), step (3) and step (4) of LT2S-MAKEP’s authentication
phase are 70, 54, 54 and 54 bytes, respectively, which results-in 232 transmitted bytes
between the IoT device and the server. The communication overhead of (author?)’s
protocol is 248 bytes. As a result,the communication overhead in our proposed mutual
authentication scheme is lower than (author?)’s mechanism by 16 bytes and higher
than T2S-MAKEP by 30 bytes.
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6.3.4.3 Storage Constraints

LT2S-MAKEP imposes no constraints on the IoT device’s storage for keeping sensitive
data, achieving the same results as T2S-MAKEP and T2T-MAKEP. In addition, un-
like the other two described methods, the LT2S-MAKEP server does not maintain FE
information (Helper Data).

6.4 Conclusion

In this chapter, the implementation of the proposed protocols is given. First, we present
the PyPuf simulator that is used to simulate PUF, and then we use it to implement a 16-
APUF and generate a set of CRP. Then, we evaluated the performance of the generated
data regarding five metrics: uniqueness, randomness, bit aliasing, uniformity, and reli-
ability. Furthermore, we implement and use a fuzzy extractor mechanism and secure
sketch to eliminate noise in the regenerated response. After that, we showed a given
scenario where the proposed protocols could be applied and implemented. Finally, the
performance evaluation of the proposed protocols is analyzed in terms of computational
complexity, communication overhead, and storage constraints. In the next chapter, a
general conclusion and future work will be presented.
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CHAPTER 7

GENERAL CONCLUSION AND FUTURE WORK

Authentication is a crucial Internet of Things system and application security function.
Using conventional authentication methods exposes the authentication task to various
security threats and attacks. Using physical unclonable functions, the goal of this thesis
is to build a secure, resilient, efficient, lightweight, and practical authentication system
for IoT applications.

To secure authentication and communication, however, classic symmetric and asym-
metric cryptographic methods require more computing power, larger memory, and higher
energy sources. However, the limited memory capacity, processing power, and energy
resources of IoT devices prevent the use of typical authentication procedures in IoT
networks. Moreover, IoT devices can be discovered in public areas, and typical systems
store secret keys in the device’s volatile local memory, making them susceptible to
physical attacks. In such a scenario, an adversary can easily gain physical access to the
IoT device and recover the stored secret data or even clone the embedded circuitry. Uti-
lizing the inherent disorder of physical things, Physical Unclonable Functions (PUFs)
have recently been a hot topic in research and development to overcome these restric-
tions and problems. PUFs can produce unique secret information from the physical
properties of an IoT device and use it as a unique device fingerprint, making them a
very effective solution for the IoT authentication protocol.

Since it eliminates the need to maintain secret keys in the IoT memory, the PUF-
based authentication mechanism is a very efficient solution for the IoT authentication
protocol. On the basis of the randomness present in the physical properties of physical
objects, PUFs extract unique secret information and utilize it as the IoT device iden-
tity, as a unique device fingerprint. The latter can therefore be utilized for IoT device
authentication. It is also a low-cost security primitive, making it resistant to physical
attacks and suited for IoT devices with limited resources.

There have been almost two decades of intensive research on PUFs since the concept
was first introduced by Pappu et al. [52]. Physical unclonable functions have a com-
pletely different system than any other one-way function, especially with the challenge-
response pair sets providing better reliability. Also, the level of defence is good with
PUFs, and the variability of PUF systems allows users to choose the function with the
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best characteristics according to the needs of the applications. Silicon PUF is one of
the widely accepted hardware security primitives that finds application in authentication
and secret key generation. It generates a secured key by the physical disorder nature of
an electronic system. The physical structure of every electronic system is unique due to
the inheriting differences during the manufacturing process using the same technology.

7.1 Thesis Contributions

To address this complex and challenging task, i.e., designing a robust PUF-based au-
thentication protocol for IoT applications is not an easy task. This thesis consisted of
two main parts: the literature review and the thesis contributions.

IoT and Physical Unclonable Functions (PUFs) were surveyed in the first part of the
dissertation (chapters 2 and 3). Using this survey, we established the technical back-
ground for the IoT, including its characteristics, applications, architectures, and existing
open issues related to IoT security. A survey of existing authentication techniques was
also conducted. IoT PUF-based authentication and PUF’s architecture are discussed
in detail. To begin, we surveyed, discussed, and compared the state-of-the-art silicon
PUF architectures and classified them into delay-based PUFs, memory-based PUFs,
and analog electronic PUFs. We have also surveyed and classified existing Silicon PUF
applications and use cases. Lastly, we examined IoT authentication protocols based on
PUF over the past five years (since 2016).

The second part of this thesis (chapters 4 and 5) builds on the outcomes of the first
part in that it addresses issues that are still unresolved in the state of the art, especially
from the practical side of the existing PUF-based authentication protocol used with IoT
systems, and proposes three contributions to advance the literature in this field.

A first contribution is T2S-MAKEP, for mutual authentication and key exchange
between things and servers. By exploiting the randomness of a strong PUF, an IoT
device with an Arbiter PUF could securely authenticate with its trusted server. The
enrolment and authentication phases of this approach are separate. First, the device
registers and stores credentials (CRP) on the server. In the second phase, both entities
(IoT and server) authenticate and exchange messages. A fuzzy extractor solution is
used to generate consistent secret keys.

Another contribution is T2T-MAKEP, a protocol for transferring keys and mutual
authentication between two things. As a first step, it must authenticate with a trusted
server using the T2S-MAKEP protocol. Using a fuzzy extractor solution, this scheme
ensures error correction and noise elimination. Further, T2T-MAKEP does not require
an update phase since no secret or non-secret information is stored on the local memory
of the IoT end-device. Our schemes also generate a session key at the end of each
successful authentication phase and exchange it securely between the communicating
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entities.
LT2S-MAKEP is the third contribution, which allows lightweight mutual authenti-

cation and key exchange protocol between a thing and a server. Using the randomness
of the integrated circuit of an IoT device, this is a low-cost protocol. It relies on two
PUFs: the Arbiter PUF and the SRAM PUF. The first is used for encryption, whereas
the second is used for authentication.

The proposed authentication protocols do not need to store any information on the
local device memory, which avoids many attacks, especially physical-based ones. By
relying on formal and informal security analysis, we proved that our developed protocol
is secure against most existing attacks, especially physical ones.

7.2 Future Work

Additionally, we aim to advance the state-of-the-art by making recommendations for
future research.

• Using the proposed schemes to achieve multi-hope authentication protocol.

• Deploying the proposed protocol with a blockchain architecture that exploits
PUFs on the different mining nodes.

• Considering the energy consumption in our protocol by optimizing the exchanged
messages while preserving the communication’s reliability.

• Developing the proposed approach in order to support authorization management.

• Evaluating the proposed protocols in a real system setup.
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[81] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror,
J. Schmidhuber, W. Burleson, and S. Devadas, “Puf modeling attacks on simu-
lated and silicon data,” IEEE transactions on information forensics and security,
vol. 8, no. 11, pp. 1876–1891, 2013.

[82] F. Farha, H. Ning, K. Ali, L. Chen, and C. Nugent, “Sram-puf-based entities
authentication scheme for resource-constrained iot devices,” IEEE Internet of

Things Journal, vol. 8, no. 7, pp. 5904–5913, 2020.
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Appendix A

PUF-Based regeneration response

This chapter displays all the background and the operations that need to be executed in
the PUF-based response regeneration process using fuzzy extraction and Linear Block
Codes.

A.1 Fuzzy extraction

A.1.1 Statistical Distance.

Also known as variation distance, it is the difference between the distributions of two
random variables X and Y from the same set given by: SD(X, Y )

∆
= 1

2

∑
v |Pr(X =

v)− Pr(Y = v)|. Here, the probability of a random variable X is written as Pr(X).

A.1.2 Min-entropy.

The entropy specifies the amount of information contained in data. But when discussing
security, one is often interested in the probability that the adversary predicts a random
value. Thus, the best strategy is to guess the most probable value. However, the pre-
dictability of a random variable X is maxxPr[X = x], and correspondingly, the min-
entropy H∞(X) of a random variable X is: H∞(X) = −log(maxxPr[X = x])

For two random variables X and Y, the average min-entropy of X given Y is: H∞(X|Y ) =

−log(Ey←Y [maxxPr[X = x|Y = y]])−̄log(Ey←Y [2
H∞(X|Y=y)])

A.1.3 Secure Sketching.

Secure Sketch (SS) [133] is a primitive performing error correction on a noisy data w’

by eliminating noises and reconstructing the original one w, clean from noise. SS takes
w as input and produces a public sketch or a public helper data s, without revealing
enough information about w. Rec uses s to recover w from w’ by cleaning noise while
w’≈w.

Definition A.1.1. A ⟨M,m,m′, t⟩-secure sketch for the metric space {M} is a pair

of randomized procedures, sketching procedure (SS) and recovery procedure (Rec),

defined as follows.
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• The sketching procedure (SS) takes w ∈ M as input and returns a public helper

data s ∈ {0, 1}∗.

• The recovery procedure (Rec) takes w’ ∈ M and s as input and outputs w.

Secure sketch have to satisfy the following properties:

• Correctness or error tolerance: ∀w ∈M, s ← SS(w): Rec(w′, s) = w if
dis(w,w’) ≤ t.

• Security: It requires that s does not leak too much information about w. Specif-
ically, for any random variable W over M with min-entropy m, the secure sketch
must ensure that average conditional min-entropy of W given SS(W) is at least
m’. ∀W ∈M, i.e. H∞(W |SS(W )) ≥ m′.

A.1.4 Randomness Extraction.

A randomness extractor (RE) [61] is a method to drive a key from an available non-
uniform randomness source. It is used to derive near-uniform or ’perfect’ randomness
from non-uniform or ’imperfect’ randomness sources. So, this perfect randomness can
be used to generate uniform keys that can be used in cryptographic applications. Ran-
domness extractor can be constructed from cryptographic hash functions.

Definition A.1.2. Let Ext : {0, 1}n → {0, 1}ℓ be a polynomial time probabilistic func-

tion which uses r bits of randomness. We say that Ext is an efficient (n,m, ℓ, ϵ)-strong

extractor if for all random variables Y ← {{0, 1}}n with H∞(Y ) ≥ m, it holds that:

SD((Ext(Y ;R), R); (Uℓ, R)) ≤ ϵ, where R and Uℓ are uniform on {0, 1}r and {0, 1}ℓ,
respectively.

A.1.5 Fuzzy Extractor

Fuzzy Extractor (FE) [133] extracts uniformly random string from noisy non-uniform
random data. This string can be used as a secure key in cryptographic applications.
Definition A.1.3 formally defines a fuzzy extractor.

Definition A.1.3. An ⟨M,m, ℓ, t, ϵ⟩-fuzzy extractor is a pair of randomized procedures,

Generate (Gen) and Reproduce (Rep), satisfying the following properties.

• Gen generates, for a given input w ∈ M, an extracted string k ∈ {0, 1}ℓ and a

helper data string p ∈ {0, 1}∗, i.e.:

Gen(w)→ (k, P ).

• Rep takes an element w’ ∈ W and a bit string p ∈ {0, 1}∗ as inputs and produces

an extracted string k′ ∈ {0, 1}ℓ, such that:

Rep(w′, P )→ K if dis(w;w′) ≤ t.
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FE satisfies the following properties.

• The correctness property of FE guarantees that if dis(w,w′) ≤ t and (k, P ) were
generated by (k, P )← Gen(w), then Rep(w′, P ) = k. Otherwise, no guarantee
is provided about the output of Rep.

• The security property guarantees that for any distribution W on M of min-entropy
m, the string K is nearly uniform even for those who observe P: if (K, P)
← Gen(W ),then SD ((K, P), (U,P )) ≤ ϵ.

A.2 Linear Block Codes

Error correction code (ECC) is commonly used to correct errors in data that are trans-
mitted over noisy communication channels. When the sender wants to send a U binary
information sequence, first, this latter is segmented into message blocks of fixed length
k, denoted by m. Also, for a secure transition, the sender encodes each message block
to so-called codeword c, (c = encode(m)) with redundant information in the form of
an ECC. The codeword is transmitted over a noisy channel to the receiver, and at the
reception phase, the receiver checks, if there exist errors in the received codeword of
data U (error detection). If an error found, ECC is used to reconstruct and recover the
original and the true message m (m=decode(c)). The redundancy information allows
the receiver to detect a fixed and limited number of errors that may occur in the mes-
sage during the transition process, and to correct these errors without retransmitting the
codeword.

Since we deal with only binary code, firstly, we define the finite field GF(2) of two
elements as follows.

Definition A.2.4. Given the binary field GF (2) = {0, 1}, we have:

• A binary word w of length n over GF (2) is an n-tuple w = {w0, . . . , wn−1} of

binary digits wi ∈ GF (2), ∀i = 0, 1, 2, . . . , n− 1.

• A binary block code of length n over GF (2) is a nonempty set C of binary words

w of length n each.

• Each element w of C is called a codeword in C.

A set of 2k distinct codewords w of length n each, over the binary field GF (2) =

{0, 1}, is called a Binary Block Code C(n, k). The latter is linear if for any two code-

words in (n, k) results in another codeword in (n, k). (n, k, t) is a linear Binary Block
Code which can correct t errors. A codeword c ∈ C represents an n−bit sequence,
formed from the k bit messages m ∈ M and (nk) parity bits used to recover the trans-
mitted codeword from errors. Linear block codes can detect up to d − 1 errors and
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correct up to t = (d− 1)/2 errors in the n-element codeword, where, d is the minimum
number of bits in which any two distinct codewords.

A.2.1 Encoding

In linear block codes, the message m is encoded by multiplication with a generator
matrix G to yield a codeword c:

c = m ·G (A.1)

Recall that c is a (1× n) row vector and m is a (1× k) row vector. G has a dimension
of k×n, its rows are linearly independent and form a basis for C. In general, several G
matrices generate the same code book, and only the mapping order from m to c changes.
Two codes with the same code book are considered equivalent, no matter the order of
the rows in C. A linear block code C is referred to as a (n, k) block code. For block
codes, we can also define the matrix H , of dimension (k×n), which is called the parity
check matrix of the code, such that c is a valid codeword c ∈ C, where:

c ·HT = HT · c = 0 (A.2)

H can therefore be used to validate that received data is indeed a codeword. If the
received data r is not a valid codeword, then:

r ·HT ̸= 0 (A.3)

Systematic codes are codes that still contain the original, unaltered, message bits.
Their codewords can be partitioned into two parts: one containing the message and one
containing the redundant parity bits. This makes them easy to decode. To achieve this
their generator matrix is presented in the standard systematic form.

G = [P ; Ik] (A.4)

IK is the (k × k) identity matrix, which keeps the k original bits in the codeword

and P is the k × (n− k) parity matrix, which is unique to the code and generates the n

redundant (parity) bits. Any linear block code can be put into systematic form, i.e. G

of any linear block code can be written in the standard form. Hence, the parity check
matrix can be constructed from their generator matrix as follows:

H = [In−k;P
T ] (A.5)
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A.2.2 Decoding.

For the error correction in a linear block code, we correct invalid received data to the
closest valid codeword. For this we define s, the syndrome, for a received vector r,
where HT is the transpose of H , by:

s = r ·HT (A.6)

It is known that an error has occurred (i.e. r /∈ C) if s ̸= 0. The vector e containing the
occurred errors is defined as:

e = r + c (A.7)

Recall that there is no difference between addition and subtraction in GF (2), therefore
also r = e+ c. This leads to:

s = (e+ c).HT = e ·HT + 0 = e ·HT (A.8)

If the syndrome as defined in Eq. A.6 is not equal to 0, then a value of e is chosen
which satisfies Eq. A.8 with the lowest possible w(e). In other words, we assume that
the errors which occurred is the difference between r and the closest valid codeword

c. The valid codeword which was transmitted, v, is then given by v = e + r. So, the
message represented by v is then recovered. This is called minimum distance decoding.

Example A.2.1. To transmit the data U using the code word (n, k), first U needs to be

segmented into a set of messages of k information digits. Let m = (m0, . . . ,mk−1)

be the message to be encoded, using Eq A.1, the corresponding code word is c =

(c0, . . . , cn−1)= (m0, . . . ,mk−1).G. To encode the message m = (110), we use (6, 3)

which has the following generator matrix and the transposed parity-check-matrix.

G =


g0

g1

g2

g3

 =

1 1 0 1 0 0

0 1 1 0 1 0

1 0 1 0 0 1

 ;H =



1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 0 1


c = m ·G = m0 · g0,m1 · g1,m2 · g2 = 1 · g0, 0 · g1, 1 · g2 = 110100 + 011010 = 101110

(A.9)

The codeword corresponding to the message (110) is (101110) which is divided

into two parts, n − k parity-check digits (101) and the message part m = 110. At

the receiving side, the code word c is received as r. To recover the encoded message
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m, the decoding procedure is needed. According to Eq. A.6, first we calculate the so

called syndrome s = r · HT , if s = 0 (all-zeros vector), this means that r is a valid

codeword and we may conclude that there is no error in r. Or, since r = c + e, if

s = r ·HT = 0 this means e is also a codeword which is known as undetectable error.

Otherwise (s ̸= 0), the received codeword r contains errors.

A.2.3 Locating the Error Pattern.

To locate this error, we refer to Eq. A.7, where r = (r0, r1, r2, . . . , rn−1) represents a
received codeword of n elements, and e = (e0, e1, e2, . . . , en−1) which referred to as the
error pattern. After assuming that r has errors bits, Eq. A.8 is used to locate the error
pattern.

Based on (6,3) code, we use Eq. A.8 to determine the syndrome corresponding to
each correctable error pattern, with computing e.HT , as follows.

s = (e0, e1, e2, e3, e4, e5) ·HT

Table A.1 Syndrome lookup table.

Error pattern e Syndrome s
000000 000
000001 101
000010 011
000100 110
001000 001
010000 010
100000 100
010001 111

Since each of the mentioned error patterns of the results listed in Table A.1 has a
one-to-one relationship with each syndromes, so solving for a syndrome identifies the
specific error pattern that corresponds to that syndrome. As we showed by using (6, 3)
code, the corespondent codeword of m = 110 is c = 101110, assume that the vector r =
001110 is received. From Eq. A.7, we compute the syndrome by: s = (001110) ·HT =

100. From Table A.1, we can verify that the error pattern is e = 100000. Then, using Eq.
A.7, the corrected vector is estimated by c∗ = r+e = 001110+100000 = 101110 where
c∗ is the actual transmitted code word. The error correction procedure yields c∗ = c,
which means that the output m∗ will correspond to the actual message m∗ = m = 110.
The possible codewords for the code (6,3) are: (000000, 001101, 010110, 011011,
100111, 101010, 110001, 111100). For this list of codewords, the minimal distance is
d = 3, so (6,3) can detect up to 2 errors and correct up to t = 1 error, and it can be
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given as (6,3,1).
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1 attacker[active]
2
3 principal Thing_A[
4 knows private ID_A
5     generates TS_1
6 H_ID_A=HASH(ID_A)
7 m_1=HASH(ID_A,TS_1)
8 ]
9 Thing_A → Trusted_server:H_ID_A,TS_1,m_1

10 principal Trusted_server[
11 knows private ID_A
12 _=ASSERT(HASH(ID_A),H_ID_A)
13 _=ASSERT(HASH(ID_A,TS_1),m_1)
14 ]
15 principal Trusted_server[
16     knows public C_A_i
17     knows private k_A_i
18     generates TS_2
19 m_2=HASH(ID_A,C_A_i,k_A_i,TS_2)
20 ]
21 Trusted_server → Thing_A:TS_2,m_2
22 principal Thing_A[
23     knows private k_A_i
24 _=ASSERT(HASH(ID_A,C_A_i,k_A_i,TS_2),m_2)
25 ]
26 principal Thing_A[
27     generates TS_3
28     knows private R_A_ii
29 m_3=HASH(ID_A,TS_3,k_A_i,R_A_ii)
30 m_4=ENC(k_A_i,R_A_ii)
31 ]
32 Thing_A → Trusted_server:TS_3,m_3,m_4
33 principal Trusted_server[
34 R_A_ii_=DEC(k_A_i,m_4)
35 _=ASSERT(HASH(ID_A,TS_3,k_A_i,R_A_ii_),m_3)
36 ]
37
38 queries[
39 authentication? Thing_A → Trusted_server: m_1
40 authentication? Trusted_server → Thing_A: m_2
41 authentication? Thing_A → Trusted_server: m_3
42 authentication? Thing_A → Trusted_server: m_4
43 confidentiality? ID_A
44 confidentiality? k_A_i
45 confidentiality? R_A_ii
46 freshness? m_1
47 freshness? m_2
48 freshness? m_3
49 ]

A.3 T2S-MAKEP Verifpal Code
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1 attacker[active]
2
3 principal Thing_B[
4     knows private ID_B
5 ]
6 principal Thing_A[
7     generates TS_1
8     knows private ID_A
9     knows public H_ID_B

10 H_ID_A=HASH(ID_A)
11 m_1=HASH(ID_A,H_ID_B,TS_1)
12 ]
13 Thing_A → Trusted_server:H_ID_A,TS_1,m_1
14 principal Trusted_server[
15     knows private ID_A
16     knows private ID_B
17 _=ASSERT(HASH(ID_B),H_ID_B)
18 _=ASSERT(HASH(ID_A),H_ID_A)
19 _=ASSERT(HASH(ID_A,H_ID_B,TS_1),m_1)
20     knows private k_A_i
21 ]
22 principal Thing_A[
23     knows private k_A_i
24 ]
25 principal Trusted_server[
26     knows public C_B_i
27     knows private k_B_i
28     generates TS_2
29 m_2=HASH(ID_A,C_B_i,k_B_i,TS_2)
30 m_3=ENC(k_A_i,k_B_i)
31 ]
32 Trusted_server → Thing_A :TS_2,m_2,m_3
33 principal Thing_A[
34 k_B_i_=DEC(k_A_i,m_3)
35 _=ASSERT(HASH(ID_A,C_B_i,k_B_i_,TS_2),m_2)
36     ]
37 principal Thing_A[
38     generates TS_3
39 m_4=HASH(C_B_i,k_A_i,TS_3)
40 m_5=ENC(k_B_i_,k_A_i)
41 SAB=HASH(CONCAT(k_A_i,k_B_i_))
42     ]
43 Thing_A → Thing_B:H_ID_A,TS_3,m_4,m_5
44 principal Thing_B[
45     knows private k_B_i
46 k_A_i_=DEC(k_B_i,m_5)
47 _=ASSERT(HASH(C_B_i,k_A_i_,TS_3),m_4)
48     ]
49 principal Thing_B[
50 SBA=HASH(CONCAT(k_A_i_,k_B_i))
51 ]
52 principal Thing_B[
53     generates TS_4
54     knows private R_B_ii
55 m_6=HASH(ID_B,TS_4,k_B_i,R_B_ii)
56 m_7=ENC(k_B_i,R_B_ii)
57 ]
58 Thing_B → Trusted_server:TS_4,m_6,m_7

A.4 T2T-MAKEP Verifpal Code
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59 principal Trusted_server[
60 R_B_ii_=DEC(k_B_i,m_7)
61 _=ASSERT(HASH(ID_B,TS_4,k_B_i,R_B_ii_),m_6)
62 ]
63 queries[
64 authentication? Thing_A → Trusted_server: m_1
65 authentication? Trusted_server → Thing_A: m_2
66 authentication? Trusted_server → Thing_A: m_3
67 authentication? Thing_A → Thing_B: m_4
68 authentication? Thing_A → Thing_B: m_5
69 authentication? Thing_B → Trusted_server: m_6
70 authentication? Thing_B → Trusted_server: m_7
71 confidentiality? ID_A
72 confidentiality? ID_B
73 confidentiality? k_A_i
74 confidentiality? k_B_i
75 confidentiality? R_B_ii
76 freshness? m_1
77 freshness? m_2
78 freshness? m_4
79 freshness? m_6
80 ]



1 attacker[active]
2
3 principal Thing_A[
4     knows private ID_A
5     generates TS_1
6 H_ID_A=HASH(ID_A)
7 m_1=HASH(ID_A,TS_1)
8 ]
9 Thing_A → Trusted_server:H_ID_A,TS_1,m_1

10 principal Trusted_server[
11 knows private ID_A
12 _=ASSERT(HASH(ID_A),H_ID_A)
13 _=ASSERT(HASH(ID_A,TS_1),m_1)
14 ]
15 principal Trusted_server[
16     knows public C_A_i
17     knows private k_SRAM_A
18     knows private R_APUF_A_i
19     generates TS_2
20 m_2=HASH(ID_A,C_A_i,TS_2)
21 ]
22 Trusted_server → Thing_A:TS_2,m_2
23
24 principal Thing_A[
25 _=ASSERT(HASH(ID_A,C_A_i,TS_2),m_2)
26 ]
27
28 principal Thing_A[
29     knows private k_SRAM_A
30     knows private R_APUF_A_i_
31     generates TS_3 
32 m_3=HASH(ID_A,TS_3,R_APUF_A_i_)
33 m_4=ENC(k_SRAM_A,R_APUF_A_i_)
34 ]
35
36 Thing_A → Trusted_server:TS_3,m_3,m_4
37
38 principal Trusted_server[
39 R_APUF_A_i__=DEC(k_SRAM_A,m_4)
40 _=ASSERT(HASH(ID_A,TS_3,R_APUF_A_i__),m_3)
41 ]
42 principal Trusted_server[
43 _=ASSERT(R_APUF_A_i__,R_APUF_A_i)
44 ]
45 principal Trusted_server[
46 k_SA_i=HASH(R_APUF_A_i__)
47 ]
48 principal Thing_A[
49 k_AS_i=HASH(R_APUF_A_i_)
50 ]
51 principal Thing_A[
52     generates TS_4
53     knows private R_APUF_A_ii
54 m_5=HASH(ID_A,TS_4,R_APUF_A_ii)
55 m_6=ENC(k_SRAM_A,R_APUF_A_ii)
56 ]
57 Thing_A → Trusted_server:TS_4,m_5,m_6
58 principal Trusted_server[

A.5 LT2S-MAKEP Verifpal Code
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59 R_APUF_A_ii_=DEC(k_SRAM_A,m_6)
60 _=ASSERT(HASH(ID_A,TS_4,R_APUF_A_ii_),m_5)
61 ]
62 queries[
63 authentication? Thing_A → Trusted_server: m_1
64 authentication? Trusted_server → Thing_A: m_2
65 authentication? Thing_A → Trusted_server: m_3
66 authentication? Thing_A → Trusted_server: m_4
67 authentication? Thing_A → Trusted_server: m_5
68 authentication? Thing_A → Trusted_server: m_6
69 confidentiality? ID_A
70 confidentiality? k_SA_i
71 confidentiality? k_AS_i
72 confidentiality? k_SRAM_A
73 confidentiality? R_APUF_A_i_
74 confidentiality? R_APUF_A_ii
75 freshness? m_1
76 freshness? m_2
77 freshness? m_3
78 freshness? m_5
79 ]
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